Proyecto de suministro eléctrico para abastecer una escuela situada en el municipio de Tiana mediante energía eólica.

- MEMORIA / ANEXOS -
Proyecto de suministro eléctrico para abastecer una escuela situada en el municipio de Tiana mediante energía eólica

AUTORES: JORDI ALBINYANA
LLUIS ALCÁCER
JAVIER AMORES
CARLOS SÁNCHEZ

TUTOR: RICARD HORTA BERNÚS
COORDINADOR DEL MÓDULO: DANIEL GARCÍA ALMIÑANA
CONTENIDOS

DOCUMENTO 1: MEMORIA TÉCNICA

1. **Resumen Ejecutivo** ... 4
2. **Alcance** .. 5
3. **Especificaciones** ... 5
4. **Justificación y antecedentes** .. 6
 4.1 Antecedentes .. 6
 4.1.1 El municipio ... 6
 4.1.2 La escuela ... 6
 4.1.3 El proyecto .. 10
4.2 **Justificación** ... 11
4.3 **Utilidad y beneficios** .. 12
5. **Análisis y cálculos de las necesidades eléctricas** 14
 5.1 Descripción de la instalación y uso 14
 5.2 Análisis y estimación de las necesidades de energía eléctrica ... 14
 5.2.1 Metodología ... 14
 5.2.2 Consumos estimados por periodo 16
 5.2.2.1 Necesidades en periodo lectivo 16
 5.2.2.2 Necesidades en periodo de actividades no lectivas 18
 5.2.2.3 Necesidades en periodo del centro cerrado 19
 5.2.3 Necesidades totales anuales .. 20
 5.2.4 Resumen comparativo de las instalaciones de mayor peso en el consumo energético ... 21
 5.3 Análisis de los consumos eléctricos reales facturados 23
6. **Cálculo del potencial eólico disponible** 28
 6.1 Estación meteorológica .. 28
 6.2 Datos iniciales del viento .. 28
 6.3 Frecuencia absoluta y acumulada de velocidades del viento para un año promedio ... 30
 6.4 Determinación del coeficiente α 30
 6.5 Velocidad del Viento a 15m- 20m y 25m. 31
 6.6 Dirección predominante del viento .. 32
 6.6.1 Gráficas de la Rosa de los Vientos 32
7. **Análisis de alternativas** .. 34
 7.1 Evaluación de necesidades energéticas frente la disponibilidad de potencia eólica ... 34
7.1.1 Necesidades energéticas ... 34
7.1.2 Capacidad de generación de energía eléctrica 34

8. Proyecto técnico de instalación del aerogenerador 41
8.1 Elección de ubicación del aerogenerador 41
8.2 Elección e instalación del poste ... 43
 8.2.1 Emplazamiento de la torre ... 43
 8.2.2 Cargas estáticas de la torre .. 44
8.3 Elección del regulador ... 45
8.4 Elección de las baterías .. 45
8.5 Elección del inversor ... 47
 8.5.1 Potencia estimada del inversor ... 47
8.6 Elección del cableado y tendido ... 49
 8.6.1 Circuito a tierra ... 50
8.7 Elección de la ubicación de todos estos equipos 50
8.8 Elección del medidor de energía generada 51
8.9 Protecciones .. 52
8.10 Simulaciones .. 54
8.12 Actividades básicas de mantenimiento de la instalación 56

9. Estudio de eficiencia en el consumo de energía eléctrica 58
9.1 Iluminación ... 58
 9.1.1 Descripción del actual sistema de iluminación 58
 9.1.2 Calidad de la iluminación ... 61
 9.1.3 Propuesta de actuaciones ... 63
 9.1.3.1 Sustitución de las luminarias ... 63
 9.1.3.2 Buenas prácticas .. 66
 9.1.3 Plan de actuación propuesto .. 67
9.2 Sistema informático .. 71
 9.2.3 Plan de actuación ... 73
 9.2.1 Descripción y uso ... 71
 9.2.2 Buenas Prácticas ... 72
 9.2.3 Plan de actuación ... 73

10. Evaluación económica y conclusiones .. 74
10.1 Evaluación de la instalación del aerogenerador 74
10.2 Cambio de las luminarias ... 76
10.3 Adquisición de ordenadores portátiles .. 77
10.4 Conclusiones .. 78
DOCUMENTO 2: PRESUPUESTO Y PLAN DE MANTENIMIENTO

1. **Mediciones y Presupuesto** ... 1
 1.1 Mediciones .. 1
 1.2 Presupuesto .. 2

2. **Plan de Mantenimiento** ... 3

3. **Bibliografía** .. 5
1. Resumen Ejecutivo

Este proyecto ha sido diseñado por estudiantes del Máster en Energía para el Desarrollo Sostenible de la Fundación UPC para la escuela pública de Lola Anglada del ayuntamiento de Tiana. El objetivo principal es suplir la demanda eléctrica necesaria para el funcionamiento de un aula verde, (aula de informática) mediante el suministro de energía eólica.

El proyecto plantea suministrar la demanda eléctrica total del aula de sistemas, la cual es de 7.000 Kwh. al año.

Para llegar a este punto se analizaron aspectos como el potencial eólico disponible en la zona, el consumo eléctrico que presenta la escuela, el horario de demanda eléctrica, la selección del aerogenerador, y todos los principales elementos consumidores, partiendo de la premisa de que la energía ahorrada es la forma más económica y sostenible de aprovechamiento eléctrico.

Utilizando un generador Bornay se obtuvieron resultados que sobrepasan la contribución eléctrica propuesta inicialmente de 7.000Kwh hasta generar más de 10.000 Kwh. Con la implementación de éste aerogenerador se lograría disminuir el consumo eléctrico de la escuela de 20.533 Kwh. al año a 11.822 Kwh. al año.

Adicionalmente se presenta un plan de optimización del sistema de luminarias, cuyos costos se amortizan en menos de 8 años.

Dentro de las recomendaciones generales también se analizó la sustitución de los ordenadores, que de realizarse conjuntamente con el proyecto del aerogenerador permitirían aumentar el ahorro energético hasta 14.982 Kwh. al año, pasando de un consumo energético de 20.533 Kwh a tan solo 5.521 Kwh.

Este proyecto está diseñado para una institución comprometida con la sostenibilidad y el medio ambiente, cuyo principal interés es difundir éstas prácticas y acercar a la comunidad a otras formas de obtención de energía limpia. La motivación principal es la conservación de éstos preceptos, sin embargo una motivación igualmente importante son las ventajas financieras para la institución derivadas de estas adecuaciones, dado el ahorro económico que se puede lograr a mediano y largo plazo.
2. Alcance

Este proyecto se encuentra delimitado dentro del objetivo principal de suplir la demanda eléctrica necesaria para el funcionamiento de un aula verde (aula de informática) que cuente con el total de su energía eléctrica suministrada mediante energía eólica.

Esta solución es innovadora para planteles educativos y se alinea con los parámetros de sostenibilidad ambiental promovidos en la región. Dentro de la nueva mentalidad global de cultura ambiental, esfuerzos como éste son al mismo tiempo necesarios y bien reconocidos, como se evidencia por las distinciones y premios recibidos por ésta escuela como el Sello de Escuela Verde de la Generalitat de Catalunya.

Como ya se mencionó anteriormente, aunque éste ejercicio se realizó con una escuela específica, nuestro objetivo es crear un modelo cuyos principios puedan ser reproducidos en cualquier escuela de similares características y obtener resultados igualmente satisfactorios.

3. Especificaciones

Demanda Eléctrica. 14.426 Kwh/día
Tipo De Corriente Eléctrica. 230 V C.A Monofásica.
Tipo De Aparatos Eléctricos Consumidores Servidor-Ordenadores de sobremesa - Racks de red - Router
Velocidad media Viento 6m. 2,95 m/s
Coeficiente α 0,296
Altura sobre el nivel del mar. 227 m.
Coordenadas Geográficas del proyecto. Latitud N 41° 29’ 24,3”
Longitud E 2° 15’ 48,3”
4. Justificación y antecedentes

4.1 Antecedentes

4.1.1 El municipio

Tiana es una población de 7,9 km2 y 7590 habitantes (2009), situada al sur de la comarca del Maresme, a 15km de Barcelona. Limita con los municipios de Alella, Montgat, Badalona, Sant Fost de Campcentelles y Martorells de Dalt. Se trata de un municipio de interior, al pie de la sierra de Marina.

Tiana se ha convertido en una población con función generalmente residencial, ya que la mayoría de sus habitantes se desplazan a Barcelona o alrededores para trabajar, y las actividades industriales o servicios no son demasiado significativas. No obstante, su baja densidad de población y el entorno verde donde está situada la han convertido en un municipio de rango social medio-alto. Además de esto, otra de las principales características de Tiana es su larga trayectoria dentro del marco del desarrollo sostenible.

Además, el 8 de Septiembre de 1998, el Pleno Municipal de Tiana aprobó la creación del Foro Agenda 21 Local de Tiana. Este foro debía su nombre al manifiesto Agenda 21, surgido a raíz de la Conferencia de las Naciones Unidas en Río de Janeiro (1992). En él se defendía un modelo de desarrollo global sostenible, tanto en términos económicos, sociales, culturales y medioambientales. De hecho, el capítulo 28 del manifiesto Agenda 21 promovía la adaptación de estos principios también a nivel local, y esto es lo que Tiana hizo al aprobar dicho Foro con una amplia participación ciudadana.

Años después, en Abril del 2003, el Pleno del Ayuntamiento de Tiana aprobó también el Plan de Acción Ambiental de la Agenda 21 Local, que incluía la estrategia municipal para el compromiso ambiental.

La buena acogida de esta iniciativa hizo que, en el año 2004, la escuela municipal de Tiana, Lola Anglada, iniciara los trabajos de redacción de su propia Agenda 21 Escolar.

4.1.2 La escuela

La escuela pública Lola Anglada es la única escuela pública de Tiana. Está distribuida en dos edificios distintos de doble línea, es decir, con dos grupos de estudio para cada nivel: la Ciutadella, al centro del municipio, que alberga Educación Infantil y Ciclo Inicial de Educación Primaria; y el edificio Polideportivo, a 2km del núcleo urbano, que acoge Ciclo Medio y Superior de Educación Primaria.

Nuestro proyecto se centrará en el edificio Polideportivo. Por este motivo, no entraremos en detalles descriptivos del edificio de la Ciutadella.
Las instalaciones del Polideportivo fueron inauguradas en el año 1979 y, posteriormente, en el año 1986, fueron ampliadas hasta los 1.700 m² construidos, aproximadamente, los cuales están distribuidos en dos plantas.

Actualmente el Polideportivo acoge un total de cuatro cursos de primaria, con dos líneas cada curso, lo que se traduce en un total de 194 alumnos (24 alumnos por clase de media); aunque estas cifras variarán debido a la inauguración de una nueva escuela e instituto en Tiana, y a la reestructuración que esto significará.

Está situado en la parte alta del municipio de Tiana. Es, por tanto, un edificio construido en plena cordillera litoral, a unos 200m de altura sobre el nivel del mar, a pocos metros de la cresta de la misma, que alcanza los 350m de altura en esa zona y está localizada a 3,2km del mar en línea recta.

Se ubica en una zona de equipamientos municipales anexo al campo de fútbol municipal, piscinas municipales, observatorio astronómico y centro de recogida selectiva de los residuos municipales.

El edificio Polideportivo dispone de 12 aulas, 4 espacios comunes (biblioteca, aula de plástica y pretecnología, laboratorio y sala de música y audiovisuales). También cuenta con una sala de profesores; un centro de recursos didácticos; una sala de archivo y material; una sala de informática; un gimnasio; cocina y un comedor; y los despachos de administración, dirección y tutorías.

Cada planta dispone de una zona de lavabos. Cabe decir, que los de la planta baja están abiertos, también, por la parte del patio, el cual dispone de pista de básquet y fútbol; zona de columpios y arenal.

El uso habitual de las instalaciones es evidentemente para actividades lectivas en un horario de 7:45h a 18:00h, de lunes a viernes, durante los meses de Septiembre a Junio.

Aparte de los fines de semana, el centro queda cerrado durante las vacaciones navideñas de 15 a 20 días, y durante el mes de Agosto.

Durante la última semana de Junio, el mes de Julio y la primera semana de Septiembre, el centro permanece abierto, para el cierre del curso saliente y preparación del siguiente curso por parte de los profesores, y además, como centro para el campus de verano, con la realización de actividades deportivas y lúdicas organizadas por el AMPA, durante el horario matinal de dichas semanas.

Paralelamente, el servicio de comedor y cocina de la escuela se mantiene operativo durante más tiempo que el puramente necesario para la constitución de las tareas de alimentación del alumnado y profesores. Dicha cocina realiza el servicio de catering para los dos edificios del centro escolar y también para la residencia de ancianos del municipio. Otorgando claramente un uso extra al servicio de cocina de la escuela.

Cabe decir que la escuela Lola Anglada ha obtenido recientemente el sello de Escuela Verde otorgado por la Generalitat de Catalunya por sus buenas prácticas ambientales y por su alta actividad ambiental. Como ejemplo, entre otros, una de las iniciativas que el centro ha llevado a cabo consiste en el llamado “Boc&Roll”, un tipo de envase reutilizable (tejido + film plástico interior + Reutilizable y lavable = 2€) para transportar los bocadillos del desayuno de profesores y alumnos.
Mediante esta campaña y durante el año escolar 2009-2010, se consiguió reducir el consumo de papel de aluminio (utilizado en los desayunos de alumnos y profesorado), un 75% en un solo trimestre pasando de 6kg de papel de aluminio (1º trimestre) a 1.5kg (2º trimestre).

Foto 1: Plafón explicativo y de justificación del boc’n’roll

Foto 2: Plafón de anuncios con distintos carteles de sensibilización ambiental
A pesar del interés que muestra la escuela y su dirección por la ecología y las buenas prácticas ambientales, dicha escuela no utiliza ningún sistema de energía renovable. La electricidad la obtiene de forma convencional, es decir, **conectada a red**. Además, su sistema de calefacción se alimenta de gasóleo y no cuenta con ningún sistema de refrigeración como aire acondicionado.

Mediante la Auditoria llevada a cabo a través del proyecto Agenda 21 Escolar que se implantó, la escuela Lola Anglada detectó sus principales problemas ambientales, por orden de importancia:

1. La existencia de dos edificios separados supone algunos problemas de movilidad y accesibilidad.
2. El envejecimiento de los edificios actuales dificulta su mantenimiento y el cuidado de los gastos de agua, luz, calor, ventilación, etc.
3. Insuficiente valoración del entorno natural e histórico.
4. Falta de formación del profesorado en temas ambientales a pesar de estar altamente predispuestos.
5. Necesidad de revisar el currículum de la escuela para incorporar criterios de respeto al medio ambiente y de desarrollo sostenible.
6. Poca intervención de los padres y madres en las actividades ambientales.

4.1.3 El proyecto
El proyecto que aquí presentamos, ofrecerá soluciones para los puntos número dos y cinco, los cuales afectan al mantenimiento y aprovechamiento de los recursos energéticos de la escuela y dan importancia a la implantación de nuevos criterios de desarrollo sostenible. Específicamente, el presente proyecto se centrará en aquello referente a energía eléctrica. Y, para ello, nos basaremos en la energía eólica, la cual se introduce a continuación.

Uno de los sistemas de generación de energía más utilizados en la actualidad es el compuesto por turbinas eólicas. Estos se basan en la transformación de la energía eólica del lugar en energía útil.

Esta transformación puede darse a tres escalas distintas:

- “Maxi” eólica
- “Mini” eólica
- “Micro” eólica

El caso de la “maxi” eólica es el más conocido y difundido hasta el momento. Se trata de las grandes plantaciones de aerogeneradores en carenas montañosas y entornos naturales. Son las de mayor potencia, dimensiones y características.

En el otro extremo, la “micro” eólica es el sistema de menor potencia y dimensiones. Dada su pequeña envergadura, es la que suele aplicarse a nivel doméstico o para instalaciones de tamaño reducido.

Finalmente, la “mini” eólica es la que se sitúa entre la “maxi” y la “micro”. Las instalaciones “mini” generan una producción energética mayor que las “micro” y menor que las “maxi” y esta característica las convierte en adecuadas tanto para vender la energía que producen como para utilizarla en sistemas autónomos.

Para el proyecto de la escuela Lola Anglada de Tiana, nos centraremos en la “mini” eólica como sistema de producción autónomo, el cual comprende aplicaciones tan variadas como la fabricación de hielo, la señalización marítima, la desalinización, la depuración o bombeo de agua, entre otros. En nuestro caso, utilizaremos la “mini” eólica como sistema autónomo de producción de electricidad con el objetivo de abastecer una escuela pública y complementar su suministro actual con una generación de energía limpia y en el mismo punto de consumo; pudiendo así disminuir considerablemente su factura eléctrica.

Así pues, el último objetivo de este proyecto es el desarrollo de un sistema híbrido de generación de energía para la escuela, el cual aportará un porcentaje concreto que se definirá a lo largo del proyecto.
4.2 Justificación

Este proyecto tiene como objetivo abastecer el consumo eléctrico de la escuela de Tiana con energía eólica, mediante un sistema “mini” eólico, autónomo e híbrido.

Por ello, se desarrollarán los siguientes pasos a lo largo del proyecto:

- Estudio económico y ambiental
- Cálculo de las necesidades energéticas de la escuela
- Capacidad de generación de energía de la escuela
- Selección de generadores y equipos alternativos
- Dimensionado del sistema de acumuladores
- Previsión del suministro auxiliar

El interés de este proyecto recae en la posibilidad de aplicar los procesos de **ahorro de energía** estudiados no sólo a nivel industrial o particular, sino que también es posible ejecutarlos en otros ámbitos de carácter público, como las escuelas.

Además, el hecho que se aplique en un centro escolar también conlleva un alto **valor didáctico y moral** de cara a los futuros ciudadanos que allí se están formando.

Como se ha introducido en el apartado anterior, también es interesante recordar que la población de Tiana es un municipio muy **activo** en lo que a actuaciones medioambientales se refiere. Como ejemplo de ello, es remarcable conocer que fue uno de los núcleos pioneros en la implantación de la recogida selectiva, con un índice de participación cercano al 90%. Y, actualmente, acaba de aprobar el **Plan Local de Prevención de Residuos Municipales 2011-2018**, el primero de estas características en nuestro país.

Por este motivo, consideramos que tanto el escenario como sus habitantes son del todo idóneos para un proyecto como el que proponemos. De hecho, la escuela y el ayuntamiento se han mostrado del todo abiertos a las propuestas realizadas en este proyecto y al estudio de las valoraciones hechas en este documento.

Entre nuestros objetivos, se encuentra la detección de los **puntos de mayor consumo energético** de la escuela y proponer **soluciones** accesibles para reducirlos. En este proyecto se detallará una de las posibles soluciones, que es la creación de un sistema de aprovechamiento de la energía eólica disponible en la ubicación de la escuela.

Además, nuestro objetivo a largo plazo es que este proyecto pueda servir como impulso de la **aplicación de sistemas eólicos a nivel público** y ayude a **promover** dichos métodos de suministro eléctrico entre toda la sociedad. En último término, contribuir a la creación de un espacio de **buenas prácticas medioambientales** donde poder educar y sensibilizar a las generaciones venideras.
4.3 Utilidad y beneficios

Los beneficios de la energía eólica, comparados con los beneficios de otros tipos de energía son innumerables. Debido a los bajos costos de implantación es muy accesible a pequeñas economías como el centro escolar de nuestro proyecto.

En cuanto a los beneficios económicos de los que se rentabilizará la escuela, el más evidente es una reducción de la factura de la electricidad en un porcentaje que se determinará a lo largo del proyecto. El importe de los últimos 12 meses ha ascendido a 4950 €.

Además, las ayudas del gobierno para implantar sistemas como el que se propone reducirán el tiempo de amortización de la instalación y harán más rentable la inversión inicial.

El hecho que la escuela produzca parte de la energía eléctrica que consumirá en el mismo centro escolar también reduce las pérdidas de energía en transporte y distribución. Como dato, en España estas pérdidas ascienden al 15% del consumo total. Así pues, podemos decir que la escuela de Tiana ahorrará al país como mínimo, la parte proporcional de dicho 15% de energía y su traducción económica.

Otra de las ventajas de producir la energía eléctrica en el mismo punto de consumo es la alta capacidad de adaptación a las necesidades energéticas del lugar y la gran versatilidad de usos que esto conlleva.

En el ámbito social, uno de los principales beneficios de la implantación del proyecto que se propone se encuentra en el aprovechamiento de las cubiertas del centro escolar, las cuales actualmente están en desuso. Allí se instalarán los mini aerogeneradores y, consecuentemente, ninguna otra zona ajena a la escuela recibirá ningún impacto de esta instalación.

Evidentemente, a través del sistema que se propone en este proyecto también se consigue eliminar sobrecargas, ya que se logra una independencia parcial del suministro eléctrico habitual. Esta ventaja suma importancia ante situaciones climáticas adversas que suelen convertirse en posibles causas de cortes eléctricos, ya que se contaría con un suministro de respaldo.

En la misma línea de los beneficios sociales que aporta el sistema eólico propuesto, se encuentra la posibilidad que el centro escolar sume más puntos como escuela verde. La escuela de Tiana ya dispone de este sello, pero una acción como la que se propone supondría un aumento del reconocimiento dentro de esta escala.

Es interesante destacar el valor didáctico e innovador que la escuela podría obtener de una acción como la que proponemos. Iniciativas como la llamada Aula verde donde todos sus dispositivos funcionen mediante energía eléctrica generada exclusivamente por la propia escuela serían un valor añadido a la hora de concienciar y sensibilizar a todos los alumnos del centro.

Por último, cabe destacar que el proyecto propuesto también actúa como supresor de barreras psicológicas reticentes a las energías renovables. Es decir, si una vez en funcionamiento, la escuela está satisfecha con el resultado, es probable que decida apostar por otras medidas renovables similares que de otra forma hubieran sido complicadas de plantear. En este sentido, el sistema mini eólico autónomo híbrido que
se propone, es del todo compatible con otras energías como, por ejemplo, la fotovoltaica, y esto ofrece una proyección de futuro muy amplia.
5. Análisis y cálculos de las necesidades eléctricas

5.1 Descripción de la instalación y uso

Como se ha dicho anteriormente se trata de de la escuela que acoge el ciclo superior de primaria del municipio, y que en un futuro próximo, en un par de años, se convertirá en el primer instituto del pueblo, ya que en la actualidad los alumnos de Tiana deben ir al instituto en Montgat. El edificio dispone de 8 aulas, aula de informática, aula de música, biblioteca, gimnasio y comedor. Además de los despachos de administración, dirección y profesorado. Acoge a un total de 194 alumnos, desde tercero a sexto de primaria, con dos líneas cada uno, lo que supone unos 24 alumnos por clase.

En la actualidad el edificio está sobredimensionado por el número de alumnos que la utilizan, ya que en el pasado acogía la totalidad del ciclo de primaria. La construcción es de los años 70, de aspecto y mantenimiento muy correcto, pero que denota su antigüedad en algunos detalles, como son el sistema de iluminación, que en su mayoría son fluorescentes de tubo sin pantallas difusoras, u otros pequeños detalles estéticos.

El uso habitual de las instalaciones es evidentemente para actividades lectivas en un horario de 7:45h a 18:00h, de lunes a viernes, durante los meses de Septiembre a Junio. Aparte de los fines de semana, el centro queda cerrado durante las vacaciones navideñas de 15 a 20 días, y durante el mes de Agosto.

