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Abstract

In this project limit analysis for 3D structures is studied. The goal is to
obtain for a certain structure the load factor λ that applied to the external
loads induces collapse to the structure. The static theorem of limit analysis
is the theoretical basis for the Structural Collapse Simulator (SCS), that is
finding a stress distribution in equilibrium that does not violate yield crite-
ria anywhere. This theorem is employed combined with linear programming
techniques. Thereby a tutorial on LP problems is presented first. Then a
brief summary of the progresses in study of limit analysis for structures is
offered, being a useful introduction for understanding the very nature of SCS
functioning. Moreover, limit analysis is developed and written as a LP prob-
lem, which consists of the maximization of the collapse load factor subject to
equilibrium and yield criteria.

Two major contributions are presented for finding the collapse load. Firstly,
the yield curve of standard 2D beam cross sections is adaptively approxi-
mated with inscribed and circumscribed polygons that yield to lower and
upper bounds of λ respectively. Secondly, an interesting approach for ac-
counting with uniform distributed loads is shown, producing bounding of the
load factor. Combining these two techniques the bound gap can be reduced
arbitrarily, observing convergence of the upper and the lower bounds to the
exact load factor. A tutorial for using SCS and computing structures is pro-
vided, and numerical examples are thoroughly studied in order to illustrate
the functioning of the program and the limits of the method. Finally, re-
cent developments and future branches of research are detailed in order to
widen the applicability range of SCS, the most important being the adaptive
approximation of the yield surface for 3D beams.
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2 OPTIMIZATION AND LP, DUALITY AND LAGRANGE
MULTIPLIERS

2 Optimization and LP, Duality and Lagrange Mul-

tipliers

2.1 Optimization Problems

We define an optimization problem in the standard form as follows

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m (1)

hi(x) = 0, i = 1, . . . , p

This approach states to finding the value x that minimizes f(x) among all x that
satisfy the restrictions gi(x) and hi(x). The variable x ∈ Rn is called the optimiza-
tion variable, whereas f(x) is the objective function of the optimization problem.
The inequality constraint functions gi (respectively equality constraint functions hi)
are all of them continuously differentiable functions from Rn → R. They constitute
the inequality constraints gi(x) ≤ 0 (equality constraints hi(x) = 0). This problem,
for reasons that will be soon seen, is often called the primal problem.

The domain of the optimization problem is

D =dom f(x) ∩
m⋂
i=1

dom gi(x) ∩
p⋂

i=1

dom hi(x)

A point x in D is feasible if it satisfies all the constraints gi(x), hi(x). A problem
is said to be feasible if it exists at least one feasible point, i.e., the feasibility region
defined as

S = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . ,m;hi(x) = 0, i = 1, . . . , p}

is nonempty. The optimal value b of the above defined optimization problem can
be defined as follows

p∗ = inf{f(x) | gi(x) ≤ 0, i = 1, . . . ,m;hi(x) = 0, i = 1, . . . , p}

This optimal value is allowed to take the extended values ±∞. When b takes
the value∞, we say the problem to be infeasible (feasibility region is an empty set).
Otherwise, if there exists points xk which f(xk) → −∞ as xk → ∞ then b = −∞
and the problem is unbounded below.
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2 OPTIMIZATION AND LP, DUALITY AND LAGRANGE
MULTIPLIERS

2.2 Lagrange dual function and duality

2.2.1 Lagrangian

Considering an optimization problem as (1), we can take into consideration the
constraints by increasing the objective function with a weighted sum of the con-
straint functions. The Lagrangian associated with the problem (1) is a functional
L : Rn × Rm × Rp → R that can be defined as

L(x,η,ν) = f(x) +
m∑
i=1

ηigi(x) +

p∑
i=1

νihi(x)

With dom L : D×Rm×Rp. We refer to ηi as the Lagrange multiplier associated
with the ith inequality constraint, and similarly νi is the Lagrange multiplier asso-
ciated to the ith equality constraint. The vectors η and ν are called the Lagrange
multipliers vectors or the dual variables associated with (1).

2.2.2 Lagrange dual function

The dual function, or Lagrangian dual function G : Rm × Rp → R, can be defined
as the minimum value for the Lagrangian over x

G(η,ν) = inf
x∈D

L(x,η,ν) = inf
x∈D

(
f(x) +

m∑
i=1

ηigi(x) +

p∑
i=1

νihi(x)

)

If the Lagrangian is unbounded below, the dual function takes on the value −∞.
For being the pointwise minimum of a family of affine functions (η,ν), the Lagrange
dual function is concave even if the primal problem is nonconvex1.

2.2.3 Lower bounds on optimal value

It is important to note that the dual function by definition yields lower bounds to
the optimal value b for the primal problem. Taking a pair (η,ν), where η ≥ 0, is
easy to proof that G(η,ν) ≤ b.

PROOF: Take x̂ in S (feasibility region). According to the choice of (η,ν), it
verifies that

m∑
i=1

ηigi(x) +

p∑
i=1

νihi(x) ≤ 0

1A convex problem is one in which the objective and the constraint functions are convex, i.e.,
they satisfy f(αx+ βy) ≤ αf(x) + βf(y) for all x,y ∈ Rn and all α+ β = 1 ∈ R.
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2 OPTIMIZATION AND LP, DUALITY AND LAGRANGE
MULTIPLIERS

as gi(x̂) ≤ 0 and hi(x̂) = 0, whereby every term of the first sum is nonpositive
and every term of the second is equal to zero.

Thus, evaluating the Lagrangian on x̂, we obtain L(x̂,η,ν) ≤ f(x̂). Automat-
ically, we have G(η,ν) = inf L(x,η,ν) ≤ L(x̂,η,ν) ≤ f(x̂). Since this inequality
holds for any feasible point, the proof is complete.
�

Hence, the following inequality verifies

G(η,ν) ≤ inf
g(x)≤0
h(x)=0

f(x) (2)

Nevertheless, it should be taken into account that if G(η,ν) = −∞ the lower
bound is trivial. Hence, for a nontrivial lower bound for b need to be η ≥ 0. If
the pair (η,ν) attain to this condition, they belong to the dual feasibility region T ,
which contains the pairs (η,ν) such that the dual function is not unbounded below.

2.2.4 The Lagrange dual problem

As stated before, for each feasible pair (η,ν) the Lagrange dual function yields a
lower bound of the optimal value b of the primal problem, it is natural to seek the
maximum lower bound via the optimization problem

maximize G(η,ν) (3)

subject to η ≥ 0

which is the so-called Lagrange dual problem or simply the dual problem, as-
sociated to the (1). The pair (η,ν) belongs to the dual feasibility region T if it is
feasible for the dual problem. Moreover, it is common to refer to (η̂, ν̂) as the op-
timal Lagrange multipliers or the dual optimal if they are optimal for (3). One last
thing that is worth mentioning is the fact that the dual problem is always convex,
due to the concavity of the objective function and the convexity of the constraint,
no matter the convexity of the primal problem.

2.2.5 The weak duality

The optimal value of the Lagrange dual problem, supG(η,ν), which will be de-
noted as d∗, is the best lower bound for the primal problem that can be obtained.
Henceforth we have the following inequality

sup
η≥0

G(η,ν) ≤ inf
g(x)≤0
h(x)=0

f(x)

Ferran Vidal Codina 10



2 OPTIMIZATION AND LP, DUALITY AND LAGRANGE
MULTIPLIERS

which stands even if the problem is not convex. This property is known as the
weak duality. The weak duality holds even in case one of the inequality members is
infinite. For example, if the dual problem is unbounded above (supG(η,ν) =∞),
the primal problem is infeasible, i.e. p∗ =∞. Otherwise, if the primal is unbounded
below (p∗ = −∞), the dual must be infeasible (supG(η,ν) = −∞).

We refer to the difference between both quantities, p∗− d∗, as the optimal dual-
ity gap, which is the gap between the optimal value of the primal problem and the
greatest lower bound, and it is always nonnegative.

The weak duality can be used to find lower bounds of the primal problem, and it
is useful in cases where the primal is difficult to solve, as the dual is always convex.

2.2.6 The strong duality

If the optimal duality gap is zero, the strong duality holds. If the primal problem
is convex, then the strong duality usually (but not always) holds. A primal convex
problem is as follows

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

Where f(x) and gi(x) are convex. Many results can be found about establishing
conditions under which strong duality holds, but there will be no further discussed
in this project.

2.3 Linear optimization problems

2.3.1 LP in standard form, its dual and extended dual theorem

When the objective and the constraint functions in our optimization problem are
linear2, the problem is called a Linear Program (LP). A standard LP problem can
be written as

minimize cTx

subject to Ax = b

x ≥ 0

with the only equalities as the component-wise nonnegativity constraints. Lin-
ear programs are, of course, convex optimization problems. Since it is possible to
maximize an affine objective function cTx by minimizing −cTx (convex as well),

2A linear function is one that satisfies f(αx + βy) = αf(x) + βf(y) for all x,y ∈ Rn and all
α, β ∈ R.
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2 OPTIMIZATION AND LP, DUALITY AND LAGRANGE
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it is also referred as a LP a maximization problem with linear objective and con-
straint functions. It should be noted that in this case the feasible set is a generalized
polyhedron P , and the problem is to minimize the affine function cTx over P . The
problem dual to this latter is

maximize uTb

subject to uTA ≤ cT

With this definitions it is immediate that

LEMMA 2.1 If Ax = b,uTA ≤ cT then

uTb = uTAx ≤ cTx

Finally is announced the dual theorem, first conjectured by J. von Neumann and
proved afterwards by Gale, Kuhn and Tucker, of LP.

Theorem 2.1 (Extended dual theorem) For any dual pair of problems, pre-
cisely one of the following occurs:

1. There exists x∗,u∗ with Ax∗ = b,x∗ ≥ 0 and u∗TA ≤ cT such that u∗T =
cTx∗

2. Ax = b,x ≥ 0 has a solution, uTA ≤ cT has none and min cTx = −∞

3. Ax = b,x ≥ 0 has no solution, uTA ≤ cT has one and maxuTb =∞

4. Neither Ax = b,x ≥ 0 nor uTA ≤ cT have a solution

COROLLARY 2.1 If Ax = b,x ≥ 0 has a solution and cTx is bounded below
(or alternatively if uTA ≤ cT has a solution and uTb is bounded above) then there
exists optimal solutions x∗,u∗ to both problems above.

2.3.2 LP in general form, lagrangian and duality

A general linear program can be expressed as

minimize cTx

subject to Dx ≤ e (4)

Ax = b

And the variables x, c ∈ Rn, e ∈ Rm,b ∈ Rp,D ∈ Rm×n and A ∈ Rp×n. The
Lagrangian L : Rn × Rm × Rp → R associated to (4) can be defined as

L(x,η,ν) = cTx+ηT (Dx−e)+νT (Ax−b) = −eTη−bTν+xT (DTη+ATν+c)
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3 EVOLUTION IN LIMIT ANALYSIS TECHNIQUES

so the dual function is

G(η,ν) = inf
x
L(x,η,ν) = −eTη − bTν + inf

x
(xT (DTη + ATν + c))

The infimum of a linear function is −∞, except in the case where is identically
zero, so the dual function can be expressed as

G(η,ν) =

{
−eTη − bTν if DTη + ATν + c = 0
−∞ otherwise

The dual variable η is dual feasible if η ≥ 0 and DTη+ ATν + c = 0, hence the
lower bound property (2) holds, and the lower bound to the optimal value happens to
be −eTη−bTν (4). The Lagrange dual problem defined by (3) can be reformulated
by including the dual feasibility conditions as explicit constraints

maximize − eTη − bTν

subject to DTη + ATν + c = 0 (5)

η ≥ 0

The problem that will be dealt throughout this project responds to problems (4)
and (5). Nevertheless, many different forms of LP problems can be used depending
on the LP solver chosen (linsolve, SDPT3, CVX,. . . ) and the very nature of the
problem itself. Further information about LP problems approaches can be found in
[1].

3 Evolution in limit analysis techniques

Limit analysis has been an increasingly and widely used tool for structure design-
ing and soil mechanics analysis since its initial developments in the 19th century.
The problem aimed to be solved by means of limit analysis consists of finding the
minimum multiple of the load distribution in a solid subject that drives to the com-
plete collapse of the body, assuming a plastic behavior of the subject, i.e. elastic
range is left. In this project it will be discussed the limit analysis applied to finding
conditions of failure of statically loaded 3D and 2D-structures of ductile materi-
als, particularly steel, and the process of loading will be proportional. Continuous
beams and frames of steel can carry loads considerably greater than the ones which
cause to reach the elastic limit of the material. In general, when loading increases
plastic yield is attained in some elements of the structure, which implies the par-
tial loss of its bearing capacities. If the process of loading does not cease it may
incur the physical failure of the structure, when the load has reached a certain value
called collapse load. Above this factor, small loading increases may result in much
larger permanent deformations than the ones experienced before. The so-called plas-
tic methods attempt to estimate the collapse load factor, and hence provide both a
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knowledge of its bearing capacity and a better use of materials in the design process.

Plastic analysis is based on the idealization of the stress-strain surface as elastic-
perfectly-plastic. The relation between the bending moment and the curvature at
each member of the structure is the starting point for the limit analysis. The basic
hypothesis is that if the bending moment of an initially unstressed and unstrained
element under pure bending approaches a value noted by Mp, which depends on the
nature and characteristics of the material, the curvature of the element increases
indefinitely. This value is commonly referred to as the plastic moment of the mem-
ber. The formation of a plastic hinge is closely related to the attainment of the
plastic moment in some sections. The concept of plastic hinge, which is key in limit
analysis, was first proposed according to Maier-Leibnitz [2] by G.V.Kazinczy in the
Hungarian journal Betonszemble in 1914. Theoretically, if the plastic moment is
reached in a section of a member it would lead to infinite curvature, hence this sec-
tion would be able to change the slope angle in infinitesimal distances. Hence the
members would behave as if they were attached to a hinge which transmits only a
constant moment equal to ±Mp.

Progresses in the development of efficient plastic methods for limit analysis cal-
culation were made by Greenberg and Prager [3], and the most relevant ones that
should be pointed out are the static and kinematic theorem. Let Pc be the actual
collapse load of a given frame, accepting that all the loads can be combined with
certain ratios so that can be expressed as a single quantity. Admit Plb as a load at
which it is possible to find a feasible system of bending moments satisfying equi-
librium equations and plastic moment is not reached at any section. Under these
circumstances, Greenberg and Prager showed that Plb ≤ Pc.

