Titulació:

Enginyeria Industrial

Alumne (nom i cognoms):

Sònia Bouso Crusellas

Títol PFC:

“Projecte d'implantació d'energia solar fotovoltaica a un hipermercat situat al Polígon Industrial de Valls”

Director del PFC:

Daniel Garcia-Almiñana

Convocatòria de lliurament del PFC:

1ra Convocatòria Curs 2010/2011
Titulació:

Enginyeria Industrial

Alumne (nom i cognoms):

Sònia Bouso Crusellas

Títol PFC:

"Projecte d'implantació d'energia solar fotovoltaica a un hipermercat situat al Polígon Industrial de Valls"

Director del PFC:

Daniel Garcia-Almiñana

Convocatòria de lliurament del PFC:

1ra Convocatòria Curs 2010/2011

Contingut d'aquest volum:

-MEMÒRIA-
-PRESSUPOST-
-PLEC DE CONDICONS TÈCNIQUES-
-ESTUDI DE SEGURETAT I SALUT-
Memòria
Índex

1 Objecte .. 4
2 Justificació del projecte .. 4
3 Antecedents .. 6
 3.1 Aspectes generals de les instal·lacions fotovoltaiques .. 6
 3.1.1 Situació i orientació dels mòduls fotovoltaics ... 7
 3.1.2 Influència de la climatologia .. 7
4 Abast ... 8
5 Especificacions bàsiques ... 8
6 Classificació de l’activitat .. 9
 6.1 Classificació segons el Reial Decret 1578/2008 .. 9
 6.2 Classificació segons la Llei 20/2009 .. 9
 6.3 Classificació segons CCAE .. 9
7 Emplaçament de la instal·lació ... 10
 7.1 Descripció de la coberta on s’ubicarà la instal·lació 12
8 Característiques pel dimensionament de la captació solar 14
 8.1 Radiació .. 14
 8.2 Climatologia de l’Alt Camp ... 17
 8.2.1 Temperatura i precipitació .. 17
 8.2.2 Vent ... 18
9 Estudi previ .. 19
 9.1 Mòduls fotovoltaics ... 19
 9.2 Tipus de captació .. 21
 9.2.1 Captació fixa .. 21
 9.2.2 Captació amb seguiment en un eix .. 22
 9.2.3 Captació adoptada a la instal·lació .. 23
10 Descripció tècnica de la instal·lació solar fotovoltaica 26
 10.1 Camp fotovoltaic .. 26
10.2 Mòduls fotovoltaics ... 26
10.3 Estructures de fixació .. 28
10.4 Inversors de corrent.. 31
10.5 Monitorització... 33
10.6 Instal·lació elèctrica ... 35
 10.6.1 Punt de connexió a la xarxa 36
 10.6.2 Caixa general de protecció 36
 10.6.3 Equips de mesura .. 37
 10.6.4 Línies previstes ... 38
 10.6.5 Conductors .. 40
 10.6.6 Proteccions .. 42
10.7 Manteniment i garanties ... 44
 10.7.1 Manteniment .. 44
 10.7.2 Accés a la instal·lació, zones de pas i mesures de
 seguretat de la coberta ... 45
 10.7.3 Garantia ... 45
11 Producció energètica ... 46
12 Impacte ambiental ... 49
 12.1 Afectació mediambiental a la fase de fabricació dels panells
cintes fotovoltaics .. 49
 12.2 Afectació mediambiental a la fase constructiva de la
 instal·lació .. 50
 12.3 Afectació mediambiental a la fase d’explotació 50
 12.3.1 Afectació al clima .. 51
 12.3.2 Afectació al cicle de l’aigua 51
 12.3.3 Afectació a la geologia 51
 12.3.4 Afectació a la flora i la fauna 51
 12.3.5 Reciclatge de la instal·lació 52
 12.3.6 Estalvi d’emissions contaminants a l’atmosfera 52
13 Impacte social ... 54
14 Estudi econòmic ... 54
14.1 Inversió ... 54
14.2 Previsió d’ingressos... 55
14.3 Finançament .. 55
14.4 Previsió de despeses ... 55
14.5 Paràmetres d’estudi .. 56
14.6 Resultats de l’estudi econòmic A 56
 14.6.1 Producció i ingressos d’explotació 57
 14.6.2 Despeses d’explotació ... 58
 14.6.3 Balanç final ... 59
14.7 Resultats de l’estudi econòmic B 61
 14.7.1 Producció i ingressos d’explotació 62
 14.7.2 Despeses de finançament i explotació 63
 14.7.3 Balanç final ... 65
15 Planificació i programació ... 67
16 Conclusions i recomanacions ... 69
17 Bibliografia i normativa ... 70
 17.1 Documentació d’Internet (URL) 70
 17.2 Documentació bibliogràfica 71
 17.3 Normativa .. 72
1 Objecte

L’objecte del present document és definir el projecte tècnic executiu d’una instal·lació solar fotovoltaica sobre coberta i de connexió a la xarxa elèctrica, ubicada a la parcel·la 22 del Polígon Industrial de Valls, comarca de l’Alt Camp, Tarragona.

2 Justificació del projecte

Les energies renovables en general, i l’energia solar fotovoltaica en particular, tenen un futur molt prometedor. Les instal·lacions fotovoltaiques sobre coberta seran l’aplicació solar més estesa durant els pròxims anys, una nova opció per les empreses de contribuir al desenvolupament sostenible i rendibilitzar superfícies lliures mitjançant la producció d’electricitat.

El marc regulatori favorable a la seva implantació, així com l’evolució tecnològica ha contribuït a aconseguir per primera vegada, el lideratge mundial al 2008 tant en potència fotovoltaica per càpita, amb 75,19 W/habitant, com en potència instal·lada, per davant inclús d’Alemanya i EE.UU., amb 2661 MW (informe de 2009 elaborat per ASIF). L’avanç ha continuat durant el 2009, any on la cobertura de la demanda d’electricitat d’origen fotovoltaic es va situar al voltant del 1,5% i la potència instal·lada va arribar als 3501 MW, segons dades de la Comissió Nacional de l’Energia (CNE).

Aquesta font d’energia té un paper destacat al ‘Pla d’Energies Renovables 2011-2020’ que contribuirà a que a l’any 2020, el 20% del consum energètic sigui d’origen renovable, tal com recull la Directiva 2009/28/CE.

El desenvolupament de noves instal·lacions sobre coberta en naus, zones d’aparcament i la integració arquitectònica dels sistemes fotovoltaics al propi edifici seran el principal focus de creixement de la industria fotovoltaica. La legislació vigent (Codi Tècnic de l’Edificació i Real Decret 1578/2008 de Retribució Fotovoltaica) s’han marcat com a objectiu la plena integració en el desenvolupament urbanístic, d’aquesta manera no només es compleix la normativa europea sobre ‘Eficiència Energètica’ sinó que s’avança cap a la consolidació d’un subministrament energètic d’origen renovable sostenible.
Les cobertes solars representen una inversió a mig termini altament rendible i segura gràcies a la qualitat dels equips utilitzats, la fiabilitat de la instal·lació i el mínim cost de manteniment. La seguretat de la inversió s’ha garantit amb l’aprovació del Real Decret 1578/2008 de Retribució Fotovoltaica, que obliga a la companyia elèctrica distribuïdora a comprar el 100% de l’energia elèctrica generada durant un període de 25 anys a un preu determinat de 0,34 €/kWh per les instal·lacions de fins a 20 kW i de 0,32 €/kWh per les superiors a aquesta quantitat. Amb els ingressos derivats de la generació elèctrica obtinguda de l’energia solar es recupera la inversió realitzada en un termini molt inferior a la vida útil dels equips.

L’energia solar fotovoltaica aporta a les empreses una altra sèrie d’avantatges fiscals com la possibilitat de reduir fins el 4% les inversions realitzades, mitjançant la desgravació en el pagament d’impostos de societats, tal i com es recull a la Llei 35/2006 del IRPF.

A mode de síntesi, els principals motius o avantatges estratègics de l’energia solar fotovoltaica són,

- Reducció d’emissió de contaminants a l’atmosfera
- Augment de la independència energètica
- Recurs inesgotable i net
- Condicions climàtiques molt favorables a Espanya
- Augment vertiginós de la demanda d’energia elèctrica
- Proximitat als punts de consum, l’energia és generada a prop del consum i allibera pressió sobre l’infraestructura de transport.
- Inversió rendible i garantida

Segons el Codi Tècnic de l’Edificació, Secció HE 5 - Contribució fotovoltaica mínima d’energia elèctrica, s’han d’incorporar sistemes de captació i transformació d’energia solar per procediments fotovoltaics en hipermercats amb una superfície construïda superior a 5000 m². Al cas que ens ocupa al tractar-se d’una superfície construïda de 6291 m² és necessari realitzar l’estudi d’implantació.