Durante la última semana de Junio, el mes de Julio y la primera semana de Septiembre, el centro permanece abierto, para el cierre del curso saliente y preparación del siguiente curso por parte de los profesores, y además, como centro para el campus de verano, con la realización de actividades deportivas y lúdicas organizadas por el AMPA, durante el horario matinal de dichas semanas.

5.2 Análisis y estimación de las necesidades de energía eléctrica

5.2.1 Metodología

Para el cálculo y estimación de las necesidades eléctricas, será necesario analizar y clasificar el tiempo de uso o utilización, intensidad y potencia de los aparatos consumidores. Por todo esto estableceremos la siguiente clasificación que se reflejará en las tablas de cálculo del consumo a eléctrico mensual y anual de las instalaciones:

Pautas o de uso o utilización de los aparatos consumidores:
Se definen 3 pautas o patrones de uso bien diferenciadas: La de **periodo lectivo**, la de los **periodos no lectivos**, y los días o periodos en los que está el **centro cerrado**.

-Periodo lectivo: Es el que se entiende estrictamente como curso escolar, y se caracteriza por un calendario de actividades semanales programadas y repetitivas (clases y horarios), por lo que las semanas son idénticas las una de las otras a excepción de las jornadas festivas que tienen lugar entre semana. En lo que se refiere al consumo eléctrico, es el **periodo de mayor consumo** eléctrico y se caracteriza por tener lugar en una intensidad y franja horaria muy específica. A nivel de análisis, en este periodo se **contabilizarán los tiempos de consumo en semanas de 5 días**. Para la estimación del consumo mensual se utilizará el calendario escolar para contabilizar exactamente los días lectivos en un mes, y se “**dividirán en semanas de 5 días**” para obtener mayor precisión, especialmente en aquellos meses en los que las semanas sean incompletas por fiestas o condicionantes del calendario. De esta manera si en un mes se contabilizan 3,2 semanas, esto equivale exactamente a 3,2 x 5 = a 16 días lectivos. Gracias a los horarios de clases de cada curso es fácil tener una idea muy fiel de la cantidad de horas semanales de utilización de aulas, aparatos e instalaciones.

-periodo no lectivo: Es el que tiene lugar durante la última semana de Junio, todo el mes de Julio y la primera semana de Septiembre. El centro permanece abierto, para las actividades del profesorado ya sea para el cierre del curso saliente, como para la preparación del curso entrante. Además, las instalaciones son utilizadas para el campus de verano, con la realización de actividades deportivas y lúdicas organizadas por el AMPA, durante el horario matinal de dichas semanas. Dichas semanas no están tan pautadas como las del periodo lectivo pero pueden tratarse como las anteriores, es decir, **semanas de 5 días**, donde las actividades tienen lugar únicamente en horario de mañana. En este período también está activa la cocina, que proporciona la comida a un centro de día para ancianos del pueblo.

-Periodos centro cerrado: Estos periodos son aquellos en los que en el centro no se realiza ninguna actividad, permaneciendo completamente cerrado. Estos períodos son básicamente fines de semana y el mes de Agosto, pero también se han contabilizado todos aquellos días del calendario festivos, ya sea por fiestas nacionales, autonómicas o locales, puentes, etc. Por esta razón, este periodo esta **contabilizado en días**.

Tiempo de utilización:
Para cada periodo, como se trata de pautas de utilización distintas, se establecerán **las horas de uso de los aparatos consumidores para cada periodo**. Si unos aparatos consumidores no presentan consumo en ese periodo, ya no aparecerán en las listas de aparatos consumidores. Por ejemplo, el aula de música no aparecerá en el periodo no lectivo porque esa aula, como otras, permanece cerrada durante ese periodo.

Como parte de los aparatos tienen distinta utilización según la estación del año, establecemos la posibilidad por defecto de introducir el **consumo de verano** y el **consumo en invierno**. Por ejemplo, las bombas de circulación del circuito de calefacción funcionan solamente durante los meses de invierno. Para el cálculo se consideran meses de invierno: Noviembre, Diciembre, Enero, Febrero, Marzo y Abril. Y de verano: Mayo, Junio, Julio, Agosto, Septiembre y Octubre.

En la casilla de horas de utilización se pondrá la **cantidad máxima de horas/semana u horas/día**, que ese aparato o sistema consumidor, puede funcionar durante ese...
periodo de tiempo. Esa cantidad es bastante fácil de calcular por lo pautadas que son las actividades escolares. Por ejemplo, los ordenadores del aula de música, tendrán un máximo de horas de uso exactamente igual al número de horas de música que tienen todos los cursos en una semana y que se determina gracias a los horarios escolares de cada curso.

Intensidad de utilización:
Por otro lado, es necesario utilizar un factor corrector, que en el proyecto se denominará como “intensidad de uso”. Este factor intenta modular o rebajar los cálculos teóricos máximos, para aproximarlos al consumo real, por distintos motivos particulares.

Por ejemplo, en el anterior punto hemos dicho que tendríamos en cuenta el número máximo de horas de consumo de los ordenadores del aula de música, pero dependiendo de las costumbres del profesor o del temario, estos se utilizan solamente durante una parte del curso o a un tiempo parcial. (Los ordenadores del aula de música disponen de un teclado tipo piano cada uno de ellos y un software específico). Por este motivo se inserta esta casilla correctora. Otro caso sería por ejemplo las neveras y congeladores, que en principio tienen un mayor consumo en verano que en invierno, estando enchufados exactamente el mismo número de horas. O la utilización menor de la iluminación artificial en verano o la intensidad de consumo del servidor, que no es el mismo durante las horas de clase, de plena actividad, que el resto del día y noche, que está en reposo, etc.

Este factor de intensidad se aplica como un porcentaje sobre el total de horas máximo.

Potencia de los aparatos consumidores:
En general, se ha tomado la potencia del aparato según las especificaciones del fabricante, pero en casos en los que no se han podido localizar las referencias exactas, se ha utilizado la potencia promedio de los aparatos del mismo tipo.

5.2.2 Consumos estimados por periodo
A continuación se presentan las tres tablas de aparatos consumidores según cada periodo, con sus potencias, las horas máximas de utilización ya sea verano o invierno, y los índices de intensidad de uso. Todo ello da como resultado un consumo de Wh/semana o Wh/día, según el periodo, tal y como se ha expuesto en la metodología.

5.2.2.1 Necesidades en periodo lectivo
Este es el periodo de mayor importancia por intensidad de consumo, como de extensión en el tiempo, y por tanto, es la tabla donde se pueden encontrar la totalidad de los aparatos consumidores de electricidad.

<table>
<thead>
<tr>
<th>Aparatos consumidores de electricidad</th>
<th>Potencia (W)</th>
<th>Horas/sem de uso verano</th>
<th>Horas/sem de uso invierno</th>
<th>Intensidad verano %</th>
<th>Intensidad invierno %</th>
<th>Consumo verano Wh/sem</th>
<th>Consumo invierno Wh/sem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevera 1 - cocina</td>
<td>240</td>
<td>120</td>
<td>120</td>
<td>50%</td>
<td>40%</td>
<td>14.400</td>
<td>11.520</td>
</tr>
<tr>
<td>Nevera 2 - cocina</td>
<td>320</td>
<td>120</td>
<td>120</td>
<td>45%</td>
<td>35%</td>
<td>17.280</td>
<td>13.440</td>
</tr>
<tr>
<td>Congelador 1 - cocina</td>
<td>240</td>
<td>120</td>
<td>30</td>
<td>50%</td>
<td>40%</td>
<td>14.400</td>
<td>11.520</td>
</tr>
</tbody>
</table>
Proyecto Final de Master
Documento 1: Memoria descriptiva

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Consumo Horario</th>
<th>Porcentaje de uso</th>
<th>Cantidad estimada</th>
<th>Costo estimado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congelador 2 - cocina</td>
<td>240</td>
<td>120</td>
<td>30</td>
<td>50%</td>
<td>14.400</td>
</tr>
<tr>
<td>Lavavajillas</td>
<td>7.200</td>
<td>10</td>
<td>10</td>
<td>50%</td>
<td>36.000</td>
</tr>
<tr>
<td>Campana extractora</td>
<td>1.400</td>
<td>20</td>
<td>20</td>
<td>70%</td>
<td>19.600</td>
</tr>
<tr>
<td>Mesa calentadora</td>
<td>2.000</td>
<td>5</td>
<td>5</td>
<td>10%</td>
<td>1.000</td>
</tr>
<tr>
<td>Pelador de patatas</td>
<td>440</td>
<td>3</td>
<td>3</td>
<td>60%</td>
<td>792</td>
</tr>
<tr>
<td>Trituradora</td>
<td>200</td>
<td>3</td>
<td>3</td>
<td>60%</td>
<td>360</td>
</tr>
<tr>
<td>Ventilador</td>
<td>65</td>
<td>25</td>
<td>25</td>
<td>80%</td>
<td>1.300</td>
</tr>
<tr>
<td>2 Mata moscas y mosquitos</td>
<td>60</td>
<td>120</td>
<td>120</td>
<td>100%</td>
<td>7.200</td>
</tr>
<tr>
<td>Oficina y despachos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microondas</td>
<td>900</td>
<td>2</td>
<td>2</td>
<td>20%</td>
<td>360</td>
</tr>
<tr>
<td>Fotocopiadora 1</td>
<td>506</td>
<td>40</td>
<td>40</td>
<td>10%</td>
<td>2.024</td>
</tr>
<tr>
<td>Fotocopiadora 2</td>
<td>1.840</td>
<td>40</td>
<td>40</td>
<td>10%</td>
<td>7.360</td>
</tr>
<tr>
<td>Television + video</td>
<td>120</td>
<td>12</td>
<td>12</td>
<td>15%</td>
<td>216</td>
</tr>
<tr>
<td>Proyector sala de música</td>
<td>150</td>
<td>16</td>
<td>16</td>
<td>10%</td>
<td>240</td>
</tr>
<tr>
<td>3 Teléfonos inalámbricos</td>
<td>6</td>
<td>120</td>
<td>120</td>
<td>100%</td>
<td>720</td>
</tr>
<tr>
<td>4 pequeñas radios</td>
<td>12</td>
<td>40</td>
<td>40</td>
<td>10%</td>
<td>48</td>
</tr>
<tr>
<td>Bombas de impulsión sistema de calefacción</td>
<td>130</td>
<td>120</td>
<td>120</td>
<td>100%</td>
<td>15.600</td>
</tr>
<tr>
<td>Sistema informático</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pizarra interactiva+ proyector+ ordenador aula 5a</td>
<td>410</td>
<td>22</td>
<td>22</td>
<td>40%</td>
<td>3.608</td>
</tr>
<tr>
<td>Pizarra interactiva+ proyector+ ordenador aula 5b</td>
<td>410</td>
<td>22</td>
<td>22</td>
<td>40%</td>
<td>3.608</td>
</tr>
<tr>
<td>Pizarra interactiva+ proyector+ ordenador aula 6a</td>
<td>410</td>
<td>22</td>
<td>22</td>
<td>40%</td>
<td>3.608</td>
</tr>
<tr>
<td>Pizarra interactiva+ proyector+ ordenador aula 6b</td>
<td>410</td>
<td>22</td>
<td>22</td>
<td>40%</td>
<td>3.608</td>
</tr>
<tr>
<td>2 Ordenadores sala profesores</td>
<td>440</td>
<td>40</td>
<td>40</td>
<td>40%</td>
<td>7.040</td>
</tr>
<tr>
<td>Servidor</td>
<td>220</td>
<td>120</td>
<td>120</td>
<td>90%</td>
<td>23.760</td>
</tr>
<tr>
<td>Racks de red</td>
<td>250</td>
<td>120</td>
<td>120</td>
<td>90%</td>
<td>27.000</td>
</tr>
<tr>
<td>Router</td>
<td>12</td>
<td>120</td>
<td>120</td>
<td>90%</td>
<td>1.296</td>
</tr>
<tr>
<td>Ordenador sala dirección</td>
<td>220</td>
<td>40</td>
<td>40</td>
<td>12%</td>
<td>1.056</td>
</tr>
<tr>
<td>24 Ordenadores aula informática</td>
<td>5.280</td>
<td>14</td>
<td>14</td>
<td>90%</td>
<td>66.528</td>
</tr>
<tr>
<td>6 Ordenadores aula de música + teclado – uso 50%</td>
<td>1.800</td>
<td>16</td>
<td>16</td>
<td>30%</td>
<td>8.640</td>
</tr>
<tr>
<td>10 Ordenadores aula de inglés – uso 50%</td>
<td>2.200</td>
<td>12</td>
<td>12</td>
<td>30%</td>
<td>7.920</td>
</tr>
<tr>
<td>1 Ordenador biblioteca</td>
<td>220</td>
<td>40</td>
<td>40</td>
<td>20%</td>
<td>1.760</td>
</tr>
<tr>
<td>Subtotal sistema informático</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>159.432</td>
</tr>
<tr>
<td>Subtotal de necesidades aparatos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>297.132</td>
</tr>
<tr>
<td>Iluminación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F = Fluorescente de 58W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasillo 1 – 14 F</td>
<td>812</td>
<td>50</td>
<td>50</td>
<td>70%</td>
<td>28.420</td>
</tr>
<tr>
<td>Pasillo 2 – 12 F</td>
<td>696</td>
<td>50</td>
<td>50</td>
<td>70%</td>
<td>24.360</td>
</tr>
<tr>
<td>Sala de profesores – 6 F</td>
<td>348</td>
<td>50</td>
<td>50</td>
<td>80%</td>
<td>13.920</td>
</tr>
<tr>
<td>Sala de dirección – 3 F</td>
<td>174</td>
<td>40</td>
<td>40</td>
<td>15%</td>
<td>1.044</td>
</tr>
</tbody>
</table>
5.2.2.2 Necesidades en periodo de actividades no lectivas

A continuación presentamos de nuevo una tabla resumen de los consumos que tienen lugar en una semana patrón en este periodo. Se han eliminado de la tabla todos aquellos aparatos que no presentan consumo en este periodo:

<table>
<thead>
<tr>
<th>Aparatos Consumidores de electricidad</th>
<th>Potencia (W)</th>
<th>Horas/sem de uso verano</th>
<th>Horas/sem de uso invierno</th>
<th>Intensidad verano %</th>
<th>Intensidad invierno %</th>
<th>Consumo verano Wh/sem</th>
<th>Consumo invierno Wh/sem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevera 1 - cocina</td>
<td>240</td>
<td>120</td>
<td>120</td>
<td>50%</td>
<td>40%</td>
<td>14.400</td>
<td>11.520</td>
</tr>
<tr>
<td>Nevera 2 -cocina</td>
<td>320</td>
<td>120</td>
<td>120</td>
<td>45%</td>
<td>35%</td>
<td>17.280</td>
<td>13.440</td>
</tr>
<tr>
<td>Congelador 1 - cocina</td>
<td>240</td>
<td>120</td>
<td>30</td>
<td>50%</td>
<td>40%</td>
<td>14.400</td>
<td>11.520</td>
</tr>
<tr>
<td>Congelador 2 - cocina</td>
<td>240</td>
<td>120</td>
<td>30</td>
<td>50%</td>
<td>40%</td>
<td>14.400</td>
<td>11.520</td>
</tr>
<tr>
<td>Campana extractora</td>
<td>1,200</td>
<td>20</td>
<td>20</td>
<td>70%</td>
<td>70%</td>
<td>16.800</td>
<td>16.800</td>
</tr>
<tr>
<td>Pelador de patatas</td>
<td>440</td>
<td>3</td>
<td>3</td>
<td>60%</td>
<td>60%</td>
<td>792</td>
<td>792</td>
</tr>
<tr>
<td>Trituradora</td>
<td>200</td>
<td>3</td>
<td>3</td>
<td>60%</td>
<td>60%</td>
<td>360</td>
<td>360</td>
</tr>
<tr>
<td>Ventilador</td>
<td>65</td>
<td>25</td>
<td>25</td>
<td>80%</td>
<td>20%</td>
<td>1.300</td>
<td>325</td>
</tr>
<tr>
<td>2 Mata moscas y mosquitos</td>
<td>60</td>
<td>120</td>
<td>120</td>
<td>100%</td>
<td>100%</td>
<td>7.200</td>
<td>7.200</td>
</tr>
<tr>
<td>Microondas sala profesores</td>
<td>900</td>
<td>2</td>
<td>2</td>
<td>20%</td>
<td>80%</td>
<td>360</td>
<td>1.440</td>
</tr>
<tr>
<td>Fotocopiadora 1</td>
<td>506</td>
<td>30</td>
<td>30</td>
<td>5%</td>
<td>5%</td>
<td>759</td>
<td>759</td>
</tr>
</tbody>
</table>
Tabla 2: Necesidades eléctricas en periodo no lectivo

5.2.2.3 Necesidades en periodo del centro cerrado

Se adjunta la tabla de necesidades energéticas de este periodo, pero esta vez el patrón de consumo es diario, por lo que hablamos de consumos en Wh/día:

<table>
<thead>
<tr>
<th>Aparatos Consumidores de electricidad</th>
<th>Consumo verano Wh/día</th>
<th>Consumo invierno Wh/día</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevera 1 - cocina</td>
<td>1.728</td>
<td>1.152</td>
</tr>
<tr>
<td>Nevera 2 - cocina</td>
<td>2.304</td>
<td>1.152</td>
</tr>
<tr>
<td>Congelador 1 - cocina</td>
<td>1.728</td>
<td>1.152</td>
</tr>
<tr>
<td>Congelador 2 - cocina</td>
<td>1.728</td>
<td>576</td>
</tr>
<tr>
<td>3 Teléfonos inalámbricos</td>
<td>1.44</td>
<td>144</td>
</tr>
<tr>
<td>Bombas de impulsión sistema de calefacción</td>
<td>3.120</td>
<td></td>
</tr>
</tbody>
</table>
Sistema informático

Servidor	220	24	24	70%	70%	3.696	3.696
Racks de red	250	24	24	70%	70%	4.200	4.200
Router	12	24	24	70%	70%	202	202

Subtotal sistema informático | 8.098 | 8.098 |

Iluminación

F= Fluorescente de 58W

| Pasillo 1 – 14 F | 812 | 0 | 0 | 0% | 0% | 0 | 0 |

Subtotal de necesidades iluminación | 0 | 0 |

TOTAL CONSUMO DIARIO PERIODO CENTRO CERRADO Wh | 15.730 | 15.394 |

Tabla 3: Necesidades eléctricas en el periodo de centro cerrado

5.2.3 Necesidades totales anuales

En la siguiente tabla se contabiliza la totalidad de consumo eléctrico estimado mensual y el total anual en función del calendario de actividades de la instalación (curso escolar).

Para el cálculo de las necesidades anuales será necesario plasmar el calendario mensual de actividades de la instalación, en forma de semanas lectivas, semanas del periodo no lectivo y días festivos de cada mes.

<table>
<thead>
<tr>
<th>AÑO 2011</th>
<th>Semanas periodo lectivo</th>
<th>Semanas periodo no lectivo</th>
<th>Días centro cerrado</th>
<th>Necesidades periodo lectivo Wh</th>
<th>Necesidades periodo no lectivo Wh</th>
<th>Necesidades festivos Wh</th>
<th>Necesidades totales mensuales Wh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>necesidades verano tablas 5.2.x</td>
<td>necesidades invierno tablas 5.2.x</td>
<td>456,1 kWh/sem</td>
<td>176,9 kWh/sem</td>
<td>15,7 kWh/sem</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>*Enero</td>
<td>3,2</td>
<td>0</td>
<td>15</td>
<td>1.628.528</td>
<td>0</td>
<td>230.904</td>
<td>1.859.432</td>
</tr>
<tr>
<td>*Febrero</td>
<td>3,8</td>
<td>0</td>
<td>9</td>
<td>1.933.877</td>
<td>0</td>
<td>138.542</td>
<td>2.072.419</td>
</tr>
<tr>
<td>*Marzo</td>
<td>3,6</td>
<td>1</td>
<td>8</td>
<td>1.832.094</td>
<td>186.125</td>
<td>123.149</td>
<td>2.141.368</td>
</tr>
<tr>
<td>*Abril</td>
<td>3</td>
<td>0</td>
<td>15</td>
<td>1.526.745</td>
<td>0</td>
<td>230.904</td>
<td>1.757.649</td>
</tr>
<tr>
<td>Mayo</td>
<td>4,4</td>
<td>0</td>
<td>9</td>
<td>2.007.088</td>
<td>0</td>
<td>141.566</td>
<td>2.148.655</td>
</tr>
<tr>
<td>Junio</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>1.368.469</td>
<td>176.984</td>
<td>157.296</td>
<td>1.702.749</td>
</tr>
<tr>
<td>Julio</td>
<td>0</td>
<td>4</td>
<td>11</td>
<td>0</td>
<td>707.937</td>
<td>173.026</td>
<td>880.962</td>
</tr>
<tr>
<td>Agosto</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>236.592</td>
<td>236.592</td>
</tr>
<tr>
<td>Septiembre</td>
<td>4</td>
<td>0,4</td>
<td>8</td>
<td>1.824.626</td>
<td>70.794</td>
<td>125.837</td>
<td>2.021.256</td>
</tr>
<tr>
<td>Octubre</td>
<td>3,8</td>
<td>0</td>
<td>12</td>
<td>1.733.394</td>
<td>0</td>
<td>188.755</td>
<td>1.922.150</td>
</tr>
<tr>
<td>*Noviembre</td>
<td>4,2</td>
<td>0</td>
<td>9</td>
<td>2.137.443</td>
<td>0</td>
<td>138.542</td>
<td>2.275.985</td>
</tr>
<tr>
<td>*Diciembre</td>
<td>2,4</td>
<td>0</td>
<td>19</td>
<td>1.221.396</td>
<td>0</td>
<td>292.478</td>
<td>1.513.874</td>
</tr>
<tr>
<td>Subtotales</td>
<td>35,4</td>
<td>6,4</td>
<td>156</td>
<td>17.213.660</td>
<td>1.141.840</td>
<td>2.177.592</td>
<td>20.533.092</td>
</tr>
</tbody>
</table>

| 365 | 20.533.092 |
| TOTAL CONSUMO ANUAL kWh | 20.533 |

Tabla 4: Resumen mensual y anual de necesidades eléctricas
Para ver de forma gráfica la evolución de las necesidades energéticas durante el año presentamos la siguiente gráfica mensual:

Necesidades energéticas eléctricas mensuales

Gráfica 1: Necesidades eléctricas mensuales

5.2.4 **Resumen comparativo de las instalaciones de mayor peso en el consumo energético**

Utilizando esta metodología de cálculo, pero de forma individualizada para cada aparato, es posible obtener el consumo mensual y anual de cada uno de ellos, y de esta manera sopesar su contribución al consumo total.

Esta tabla es de especial interés para posibles planes o actuaciones encaminadas hacia una mejor eficiencia energética, determinando aquellos consumos más elevados sobre los cuales cualquier pequeña actuación puede tener grandes repercusiones en el consumo total.