This kinematic method is based on the combination of elementary mechanisms
and the virtual work principle. The plastic collapse loads correspond to several fail-
ure mechanisms, and are found by equating the internal work at the plastic hinges
with the external work performed by the loads during the virtual displacement.
Rotations and deflections must thereby be computed. One of the hypotheses as-
sumed is that the frame remains rigid between the supports and the hinges, thus
plastic rotation only occurs at plastic hinges. Combining mechanisms various col-
lapse loads can be found, and the kinematic theorem states that the minimum load
factor is an upper bound of the real collapse load. Its immediate consequence is
that Pc ≤ Pub, where Pub is the minimum load found combining mechanisms. This
method constitutes a useful tool for having an reference value of the load necessary
for a structure to lose its stability and collapse, but it always yields to unsafe values.
Thus, considering both principles the following inequality can be obtained

Plb ≤ Pc ≤ Pub

Which expresses that there one and only one collapse load: there exists a unique
load value such tat, with all bending moments satisfying statical equilibrium and
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nowhere exceeding a plastic moment magnitude, plastic hinges exist at sufficient
sections to convert the frame into a kinematic mechanism. This load can only be
found explicitly if the results of both static and kinematic principles coincide. The
methodology of collapse load calculation based on these theorems was developed
and widespread by Symonds and Neal [4, 5].

Symonds and Neal [6] were also relevant for their studies about computation
of plastic moments of various cross sections and techniques for its computation in
general cases. Moreover, observations were made regarding the influence of shear
stress and axial forces on the variation of the plastic moment, and together with
Chwalla [7], Baker, Horne and Roderick [8] further investigations were carried out
concerning conditions under which these forces should be taken into account.

Paralelly to the demonstration of these two theorems in 1951, which revealed to
be crucial in the development and study of limit analysis, it gained relevance the
approach to the problem of finding the exact collapse load as a linear programming
problem. It had been studied previously, but it always appeared the obstacle of a
physical interpretation of the variables intervening in the dual problem. Charnes and
Greenberg [9] established the equivalence, for trussed structures, of dual program-
ming problems and the static and kinematic theorems. This equivalence regarded
the stress in a bar as a primal variable and the displacement of a joint as a dual
variable. Henceforth, these identification allowed the study of trussed structures
using the theory and the computational advantages of linear programming.

The conjectured equivalence for frames, the most important structural applica-
tion, was not proved until 1959 by Charnes, Lemke and Zienkiewicz [10] using virtual
work and geometric compatibility. In this article the authors developed a parametric
form for the static equations of equilibrium combined with the compatibility condi-
tions, as well as giving a physical interpretation of the dual variables. Using these
results, the LP problem was first formulated, being the primal the maximization of
the load factor subject to the statical equilibrium equations (static theorem), and
its dual the minimization of the load factor subject to the conditions of constituting
a kinematic mechanism attaining the plastic moment at the critical sections. It fol-
lows by the application of the extended dual theorem (2.1) that it there is a finite
optimum for either the primal or the dual, then there must be one for the other.
As a consequence of this duality and the application of the extended dual theorem
conditions for the existence of a collapse mechanism were stablished.

Once the LP problem was formulated, further progresses were made in this field,
aiming to improve the approach to the actual problem and the solving techniques.
There should be cited Heyman [11], Horne [12], Baker and Heyman [13] and Wat-
wood [14]. In 1972, Anderheggen and Knopfel [15] first introduced in the problem
of finding the collapse load factor the necessity of a combined yield condition. Be-
forehand it was only taken into account the influence of the bending moment as a
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condition for attaining plastic flow with the aforementioned plastic hinges. It had
been noted the negative influence of axial and shear forces on the fully plastic mo-
ment, but no mathematical approach had been made. Anderheggen and Knopfel
introduced the yield condition as a feasible stress domain in the bending moment -
axial force plane (in two dimensions) that should not be violated at any point. As it
will be seen throughout this project, yield surfaces are in general nonlinear convex
sets, therefore a process of linearization of the yield conditions was proposed. By
means of this process the restriction of not exceeding the (reduced) plastic moment
could be placed as a constraint in the LP primal problem. Furthermore, the finite
element method was used as a mathematical tool for modeling the problem and
formulating it as an LP, by assuming stress and displacement fields and then using
the virtual work principle to find the coefficients corresponding to linear equilibrium
and kinematic compatibility.

This latter article set the basis of finding the collapse load factor as it is stated
nowadays. Other referent authors which contributed to the development of solving
the LP problem were Munro [16], Livesley [17] and Maier, Giacomini and Pater-
lini [18]. The results achieved by the last quoted authors involve formulating the
problem as a restricted basis linear program (RBLP), which implicates that in the
basic LP problem there is an extra complementarity nonlinear condition, able to be
solved by the standard simplex method with a similar computational cost, although
it provided the deformation history of the structure.

Jennings and Tam [19] proposed in their paper a modified simplex technique
based on a minimum weight criteria for the selection of relative member sizes, for
structures with only flexural actions and concentrated loads, minimizing an objec-
tive function which regards the possible positions of the plastic hinges and checks
equilibrium via the static theorem. Further innovations in methods of solving the
problem can be attributed to Thierauf [20], who presented an iterative method for
solving the limit analysis problem with alternative loads with a linear objective
function and quadratic yield conditions.

Damkilde and Hoyer [21] proposed a new approach to the standard LP problem
based on the reduction of degrees of freedom a priori so as to deal with a reduced
problem with less equations and also the LP problem without the restriction of non-
negative variables (which is actually more accurate) using slack variables. Damkilde
used the linearization of the yield surface as well, thus checking yield conditions
are not violated at any point. Another interesting idea stated in this paper was
the possibility of the inclusion of the material optimization, so a double load and
material optimization can be carried out.

From the early 90s until nowadays great progresses have been made in solv-
ing the collapse load factor problem using different computer approaches. For in-
stance, Tin-Loi [22] used the mathematical programming language GAMS for pla-
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nar frames; Kaveh and Jahanshahi [23] applicated heuristic algorithms such as Ant
Colony System; Corradi, Luzzi and Vena [24] developed the limit analysis problem
for anisotropic structures; Tjhin and Kuchma [25] used the strut-and-tie method as
an equilibrium method for the limit analysis; Van Long and Dan Hung [26] com-
bined direct LP methods with step-by-step methods for the analysis of 3D frames;
Peraire, Bonet and Ciria [27] designed a program with an adaptive mesh system for
the computation of both lower and upper bounds, solving in this case second-order
cone programs.

Furthermore, if the focus is on the evolution of the LP solving techniques, authors
such as Borges et al.[28], Lyamin [29], and Krabbenhoft and Damkilde [30] made
decisive apportations with much more efficient methods than the simplex methods,
which are capable of solving both linear and nonlinear programs. In addition to
that, in these methods the number of iterations is largely independent of the prob-
lem size, meaning that problems with thousands of variables can be solved within
minutes.

As stated before, this project will focus on the development of limit analysis of
both trussed and framed 3D and 2D structures writing it as a LP problem. Firstly
global equilibrium equations will be introduced in matrix notation, bearing in mind
geometric restrictions and kinematic constraints. One of the new approaches to the
problem is the yield condition linearization. Yield surface of standard beam cross-
sections is explicitly written, and it is adaptively approximated in a manner that
every element of the structure can have its yield surface differently approximated
if desired. Besides that, this approximation yields to lower and upper bounds of
the exact collapse load whether the yield surface (always convex) is approximated
inwards or outwards. The second major innovation is the possibility of considering
uniform distributed loads, and an adaptive procedure is sought as well. Combining
both the yield conditions, UDL and adaptivity the bound gap can be arbitrarily
reduced, and therefore a more precise collapse load factor can be found.

4 Limit state analysis as a LP problem

Following some of the aforementioned developments and work in limit analysis, a
general and complete approach to the problem of finding the exact load factor that
scales the external loadings in order to induce collapse to the structure is explicitly
proposed here. This load factor, which will be referenced from now on using the
notation λ, is forced to be nonnegative, thus the direction of the loads is decisive.
This procedure is based on the static theorem, which states that a given statically
admissible stress distribution which doesn’t violate yield criteria anywhere induces
a lower-bound of the actual collapse load. This condition will therefore be expressed
as a LP problem. Its dual problem, which happens to be the kinematic theorem,
will not be sought in this project, nevertheless it would lead to the same exact result

Ferran Vidal Codina 17



4 LIMIT STATE ANALYSIS AS A LP PROBLEM

(with a sensible stress and displacement fields and accounting the fact that the dual
of the dual is again the primal problem). However, for a computer-based approach
it is simpler to consider the static theorem. In this section the equilibrium equations
and yield criteria will be presented, as well as its writing as linear conditions for its
further use in the LP problem.
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Figure 1: Generalized stresses in a 3D beam element

4.1 Equilibrium

The lower bound theorem states that equilibrium at the structure must be satisfied
both at beam and global level. The first important assumption to be made is the
external point loads to be applied at the nodes of the structure. Even if the desired
structure has point loads applied in the middle of the span, the user is required to
introduce an extra node in the exact position of the point load application, in order
to account for this load. Hence, a 3D framed beam, has a constant axial force N ,
a constant torsional moment Mx, and linear bending moments Mz and My. The
stress state at the local level is expressed via the element generalized stress vector,
σT
ele = (N,Mx,M

1
z ,M

2
z ,M

1
y ,M

2
y ), where the superscripts 1, 2 refer to the node of

the element. The coordinate system chosen from now on is the one shown in Figure
1.
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Figure 2: Nodal forces and moments in a beam element

The nodal forces and vectors on the beam, q, can be determined via the gener-
alized stress vector and the element flexibility matrix Hele as follows

q = Heleσele (6)
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The vector qT = (q1, ..., q12) contains the nodal force vectors (q1, q2, q3) and
(q7, q8, q9) at nodes 1 and 2 respectively, and the nodal moment vectors (q4, q5, q6)
and (q10, q11, q12) as shown in Figure 2. Remark that Hele ∈ Rdimq×dimσele , and in
general this is R12×6.

4.1.1 Local equilibrium

Equilibrium at the beam element determines the structure of the so-called element
flexibility matrix. Recall that shear stresses are determined from bending moments.
If l is the length of the beam element, the element flexibility matrix can be described
as:

Hele =



−1 0 0 0 0 0
0 0 −1/l 1/l 0 0
0 0 0 0 −1/l 1/l
0 −1 0 0 0 0
0 0 0 0 1 0
0 0 −1 0 0 0
1 0 0 0 0 0
0 0 1/l −1/l 0 0
0 0 0 0 1/l −1/l
0 1 0 0 0 0
0 0 0 0 0 −1
0 0 0 1 0 0



(7)

Since this matrix reflects equilibrium at the beam, the forces are expressed in the
local coordinate system aforementioned. In the assembly process of a general frame,
multiple directions can be taken, whereby the flexibility matrix is needed to rotate
in order to be expressed in the global coordinate system, which will be defined by
the user.

4.1.2 Rotation

The rotation matrix, referred to as T is a real-valued 3×3 orthogonal rotation ma-
trix in 3D, i.e. its transpose equals its inverse and its determinant is equal to 1.
Therefore TTT = I = TTT , where I is the identity matrix.

For the three dimensional case, geometry is not only important, but also how the
beams are placed within the structure. Namely, the transformation matrix is simply
the global coordinates of the local axial unit vectors, see Figure 1. In fact, the unit
vector in the x-direction of the local coordinate system is given by the beam/bar
geometry. Let nel be the number of elements in a general frame. For an arbitrary
element e, e = 1, ..., nel. If uT

e = (ux, uy, uz) denotes this unit vector for element e,
then
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uT
e =

(xe2 − xe1, ye2 − ye1, ze2 − ze1)√
(xe2 − xe1)2 + (ye2 − ye1)2 + (ze2 − ze1)2

where (xei , y
e
i , z

e
i ) denote the coordinates of node i, i = 1, 2, of element e.

The unit vector for element e in the y-direction of the local coordinate system,
is denoted ve and is assumed to be in the web direction of the beam. The beam
web direction is data that must be given a priori. Finally, the unit vector in the
z-direction of the local coordinate system is denoted we. The direction of the axis
is the one depicted in Figure 1. The rotation matrix is constructed as follows

we = ue × ve Te = [ue ve we]

Hence, the rotation matrix for an element e is T̄
e ∈ R12×12, and can be written as

T̄
e

=


Te 0 0 0
0 Te 0 0
0 0 Te 0
0 0 0 Te


and its left product with the element flexibility matrix He

ele gives the element flexi-
bility matrix in global coordinates T̄

e
He

ele.

4.1.3 The 2D Structure

For a 2D frame the element generalized stress vector becomes σT
ele = (N,M1

z ,M
2
z )

and the element flexibility matrix is reduced to:

Hele =


−1 0 0
0 −1/l 1/l
0 −1 0
1 0 0
0 1/l −1/l
0 0 1


For rotating the element flexibility matrix in 2D, two vectors are defined. For an
arbitrary element e, naming uT

e = (u1, u2) the geometry vector of the beam in global
coordinates, with origin at the node 1 and end at the node 2 of the element, the
orthogonal vector that configurates a proper axis orientation is vT

e = (−u2, u1), and
the rotation matrix is shaped as

Te =

 u1e −u2e 0
u2e u1e 0
0 0 1


Thus, the rotation matrix for an element e is T̄

e ∈ R6×6, and can be written as
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T̄
e

=

(
Te 0
0 Te

)
and the element flexibility matrix in global coordinates is defined by left multi-

plying with this latter matrix.

4.1.4 Equilibrium for trusses

It was regarded important to remark the simple case where the structure has hinges
at every node. The elements only carry axial loads, therefore σele = N ∈ R and the
element flexibility matrix is HT

ele = (−1, 0, 1, 0) in 2D and HT
ele = (−1, 0, 0, 1, 0, 0)

in 3D.

4.1.5 Global equilibrium

Once local equilibrium is clarified, the next step is equilibrium for the whole struc-
ture. Nodal equilibrium for the global frame is determined after summation of the
element contributions at the nodes, the so-called p vectors in (6), and the external
loads. The several element flexibility matrices defined in (7) must be assembled in
the global flexibility matrix H, and accounting the external loads and the reaction
forces due to kinematic constraints, global equilibrium can be expressed as follows

Hσ = Gr + λf (8)

where f is the vector containing all the external nodal forces3, λ is the plastic
load multiplier (the aim of the problem), r is the vector containing the reactions
due to the boundary conditions and kinematic constraints and G is a matrix that
relates each reaction force to the corresponding geometric restriction (embedded,
simply supported,...). σ is the global generalized stress vector, which contains all
the element stress vector assembled, therefore

σ = (σ1
ele

T
, ...,σnel

ele
T )

This vector belongs to R6nel but need not to have this exact dimension since
static constraints such as internal hinges can be present in the structure, and the
stress parameters can be known a priori and the dimension of σ must be reduced
accordingly. The number of columns of H is equal to the dimension of σ; thus in
general is six times the number of elements, 6nel. The number of rows corresponds
to nodal equilibrium for each degree of freedom. In general it is six times the number
of nodal points, 6nnp. The structure of the global flexibility matrix can be written,
where rows represent nodes and columns represent elements, as follows

3UDL inclusion will be later discussed.

Ferran Vidal Codina 21



4 LIMIT STATE ANALYSIS AS A LP PROBLEM

H =



1 . . . d . . . e . . . nel
1 0 0
...

...
...