Des del punt de vista corporatiu de Punt S.A. es realitza una millora d’imatge sobre la societat i el medi ambient, que s’ha convertit en un objectiu prioritari per la majoria d’empreses.
El projecte tindrà com a criteri principal, l’aproveitament màxim del rendiment dels panells i la resta d’elements que formaran part de la instal·lació, optimitzant l’espai disponible.

A més de definir la instal·lació, s’estudiarà l’affectació a tots els nivells i es realitzarà el balanç d’estalvi energètic que suposa la instal·lació.

3 Antecedents

El peticionari del projecte és **PUNT S.A.**, societat promotora de la instal·lació i que s’encarregarà de realitzar l’explotació energètica d’aquesta.

La instal·lació s’ubicarà a la coberta d’una nau, construïda al Polígon Industrial de Valls, comarca de l’Alt Camp (Tarragona). La nau és de la mateixa titularitat que el promotor de la instal·lació fotovoltaica.

L’activitat a realitzar serà la pròpia d’una explotació energètica en règim de producció especial, mitjançant panells fotovoltaics connectats a la xarxa. Aquesta activitat vindrà regulada per Reial Decret 661/2007 (substitueix l’anterior Reial Decret 436/2004 de data 12 març) i el Reial decret 1578/2008 que estableixen la metodologia per a l’actuació i sistematització del règim jurídic i econòmic, respectivament, de les activitats de producció d’energia elèctrica en règim especial.

3.1 Aspectes generals de les instal·lacions fotovoltaiques

Fins ara, l’aplicació més coneguda d’energia solar fotovoltaica era l’electrificació autònoma d’indrets en que no es disposava de xarxa elèctrica convencional degut al seu emplaçament.

En aquest moment, l’opció que està prenent més força en el sector és la implantació d’instal·lacions fotovoltaiques per tal de generar electricitat i injectar-la directament a la xarxa sense necessitat d’acumular-la en bateries. Això resulta més econòmic i més sostenible des del punt de vista ambiental, disposar del centre generador al costat del lloc de consum evita les pèrdues originades en el transport de l’energia per les línies d’alta tensió.
L’equip bàsic que es necessita per a la producció d’energia a partir de la radiació solar consisteix en les plaques fotovoltaïques, un ondulador que transforma el corrent elèctric continu generat, en corrent altern per injectar a la xarxa i, finalment, un comptador que registri l’energia elèctrica neta que es ven a la xarxa.

Durant les hores de sol, la instal·lació fotovoltaica produeix energia elèctrica, injectant a la xarxa tot el corrent generat, ja que la venda d’electricitat neta està primada i la inversió econòmica es recupera més ràpidament.

3.1.1 Situació i orientació dels mòduls fotovoltaics

Els mòduls fotovoltaics es poden instal·lar en qualsevol emplaçament on la superfície dels mòduls estigui lliure d’obstacles que puguin fer ombra i s’asseguin unes certes condicions de radiació solar.

L’òptima orientació dels mòduls fotovoltaics és cap al sud, tot i que la pèrdua per desviació en l’orientació és de l’ordre del 0,2% per cada grau de desviació respecte la coordenada zero (sud).

Així mateix, la inclinació òptima dels mòduls depèn de la latitud de l’indret on es volen col·locar (entre 5 i 10 graus d’inclinació menys, respecte el valor de la latitud de l’emplaçament), tot i que dependrà de la situació i del tipus de radiació estacional que es vulgui optimitzar.

Catalunya es troba a uns 41º de latitud, així doncs, la inclinació òptima dels panells que s’instal·len per aprofitar la radiació solar durant tot l’any oscil·la entre els 30º i els 40º respecte l’horitzontal.

3.1.2 Influència de la climatologia

Els mòduls fotovoltaics generen electricitat durant tot l’any, mentre hi hagi radiació solar. Normalment a l’estiu es genera més electricitat degut a l’increment de la intensitat i el temps d’insolació, tot i que a l’hivern també es genera electricitat fins i tot en dies ennuvolats o amb boira.

La generació d’electricitat és proporcional a la intensitat de radiació, però no depèn directament de la temperatura, al contrari, per temperatures baixes augmenta el voltatge generat i els dispositius electrònics funcionen més eficientment.
4 Abast

El projecte descriurà el disseny i el dimensionament de la instal·lació fotovoltaica on es definiran tots els elements i sistemes necessaris de generació, protecció i mesura.

Els principals ítems per a la realització del projecte s’anomenen a continuació,

- Estudi previ del tipus de panells a utilitzar segons cost i eficiència
- Estudi previ del tipus de tecnologia a aplicar, fixa o mòbil
- Disseny del camp fotovoltaic
- Dimensionament del sistema de protecció
- Dimensionament de la instal·lació elèctrica i de control
- Realització del pressupost i estudi de la seva viabilitat
- Consideració de l’impacte ambiental
- Estudi de seguretat i salut

5 Especificacions bàsiques

<table>
<thead>
<tr>
<th>Tipus d’instal·lació</th>
<th>Fotovoltaica sobre coberta connectada a la xarxa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emplaçament</td>
<td>C/ Artesans s/n – Ctra. del Pla, nº 226</td>
</tr>
<tr>
<td></td>
<td>Polígon Industrial de Valls, Parcel·la 22</td>
</tr>
<tr>
<td></td>
<td>43800 – Valls (Tarragona)</td>
</tr>
<tr>
<td></td>
<td>Latitud 41º18‘48”N</td>
</tr>
<tr>
<td></td>
<td>Longitud 1º16’11”E</td>
</tr>
<tr>
<td></td>
<td>Altitud 266m</td>
</tr>
<tr>
<td></td>
<td>Coordenades UTM E 355272 –</td>
</tr>
<tr>
<td></td>
<td>N 4575177</td>
</tr>
<tr>
<td>Superfície disponible</td>
<td>4750 m²</td>
</tr>
<tr>
<td>de coberta</td>
<td></td>
</tr>
</tbody>
</table>
6 Classificació de l’activitat

6.1 Classificació segons el Reial Decret 1578/2008

Segons el Reial Decret 1758/2008, del 26 de setembre, aquesta instal·lació és del tipus I.2: Cobertes o façanes de construccions fixes, tancades, fetes de materials resistentes, dedicades a usos residencial, de serveis, comercial o industrial, incloses les agropecuàries, i de potència superior a 20 kW.

6.2 Classificació segons la Llei 20/2009

Segons la Llei 20/2009 l’activitat resta classificada a l’Annex III – Règim de comunicació,

1.12. Energia / Instal·lacions industrials, i d’altres tipus, per a la fabricació d’energia elèctrica, vapor i aigua calenta, amb una potència tèrmica de fins a 0.2 MW.

6.3 Classificació segons CCAE

Organisme responsable	Institut d'Estadística de Catalunya
Ámbit d'aplicació	Catalunya
Referència normativa	Ordre ECF/217/2004, de 15 de juny 2004
Any d'entrada en vigor	Català

40115 Producció d’energia elèctrica d’altres tipus

Correspondències CCAE-93 REV.1 (ca)-CCAE-93 (ca)

40104 P3 Producció d’altres energies

Correspondències CCAE-93 REV.1 (ca)-CNAE-93 REV.1 (es)

40115 Producción de otra energía eléctrica
7 Emplaçament de la instal·lació

La instal·lació projectada s’ubicarà a la coberta d’una nau destinada a activitat comercial que es troba al Polígon Industrial de Valls, comarca de l’Alt Camp, Tarragona. (Veure plànols 1. Situació i 2. Emplaçament)

La nau es troba a la parcel·la 22 (17.669 m²) i té dos accessos. L’accés dels clients es realitza per la carretera del Pla nº 226. El punt de càrrega i descàrrega es duu a terme per l’accés del carrer Artesans.

A la mateixa parcel·la hi ha una estació de servei que pertany al mateix titular de la nau.

L’edifici consisteix en un hipermercat amb una zona superior d’oficines.