TABLA CONSUMOS POR APARATOS 2011

<table>
<thead>
<tr>
<th>Aparatos</th>
<th>consumo verano periodo lectivo kWh/sem</th>
<th>consumo invierno periodo lectivo kWh/sem</th>
<th>consumo verano periodo no lectivo kWh/sem</th>
<th>consumo invierno periodo no lectivo kWh/sem</th>
<th>consumo verano periodo cerrado kWh/día</th>
<th>consumo invierno periodo cerrado kWh/día</th>
<th>TOTAL kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nevera 2 - cocina</td>
<td>17.280</td>
<td>13.440</td>
<td>17.280</td>
<td>13.440</td>
<td>2.304</td>
<td>1.152</td>
<td>913.920</td>
</tr>
<tr>
<td>Congelador 2 - cocina</td>
<td>14.400</td>
<td>11.520</td>
<td>14.400</td>
<td>11.520</td>
<td>1.728</td>
<td>576</td>
<td>724.032</td>
</tr>
<tr>
<td>Lavavajillas</td>
<td>36.000</td>
<td>36.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.274.400</td>
</tr>
<tr>
<td>Campana extractora</td>
<td>19.600</td>
<td>19.600</td>
<td>16.800</td>
<td>16.800</td>
<td>0</td>
<td>0</td>
<td>801.360</td>
</tr>
<tr>
<td>Descripción</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>C6</td>
<td>Total</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>Mesa calentadora</td>
<td>1.000</td>
<td>2.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>65.700</td>
</tr>
<tr>
<td>Pelador de patatas</td>
<td>792</td>
<td>792</td>
<td>792</td>
<td>792</td>
<td>0</td>
<td>0</td>
<td>33.106</td>
</tr>
<tr>
<td>Trituradora</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>0</td>
<td>0</td>
<td>15.048</td>
</tr>
<tr>
<td>Ventilador</td>
<td>1.300</td>
<td>325</td>
<td>1.300</td>
<td>325</td>
<td>0</td>
<td>0</td>
<td>33.670</td>
</tr>
<tr>
<td>2 Mata moscas y mosquitos</td>
<td>7.200</td>
<td>7.200</td>
<td>7.200</td>
<td>7.200</td>
<td>0</td>
<td>0</td>
<td>300.960</td>
</tr>
<tr>
<td>Subtotal de aparatos de cocina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.696.660</td>
</tr>
<tr>
<td>Microondas</td>
<td>360</td>
<td>1.440</td>
<td>360</td>
<td>1.440</td>
<td>0</td>
<td>0</td>
<td>37.944</td>
</tr>
<tr>
<td>Fotocopiadora 1</td>
<td>2.024</td>
<td>2.024</td>
<td>759</td>
<td>759</td>
<td>0</td>
<td>0</td>
<td>76.507</td>
</tr>
<tr>
<td>Fotocopiadora 2</td>
<td>7.360</td>
<td>7.360</td>
<td>2.760</td>
<td>2.760</td>
<td>0</td>
<td>0</td>
<td>278.208</td>
</tr>
<tr>
<td>Televisor + vídeo</td>
<td>216</td>
<td>216</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7.646</td>
</tr>
<tr>
<td>Proyector sala de música</td>
<td>240</td>
<td>240</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8.496</td>
</tr>
<tr>
<td>3 Teléfonos inalámbricos</td>
<td>720</td>
<td>720</td>
<td>720</td>
<td>720</td>
<td>144</td>
<td>144</td>
<td>52.560</td>
</tr>
<tr>
<td>4 pequeñas radios</td>
<td>48</td>
<td>96</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>2.715</td>
</tr>
<tr>
<td>Bombas de impulión sistema de calefacción</td>
<td>0</td>
<td>15.600</td>
<td>0</td>
<td>15.600</td>
<td>0</td>
<td>3.120</td>
<td>564.720</td>
</tr>
<tr>
<td>Subtotal de aparatos de cocina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.028.796</td>
</tr>
<tr>
<td>Pizarra interactiva+ proyector ordenador aula 5ª</td>
<td>3.608</td>
<td>3.608</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>127.723</td>
</tr>
<tr>
<td>Pizarra interactiva+ proyector ordenador aula 5b</td>
<td>3.608</td>
<td>3.608</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>127.723</td>
</tr>
<tr>
<td>Pizarra interactiva+ proyector ordenador aula 6ª</td>
<td>3.608</td>
<td>3.608</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>127.723</td>
</tr>
<tr>
<td>Pizarra interactiva+ proyector ordenador aula 6b</td>
<td>3.608</td>
<td>3.608</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>127.723</td>
</tr>
<tr>
<td>2 Ordenadores sala profesores</td>
<td>7.040</td>
<td>7.040</td>
<td>5.280</td>
<td>5.280</td>
<td>0</td>
<td>0</td>
<td>283.008</td>
</tr>
<tr>
<td>Servidor</td>
<td>23.760</td>
<td>23.760</td>
<td>21.120</td>
<td>21.120</td>
<td>3.696</td>
<td>6.803.166</td>
<td></td>
</tr>
<tr>
<td>Racks de red</td>
<td>27.000</td>
<td>27.000</td>
<td>24.000</td>
<td>24.000</td>
<td>4.200</td>
<td>2.355.091</td>
<td></td>
</tr>
<tr>
<td>Router</td>
<td>1.296</td>
<td>1.296</td>
<td>1.152</td>
<td>1.152</td>
<td>202</td>
<td>202</td>
<td>78.451</td>
</tr>
<tr>
<td>Ordenador sala dirección</td>
<td>1.056</td>
<td>1.760</td>
<td>330</td>
<td>330</td>
<td>0</td>
<td>0</td>
<td>53.715</td>
</tr>
<tr>
<td>24 Ordenadores aula informática</td>
<td>66.528</td>
<td>66.528</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.355.091</td>
</tr>
<tr>
<td>6 Ordenadores aula de música teclado uso 50%</td>
<td>8.640</td>
<td>8.640</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>305.856</td>
</tr>
<tr>
<td>10 Ordenadores aula inglés uso 50%</td>
<td>7.920</td>
<td>7.920</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>280.368</td>
</tr>
<tr>
<td>1 Ordenador biblioteca</td>
<td>1.760</td>
<td>1.760</td>
<td>330</td>
<td>330</td>
<td>0</td>
<td>0</td>
<td>64.416</td>
</tr>
<tr>
<td>Subtotal de sistema informático</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.004.470</td>
</tr>
<tr>
<td>Subtotal de consumo aparatos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.729.926</td>
</tr>
<tr>
<td>Iluminación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iluminación</td>
<td>159.024</td>
<td>206.306</td>
<td>33.234</td>
<td>39.150</td>
<td>0</td>
<td>0</td>
<td>6.803.166</td>
</tr>
<tr>
<td>TOTAL CONSUMO ANUAL Wh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.533.092</td>
</tr>
</tbody>
</table>

Tabla 5: Resumen anual de consumos por aparatos y sistemas consumidores
En el gráfico siguiente presentamos los aparatos consumidores agregados por tipología o uso:

Gráfica 3: Porcentaje sobre el total de cada uno de los sistemas consumidores

5.3 Análisis de los consumos eléctricos reales facturados

Se dispone de casi la totalidad de las facturas eléctricas del centro en los tres últimos años. Lo que en un principio debería ser una guía fiable para la corroboración de los
cálculos teóricos de necesidades energéticas anteriormente desarrollados, se convierte en otro rompecabezas debido a la aleatoriedad de las lecturas, las lecturas estimadas y las facturaciones pospuestas y agrupadas.

A continuación presentamos la tabla de consumos eléctricos cedida por el ayuntamiento:

<table>
<thead>
<tr>
<th>Fecha Facturación</th>
<th>Fecha Inicio</th>
<th>Fecha Final</th>
<th>Dias Facturados</th>
<th>Mes</th>
<th>Año Referencia</th>
<th>Consumo Total kWh</th>
<th>Importe Total €</th>
</tr>
</thead>
<tbody>
<tr>
<td>19/10/2010</td>
<td>31/08/2010</td>
<td>01/10/2010</td>
<td>31</td>
<td>9</td>
<td>2010</td>
<td>3,080</td>
<td>503,45</td>
</tr>
<tr>
<td>21/09/2010</td>
<td>31/07/2010</td>
<td>01/10/2010</td>
<td>31</td>
<td>8</td>
<td>2010</td>
<td>0</td>
<td>61,63</td>
</tr>
<tr>
<td>19/07/2010</td>
<td>05/07/2010</td>
<td>01/10/2010</td>
<td>26</td>
<td>7</td>
<td>2010</td>
<td>0</td>
<td>51,68</td>
</tr>
<tr>
<td>30/06/2010</td>
<td>03/06/2010</td>
<td>05/07/2010</td>
<td>32</td>
<td>6</td>
<td>2010</td>
<td>0</td>
<td>64,97</td>
</tr>
<tr>
<td>01/07/2010</td>
<td>21/04/2010</td>
<td>03/06/2010</td>
<td>43</td>
<td>5</td>
<td>2010</td>
<td>10,017</td>
<td>1.506,25</td>
</tr>
<tr>
<td>01/07/2010</td>
<td>31/03/2010</td>
<td>20/04/2010</td>
<td>20</td>
<td>4</td>
<td>2010</td>
<td>1,314</td>
<td>259,96</td>
</tr>
<tr>
<td>01/07/2010</td>
<td>16/12/2009</td>
<td>31/03/2010</td>
<td>105</td>
<td>11-ene</td>
<td>2010</td>
<td>6.901</td>
<td>1.317,78</td>
</tr>
<tr>
<td>04/01/2010</td>
<td>19/10/2009</td>
<td>16/12/2009</td>
<td>58</td>
<td>09-nov</td>
<td>2009</td>
<td>0</td>
<td>90,55</td>
</tr>
<tr>
<td>02/07/2009</td>
<td>01/07/2009</td>
<td>18/08/2009</td>
<td>62</td>
<td>05-jul</td>
<td>2009</td>
<td>2,294</td>
<td>367,08</td>
</tr>
<tr>
<td>21/05/2009</td>
<td>20/04/2009</td>
<td>16/06/2009</td>
<td>57</td>
<td>03-may</td>
<td>2009</td>
<td>2,263</td>
<td>389,47</td>
</tr>
<tr>
<td>02/03/2009</td>
<td>16/02/2009</td>
<td>20/04/2009</td>
<td>63</td>
<td>01-mar</td>
<td>2009</td>
<td>2,440</td>
<td>413,17</td>
</tr>
<tr>
<td>02/03/2009</td>
<td>09/12/2008</td>
<td>16/02/2009</td>
<td>69</td>
<td>11-ene</td>
<td>2009</td>
<td>2,519</td>
<td>439,36</td>
</tr>
<tr>
<td>02/01/2009</td>
<td>15/10/2009</td>
<td>09/12/2008</td>
<td>55</td>
<td>09-nov</td>
<td>2008</td>
<td>2,552</td>
<td>477,63</td>
</tr>
<tr>
<td>03/11/2008</td>
<td>13/08/2008</td>
<td>15/10/2008</td>
<td>63</td>
<td>07-sep</td>
<td>2008</td>
<td>1,780</td>
<td>362,48</td>
</tr>
<tr>
<td>02/09/2008</td>
<td>16/06/2008</td>
<td>13/08/2008</td>
<td>58</td>
<td>05-jul</td>
<td>2008</td>
<td>1,588</td>
<td>330,29</td>
</tr>
<tr>
<td>01/07/2008</td>
<td>16/04/2008</td>
<td>16/06/2008</td>
<td>61</td>
<td>03-may</td>
<td>2008</td>
<td>2,484</td>
<td>444,35</td>
</tr>
<tr>
<td>02/05/2008</td>
<td>18/02/2008</td>
<td>16/04/2008</td>
<td>58</td>
<td>01-mar</td>
<td>2008</td>
<td>2,366</td>
<td>427,85</td>
</tr>
<tr>
<td>03/03/2008</td>
<td>13/12/2007</td>
<td>18/02/2008</td>
<td>67</td>
<td>11-ene</td>
<td>2008</td>
<td>2,677</td>
<td>470,86</td>
</tr>
</tbody>
</table>

Tabla 6: Listado de facturas eléctricas correspondiente a la escuela Lola Anglada de Tiana

Las lecturas obtenidas tal cual se desprenden de la facturación, se plasman de forma más visual en la siguiente tabla:

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Consumo Total kWh</th>
<th>Importe Total €</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>2.677</td>
<td>1.314</td>
</tr>
<tr>
<td>2009</td>
<td>2.519</td>
<td>10.017</td>
</tr>
<tr>
<td>2010</td>
<td>6.901</td>
<td>3.080</td>
</tr>
</tbody>
</table>

Tabla 7: Representación mensual de los consumos eléctricos de la tabla 6

Al intentar transformar la anterior tabla, en una tabla mensual, nos encontramos con dos problemas:

1) **La adaptación** de la **facturación bimensual**, a unos **consumos mensuales** acaba siendo una **aproximación**, ya que al trasladar equitativamente las lecturas a forma mensual, se produce una distorsión de la realidad que se acentúa en aquellos meses en los que el consumo baja súbitamente, como son el mes de Agosto, que distorsiona las estimaciones del mes de Julio y
Septiembre, o el mes de Diciembre, con dos semanas de cierre que implica también una distorsión en Noviembre y Enero.

2) Por otro lado, si pensamos que lo que nos sirve de referencia es el consumo anual, en la tabla anterior nos encontramos con algo paradójico: El consumo presenta un comportamiento estable y pautable desde el 2008 hasta Octubre del 2009, pero a partir de esa fecha, además de haber problemas de falta de lecturas, los consumos se duplican. Este efecto es posible detectarlo mediante la suma de los consumos anuales, o mediante el consumo kWh/día que se desprende de cada factura, pasando en los meses de actividad de unos 39 kWh/día a 78 kWh/día. Ver tablas adjuntas:

Tabla para el cálculo del consumo de kWh/día consumidos: (en los meses sin lectura cogemos la suma del consumo facturado y lo dividimos entre los días del intervalo)

<table>
<thead>
<tr>
<th>Fecha Inicio</th>
<th>Fecha Final</th>
<th>días Facturados</th>
<th>mes</th>
<th>Consumo Total</th>
<th>kWh/día directo</th>
<th>kWh/día promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>31/08/2010</td>
<td>01/10/2010</td>
<td>31</td>
<td>9</td>
<td>3080</td>
<td>99,3548</td>
<td>78,7486</td>
</tr>
<tr>
<td>31/07/2010</td>
<td>31/08/2010</td>
<td>31</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>05/07/2010</td>
<td>31/07/2010</td>
<td>26</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>03/06/2010</td>
<td>05/06/2010</td>
<td>32</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>21/04/2010</td>
<td>03/06/2010</td>
<td>43</td>
<td>5</td>
<td>10017</td>
<td>232,953</td>
<td></td>
</tr>
<tr>
<td>31/03/2010</td>
<td>20/04/2010</td>
<td>20</td>
<td>4</td>
<td>1314</td>
<td>65,7</td>
<td></td>
</tr>
<tr>
<td>16/12/2009</td>
<td>31/03/2010</td>
<td>105</td>
<td>11-ene</td>
<td>6901</td>
<td>65,7238</td>
<td></td>
</tr>
<tr>
<td>19/10/2009</td>
<td>16/12/2009</td>
<td>58</td>
<td>09-nov</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>18/08/2009</td>
<td>19/10/2009</td>
<td>62</td>
<td>07-sep</td>
<td>2004</td>
<td>32,3226</td>
<td></td>
</tr>
<tr>
<td>01/07/2009</td>
<td>18/08/2009</td>
<td>62</td>
<td>05-jul</td>
<td>2294</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>20/04/2009</td>
<td>16/06/2009</td>
<td>57</td>
<td>03-may</td>
<td>2263</td>
<td>39,7018</td>
<td></td>
</tr>
<tr>
<td>16/02/2009</td>
<td>20/04/2009</td>
<td>63</td>
<td>01-mar</td>
<td>2440</td>
<td>38,7302</td>
<td></td>
</tr>
<tr>
<td>09/12/2008</td>
<td>16/02/2009</td>
<td>69</td>
<td>11-ene</td>
<td>2519</td>
<td>36,5072</td>
<td></td>
</tr>
<tr>
<td>15/10/2008</td>
<td>09/12/2008</td>
<td>55</td>
<td>09-nov</td>
<td>2552</td>
<td>46,4</td>
<td></td>
</tr>
<tr>
<td>13/08/2008</td>
<td>15/10/2008</td>
<td>63</td>
<td>07-sep</td>
<td>1780</td>
<td>28,254</td>
<td></td>
</tr>
<tr>
<td>16/06/2008</td>
<td>13/08/2008</td>
<td>58</td>
<td>05-jul</td>
<td>1588</td>
<td>27,3793</td>
<td></td>
</tr>
<tr>
<td>16/04/2008</td>
<td>16/06/2008</td>
<td>61</td>
<td>03-may</td>
<td>2484</td>
<td>40,7213</td>
<td></td>
</tr>
<tr>
<td>18/02/2008</td>
<td>16/04/2008</td>
<td>58</td>
<td>01-mar</td>
<td>2366</td>
<td>40,7931</td>
<td></td>
</tr>
<tr>
<td>13/12/2007</td>
<td>18/02/2008</td>
<td>67</td>
<td>11-ene</td>
<td>2677</td>
<td>39,9552</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 8: Análisis de facturas eléctricas correspondiente a la escuela Lola Anglada de Tiana

Tabla del consumo mensual, a partir del consumo diario del periodo y los días de cada período:

<table>
<thead>
<tr>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dias</td>
<td>Mes</td>
<td>kWh/día</td>
</tr>
<tr>
<td>31</td>
<td>Enero</td>
<td>39,96</td>
</tr>
</tbody>
</table>
Como es posible comprobar, es a partir del tramo de Octubre del 2009 que empieza la falta de lecturas y el aumento incomprensible del consumo total. Desde el ayuntamiento aseguran que los datos suministrados son correctos, pero no se recibe ninguna otra explicación.

Tras consultar con la dirección del centro, parece ser que después del verano de 2009 se procedió a la instalación de un servidor, 4 racks de conexión, más el cableado de toda la escuela, de forma que todos los ordenadores tienen conexión a Internet a través de la red interna. Este hecho supuso el uso intensivo de los ordenadores que ya tenía la escuela, la mayoría de ellos sin conexión a Internet hasta ese momento. Además supuso la instalación de las pizarras interactivas en 4 aulas, etc.

No está confirmado, pero parece ser que el aumento el consumo habría obligado a solicitar un aumento de potencia, aspecto que se puede apreciar en el aumento sensible de los mínimos en el 2010 (de 45€ a 61€ por 30días imp. Inclu.), y podría explicar el primer salto de lectura en Noviembre de 2009.

Nuestro cálculo teórico de los consumos del sistema informático, corroboran esta teoría, además de que la escuela no ha sufrido ninguna otra novedad, cambio o incorporación de otro u otros aparatos consumidores. Siendo bastante simples, si al consumo de 13.500 kWh anuales facturados en 2008, sumamos los 7.000 kWh que le...
suponemos a todo el sistema informático, nos ponemos en 20.500 kWh, muy cerca de los valores facturados.

A continuación adjuntamos una tabla de consumos mensuales derivados de los consumos reales facturados. A partir de los consumos estimados en la anterior tabla, se aplica una corrección en función del números de días lectivos de ese mes, con tal de intentar ajustarla más a la realidad pero conservando los mismos valores totales facturados.

<table>
<thead>
<tr>
<th>Consumos</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>1.088</td>
<td>1.327</td>
<td>1.289</td>
<td>1.283</td>
<td>1.342</td>
<td>1.047</td>
<td>690</td>
<td>460</td>
<td>1.310</td>
<td>1.266</td>
<td>1.450</td>
<td>950</td>
</tr>
<tr>
<td>2009</td>
<td>1.120</td>
<td>1.344</td>
<td>1.285</td>
<td>1.270</td>
<td>1.380</td>
<td>1.239</td>
<td>720</td>
<td>480</td>
<td>1.590</td>
<td>2.197</td>
<td>2.420</td>
<td>2.006</td>
</tr>
<tr>
<td>2010</td>
<td>2.060</td>
<td>2.230</td>
<td>2.324</td>
<td>2.126</td>
<td>2.442</td>
<td>2.060</td>
<td>1.120</td>
<td>450</td>
<td>2.360</td>
<td>*2.120</td>
<td>*2.430</td>
<td>*1.800</td>
</tr>
</tbody>
</table>

*consumos estimados a partir de los consumos de los meses anteriores

Tabla 10: Resultado final de la extrapolación de los consumos eléctricos mensuales de la escuela

Gráficamente podemos observar la diferencia entre los consumos calculados teóricamente y los deducidos de los consumos facturados:

Comparativa de necesidades estimadas y consumos facturados en el año 2010

Gráfica 4: Comparativa de los consumos teóricos calculados y los consumos facturados

Atendiendo a los consumos totales anuales:

Comparativa kWh teóricos y consumos facturados

Gráfica 5: Comparativa de los consumos totales teóricos calculados y los consumos facturados
6. Cálculo del potencial eólico disponible

6.1 Estación meteorológica

La estación meteorológica se encuentra ubicada en las coordenadas latitud N 41º 29’ 24,3”, longitud E 2º 15’ 48,3” y a una altura de 227 m. sobre el nivel del mar, en el término municipal de Tiana, Barcelona. Esta estación no forma parte de la “Xarxa d’Estacions Meteorològiques Automàtiques XEMAS” de la Generalitat de Catalunya, y su propiedad es del Consell Comarcal del Maresme, por lo que sus datos no están disponibles por Internet.

La estación cuenta con un equipo anemómetro de cazoletas, veleta, Termómetro vaisala y Barómetro. Los equipos son inalámbricos de la casa fabricante OREGON y registran datos cada 10 o 30 minutos según se programe.

La altura del mástil del anemómetro es de 6 metros. La estación se encuentra ubicada en un punto de convergencia de dos pequeñas cordilleras montañosas provenientes del suroeste y sur este. El entorno está compuesto por pino blanco en desarrollo, de una altura promedio de 2 m, y vegetación natural.

La distancia entre la estación meteorológica hasta el sitio previsto de emplazamiento del aerogenerador es de unos 118m, con una pendiente negativa del 12%. No se cuenta con los recursos necesarios para montar una estación meteorológica más cercana al aerogenerador que permitiera hacer una correcta correlación con los datos obtenidos.

6.2 Datos iniciales del viento

Los datos de la estación son recogidos por un centro astronómico que se encuentra junto a la estación meteorológica. El “Centro Astronómico de Tiana”, que así se denomina, es una agrupación privada que este año celebra su 25 aniversario, y que gracias a un acuerdo con la diputación de Barcelona, estrenó estas nuevas instalaciones hace unos 7 años, y nuevo telescopio de última generación hace dos. Actualmente estas pequeñas, pero modernas instalaciones, tienen 3 usos diferenciados. Por un lado, como centro astronómico que realiza una vez al mes visitas públicas guiadas. Por otro, como centro de recogida de los datos de la estación meteorológica que tiene casi adjunta.

Gracias a los miembros de esta agrupación obtuvimos los datos de la estación meteorológica desde el año 2005.
Esta estación realizaba las mediciones cada treinta minutos desde marzo del 2005 hasta Abril del 2006. A partir de esa fecha las realiza cada diez minutos, hasta junio de 2010, fecha en la cual la estación presentó un daño permanente causado por un rayo. No se cuenta con datos posteriores a ésta fecha ya que aún no ha sido reparada.

Para un estudio uniforme, se transformaron los datos de los años 2005 al 2010 a mediciones cada 30 minutos, haciendo la media de la lectura en horas completas o a medias horas con las 2 lecturas precedentes.

Las velocidades promedio anuales varían muy poco, del valor mínimo de 2.8 m/s en el año 2005, a 3.14 m/s durante el año 2007. Lo que muestra una continuidad y regularidad en la velocidad del viento, tanto en sus valores anuales, como mensuales, tal y como vemos en la siguiente gráfica.