0 0

i T̄
d
Hd

ele,i 0
0 0

...
...

...
0 0

j T̄
d
Hd

ele,j T̄
e
He

ele,j

0 0
...

...
...

0 0
k 0 T̄

e
He

ele,k

0 0
...

...
...

nnp 0 0


It should be noted that Hd

ele,i ∈ R6×6, as it represents the element d flexibility
matrix associated to node i. This node can be the origin (node 1) or the end (2),
and it depends on the user introduction of the initial data.

Moreover, it should be noticed that the dimension of r is the exact number
of geometric restrictions and the matrix G links each reaction to its corresponding
equilibrium equation, and has as many rows as the number of equilibrium equations,
which coincides with the number of rows in H, 6nnp. Finally, it is worth mentioning
that is usual in the problems that will be solved by this software to have a fair
larger number of stress parameters than equilibrium equations, which implies that
the majority of structures will be hyperstatic, and thus can carry the external loads
in diverse ways.

4.2 Yield criteria

The function that describes the yield surface is in general a nonlinear function of
the stress, geometry, material and cross section parameters. Since external loads
are only considered at the nodes, yield is only checked at the element nodes. If the
aim were to use nonlinear optimization programs the original yield surface could be
used. As in this project only the LP approach is discussed, firstly a linearization
process must be carried out. This linearization process is the key for a successful
yield surface approximation, hence it is worth highlighting the main features of
yield conditions. Linearization of the yield surface will only be considered for two-
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dimensional frames, since the 3D case is still being implemented. Thus, form now
on yield criteria will be referred as yield curve rather than yield curve.

4.2.1 Class type

According to its behavior facing normal stress, the cross section of a beam element
in a structure can be classified as follows

1. Plastic

2. Compact

3. Semi-compact

4. Slender

This classification provides an average idea of how much local instability (dent)
which arise during the process of loading can be capable of limiting both the strength
of the cross section (moment that can be reached without collapsing) and its rota-
tion capability (curvature that can be adopted without collapsing).

Depending on the sensitivity of a cross section to bear with local instabilities
four types or section classes can be defined:

� Class 1 (plastic) sections are capable of not only reaching its fully plastic
moment without arising instability problems, but also have enough rotation
capacity to form a plastic hinge, and allow the perfect plasticity behavior
demanded for a global plastic analysis.

� Class 2 (compact) sections are capable of reaching its fully plastic moment
without arising instability problems, although don’t have enough rotation ca-
pacity to form a plastic hinge for a global plastic analysis. As a consequence
of this latter fact, in isostatical structures the same global exploitation of the
material as if it were a plastic section is permitted. However, material ex-
ploitation in hyperstatical structures is strictly lower than the one that can be
attained using plastic sections.

� Class 3 (semi-compact) sections present local dent problems before attain-
ing the fully plastic moment and once surpassed the elastic moment. The
section resistant moment will be considered equal to the elastic moment.

� Class 4 (slender) sections are incapable of even developing its elastic capacity
in the most compressed metallic fiber, due to instabilities at the compressed
sheets.
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The assignation of a class to a determined cross section involves a number of
parameters such as the material’s elastic limit, the geometry of the section, the
slenderness of its fully or partially compressed panels and the loads at which the
section is undergone. Actually, the section type will be known a priori by using
the various steel cross section catalogues available4, and as the functioning of the
software is shown this matter will be deepened.

4.2.2 Yield function definition

As stated before, plastic analysis only makes sense if considering cross sections with
C1 or C2 collapse state, since these are the ones that attain plastic flow. Further-
more, geometry of the cross section has revealed as a decisive factor in the nonlin-
ear yield curve, thus it is crucial to analitically know its description of the most
commonly used cross sections. This project will focus on the doubly symmetric
I/H-shaped cross sections, basically the IPE and HEB series, due to its vast presence
in steel structures and widespread use. Rectangular cross sections should also be
mentioned, but will be no further discussed as a rectangular solid steel section is
seldom found. Nowadays only doubly symmetric I/H-shaped cross sections can be
found on the Cross Section Library of the Structural Collapse Simulator, nonethe-
less there are currently being implemented non-symmetric cross sections such as T, U
or L shape, as its yield function is found and the linearization procedure is developed.

b

z

y

hw h

tw

Figure 3: I/H-shaped symmetric cross section

Finding the yield curve definition in an axial force-bending moment cartesian
plane consists of finding the relationship between N and M when the section under-
goes combined bending and axial load, by forcing equilibrium in the zero strain
axis (ZSA). In a doubly symmetric I/H-shaped cross section, the axial tension
(NT ) and compression (NC) forces that plastify the cross section with no bend-
ing are NT = −NC = Np = (twhw + b(h − hw))σp where σp, the yield stress,
is assumed to coincide in tension and compression due to symmetries. The plas-
tic bending moment that induces a plastic hinge to form under pure bending is

4The Structural Collapse Simulator is based on the ArcelorMittal catalogues.
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M+ = −M− = Mp = (twh
2
w + b(h2 − h2w))σp/4, where h is the depth of the beam,

hw is the depth of the web, tw is the thickness of the web and b is the width of the
flanges as depicted in Figure 3. The area of the section can be approximated as
A = twhw + b(h− hw)5.
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Figure 4: Yield curve for IPE550 (red) and HEB300 (green) cross sections

In this type of section, as the ZSA can be placed in the web of in the flanges,
the yield curve is defined piecewise in each quadrant of the (M,N) plane. There
are a total of eight different possibilities, depending on whether the ZSA is on the
upper/lower flange/web and the sign of the axial and bending load. In Figure 4 the
yield curve for different sections is represented.

4.2.3 Yield curve linearization

In the previous section the yield curve of the I/H-shaped cross section was explicitly
found. Following the procedure briefly explained yield curves for standard beam
cross sections can be determined as well. The yield function is clearly nonlinear,

5Real sections are not usually a plain union of three rectangles, as present a small curvature
between the web and the flanges. In the problem modeling, as this assumption is made, the area
given by the manufacturer is taken as A, and with this expression an equivalent tw is deduced and
used.
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although is interesting to notice from the yield curve depiction and from the general
theory that every curve defines a convex set6 of feasible loads in the (M,N) plane.

For comodity it is advisable to work on a normalized plane, i.e. the

(
M

Mp

,
N

Np

)
plane.

Since this project is headed into expressing the limit analysis as a LP problem,
the nonlinear yield criteria must be expressed with a set of lines (linear constraints)
that approximate the yield curve as precisely as desired. The strategy to follow
here is to replace the nonlinear yield curve by two new polygons, inscribed and cir-
cumscribed respectively. The inscribed polygon will lead to a lower bound of the
exact collapse load factor in the LP problem, whereas the circumscribed will yield
an upper one. It is worth mentioning that the convexity of the yield curve is crucial
to ensure that the approximations made always yield to upper or lower bounds.
The objective is then to define a sequence of polygons that converge from inside
and outside of the yield curve to the exact one. For this purpose, and exploiting
the condition of double symmetry of the yield curve, only the first quadrant will be
approximated and the results will be extended to the remaining three.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
/N

p

M/M
p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
/N

p

M/M
p

Figure 5: Inscribed and circumscribed polygons of a IPE550 yield curve using 8/10 lines
per node respectively

The initial approximation of the lower bound (LB) is one line defined by the
two extremal points (1,0), (0,1). This first guess corresponds the most conservative
yield criteria condition, which is reflected at the engineering standards and codes
as the safest approximation. The new polygon will consist of a set of lines with
extreme points over the yield curve. In practice, the user will introduce the desired
number of lines to approximate the yield curve of every element (not necessarily

6Similary as defined in (2.2.2), a convex set C in a real or complex vector space is one in which
for all x,y ∈ C and all α ∈ [0, 1], the point (1− α)x+ αy ∈ C
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the same lines for every element), with the only restriction to be a multiple of 4.
The software will divide the first quadrant into sections with a beam of lines, and
the intersection between each one of these and the yield curve will determine points
over the yield curve. Since the yield curve is the one previously defined, it can
be written as a compact function in the bending moment-axial force plane. As a
consequence, the procedure of finding the points is as simple as a Newton-Raphson
1D technique to seek the abscissa where the difference between the yield curve and
each line vanishes. Due to symmetries a collection of points over the yield curve is
available, whereby is trivial to define a set of lines that link two consecutive points,
forming an inscribed polygon. Every point in and on the polygon is feasible because
it is either in or on the yield curve. It is obvious that this latter fact leads to the
computation of a lower bound of the exact collapse load.

The upper bound (UB) is computed similarly. However, in this case no Newton-
Raphson is needed, as the strategy is to employ the collection of points found in
the lower bound approximation and define tangent lines to the yield curve at every
point. It is worth noticing that in this procedure a notable step is found: the sin-

gularities at the points (0,1), (0,-1) of the

(
M

Mp

,
N

Np

)
plane. The impossibility of

defining a tangent line at these points is solved by defining a right and left tangent
line using the lateral derivatives of the yield function at a neighborhood of these
singular points. Thereby a discrepancy arises when comparing to the lower bound
approximation; in the LB case n points define n lines, whereas in the UB case n
points define n + 2 points. However, this disagreement is properly treated in the
software. The points on the polygon are only feasible if they are on the yield curve,
and obviously this approximation leads to unsafe load multipliers as the polygon
is circumscribed in the actual yield curve. Nevertheless, this upper bound gives
decisive information on ”how good” the lower bound previously found is, i.e. the
precision of the first computation, which is certainly a matter of importance if a
study of convergence by creating a sequence of polygons is carried out.

In both cases the restrictions are linear, one restriction per edge of the polygon.
Finally, this procedure expresses the linear restrictions in an adequate form for its
inclusion in the linear approximation of the yield criteria in the LP problem. Figure
5 shows both the lower and upper approximation (first quadrant) of a IPE550 cross
section.

4.2.4 Yield criteria as a LP problem

The original nonlinear criteria would lead to a nonlinear optimization problem

f(N,Mx,M
i
z,M

i
y) ≤ g(m1, . . . ,mk) i = 1, 2 (9)
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Figure 6: Simplest linearization for a general yield surface

where m1, . . . ,mk are the material parameters that characterize the beam prop-
erties and the material, which can of course be different for every element. To
perform the computation as a LP problem this criteria is linearized following the
procedure described in the previous section. The case treated in this project is only
concerned in finding the factor that maximizes the external load so as to induce
collapse in the structure. Therefore only the left-hand side of (9) must be linearized
and optimized. If the aim were to optimize the material resources for a given load,
the inverse process should be carried out. For each element, the condition of not
exceeding yield curve can be expressed as

Fi


N
M i

z

M i
y

 ≤ gi for i = 1, 2

The linearization will be discussed for the 2D frame, since for the 3D case the
method is not yet available. Matrix Fi has at least 8 rows (when the yield curve
is approximated with 4 lines per node, see Figure 6, if computing the lower bound
or 12 rows (the tangent lines to the 8 points on the curve as detailed beforehand)
if computing the upper bound. The number of rows increases as the approximation
of the yield curve is more accurate, i.e. more lines are used. In fact, each edge of
the polygon constitutes a restriction, therefore an extra row for Fi. The previous
equation can be regarded for each element as

Feleσele ≤ gele (10)

and after an easy assembly procedure the yield condition is expressed in the
whole structure by

Fσ ≤ g (11)
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The number of columns of F equals the total number of generalized stress pa-
rameters, i.e. the dimension of σ, 3nel. The number of rows is at least twice (one
for each node of each element) the number of structure elements times the number
of lines used to approximate the yield curve, minimum 4/6 per node, depending on
the bound that is being computed. From now on, a subscript will be used in order
to differentiate among the upper and the lower bound. Hence, the number of rows
of FLB is minimum 8nel, while the number of rows of FUB is at least 12nel It should
be noted that if a nodal point is a junction of several bars, yield at this node will be
checked as many times as the number of bars that join at the node. Thus if plastic
flow is reached at a a node information about which bar contributes to the plastic
attainment can be obtained.

The simplest yield curve for 2D frames consists of 4/6 lines if computing either
the lower or the upper bound. Lower bound inequalities for only one element are
now presented as a general case, due to the triviality of the assembly process. The
upper bound case is omitted because expressing the tangent lines to the yield curve
with a compact expression could be tedious.



1/NT 1/M+ 0
1/NT 1/M− 0
1/NC 1/M− 0
1/NC 1/M+ 0
1/NT 0 1/M+

1/NT 0 1/M−

1/NC 0 1/M−

1/NC 0 1/M+



 N
M1

z

M2
z

 ≤



1
1
1
1
1
1
1
1


where NT and NC are the limit axial values of tension and compression, whereas

M+ and M− are the fully plastic positive and negative moments.

However, for the 3 dimensional case the inner and outer polyhedra approximating
the yield surface coincide, see Figure 6. This forces FLB = FUB, and the elementary
matrix inequalities become
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 ≤



1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1



where Tol is a numerical tolerance7 In this case it reflects that beams under consid-
eration do not have any torsional strength.

4.2.5 Yield criteria for trusses

If the structures only supports axial loads, the yield criteria is simpler, as it is
expressed by the conditions N ≤ NT and −N ≤ −NC , where NT , NC are the axial
tension and compression limits respectively. Once assembled, F matrix has two
rows per element times the number of elements, thus its number of rows is 2nel.
Obviously, F has a nel columns, one axial stress per element, in both 2D and 3D.
Consequently, yield criteria as a LP problem can be written as

7In practice, Tol =
√
eps, where eps is the distance from 1.0 to the next largest double-precision

number in Matlab R©.
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4.3 Inclusion of Uniform Distributed Loads

The previous development has been made considering only point loads which are
assumed to be applied at the nodes. If an external force is not applied at a node,
the user must introduce an extra node in order to account for the load. Nonetheless,
in the majority of structural and engineering problems distributed loads are often
present, such as selfweight or dead loads, and more specifically uniform distributed
loads (UDL) are usual. The technique adopted in this project, following previous
authors and works such as [15], consists of transforming the UDL into nodal point
loads in a consistent manner. The idea is to split the UDL into two equal point
loads each one corresponding to the half of the UDL. The first approximation is
quite rough, as will be seen lately, but this procedure can be further refined by
subdiving the beam and consequently improving the approximation to the UDL.

For an arbitrary element e, where e = 1, . . . , nel, let pe = (px, py, pz)
T be the

element UDL vector defined in the local system of coordinates, see Figures 1 and
2. Thus equilibrium at the beam element is no longer obtained using Equation (6),
and can be expressed with the modified equation

qe = He
eleσ

e
ele − λUe

elep
e (12)

where Uele is the matrix that translates UDL to the nodes, which can be defined
in 3D

UT
ele =

l

2

 1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
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where l is the beam element length. It should be pointed out that UDL is also
amplified by the sought load factor λ. Since the element equilibrium equation is
modified, so is the global equilibrium equation (8). The definitive equation that will
be provided to the LP solver will be the following

Hσ = Gr + λf̂ (13)

with the definition of f̂ as the force vector, which contemplates both nodal and
UDL loads, namely f̂ = f + Up. In this latter expression, pT = (pT

1 , . . . ,p
T
nel

)

and UT =
(

U1
eleT̄

1T
. . . UeleT̄

nelT
)

where T̄ is the rotation matrix defined

in (4.1.2). The software will automatically set either f or Up to the zero matrix
whenever a matrix of point loads or UDL respectively is not detected.