A la planta baixa hi ha la zona comercial d’accés al públic juntament amb el magatzem i altres zones de suport.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Superfície (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accés-Vestíbul</td>
<td>239,11</td>
</tr>
<tr>
<td>Fleca</td>
<td>15,33</td>
</tr>
<tr>
<td>Obrador fleca</td>
<td>26,24</td>
</tr>
<tr>
<td>Cambra fleca 1</td>
<td>5,77</td>
</tr>
<tr>
<td>Cambra fleca 2</td>
<td>5,77</td>
</tr>
<tr>
<td>Serveis</td>
<td>25,17</td>
</tr>
<tr>
<td>Serveis minusvàlids</td>
<td>5,02</td>
</tr>
<tr>
<td>Despatx</td>
<td>19,19</td>
</tr>
<tr>
<td>Zona de caixes</td>
<td>87,84</td>
</tr>
<tr>
<td>Zona de ventes</td>
<td>2381,34</td>
</tr>
<tr>
<td>Secció càrniques</td>
<td>32,98</td>
</tr>
<tr>
<td>Secció peix</td>
<td>20,43</td>
</tr>
<tr>
<td>Magatzem</td>
<td>680,90</td>
</tr>
<tr>
<td>Cambra fruita</td>
<td>12,88</td>
</tr>
<tr>
<td>Cambra carn</td>
<td>12,88</td>
</tr>
<tr>
<td>Zona</td>
<td>Superfície (m²)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Obrador xarcuteria</td>
<td>15,62</td>
</tr>
<tr>
<td>Cambra xarcuteria</td>
<td>12,88</td>
</tr>
<tr>
<td>Cambra peix</td>
<td>12,88</td>
</tr>
<tr>
<td>Cambra congelats</td>
<td>12,88</td>
</tr>
<tr>
<td>Grup electrogen</td>
<td>21,06</td>
</tr>
<tr>
<td>Quadre elèctric nau</td>
<td>4,37</td>
</tr>
<tr>
<td>Escala</td>
<td>35,10</td>
</tr>
<tr>
<td>Zona de control</td>
<td>10,09</td>
</tr>
<tr>
<td>Cambra neteja</td>
<td>9,04</td>
</tr>
<tr>
<td>Sala bombes d’aigua</td>
<td>31,50</td>
</tr>
<tr>
<td>Cambra d’escombraries</td>
<td>28,43</td>
</tr>
<tr>
<td>Zona de campanyes</td>
<td>598,45</td>
</tr>
<tr>
<td>Vestíbul administració</td>
<td>65,63</td>
</tr>
<tr>
<td>Local sense ús</td>
<td>899,29</td>
</tr>
</tbody>
</table>

Superfície útil planta baixa 5353,57

Superfície construïda planta baixa 5468,37

Taula 1. Zones ubicades a la planta baixa.

Les zones de manteniment i maquinaria s’ubiquen a una zona altell. En aquesta planta superior hi haurà una sala específica per a la instal·lació fotovoltaica en qüestió.

L’accés a la coberta es durà a terme per una porta abatible ubicada al sostre del vestíbul que comunica a una zona exterior transitable.
Taula 2. Zonas ubicades a l’altell.

La zona d’administració i de personal s’ubica en una zona altell totalmente independent a l’anterior i amb un accés directe des de la planta baixa.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Superfície (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administració i de personal</td>
<td>330,14</td>
</tr>
<tr>
<td>Superfície útil planta altell 1</td>
<td>444,92</td>
</tr>
<tr>
<td>Superfície construïda planta altell 1</td>
<td>468,89</td>
</tr>
</tbody>
</table>

Taula 3. Zona administració.

L’edifici té una superfície útil total de 6129 m² i una superfície construïda de 6291 m².

7.1 Descripció de la coberta on s’ubicarà la instal·lació

El tancament horitzontal exterior és una coberta metàl·lica seguint la pendent de la jàssera del 3%.

L’orientació de la coberta és de 25º a l’oest.

La coberta està formada amb la unió de diversos panells fabricats per l’empresa Prefabricats Planas. El panell és del tipus HI-CT que constitueix un sistema de tancament lleuger per a cobertes, composat per una cara d’acer, nervada alta a l’exterior, una ànima aïllant d’escuma de poliuretà sense HCFC’S i una cara d’acer nervada plana a l’interior.
L’acabat del panell està compost d’una xapa d’acer DX51D (segons norma EN 10142), de gruix 0,5 mm, galvanitzada en calent Z 225 i prelacada (segons norma EN 10169).

El panell de coberta compleix les exigències del Reglament de Seguretat en Cas d’Incendi als Establiments Industrials ja que és del tipus M2.

El panell està col·locat en el sentit de la pendent, tancant d’un sol cop tot el faldó. El pes propi de la coberta és de 10,2 kg/m².

La junta longitudinal (veure figura 2, unió entre panells) està resolt mitjançant un encaix encadellat i un perfil de tapajuntes, de polietilè amb cel·les tancades, que garanteix l’estanquitat i amaga les fixacions.
8 Característiques pel dimensionament de la captació solar

8.1 Radiació

Si es realitza un estudi de les dades de radiació solar que es registren a diferents observatoris de Catalunya (Atlas de radiació solar a Catalunya editat per l’Institut Català d’Energia) es pot concloure que tot el país té unes característiques molt favorables pel que fa a la radiació solar.

Tanmateix serà convenient realitzar un estudi específic de la coberta per tal d’evitar problemes d’ombres que puguin minvar el rendiment de la instal·lació.

(Font: Atlas de radiació solar a Catalunya. Edició 2001)
Segons el mapa anterior, a la situació de Valls hi ha una irradiació global diària d’aproximadament 15 MJ/m².

Tenint en compte que l’orientació de la coberta és de 25º i consultant la taula més adient de l’Annex IV - Taules de radiació solar global diària sobre superfícies inclinades (MJ/m²/dia) de l’Atlas de radiació solar a Catalunya, es pot preveure que la inclinació òptima serà propera a 35º.

<table>
<thead>
<tr>
<th>Inclinació</th>
<th>Gen</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>Mai</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Set</th>
<th>Oct</th>
<th>Nov</th>
<th>Des</th>
<th>Anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>5º</td>
<td>8.43</td>
<td>11.24</td>
<td>15.65</td>
<td>20.33</td>
<td>23.81</td>
<td>25.40</td>
<td>24.63</td>
<td>21.66</td>
<td>17.28</td>
<td>12.54</td>
<td>8.80</td>
<td>7.15</td>
<td>16.41</td>
</tr>
<tr>
<td>30º</td>
<td>11.59</td>
<td>14.47</td>
<td>18.28</td>
<td>21.64</td>
<td>23.54</td>
<td>24.23</td>
<td>23.98</td>
<td>22.37</td>
<td>19.36</td>
<td>15.44</td>
<td>12.11</td>
<td>10.54</td>
<td>18.14</td>
</tr>
<tr>
<td>40º</td>
<td>12.49</td>
<td>15.16</td>
<td>18.58</td>
<td>21.33</td>
<td>22.60</td>
<td>22.97</td>
<td>22.77</td>
<td>21.82</td>
<td>19.42</td>
<td>15.95</td>
<td>12.93</td>
<td>11.45</td>
<td>18.14</td>
</tr>
<tr>
<td>50º</td>
<td>13.06</td>
<td>15.46</td>
<td>18.41</td>
<td>20.52</td>
<td>21.17</td>
<td>21.21</td>
<td>21.17</td>
<td>20.76</td>
<td>19.00</td>
<td>16.06</td>
<td>13.42</td>
<td>12.07</td>
<td>17.70</td>
</tr>
<tr>
<td>65º</td>
<td>13.29</td>
<td>15.21</td>
<td>17.44</td>
<td>18.57</td>
<td>18.33</td>
<td>17.94</td>
<td>18.10</td>
<td>18.45</td>
<td>17.66</td>
<td>15.54</td>
<td>13.51</td>
<td>12.40</td>
<td>16.37</td>
</tr>
<tr>
<td>70º</td>
<td>13.19</td>
<td>14.94</td>
<td>16.90</td>
<td>17.70</td>
<td>17.21</td>
<td>16.75</td>
<td>16.94</td>
<td>17.46</td>
<td>16.99</td>
<td>15.17</td>
<td>13.36</td>
<td>12.35</td>
<td>15.75</td>
</tr>
<tr>
<td>75º</td>
<td>13.01</td>
<td>14.57</td>
<td>16.25</td>
<td>16.73</td>
<td>16.08</td>
<td>15.50</td>
<td>15.75</td>
<td>16.45</td>
<td>16.22</td>
<td>14.71</td>
<td>13.13</td>
<td>12.22</td>
<td>15.05</td>
</tr>
<tr>
<td>90º</td>
<td>11.95</td>
<td>12.93</td>
<td>13.00</td>
<td>13.54</td>
<td>12.37</td>
<td>11.60</td>
<td>11.94</td>
<td>13.01</td>
<td>13.52</td>
<td>12.80</td>
<td>11.96</td>
<td>11.35</td>
<td>12.56</td>
</tr>
</tbody>
</table>

Taula 4. Radiació solar global diària sobre superfícies inclinades (MJ/m²/dia) estació Tarragona. (Font: Atlas de radiació solar a Catalunya. Edició 2001)

Consultant la base de dades d’irradiació mundial online denominada PVGIS, Photovoltaic Geographical Information System s’obté un recull de dades mensuals i anuals, a la localització en qüestió, al polígon de Valls.
Taula 5. Irradiació global a la localització del polígon de Valls.
(Font: Photovoltaic Geographical Information System)