Con el fin de determinar las medidas de un año tipo, se revisaron todos los datos de velocidades promedio del viento correspondientes a los 4 años, obteniendo una matriz de datos que dio como resultado una velocidad promedio de 3 m/s.
6.3 Frecuencia absoluta y acumulada de velocidades del viento para un año promedio

La gráfica confirma la presencia constante de vientos a baja velocidad durante todo el año.

La frecuencia de vientos se concentra en los valores de 1,7 m/s a 3,9 m/s. A una velocidad de 4,5 m/s ya se han alcanzado más del 90% de los vientos del año.

6.4 Determinación del coeficiente α

Con el fin de desarrollar el correspondiente perfil de velocidades del viento para alturas de 15, 20 y 25 metros respectivamente, se debe determinar con certeza el valor del coeficiente Alfa α de la superficie, o coeficiente de rugosidad.

La rugosidad se evalúa cuantitativamente mediante el parámetro de longitud de rugosidad (Z_0) que es la altura teórica sobre el nivel del suelo donde la velocidad media es igual a cero. Se evalúa mediante la ecuación de LETTAU.

$$\frac{v}{v_0} = \frac{\ln(H / z_0)}{\ln(H_0 / z_0)}$$

En el entorno del emplazamiento la vegetación es predominantemente pinos y arbustos, terreno accidentado, cultivos cercanos de vides, además estructuras como el polideportivo, y bardizas pertenecientes a las proximidades del campo de fútbol.
El valor obtenido para el coeficiente de rugosidad es de 0,295748876, lo que corresponde a una clase de rugosidad europea de 2,5-3.

COEFICIENTE DE FRICCIÓN PARA DIFERENTES TIPOS DE TERRENO

<table>
<thead>
<tr>
<th>Tipo de terreno</th>
<th>Coeficiente de fricción (\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagos, océano, superficies suaves y duras</td>
<td>0.10</td>
</tr>
<tr>
<td>Césped</td>
<td>0.15</td>
</tr>
<tr>
<td>Terrenos de cultivo, setos o vallas, y arbustos</td>
<td>0.20</td>
</tr>
<tr>
<td>Campo boscoso con muchos árboles</td>
<td>0.25</td>
</tr>
<tr>
<td>Pueblo pequeño con algunos árboles y arbustos</td>
<td>0.30</td>
</tr>
<tr>
<td>Área de la ciudad con edificios altos</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Lo ideal para determinar con mayor exactitud este coeficiente es contar con instrumentos de medida calibrados, adecuadamente posicionados y montados en una torre con diferencias de alturas superiores a los 20m.

Para evitar cálculos sobreestimados de este coeficiente, se aplicaron datos que no lleven a una sobre valoración del potencial eólico.

6.5 Velocidad del Viento a 15m- 20m y 25m.

Tomando en cuenta que la altura de la estructura de la escuela de Tiana es de aproximadamente 10 metros, las extrapolaciones de las velocidades del viento se inician a los 15 metros. Es decir, 1 1/2 veces la altura de la estructura lo que asegura que el aerogenerador se sale de la zona de turbulencia causada por la misma estructura.

El incremento de la velocidad promedio a 15 m es del orden del 30%, situando la velocidad media anual en 3,9m/s. Si bien este valor es aún muy bajo se pretende utilizar un aerogenerador que permita aprovechar estas bajas velocidades.

Para la altura de 20 m el incremento de velocidad es del 40% respecto a la altura del anemómetro. Es decir de 4,2 m/s. Es un gran aumento en valores energéticos si se tiene en cuenta que la energía aumenta al cubo de la velocidad del viento.

A una altura de 25m la velocidad promedio anual del viento es de 4,5m/s.
6.6 Dirección predominante del viento
La dirección y velocidad del viento es predominantemente NW (Mistral). Es decir el viento es predominantemente de descenso de la montaña. La frecuencia de vientos en esa dirección es superior al 25% durante los años evaluados. La línea de velocidad y dirección del viento predominante coincide con la dirección de la potencia eólica disponible en el emplazamiento. La inclinación de la vegetación existente sigue la misma dirección del viento predominante.

6.6.1 Gráficas de la Rosa de los Vientos
A continuación presentamos las gráficas de la rosa de los vientos, donde quedan reflejadas las direcciones principales, según su frecuencia, las velocidades medias en cada dirección, y hemos añadido la gráfica de potencia, que en nuestro caso podía ser prescindible ya que claramente la dirección predominante coincide con la dirección de mayores velocidades medias.
Proyecto Final de Master
Documento 1: Memoria descriptiva

TABLAS 2005
Porcentaje de calmas 0,87%. Dirección del viento en %. Velocidad del viento en m/s

Rosa de los vientos 2005

Velocidad media según direcciones 2005

Potencia eólica 2005

TABLAS 2006
Porcentaje de calmas 2,29%. Dirección del viento en %. Velocidad del viento en m/s

Rosa de los vientos 2006

Velocidad media según direcciones 2006

Potencia eólica 2006

TABLAS 2007
Porcentaje de calmas 2,37%. Dirección del viento en %. Velocidad del viento en m/s

Rosa de los vientos 2007

Velocidad media según direcciones 2007

Potencia eólica 2007

TABLAS 2008-2009
Porcentaje de calmas 2,37%. Dirección del viento en %. Velocidad del viento en m/s

Rosa de los vientos 2008-09

Velocidad media según direcciones 2008-09

Potencia eólica 2008-09
7. Análisis de alternativas

7.1 Evaluación de necesidades energéticas frente la disponibilidad de potencia eólica

En este punto se presentarán de forma resumida los resultados de los cálculos realizados en los dos puntos anteriores respecto a consumos y a disponibilidad energética.

7.1.1 Necesidades energéticas

Las necesidades energéticas anuales se pueden resumir de forma agregada en la siguiente tabla:

<table>
<thead>
<tr>
<th>Aparatos Consumidores</th>
<th>% resp. total</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocina</td>
<td>28%</td>
<td>5.696.660</td>
</tr>
<tr>
<td>Oficina y otros</td>
<td>5%</td>
<td>1.028.796</td>
</tr>
<tr>
<td>Sistema informático</td>
<td>34%</td>
<td>7.004.470</td>
</tr>
<tr>
<td>Iluminación</td>
<td>33%</td>
<td>6.803.166</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Tabla 11: Resumen de necesidades energéticas por sistemas

El desglose específico del sistema informático:

<table>
<thead>
<tr>
<th>Sistema informático</th>
<th>% resp. total</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servidor + Racks + Router</td>
<td>45%</td>
<td>3.151.123</td>
</tr>
<tr>
<td>4 Pizarras interactivas</td>
<td>7%</td>
<td>510.893</td>
</tr>
<tr>
<td>Aula de informática – 24 ord</td>
<td>34%</td>
<td>2.355.091</td>
</tr>
<tr>
<td>Aula de idiomas – 10 ord</td>
<td>4%</td>
<td>280.368</td>
</tr>
<tr>
<td>Aula de música – 6 ord.</td>
<td>4%</td>
<td>305.856</td>
</tr>
<tr>
<td>Ordenadores varios – 4 ord.</td>
<td>6%</td>
<td>401.139</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Tabla 12: Desglose del consumo del sistema informático

7.1.2 Capacidad de generación de energía eléctrica

Como se ha visto en el análisis de potencia disponible, los vientos en esta zona son en general de muy baja velocidad, siendo tan sólo un 37,73% de las horas, con vientos superiores a 3,5 m/s, que es la velocidad más común a la que los aerogeneradores empiezan a producir energía. De estos vientos superiores a 3,5 m/s, tan sólo un 26% supera los 4,5 m/s, siendo las máximas velocidades alrededor de los 6 a 7 m/s.

Por estas razones, la totalidad de los aerogeneradores estudiados producen muy por debajo de su capacidad nominal. A continuación, en la primera tabla podemos observar las características técnicas de 10 aerogeneradores seleccionados como posibles soluciones para este proyecto. En la segunda tabla se resumen las horas equivalentes de funcionamiento, factor de operación, y la energía generada anualmente, a una altura de buje a 20 ms y de acuerdo con los vientos disponibles.
<table>
<thead>
<tr>
<th>NOMBRE Y CARACTERÍSTICAS</th>
<th>PRECIO</th>
<th>FOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Honeywell WT6500 Wind Turbina</td>
<td>Generador + Inversor + Regulador</td>
<td>4.951,18€</td>
</tr>
<tr>
<td>Potencia nominal: 6500W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocidad de arranque:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocidad nominal:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diámetro de las aspas:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numero de aspas: n/d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema de Frenado:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>http://www.earthtronics.com/honeywell.aspx#videos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Modelo RS-5000-H</td>
<td>Generador + Inversor + Torre</td>
<td>14.130,5€</td>
</tr>
<tr>
<td>Potencia nominal: 5000W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocidad de arranque: 3 m/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocidad nominal: 10 m/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diámetro de las aspas: 5 metros</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numero de aspas: 3 unidades</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema de Frenado: Auto Furl de cola</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 WINDPOWER ZZ-1</td>
<td>Generador</td>
<td>3.045,41€</td>
</tr>
<tr>
<td>Potencia nominal: 1000W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocidad de arranque: 3 m/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocidad nominal: n/d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diámetro de las aspas: 2,8 metros</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numero de aspas: 3 unidades</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema de Frenado: Auto Furl de cola</td>
<td></td>
<td></td>
</tr>
<tr>
<td>http://www.fswindpower.com/SpecsH1kw-2kw.html</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 BORNAY 1500</td>
<td>Generador + Regulador digital</td>
<td>4.006,99€</td>
</tr>
<tr>
<td>Potencia nominal: 1500W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocidad de arranque: 3,5 m/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocidad nominal: 12 m/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diámetro de las aspas: 2,86 metros</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numero de aspas: 2 unidades</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema de Frenado: Eléctrico + Pasivo por inclinación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 WINDSPOT 1,5</td>
<td>Generador + Regulador</td>
<td>4.732,74€</td>
</tr>
<tr>
<td>Potencia nominal: 1500W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocidad de arranque: 3 m/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocidad nominal: 11 m/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diámetro de las aspas: 3,3 metros</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numero de aspas: 3 unidades</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema de Frenado: Eléctrico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>http://www.windspot.es/?gclid=CMPMiOe2kaYCFQgMlAodbltwkA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modelo</td>
<td>Potencia nominal</td>
<td>Velocidad de arranque</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>6 DONQI 1.7</td>
<td>1700W</td>
<td>2,5 m/s</td>
</tr>
<tr>
<td>7 TESNIC 4KW</td>
<td>4000W</td>
<td>2 m/s</td>
</tr>
<tr>
<td>8 BORNAY 3000</td>
<td>3000W</td>
<td>3,5 m/s</td>
</tr>
<tr>
<td>9 BORNAY 6000</td>
<td>6000W</td>
<td>3,5 m/s</td>
</tr>
<tr>
<td>10 BWC EXCEL 10 KW</td>
<td>10000W</td>
<td>3,1 m/s</td>
</tr>
</tbody>
</table>
11 ENERCON E33 50m altura

Potencia nominal: 330kW
Velocidad de arranque: 3 m/s
Velocidad nominal: 13 m/s
Diámetro de las aspas: 33,4 metros
Número de aspas: 3 unidades
Sistema de Frenado: Tres sistemas independientes con control del ángulo de paso con suministro de energía de emergencia. Freno mecánico de rotor. Bloqueo de rotor.

http://www1.enercon.de/es/_home.htm

330.000 aprox.

Tabla 13: Resumen de tipos de aerogeneradores estudiados

De ésta tabla, el generador Enercon ha sido adjunto solamente con el fin de comparar la rentabilidad que tendría un generador de mayor tamaño que pueda verter su energía a la red.

Es de destacar que ésta lista se hizo tratando de colocar la mayor variedad de generadores con diferentes características de funcionamiento, precios y potencias, con el fin de tener mayores puntos de comparación de cada factor.

A continuación presentamos una gráfica comparativa al respecto:

![Gráfica 8: Generación de energía de los modelos a distintas alturas comparado con el consumo del sistema informático](image)

La cantidad de kWh/año que puede obtenerse de éstos aerogeneradores es absolutamente insuficiente para abastecer completamente las necesidades eléctricas de la escuela (20.305kWh/año), al menos a un precio razonable para un proyecto
escolar, ya que es cierto que con un molino lo suficientemente grande (ver gen. nº11 Enercon) se obtendrían las cantidades necesarias, y sobraría en grandes cantidades, pero la legislación vigente no permitiría su conexión a la red y venta de esta energía sobrante, por lo que, su inversión, además de inalcanzable para el presupuesto de una escuela, resultaría injustificable económicamente.

Desde un punto de vista puramente productivo, también es un sinsentido invertir una gran cantidad de dinero en un generador eólico, para instalarlo en un lugar con poco viento.

Por este motivo para la elección del aerogenerador es necesario encontrar un generador que cumpla con varias condiciones de forma simultánea:

- Arranque a baja velocidad
- Precio asequible
- Fiable
- Energía generada significativa

Debido a todos estos condicionantes, la lista adjuntada de aerogeneradores es sólo una pequeña muestra representativa de los tipos de aerogeneradores consultados. La mayoría de los que inician su funcionamiento a más baja velocidad, acostumbran a ser de pequeño tamaño, o de eje vertical. Estos equipos generan una cantidad de energía muy por debajo de su potencia nominal debido a las velocidades medias de viento disponibles. Esto se evidencia en su curva de potencia donde cuentan con una pendiente muy baja. Lo que está claro es que un arranque a bajas velocidades no significa mayor aprovechamiento de la potencia disponible.

También se evaluó la posibilidad de instalar más de un aerogenerador, si el análisis de costo-beneficio lo justificaban. Se valoraron todos los pequeños aerogeneradores de bajo coste, pero su producción es tan reducida, que para igualar la energía generada por alguno de los listados, era necesaria la instalación de varios, disparándose su coste final.

Como ninguno los aerogeneradores cubren la totalidad del consumo eléctrico, se busca aquel que tenga una mejor relación coste-energía generada, cuyo ratio se obtiene con un coste final aproximado del valor total de la instalación, dividido por el total de la energía producida en un año.

Los valores más representativos de la energía obtenidos por estos aerogeneradores instalados a 20 ms de altura, son:

<table>
<thead>
<tr>
<th>Aerogenerador a 20 m</th>
<th>Horas equival. año</th>
<th>Factor de operación</th>
<th>Energía generada kWh</th>
<th>Ratio coste €/kWh generado</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEROGENERADOR 1 Honeywell WT6500 Wind Turbine</td>
<td>1.920</td>
<td>0,2185</td>
<td>1.151,7</td>
<td>6,47</td>
</tr>
<tr>
<td>AEROGENERADOR 2 Modelo RS-5000-H</td>
<td>990</td>
<td>0,1127</td>
<td>4.948,6</td>
<td>3,66</td>
</tr>
<tr>
<td>AEROGENERADOR 3 WINDPOWER ZZ-1</td>
<td>1.348</td>
<td>0,1534</td>
<td>1.347,4</td>
<td>6,34</td>
</tr>
<tr>
<td>AEROGENERADOR 4 BORNAY 1500</td>
<td>1.598</td>
<td>0,1819</td>
<td>2.397,4</td>
<td>3,97</td>
</tr>
<tr>
<td>AEROGENERADOR 5 WINDSPOT 1,5</td>
<td>796</td>
<td>0,0906</td>
<td>1.193,3</td>
<td>8,57</td>
</tr>
<tr>
<td>AEROGENERADOR 6 DONQUI 1,7</td>
<td>520</td>
<td>0,0592</td>
<td>884,1</td>
<td>9,53</td>
</tr>
</tbody>
</table>
De la tabla adjunta, se deduce que el aerogenerador más indicado es el Bornay 6000, con un ratio coste-energía generada muy inferior al resto. Esto implica una amortización de la instalación en mucho menos tiempo que el resto. Además la cantidad de energía generada, representaría hasta un tercio del total del consumo actual de la escuela, por lo que su impacto no es despreciable.

Por tanto, el bornay 6000 es el que mejor cumpliría con las condiciones impuestas: arranque a baja velocidad, precio asequible, fiable y cantidad de energía generada significativa. Los puntos siguientes corresponden al proyecto técnico de ubicación e instalación de este aerogenerador, con un regulador para la carga de baterías y un inversor adecuado.

Por tanto, el bornay 6000 es el que mejor cumpliría con las condiciones impuestas: arranque a baja velocidad, precio asequible, fiable y cantidad de energía generada significativa. Los puntos siguientes corresponden al proyecto técnico de ubicación e instalación de este aerogenerador, con un regulador para la carga de baterías y un inversor adecuado.

De la tabla adjunta, se deduce que el aerogenerador más indicado es el Bornay 6000, con un ratio coste-energía generada muy inferior al resto. Esto implica una amortización de la instalación en mucho menos tiempo que el resto. Además la cantidad de energía generada, representaría hasta un tercio del total del consumo actual de la escuela, por lo que su impacto no es despreciable.

Por tanto, el bornay 6000 es el que mejor cumpliría con las condiciones impuestas: arranque a baja velocidad, precio asequible, fiable y cantidad de energía generada significativa. Los puntos siguientes corresponden al proyecto técnico de ubicación e instalación de este aerogenerador, con un regulador para la carga de baterías y un inversor adecuado.

Consumos frente Generación Bornay 6000 a 20 mts

![Gráfica 9: Comparación de la energía generada frente los consumos agregados de los sistemas consumidores de la escuela](image)

Pero, este proyecto **adquiere sentido** cuando pensamos en sus objetivos: No estamos realizando este proyecto para un inversionista que desea una cierta rentabilidad en poco tiempo, sino que estamos trabajando para una **institución comprometida con la sostenibilidad y el medio ambiente**, y con el firme propósito de transmitir éstos valores a las generaciones futuras. Por éstas razones, el principal **objetivo** de este proyecto debe ser la **difusión y acercamiento** de los alumnos y sus familias, a familiarizarse con otras formas de **obtención de energía limpia**, y reafirmando de forma bien visible (20 ms de altura) el modelo y compromiso de la institución con el medio ambiente.

Para ello, al igual que otras campañas de sensibilización impulsadas por la escuela, deberá ser bien visible el control y la contabilidad de la energía generada, las
toneladas de emisiones de CO₂ equivalentes que se han evitado lanzar a la atmósfera y los ahorros monetarios alcanzados.

Como **segundo objetivo**, y por coherencia con la filosofía del propio proyecto, proponer un plan de eficiencia energética, centrado en este caso en el ahorro de energía eléctrica, que pueda ser aplicado en varias etapas o según las posibilidades del centro.

Por último, y como **tercer objetivo**, conseguir un proyecto que sea realizable. Para ello será necesario que tenga un presupuesto final asumible económicamente, y que además, pueda tener un retorno de la inversión en un tiempo razonable.
8. Proyecto técnico de instalación del aerogenerador

8.1 Elección de ubicación del aerogenerador

El espacio idóneo para efectuar el emplazamiento del aerogenerador se seleccionó de acuerdo con unas necesidades comunes a cualquier instalación de energía eólica en centros urbanos como son: aprovechar la dirección predominante de los vientos, evitar los obstáculos aledaños, lograr la menor distancia del centro de consumo, alcanzar la mejor integración arquitectónica y contar con los espacios y sitios óptimos para los elementos adicionales como baterías, regulador e inversor que permitan un adecuado y seguro funcionamiento.

Los resultados obtenidos en las gráficas de la rosa de los vientos marcan la potencia y la dirección predominante proveniente del viento en sentido NW.

La siguiente consideración a tener en cuenta es la ubicación y determinación de los obstáculos ya sean topográficos o de estructuras existentes que se encuentren en el área del emplazamiento, ya que podrían disminuir notablemente la eficiencia del aerogenerador y aumentar las necesidades de mantenimiento.

La planta de clasificación y reciclaje se encuentra a una altura de 3 metros contigua a las instalaciones del patio de la escuela y representa un obstáculo que genera turbulencia. Por ese motivo se procurará poner mayor distancia desde el emplazamiento del aerogenerador a la planta de reciclaje, utilizando el patio, el cual es un elemento llano y vacío del entorno que permite regular el comportamiento del viento.

En la esquina norte del patio de la escuela se encuentra una concentración de 4 árboles de 3m de altura que pueden generar obstrucciones en la dirección del viento. Otro obstáculo identificado, es la misma estructura del colegio, con una altura aproximada de 8 metros, la cual que también puede generar turbulencias. Teniendo en cuenta que la torre del aerogenerador tiene una altura de 20 metros y está situada delante de la escuela, éste no será afectado por las turbulencias generadas por el edificio del colegio ya que según la teoría, las turbulencias mantienen una estela que es 2 veces la altura del obstáculo. En éste caso 16mts. que no afectaría el aerogenerador. Por ésta misma razón se considera que la planta de reciclaje y los árboles aledaños tampoco generarán turbulencias puesto que hay más distancia entre el emplazamiento del aerogenerador y los obstáculos y además porque son de menor altura que el aerogenerador.

La siguiente consideración estudiada es la distancia y ruta de la instalación eléctrica. La ruta del cableado debe ser lo más corta posible para estar cerca al grupo de baterías y al punto de conexión. Esto permite disminuir pérdidas eléctricas y costos en diámetro y longitud de cableado.

La integración arquitectónica del entorno con el aerogenerador sería la siguiente consideración a tener en cuenta. El aerogenerador debería estar integrado estéticamente pero, paradójicamente, visible a los estudiantes y visitantes, ya que es un elemento novedoso en las escuelas públicas y complementa la ideología de sostenibilidad ambiental del plantel. Para lograr ésta integración arquitectónica se debe buscar un sitio en el emplazamiento que brinde todas las posibilidades físicas para hacer el montaje y de obra civil necesarias. Teniendo en cuenta estos elementos de decisión se determinó que uno de los posibles emplazamientos óptimos para el aerogenerador es el siguiente:
En éste plano se marca el punto seleccionado para la instalación del aerogenerador en la esquina norte del plantel. Esta localización permite mantener una distancia prudencial de la planta de reciclaje (43 metros) y de los árboles de mayor altura (55m). Adicionalmente cuenta con espacio suficiente para realizar la excavación necesaria para la cimentación recomendada por el fabricante y también cuenta con un área contigua a la base, que permite el almacenamiento de las baterías, y regulador e inversor si fuera necesario. Este punto es de fácil acceso porque cuenta con una puerta que da paso al campo de juegos o patio, y puede ser utilizado por el personal, o para movilizar la maquinaria y grúa necesarias para el montaje del aerogenerador.

El vértice de la estructura seleccionada no cuenta con ninguna ventana o elemento que pueda verse afectado por la instalación. Existe la posibilidad adicional de fijar la estructura del aerogenerador a la estructura física del colegio mediante uniones amortiguadas (elementos de caucho) que estabilicen y refuercen la estructura, sin transmitir vibraciones. Esta ubicación proporciona la ventaja para cablear (rutear) fácilmente mediante la instalación de zanja o canaleta adosada a la cornisa. La siguiente es una vista superior y una imagen del resultado final.
8.2 Elección e instalación del poste

Se parte de la premisa que se deben seguir las recomendaciones de la casa fabricante BORNAY con el fin de mantener la garantía y poder asegurar una adecuada instalación del aerogenerador.

El fabricante Bornay suministra un completo manual de instalación, con las medidas de seguridad necesarias para su montaje. Los tipos de torre recomendados son torres basculantes y torres autoportantes. Los procedimientos de montaje y selección son los mismos para cada uno de los tipos de torres. El emplazamiento del aerogenerador en un centro docente donde habitualmente se encuentran niños, hace necesario aumentar los factores de seguridad y obliga a tomar medidas adicionales para garantizar la máxima seguridad.