SecantTangentMoment distribution Max moment

Figure 7: Moment diagram with secant and tangent approximation for a beam with UDL

Equation (13) reflects equilibrium for the case of a structure with UDL. Never-
theless, checking yield criteria is slightly more complicated if there is UDL applied
at the structure. In this case, the moment distribution is nonlinear (in fact is
parabolic), and checking yield criteria at the nodes, (10), could not be sufficient,
as the greatest moment is often located in the middle of the span, in contrast with
the point load case. Figure 7 shows the typical parabolic moment distribution of a
continuous two-span beam with UDL, as well as a secant and a tangent distribution
to the moment distribution.

The technique used in this software consists of defining a secant and a tangent
distribution in order keep the moment distribution bounded. The secant distribution
is a trivial linear interpolation of nodal moments whereas the tangent distribution is
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the secant distribution translated a quantity of pi
l2

8
, i = y, z depending on the axis

that supports load, as can be observed in Figure 7. These two approximations of the
moment diagram induce an upper bound and a lower bound on the exact collapse
factor, which nature is completely different from the yield curve approximation, but
both can be complemented.

If only the secant distribution is considered, yield inequalities contained in (11)
will lead to an upper bound of the exact collapse factor. Since yield conditions
are only checked at the nodes, if yield is attained at the element nodes the secant
moment distribution produces a factor that coincides with the exact one. However,
if yield occurs somewhere on the span, the secant load factor will be always greater
than the actual one.

On the other hand, if the LP problem is computed including the both the secant
and the tangent moment distribution, a lower bound can be obtained. Obviously,
adding more inequalities to (11) can only decrease λ. Moreover, since the exact
moment distribution always lies in between the secant and the moment, checking
yield criteria at the nodes will always produce a worse case scenario. For this
purpose, the generalized element stress vector for an arbitrary element e, σe

ele must

be modified according to the pi
l2

8
, i = y, z translation when accounting the tangent

distribution

σ̃e
ele = σe

ele − λΣe
ele ⇐⇒ σ̃e

ele =


N
Mx

M1
z

M2
z

M1
y

M2
y

− λ



0
0

pey
l2

8

pey
l2

8

pez
l2

8

pez
l2

8


Thus, equation (10) transforms into

Feleσ̃ele ≤ gele ⇐⇒ Fele(σele − λΣele) ≤ gele ⇐⇒ Feleσele ≤ gele + λFeleΣele

by naming g̃ele = FeleΣele we obtain the expression for the tangent distribution.
Obviously, if no UDL is present g̃ele = 0. The assembly process is trivial, and the
matrices for the whole structure are easily obtained. The compact form that will be
used in the LP problem is reached by considering both the secant and the tangent
distribution in the same equation, i.e.(

F
F

)
σ − λ

(
0
g̃

)
≤
(

g
g

)
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Finally, it is important to recall that if the UDL has a component along the
x-direction of the local coordinate system the axial forces must be modified accord-
ingly at corresponding equations in (10) (one for each node). This approach always
produce an upper and lower bound of the load factor and this for any subdivision of
the elements bearing UDL. Moreover, since the distance between the secant and the

tangent moment distributions is pi
l2

8
with i either y or z depending on the flexural

axis considered, the bound gap decreases quadratically, obviously with the square
of the subdivision length.

4.3.1 Combination of yield and UDL bounding

When computing the collapse load factor via the LP problem, two different ap-
proaches have been proposed that induce lower and upper bounds to the exact load
factor. The approximation of the yield curve using an inscribed polygon produces
a lower bound and the circumscribed polygon an upper bound. On the other hand,
and considering UDL on the structure, using a secant distribution to the moment
diagram leads to an upper bound of the load factor, whereas using both the secant
and the tangent distribution a lower bound is obtained.

If loading on the structure consists only of external point loads, bounding of
the load factor is origined only by the approximation of the yield curve. However,
the most common case in structural calculus involves UDL, and thus it must be
considered. In order to obtain consistent bounds on the exact collapse load factor,
the Lower Bound will be the one obtained by using an inscribed polygon to the
yield curve and the secant and tangent distribution to the moment diagram. Con-
sequently, the Upper Bound is computed by approximating the yield curve with a
circumscribed polygon and the moment distribution using the secant interpolation.
Thereby, this procedure ensures that the Upper Bound is always greater than the
Lower Bound, and therefore the bound gap (BG), which is the difference between
the UB and the LB, is positive.

Recall that the latter refers to 2D frames, since bounding for 3D frames is only
accomplished via the secant and the tangent moment distribution, as the yield sur-
face is approximated inwards and outwards using the simplest linearization in Figure
6.

4.4 The LP problem

For the general case of a structure with both point loads and UDL, and once equi-
librium and yield conditions are defined, the optimization problem can be written
as
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maximize λ

subject to Hσ = Gr + λf̂ (14)

FUBσ ≤ gUB

if the aim is to obtain the UB or

maximize λ

subject to Hσ = Gr + λf̂

FLBσ ≤ gLB (15)

FLBσ − λg̃ ≤ gLB

if computing the LB. In these formulations, λ ∈ R, σ ∈ R6nel and r ∈ Rngr

are unknown variables (ngr is the number of geometric restrictions), whereas H ∈
R6nnp×6nel , G ∈ R6nnp×ngr , f̂ ∈ R6nnp , FLB ∈ R18nel×6nel , FUB ∈ R18nel×6nel , gLB ∈ R18nel ,
gUB ∈ R16nel and g̃ ∈ R16nel are given data. On this latter five the number of rows is
a minimum, since improving the approximation of the yield surface provides more
equations, hence more rows are added to the matrix. As has been commented, this
implementation for 3D frames is not yet available, but it is for 2D frames. Note that
although λ ∈ R, the solutions of the LP problem always imply that the collapse load
is nonnegative. The proof of this fact is that taking λ = 0 there exists a feasible
stress state (σ0, r0) that verifies equilibrium and such that yield is not attained at
any node, i.e. Hσ0 = Gr0 and Fσ0 ≤ g which can be (σ0, r0) = (0, 0). Since
the problem is a maximization over λ, nonnegativity is thereby guaranteed. For
expressing the LP problem in the general form described by (4) it will be clearly
differentiated the LB and UB computation, as well as its dual problem.

4.4.1 Upper Bound

Auxiliary variables will be used in order to write the LP problem in the compact
form. Using the following definitions

cT = (−1, 0, . . . , 0), xT = (λ,σT , rT ),

D =
( 1 6nel ngr

18nel 0 FUB 0
)

, e = gUB,

A =
( 1 6nel ngr

6nnp f̂ −H G
)
, b = 0,

problem (14) is equivalent to (4). As a direct consequence, its dual problem
should be equivalent to (5), which expressed in the structural notation states as
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minimize gT
UBη

subject to f̂
T
ν = 1

GTν = 0 (16)

FT
UBη = HTν

η ≥ 0

where the first restriction is a normalization of the work produced by external

forces. This term, f̂
T
ν = 1 involves external forces, both nodal and UDL, and the

generalized displacement rates ν. Consequently, if external work is equalized to the
internal dissipation, that is

λf̂
T
ν = gT

UBη (17)

this latter equation shows that the objective function of the dual problem for any
kinematically admissible solution is the load factor λ found using the kinematic the-
orem, as it must be according to [10].

For dimensional criteria, the dual variables η, ν belong to [R+]18nel and R6nnp .
Moreover, the latter is clearly associated to the displacement rate and angular veloc-
ity of each node of the structure. Due to it, it is easy to observe that the restriction
GTν = 0 imposes the geometric restrictions. The other dual variable, η, is a vector
of nonnegative plastic multiplier rates. At optimality, only the active constraints of
the primal problem associated with plastic failure will have its corresponding pos-
itive plastic multiplier rate. Thus gT

UBη is the plastic dissipation of internal work.
Finally, the third constraint, FT

UBη = HTν, imposes compatibility.

4.4.2 Lower Bound

The same notation is used, although variables here are slightly different

cT = (−1, 0, . . . , 0), xT = (λ,σT , rT ),

D =

( 1 6nel ngr
18nel 0 FLB 0
18nel −g̃ FLB 0

)
, e =

(
gLB

gLB

)
,

A =
( 1 6nel ngr

6nnp f̂ −H G
)
, b = 0

This development supposes that UDL loads are present in the structure, which
is the most general case. If not, the last row of D and e must be suppressed, and
the rename that is now proposed need not to be taken into account. Therefore, if
the structure bears UDL loads, in order to obtain the dual problem, the elements of
the D matrix are renamed in a more compact form
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F̄LB =

(
FLB

FLB

)
, ḡLB =

(
gLB

gLB

)
, g̃ =

(
0
g̃

)
With this new notation, the dual problem is written

minimize ḡT
LBη

subject to f̂
T
ν − g̃Tη = 1

GTν = 0 (18)

F̄
T
LBη = HTν

η ≥ 0

Obviously, η ∈ [R+]36nel and ν ∈ R6nnp .

4.4.3 Problem normalization

Both problems (14) and (15) are not normalized. The inequalities that represent the
yield conditions, see (11), are pseudo-normalized, as the right-hand-side is always
a vector of ones, whereas the equilibrium equation (13) is not normalized. Nor-
malization and scaling of the problem may be important to convergence of the LP
problem and thus it gains interest. However, it should be noted that any scaling
in the external load vector f̂ has a direct effect not only in λ, but also in the dual
variables η and ν.

In the software both the external load vector and the vector g̃, which contains
the UDL, are scaled with the norm of f̂, before calling the LP solver. After the
optimization the variables affected and the external load vector are rescaled in order
to obtain the actual values.

4.4.4 Evaluation of the bound gap

In sections (4.2.4) and (4.3) two different approaches are detailed in order to bound
the exact collapse load factor. In the first one, the gap is arbitrarily reduced as the
number of lines to approximate the yield curve at each node is increased, while in
the second the gap decreases quadratically as beam elements are split into halves.
In order to determine an adaptive strategy to reduce the bound gap, which is one
of the further goals of the software, it is required to state the contribution of every
element to the total gap.

Using both equations (17) and the dual problem (16) an upper bound of the load
factor at collapse is simply

λUB = gT
UBηUB = ηT

UBgUB (19)
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To determine a lower bound of the load factor the equilibrium equation (13)
must be used, namely

HσLB = GrLB + λLBf̂

A lower bound of the collapse factor can be obtained right multiplying the ex-

pression before by νUB. Since νUB verifies the normalization restriction, f̂
T
ν = 1, and

the geometric condition GTν = 0, the lower bound becomes λLB = νT
UBHσLB, and

applying compatibility, i.e. the third restriction of the dual problem (16)

λLB = ηT
UBFUBσLB (20)

The expressions for an upper bound (19) and a lower bound (20) determine the
bound gap of the structure

∆ = λUB − λLB = ηT
UB(gUB − FUBσLB)

which determine the accuracy of the computations. Regard that the second
constraint of (14) and the positiveness of η imply that the bound gap is nonnegative.
This latter expression is for the bound gap of the global structure. However, if an
adaptive process is sought, information about the contribution of every element is
required. This contribution can easily be determined, namely

∆ =
∑
e

∆e with ∆e = ηe
UB,ele

T (ge
UB,ele − FUB,eleσ

e
LB,ele),

where ∆e ≥ 0 as ηe
UB,ele ≥ 0 by definition and ge

UB,ele − FUB,eleσ
e
LB,ele ≥ 0 as it is

stated in (10).

5 Use of Structural Collapse Simulator

Once the problem has been studied and its formulation as a LP problem has been
written, it is highly interesting to detail how the Structural Collapse Simulator (SCS)
is designed and how it can be employed by the user in order to obtain the collapse
load factor for the desired structure. Firstly, it should be stated that the software
utilized for developing the SCS is Matlab R©, as it provides an easy treatment of
matrices and some efficient LP solvers. The program is designed with a descendent
structure and the main operations can be summarised as data input, data process-
ing, creation of matrices, LP solver and postprocessing. The central commanding
program that the user will work on the most is named main. From this file the user
decides which structure to compute and the postprocessing desired. It also accounts
for the time taken for the computation, and it is displayed on the screen. Further
references will be made to main as the whole procedure is detailed.
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5.1 Data input

The data input is done via the so-called drivers, the programs that contain the
main information about the structure that is about to be computed. For every
new structure, the user will be asked to create a new driver, with different infor-
mation but with the same exact development, and therefore it is crucial to regard it.

5.1.1 Logicals for structure characterization

Firstly, two boolean must be defined, and are initially set to zero. The first boolean,
istruss, states whereas the computation will be made for a framed or for a trussed
structure. If the second boolean, isnorm, is activated, no approximation of the yield
curve is carried out. Consequently, the yield curve is described with 4 lines per node,
see Figure 6, for both the lower and the upper bound, which is exactly the yield
check that is recommended in the steel normative. This is the most conservative
approach to the yield curve, but it is sometimes useful in order to determine the
influence of the UDL in the bound gap, since is the only condition that prevents
both the lower and the upper bound from coinciding.

5.1.2 Nodal and Connectivity matrices

Once known which kind of structure will be computed and how to make the yield
curve computation, geometric data must be provided. The nodal matrix X ∈
Rnnp×nsd, with nsd being the number of spatial dimensions, 2 or 3, must be en-
tered with each row referring to a node, with the x, y and z coordinates as the first,
second and third column. Node numeration will automatically be assigned by the
SCS according to the node’s row number in the X matrix.

The connectivity matrix T is defined as a Matlab R© cell array. The first cell is
a real-valued matrix belonging to Rnel×3, which will be named T1. In the first and
the second column of the T1 matrix the beginning and the end nodes of the beam
element must be introduced, according to the coordinate system defined in Figure
1. As happened before, the elements numeration depends on how the T1 matrix
is constructed . In the third column the number of lines to approximate the yield
curve8 of each node in the element is detailed. This number must be a multiple of
4, and can be different for each element. It should be regarded that this number is
useless in case the isnorm is set to 1, which is the case for 3D frames.

The second cell, T2, is a string array, with as many columns as the number of
elements nel. Each column contains a string that indicates the cross section of each

8This number will be used for the inscribed polygon, and the circumscribed polygon will consist
of essentially the same number of lines plus the extra restrictions detailed in (4.2.3), which will
be regarded afterwards.
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element for the further check of the yield curve. There exists the option of plotting
the structure to reassure the introduction of nodal and connectivity data has been
successful, by using the function PlotStructure in the driver. When computing a 3D
frame an additional cell T3 must be entered, which contains the direction of the web
vector for every beam in the global coordinate system.