<table>
<thead>
<tr>
<th>Mes</th>
<th>Hh</th>
<th>Hopt</th>
<th>H(13)</th>
<th>Iopt</th>
<th>D/G</th>
<th>T24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>1900</td>
<td>3250</td>
<td>2480</td>
<td>64</td>
<td>0.48</td>
<td>8.5</td>
</tr>
<tr>
<td>Feb</td>
<td>2610</td>
<td>3830</td>
<td>3160</td>
<td>55</td>
<td>0.47</td>
<td>9.3</td>
</tr>
<tr>
<td>Mar</td>
<td>3970</td>
<td>5010</td>
<td>4500</td>
<td>43</td>
<td>0.42</td>
<td>12.0</td>
</tr>
<tr>
<td>Apr</td>
<td>4920</td>
<td>5290</td>
<td>5220</td>
<td>27</td>
<td>0.44</td>
<td>14.0</td>
</tr>
<tr>
<td>May</td>
<td>5850</td>
<td>5660</td>
<td>5960</td>
<td>16</td>
<td>0.44</td>
<td>17.8</td>
</tr>
<tr>
<td>Jun</td>
<td>6460</td>
<td>5970</td>
<td>6480</td>
<td>8</td>
<td>0.41</td>
<td>22.1</td>
</tr>
<tr>
<td>Jul</td>
<td>6500</td>
<td>6150</td>
<td>6580</td>
<td>11</td>
<td>0.38</td>
<td>24.4</td>
</tr>
<tr>
<td>Aug</td>
<td>5740</td>
<td>5950</td>
<td>6010</td>
<td>23</td>
<td>0.40</td>
<td>24.6</td>
</tr>
<tr>
<td>Sep</td>
<td>4570</td>
<td>5480</td>
<td>5070</td>
<td>38</td>
<td>0.38</td>
<td>21.0</td>
</tr>
<tr>
<td>Oct</td>
<td>3160</td>
<td>4420</td>
<td>3740</td>
<td>51</td>
<td>0.43</td>
<td>17.5</td>
</tr>
<tr>
<td>Nov</td>
<td>2080</td>
<td>3390</td>
<td>2650</td>
<td>61</td>
<td>0.48</td>
<td>11.8</td>
</tr>
<tr>
<td>Dec</td>
<td>1680</td>
<td>3020</td>
<td>2240</td>
<td>66</td>
<td>0.49</td>
<td>8.6</td>
</tr>
<tr>
<td>Year</td>
<td>4130</td>
<td>4790</td>
<td>4510</td>
<td>36</td>
<td>0.42</td>
<td>15.9</td>
</tr>
</tbody>
</table>

Per tal d’identificar cadascuna de les columnes de la taula anterior a continuació es mostra el significat,

Hh: Irradiació al pla horitzontal (Wh/m²)

Hopt: Irradiació al pla d’inclinació òptima (Wh/m²)

H(13): Irradiació al pla aleatori de 13° (Wh/m²)

Iopt: Inclinació òptima (graus)

D/G: Rati d’irradiació global difusa (-)

T24h: Temperatura mitjana diària (ºC)

Als mesos compresos d’abril a agost la inclinació òptima es situa per sota els 36º, inclinació òptima anual. Les inclinacions elevades afavoreixen la captació al període hivernal, període en el qual es rep menys radiació, mentre que les inclinacions més baixes potencien la captació als períodes d’estiu, on la disponibilitat de radiació solar incident és molt superior.
8.2 Climatologia de l’Alt Camp

El clima de l’Alt Camp és Mediterrani Litoral Sud i Mediterrani Prelitoral Sud a les parts més elevades.

La precipitació mitjana anual volta els 500-550 mm al sector central de la comarca, mentre que als indrets propers a la serralada del Montsant, a l’oest, i les serralades del Montmell i Montagut, a l’est, els valors augmenten fins als 650 o 700 mm. L’estació més plujosa de l’any és la tardor, seguida de la primavera, mentre que les seques són l’hivern i l’estiu, amb registres mitjans força semblants.

La temperatura mitjana anual està compresa entre els 15 i 16ºC. En concret, a l’hivern es mouen al voltant dels 8ºC i a l’estiu dels 23ºC, essent, en ambdós casos, més baixes a muntanya.

Consultant el resum meteorològic de l’estació més propera a la població de Valls, Vila-Rodona, ubicada a uns 12 km, es pot donar una visió global de la climatologia del municipi.

8.2.1 Temperatura i precipitació

Segons dades de l’any 2009 la temperatura mitjana va ser de 15,6ºC i la precipitació acumulada de 460,5 mm.

![Figura 4. Temperatura mitjana. Precipitació acumulada. Any 2009. (Font: Servei Meteorològic de Catalunya)](image-url)
El dia 23 de juliol es va donar la màxima temperatura, 35,9ºC, el dia 8 de gener es va donar la mínima, -2,9ºC.

![Figura 5. Temperatura màxima i mínima absoluta. Any 2009. (Font: Servei Meteorològic de Catalunya)](image)

8.2.2 Vent

La velocitat mitjana del vent durant l’any 2009 ha estat de 2,7 m/s amb una direcció dominant cap al nord.

9 Estudi previ

En aquest capítol es desenvoluparà l’estudi, anàlisi i justificacions necessaris per a l’elecció dels components principals de la instal·lació.

9.1 Mòduls fotovoltaics

Per a analitzar quins són els tipus de panells més importants del mercat s’han tingut en compte els resultats del nou estudi realitzat per ENF, empresa encarregada de realitzar estudis de mercat al camp fotovoltaic. Els resultats s’han obtingut d’enquestes realitzades a instal·ladors de sistemes fotovoltaics mitjançant l’avaluació de les marques utilitzades als últims 12 mesos segons la qualitat i la relació qualitat preu.

Les marques premiades són SunPower(USA), Schott Solar (Alemanya), SolarWorld (Alemanya), Sanyo (Japó), Suntech (China), BP Solar (Espanya).

Per tal d’analitzar quin tipus de panell és el millor per a la instal·lació es tindrà en compte el tipus de cèl·lula, la potència nominal, l’eficiència, la superfície, el pes, el cost unitari, el cost segons la potència nominal i els Wp que dóna el panell per m².

<table>
<thead>
<tr>
<th>Tipus panell</th>
<th>Tipus cèl·lula</th>
<th>P nominal (Wp)</th>
<th>Eficiència (η)</th>
<th>Superfície (m²)</th>
<th>Pes (kg)</th>
<th>Cost (€/u)</th>
<th>Cost (€/Wp)</th>
<th>Wp/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP-SOLAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 4175T</td>
<td>Mono</td>
<td>175</td>
<td>14</td>
<td>1,254</td>
<td>15,4</td>
<td>600</td>
<td>3,43</td>
<td>140</td>
</tr>
<tr>
<td>BP 3220T</td>
<td>Poli</td>
<td>220</td>
<td>13,2</td>
<td>1,667</td>
<td>19,4</td>
<td>754</td>
<td>3,43</td>
<td>132</td>
</tr>
<tr>
<td>BP 3230T</td>
<td>Poli</td>
<td>230</td>
<td>13,8</td>
<td>1,667</td>
<td>19,4</td>
<td>788</td>
<td>3,43</td>
<td>138</td>
</tr>
<tr>
<td>SANYO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIP-214NKHE5</td>
<td>Mono</td>
<td>214</td>
<td>17</td>
<td>1,261</td>
<td>15</td>
<td>848</td>
<td>3,96</td>
<td>170</td>
</tr>
<tr>
<td>HIP-215NKHE6</td>
<td>Mono</td>
<td>215</td>
<td>17,1</td>
<td>1,261</td>
<td>15</td>
<td>844</td>
<td>3,93</td>
<td>171</td>
</tr>
<tr>
<td>HIP-235HDE4</td>
<td>Mono</td>
<td>235</td>
<td>16,9</td>
<td>1,386</td>
<td>16,5</td>
<td>927</td>
<td>3,94</td>
<td>170</td>
</tr>
<tr>
<td>HIP-240HDE5</td>
<td>Mono</td>
<td>240</td>
<td>17,3</td>
<td>1,386</td>
<td>16,5</td>
<td>955</td>
<td>3,98</td>
<td>173</td>
</tr>
<tr>
<td>SCHOTT SOLAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schott poly 170</td>
<td>Poli</td>
<td>170</td>
<td>13</td>
<td>1,312</td>
<td>15,5</td>
<td>468</td>
<td>2,75</td>
<td>130</td>
</tr>
<tr>
<td>Schott poly 175</td>
<td>Poli</td>
<td>175</td>
<td>13,3</td>
<td>1,312</td>
<td>15,5</td>
<td>496</td>
<td>2,83</td>
<td>133</td>
</tr>
</tbody>
</table>
Taula 6. Comparativa de diferents factors característics segons panell i marca.
(Font: Catàleg Technosun, JHRoerden i Biosun Consultors)

Considerant les dades obtingudes a l’estudi, el tipus de panell més adient és el **Sunpower**. El cost aproximat és de 2,4 €/Wp, comparable amb el tipus Suntech, i l’eficiència és de 18-19 %, molt superior a la resta.