8.2.1 Emplazamiento de la torre

Para definir la torre a utilizar tenemos los dos diferentes tipos existentes en el mercado. Las torres basculantes son de menor costo y de sencilla instalación, pero necesitan de la utilización de tensores o tirantes, lo que las hace inviables para el centro educativo y particularmente en el sitio de instalación porque éstos tensores se convierten en un elemento potencialmente peligroso para los estudiantes.

Las torres autoportantes pueden ser de dos clases: de celosías, ya sea de base triangular o cuadrada, y torres tubulares. Las torres de celosía son más económicas, simples de instalar y más livianas que las torres tubulares. Este es el tipo de torre que recomienda el fabricante BORNAY para el montaje de sus aerogeneradores. Aunque la imagen estética de las torres de celosía no favorece su utilización en los entornos urbanos, la estamos recomendando para este montaje por ser la indicada por el fabricante, y por ser de menor costo para el plantel. El fabricante proporciona los planos para esta torre.

La altura total necesaria para esta torre es de 20 metros. Se puede alcanzar utilizando 3 tramos de estructura de 6,0 metros de longitud y un mástil de 2,0 m.

Para el montaje de las torres autoportantes es necesario realizar una cimentación que garantice la estabilidad de la estructura. El fabricante cuenta con una tabla de cimentaciones recomendadas, de acuerdo con el aerogenerador instalado y la altura de la torre. El tipo de torre a utilizar según el fabricante para el aerogenerador BORNAY 6000 es una torre P-750. Y el terreno se considerará como normal (K=12).

<table>
<thead>
<tr>
<th>Tipo de terreno</th>
<th>P-400</th>
<th>P-750</th>
<th>P-1250</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOJO K=8 h a</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td>NORMAL K=12 h a</td>
<td>1.4</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>ROCOSO K=16 h a</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Imagen 2 y tabla de la cimentación de la estructura

El volumen de cimentación necesario es de 1,2 m de ancho X 1,8 m de profundidad que corresponden a 2,16 m² de concreto. El fabricante indica que no se requiere encofrado de ésta estructura, sino que recomienda introducir el primer tramo como fijación de la misma. El concreto debe quedar a 10 cm por encima del tener un declive.
hacia el exterior para evitar la acumulación de agua que puede oxidar la base de la torre. Los tramos de la torre deben ser recalculados para garantizar que la altura final sea de 20 m.

La siguiente tabla resume las características mecánicas del tipo de torre seleccionada.

<table>
<thead>
<tr>
<th>Tipo de apoyo</th>
<th>Altura total (m)</th>
<th>Características mecánicas</th>
<th>Dimensiones</th>
<th>Peso total (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-750</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>765</td>
<td>765</td>
<td>320</td>
<td>620</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>667</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>756</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>821</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>888</td>
</tr>
</tbody>
</table>

Tabla 15: Características mecánicas de la torre seleccionada

8.2.2 Cargas estáticas de la torre

Las cargas estáticas que debe soportar la torre son causadas por 4 fuerzas: a) la componente normal al peso de la estructura y del aerogenerador; b) el momento flector del peso del aerogenerador, en el caso de que el centro de masa se encuentre desfasado del eje de la torre, c) el momento flector causado por la acción del viento sobre las palas del aerogenerador y d) la fuerza del viento distribuida sobre el área de la torre. El aerogenerador BORNAY es orientado por medios pasivos, por lo tanto no necesita servomotores, como ocurre con aerogeneradores de gran tamaño. La orientación se hace por medio de la veleta de la parte trasera del aerogenerador. Adicionalmente esta veleta proporciona el peso necesario para desplazar el centro de gravedad del aerogenerador al centro de acople con la torre. De esta forma, no se presentan momentos torsores sobre la estructura para orientarse frente al viento, ni momentos flectores por desplazamiento del centro de gravedad del aerogenerador.

El aerogenerador BORNAY cuenta con un medio de regulación pasivo denominado “inclin” que se activa para mantener el aerogenerador en el máximo de potencia a altas velocidades del viento. El fabricante proporciona una tabla con los valores que ejerce el viento en función de su velocidad sobre las palas. Estos valores son extremos y fueron medidos sin inclinar el aerogenerador, lo que disminuye la componente del viento sobre las palas.

<table>
<thead>
<tr>
<th>Aerogenerador</th>
<th>V viento (m/s)</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>15</th>
<th>55°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclin 250</td>
<td>0,680</td>
<td>1,898</td>
<td>3,721</td>
<td>9,188</td>
<td>12,833</td>
<td>17,086</td>
<td>229,711</td>
<td></td>
</tr>
<tr>
<td>Inclin 600</td>
<td>1,500</td>
<td>4,167</td>
<td>8,167</td>
<td>20,167</td>
<td>28,167</td>
<td>37,500</td>
<td>504,167</td>
<td></td>
</tr>
<tr>
<td>Inclin 1500 neo</td>
<td>3,067</td>
<td>8,520</td>
<td>16,700</td>
<td>41,229</td>
<td>57,598</td>
<td>76,684</td>
<td>1030,970</td>
<td></td>
</tr>
<tr>
<td>Inclin 3000 neo</td>
<td>6,000</td>
<td>18,867</td>
<td>32,867</td>
<td>80,867</td>
<td>112,867</td>
<td>150,000</td>
<td>2016,867</td>
<td></td>
</tr>
<tr>
<td>Inclin 6000 neo</td>
<td>6,000</td>
<td>18,867</td>
<td>32,867</td>
<td>80,867</td>
<td>112,867</td>
<td>150,000</td>
<td>2016,867</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 16: Tabla de esfuerzos sobre el aerogenerador
El fabricante no aclara si se debe tomar la velocidad media anual, o la máxima registrada. Por consiguiente se tomará la máxima registrada en los últimos 5 años que corresponde a 14,8 m/s alcanzada el 10 de noviembre de 2005.

Para esta velocidad la carga distribuida en las aspas es de 150 Kg, aplicada al eje del aerogenerador, y a una distancia de 20m, que corresponde a la altura del aerogenerador.

El peso de la estructura es de 552 Kg aplicados al centro de la torre.

La componente de la fuerza del viento sobre el área de la estructura se considera despreciable por ser una torre de celosía de poca área trasversal.

8.3 Elección del regulador
El aerogenerador cuenta con su propio regulador BORNAY. Este regulador se encarga de transformar la corriente alterna en corriente continua para almacenamiento en las baterías. También se encarga de controlar el estado del aerogenerador y detecta el estado de las baterías para evitar sobrecargas innecesarias, o sobrepasar el límite de porcentaje de descarga. En este caso detiene completamente el suministro de energía al inversor, hasta que las baterías se encuentren nuevamente cargadas.

La interface con el usuario se realiza por medio de una pantalla de cristal líquido y un menú claro y sencillo. La potencia máxima del regulador es de 6,5kW

8.4 Elección de las baterías
En el manual del aerogenerador se especifica: “El regulador detecta el voltaje que tiene en su entrada para baterías y se configura solo, siempre y cuando ese voltaje esté permitido para la potencia que esté programado.” “Por ejemplo, si el regulador es para un aerogenerador de 6000W sólo puede trabajar con baterías de 48V, entonces si detecta que el voltaje de baterías es de 12 o de 24V mostrara un mensaje de error” (página 19 y 20 del manual.)

La producción y el consumo de energía en este proyecto vienen muy marcados por los horarios lectivos del centro escolar. De este modo, de 8.00h. a 19.00h, el generador producirá un tanto por ciento de la energía que se consume en el centro y ésta será empleada a medida que vaya siendo producida (modo apoyo). Principalmente, destinada para el aula de informática.

No obstante, a partir de las 19.00h. y hasta las 8.00h. del día siguiente, se producirá una cantidad de energía que no se consumirá al mismo momento y, por lo tanto, que será necesaria almacenar para que no se desaproveche (modo acumulación). Obteniendo así, un sistema de generación de energía centrado en la disminución del consumo de la escuela.
Además, el aula de informática se usa una media de 4 horas al día y requiere un alto consumo energético, mientras que el generador puede trabajar durante todo el día pero a más baja producción.

Los motivos anteriores junto con el hecho que la frecuencia eólica del lugar no es extremadamente alta, nos conducen a proyectar la instalación de un sistema de baterías con el fin de almacenar la energía producida mientras el centro está cerrado y, así, aprovechar al máximo la energía generada; no tener desperdicios; subministrar al centro una fuente de energía de apoyo y disminuir los picos de consumo de la escuela. De tal forma que las baterías escogidas serán destinadas para almacenar la energía producida las horas no lectivas y los días festivos, cuando se llegará al máximo de acumulación; centrándolas básicamente en la acumulación y no en el consumo.

Hay distintos tipos de baterías:

- Baterías de tracción, usadas en carretillas elevadoras, sillas de ruedas eléctricas, automóviles eléctricos, etc. Son de descarga relativamente baja durante largos periodos de tiempo.

- Baterías de arranque, empleadas para arrancar automóviles y otros vehículos de motor diesel y gasolina. Su característica principal es que son capaces de descargar el máximo de corriente posible en un corto espacio de tiempo (manteniendo un alto voltaje).

- Baterías estacionarias, utilizadas en el campo de las energías renovables, fuentes de alimentación de emergencia, etc. Resisten eficazmente el hecho de ser cargadas y descargadas constantemente.

Mediante esta diferenciación, se define que las baterías que utilizaremos serán las baterías estacionarias que más se ajusten a los requerimientos que se buscan en nuestra aplicación.

En cuanto a las Baterías estacionarias, también engloban diferentes tipos:

- Las abiertas de plomo ácido; son las más utilizadas ya que tienen una mayor duración. Pueden ser de tipo Monoblock o vasos independientes.

- Las herméticas; Son las adecuadas para lugares poco ventilados porque producen muy poco oxígeno y hidrógeno y no necesitan mantenimiento. Pueden ser de Gel o AGM.

Vista esta clasificación, se procederá a la elección del tipo de batería para este proyecto.

Por los motivos expuestos anteriormente, y por las características técnicas de la instalación, se ha decidido montar un sistema de baterías estacionarias abiertas de plomo ácido, con vasos independientes, capaces de ofrecernos una autonomía de un día y medio del consumo observado en el aula de informática; sin sobrepasar el 80% de descarga aconsejado por el fabricante.

En este caso, el generador genera a 48V por lo que necesitamos 24 celdas de 2V colocadas en serie; de modo que en el conjunto de baterías tendremos los 48V deseados. La capacidad de las baterías, se ha definido que será de 765Ah; de tal forma que con las baterías escogidas mantendremos dicha capacidad.
En total, se dispondrá de una bancada de 24 celdas de baterías, todas ellas conectadas en serie, que resultará en un bloque de 48 V y 765 Ah. El modelo de celdas de las baterías elegidas son las OPzS Solar 765.

Del catálogo del fabricante, obtenemos los siguientes datos técnicos de los vasos:

- Tensión nominal: 2 V
- Dimensiones (LxAxH): 168 x 208 x 520 mm
- Peso (incluyendo acido): 35,40 kg aprox.
- Capacidad (C-100 a 25°C): 750 Ah

La elección de las baterías se ha hecho priorizando, por un lado, la capacidad de almacenamiento de éstas, consiguiendo acumular la energía generada en las horas de no consumo del centro; y, por otro lado, la relación calidad/precio de éstas.

Tal y como se ha comentado anteriormente, se colocarán 24 vasos de la batería OPzS Solar 765. Cada vaso tiene un precio de 308,30 €. Por lo tanto, el conjunto de las baterías nos resultará en un precio de 7.399,2 €.

8.5 Elección del inversor

8.5.1 Potencia estimada del inversor

El inversor seleccionado debe estar preparado para proporcionar una potencia de trabajo continuo de 3,7 Kw a una temperatura estándar de 25 grados C. Esta conclusión resulta de considerar que el consumo máximo eléctrico en éste proyecto es de 13739 Wh/día. Este requerimiento de energía se presenta durante 4 horas continuas en ciertos días, o sea 3.434,7 Wh. Si el inversor tiene como mínimo una eficiencia del 95% y se produce una pérdida por cableado no superior al 1,5%, la potencia nominal del inversor debe ser como mínimo de 3.658 W. Dentro de los productos existentes en el mercado se encuentran los inversores multifunción, los cuales activan la adición de C.A de un generador convencional, o de la red eléctrica, para evitar caídas de tensión. Además pueden cargar las baterías en el caso de ser necesario.

Como la tensión del circuito de C.C de las baterías es de 48 V, el equipo seleccionado debe trabajar como mínimo en este rango de tensión y a una intensidad de 17 A.

Los equipos que podrían realizar esta labor son los siguientes:
Inversor 1
Fabricante: Steca
Modelo: Xtender XTH 6000-48
Eficiencia: 96%
Voltaje inicial: 38v – 68v
Potencia nominal: 5000 VA
Potencia 30min: 6000 VA
Potencia 5 min: 15.000 VA
Voltaje regulado: 230 V CA +/-2 % / 190 V CA … 245 V CA (onda senoidal pura)
Consumo en vacío W: 22 W.

Inversor multifunción 2
Fabricante: Steca
Modelo: Xtender XTM 4000-48
Eficiencia: 96%
Voltaje inicial: 38v – 68v
Potencia nominal: 3500 VA
Potencia 30min: 4000 VA
Potencia 5 min: 10.500 VA
Voltaje regulado: 230 V CA +/-2 % / 190 V CA … 245 V CA (onda senoidal pura)
Consumo en vacío W: 14 W.

Inversor multifunción 3
Fabricante: Steca.
Eficiencia: 96%
Voltaje de inicio: 48V -
Potencia nominal: 5.000 Kw.
Potencia max 30min: 6.000 Kw.
Potencia 5seg: 15000 Kw.
Voltaje regulado: 230 V CA +/-2 % / 190 V CA … 245 V CA (onda senoidal pura)
Consumo en vacío W: 25.

Inversor 4
Fabricante: Victron Energy
Modelo: Phoenix 48/5000
Eficiencia: 95%
Voltaje inicial:
Potencia nominal: 4250
Potencia 30min: 5000
Potencia 5 min: 7500
Voltaje regulado: 230 V CA +/-2 %
Consumo en vacío W: 25.

Inversor Multipropósito 5
Fabricante: Phoenix
Modelo: Multi & Multiplus 48/5000/70
Eficiencia: 95%
Potencia nominal: 4250
Potencia max 30min: 5000
Potencia 5 min:10000
Voltaje regulado: 230 V CA +/-2 %
Desde el punto de vista técnico el equipo más recomendable por eficiencia, costo, sistemas de protección con que cuenta, y funciones adicionales es el equipo Steca Xtender XTH 6000-48.

Las funciones de este inversor multifunción son: inversor, cargador de batería, de conmutación eléctrica, y de apoyo de fuentes de corriente alterna externas. Puede programarse para numerosas aplicaciones. Adicionalmente acepta proyectos futuros de generación combinada con una cubierta solar, o un generador diesel. Puede reaccionar ante cualquier evento dentro o fuera del inversor (disponibilidad de la red, tensión de la batería, aviso de fallo etc). También puede programarse como temporizador o puede conectarse a horas concretas, para la desconexión de los consumidores menores importantes, para la visualización de un fallo, para cargar la batería en función de la situación y temperatura. Todas estas funciones pueden controlarse de forma combinada y totalmente automática, permitiendo una programación de consumo y generación, y un excelente aprovechamiento de la energía disponible proveniente del aerogenerador.

Otra posibilidad para suplir la potencia total necesaria por el inversor, es la utilización de varios inversores de menor potencia conectados en paralelo. No es conveniente porque cuestan más y adicionalmente se disminuye la eficiencia.

8.6 Elección del cableado y tendido

Para la elección del cableado y tendido se seguirá lo dispuesto en la norma UNE-20460 para instalación de tipo B2 y F. Se complementará con las recomendaciones propuestas por el fabricante.

Se selecciona como tipo de aislamiento el PVC que pese a ser menos respetuosos con el medio ambiente, tiene un coste mucho menor que otras opciones más sostenibles como el Polietileno reticulado.

Los circuitos estarán protegidos por 4 diferenciales.

La sección de los conductores, del neutro y las dimensiones de los tubos cumplirán con la ITCBT-14. Los cables no serán propagadores de incendios y con emisión de humos y opacidad reducida, así como no propagadores de llama. La caída de tensión máxima se debe calcular de tal forma que el conjunto de la instalación no sobrepase el 1,5% de pérdidas.

La selección del diámetro de cableado se hace calculando el área mínima normalizada de cableado que evite caídas altas de tensión, y la intensidad máxima admisible para evitar calentamiento por el paso de la corriente en el conductor.

<table>
<thead>
<tr>
<th>Circuito de CA - Trifásico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuito</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Aerogenerador - Regulador</td>
</tr>
</tbody>
</table>

Tabla 17: Tabla de características del cableado del circuito de corriente alterna

La recomendación del fabricante para el circuito del Aerogenerador – regulador es de 10 mm2.
Circuito de **CC**

<table>
<thead>
<tr>
<th>Circuito</th>
<th>Voltaje (V)</th>
<th>Corriente (A)</th>
<th>Longitud (m)</th>
<th>Resistencia Cobre (Ω c.d.t.)</th>
<th>Sección (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baterías inversor</td>
<td>48</td>
<td>75,13</td>
<td>1</td>
<td>0,0227</td>
<td>7,1060458333</td>
</tr>
<tr>
<td>Regulador Baterías</td>
<td>48</td>
<td>125</td>
<td>2</td>
<td>0,0227</td>
<td>23,64583333</td>
</tr>
</tbody>
</table>

Tabla 18: Tabla de características del cableado del circuito de corriente continua

La recomendación del fabricante para el regulador- Baterías es de 50mm².

8.6.1 Circuito a tierra

La puesta a tierra tiene el propósito de limitar la tensión que con respecto a tierra puedan presentar masas metálicas. Además tiene como objetivo asegurar la actuación de las protecciones, y eliminar o disminuir el riesgo que supone una avería en el equipo eléctrico. El sistema de conexión del neutro y de la masa en la red de distribución eléctrica en la zona sigue el esquema TT de acuerdo con la ITC-BT-08.

La instalación de tierra principal consistirá en un anillo formado por un conductor de cobre desnudo de una sección mínima, según se indica en la ITC-BT-18, formando un anillo cerrado. La sección será de 25mm². El anillo estará enterrado horizontalmente a una profundidad mínima de 0.5m.

8.7 Elección de la ubicación de todos estos equipos

Para la ubicación de las baterías, se ha proyectado la inclusión de un cuarto de mandos eléctricos en la base de la torre del generador; en la zona del patio que se muestra a continuación:

El cuarto de mandos eléctricos tendrá las medidas necesarias para la disposición correcta de todos los elementos definidos a lo largo del proyecto y se ubicarán según normativa. Por ejemplo, debe figurar una separación física para el inversor y regulador respecto a las baterías. También, deberemos conectar todos los elementos a la toma de tierra, manteniendo un alto grado de seguridad tanto eléctrica como física.

La distribución de los elementos puede ser observada en las figuras mostradas a continuación:
Para la ejecución del armario de elementos, se ha proyectado la construcción de una caseta de obra con forma rectangular con medidas interiores 2500x1000x300 mm.

Ésta estará protegida mediante una puerta metálica de doble hoja con apertura central y cerrada con llave; el cerrojo será de tipo superior e inferior, garantizando una seguridad de no apertura accidental.

El armario proyectado contará con todos los requerimientos de seguridad, ventilación y protección para cumplir la normativa legal vigente.

Otro punto importante, es que dicho cuarto deberá disponer de las protecciones definidas en el punto específico.

8.8 Elección del medidor de energía generada

El contador seleccionado debe medir solamente la energía producida por el aerogenerador. Este contador debe registrar la energía total que se está introduciendo en el sistema, sin tener en cuenta las entradas de energía del sistema hacia las baterías (en el caso que sea necesario proporcionar carga a las baterías para evitar una descarga excesiva, o un tiempo largo en que las baterías estén descargadas).

Existe la posibilidad de colocar éste contador en cuatro diferentes posiciones: La primera, entre el regulador y las baterías. Esta posición requiere un voltaje de 48 V y
150 A. La segunda consiste en colocar el medidor entre las baterías y el inversor. Esta requiere 48 V y 75 A. La tercera opción es utilizar un contador de energía trifásico entre el aerogenerador y el regulador. Los voltajes variables del aerogenerador entre 150 V.C.A a 48V C.A se salen del rango de medida inferior para los contadores de Trifásicos comerciales. La cuarta posibilidad es colocar un contador de C.A. diferencial en el inversor, que permita calcular la diferencia entre la energía que sale de las baterías hacia el inversor y la energía que entra de la red eléctrica hacia las baterías o hacia el consumo de la instalación.

Teniendo en cuenta que el objetivo de esta instalación es fundamentalmente educativo y adicionalmente, obtener una disminución en la factura eléctrica, no se requiere un equipo muy preciso o costoso, ya que éstos objetivos se pueden evaluar mediante la revisión de la factura eléctrica. Por eso se recomienda un medidor de C.C en la salida del regulador.

Marca: CIRCUTOR
Modelo: MK-30-DC
Referencia: M30300
http://www.zurc.com/di_solar.htm

Resumen de la instalación.

<table>
<thead>
<tr>
<th>Aerogenerador seleccionado.</th>
<th>BORNAY 6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad media anual.</td>
<td>4,2 m/s V. Max 11 m/s</td>
</tr>
<tr>
<td>Altura de Torre.</td>
<td>20 m.</td>
</tr>
<tr>
<td>Horas Equivalentes.</td>
<td>1452</td>
</tr>
<tr>
<td>Generación Eléctrica Anual.</td>
<td>8.711,3 Kwh./ Año</td>
</tr>
<tr>
<td>Demanda Eléctrica mensual.</td>
<td>7.000 Kwh./ Año</td>
</tr>
<tr>
<td>Horas de Operación diarias.</td>
<td>4</td>
</tr>
<tr>
<td>Tipo de corriente.</td>
<td>220V D.C</td>
</tr>
<tr>
<td>Tipo de Baterías.</td>
<td>OPzS Solar 765</td>
</tr>
<tr>
<td>Voltaje de Baterías.</td>
<td>48 V.</td>
</tr>
<tr>
<td>Ah totales de almacenamiento.</td>
<td>765 Ah.</td>
</tr>
<tr>
<td>Inversor.</td>
<td>Steca Xtender XTH 6000-48.</td>
</tr>
<tr>
<td>Potencia del inversor.</td>
<td>6000 w.</td>
</tr>
</tbody>
</table>

8.9 Protecciones

Otro elemento imprescindible en este proyecto son las protecciones, las cuales evitarán que se produzcan posibles accidentes que puedan dañar tanto al resto de elementos del sistema como a personas.

Este punto tiene una especial relevancia al tratarse de un sistema ubicado en una escuela y, por tanto, rodeado constantemente de niños y niñas. Por ello, los elementos de seguridad son muy importantes.

Existen distintos elementos de protección de circuitos eléctricos. A continuación, se indican los que se utilizaran en este proyecto:
- Fusibles: Es uno de los elementos de seguridad más antiguos y destaca por su simple funcionamiento. No obstante, sus principales desventajas son que protegen únicamente a máquinas, no a personas; y que tienen un solo uso, ya que al actuar ante sobrecargas o cortocircuitos queda inhabilitados. Irán ubicados a la salida del freno auxiliar, entre el regulador eólico y las baterías y entre baterías e inversor.