5.1.3 External Load matrices

Furthermore, load conditions must be entered by the user. Since both point loads
and UDL are accounted, load data may concern either one or two matrices. The
matrix of external point loads, namely P, contains an undetermined number or rows.
This latter is due to the fact that the P needs not to have an entrance for every node,
but only for the nodes with point loads. Hence, it will have as many rows as the
number of nodes carrying external forces, namely 1 ≤ # ≤ nnp. This implies that
the user is not asked to fill the matrix with 0s for the non-loaded nodes, which is
sensible accounting the dimension of the problems that will be solved. The number
of columns and the data contained in them varies in each case, namely

� nsd = 2 istruss = 0 P = (node, Px, Py,Mz)
nsd = 2 istruss = 1 P = (node, Px, Py)

� nsd = 3 istruss = 0 P = (node, Px, Py, Pz,Mx,My,Mz)
nsd = 3 istruss = 1 P = (node, Px, Py, Pz)

The forces must be referred to a global coordinate system, which must be defined
by the user prior to SCS computations, as X, T and P matrices highly depend on it.
According to the global coordinate system, signs must be placed correctly, and in
general considering counter-clockwise moments to be positive.

The matrix that carries the UDL loads will normally be named UDL, and similarly
to P will have no stipulated number of rows. In fact, this matrix has as many rows
as the number of elements with UDL, thus 1 ≤ # ≤ nel . Regarding the columns,
the cases now are

� nsd = 2 istruss = 0 UDL = (element, px, py)

� nsd = 3 istruss = 0 UDL = (element, px, py, pz)

The loads are defined using local coordinate system defined in Figure 1.

5.1.4 Geometric Restrictions matrix

Finally, geometric restrictions such as embeddings or simple supports need to be
introduced. This will be done using the C matrix, with ngr rows and 3k columns,
with k ≥ 1. With the moving index i = 0, . . . , k − 1, for every row column 3i + 1
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contains the node where to apply the geometric restriction, column 3i + 2 regards
the movement that is impeded, and takes values C(3i + 3) = 1, . . . , 6 (each number
regarding the movement caused by each nodal force) and column 3i+3 provides the
coefficient that must be applied to the geometric restriction. This enables the user
to account for supports forming an angle with the global coordinate system, thus
−1 ≤ C(3i+ 3) ≤ 1.
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Figure 8: Schematic representation for a basic triangular structure

5.1.5 Example of data input

Finally, a simple example is now provided in order to illustrate how data has to be
introduced for a general triangular structure, see Figure 8. For the diagonal beams
of the structure an IPE360 cross section is used, whereas for the horizontal span an
IPE550 section is employed. For this example, the simplest approximation of UDL
is considered, i.e. only one subdivision is made. The global coordinate system is
established with its origin on the first node, as depicted in the figure. In order to
obtain the numeration seen in the schematic representation, the matrices X and T

must be defined as

X =


0 0
l 0
l/2 h
l/2 0

 , T1 =


1 4 4
4 2 4
1 3 4
2 3 4

 ,

T2 =
( ′IPE550′ ′IPE550′ ′IPE360′ ′IPE360′

)
supposing that the number of planes desired for the approximation of the yield curve
is 4 per node, hence 8 per element. Since it is a 2D frame, the cell array containing
the web vectors need not to be defined. With the nodal and connectivity matrices
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defined, a trivial check is recommended to carry out in order to ensure the data is
properly introduced. Giving values to the generic spans, namely l = 3m, h = 2m,
the structure can be depicted activating the command PlotStructure, as can be seen
in Figure 9.
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Figure 9: SCS output of PlotStructures function for the triangular frame

The external load matrices P and UDL will shape as follows

P =
(

3 p1 −p2 0
)
, UDL =

(
1 0 −q

)
accounting that the loads depicted in Figure 8 are an absolute value and the

direction is provided by the arrows. Finally, the matrix C regarding the geometric
restrictions must be written as

C =

 1 1 1 0 0 0
1 2 1 0 0 0
2 1 − sinα 2 2 cosα


according to the global coordinate system defined. At the first node both hori-

zontal and vertical deflections are clearly restricted, and as no slope is provided the
coefficient must be 1. At the first node, only the vertical movement is impeded in
the direction perpendicular to the ground, but the reaction forces will not appear
in the direction of the coordinate system, and thus coefficients must be applied for
both movements. The negative sign for the sinus is due to the fact that the reaction
force V2 has been chosen in a way that his horizontal part has the opposite sense as
the coordinate system, and thus a minus sign is required.
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5.2 Data processing

After the data of the structure has been introduced, main will call a file named
checkData, whose interest both is to ensure that the information contained in the
driver is correct and can be therefore used by the SCS and to create the main vari-
ables that will appear throughout the problem.

5.2.1 Initialization of variables

Firstly, the number of spatial dimensions, the number of nodes and elements of the
structure is set to variables nsd, numnp (number of nodal points) and numel (number
of elements), by extracting the dimensions of the nodal and connectivity matrices
respectively. The program also checks whether the number of columns of these ma-
trices is correct.

Furthermore, other important variables are initialized. Depending on whether
the structure to compute is a frame or a truss, values will be given to variables ndofn
(number of element generalized stresses, namely dimσT

ele) and neqeq (number of
equilibrium equations per node). The values are for each case are shown in Table 1

nsd = 2 nsd = 3
istruss = 0 istruss = 1 istruss = 0 istruss = 1

ndofn 3 1 6 1
neqeq 3 2 6 3

Table 1: Variable assignation depending on dimension and structure’s nature

It is also initialized the array nyiel, which is essentially the third column of the
T1 matrix containing the number of lines used for the inner approximation of the
yield curve of every element. These elements will all be useful in order to create the
matrices needed for raising the LP problem. From now on, as general variables have
been introduced, the definition of the matrices will consider both frames and trusses.
Moreover, the two types of structures are differentiated by creating a string variable
named StruType, which in our case will be 2D Truss, 2D Frame, 3D Truss or
3D Frame, and will be useful for calling the exact program when dealing with truss

and frame different programs without rechecking the boolean istruss.

5.2.2 Setting approximation for yield criteria

Besides from creating variables, a thorough review of the number of lines used to
describe the yield curve at every node is developed. A routine named set nyield is
called, and its function is to replace the last column of the T1 matrix containing the
number of lines to approximate the yield curve per each node of the element for
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the total lines that will be used per element for the lower bound9. In general, this
number will be multiplied by 2, since the lines for an element is twice the lines for
a single node.

However, this function is significant in two special cases: where the normative
criteria is applied, i.e. isnorm is set to 1, or where some or all cross sections of
elements are classified as C4. As seen in (4.2.1), these sections do not attain plastic
flow, and thus it is preposterous to propose a the yield curve approximation, and
yield will be checked using the simplest approximation in Figure 6, just as if norma-
tive criteria was applied. In order to work with C4 sections, the user must explicitly
add it to the name of the cross section in the T2 string array, using notation ’ C4’
at the end of the cross section name. When working with normative criteria, the
function set nyield will set the whole third column of the T1 matrix automatically to
either 18 planes or 8 lines per element, depending on the dimension of the structure.
On the other hand, if the computation is carried without normative criteria (only
2D case can be computed this way so far) but some or all of beam elements are
expected to behave as a C410, the function will set the corresponding number of
planes to 8, it does not have to be necessarily every element of the structure.

5.2.3 Dimensional check

Finally, checkData is relevant as it confirms whether the data for the P, UDL and C is
properly introduced. Besides checking that the number of columns of the matrices
are appropriate, it creates either an empty P or UDL matrix in case only UDL loads
or point loads are considered respectively. Moreover, it displays an error if the user
is trying to compute a trussed structure with UDL loads, stopping the execution of
the SCS.

5.3 Creation of matrices

Once the data provided has proven to be correct, the SCS advances to create and
assemble the matrices needed for setting the LP problem, namely H, f̂, G and all
the matrices involved in the yield criteria, for upper and lower bound calculations.
This is done via the program Create var, which is addressed from the main file. The
program creates the matrices one-by-one and stores them in the workspace, ready
to be used by the LP solver.

9The upper bound is properly treated based on the lower bound information and the extra
restrictions

10Class types of different cross sections ought to be known in advance by consulting catalogues.
For instance, IPE and HEB sections are usually C1, sometimes C2. For further information, Arcelor-
Mittal catalogues can be checked out.
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5.3.1 Equilibrium matrices

The construction of the H ∈ Rneqeq∗numnp×numel∗ndofn matrix, which is done in the
function CreateH, will no further be discussed, as both the rotation and the assem-
bly process has been widely detailed in (4.1.5). In order to obtain f̂ = f + Up, the
two independent matrices are firstly generated. The creation of f, which consists
of only point loads, is as simple as reshaping the input matrix P into a column
array of neqeq ∗ numnp rows, since for each node horizontal, vertical and moment
loads are placed in this order, and can be done by calling Createf. The procedure
for generating the Up has been discussed in (4.3), and also a neqeq ∗ numnp × 1
array is obtained after rotation, assembly and reshaping process in CreateUp has
finished. Once the sum is made, the euclidean norm of f̂ is stored as Scale in order
to normalize the LP problem as seen in (4.4.3) The geometric restriction matrix
G ∈ Rneqeq∗numnp×numgr is obtained after properly reshaping the C matrix in order that
each geometric restriction relates to the corresponding node and element, and the
function responsible for it is CreateG.

5.3.2 Yield criteria matrices

Once equilibrium matrices are stored, yield criteria matrices must be generated,
namely FUB, FLB, gUB, gLB and g̃. A routine named CreateFg is used for creating
these latter matrices. The g arrays are the simplest, as consists only of a vector of
ones. The amount of restrictions used to make an inner approximation the yield
curve for every node of every element, which are the number of rows of gLB, can be
found by summing the elements of nyiel, that is sum nyiel. The number of rows of
gUB is essentially the number of rows of gLB plus the extra restrictions. As explained
in (4.2.4), when dealing with a double I/H-shaped section the extra restrictions are
2 per node, i.e. 4 per element. Nevertheless, extra restrictions must be checked at
every element since C4 cross section beams obviously do not have extra restrictions.
The total amount of extra restrictions is a temporary variable named extra rest.
Of course, if is isnorm=1 no extra restrictions are used. Hence, gLB ∈ Rsum nyiel×1

and gUB ∈ R(sum nyiel+extra rest)×1. Note that yield criteria for trusses has already
been specified in (4.2.5). The following developments are only for 2D frames, since
3D frames are computed using normative criteria and the matrices are the ones de-
fined in Section (4.2.4).

According to the latter, the dimensions of the F matrices are easily determined,
namely FUB ∈ R(sum nyiel+extra rest)×numel∗ndofn and FLB ∈ Rsum nyiel×numel∗ndofn. The
coefficients of the two matrices are found by calling the function Create Fgele 2D Frame
for each element. For each element the function returns the elementary matrix that
appears in (4.2.4) if isnorm=1 or the cross section is a C4. If none of this condi-
tions happens, then another function named yield Ishape 2D11 is accessed in order

11So far yield has only been studied for I/H-shaped cross sections.
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to find the desired inscribed and circumscribed polygon of the yield curve using
the technique described in (4.2.3). Once the collection of points is found, the lines

are redefined in the symmetric form, that is
M

AMp

+
N

BNp

= 1. For a generic el-

ement whose total number of lines used to approximate the yield curve at one of
the two nodes is nlin, multiple of 4, a set of pairs of coefficients for both inscribed
(aki , b

k
i ), k = 1, . . . , nlin/4 and circumscribed (alc, b

l
c), l = 1, . . . , nlin/4 + 2, with lines

for the first quadrant is obtained. Using the symmetries and the material properties,
the vectors that represent the final coefficients are

Ai =



1/a1iNT
...

1/a
nlin/4
i NT

1/a1iNT
...

1/a
nlin/4
i NT

1/a1iNC
...

1/a
nlin/4
i NC

1/a1iNC
...

1/a
nlin/4
i NC



Bi =



1/b1iM
+

...

1/b
nlin/4
i M+

1/b1iM
−

...

1/b
nlin/4
i M−

1/b1iM
−

...

1/b
nlin/4
i M−

1/b1iM
+

...

1/b
nlin/4
i M+



Ac =



1/a1cNT
...

1/a
nlin/4
c NT

1/a1cNT
...

1/a
nlin/4
c NT

1/a1cNC
...

1/a
nlin/4
c NC

1/a1cNC
...

1/a
nlin/4
c NC

0
0



Bc =



1/a1cNT
...

1/a
nlin/4
c NT

1/a1cNT
...

1/a
nlin/4
c NT

1/a1cNC
...

1/a
nlin/4
c NC

1/a1cNC
...

1/a
nlin/4
c NC

1/M+

1/M−


With these vectors, the element F matrices can be written as:

Fele
LB =

(
Ai Bi 0
Ai 0 Bi

)
,Fele

UB =

(
Ac Bc 0
Ac 0 Bc

)
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Finally, the g̃ ∈ Rsum nyiel×1 is obtained assembling the various g̃ele. The con-
struction of this latter vector, for a generic element of length l, differs slightly from
the one seen in (4.3), since the external loads must be scaled in order to normalize
the problem. Thus, we obtain

g̃ele =
l2

8 ∗ ScaleFele
LB

(
0 0 pey pey pez pez

)T
Once these matrices have been generated, before advancing to the LP solver,

SCS checks whether the structure is or not supporting UDL. If the problem being
computed bears UDL, the matrices for the lower bound computation are renamed as
explained in (4.4.2), and thus we will work with matrices F̄LB, ḡLB and g̃ = (0 g̃T )T

for the lower bound. Note that it is advisable to state first the presence of UDL, as
for a point loaded structure this operation is useless and in fact only adds redundant
equations to the LP problem.

5.4 LP Solver

The process of solving the LP problems involves first transforming the equilibrium
and yield matrices for both lower and upper bounds problems into the adequate
notation, see (4.4.1) and (4.4.2). The function in where this rearrangement takes
place is named LP solver, and it is called twice from the main file. Placing the
variables in order to obtain the standard LP form is due to the fact that the solver
that has been employed for the SCS is Matlab R© linsolve. Although it is not the
most efficient LP solver, it suffices for the structures computed. However, in the
future the intention is to adapt the SCS to work with SDPT3 in order to enhance
the solving capacities.

For both problems, once the process of solving is successfully completed (al-
lowing a maximum number of 500 iterations) the solution vector xT = (λ,σT , rT )
and the Lagrange multipliers (η,ν) are obtained. The function also rescales λ, the
multipliers in order to obtain the adequate information, which is properly stored
for postprocessing. Matrices g̃, f̂ are rescaled as well, in order to recover the input
data. Finally, the program verifies that the solution meets the hypotheses of the
basic approach to the limit analysis problem, i.e. equilibrium and yield is satisfied
everywhere. In case not all restrictions are satisfied, the program details which equa-
tions of either equilibrium or yield are violated, and thus enables an easy overcheck.