<table>
<thead>
<tr>
<th>Tipus panell</th>
<th>Tipus cèl·lula cristal-lina</th>
<th>P nominal (Wp)</th>
<th>Eficiència (η)</th>
<th>Superfície (m²)</th>
<th>Pes (kg)</th>
<th>Cost (€/u)</th>
<th>Cost (€/Wp)</th>
<th>Wp/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schott poly 220</td>
<td>Polí</td>
<td>220</td>
<td>13,1</td>
<td>1,673</td>
<td>23</td>
<td>606</td>
<td>2,75</td>
<td>131</td>
</tr>
<tr>
<td>Schott poly 225</td>
<td>Polí</td>
<td>225</td>
<td>13,4</td>
<td>1,673</td>
<td>23</td>
<td>638</td>
<td>2,84</td>
<td>134</td>
</tr>
<tr>
<td>Schott poly 230</td>
<td>Polí</td>
<td>230</td>
<td>13,7</td>
<td>1,673</td>
<td>23</td>
<td>690</td>
<td>3,00</td>
<td>137</td>
</tr>
<tr>
<td>SOLARWORLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW 200</td>
<td>Polí</td>
<td>200</td>
<td>-</td>
<td>1,677</td>
<td>22</td>
<td>651</td>
<td>3,26</td>
<td>119</td>
</tr>
<tr>
<td>SW 205</td>
<td>Polí</td>
<td>205</td>
<td>-</td>
<td>1,677</td>
<td>22</td>
<td>667</td>
<td>3,25</td>
<td>122</td>
</tr>
<tr>
<td>SW 210</td>
<td>Polí</td>
<td>210</td>
<td>-</td>
<td>1,677</td>
<td>22</td>
<td>683</td>
<td>3,25</td>
<td>125</td>
</tr>
<tr>
<td>SW 215</td>
<td>Polí</td>
<td>215</td>
<td>-</td>
<td>1,677</td>
<td>22</td>
<td>699</td>
<td>3,25</td>
<td>128</td>
</tr>
<tr>
<td>SW 220</td>
<td>Polí</td>
<td>220</td>
<td>-</td>
<td>1,677</td>
<td>22</td>
<td>715</td>
<td>3,25</td>
<td>131</td>
</tr>
<tr>
<td>SW 225</td>
<td>Polí</td>
<td>225</td>
<td>-</td>
<td>1,677</td>
<td>22</td>
<td>732</td>
<td>3,25</td>
<td>134</td>
</tr>
<tr>
<td>SW 200</td>
<td>Monòlita</td>
<td>220</td>
<td>-</td>
<td>1,677</td>
<td>22</td>
<td>715</td>
<td>3,25</td>
<td>131</td>
</tr>
<tr>
<td>SW 225</td>
<td>Monòlita</td>
<td>225</td>
<td>-</td>
<td>1,677</td>
<td>22</td>
<td>732</td>
<td>3,25</td>
<td>134</td>
</tr>
<tr>
<td>SW 230</td>
<td>Monòlita</td>
<td>230</td>
<td>-</td>
<td>1,677</td>
<td>22</td>
<td>755</td>
<td>3,28</td>
<td>137</td>
</tr>
<tr>
<td>SW 235</td>
<td>Monòlita</td>
<td>235</td>
<td>-</td>
<td>1,677</td>
<td>22</td>
<td>771</td>
<td>3,28</td>
<td>140</td>
</tr>
<tr>
<td>SW 240</td>
<td>Monòlita</td>
<td>240</td>
<td>-</td>
<td>1,677</td>
<td>22</td>
<td>795</td>
<td>3,31</td>
<td>143</td>
</tr>
<tr>
<td>SW 245</td>
<td>Monòlita</td>
<td>245</td>
<td>-</td>
<td>1,677</td>
<td>22</td>
<td>812</td>
<td>3,31</td>
<td>146</td>
</tr>
<tr>
<td>SUNPOWER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E18/225</td>
<td>Monòlita</td>
<td>225</td>
<td>18,1</td>
<td>1,244</td>
<td>15</td>
<td>541</td>
<td>2,40</td>
<td>181</td>
</tr>
<tr>
<td>E18/230</td>
<td>Monòlita</td>
<td>230</td>
<td>18,5</td>
<td>1,244</td>
<td>15</td>
<td>553</td>
<td>2,40</td>
<td>185</td>
</tr>
<tr>
<td>E18/305</td>
<td>Monòlita</td>
<td>305</td>
<td>18,7</td>
<td>1,631</td>
<td>18,6</td>
<td>733</td>
<td>2,40</td>
<td>187</td>
</tr>
<tr>
<td>E19/238</td>
<td>Monòlita</td>
<td>238</td>
<td>19,1</td>
<td>1,244</td>
<td>15</td>
<td>573</td>
<td>2,41</td>
<td>191</td>
</tr>
<tr>
<td>E19/318</td>
<td>Monòlita</td>
<td>318</td>
<td>19,5</td>
<td>1,631</td>
<td>18,6</td>
<td>765</td>
<td>2,41</td>
<td>195</td>
</tr>
<tr>
<td>SUNTECH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STP1855-24/Ad</td>
<td>Monòlita</td>
<td>185</td>
<td>14,5</td>
<td>1,277</td>
<td>17,2</td>
<td>445</td>
<td>2,41</td>
<td>145</td>
</tr>
<tr>
<td>STP1955-24/Ad</td>
<td>Monòlita</td>
<td>195</td>
<td>15,3</td>
<td>1,277</td>
<td>15,5</td>
<td>469</td>
<td>2,41</td>
<td>153</td>
</tr>
<tr>
<td>STP2255-24/Ad</td>
<td>Polí</td>
<td>225</td>
<td>-</td>
<td>1,650</td>
<td>22,5</td>
<td>541</td>
<td>2,40</td>
<td>136</td>
</tr>
<tr>
<td>STP1955-24/Ad</td>
<td>Polí</td>
<td>280</td>
<td>14,4</td>
<td>1,940</td>
<td>27</td>
<td>674</td>
<td>2,41</td>
<td>144</td>
</tr>
</tbody>
</table>

Considerant les dades obtingudes a l’estudi, el tipus de panell més adient és el **Sunpower**. El cost aproximat és de 2,4 €/Wp, comparable amb el tipus Suntech, i l’eficiència és de 18-19 %, molt superior a la resta.
Cal destacar també que els Wp per unitat de superfície són molt superiors, de 180 a 195 Wp/m² mentre que el que el segueix més de prop és el tipus Sanyo amb 170 Wp/m². Això significa més potència amb menys panells permetent reduir costos.

Al capítol següent s’especificarà el tipus de mòdul fotovoltaic Sunpower que es col·locarà, juntament amb les característiques tècniques.

9.2 Tipus de captació

El tipus de captació és un factor determinant a l’hora de definir el rendiment de producció energètica.

La posició de la superfície captadora, per tal d’aconseguir la màxima captació, ha d’estar perfectament perpendicular a la radiació solar. Tenint en compte que hi ha un moviment solar diari i estacional, l’angle d’incidència varia amb el temps i això implica que si es vol obtenir una captació el més eficient possible, cal implantar un sistema capaç de mantenir aquesta incidència perpendicular en tot moment.

Aquesta capacitat de moviment de la superfície captadora ve donada per un mecanisme de seguiment solar. Tanmateix, la disposició d’un mecanisme de seguiment solar porta associat un sobrecost i per tant, cal ponderar si és interessant realitzar aquesta inversió.

Les possibilitats que es plantegen pel tipus d’instal·lació (sobre coberta, coberta plana tipus lleugera sandwich) són la captació fixa i la captació amb seguiment en un eix. La captació amb seguiment en dos eixos no es considera apropiaada en el present projecte ja que és una tecnologia molt aplicada en caps fotovoltaics sobre sòl però no sobre coberta, requereixen estructures de suport robustes.

9.2.1 Captació fixa

La captació solar fixa és la més senzilla, la superfície captadora està subjectada amb una determinada inclinació i orientació. Per tant, tenint en compte que el sol realitza un moviment tan azimutal com zenital, és l’alternativa menys eficient en l’aprovitament de la radiació solar disponible.
9.2.1.1 Captació fixa convencional

Aquest tipus de captació fixa, dins les possibles disposicions estàtiques que pot tenir la superfície, és la que rep una major captació a nivell anual.