- Relés térmicos: Se encarga de proteger a los motores eléctricos en un caso de fallo en una fase. Además, se puede regular la intensidad con la que se acciona por efecto térmico. Se colocarán entre el inversor y la fuente de consumo.

- Interruptores: Son elementos que permiten la apertura o cierre de circuitos eléctricos, sin tener capacidad de desconexión automática. Es decir, su utilidad recae en la capacidad manual de accionamiento.

- Seccionador: Tiene un funcionamiento parecido al del interruptor, con la diferencia que solo puede actuar cuando no circula intensidad. Se ubicará entre el regulador y las baterías, justo después de los fusibles.

- Varistor: Absorbe las variaciones bruscas de voltaje o picos de corriente y protege los componentes más sensibles de los circuitos eléctricos. Solo funciona con picos puntuales ya que, con altas intensidades constantes, el varistor se quema. Se instalarán varistores en cada una de las fases del generador eólico e irán conectados a la toma de tierra.

Todos los elementos anteriores se ubicarán en la zona del cuadro de mandos, situado de forma anexa al contador de energía.

Está proyectada la inserción de dos contadores de energía; ambos serán ubicados en el interior del armario de elementos, en una zona habilitada para dicho fin. El primero (conectado entre el generador y el regulador), hará un seguimiento de la energía generada por el aerogenerador eólico y el segundo (conectado entre el inversor y el sistema informático), realizará el seguimiento de la energía consumida por dicho sistema. De esta forma, tendremos datos numéricos que nos permitirán evaluar el funcionamiento del conjunto.

La ubicación de todos los elementos detallados anteriormente, se plasma en el siguiente esquema:
8.10 Simulaciones
Imagen 9: Simulación del aerogenerador + torre de celosía autosoportada

Imagen 10: Simulación de la escuela y aerogenerador desde una distancia e 90 mts.
8.12 Actividades básicas de mantenimiento de la instalación

Las actividades básicas de mantenimiento deben considerarse previamente al desarrollo e instalación del aerogenerador pero deben ser adaptadas a las condiciones del sitio del emplazamiento y deben revisarse y actualizarse periódicamente.

Transcurrido 1 mes de instalado el aerogenerador, se recomienda, reapretar toda la tornillería del aerogenerador para evitar vibraciones.

Cada 6 meses:

En los cambios de estación se recomienda realizar una inspección de mantenimiento, en la cual se deben de revisar los siguientes puntos:

- Revisar y reapretar todos los tornillos.
- Comprobar el estado de los cables.
- Inspeccionar y limpiar las hélices.
- Revisar el sistema de frenado automático, accionándolo manualmente.

Las partes principales del aerogenerador a la hora de realizar las inspecciones de mantenimiento son:

Rodamientos

El aerogenerador está equipado con rodamientos blindados de gran calidad que no necesitan mantenimiento. Se puede revisar su funcionamiento girando el conjunto de las palas. No deben emitir ruidos o permitir vibraciones leves.

Tornillería

Toda la tornillería es de acero inoxidable. Ante la falta de cualquier tornillo en una revisión de mantenimiento, reemplazarlo inmediatamente antes de que pueda producir daños mayores al conjunto del aerogenerador.

Cableado

Comprobar el estado de las uniones, aislamiento y empalmes, así como regletas de conexiones, para evitar que pueda desconectarse y dejar el aerogenerador funcionando libremente.

Hélices

Las hélices de fibra de vidrio / carbono, llevan en el borde de ataque una cinta protectora de Poliuretano abrasivo. Esta cinta puede verse afectada por las condiciones climatológicas. En caso de falta total ó parcial, debe ser reemplazada. En caso contrario, la erosión y cambios climáticos incidirán directamente sobre la hélice, reduciendo su vida útil.

Amortiguador
El aerogenerador lleva instalado un amortiguador hidráulico que permite la desorientación respecto al viento rápidamente, y su vuelta a la posición normal lenta, evitando golpes bruscos. El amortiguador tiene una pequeña holgura al principio de su retroceso que es normal. Si su holgura fuera mayor de la mitad del recorrido y se observan pérdidas de aceite, habría que sustituir los amortiguadores por unos nuevos.

Engrase

El aerogenerador consta de 3 partes móviles: El eje delantero (Hélice-alternador), el eje de orientación (aerogenerador-torre), y el eje de inclinación (alternador-giratoria). Todas éstas piezas están provistas de rodamientos blindados y están recubiertos con una grasa de por vida, por lo tanto no necesitan mantenimiento.
9. Estudio de eficiencia en el consumo de energía eléctrica

9.1 Iluminación

9.1.1 Descripción del actual sistema de iluminación

En la totalidad de las instalaciones, la iluminación artificial se realiza mediante tubos fluorescentes de 58W, instalados en portalámparas individuales y en su mayoría, sin difusor de protección, a excepción de la cocina y comedor, que si constan de dicho difusor, pero que son de las mismas características.

Solamente dos pequeños aseos mantienen la iluminación por bombillas incandescentes.

A pesar de ser un sistema de iluminación que ha funcionado bien hasta el momento, su gran número en toda la escuela, 177 tubos, y la aparición de nuevos sistemas de iluminación mucho más eficaces energéticamente, hacen necesaria su revisión.

La tabla detalla la descripción de la iluminación de las instalaciones:

<table>
<thead>
<tr>
<th>Localización de fluorescentes de 58W</th>
<th>Número de fluorescentes</th>
<th>Potencia total W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasillo 1</td>
<td>14</td>
<td>812</td>
</tr>
<tr>
<td>Pasillo 2</td>
<td>12</td>
<td>696</td>
</tr>
<tr>
<td>Sala de profesores</td>
<td>6</td>
<td>348</td>
</tr>
<tr>
<td>Sala de dirección</td>
<td>3</td>
<td>174</td>
</tr>
<tr>
<td>Centro de recursos</td>
<td>2</td>
<td>116</td>
</tr>
<tr>
<td>Conserjería</td>
<td>3</td>
<td>174</td>
</tr>
<tr>
<td>Biblioteca</td>
<td>10</td>
<td>580</td>
</tr>
<tr>
<td>Aula 3a</td>
<td>8</td>
<td>464</td>
</tr>
<tr>
<td>Aula 3b</td>
<td>12</td>
<td>696</td>
</tr>
<tr>
<td>Aula 4a</td>
<td>12</td>
<td>696</td>
</tr>
<tr>
<td>Aula 4b</td>
<td>6</td>
<td>348</td>
</tr>
<tr>
<td>Aula 5a</td>
<td>6</td>
<td>348</td>
</tr>
<tr>
<td>Aula 5b</td>
<td>6</td>
<td>348</td>
</tr>
<tr>
<td>Aula 6a</td>
<td>12</td>
<td>696</td>
</tr>
<tr>
<td>Aula 6b</td>
<td>12</td>
<td>696</td>
</tr>
</tbody>
</table>
En la tabla de consumos por aparatos consumidores de energía se especificó que el sistema de iluminación, alcanzaba la cifra de 6.803 kWh/año, lo que representa el 33% de la totalidad del consumo eléctrico de la escuela.

A continuación, adjuntamos la tabla desglosada de dicho consumo, que nos aportará información valiosa para un plan de eficiencia eficaz y específico:

<table>
<thead>
<tr>
<th>Periodo lectivo</th>
<th>Potencia (W)</th>
<th>Horas/sem de uso verano</th>
<th>Horas/sem de uso invierno</th>
<th>Intensidad verano %</th>
<th>Intensidad invierno %</th>
<th>Consumo verano Wh/sem</th>
<th>Consumo invierno Wh/sem</th>
<th>% resp. al total verano</th>
<th>% resp. al total invierno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iluminación F= Fluorescente de 58W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasillo 1 – 14 F</td>
<td>812</td>
<td>50</td>
<td>50</td>
<td>70%</td>
<td>90%</td>
<td>28.420</td>
<td>36.540</td>
<td>17,9%</td>
<td>17,7%</td>
</tr>
<tr>
<td>Pasillo 2 – 12 F</td>
<td>696</td>
<td>50</td>
<td>50</td>
<td>70%</td>
<td>90%</td>
<td>24.360</td>
<td>31.320</td>
<td>15,3%</td>
<td>15,2%</td>
</tr>
<tr>
<td>Sala de profesores – 6 F</td>
<td>348</td>
<td>50</td>
<td>50</td>
<td>80%</td>
<td>90%</td>
<td>13.920</td>
<td>15.660</td>
<td>8,8%</td>
<td>7,6%</td>
</tr>
<tr>
<td>Sala de dirección – 3 F</td>
<td>174</td>
<td>40</td>
<td>40</td>
<td>15%</td>
<td>15%</td>
<td>1.044</td>
<td>1.044</td>
<td>0,7%</td>
<td>0,5%</td>
</tr>
<tr>
<td>Centro de recursos – 2F</td>
<td>116</td>
<td>40</td>
<td>40</td>
<td>5%</td>
<td>5%</td>
<td>232</td>
<td>232</td>
<td>0,1%</td>
<td>0,1%</td>
</tr>
<tr>
<td>Conserjería – 3F</td>
<td>174</td>
<td>50</td>
<td>50</td>
<td>50%</td>
<td>70%</td>
<td>4.350</td>
<td>6.090</td>
<td>2,7%</td>
<td>3,0%</td>
</tr>
<tr>
<td>Biblioteca – 10 F</td>
<td>580</td>
<td>14</td>
<td>14</td>
<td>70%</td>
<td>90%</td>
<td>5.684</td>
<td>7.308</td>
<td>3,6%</td>
<td>3,5%</td>
</tr>
<tr>
<td>Aula 3a – 8F</td>
<td>464</td>
<td>22</td>
<td>22</td>
<td>60%</td>
<td>80%</td>
<td>6.125</td>
<td>8.166</td>
<td>3,9%</td>
<td>4,0%</td>
</tr>
<tr>
<td>Aula 3b – 12F</td>
<td>696</td>
<td>22</td>
<td>22</td>
<td>60%</td>
<td>80%</td>
<td>9.187</td>
<td>12.250</td>
<td>5,8%</td>
<td>5,9%</td>
</tr>
<tr>
<td>Aula 4a – 12F</td>
<td>696</td>
<td>22</td>
<td>22</td>
<td>60%</td>
<td>80%</td>
<td>9.187</td>
<td>12.250</td>
<td>5,8%</td>
<td>5,9%</td>
</tr>
<tr>
<td>Aula 4b – 6F</td>
<td>348</td>
<td>22</td>
<td>22</td>
<td>60%</td>
<td>80%</td>
<td>4.594</td>
<td>6.125</td>
<td>2,9%</td>
<td>3,0%</td>
</tr>
<tr>
<td>Aula 5a – 6F</td>
<td>348</td>
<td>24</td>
<td>24</td>
<td>60%</td>
<td>80%</td>
<td>5.011</td>
<td>6.682</td>
<td>3,2%</td>
<td>3,2%</td>
</tr>
<tr>
<td>Aula 5b – 6F</td>
<td>348</td>
<td>24</td>
<td>24</td>
<td>60%</td>
<td>80%</td>
<td>5.011</td>
<td>6.682</td>
<td>3,2%</td>
<td>3,2%</td>
</tr>
<tr>
<td>Aula 6a – 12F</td>
<td>696</td>
<td>24</td>
<td>24</td>
<td>60%</td>
<td>80%</td>
<td>10.022</td>
<td>13.363</td>
<td>6,3%</td>
<td>6,5%</td>
</tr>
<tr>
<td>Aula 6b – 12F</td>
<td>696</td>
<td>24</td>
<td>24</td>
<td>60%</td>
<td>80%</td>
<td>10.022</td>
<td>13.363</td>
<td>6,3%</td>
<td>6,5%</td>
</tr>
<tr>
<td>Aula informática – 6F</td>
<td>348</td>
<td>12</td>
<td>12</td>
<td>60%</td>
<td>80%</td>
<td>2.506</td>
<td>3.341</td>
<td>1,6%</td>
<td>1,6%</td>
</tr>
<tr>
<td>Aula música – 10F</td>
<td>580</td>
<td>16</td>
<td>16</td>
<td>60%</td>
<td>80%</td>
<td>5.568</td>
<td>7.424</td>
<td>3,5%</td>
<td>3,6%</td>
</tr>
<tr>
<td>Aula de inglés – 6F</td>
<td>348</td>
<td>12</td>
<td>12</td>
<td>60%</td>
<td>80%</td>
<td>2.506</td>
<td>3.341</td>
<td>1,6%</td>
<td>1,6%</td>
</tr>
<tr>
<td>Gimnasio – 6F</td>
<td>348</td>
<td>8</td>
<td>8</td>
<td>5%</td>
<td>10%</td>
<td>139</td>
<td>278</td>
<td>0,1%</td>
<td>0,1%</td>
</tr>
<tr>
<td>Comedor – 20F</td>
<td>1160</td>
<td>10</td>
<td>10</td>
<td>60%</td>
<td>80%</td>
<td>6.960</td>
<td>9.280</td>
<td>4,4%</td>
<td>4,5%</td>
</tr>
<tr>
<td>Cocina – 5F</td>
<td>290</td>
<td>24</td>
<td>24</td>
<td>60%</td>
<td>80%</td>
<td>4.176</td>
<td>5.568</td>
<td>2,6%</td>
<td>2,7%</td>
</tr>
</tbody>
</table>

TOTAL CONSUMO SEMANAL EN ILUMINACIÓN Wh | **159.024** | **206.306** | **100,0%** | **100,0%** |

Tabla 20: Cálculo de consumos por iluminación en periodo lectivo por espacios

Esta segunda tabla calcula los consumos en periodo no lectivo:
No se adjunta ninguna tabla en el periodo de centro cerrado porque el consumo en iluminación es nulo.

Por último el consumo anual para cada espacio y su importancia respecto al total del consumo en iluminación:

<table>
<thead>
<tr>
<th>TABLA CONSUMOS POR ILUMINACIÓN 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema Iluminación</td>
</tr>
<tr>
<td>Pasillo 1 – 14 F</td>
</tr>
<tr>
<td>Horas/sem de uso verano</td>
</tr>
<tr>
<td>Horas/sem de uso invierno</td>
</tr>
<tr>
<td>Intensidad verano</td>
</tr>
<tr>
<td>Intensidad invierno</td>
</tr>
<tr>
<td>Consumo verano/Wh/sem</td>
</tr>
<tr>
<td>Consumo invierno/Wh/sem</td>
</tr>
<tr>
<td>% resp. al total verano</td>
</tr>
<tr>
<td>% resp. al total invierno</td>
</tr>
<tr>
<td>TOTAL kWh/año % sobre el TOTAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>semana</th>
<th>semana</th>
<th>semana</th>
<th>semana</th>
<th>semana</th>
<th>dias</th>
<th>dias</th>
</tr>
</thead>
<tbody>
<tr>
<td>15,2</td>
<td>20,2</td>
<td>5,4</td>
<td>1</td>
<td>81</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 22: Resume anual de consumos por iluminación en cada espacio de la escuela

<table>
<thead>
<tr>
<th>Espacio</th>
<th>Lámparas instaladas</th>
<th>Lámparas utilizadas</th>
<th>Consumo</th>
<th>Consumo en %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aula de inglés – 6F</td>
<td>2.506</td>
<td>3.341</td>
<td>105.569</td>
<td>2%</td>
</tr>
<tr>
<td>Gimnasio – 6F</td>
<td>139</td>
<td>278</td>
<td>7.740</td>
<td>0%</td>
</tr>
<tr>
<td>Comedor – 20F</td>
<td>6.960</td>
<td>9.280</td>
<td>293.248</td>
<td>4%</td>
</tr>
<tr>
<td>Cocina – 5F</td>
<td>4.176</td>
<td>5.568</td>
<td>202.675</td>
<td>3%</td>
</tr>
<tr>
<td>TOTALES</td>
<td>159.024</td>
<td>206.306</td>
<td>33.234</td>
<td>39.150</td>
</tr>
</tbody>
</table>

En la siguiente gráfica se observa la distribución del consumo por áreas específicas.

Se observa que el 45% del total de las lámparas instaladas en la escuela, (80 fluorescentes) consumen el 66% de la energía en iluminación, siendo éste mayor en los pasillos (34%), seguido por las 4 aulas de 12 fluorescentes cada una (24%) y la sala de profesores (8%).

Gráfica 9: Porcentaje de consumo de cada espacio escolar

9.1.2 Calidad de la iluminación

Todas las aulas de la escuela cuentan con ventanas que proporcionan luz natural, por tanto, cuentan con un aporte lumínico adicional a la iluminación artificial existente.

Pero como todos sabemos, es habitual tener ambas fuentes de iluminación simultáneamente, ya que uniformiza la luz en el aula, y permite bajar las persianas lo necesario cuando el sol impacta sobre los alumnos o cuando se refleja en la pizarra. Indudablemente los fluorescentes utilizados hasta ahora y que seguiremos utilizando hasta dentro de un tiempo, son óptimos para obtener una buena distribución de la luz, junto con un bajo consumo y unos tubos bastante económicos y de larga duración. A
pesar de todas estas ventajas, no debemos olvidar ciertos inconvenientes de este sistema:

- Los fluorescentes son considerados residuos peligrosos debido a su contenido de vapor de mercurio, por lo cual se debe disponer adecuadamente para evitar efectos ambientales negativos

- Las lámparas fluorescentes no dan una luz continua, sino que muestran un parpadeo que depende de la frecuencia y de la corriente eléctrica aplicada (50Hz para corriente alterna). Esto no se nota mucho a simple vista, pero una exposición continua a esta luz puede dar dolor de cabeza. Por tanto, en algunos lugares (como talleres con maquinaria o escuelas) podría no ser recomendable este tipo de luz. El flickering o parpadeo, afecta severamente la salud de algunas personas con algunos tipos de migrañas, epilepsia y en algunos casos su efecto es dañino para la salud y hay quienes con esta luz quedan excluidos completamente de todo ámbito de socialización (estudio, trabajo, deportes). Estos inconvenientes se ven minimizados con el aporte de luz natural, como es el caso de esta escuela.

Los tubos fluorescentes de la escuela además carecen de balasto electrónico para mitigar este efecto, con el cual se consigue mejorar el rendimiento eléctrico en un 10%, se reduce el consumo, hay menor calor disipado y silencio absoluto de la reactancia, además de aumentar la vida útil de los tubos. El efecto difuso de la luz fluorescente hace que los contornos de elementos mínimos o “finos” tiendan a desaparecer impidiendo su enfoque adecuado, lo cual genera fatiga visual que podría ocasionar malestar y un rendimiento deficiente en la labor emprendida.

Para evitar estas circunstancias adversas es aconsejable utilizar, para la lectura y labores similares, bombillas o focos de luz de tungsteno (lámparas incandescentes) que resultan ser los más apropiados para estos efectos. Por este motivo, deberemos cumplir ciertos requisitos en cuanto a la calidad de la iluminación según las tareas visuales a realizar. En una escuela los niveles de iluminación recomendables suelen oscilar entre 330 y 1600 luxes, según la Illuminating Engineering Society (IES) y las condiciones adecuadas sobre eficiencia y seguridad en la iluminación están reguladas por el código técnico de edificación, concretamente la CTE DB HE3 de eficiencia en la iluminación que marca los criterios y parámetros que han de seguir para mejorar la eficiencia y cumplir los requisitos mínimos, y la CTE DB SUA4 referente a la seguridad en la iluminación. En nuestro caso concreto, la escuela está equipada con 177 fluorescentes de 58W de potencia todos ellos iguales, con balastos magnéticos (de transformador y bobina estándar) y distribuidos según el tamaño del aula o estancia y que da, cada uno de ellos, 120 luxes aproximadamente.
9.1.3 Propuesta de actuaciones

9.1.3.1 Sustitución de las luminarias

Tras la evaluación de diferentes alternativas existentes en el mercado, como podría ser la sustitución de fluorescentes por otro tipo de lámparas más eficientes y apropiadas para las tareas y actividad normal de la escuela, se ha llegado a la conclusión que la sustitución de todo el sistema de iluminación conllevaría un coste excesivo en relación a los beneficios que se obtienen con otros métodos menos costosos, en nuestro caso los ahorros obtenidos en eficiencia. La instalación de balastos electrónicos también supondría un desembolso extra en relación a la mejora de eficiencia.

Existen alternativas a la sustitución de todo el sistema de iluminación, simplemente cambiando dos elementos: tipo de tubo a utilizar y tipo de balasto. Cambiando el tipo de balasto de tipo estándar (como los que hay actualmente) por balastos de alta eficiencia, que aún sin ser balastos electrónicos, incorporan elementos electrónicos que mejoran la eficiencia en un 10%. En caso de usar los balastos electrónicos, se mejoraría la eficiencia en niveles cercanos al 30%.

Si no hubiera limitante en presupuesto se podrían cambiar balastos, luminarias y tipos de lámpara adecuándolos a los usos de las diferentes áreas de la escuela, utilizando sensores de presencia, interruptores temporizados o fotoceldas. Se está empezando a instalar sistemas en centros docentes con tecnología de control de la luz natural que mediante sensores detectan su intensidad y dirección, y orientan la luminaria para dirigir el haz de luz hacia la dirección deseada, y de esta forma se aprovecha al máximo la luz natural. En nuestro caso, esto supondría una enorme inversión, y el ahorro logrado no justificaría el gasto. (Como hemos visto, la iluminación representa un 33% del consumo eléctrico total de la escuela, que en euros se traduciría en unos 1.600€ anuales. Si podemos lograr un ahorro del 50% realizando algunos cambios para mejorar la eficiencia de las luminarias, esto supondría un ahorro de 800€ anuales)

Por este motivo, lo que se propone para reducir el consumo de energía es simplemente cambiar el tipo de tubo fluorescente actual por uno del mismo tamaño pero de tecnología LED. Como veremos más adelante, esto eliminaría los gastos de instalación quedándose únicamente en gastos de adquisición, se reducirían los inconvenientes lumínicos que produce la tecnología tradicional, consiguiendo además el nivel óptimo de luxes necesarios en ámbitos escolares (500 luxes), reduciendo en un 60% el consumo de electricidad en necesidades de iluminación.

Analíticamente podemos comparar ambas tecnologías.

<table>
<thead>
<tr>
<th></th>
<th>T8</th>
<th>T8 LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo</td>
<td>58W</td>
<td>21.4W</td>
</tr>
<tr>
<td>Ruido</td>
<td>Si</td>
<td>No</td>
</tr>
<tr>
<td>Parpadeo</td>
<td>Si</td>
<td>No</td>
</tr>
<tr>
<td>Duración</td>
<td>8.000h</td>
<td>50.000h</td>
</tr>
<tr>
<td>Garantía</td>
<td>2 años</td>
<td>5 años</td>
</tr>
<tr>
<td>Contenido en sustancias contaminantes</td>
<td>Mercurio, Fósforo</td>
<td>No</td>
</tr>
<tr>
<td>Radiación ultravioleta e infrarroja</td>
<td>Si</td>
<td>No</td>
</tr>
<tr>
<td>Lux</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>Coste</td>
<td>10-30 €</td>
<td>70-90 €</td>
</tr>
</tbody>
</table>

El fluorescente tradicional esparce la luz en un plano de 360° lo que hace que se pierda cerca del 40% de luz aunque se instale sobre reflector. En el tubo LED toda la luz es dirigida hacia abajo en un ángulo de 120° con lo que instalados a la misma distancia, el resultado del flujo medido en luxes es comparable. Mientras el tubo tradicional nos da 1680 Lm, el LED nos ofrece 2800 Lm, un 40% menos.

En el siguiente diagrama se observa cómo se distribuye la luz en un tubo LED.