The default options include displaying λ and the result from the verification of
equilibrium and yield, either showing a positive message or the list of restrictions
that are not satisfied for both equilibrium and yield. The bound gap ∆ will also be
displayed.
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5.5 Postprocessing

SCS has been provided with several postprocessing tools in order not only to depict
the final outcome of the computation, but also to support the process of adequately
understanding and analysing the results obtained, a basic task that users of SCS
need to be able to develop. Thus, postprocessing tools can be extremely useful
whenever SCS provides weird or nonsense results, for both programmers and users.
These tools all located on the main page, thereby it is trivial to deactivate them if
desired. They are activated as a default setting.

5.5.1 Gap Evaluation

This option provides a numel×2 matrix named gap eval, in where the first column
shows the element contribution ∆e to the total bound gap ∆, and the second col-
umn displays the number of element itself. The contribution is computed using the
operations discussed in (4.4.4) in a function named GapEvaluation, which utilizes
the output of the LP solver, and the result is shown using descending order, i.e. the
element with the greatest contribution occupies the first row.

This enables the user to form an average idea of which sections need more specific
calculations, namely using more lines to approximate the yield curve, subdividing
the beam element into more subelements or even both improvements. Generally,
better computations can be made by manually adjusting these latter features of
the structure in the driver, although the initial idea is to turn this procedure into
an adaptive one, which we believe it must be hand driven. This idea will be later
discussed.

5.5.2 Plotting plastic hinges and displacement rates

This is a tremendously useful tool to understand how framed structures react to the
external loading and how the collapse mechanism looks like. Moreover, it can lead
to detect mistakes in the implementation or even in the problem modeling. The
plastic hinges and displacements will be depicted only for the lower bound problem,
as they represent a safe scenario and for structures with UDL the program will be
able locate plastic hinges even though before subdividing the elements. The main
reason to explain this latter is that the lower bound for UDL seeks for the exact
moment distribution lying between the secant and the tangent distribution, and
thus the combination of stresses that attain plastic flow can be in this range with
no need to have a node defined. This helps detect plastic hinges in advance.

In C1, C2 type cross sections, a plastic hinge forms when the fully plastic mo-
ment is attained at one node under pure bending stress. However, if compression
bending stresses take place, a plastic hinge develops if the yield curve is reached
at some point. The process of locating plastic hinges is developed in FindHinges.
The physical condition to locate plastic hinges is to find the yield inequalities that
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turn to equalities. Mathematically, as it is expressed in FindHinges, the constraints
where |ḡLB − F̄LBσLB + λLBg̃| < Tol.

The output of FindHinges is the matrix hinges, with three columns and as
many rows as plastic hinges. The first column represents the node that attains plas-
tic flow, the second shows which element this node belongs to (recall that the same
node can belong to several elements as they intersect in the node, and yield must not
necessarily be reached at every one of these elements), and finally the third column
provides information about what restriction of the node is violated. Using the same
notation as before, if the yield curve at a node is approximated using nlin lines,
the restriction’s range is 1 to nlin, accounting the conventional counter-clockwise
numeration of quadrants.

The aforementioned information is used to plot both the plastic hinges and the
displacement rates of the structures, which are represented by the dual variable ν.
The program used to depict this data is PlotHinges, and provides both the basic
representation of the structure12, nodes and bars, and the structure at collapse, i.e.
with the plastic hinges (red background and black number for the node) and the
displacement rate in red arrows. Note that there is the possibility of scaling the
displacement rates using an amplifying factor in order to be visible, since they are
often to small to be seen in the representation.

5.5.3 Plotting elements failure

Obviously, the concept of plastic hinges lacks sense when dealing with trussed struc-
tures. For this reason the routine PlotFailure has been designed. When computing
a truss, SCS will access this routine ignoring PlotHinges, employing the data ex-
tracted in FindHinges. This easy program represents the structure depicting in red
the elements that fail due to traction and in blue the elements that fail for compres-
sion. This routine also offers the option of plotting the deformed structure in the
same conditions as explained before.

5.5.4 Plotting bending moment diagram

Knowing the moment stress distribution is often a useful tool for either verifying or
denying the outcome of a computation. As explained before, the moment diagram
will be depicted only for the lower bound problem and for the 2D frame case.

The only information that will be used is the value of σLB. The representation
is done by the function PlotMoments, and the procedure is as simple as uniting
the moment stresses for nodes in the same element with lines. This will lead to
an accurate plot for point loaded structure, but it may be weird when computing

12The same that can be obtained by activating the option PlotStructure in the driver of each
structure
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structures with UDL. Nevertheless, the moment diagram is the result of the model
previously chosen, therefore better outputs can be achieved if UDL loaded beams
are subdivided, since a more-like parabolic drawing will be obtained. Similarly to
what happened before, it may be necessary to scale the stresses by reducing their real
value with a diminishing factor, in order to improve the quality of the representation.

5.5.5 Time of computation

The speed of the computations is a decisive factor in softwares working with large-
scales programs, as it may have a crucial importance to the extent of even reconsid-
ering a different approach to the same problem with the objective of accomplishing
the same task in less time. The clock is initialized at the start of every computation,
and is screen-displayed after all the postprocessing tasks have been carried out. The
command used to deactivate the time option is Time, located at the end of the main
file.
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Figure 10: SCS output of PlotHinges function for the triangular frame

5.5.6 Example of postprocessing

Finally, the example used in (5.1.5) will be programmed and computed in order to
show the aforementioned postprocessing tools. Unknown variables may be assigned
the following values: p1 = 100 kN, p2 = 150 kN, q = 50 kN/m, α = 60◦, and the
geometric variables have already been stated. Obviously, the structure is a frame,
and the boolean isnorm is set to 1 for simplicity of computations.

Once computation is finished, in a time of 2.917s, information about the col-
lapse load factors, the bound gap and the element contribution to the bound gap is
displayed in screen, with the following values (4 decimal values)

λUB = 2.9598, λLB = 3.5054, ∆ = 0.5456
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gap eval =


0.2728 2
0.2728 1
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Figure 11: SCS output of PlotMoments function for the triangular frame

which clearly shows that UDL has a great influence on the bound gap, which
could be diminished by refining the subdivision of the horizontal span. Figures 10
and 11 depict the plastic hinges location and the displacement rate of the structure
(in blue with red arrows) and the bending moment distribution respectively. Al-
though the bending moment may seem symmetrical, it actually is not, due to the
nature of the loads.

5.6 Cross Section Library

The range of computations that can be carried out with the SCS highly depends
on the amount of cross sections that have been considered and implemented. It has
been already noted that only I/H-Sections have been studied and developed referring
to the approximation the yield curve. This is not entirely true, as yield approxi-
mation for rectangular sections has also been done, but it is not further discussed
as this type of cross section is rarely used in steel structures. The challenge for
the future is introduce non-symmetric sections so yield criteria can be checked nor-
mally. Nevertheless, there is quite an amount of cross sections that can be utilized.
The files containing the information of the cross sections are named, for instance,
CSection HEB200, for a HEB200, and can be found in the folder private of the SCS,
and are directly accessed by the software whenever necessary.
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The library of cross sections will suppose that the steel employed has an elastic
limit of fy = 275 N/mm2 = 275000 kN/m2, (the subscript is for yield) i.e. a steel
characterized as S275. By changing data in the files appropriately, the steel used
for the structure can be S235, S355 or even S460 if structural, building or economic
implications must be met.

5.6.1 I/H-shaped

Obviously this is the most typical cross section employed for steel structures design,
as it provides satisfying results for both economic and structural issues. The two
series used in SCS so far are IPE and HEB. According to the catalogues these sec-
tions attain plastic flow, C1 or C2, almost always. The only exceptions regard the
highest and widest sections under pure compression stress, when they cannot reach
plastic regime. Since it is highly improbable to encounter pure compression stresses
situations in actual structures, I/H-shaped structures will be considered to attain
plastic flow.

The information that has to be provided to create a cross section file are both the
geometric data, namely tw, h, b, hw, A and the plastic data, i.e. NT , NC , M

+
p , M

−
p

which in this case the positive and negative stresses coincide. The geometric data is
directly extracted from the catalogues, and the plastic data can be easily obtained
by performing the simple computations

NT = −NC = Afy
M+

p = −M−
p = Wpz fy

where Wpz is the plastic resistant modulus of the section around the strong axis,
z, (remember Figure 3) and can be found in the catalogues. Regard that the units
mainly used in the program are kN and m, and thus both the geometrical and
plastic data have to be calculated consistently.

Nevertheless, it may not always be correct to evaluate this sections using plastic
data. Mostly, if the computations are desired to be made according to the elastic
principles, plastic flow must not be attained. Again, it may respond to structural,
safety or economical conditions, and therefore it must be considered. Setting isnorm

to 1 implies that elastic criteria is adopted, since the yield curve cannot be approx-
imated. In the data processing stage, the detection of isnorm=1 automatically
leads the program to add the string ’ NORM’ to the name of the file. This allows
SCS to recognize which file, CSection HEB200 or CSection HEB200 NORM (continu-
ing with the aforementioned example), should be accessed, depending on whether
calculations will be made regarding plastic or elastic regime. The NORM files con-
tain the same geometric data, but the plastic data is replaced with the elastic data,
NT , NC , M

+
e , M

−
e . The elastic axial limit loads are the same as the plastic ones,

whereas the elastic bending moments are slightly different, and can be computed as
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M+
e = −M−

e = Wez fy

where Wez is the elastic resistant modulus of the section around the axis z,
and it can be obtained from the catalogues. Obviously, the elastic magnitudes are
significantly lower than the plastic ones, and thus considering calculations with the
normative prescriptions will yield to lower collapse loads.

5.6.2 C4 Sections

SCS enables the users to introduce C4 sections that are not considered in the cat-
alogues. These sections are usually used in plates or thin steel structures. It is
common that slender or thin cross sections have a behavior that can be classified as
C4. To enter a new cross section to the library, a file must be created and the name
of the section has to end with the string ’ C4’ to assure the program will recognize
it and consider it properly for the yield calculations. Moreover, only elastic data
is required, since no computations will demand geometric data. It is advisable to
provide an approximate scheme of the section and the axis orientation in order to
assist the user for further employments of the file. Finally, elastic data must be
provided, namely NT , NC , M

+
e , M

−
e , which can be obtained performing the latter

operations or by directly introducing the numerical value. This easy process widens
the horizons of the SCS, since a great deal of the production of steel industries
consists of beams or plates with C4 cross sections.

5.7 Utility of SCS

Finally, before studying examples to show the functioning of SCS, its utility in
comparison to other softwares must be highlighted. In engineering, the majority
of structures that have to be dealt with are hyperstatic structures, i.e. they are
not statically determined. It implies that structural collapse appears when several
sections attain plastic flow. Consequently, the structure turns into a mechanism,
and the failure of the sections cause the structure to lose its stability and bear-
ing capacities. Thereby, a given structure can continue to bear external load even
though one or diverse plastic hinges have formed in sections where plastic limit has
been reached. Namely, the structure does not collapse until the necessary number
of plastic hinges to turn the structure into a mechanism have formed.

5.7.1 Linear analysis

Linear analysis, either analytical or by computer, only indicate the failure of the
first section, regarding normative criteria, not the collapse of the entire structure.
These methods are interesting for engineering since they are robust methods of com-
putation, they provide reliable results, the cost of computation is reduced and they
always yield to safe results.
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On the other hand, there are several drawbacks in linear analysis methods. As
they detect only the failure of the first section, the actual collapse load is unknown,
and therefore they lead to overdimensioning of the structure. Moreover, they do
not provide neither information about the security margin nor how the collapse
mechanism shapes. This latter impedes to work on improvements of the structure’s
design. Finally, nonlinearity of the yield curve is not considered in the computations.
Consequently, linear methods constitute a useful tool for having a first approach at
the structure but accuracy of results and data can be improved by using nonlinear
methods.

5.7.2 Nonlinear analysis

Nonlinear analysis considers the structure’s real behavior and the evolution of the
external loading. Methods using nonlinear analysis are realistic, as they show the ac-
tual changes the structure suffers. Furthermore, information can be obtained about
the actual collapse load and the collapse mechanism.

Although nonlinear analysis provides more accurate information for an engineer,
it is not always advisable to use. In general, nonlinear analysis methods tend not
to be robust, and thus require an expert user. They are unefficient methods, with
elevated cost and time of computation, either for the definition of the problem or for
the computation. Besides from this, as a certain amount of initial data is required
the accuracy of the input data lessens, lowering the reliability of the method.

5.7.3 SCS

The Structural Collapse Simulator is a computational tool of numerical calculus
specifically designed for the robust, efficient and reliable evaluation of structures.
SCS employs linear programming techniques to find the unique solution of the prob-
lem, thus robustness is assured. Moreover, nonexpert users can easily perform com-
putations with the SCS. It is clearly an efficient software, as its basis in LP enables
the use of several optimization packages in order to improve the calculations. Finally,
it constitutes a reliable method since it provides a bounded solution, indicating the
minimum or safe value of the load factor (lower bound) and the precision of the
computations (bound gap). The bounding can be reduced arbitrarily by the user.
SCS satisfyingly combines the characteristics of the linear and the nonlinear analysis
methods, achieving interesting results as can be seen in next section.

6 Numerical examples

6.1 Simply supported beam

The simply supported beam of one span subject to a uniform distributed load along
the span is perhaps the simplest, yet one of the most useful examples to both show
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how SCS works and to explore the limits of this model, in order to extract conclu-
sions that can be extrapolated for more complex structures. Thereby it is highly
interesting to study this case thoroughly. Geometric data and load conditions for
the simply supported beam are shown in Figure 12, along with the bending moment
and shear stress distribution, which can be found analytically. Peak values are also
depicted.

Mmax =
pl2

8

p

pl
2

pl
2

pl
2

pl
2

(a)

(b)

(c)

l

Figure 12: Simply supported beam of length l: (a) Loading and reactions, (b) Bending
moment, (c) Shear stress

For this case, it will only be considered influence from the UDL. Hence, isnorm
will be set to 1 in the drivers, and therefore the bound gap will be caused entirely
from the lower bound problem’s secant and tangent distribution of the moment di-
agram, remember (4.3). Results will shed some light on how SCS works precisely.
This process will be done by continuously subdividing the main span, and thus pro-
viding a more descriptive situation with each subdivision. The reason for omitting
the yield check is the very nature of the structure, since the bound gap depends
entirely on how the structure is modeled, and using more lines to describe the yield
curve reveals useless once it has been computed.

The simply supported beam is an isostatic frame, i.e. unknown geometric reac-
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tions can be found by setting the equilibrium equations, thus when a single plastic
hinge forms the structure turns into a mechanism, which is the collapse mechanism.
Rotation is allowed at the supports, and hence the only plastic hinge will appear in
the middle of the span. Moreover, the formation of the plastic hinge will be due to
attaining the fully plastic moment, since no compression or traction axial stress is
present. This implies that using the technique of the kinematic theorem, applying
the virtual work theorem, the exact collapse load factor can be found. Using the
kinematic theorem, both the collapse load and the collapse load factor are found,
with value

pc =
8M+

p

l2
, λ =

pc
p

=
8M+

p

pl2

For the following examples, it has been used l = 4m, p = 100 kN/m and a
cross section HEB300, with a plastic moment of M+

p = 513.975 kNm. Performing
easy computations, the collapse load for the structure results pc = 256.9875 kN/m,
which implies that the exact value of the load factor is λ = 2.569875.