Consultant la base de dades d’irradiació mundial online denominada PVGIS, Photovoltaic Geographical Information System, la inclinació òptima és de $36^\circ \approx 35^\circ$.

Un tipus d’estructura fixa convencional és la que es realitza amb un acabat galvanitzat en calent Sendzimir amb recobriment de 20 μm fabricada per Hilti. Els sistemes d’instal·lació de Hilti permeten dissenyar estructures modulars adaptables a les necessitats. Els elements més importants pel que fa a la subjecció són els carrils, que permeten la seva unió amb connectors i angulars sense soldadures.

9.2.1.2 Captació fixa prefabricada Sunpower T10

Aquest tipus de captació fixa està fabricada amb materials lleugers amb una inclinació de 13°. Aquest sistema es col·loca sense perforar la coberta permetent una instal·lació ràpida i segura a gran escala. La instal·lació és fàcil en cobertes totalment planes.

Les principals característiques són l’estabilitat aerodinàmica al vent, l’adaptació arquitectònica i la possibilitat de major aprofitament de superfície en espais petits ja que la distància per ombres entre files és menor. (Veure annex 7. Altres annexos – Catàleg d’especificacions tècniques)

9.2.2 Captació amb seguiment en un eix

S’entén com a captació amb seguiment en un eix el sistema en que la superfície captadora realitza un seguiment diari, seguiment de l’azimut solar. Per tant, caldrà equipar les superfícies captadores amb un mecanisme capaç de proporcionar un moviment de rotació respecte l’eix polar.

Aquest mètode de captació permet mantenir una orientació dels mòduls perpendiculares a la radiació incident en una projecció horitzontal.

Els seguidors solars són aquelles estructures metàl·liques mòbils on van muntats els mòduls fotovoltaics.
En instal·lacions sobre coberta lleugera no es poden col·locar seguidors de grans dimensions. Un seguidor apropriat per a col·locar sobre coberta és el Mini Seguidor Solar fabricat per Feina SCP. Aquest seguidor pot subjectar fins a 3,4 m² de panell, aproximadament 2 panells tipus Sunpower.

9.2.3 Captació adoptada a la instal·lació

Per tal de poder realitzar un estudi amb dades significatives i així poder fer comparatives, s’ha establert que es tractarà d’una instal·lació d’uns 100 kWp.

Realitzant una simulació amb la base de dades d’irradiació mundial online PVGIS, Photovoltaic Geographical Information System, s’ha obtingut el següent resultat.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Producció (kWh) - Fixa convencional</th>
<th>Producció (kWh) - Fixa prefabricada</th>
<th>Producció (kWh) - Seguiment un eix inclinació òptima</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gener</td>
<td>7.600</td>
<td>5.960</td>
<td>9.840</td>
</tr>
<tr>
<td>Febrer</td>
<td>8.060</td>
<td>6.870</td>
<td>10.300</td>
</tr>
<tr>
<td>Març</td>
<td>11.500</td>
<td>10.600</td>
<td>14.900</td>
</tr>
<tr>
<td>Abril</td>
<td>11.800</td>
<td>11.800</td>
<td>15.400</td>
</tr>
<tr>
<td>Maig</td>
<td>13.000</td>
<td>13.600</td>
<td>17.300</td>
</tr>
<tr>
<td>Juny</td>
<td>13.100</td>
<td>14.100</td>
<td>18.000</td>
</tr>
<tr>
<td>Juliol</td>
<td>13.800</td>
<td>14.600</td>
<td>18.900</td>
</tr>
<tr>
<td>Agost</td>
<td>13.100</td>
<td>13.300</td>
<td>17.600</td>
</tr>
<tr>
<td>Setembre</td>
<td>11.800</td>
<td>11.100</td>
<td>15.400</td>
</tr>
<tr>
<td>Octubre</td>
<td>9.890</td>
<td>8.640</td>
<td>12.700</td>
</tr>
<tr>
<td>Novembre</td>
<td>7.540</td>
<td>6.080</td>
<td>9.700</td>
</tr>
<tr>
<td>Desembre</td>
<td>7.060</td>
<td>5.380</td>
<td>9.180</td>
</tr>
<tr>
<td>Mitjana</td>
<td>10.688</td>
<td>10.169</td>
<td>14.102</td>
</tr>
<tr>
<td>Anual</td>
<td>128.250</td>
<td>122.030</td>
<td>169.220</td>
</tr>
</tbody>
</table>

Taula 7. Producció elèctrica estimada pels diferents tipus de captació. (Font: Photovoltaic Geographical Information System)
Considerant les dades de producció, es pot concebre, com era d’esperar, que el sistema menys eficient energèticament és el de col·locació fixa a 13º, mentre que el més eficient és el de seguiment en un eix.

![Diagrama de producció estimada](image)

Figura 7. Producció elèctrica estimada pels diferents tipus de captació.

La captació amb seguiment en un eix, durant tot l’any, és superior en tot moment. Si es comparen les dues captacions fixes, es veu que la producció del tipus convencional és superior d’agost a abril.

Per realitzar la valoració econòmica s’ha considerat que s’utilitzarien 300 mòduls fotovoltaics.

A l’estructura convencional fixa s’ha realitzat una estimació dels tipus i quantitats d’elements a col·locar i s’ha demanat un pressupost a l’empresa HILTI.

L’estructura fixa prefabricada SunPower s’ha pogut valorar econòmicament segons el valor de venda unitari facilitat per una empresa subministradora de Sunpower.
L'estructura de seguiment en un eix s'ha valorat, com en el cas anterior, segons valor de venta unitari facilitat pel departament de ventes de Feina SCP.

<table>
<thead>
<tr>
<th>Cost estimat (€/u) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixa convencional (HILTI)</td>
</tr>
<tr>
<td>Fixa prefabricada (SunPower)</td>
</tr>
<tr>
<td>Seguiment en un eix (Feina)</td>
</tr>
</tbody>
</table>

Taula 8. Plantejament del cost econòmic segons el tipus d'estructura.

* El cost estimat és un valor en euros per panell instal·lat ja que segons la tipologia no es pot donar en unitats d'estructura instal·lada, com en la fixa convencional.

Analitzant les dades d'eficiència energètica i valoració econòmica, la tipologia més adequada en aquesta instal·lació és la _captació fixa convencional_. L'estructura fixa convencional no genera la màxima producció però si que és la més econòmica.

La captació fixa prefabricada genera una producció d’un 5,1% inferior respecte la convencional i té un cost d’un 36% superior. Cal destacar que possiblement sorgiria algun inconveni d'instal·lació al tractar-se de coberta sandwich ja que hi ha algunes greques que podrien afectar la seva ràpida instal·lació. Per altra banda, l'adaptació arquitectònica no és un factor primordial al tractar-se d'un polígon industrial. El vent, segons les dades mitjanes anuals observades al Servei Meteorològic de Catalunya, no té una força molt elevada i per tant, la inclinació de 35º seria perfectament viable.

La captació amb seguiment en un eix genera una producció d’un 31,9% superior respecte la fixa convencional i té un cost de més de 2,5 vegades. Cal considerar, també, que el seguidor a instal·lar puntualitza la càrrega dels dos panells fotovoltaics que suporta, això implica que pel tipus de coberta, s’hauria de realitzar una adaptació de la coberta existent que incrementaria molt el cost estimat anteriorment, factor molt important a l'hora de descartar aquest tipus. Es considera que el cost global que comportaria la instal·lació d’aquest tipus de captació, juntament amb l’alt manteniment que s’hauria de dur a terme, no compensen l’increment de producció.
Descripció tècnica de la instal·lació solar fotovoltaica

10.1 Camp fotovoltaic

El camp fotovoltaic projectat es disposarà sobre la coberta de l’edifici amb una orientació dels mòduls de 205º respecte el nord, seguint l’orientació de la construcció. Per altra banda, la inclinació de les estructures que suporten els panells és de 35º. (Veure plànols 5. Planta coberta i 10. Detall estructura suport panell)

El camp fotovoltaic estarà composat per 51 sèries de 6 panells, totalitzant 306 panells. Cada panell és de 318 Wp ± 5%. Aquesta disposició equival a una potència total instal·lada sobre la coberta de 97.308 Wp, que suposen 93,5 kW nominals evacuats mitjançant 16 onduladors de 5,5 kW.