Distribución de la luz de un tubo LED estándar de 1500Lm (1,5mts)

En consumo la diferencia también es notable. Trabajando a 220VAC y utilizando un tubo LED en lugar de un fluorescente tradicional se ahorra 75% del consumo actual de fluorescentes tradicionales, el ahorro es aún mayor si se trabaja a 258VAC. A menores voltajes, el LED sigue trabajando mientras que el fluorescente tradicional se apaga.

La instalación de estos tubos fluorescentes de LED’s es más sencilla que instalar un fluorescente de los habituales. Solamente se tiene que poner los 230V entre los dos bornes del tubo, eliminando el cebador. También se puede eliminar la reactancia pero, por lo visto no es imprescindible. Si se elimina, se consume menos potencia reactiva, lo que siempre es bueno en una instalación. Los balastos electrónicos, que se usan actualmente, son mucho más complicados de instalar.
Esta opción es la más viable económicamente ya que mejora la eficiencia en consumo en más del 60%, mejora la capacidad luminica en un 20% y también la calidad de la luz, y elimina los mantenimientos, que ni tan siquiera se necesitaría cambiar balasto o instalar luminarias.

Otras opciones valoradas:
A lo largo del proceso de elección de la mejora de eficiencia en la iluminación, ha sido valorado el cambio de los balastos electromagnéticos por balastos electrónicos sustituyendo también los fluorescentes existentes, por fluorescentes de alta eficiencia. Los inconvenientes de este sistema es que se necesita mano de obra especializada para la instalación de los balastos, con los costes que esto conlleva. En cuanto al coste de adquisición de los equipos es un 25% más económico que los LEDs. Esto iguala sus costes de adquisición e instalación, pero la vida útil de este sistema no es tan alta como en la tecnología LED. También en contra esta el hecho de que sigue siendo poco sostenible por la utilización de productos contaminantes y un ahorro de energía inferior a los LEDs (20%)

Como opción complementaria también se valoro el sistema conocido como eco-tubo. Este sistema mantiene intactos los soportes de los fluorescentes y sin necesidad de cambiar balastos, el fluorescente en sus extremos incorpora un mecanismo electrónico que permite adecuar ambas tecnologías sin necesidad de mano de obra. Es un sistema de instalación equivalente a la propuesta con los LED. Tiene una vida útil menor, menor calidad en la iluminación y ahorros un 20% menores y, a pesar de utilizar un 30% menos de fósforo y mercurio, sigue conteniendo productos contaminantes. En cuanto a coste, es un 30% más económico que los LED. Esta opción evita el cambio a tecnologías más eficientes e incipientes como los LED, existiendo una batalla de blogs y webs de distribuidores y fabricantes comparando ambos métodos y recomendando uno u otro en función de las creencias o intereses de cada uno. Se han encontrado criterios objetivos en el lighting handbook para centros docentes (www.scribd.com/.../Lighting-Handbook-Guia-Iluminacion-Centros-Docentes)

Aspectos económicos:
Está claro que el tubo LED consume menos, pero su precio de adquisición es bastante mayor. Por este motivo debemos hacer un análisis similar al que se hacía en las compra de coches de gasolina o gasóleo cuando su precio era muy dispar, es decir, saldrá a cuenta invertir en uno más caro de adquisición pero menos consumo, dependiendo del uso más o menos intenso que se vaya a hacer de él. Esta intensidad de uso nos marcará el tiempo de recuperación del dinero invertido de más y el punto a partir del cual nos beneficiamos económicamente de tal inversión.

En este caso se considera el precio de un fluorescente convencional de 58W de 15€ y de 80€ el tubo de LED. Por tanto la diferencia de más son 65€. Si consideramos el coste por kWh de uso domestico, impuestos incluidos, que actualmente se sitúa
alrededor de los 0,16€/kWh según fuentes como “Unesa” y el “Ministerio de Industria Turismo y Comercio” podemos evaluar el tiempo necesario para ahorrar esa cantidad.

Así, 65 € = (58W-21W)/1000 x H x 0,175 €/kWh (subida del 10% en 2011)

Despejando H = 65 / 0,006475 = 10.038 horas. Cuando alcancemos este número de horas habremos igualado esta cantidad. Pero de hecho, la igualación es en menor tiempo, ya que la vida estimada de un tubo fluorescente es de 8.000 h, por lo que si optamos por éste, cuando lleguemos a las 10.000h ya nos habremos gastado otros 15€, para substituir el tubo. Como 15€ equivalen según el cálculo anterior a unas 2000h, podemos afirmar que a partir del término del ciclo de vida de un tubo convencional de 58W, sale a cuenta uno de LED.

8.000 h pueden ser un año, si uno tiene todos los días encendidas las 24h las luminarias, pero este no es el caso. El espacio con mayor uso, que son los pasillos, tenemos un uso máximo de 50h/semana que por unas 40 semanas de actividad son un uso de 2.000h/año. Por tanto, su sustitución en los pasillos tardaría 4 años en amortizarse, al igual que en la sala de profesores o la conserjería. (Véase punto 9.1). Y por lo que se refiere a su esperanza de vida de un tubo LED, hablamos de 25 años!!!

Para otras estancias con un uso máximo de 40h/semana, serían un total de 1600h/año, por lo que el tiempo de amortización ascendería a 5 años. Y la duración de los mismos se estimaría en 31 años!

Para las aulas, con 24h/semana y 36 semanas lectivas, ya serían 864horas/año de uso, lo que significaría una amortización en 8.000h/864 = 9 años, con una vida prevista de 57 años. Y así sucesivamente.

Teniendo en cuenta todo esto, se propondrá un plan de sustitución en el cual se prioriza aquellas estancias de uso más intensivo, dejando para el final o descartando incluso aquellas cuyo uso anual sea insignificante.

9.1.3.2 Buenas prácticas

En el tema de la iluminación, y en un edificio ya construido, las buenas prácticas se limitan a hacer hincapié en cosas por todos conocidas:

- La primera y más evidente de todas las buenas prácticas es la de apagar las luces cuando el aula o estancia no se usa. Desde un punto de vista educativo, establecer un responsable de apagar las luces en la clase cuando se cambia de aula o se va al patio, y en turno rotativo, al igual que se hace con otras tareas, como las de comedor etc., puede ser una buena práctica energética y de conscienciación.

- La segunda de ellas es algo más complicada. De todos es conocido que en las aulas, a pesar de haber luz natural, se enciende sistemáticamente la iluminación artificial, ya que en invierno es necesario bajar las persianas para evitar el impacto del sol directo sobre los alumnos y los reflejos en la pizarra. Desde este proyecto proponemos la instalación de pequeñas cortinas enrollables, colgadas del techo, muy cercanas a la ventana, de ancho ligeramente inferior al marco de la ventana y sin ningún mecanismo de enrollado y desenrollado. La tela sería clara y translúcida, de forma que actúe
al máximo posible como pantalla difusora. Su funcionamiento el más simple posible para evitar atascos y averías. Por eso proponemos las enrollables de muelle, sin mecanismo de trabado, y se fijan mediante un cordel a un gancho o similar en la parte inferior de la ventana. Cuanto más cercanas queden de la ventana, menos peligro de ser enganchadas sin querer por un alumno. El ancho debe permitir tener la ventana abierta, y bajar la cortina cubriendo el 95% del hueco de la misma. Por último, colocar la cortina más cercana a la pizarra. Puede utilizarse una cortina más oscura para mayor disminución de los reflejos. Este sistema debería permitir aprovechar mejor la luz natural y aumentar el confort en días soleados.

- Finalmente, dividir el sistema eléctrico de encendido en dos circuitos, de forma que se pueda apoyar, si es necesario, la luz natural con luz artificial, pero encendiendo solamente el 50% de las luminarias.

Considerando que el consumo en iluminación asciende a un 33% del consumo eléctrico total, si por ejemplo en un 30% del tiempo, podemos utilizar tan sólo el 50% de la iluminación artificial en las aulas, esto proporcionaría un ahorro de 870 kWh/año, que equivaldrían a 152 €/año.

9.1.3 Plan de actuación propuesto

Este proyecto recomienda una sustitución gradual y progresiva, en función de la disponibilidad presupuestaria y de la confirmación de las expectativas puestas en la substitución, dado que el tubo LED es todavía una tecnología emergente y pueden permanecer ocultos algunos aspectos negativos desconocidos hasta ahora. Además, el precio actual de estos tubos es muy elevado, y debido a sus buenas prestaciones, es previsible un descenso de su precio en cuanto aumente su consumo.

La propuesta es aplicable en 3 fases para establecer prioridades:

Primera fase:

Adquisición de 32 fluorescentes LED T8, para los pasillos y sala de profesores. La razón es que los pasillos presentan la máxima utilización y consumo eléctrico en iluminación, y la sala de profesores, sería además de las mismas razones, vista como planta piloto previo a su uso en las aulas.

Por lo que se refiere a los pasillos, el único inconveniente que puede encontrarse, es que el tubo LED, como se ha dicho anteriormente, focaliza la luz hacia abajo a diferencia del fluorescente que la esparce en todas direcciones, con un ángulo de 120º de apertura. Este hecho puede ser un pequeño problema en el pasillo de la foto: la altura del techo es de 2,5 m, al igual que su anchura.
máxima. En este tramo y debido a la focalización de la luz hacia abajo, se quedarían sin iluminar 70 cm de la pared empezando desde la parte superior de la misma, quedando iluminado el 1,8 mts. restantes. Por tanto, los murales o carteles pegados tocando el techo quedarían en la penumbra. Aunque este problema es puntual como se puede apreciar en estas otras fotografías, se cree necesario puntualizar esta característica, que puede llegar a ser un inconveniente dependiendo del uso de las paredes y del ancho del pasillo.

Para la constatación de que este inconveniente no fuera mayor, en una primera fase se adquirían 14 unidades, para el pasillo inferior, valorando si su alcance sobre la altura de las paredes es suficiente para que no queden inutilizadas.

En el caso de ser las pruebas positivas, se adquirirían los 12 tubos para el pasillo de la planta superior.

En la sala de profesores se debe valorar, por parte de los usuarios, si es necesario sustituir los 6 fluorescentes, o si por el contrario, gracias a que su intensidad lumínica es superior, es suficiente instalando 4 tubos LED, dejando dos luminarias vacías. En este caso, los ahorros por sustitución se incrementarían considerablemente, y por tanto el tiempo de amortización de la misma. El único inconveniente en una sala como la que nos ocupa es la ubicación de 4 tubos en un techo donde había 6 luminarias uniformemente distribuidas, pudiendo quedar alguna zona no uniformemente iluminada y ser un inconveniente grave. En un caso así, recomendamos concentrar la mayor densidad en la zona más alejada de las ventanas, ya que una posible menor
intensidad de luz, será compensada por la luz natural. En principio, y por los horarios escolares, las actividades de la escuela tienen lugar siempre en horas diurnas. De no ser suficiente esta atenuación, serán substituidas la totalidad de las lámparas.

Los tubos fluorescentes reemplazados deberán ser adecuadamente almacenados, ya que como seguramente no han llegado al final de su vida útil, podrán ser utilizados como tubos de recambio en las zonas en las que no se produzca la sustitución.

Segunda fase:

Sustitución de los fluorescentes de las aulas de 6a, 6b, 4a y 3b. Estas aulas por sus dimensiones tienen una iluminación compuesta de 12 luminarias cada una, lo que implicaría la compra de 36 tubos LED.

En el caso de que en la sala de profesores hubiese sido aceptada la posibilidad de reducción del número de luminarias, se procederá de la misma manera en las aulas.

En este caso, su distribución en 4 líneas de 3 fluorescentes permite configuraciones simétricas. En todo caso, la búsqueda de la eficiencia y el ahorro no debe repercutir en la calidad de la iluminación, por lo que es importante evitar zonas de perceptible menor intensidad lumínica.

Tercera fase:

Sustitución de los fluorescentes en las aulas de 3a, 4b, 5a y 5b, con 6 fluorescentes cada una, excepto 3a que tiene 8. Un total de 26 tubos LED. Se aplicará del mismo modo que la segunda fase.

En el resto de salas, por su uso poco intensivo, no merece la pena su sustitución. En estas salas, la amortización pasa de los 15 años, y el ahorro energético es insignificante. Además los actuales fluorescentes pueden tener una duración de entre 15 y 20 años. Como se ha dicho anteriormente, estas estancias pueden utilizarse como zonas de reutilización de los tubos sustituidos o ya adquiridos por el centro. Sólo cuando se agoten los fluorescentes en stock y los precios de los tubos LED hayan descendido como mínimo a la mitad, tendrá sentido en estos espacios con un uso inferior a los 500 h anuales. En el caso de la escuela son los espacios con un uso inferior a las 16 horas semanales. Qedarían excluidos, las aulas de informática, la de música o la de inglés, así como el gimnasio, el comedor y la biblioteca.

Al término de esta tercera fase se habrán sustituido 94 fluorescentes, un 53% del total, que representan el 77% del actual consumo en iluminación, con una inversión, si se instalan todos los tubos, de 7.520 €, y acumulando 94 tubos fluorescentes para ser utilizados de recambio en las zonas no sustituidas. Además con todos estos tubos, y el poco uso de éstos, y la larga duración de los LED, la escuela no deberá invertir en la compra de ningún tubo para iluminación en los próximos 25 años.

Teniendo en cuenta que tan sólo los 5 primeros años al término de las 3 fases, el ahorro en iluminación ascenderá a 16.218 kWh que a un coste actual de 0,175 €/kWh, serían 2.838€ y 1.020€ aproximadamente en renovación de fluorescentes fundidos. Un
total de 3.858€. Después de 8 años y contando con la inflación, podría considerarse la inversión amortizada.

Desde el punto de vista ecológico se habrá dejado de consumir 26.000 kWh, evitando la emisión de 10,92 toneladas de CO$_2$ y la generación de más de 150 tubos fluorescentes como residuos.
9.2 Sistema informático

9.2.1 Descripción y uso

Denominamos sistema informático, a todos los ordenadores, red de conexión, servidor, módems y pizarras interactivas que se encuentran en el centro.

Los ordenadores ubicados en aulas se utilizan según las horas previstas de clase y marcadas en el horario escolar. En algunas aulas como la de música, su uso es ocasional, al igual que ocurre en el aula de inglés o con el uso de las pizarras interactivas.

Para no repetir su cálculo adjuntamos tan sólo la tabla resumen de consumos del sistema:

<table>
<thead>
<tr>
<th>Sistema informático</th>
<th>% resp. total</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servidor + Racks + Router</td>
<td>45%</td>
<td>3.151.123</td>
</tr>
<tr>
<td>4 Pizarras interactivas</td>
<td>7%</td>
<td>510.893</td>
</tr>
<tr>
<td>Aula de informática – 24 ord</td>
<td>34%</td>
<td>2.355.091</td>
</tr>
<tr>
<td>Aula de idiomas – 10 ord</td>
<td>4%</td>
<td>280.368</td>
</tr>
<tr>
<td>Aula de música – 6 ord.</td>
<td>4%</td>
<td>305.856</td>
</tr>
<tr>
<td>Ordenadores varios – 4 ord.</td>
<td>6%</td>
<td>401.139</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>7.004.470</td>
</tr>
</tbody>
</table>

Tabla 24: Resumen de los consumos del sistema informático desglosado

Los 49 ordenadores del centro son de tipo sobremesa, con una gran variedad entre ellos, así como de las pantallas de los ordenadores, con mayoría predominante de tecnología tubo, junto alguna pantallas TFT, tal y como puede apreciarse en las siguientes fotografías:

![Foto20: Aula de música](image1)

![Foto21: Aula de informática](image2)

![Foto22: Aula de informática](image3)

![Foto23: Aula de Idiomas](image4)
Al igual que ocurre con la iluminación, hay otras opciones para el ahorro de energía del sistema informático, ya sea por sustitución o por buenas prácticas.

En el caso de sustitución, la informática actual nos ofrece los ordenadores portátiles, suficientemente potentes para usos generales y a un precio ligeramente superior. La gran diferencia radica en el consumo: un ordenador de sobremesa consume en reposo alrededor de 180Wh, pudiendo llegar a 280Wh a pleno rendimiento y siempre dependiendo de los componentes del mismo. Por el contrario, los ordenadores portátiles, están concebidos para minimizar su consumo, por lo que éste puede variar entre 70Wh a 90Wh, un consumo medio 65% inferior.

El precio de los portátiles va en función principalmente de su peso y de su batería. Sus características técnicas, influyen dependiendo de si son o no de última generación. Como nuestra propuesta es que su utilización sea exclusivamente como ordenadores de sobremesa, siempre enchufados, y sin necesidad de ser transportados, podemos considerar que en este aspecto es posible reducir mucho los costes, pudiendo encontrar portátiles con un coste entre 100 y 200€ más caros que uno de sobremesa convencional.

Nuevamente debemos considerar si el sobreprecio de un portátil es rentable gracias a su menor consumo, y como en el capítulo de la iluminación, dependerá de la cantidad de horas de uso. Suponiendo que el portátil en cuestión tenga un sobreprecio de 100€, queremos saber cuánto tiempo tardaremos en ahorrarlo por consumo eléctrico esta cantidad. 100 €= (220W-80W)/1000 x H x 0,175 €/kWh. H=4.081 horas. Esto es menos de un año si este ordenador permanece siempre encendido, pero en nuestro caso, los ordenadores con mayor intensidad de uso, a excepción del servidor, son los del aula de informática, con 500h anuales, lo que significa 8 años de amortización.

9.2.2 Buenas Prácticas

Las buenas prácticas en este aspecto también son ampliamente conocidas, como apagar el monitor si el usuario se ausenta durante unos minutos, o suspenderlo o apagarlo si este no va a utilizarse durante más de una hora.

Al igual que en el caso de la iluminación, proponemos que exista un encargado del control de apagado de los ordenadores al finalizar la clase si éstos no va a volver a utilizarse. Nuevamente ganamos en ahorro energético y en concienciar futuras generaciones.

En el caso que nos ocupa, pudimos observar, que en días en el que el centro estaba cerrado, servidor, módems y enrutadores, seguían en marcha, como un día cualquiera.

Ciertamente que los informáticos nunca están las 24 horas del día, y menos a las 8 de la mañana de los lunes cuando arrancan las clases, pero también es cierto que apagar un servidor como el de la escuela en cuestión, los viernes para volver a arrancarlo los lunes por la mañana a primera hora, tampoco es nada complejo: simplemente ordenar el apagado los viernes y darle a un botón el lunes. A veces, cierta comodidad y supuesto miedo del informático responsable a que se manipule el corazón del sistema,
se traslada a situaciones algo absurdas como esta. Los servidores arrancan como otro ordenador cualquiera, eso sí, igual necesitan algunos minutos extra, pero nada más.

También es cierto que quizá las horas del informático son más caras que la electricidad que pueda consumir el sistema en un mes, pero también es cierto que no pararlo puede conllevar graves consecuencias, como las que se producen en una típica tormenta, que corta el suministro eléctrico o hace saltar algún diferencial. Aunque el servidor tenga un SAI, si éste no es muy potente o programable, no aguanta más de una hora, produciéndose el apagado indebido del servidor.

Lo mismo pasa con los enrutadores, aunque con estos aparatos ya es un poco más complejo y puede no ser tan conveniente su apagado. Por un lado, son aparatos sin un interruptor accesible, por lo que hay que cortarles la corriente para apagarlos, y en segundo lugar son en su mayoría “inteligentes” es decir, “memorizan” las IP, de los aparatos conectados y las rutas más usuales para un acceso más rápido. Cortar la corriente de estos aparatos conlleva la pérdida de esta información, y el primer día de cada semana, la conexión a la red de los ordenadores es más lenta y alguna vez problemática.

A nivel de cuentas, el sistema que se deja en marcha los días del centro cerrado tiene una potencia de 482W, por lo que en un fin de semana consumirá 14,44 kWh. En un año el número de días festivos son 125, que equivalen a un consumo de 1.500kWh, sin contar con el mes de Agosto. Esto supondría un ahorro de 262 €/anuales.

9.2.3 Plan de actuación
Este proyecto propone la sustitución paulatina de los ordenadores del aula de informática por ordenadores portátiles.

Aunque el tiempo de amortización de la diferencia es alto, también es cierto que el ahorro anual posible en consumo también lo es, ya que cuando hablamos de 24 ordenadores, hablamos de pasar de un consumo de 2.355kWh/año a 856kWh/año, con un ahorro de 1.500kWh, evitándose la emisión de 0,63 toneladas de CO₂ anuales.

Natu ralmente, esta no es una inversión que deba hacerse de golpe, pero si pensar en ello en el momento de ir cambiando máquinas viejas. El sobrecoste de 100€ es completamente asumible, máquina a máquina, y los beneficios a largo plazo son muy notorios.

Cierto es, que también será necesario adquirir algún tipo de anclaje de estas máquinas a la mesa del aula, para evitar posibles sustracciones, aunque esto puede solventarse con algún tipo de cable-candado, como el que podemos ver en algunos almacenes.

En resumen, si la actuación propuesta se lleva a cabo en toda el aula, la inversión con máquinas de 500€ sería un total de 12.000€, con un sobrecoste de 2.400€ respecto a los equipos de sobremesa. Esta diferencia se amortizaría en 9 años. (2.400€ / 262 €/año de ahorro en consumo de energía).
10. Evaluación económica y conclusiones

El proyecto presentado no tiene como finalidad obtener beneficios monetarios, sino que ahorrar costes en el futuro. Por este motivo, el análisis económico se realizará mediante el análisis de Coste de Ciclo de vida CCV y no mediante un análisis coste-beneficio.

El proyecto, además de sus costes iniciales y el ahorro de costes futuros, también tiene unos beneficios intangibles: la menor emisión de gases efecto invernadero y el impacto didáctico sobre las nuevas generaciones.

En cada una de las propuestas planteadas se han hecho cálculos estimativos sobre los ahorros y tiempos de retorno económico. Para una correcta toma de decisiones será necesario el comparar el cálculo del coste del ciclo de vida, con y sin la aplicación de cada una de las propuestas del proyecto:

10.1 Evaluación de la instalación del aerogenerador

A continuación analizamos los costes del ciclo de vida, comparando los costes por consumo de energía eléctrica, con el aerogenerador y sin el aerogenerador. Esta comparación se realizará poniendo los costes que tendrán lugar en un futuro a valor presente actual VP. Esto se realiza teniendo en cuenta una tasa de descuento, el interés de incremento del coste, y el total de años del periodo estudiado.

Fórmulas empleadas:

El valor presente de un coste concreto en un determinado tiempo:

$$VP = Co \cdot \frac{1}{(1+d)^t}$$

El valor presente del coste total de un mantenimiento o coste regular anual al final de un determinado periodo:

$$VP = C_m \cdot \left[\frac{(1+d)^t - 1}{d(1+d)^t} \right]$$

Y para calcular el VP teniendo en cuenta la tasa de descuento y un incremento anual i del coste o servicio.

$$VP = \sum_{k=1}^{t} Co \cdot \frac{(1+i)^k}{(1+d)^k} = Co \cdot \frac{(1+i)}{(d-i)} \left[1 - \left(\frac{1+i}{1+d} \right)^t \right]$$

Estas fórmulas podrán ser o no aplicadas dependiendo del coste a calcular. Cada peculiaridad en el cálculo será especificada a continuación.

Datos a tener en cuenta:

- En el caso de tener aerogenerador, habrá unos costes por consumo eléctrico inferiores a los que se presentan en el caso de no tener aerogenerador, ya que éste produce electricidad que se traduce en menos consumo. El cálculo del
valor de la energía consumida, se realiza a partir de una tasa de descuento del 3% y de un incremento anual de la energía de un 4%.