6.1.1 Simply supported beam with no subdivision

In this case, the most basic one, the UDL with value p will be replaced by two point

loads of
pl

2
located in the nodes, see Figure 13. It is obvious that, from the nature

of the loading, the beam supports no bending moment anywhere. Computation of
this structure by SCS provides the following results:

pl
2

pl
21

1 2

SecantTangentReal moment distribution

Figure 13: Simply supported beam with no span subdivision

� λLB = 2.56987499995355

� λUB =∞

� Time = 2.608 s

Note that the lower bound value is the precise one, whereas the linsolve has
been unable to converge successfully, since the primal problem is unbounded, and
thus the dual infeasible. Both results could have been predicted in advance.
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Figure 14: Plastic hinge detection by SCS for the simply supported beam with no subdi-
vision

The lower bound problem accounts for both the secant and the tangent distri-
bution for the bending moment diagram, the tangent being the secant translated
pl2

8
. Since the exact moment distribution lies somewhere between these latter two,

SCS is able to recognize the maximum moment, where the plastic hinge is more
likely to be formed, and study it. Moreover, in this case the maximum moment lies
exactly in the tangent moment distribution, regard the circle in Figure 13, since
pl2

8
is this maximum moment. This implies that SCS detects the formation of the

plastic hinge, but as no node is defined in the middle of the span, it places the
hinges on the supports, see Figure 14, where the software is able to check yield and
equilibrium. This automatically leads to finding the exact collapse load, since the
detection of the plastic hinge formation has been successful.

On the other hand, it is reasonable that no solution can be found for the upper
bound problem. This problem only concerns the secant moment distribution, which
in this case is equal to 0, since no loads are applied on the span. Thus, if loads are
only applied at the supports, those can absorb the loads indefinitely, because the
beam would not have to bear any stresses. Therefore there is no upper collapse load
factor. In fact, the collapse load is ∞, as by no means the beam will attain plastic
flow if no stresses are present.

6.1.2 Simply supported beam with one subdivision

This is the first refinement, where an extra node has been placed in the middle of
the span. Load conditions and bending moment diagram are depicted in Figure 15.
Results for the computation are

� λLB = 2.05589999999999

� λUB = 2.56987499990634

� ∆ = 0.5139749999064

Ferran Vidal Codina 57



6 NUMERICAL EXAMPLES

pl
4

pl
4

pl
2

1
2

3

1 2

SecantTangentReal moment distribution

pl2

32

Figure 15: Bending moment distribution for the simply supported beam with one span
subdivision
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Figure 16: Plastic hinge detection by SCS for the simply supported beam with one span
subdivision

� Time = 2.438 s

Direct observation of these values leads to think that there was a mistake during
the computation, since the lower bound, which was precisely computed before the
refinement, has now diminished and represents an incorrect value. Moreover, the
upper bound, which was not even found before due to the nature of the model, has
now acquired the exact value of the collapse load factor. Nevertheless, in order to
understand the phenomenon happening here, Figure 15 must be carefully studied.
The secant moment distribution (the dashed one) is the moment distribution orig-
ined by the point loads, i.e. is the real moment distribution for the model, since no
UDL are present (in the model). In the middle of the span the moment distribution

reaches the value
pl2

8
, and as a node is defined there, the plastic hinge is exactly

located (see Figure 16) and the load factor obtained will be the real one.

Oppositely to the upper bound, the lower bound has not shown the desired
behavior. This situation is due to the fact that the tangent distribution had located
the exact position of the plastic hinge in the first iteration, and when a refinement is
made the new tangent distribution lies below the position of the plastic hinge, thus it
is not found precisely, as can be seen in Figure 15. Both distributions are separated
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p (l/2)2

8
=
pl2

32
, and consequently the tangent distribution is unable to provide the

exact result. This can be stated as one of the handicaps of SCS, although it can
easily be sort out as will be seen now. Note that the fact that this more complex
model took less to compute than the first one. Regarding the nature of the first
case, where the upper bound LP problem did not converge, explains this condition.

6.1.3 Simply supported beam with two subdivisions

After a second refinement, with the load conditions and moment distributions de-
picted in Figure 17, SCS gives the following results
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SecantTangentReal moment distribution
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3 4
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Figure 17: Bending moment distribution for the simply supported beam with two span
subdivisions

� λLB = 2.41870588235294

� λUB = 2.56987500000000

� ∆ = 0.1511691176471

� Time = 1.737 s

This results are consistent with what was commented before. The upper bound
remains equal, since the node where the plastic hinge forms is located. Compar-
ing the results between this computation and the latter, the lower bound gradually
approximates to the exact collapse load. This is due to the fact that the tangent
distribution is closer to the secant every iteration, in fact it approximates quadrati-
cally, i.e. with the square of the beam subdivision length. This will be assured using
the next refinement. The plastic hinge plot will not be shown as it does not differ
from the one in Figure 16.

6.1.4 Simply supported beam with three subdivisions

This last section will be employed to evaluate the convergence of the boundaries to
the exact load factor. In Figure 18 the secant and tangent moment distributions are
not depicted, since they are indistinguishable from the bending moment distribution
in blue. Results from the computation are
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Figure 18: Bending moment distribution for the simply supported beam with three span
subdivisions

Number of elements λLB λUB ∆
1 2.56987499995355 ∞ ∞
2 2.05589999999999 2.56987499990634 0.5139749999064
4 2.41870588235294 2.56987500000000 0.1511691176471
8 2.53033846153844 2.56987499999999 0.0395365384616

Table 2: Results from SCS computations of the simply supported beam

� λLB = 2.53033846153844

� λUB = 2.56987499999999

� ∆ = 0.0395365384616

� Time = 1.365 s

The results are as expected, since refining the model leads to a tangent distri-
bution practically equal to the secant, and this results in the lower bound approxi-
mating to the upper bound. It is also interesting to check the contribution of each
element to the total gap. The matrix gap eval for this case is

gap eval =



0.01976827100826 4
0.01976826745325 5

0 8
0 1
0 7
0 2
0 3
0 6


clearly the two central elements contribute the most to the gap, since moment in
that region is the greatest. An adaptive procedure would detect this factor and con-
tinue to subdivide only elements 4 and 5 in order to reduce the gap. Obviously, this
procedure can also be made by the user himself. The results from all computations
are represented in Table 2.
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Figure 19: Convergence for λ and ∆ versus the number of elements

Finally, before analyzing the influence of the yield curve, it is useful to represent
these results to see the convergence of the bounds and the evolution of the gap
with the number of elements employed in the model. It should be stated that the
first value for λUB has been set to 5, since representing it with the actual value
would certainly make the graphic useless. As seen in Figure 19, the bound gap
clearly decreases with the square of the subdivision length. With this example fully
understood a global idea of how SCS works it achieved, and thus we can advance to
more complex structures.
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Figure 20: Representation of the embedded frame with point load
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6.2 Embedded frame with point load

Once clarified how SCS bounds the exact collapse load from a given load distri-
bution, it is worth employing it on a simple but representative case. The frame
depicted schematically in Figure 20 is a useful example to show the benefits of SCS
in comparison to standard linear calculations explained in section (5.7.1).

This frame is loaded horizontally in node 2. The beams employed in this struc-
ture have IPE360 cross sections. At the bases horizontal, vertical deflection and
rotation are impeded. Reaction forces can be found explicitly

H1 = H4 =
P

2
V1 = V4 =

3hPk

l(6k + 1)

−M1 = M4 =
Ph

2

3k + 1

6k + 1

where k = h/l. For the computations, let the spans be h = 3m, l = 4m. According
to linear analysis, the first node to attain plastic flow is node 1. The load to form
this first plastic hinge can also be found explicitly.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.5

1

1.5

2

2.5

3

1

2 3

4

Figure 21: SCS detection of the plastic hinges to form the collapse mechanism

Regard that for linear calculations the yield curve of node 1 is a polygon of 4 sides

in the

(
M

Mp

,
N

Np

)
plane. Using this condition and the fact that in elastic flow the

stresses at node 1 are N = V1 and M1
z = M1, the collapse load for linear analysis

Plin can be found by imposing the combination of stresses to be on the yield curve.
Performing an easy computation, the value found is Plin = 301.52 kN . However,
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this frame is clearly a hyperstatic structure, and thus it requires more than one
plastic hinge to form a mechanism. Consequently, the load obtained is a safe value
of the actual one, but it can be improved using SCS.

SCS effectively states that there needs to form a plastic hinge at every node in
order to reach structure collapse, as can be seen in Figure 21. Considering the yield
curve as a 4-edge polygon (using the normative) SCS obtains a value of the collapse
load Pnorm = 345.53 kN . The easy calculation Pnorm/Plin = 1.15 shows that the
studied frame is able to bear 15% more load than the one made with linear analysis.

Nonetheless, this result can be even more improved by using the actual yield
curve. For the computations the yield curve is approximated with 40 lines per node,
i.e. 10 per quadrant. This leads to the most realistic result that can be obtained.
Moreover, in this case the lower and upper bound do not coincide, and the value
used for the comparisons will be the lower bound, since it assures to be on the safe
side of the calculations. Regarding this information, SCS provides a collapse load
of Preal = 351.68 kN . Repeating the calculus, Preal/Plin = 1.17. Hence, it can be
stated that the SCS enables the user to know that the structure can support 17%
more load than the linear analysis case, besides providing information about the
collapse mechanism. This easy example illustrates the power and the utility of SCS
in comparison to linear analysis methods used in engineering, such as SAP2000 R©.
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Figure 22: Schematic representation and 3D view of the steel tower
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6.3 Steel tower

Another example to examine the advantages of employing SCS in the computation
of structures in comparison to linear analysis methods is provided. The structure
analyzed here is a trussed 3D tower. Since yield criteria is not yet available for 3D
frames, trusses are the only example that can be computed in 3D.

The details of the truss are the ones in Figure 22. Loads are horizontal, and the
beams used in the trussed structure have square 100× 100mm cross sections. The
plastic values are considered to be NT = −2NC , where NT = 5 · 105 kN . Being a
trussed structure implies that the failure of a section occurs whenever the axial stress
reaches the plastic limit. Hence, the normative criteria equals the real behavior of
the yield curve.
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Figure 23: Collapse mechanism. In
red elements that fail for
traction and in blue for
compression
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Figure 24: Amplified deformed struc-
ture in blue.

Linear analysis detects the first element to exceed the elastic limit (either trac-
tion or compression). In this case, due to problem symmetries various elements
attain plastic flow at the same time. The collapse load found using SAAP2000 R© is
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Flin = 216440 kN . Nevertheless, the result obtained is not the true mechanism of
collapse, as the structure can bear more loading without collapsing.

However, computing this trussed tower with SCS leads to more realistic results.
A distribution of elements that generate the collapse mechanism can be obtained.
In Figure 23 the elements that fail are depicted, in red the elements that fail for
traction and in blue for compression. It can be observed in Figure 24 that only the
upper part of the structure fails, and therefore only this part collapses.

The collapse load obtained by SCS is Freal = 300075.7 kN , which can be re-
lated to the one obtained with the linear analysis similarly to what done before.
Performing the easy computation Freal/Flin = 1.4 enables to see that SCS detects
that structure can bear 40% more loading, besides providing the actual collapse
mechanism.
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Figure 25: Representation of the three-storey frame

6.4 Model of a 2D three-storey building

Finally, SCS is employed to compute a complex three-storey frame that models a
real structure. This is the case that will gauge the power of SCS. Moreover, in
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a theoretical basis it will be of great interest, since influence from both the yield
curve and the UDL will be determinant. A schematic representation of the frame
is in Figure 25. Geometric data is l1 = 7.5m, l2 = 4.5m for horizontal spans and
h1 = 3.55m, h2 = 4.5m, h3 = 3.3m for vertical spans. The vertical loads corre-
spond to use loads, with a value of p = 65 kN/m, whereas the horizontal ones are
wind loads, with values of q1 = 5 kN/m, q2 = 3 kN/m. All loads have already been
increased by the appropriate load increase coefficients, which can be found in the
normative of steel structure.

Similarly as what was done with the simply supported beam, this frame will be
studied by continuously subdividing the elements bearing UDL, and at each step
analysis of the convergence will be carried out varying the number of lines used to
approximate the yield curve, and thus a more thorough analysis will be possible.
The number of lines considered will be in the range of 4-20 per node, that is one to
five lines per quadrant.

5 10 15 20
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Number of lines

La
m

bd
a

5 10 15 20
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Number of lines

B
ou

nd
 G

ap

Figure 26: Convergence of λ and ∆ versus the number of lines for the frame with no span
subdivision

6.4.1 Frame with no span subdivision

This is the simplest and the least interesting case, since no loads are applied in the
middle of the span, and thus the model is not representative. Computation with
SCS gives the results in Table 3.

Observing the results, it should be detached that both the upper and the lower
bound stabilize even if the number of lines increases. Obviously, this indicates that
improving the bound gap is only possible by refining the UDL elements, since refining
the yield curve has proved useless. These latter results are shown in Figure 26.
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Number of lines λLB λUB ∆
4 2.08329879539149 2.63611468706516 0.55281589167367
8 2.15443243573331 2.58805072465873 0.43361828892542
12 2.16546069016570 2.58825121363745 0.42279052347175
16 2.16628821509802 2.58804876103035 0.42176054593233
20 2.16702838902643 2.58715904701065 0.42013065798422

Table 3: Results from SCS computations for the frame with no span subdivision
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Figure 27: Convergence of λ and ∆ versus the number of lines for the frame with one span
subdivision

6.4.2 Frame with one span subdivision

When loads are applied at the middle of the span, the model starts to be represen-
tative. Results are grouped in Table 4.

These results are depicted in Figure 27. The same tendency as before is observed.
Note that the gap has reduced from 0.42 to 0.36 roughly. In order to achieve more
precise computations, more subdivisions need to be done.

Number of lines λLB λUB ∆
4 2.13714558994884 2.57338126475674 0.43623567480790
8 2.18133497740381 2.55711600102536 0.37578102362155
12 2.19359181218358 2.55406234816166 0.36047053597808
16 2.19403310701907 2.55375131616303 0.35971820914396
20 2.19445625797868 2.55386094581217 0.35940468783349

Table 4: Results from SCS computations for the frame with one span subdivision
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Number of lines λLB λUB ∆
4 2.36422675495481 2.57291606326957 0.20868930831476
8 2.43075118005173 2.55711600074626 0.12636482069453
12 2.44713656862145 2.55406234812445 0.10692577950300
16 2.45386816567384 2.55375131615935 0.09988315048551
20 2.45400067027022 2.55386094529599 0.09986027502577

Table 5: Results from SCS computations for the frame with two span subdivisions
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Figure 28: Convergence of λ and ∆ versus the number of lines for the frame with two span
subdivisions

6.4.3 Frame with two span subdivisions

Computing the frame with this refinement provides the results in Table 5. This
refinement has been successful, since the gap has decreased from 0.36 to 0.1. In this
latter the influence of the yield curve in the computations is noticeable, especially in
the lower bound (see Figure 28). For this model, it is worth regarding the bending
moment distribution. Figure 29 represents the case with 20 lines per node, since it
is the most accurate one.