<table>
<thead>
<tr>
<th>Descripció del camp fotovoltaic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potència nominal instal·lada</td>
</tr>
<tr>
<td>Potència màxima pic instal·lada</td>
</tr>
<tr>
<td>Número total de panells</td>
</tr>
<tr>
<td>Número d’inversors</td>
</tr>
<tr>
<td>Sèries</td>
</tr>
<tr>
<td>Inclinació dels panells</td>
</tr>
<tr>
<td>Orientació dels panells</td>
</tr>
</tbody>
</table>

Taula 9. Camp fotovoltaic

10.2 Mòduls fotovoltaics

Els laminats fotovoltaics opacs són els encarregats de la conversió d’energia radiant en energia elèctrica. A continuació es mostren les principals característiques dels panells E19/318 SunPower escollits per aquesta instal·lació, en condicions normals de funcionament, a una radiació de 1000 W/m² i una temperatura de 25ºC.
Figura 8. Panell solar E19/318. (Font: Fitxa tècnica SunPower)

<table>
<thead>
<tr>
<th>Característiques elèctriques</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Potència màxima nominal</td>
<td>318 Wp</td>
</tr>
<tr>
<td>Tolerància</td>
<td>±5 %</td>
</tr>
<tr>
<td>Tensió en el punt de màxima potència</td>
<td>54,7 V</td>
</tr>
<tr>
<td>Intensitat en el punt de màxima potència</td>
<td>5,82 A</td>
</tr>
<tr>
<td>Tensió de circuit obert</td>
<td>64,7 V</td>
</tr>
<tr>
<td>Intensitat de curtcircuit</td>
<td>6,20 A</td>
</tr>
<tr>
<td>Eficiència del mòdul</td>
<td>19,5 %</td>
</tr>
<tr>
<td>Producció específica</td>
<td>195 W/m²</td>
</tr>
</tbody>
</table>

Característiques físiques (Veure plànol X)

<table>
<thead>
<tr>
<th>Caràcterística</th>
<th>Valors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>1559 mm</td>
</tr>
<tr>
<td>Amplada</td>
<td>1046 mm</td>
</tr>
<tr>
<td>Gruix</td>
<td>46 mm</td>
</tr>
<tr>
<td>Superfície</td>
<td>1,63 m²</td>
</tr>
<tr>
<td>Pes</td>
<td>18,6 kg</td>
</tr>
</tbody>
</table>

Els mòduls proposats es presenten des de la fàbrica amb el cablejat multicontact per evitar pèrdues i accidents de connexió.

Els panells compleixen tota la normativa actual vigent IEC-61215 i disposen dels certificats TÜV de qualitat.

10.3 Estructures de fixació

El sistema de fixació, com s’ha justificat al punt de “Captació adoptada a la instal·lació”, és del tipus fixa convencional.

Dins dels fabricants de sistemes de fixació convencional s’ha escollit Hilti pel seu ampli ventall de solucions que permeten adaptar-se a cadascuna de les necessitats i reduir la mà d’obra.

El sistema de muntatge escollit és del tipus carrils MQ acabat amb galvanitzat en calent Sendzimir amb recobriment de 20 µm. Les unions entre carrils es realitzaran amb connectors i angular sense realitzar soldadures.

A la taula següent es mostren els principals components que formaran l’estructura de fixació del panell.
<table>
<thead>
<tr>
<th>Carril MQ-41</th>
<th>![Image of Carril MQ-41]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: S 250 GD, galvanitzat sendizimir de 20µm.</td>
<td></td>
</tr>
<tr>
<td>Pes: 2,08 kg/m.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carril MQ-72</th>
<th>![Image of Carril MQ-72]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: S 250 GD, galvanitzat sendizimir de 20µm.</td>
<td></td>
</tr>
<tr>
<td>Pes: 4,10 kg/m.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connector longitudinal de carril</th>
<th>![Image of Connector]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: S 250 GD, galvanitzat sendizimir de 20µm.</td>
<td></td>
</tr>
</tbody>
</table>
Donades les característiques de la instal·lació, aquesta disposarà d’un sistema de seguretat per evitar actes vandàlics i robatori de panells. Per això els panells aniran muntats amb un sistema de subjecció a l’estructura de tipus antirobatori. Aquest sistema consisteix en fixar els panells a base de resines o punts de soldadura juntament amb brides especials que fan molt complicada la seva extracció.

La instal·lació de l’estructura de fixació, tenint en compte el pes de les plaques, suposarà una sobrecàrrega mitjana d’uns 25 kg/m², admissible per l’estructura i coberta de la nau.

10.4 Inversors de corrent

Els inversors o convertidors són els elements encarregats de convertir el corrent continu generat pels panells, en corrent altern compatible amb la xarxa elèctrica.

Els inversors hauran d’admetre uns valors d’intensitat i tensió d’entraida que siguin compatibles amb els valors obtinguts als panells, així doncs, les especificacions s’ajustaran als grups generadors dels camps i viceversa.

S’ha previst la instal·lació de 17 inversors model SMA SMC 6000A, de 5,5 kW de potència nominal per tal de garantir una bona modularitat a la instal·lació, podrien col·locar-se qualsevol altre inversor de prestacions equivalents. A continuació es mostren les característiques més rellevants:

<table>
<thead>
<tr>
<th>Característiques elèctriques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valors d’entraida (CC)</td>
</tr>
<tr>
<td>Potència màx. CC</td>
</tr>
<tr>
<td>Tensió màx. CC</td>
</tr>
<tr>
<td>Rang de tensió Vmpp</td>
</tr>
<tr>
<td>Corrent màx. entrada</td>
</tr>
<tr>
<td>Número màx. de strings</td>
</tr>
<tr>
<td>Valors de sortida (CA)</td>
</tr>
<tr>
<td>Potència nominal CA</td>
</tr>
<tr>
<td>Potència màx. CA</td>
</tr>
<tr>
<td>Corrent màx. sortida</td>
</tr>
<tr>
<td>Tensió nominal CA</td>
</tr>
<tr>
<td>Freqüència de xarxa CA</td>
</tr>
<tr>
<td>Factor de potència (cosφ)</td>
</tr>
<tr>
<td>Connexió</td>
</tr>
<tr>
<td>Rendiment màx.</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Rendiment europeu</td>
</tr>
</tbody>
</table>

Taula 13. Característiques elèctriques de l’inversor SMA SMC 6000A.

<table>
<thead>
<tr>
<th>Característiques generals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rang de temperatura de servei</td>
</tr>
<tr>
<td>Grau de protecció</td>
</tr>
<tr>
<td>Dimensions</td>
</tr>
<tr>
<td>Pes</td>
</tr>
<tr>
<td>Mètode de refrigeració</td>
</tr>
<tr>
<td>Seccionadors (CA i CC) i transformador d’aïllament</td>
</tr>
<tr>
<td>Software de comunicacions</td>
</tr>
</tbody>
</table>

Taula 14. Característiques generals de l’inversor SMA SMC 6000A.

Figura 9. Inversor SMA SMC 6000A.

(Font: Fitxa tècnica SMA)
Aquests inversors disposen de microprocessadors de control i un PLC de comunicacions que permeten extreure dades de la instal·lació en temps real, per poder ser tractades posteriorment des d’un ordinador.

El inversors treballen connectats als panells, al costat de corrent continu (CC), i al costat de corrent altern (CA), a un transformador que adapta la tensió de sortida de l’inversor a la xarxa elèctrica. El microprocessador que incorpora l’equip, s’encarrega de garantir una ona sinusoïdal amb la menor distorsió, a fi de no injector harmònics a la xarxa elèctrica. Aquest incorpora, també, un sistema de seguiment de l’inversor que fa que sempre treballi al punt de màxima potència possible i evitar així pèrdues durant els períodes de no funcionament.

Els inversors s’instal·laran en una zona de la nau prevista per a tal efecte. Es mantindran les distàncies mínimes que garanteixin un bon funcionament dels equips, evitant així els reescalfaments que farien disminuir el seu rendiment.

10.5 Monitorització

Amb l’objectiu de que els propietaris i els responsables del manteniment de la instal·lació estiguin al corrent de l’estat de funcionament d’aquesta, es disposarà d’un sistema de control de dades via web:

- Dades meteorològiques de l’emplaçament (radiació i temperatura dels panells).
- Dades de producció del camp fotovoltaic:
 - Voltatge de CC, a l’entrada dels inversors.
 - Voltatge de les fases a la xarxa, potència total de sortida dels inversors.
 - Potència reactiva de sortida de l’inversor.

El tipus d’aparell de monitorització i diagnòstic serà una central de comunicació similar a la Sunny Webbox que permet registrar i emmagatzemar contínuament tots els valors dels 17 inversors. Els valors registrats, que informen detalladament sobre el rendiment de la instal·lació, s’emmagatzemen en formats d’arxiu comuns CSV o XML que poden transferir-se al PC de manera senzilla mitjançant l’intercanvi de dades a través de FTP.
Per tal de tenir un bon control també s’instal·larà una estació meteorològica del tipus Sunny SensorBox a l’intemperie, al generador fotovoltaic, per mesurar la irradiació solar i la temperatura. La connexió amb la central de monitorització es realitzarà amb una línia de dades RS485.