- El precio de la energía se toma de referencia 0,175 €/kWh impuestos incluidos, que se extrae de las estadísticas de organismos oficiales y de las propias facturas de la escuela, dividiendo el total de la factura entre los kWh consumidos.

- Con el aerogenerador habrá costes de mantenimiento y costes de reparación. Se ha considerado un mantenimiento anual para lubricación y repaso. Una reparación/sustitución de las palas y rodaduras a los 10 años. Y un cambio de baterias a los 15 años.

<table>
<thead>
<tr>
<th>CASO A 20 AÑOS</th>
<th>Con aerogenerador</th>
<th>Descripción</th>
<th>Sin aerogenerador</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coste de adquisición</td>
<td>24.223</td>
<td>7.300</td>
<td>Baterías 15 años</td>
<td>0</td>
</tr>
<tr>
<td>Valor residual</td>
<td>4.146</td>
<td>6%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Consumo anual de electricidad</td>
<td>11.822</td>
<td>Total -8.711 kWh/año gen.</td>
<td>20533</td>
<td></td>
</tr>
<tr>
<td>Precio actual de la electricidad</td>
<td>0,175</td>
<td>0,175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coste de mantenimiento anual</td>
<td>320</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coste de reparación</td>
<td>680</td>
<td>Palas + rod. En mantenimiento 10 años</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Período en estudio</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 25: Datos principales para el cálculo del Coste del Ciclo de vida de la instalación del aerogenerador

No hay ninguna peculiaridad a tener en cuenta. Los valores presentes de los costes, serán:

VP coste adquisición	24.223,00 €	0,00 €
VP coste sustitución	4.041,83 €	0,00 €
VP coste residual	-4.146,00 €	0,00 €
VP coste Energético	45.866,12 €	79.662,41 €
VP de mantenimiento anual	3.820,14 €	0,00 €
VP reparación	376,50 €	0,00 €
TOTAL CCV	74.181,59 €	79.662,41 €

Tabla 26: Costes que tendrán lugar durante el ciclo de vida en Valor Presente

Los valores finales obtenidos son tan sólo para comparar ambas opciones, y no deben tomarse como una cifra exacta ya que éste valor dependerá de múltiples factores.

El estudio se ha extendido a los 20 años y se ha prescindido del análisis a 15 años por:
- Se espera una vida útil del aerogenerador de 20 años, sustituyendo palas y rodaduras a los 10 años.
- La esperanza de vida de las baterías es de 15 años, aunque esto es un caso optimista y su durabilidad es una incógnita ya que depende de los ciclos de carga y descarga. Un cálculo a 15 años nos coincide con este ciclo, dejando la duda si debe o no asignarse ya este cambio
- El resultado del CCV a 15 años resulta aún ligeramente negativo, y con el de 20 años es positivo incluyendo la sustitución de las baterías. Algo más de la mitad del valor residual, corresponde a ese cambio.
10.2 Cambio de las luminarias
Para el cálculo de la substitución de las luminarias, se utiliza el mismo método anterior.

A tener en cuenta:
- El cambio de fluorescentes por tubos LEDs, requiere una inversión inicial, que en este caso se ha calculado como única, aunque para su ejecución puede ser realizada en diferentes etapas.
- El cambio se traduce en un menor consumo debido a la menor potencia de esta tecnología.
- Será necesario calcular el coste de sustitución de los fluorescentes antiguos en el caso de seguir con fluorescentes. En el caso de instalación de LEDs, este coste no existirá ya que se utilizarán los tubos reemplazados como existencias para substituir los que se agoten en el tiempo.

CASO A 10 AÑOS

<table>
<thead>
<tr>
<th></th>
<th>Con tubos LED</th>
<th>Descripción</th>
<th>Sin cambios</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coste de adquisición</td>
<td>7.520</td>
<td>Compra de 94 tubos a 80 €/u</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Coste de sustitución</td>
<td>0</td>
<td></td>
<td>1.950,00</td>
<td>Coste de sustitución tubos F agotados</td>
</tr>
<tr>
<td>Valor residual</td>
<td>3.000</td>
<td>Vida útil 50.000h = 25-30 años</td>
<td>204,59</td>
<td>Vida útil 8000 h = 4 años</td>
</tr>
<tr>
<td>Consumo anual de electricidad</td>
<td>3.461</td>
<td>Total -3.341 kWh/año</td>
<td>6.803,00</td>
<td></td>
</tr>
<tr>
<td>Precio actual de la electricidad</td>
<td>0,175</td>
<td></td>
<td>0,175</td>
<td></td>
</tr>
<tr>
<td>Coste de mantenimiento anual</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Coste de reparación</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Período en estudio</td>
<td>10</td>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 27: Datos principales para el cálculo del Coste del Ciclo de vida del cambio de las luminarias

Especifidades en el cálculo:
- Para calcular los costes de sustitución de los fluorescentes se tiene en cuenta que hay 36 F. que trabajan 2.000 h/año, que equivalen a 4 años. Esto quiere decir que en este periodo de 10 años habrán sido cambiados 2 veces.
- De la misma manera hay otros 58F que trabajan unas 1.000 h/año, que equivalen a 8 años. En este periodo serán substituidos 1 vez.
- Estos costos se dan en distintos momentos en el tiempo, por eso su suma se expresa en rojo en la tabla.
- El valor residual será la parte proporcional de la vida útil que les resta a los fluorescentes substituidos. Esto es válido para los LEDs como para los fluorescentes.
- El total de energía consumida en el caso de incorporar LEDs, se calcula sumando la energía consumida por los fluorescentes sin substituir, más la energía consumida por los LEDs

<table>
<thead>
<tr>
<th></th>
<th>VP coste adquisición</th>
<th>7.520,00 €</th>
<th>0,00 €</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP coste sustitución</td>
<td>0,00 €</td>
<td></td>
<td>439,07 €</td>
</tr>
<tr>
<td>VP coste residual</td>
<td>-5.696,00 €</td>
<td>-204,59 €</td>
<td>6.389,77 €</td>
</tr>
<tr>
<td>VP coste Energético</td>
<td>12.559,85 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP de mantenimiento anual</td>
<td>0,00 €</td>
<td>0,00 €</td>
<td></td>
</tr>
<tr>
<td>VP reparación</td>
<td>0,00 €</td>
<td></td>
<td>0,00 €</td>
</tr>
<tr>
<td>TOTAL CCV</td>
<td>8.213,77 €</td>
<td>12.794,33 €</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 28: Costes que tendrán lugar durante el ciclo de vida en Valor Presente
10.3 Adquisición de ordenadores portátiles

Para la evaluación de los costes en el caso de optar por la compra de ordenadores portátiles en vez de ordenadores de sobremesa, utilizamos nuevamente las mismas fórmulas anteriores:

A tener en cuenta:

- La compra masiva y única en el tiempo de los ordenadores del aula de informática no es la metodología usada por la escuela, como resulta evidente mirando las fotografías del aula. Se opta por la adquisición / renovación progresiva. Como esta substitución se plantea como una opción en el momento de renovar los equipos, se ha supuesto que se adquieren dos ordenadores cada año.

- Al cabo de doce años se abran renovado todos los equipos del aula de informática.

- El periodo en estudio es de 15 años. La substitución total tiene lugar en 12 años y se dejan 3 en los que no habría substitución alguna.

- Para el cálculo del valor residual, se calcula el valor de los equipos al terminar el periodo. Se considera que la informática es amortizada en 5 años, por lo que se aplica la parte proporcional de los equipos más nuevos al final del periodo.

<table>
<thead>
<tr>
<th>CASO A 15 AÑOS</th>
<th>Con ord. portátiles</th>
<th>Descripción</th>
<th>Con ord. de sobremesa</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coste de adquisición</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>coste de sustitución 2u/año</td>
<td>1.000</td>
<td>Hasta año 12</td>
<td>800</td>
<td>Hasta año 12</td>
</tr>
<tr>
<td>Valor residual</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consumo anual</td>
<td>1652</td>
<td>2.640</td>
<td>440W500h/año24ord</td>
<td>39.600</td>
</tr>
<tr>
<td>Consumo total de electricidad</td>
<td>24.780</td>
<td>180W * 500haño</td>
<td>Consumo anual*15años</td>
<td></td>
</tr>
<tr>
<td>Precio actual de la electricidad</td>
<td>0,175</td>
<td>0,175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coste de mantenimiento anual</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coste de reparación</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Período en estudio</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 29: Datos principales para el cálculo del Coste del Ciclo de vida del cambio del tipo de ordenadores

Especificidades en el cálculo:

- La progresividad del cambio de equipos, se traduce en la coexistencia concreta de un número de portátiles y sobremesa distinto cada año, durante 12 años y hace necesario el cálculo de la energía consumida anualmente desde el inicio del periodo, para obtener el total consumido al final del mismo que se ha establecido de 15 años.

- Para el cálculo del coste de esa energía, también tendrá que ser calculada anualmente.

- No se incluye ningún otro gasto de reparación o mantenimiento ya que si éstos ocurren, pueden tener lugar tanto en unos como en los otros indistintamente.

VP coste adquisición	0,00 €	0,00 €
VP coste sustitución	6.230,28 €	4.984,23 €
VP coste residual	-200,00 €	-160,00 €
VP coste Energetico	4.631,72 €	7.493,43 €
VP de mantenimiento anual	0,00 €	0,00 €
VP reparación	0,00 €	0,00 €
TOTAL CCV	10.662,01 €	12.317,65 €

Tabla 30: Costes que tendrán lugar durante el ciclo de vida en Valor Presente
10.4 Conclusiones

El proyecto de instalación de un aerogenerador eólico, muestra signo positivo al cabo de 20 años, aunque de forma ajustada puede recuperar costos al cabo de 15 años.

Aunque económicamente no sea muy alentador, sin duda en esta valoración no se han incluido los beneficios intangibles que una apuesta como esta tiene sobre el medio ambiente y la sociedad, el prestigio y la valoración de la escuela, y del municipio que la acoge.

A menudo se realizan campañas e inversiones publicitarias que no tienen retorno económico alguno, pero que son consideradas como necesarias y convenientes. Este proyecto tiene que pasar por el sedal del análisis económico, pero a nivel institucional, cultural, y como reflejo de las convicciones de los responsables del municipio, de sus habitantes y de la escuela, esta acción superaría cualquier otra campaña analizada desde este punto de vista.

El impacto visual del aerogenerador, es mínimo a media distancia, pero destacable a corta. A nivel sonoro y de vibraciones se descartan las molestias ya que la torre se encuentra separada del centro y el nivel sonoro del aerogenerador, no se espera que supere los 55 dB, ayudados por la baja velocidad media del viento de la zona. Por la noche, la ausencia de vecinos asegura la ausencia de conflictos por el posible ruido.
Aunque en ésta locación no se cuenta con altas velocidades del viento, con éste proyecto se logra obtener una generación eléctrica importante que demuestra que aún en sitios muy difíciles, la energía eólica puede ser de gran utilidad.

Adicionalmente, para suplir y mejorar el suministro energético de la escuela, se puede considerar la sustitución de la caldera actual por una caldera de biomasa, y aprovechar las cubiertas actuales como cubiertas solares.

Por lo que se refiere al cambio de las luminarias, se recomienda que se considere firmemente la posibilidad de renovación con tubos LEDs, ya que su rentabilidad económica y calidad de la iluminación lo justifican.

Por lo que respecta al cambio paulatino de ordenadores de sobremesa a ordenadores portátiles, es una decisión a consensuar con los responsables informáticos, que prefieren los ordenadores de sobremesa por ser de menor coste y más rápidos. Estas diferencias se han acortado sensiblemente en los últimos años y los beneficios económicos se justifican a lo largo de la vida del aparato.

Adjuntamos tabla resumen de los beneficios que aportarían las soluciones planteadas en este proyecto:

<table>
<thead>
<tr>
<th></th>
<th>kWh/año ahorrados</th>
<th>Tn CO2 equivalentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerogenerador</td>
<td>8.711</td>
<td>3,67</td>
</tr>
<tr>
<td>Eficiencia en la iluminación</td>
<td>3.341</td>
<td>1,41</td>
</tr>
<tr>
<td>Buenas prácticas en la iluminación</td>
<td>442</td>
<td>0,19</td>
</tr>
<tr>
<td>Cambio de tipos de ordenadores (valor promedio)</td>
<td>988</td>
<td>0,42</td>
</tr>
<tr>
<td>Buenas prácticas en sistema informático</td>
<td>1.500</td>
<td>0,63</td>
</tr>
<tr>
<td>Totales anuales ahorrados</td>
<td>14.982</td>
<td>6,32</td>
</tr>
<tr>
<td>Consumo Anual Objetivo = C.Actual - Total ahorro</td>
<td>5.521</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 31: Resumen beneficios aportados por el proyecto

Es esencial constatar cómo sólo las buenas prácticas pueden representar un ahorro del 9% en el actual consumo eléctrico, que en este caso se han reflejado asumiendo el cambio de luminarias en las aulas. Sin estos cambios, sólo con las buenas prácticas puede lograrse un ahorro del 12%.

Gráfica 11: Distribución del consumo actual con la aplicación del proyecto
Proyecto de suministro eléctrico para abastecer una escuela situada en el municipio de Tiana mediante energía eólica.

- Documento 2-
Presupuestos y Plan de mantenimiento
1 Mediciones y Presupuesto

1.1 Mediciones

<table>
<thead>
<tr>
<th>Nº</th>
<th>Nombre</th>
<th>Descripción</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aerogenerador</td>
<td>Aerogenerador Bornay 6000</td>
<td>1 ud.</td>
</tr>
<tr>
<td>2</td>
<td>Regulador</td>
<td>Regulador Bornay 6.5 kW</td>
<td>1 ud.</td>
</tr>
<tr>
<td>3</td>
<td>Inversor</td>
<td>Steca Xtender XTH 6000 - 48</td>
<td>1 ud</td>
</tr>
<tr>
<td>4</td>
<td>Baterías</td>
<td>OPzS Solar 765</td>
<td>24 celdas</td>
</tr>
<tr>
<td>5</td>
<td>Cable CCA</td>
<td>s/UNE-20460</td>
<td>70 mts.</td>
</tr>
<tr>
<td>6</td>
<td>Cable CCC</td>
<td>s/UNE-20460</td>
<td>2 mts.</td>
</tr>
<tr>
<td>7</td>
<td>Medidor de energía</td>
<td>Circutor MK-30-DC</td>
<td>2 uds.</td>
</tr>
<tr>
<td>8</td>
<td>Fusibles</td>
<td>Olfer</td>
<td>3 uds.</td>
</tr>
<tr>
<td>9</td>
<td>Inversor</td>
<td>Steca Xtender XTH 6000 - 48</td>
<td>1 ud.</td>
</tr>
<tr>
<td>10</td>
<td>Relés Térmicos</td>
<td>AEG</td>
<td>2 uds.</td>
</tr>
<tr>
<td>11</td>
<td>Interruptores</td>
<td>Electan</td>
<td>1 ud.</td>
</tr>
<tr>
<td>12</td>
<td>Seccionador</td>
<td>Siemens</td>
<td>1 ud.</td>
</tr>
<tr>
<td>13</td>
<td>Varistores</td>
<td>NY3 Series</td>
<td>3 uds.</td>
</tr>
<tr>
<td>14</td>
<td>Torre de celosía</td>
<td>Torre P-750 de 18 mts</td>
<td>1 ud.</td>
</tr>
<tr>
<td>15</td>
<td>Pletina de fijación</td>
<td>Bornay</td>
<td>1 ud.</td>
</tr>
<tr>
<td>16</td>
<td>Acople a torre</td>
<td>Barra ST-52 80x64 con pletina negra 60 x 6</td>
<td>6 uds.</td>
</tr>
<tr>
<td>17</td>
<td>Tornillos</td>
<td>M10 x 40</td>
<td>6 uds.</td>
</tr>
<tr>
<td>18</td>
<td>Arandelas</td>
<td>M10 x 40</td>
<td>12 uds.</td>
</tr>
<tr>
<td>19</td>
<td>Tuercas</td>
<td>M10</td>
<td>6 uds.</td>
</tr>
<tr>
<td>20</td>
<td>Puertas metálicas</td>
<td>Puertas metálicas de 1250 x 1000</td>
<td>2 uds</td>
</tr>
</tbody>
</table>
1.2 Presupuesto

<table>
<thead>
<tr>
<th>Nº</th>
<th>Unid.</th>
<th>Descripción</th>
<th>Características</th>
<th>Cantidad</th>
<th>Precio ud</th>
<th>Precio total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>INSTALACION AEROGENERADOR</td>
<td></td>
<td></td>
<td></td>
<td>24.223,04 €</td>
</tr>
<tr>
<td>1</td>
<td>ud</td>
<td>Aerogenerador</td>
<td>Suministro de aerogenerador Bornay 6000 juntamente con regulador Bornay 6,5 kW. Transporte incluido</td>
<td>1</td>
<td>10.024,99 €</td>
<td>10.024,99 €</td>
</tr>
<tr>
<td>2</td>
<td>ud</td>
<td>Torre celosia</td>
<td>Suministro de Torre autosoplada de celosía P-750, con transporte con camión grúa, con pluma de 25 mts para su montaje</td>
<td>1</td>
<td>1.850,00 €</td>
<td>1.850,00 €</td>
</tr>
<tr>
<td>3</td>
<td>ud</td>
<td>Armario de equipamientos</td>
<td>Obra civil. Construcción de pequeño armario adosado a la pared, tal y como se indica en la memoria del proyecto. Suministro e instalación de puertas metálicas, especificadas en la memoria</td>
<td>1</td>
<td>500,00 €</td>
<td>500,00 €</td>
</tr>
<tr>
<td>5</td>
<td>celdas</td>
<td>Baterías</td>
<td>Suministro y transporte de baterías OPzS Solar 765</td>
<td>24</td>
<td>306,21 €</td>
<td>7.349,04 €</td>
</tr>
<tr>
<td>6</td>
<td>ud</td>
<td>Inversor</td>
<td>Suministro de Inversor Steca Xtender XTH 6000-48</td>
<td>1</td>
<td>3.200,00 €</td>
<td>3.200,00 €</td>
</tr>
<tr>
<td>7</td>
<td>ud</td>
<td>Instalación eléctrica</td>
<td>Suministro y conexión del cableado del generador hasta el regulador (20 mts). Conexiónado del regulador con las baterías y el inversor. Instalación de todo el conjunto en el armario construido para ello.</td>
<td>1</td>
<td>1.300,00 €</td>
<td>1.300,00 €</td>
</tr>
</tbody>
</table>

TOTAL 24.223,04 €
2. Plan de Mantenimiento

Como cualquier otra instalación, el conjunto eólico proyectado también necesita un plan de mantenimiento para evitar accidentes y asegurar el buen funcionamiento del sistema a lo largo del tiempo.

El plan de mantenimiento que proponemos sigue los consejos del fabricante del aerogenerador y comprende las siguientes acciones distribuidas periódicamente:

1. Volver a apretar toda la tornillería. Esta acción puede llevarse a cabo a partir del primer mes después de la instalación del aerogenerador, ya que el movimiento constante tiende a aflojar la tornillería.

2. Realizar inspecciones de mantenimiento. Se recomienda hacer una cada año y, además de apretar la tornillería, también se debe revisar los siguientes puntos:
 - Comprobar que todos los cables de la instalación están en buen estado
 - Comprobar, visualmente, que las hélices del aerogenerador siguen su movimiento habitual y no existen complicaciones
 - Comprobar manualmente que el sistema de frenado automático funciona

Las inspecciones de mantenimiento semestrales tienen que prestar una especial atención a los siguientes elementos:

- **Rodamientos.** El aerogenerador escogido lleva rodamientos blindados, los cuales no necesitan mantenimiento dada su alta calidad, según informa el fabricante. Simplemente, se tiene que comprobar que giren libremente y que no se produzca ningún roce o vibración

- **Tornillería.** El conjunto proyectado cuenta con tornillería de acero inoxidable. En las inspecciones se comprobará que no falte ningún tornillo y, además, que estén bien ajustados.

- **Cableado.** Para prevenir una posible desconexión, la cual haría funcionar al aerogenerador sin ningún control, se tiene que revisar que las uniones, los empalmes y las regletas de conexiones estén en buen estado.

- **Hélices.** Las hélices del aerogenerador están hechas de fibra de vidrio o fibra de carbono. La inspección tiene que fijarse en que lleven las cintas protectoras de poliuretano abrasivo para evitar que los cambios atmosféricos y la erosión afecten directamente sobre la hélice y terminen por reducir su vida útil.

- **Amortiguadores.** El amortiguador hidráulico que el aerogenerador tiene instalado deberá substituirse si se observan pérdidas de aceite o si su holgura típica al inicio del retroceso tuviera un tamaño más grande de lo habitual.

- **Engrase.** En cualquier otro sistema sería importante, también, el engrase periódico de las partes móviles. En nuestro caso, no obstante, las tres partes móviles del aerogenerador (eje delantero, eje de orientación y eje de inclinación) vienen engrasadas de por vida.
La siguiente tabla muestra todas las acciones de mantenimiento requeridas distribuidas en el tiempo:

<table>
<thead>
<tr>
<th>ACCIÓN</th>
<th>MES 1</th>
<th>MES 2</th>
<th>MES 3</th>
<th>MES 4</th>
<th>MES 5</th>
<th>MES 6</th>
<th>MES 7</th>
<th>MES 8</th>
<th>MES 9</th>
<th>MES 10</th>
<th>MES 11</th>
<th>MES 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re-apretar tornillería</td>
<td></td>
</tr>
<tr>
<td>Comprobación cables</td>
<td></td>
</tr>
<tr>
<td>Comprobación Hélices</td>
<td></td>
</tr>
<tr>
<td>Comprobación sistema frenado</td>
<td></td>
</tr>
<tr>
<td>Comprobación elementos</td>
<td></td>
</tr>
<tr>
<td>Rodamientos</td>
<td></td>
</tr>
<tr>
<td>Tornillería</td>
<td></td>
</tr>
<tr>
<td>Cableado</td>
<td></td>
</tr>
<tr>
<td>Hélices</td>
<td></td>
</tr>
<tr>
<td>Amortiguadores</td>
<td></td>
</tr>
<tr>
<td>Comprobación regulador</td>
<td></td>
</tr>
<tr>
<td>Comprobación inversor</td>
<td></td>
</tr>
<tr>
<td>Comprobación baterías</td>
<td></td>
</tr>
<tr>
<td>Comprobación generación</td>
<td></td>
</tr>
</tbody>
</table>

Con el fin de facilitar al máximo el mantenimiento e interferir lo mínimo posible en las tareas de la escuela, se ha proyectado un plan de mantenimiento predictivo de las instalaciones con las mínimas interferencias. Se realizarán las tareas definidas anteriormente, y además se comprobará el estado general de todos los elementos. Tres veces al año, comprobaremos los valores de generación.

Los planes de mantenimiento correctivo serán definidos según necesidades específicas en el momento de fallo.
3. Bibliografía

Realización de la búsqueda y presentación de las referencias bibliográficas escogidas.

5. Estaciones meteorológicas

6. Agrupación astronómica

7. Consell Comarcal del Maresme

8. Institut Català de la Energia

9. Instituto para Diversificación y Ahorro de la Energía

10. Asociación de productores de energías renovables

11. Ministerios

13. Aerogeneradores y equipos

Aerogeneradores

Baterías

Proyecto Final de Master

Documento 2: Presupuesto y Plan de mantenimiento

Inversores

Webs comerciales

14. Otros

Iluminación

Material Máster