It should be highlighted that the upper bound remains stagnant with the increas-
ing number of lines to describe yield and surprisingly with the refinements. Thereby,
it leads to think that the bound gap is in a major part due to the UDL, as it is only
considered in the lower bound problem via the tangent distribution. It is helpful to
use the matrix gap eval in order to analyze the element contribution to the gap.
Only the first 8 rows of the matrix are shown, as they are the most relevant. The
other values have order of 10−4, and therefore no significant improvement would be
obtained if refining those elements.
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Figure 29: SCS output for moment distribution for the frame with two span subdivisions

gap eval =



0.04324455910328 29
0.04324454608226 30
0.00184365778141 34
0.00184365753955 33
0.00178612711256 14
0.00175520351402 38
0.00175520200048 37
0.00121883914062 5


Observing the bending moment distribution in Figure 29 and it is clear that

the greatest moments occur at the elements which contribute the most to the bound
gap. The following step is to manually refine these elements (except 14) and analyze
the convergence of the load factor and the bound gap.

6.4.4 Frame with manual subdivisions

The aforementioned elements are refined by adding an extra node. Results from the
computation are shown in Table 6.

The bound gap has drastically decreased. Obviously, before performing any com-
putation the user must establish the precision of the calculations, i.e. the number of
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Figure 30: Convergence of λ and ∆ versus the number of lines for the frame with an extra

manual span subdivisions

Number of lines λLB λUB ∆
4 2.38039642126137 2.55732188258492 0.17692546132355
8 2.48194860612320 2.53987728373308 0.05792867760988
12 2.50080180806465 2.53646896464822 0.03566715658357
16 2.51046989114661 2.53623332534645 0.02576343419984
20 2.51075375319028 2.53618129917413 0.02542754598385

Table 6: Results from SCS computations for the frame with an extra manual subdivision

significant digits to ensure. Since the purpose of this project is to demonstrate how
SCS works, a gap of 0.025 is considered satisfying. It is noticeable that with this
manual subdivision of only 7 elements a greater improvement has been achieved.
Finally, the plastic hinge location has been depicted in Figure 31, and the conver-
gence is shown in Figure 30.

6.4.5 Study of convergence

Once the separate cases have been detailed, it is useful to represent the results of con-
vergence obtained in a single graphic, so as to analyze the enhancements achieved
with the refinements and to extract conclusions on the effectiveness of SCS. The
graphic of convergence is in Figure 32. For the legend the notation Si, i = 0, 1, 2, 4
has been used, S for Subdivision and the subscript for the number of subdivisions
applied to the elements.

The influence of both the yield curve approximation and the subdivision of el-
ements bearing UDL can be clearly appreciated with the representation in Figure
32. The initial model, being the frame with no subdivisions, constitutes a poor
representation of the structure, as can be seen after the refinements. Consequently,
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Figure 31: Plastic hinge detection by SCS for the frame with an extra manual subdivision

the gap is unacceptable, even using more lines to wrap the yield curve. This implies
that is impossible to achieve satisfying results by only using the yield curve approx-
imation, and therefore a refinement is needed.

The first two refinements induce significant improvements to the model. It is
worth mentioning that the upper bound for the frame with one and two span subdi-
visions (blue and black respectively in Figure 32) coincide, whereas the lower bounds
clearly differ. The first refinement is still unacceptable, since it yields a bound gap
of 0.36 approximately. In fact, it is nonsense to talk about convergence in this case.
Nevertheless, the second refinement produces acceptable results. The bound gap
remains around 0.1, but the same tendency is observed. Even using more lines to
describe the yield curve, the gap remains stagnant. Thereby, it is sensible to state
that refining the model tends to produce better results than using more lines to
wrap the yield curve.

Finally, the third refinement is the most accurate one. By manually subdividing
the elements that contribute the most to the gap, satisfying results can be obtained.
The gap has diminished to 0.025, which can be considered acceptable, and conver-
gence of the lower and the upper bound can be appreciated. The main reason for
this great improvement can be found in Figure 31. The latter division of elements
has enabled SCS to locate the exact location of the plastic hinges that induce the
collapse mechanism. Consequently, better results are obtained. Moreover, the in-
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Figure 32: Convergence of λ and ∆ versus the number of lines for the frame

fluence of the yield curve is decisive in the concept of convergence.

Since refining the model has proven an interesting idea of achieving satisfying
results, it is sensible to focus on it for improving the software. The procedure of
subdividing spans with UDL can be thought as an adaptive one. The main idea for
the implementation of adaptivity consists in defining the criteria of choosing which
and how many elements to refine and the accuracy of the computation desired. The
first one is as simple as refining the elements that contribute the most to the gap,
which can be found using the matrix gap eval, using a criteria of the 30% greatest
contribution, for instance. The second one depends on the user. This idea is being
developed at the moment, and further details can be found in 8.4.

To summarize, SCS performs precise computations which enable the user to know
a lower and an upper bound to the exact collapse load factor. The procedure has
proved successful by analyzing the model of a three-storey building and the influence
of UDL and the yield curve in the convergence of the lower and upper bound.
The analysis that has been carried out shows that in order to achieve acceptable
results, both techniques must be employed simultaneously. Subdividing the beam
elements bearing UDL is necessary in order to describe the frame more accurately,
ensuring to detect the collapse mechanism and thus reducing the bound gap. The
simply supported beam and the frame clearly depict this situation. Furthermore,
approximating the yield curve using more lines guarantees convergence of the upper
and lower bounds, but is useless without the element subdivision. The proof of this
latter is the fact that the bounds remain stagnant despite using more lines, therefore
the need of subdividing the UDL elements arises. Consequently, the combination
of these two techniques is necessary to obtain satisfying results, ensuring success of
SCS.
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Figure 33: Representation of the 3D two-storey frame

6.5 Model of a 3D two-storey building

The last numerical example that is given consists of the framed structure in 3D that
can be seen in Figure 33. Since approximation of the yield surface for 3D beams has
not been implemented yet, this case cannot be analysed in depth as the earlier cases.
Nonetheless, it suffices to show how SCS can compute 3D frame structures using
the normative criteria for yield. Therefore, it is not presented as a closed example,
but as an introduction for further improvements of SCS.

Number of subdivisions λLB λUB ∆
0 1.2564283508409 1.3470217865156 0.090593435674
1 1.3231703376526 1.3470217865629 0.023851448910
2 1.3409786711463 1.3470217865604 0.006043115414
3 1.3455059072096 1.3470217865643 0.001515879354

Table 7: Results from SCS computations of the 3D frame

The geometric data is lx = 3m, ly = lz = 4m. The vertical loads correspond to
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use loads, with a value of q = 50kN/m, whereas the horizontal ones are wind loads,
with a value of p = 15kN/m. All elements are designed using the IPE360 beam.
The analysis in this case is much simpler, as convergence can only be observed by
subdiving elements bearing UDL. The results obtained in the computations are col-
lected in Table 7.

The convergence and the plastic hinge distribution are depicted in Figures 34
and 35 respectively.
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Figure 34: Convergence of λ and ∆ versus the number of subdivisions

Regarding the results and the figures, it can be stated that despite working
wiht normative criteria the results obtained from the computations are really good,
achieving a gap of only 0.0015. This example reinforces the idea that despite ap-
proximating the yield surface is important, working with a faithful representation of
the actual situation always leads to bettter results. It should also be noted that this
latter case is only an example, since it is not normal to have wind loads with such
great values. It may be the main reason for having a traslational collapse mechanism
instead of another one based on gravity loads. Nonetheless, the objective of this last
example was to illustrate that despite further research needs to be accomplished,
SCS can effectively compute 3D frames.

7 Conclusions

Once the analysis of the five numerical examples has concluded, it is interesting to
summarise the advantages and drawbacks that have been observed so far, in order
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Figure 35: Plastic hinge detection by SCS for the 3D two-storey frame with three subdi-
visions

to effectively improve the software and orientate the future research. These five ex-
amples constitute a good test to SCS, as it explores both two and three dimensions,
point and uniform distributed load, trussed and framed structured. Hence, it is
sensible to draw conclusions of SCS functioning.

Firstly, when working with a certain software is important to know the limits of
the model employed. The example of the simply supported beam, perhaps the eas-
iest example to compute, has showed that the model experiences a weird behavior
on lower bounds when the exact plastic hinge location has been detected in the first
iteration, without refining the bars. However, by continuously dividing the bars,
convergence to the real collapse load has been observed, so once the user is aware
of this limitation no further problems should be derived from it.

By comparing results of SCS with the results obtained using linear analysis meth-
ods, such as SAP2000 R©, we have found that for the simple case of the embedded
frame with horizontal point load SCS enables to load the structure 17% more. This
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fact illustrates the convenience of employing SCS for collapse computations, since
it finds the load factor necessary for the structure to collapse and the real collapse
mechanism. Linear elastic methods, however, only find the first plastic hinge to
form. Moreover, it does not only give a greater collapse load, but also bounds it
upper and lower as precisely as the user desires. This case and the steel tower justify
the use of SCS in structure limit analysis.

Finally, once clarified the limits of the model and the justification of employ-
ment, a 2D and a 3D frame have been computed in order to study the influence
of several parameters in the convergence of the load factor. The theoretical basis
states that bounding of the actual load factor comes from approximating the yield
curve/surface of each beam element inwards or outwards and from considerating a
secant and a tangent moment distribution to the actual one in UDL elements. In the
last two examples the influence of each factor has been widely studied. According to
the results obtained, it is clear that refining the UDL elements leads to much better
results than the ones obtained by refining the yield surface. By subdividing the UDL
elements, the actual moment distribution is progressively approximated, with the
gap diminishing with the square of the beam length. This fact explains the results
obtained. Nonetheless, it is advisable to combine both bounding techniques in order
to obtain the best results possible. This influence is best observed in Figure 32. By
improving the yield criteria results slightly get better, although refining the UDL ele-
ments -i.e. having a more representative model- is decisive in achieving convergence.

To conclude, SCS is a powerful tool that computes all kind of trussed and framed
structures using plastic analysis, offering a bounding as precise as desired of the
load that induces collapse in the structure. It enables the user to perform stronger
computations than the ones with elastic methods, as well as being able to combine
two different methods of bounding the load factor for more efficient computations.
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8 Future research

SCS successfully computes upper and lower bounds for framed or trussed two-
dimensional structures, formed by beams with I/H-shaped cross sections or C4 sec-
tions. The problem approach and the procedure employed to solve the problem has
been detailed throughout the project. However, SCS is currently being improved in
order to meet the desired requirements by the authors.

8.1 3D Frames yield criteria

Implementing the same idea for three-dimensional structures is the major enhance-
ment that is currently being done. Besides the obvious, two major differences arise
between the two and the three dimensional case concerning the implementation of
SCS.

Figure 36: Yield surface for IPE360 cross section

Finally, the major drawback encountered while defining the LP problem for
three-dimensional structures is defining a sequence of inscribed and circumscribed
polyhedra, since in 3D there are two bending moments affecting the beam element.
Hence, yield criteria will now be described by a convex surface, instead of a con-
vex surface in 2D. See Figure 36 for an example of a yield surface for a IPE360 beam.

Tipically, yield surfaces consist of the 2D yield surfaces in the

(
Mz

Mpz

,
N

Np

)
and(

My

Mpy

,
N

Np

)
joined using lines parallel to the plane

N

Np

= 0, obtaining a ruled

surface. The strategy used to create a sequence of polyhedra that approximates the
surface inwards and outwards will be similar to the 2D case. Accounting that only
I/H-shaped cross sections are introduced so far, the double symmetry enables to
work in one octant of the space and then apply symmetries to the planes obtained.
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The technique for creating the polyhedra approximating the yield surface is currently
being developed.

8.2 Cross Section Library

Besides implementing the 3D case, there is a concern for widening the range of
cross sections available to use in the computations. I/H-shaped cross sections and
C4 sections are perhaps the most commonly used, but regardless this condition a
powerful program must offer the maximum number of possibilities to the user. In
Section (4.2.2) sections with T, L and U are mentioned. The first one is currently
being studied, and the expression of the yield surface has been analytically found.
The problem encountered is that it differs from the I/H-shaped sections that it
cannot be written explicitly, i.e. the moment as a function of the axial stress or
viceversa. The fact that the yield surface is an implicit function of M

Mp
, N

Np
impedes

to use the Newton-Raphson routine employed for the explicit case. One of the main
goals is to adapt the technique in order to make it able to operate with implicit
functions. The case of L and U is quite different, since the analytical formulae have
not been found yet, although it constitutes another point of major interest. Once the
yield surface is written, they will likely be easily studied with the Newton-Raphson
technique for implicit functions.

8.3 LP solver

The routine linsolve in Matlab R© is the one currently used to resolve both the upper
and the lower bound problems. For the cases studied it has provided satisfying
results within reasonable time. In fact, the case that took longer to compute is
the one described in Section 6.4.4 with 20 lines approximating the yield surface
per node, and the computation time was around 20 s. Nonetheless, the final goal
of SCS is to compute complex 3D framed structures with hundreds or thousands
of elements. At this extent, linsolve would probably not only be slow, but also
insufficient to assure convergence. The authors’ idea is to introduce the convex
optimization package SDPT3 to achieve a better performance of the LP solver.
The main difficulty nowadays is that the LP problems (14) and (15) are described
in the general LP form, see (4), and SDPT3 package requires the problem to be
expressed with nonnegative variables and equality constraints. Even though it does
not suppose a great effort to transform the existing problems into ones that fit this
characteristics by using slack variables, it is a procedure that has not been developed
yet, and it will gain interest as the 3D case reaches to completion.

8.4 Adaptivity

Throughout the project it has been proven repeatedly the importance of refining the
elements bearing UDL in a framed structure, in order to reduce the bound gap in
the computations. Nonetheless, the procedure of refining is nowadays hand-driven,
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and hence it may result tedious when precise computations have to be carried out.
The authors’ idea is to transform SCS into an iterative method where the user would
set manually the precision desired in the computation, and the program would use
adaptivity to improve the computations after each iteration. The basic idea of
adaptivity applied to SCS consists of locating after each iteration the elements that
contribute the most to the gap, i.e. the top rows of the matrix gap eval. The
criteria employed for selecting how many elements should be refined would also be
a user’s choice. Thereby, after each iteration SCS would refine the selected bars, a
measure that can be complemented with improving the approximation of the yield
curve/surface. Using adaptivity, SCS would not only be more efficient, but also
easier and faster to be used, since the work of entering the structure information
would only be done once.
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