Figura 10. Sunny Webbox.
(Font: Fitxa tècnica SMA)

Figura 11. Sunny SensorBox.
(Font: Fitxa tècnica SMA)
10.6 Instal·lació elèctrica

L'objecte d'aquest apartat és el de dissenyar una instal·lació elèctrica amb els següents criteris:

- Aconseguir el màxim equilibri als diversos conductors que integren la instal·lació.

- Subdividir la instal·lació de forma que les possibles pertorbacions originades per les avaries que puguessin produir-se en algun punt d’elles afectin a un mínim nombre de parts de la instal·lació. Aquesta subdivisió té també com a finalitat el permetre la localització d’avaries i facilitar el control d’aïllament de la instal·lació, cuitant de les funcions de seguretat i protecció.

A l’annex 4. Càlcul de seccions de línies elèctriques que s’adjunta, es justifica el càlcul dels circuits elèctrics. La caiguda de tensió màxima no superarà el 1% de la tensió d’alimentació pel als circuits CC i del 1,5% per als circuits CA.

L’escomesa serà soterrada i es realitzarà d’acord amb les normes de l’empresa distribuïdora de l’energia elèctrica, Fecsa Endesa.

La CS (Caixa de seccionament) tindrà connexió amb la CGP (Caixa General de Protecció). La CS s’instal·larà per a poder realitzar els talls de subministrament oportuns per part de la companyia subministradora. La CS i la CGP estaran col·locades dins un nínxol a la tanca de la nau en qüestió amb accés directe des de la via pública.

El conjunt de mesura, bidireccional, estarà ubicat dins un nínxol a tanca proper a on es col·locarà la CGP i la CS.

La Línia de Connexió Primària (LCP) fins al Quadre de comandament es realitzarà amb conductor de coure 3x185+95+TT.

L’ICPM serà de 160 A que serà la protecció principal de la instal·lació fotovoltaica.

La instal·lació elèctrica complirà allò que s’indica al Reglament Electrotècnic per a Baixa Tensió i les seves ITC.

Als punts que puguin estar mullats es realitzarà una connexió equipotencial i a terra de totes les parts metàl·liques no actives de la instal·lació.
Estaran connectats a terra totes les carcasses metàl·liques dels inversors, els armaris metàl·lics amb elements elèctrics, els panells fotovoltaics i en general totes les parts metàl·liques no actives.

Per la seva banda es garantirà que l’accés als elements de servei de la instal·lació, només siguin accessibles a persones autoritzades. Es prendrà especial èmfasis, mitjançant cartells, en evitar el contacte físic directe amb els panells.

10.6.1 Punt de connexió a la xarxa

D’acord amb la companyia elèctrica que dóna servei a l’emplaçament, en aquest cas Fecsa Endesa, s’haurà d’instal·lar una nova CGP (Caixa General de Protecció) per una potència de 93,5 kW en paral·lel a la ja existent.

S’hauran de seguir les normes i els requeriments de connexió en BT, fixats per la companyia (veure annex 8- Condicions tècniques i de seguretat de les instal·lacions de distribució, interconnexió d’instal·lacions fotovoltaiques de BT a la xarxa de FECSA ENDESA).

Al mateix emplaçament on es realitzarà el punt de connexió s’hi disposarà el Quadre de Conjunt de Mesura (TMF10), tancat en un armari d’obra amb una porta metàl·lica, de la qual la companyia tindrà una clau per poder fer les inspeccions corresponents i lectures de comptadors.

L’escomesa serà paral·lela a la l’existent, soterrada i amb conductor de coure de 3x185+95+TT.

10.6.2 Caixa general de protecció

La Caixa General de Protecció serà trifàsica i es col·locarà en un nínxol a tanca llindant amb la via pública propera al mòdul de comptatge.

La CGP serà del tipus CGP-9-250 A amb entrada inferior i sortida superior.

A continuació es mostra l’esquema general de col·locació a tanca del nínxol.
10.6.3 Equips de mesura

El mòdul de comptatge serà trifàsic, del tipus TMF10 – 200/5 A i es col·locarà en un nínxol proper a la CGP.

Es mostra a continuació l’equip de mesura a col·locar definit per la companyia subministradora.

Figura 12. Esquema general de col·locació de CS, CGP i TMF10.
(Font: Guía Vademécum para instalaciones de enlace en baja tensión- Detalles constructivos 3.16)
10.6.4 Línies previstes

El tipus de línies que es preveuen són:
- Línies captadors
- Línies inversors
- Línia de connexió de la instal·lació (LCI)
- Línia de connexió primària (LCP)
- Línia d’alimentació dels inversors

Veure plànol 7. Línies de connexió i terra i annex 4. Càlcul de seccions de línies elèctriques on es mostra la secció de les línies.
10.6.4.1 Línies captadors

Aquest tipus de línia és la que uneix el camp de captadors solars amb els inversors.

Aquest tram transcorrerà per l’exterior, exposat a alta temperatura i entre altres efectes del clima, estarà constituït per conductors unipolars amb un aïllament de polietilè i recobriment de policlorur de vinil amb tensió assignada 0,6 / 1 kV.

Les caixes de connexió quedaran accessibles, desmontables fàcilment i amb una protecció IP-555 (UNE 20324).

Les condicions de funcionament a potència màxima d’aquest tipus de conductors serà de 398 V de corrent continua.

Les diferents línies discorreran per canal Rejiband o similar.

La caiguda de tensió produïda a cada línia de captació fotovoltaica serà inferior al 1%.

10.6.4.2 Línies inversors

Aquesta línia és la que uneix la sortida dels inversors CA amb l’entrada del Quadre de CA.

Aquesta instal·lació consta de 17 inversors, és a dir, de 17 línies inversores connectades cadascuna al Quadre de comandament.

Els conductors discorreran sobre canal Rejiband o similar.

Els conductors seran tripolars de coure (fase, neutre i terra), amb un aïllament de polietilè reticular amb tensió assignada 0,6 / 1 kV.

Les condicions de funcionament d’aquest tipus de línies seran de corrent altern a una tensió de 230 V i una intensitat màxima de 23,9 A a 50 Hz.

La caiguda de tensió produïda a cada línia d’inversor serà inferior al 1,5%.

10.6.4.3 Línia de connexió de la instal·lació (LCI)

Aquesta línia és la que realitza la connexió entre el Quadre de comandament i el comptador ubicat al nínxol exterior.
Els cables conductors seran de coure del tipus unipolar (3 fases, neutre i terra) amb un aïllament de polietilè reticular amb tensió assignada 0,6 / 1 kV.

En el dimensionament del conductor es tindrà en compte el sobredimensionament per a una intensitat no inferior al 125% de la intensitat màxima, segons la ITC-BT 40.

Les condicions de funcionament d’aquest tipus de línia serà de corrent altern a una tensió de 400 V i una intensitat màxima de 135,1 A a 50 Hz.

La caiguda de tensió produïda a la línia d’inversor serà inferior al 1,5%.

10.6.4.4 Línia de connexió primària (LCP)

Aquesta línia és l’escomesa, realitza la connexió de la CGP-CS a la xarxa de distribució.

10.6.4.5 Línia d’alimentació dels inversors

L’alimentació dels inversors es realitzarà des de la CGP existent de la nau ja que el consum total serà de 1700 W, col·locar una nova CGP per aquest consum mínim seria incoherent tenint en compte que és del mateix propietari.

La línia d’alimentació serà de 2x16+T i discorrerà soterrada en el tram de la CGP a l’interior de la nau.

10.6.5 Conductors

Tots els conductors seran de coure amb secció suficient per assegurar que les caigudes de tensió siguin inferiors al 1% o 1,5% segons siguin circuits de CC o CA.

Tots els cables seran adequats per a la seva aplicació a la intempèrie o enterrats.

• La xarxa de distribució de CC es farà mitjançant conductors de coure unipolars (RV-K 0,6/1 kV i de tensió nominal no inferior a 1.000V) amb aïllament de polietilè i recobriment de policlorur de vinil, garantint un bon aïllament enfront de les condicions ambientals adverses, així com el compliment de les normes de seguretat aplicables.
El muntatge es realitzarà sobre canal Rejiband o similar amb protecció superior de xapa metàl·lica quan sigui necessari (inclemències ambientals).

![Imagen de un muntatge de canal Rejiband](image)

Figura 14. Distribució dels conductors al tram exterior en CC.
(Font: Pemsa Rejiband)

- La xarxa de distribució de CA es farà fins al Quadre de comandament mitjançant cables unipolars de coure tipus RV-K 0,6/1 kV de tensió nominal no inferior als 1.000V i amb muntatge en tub corrugat en el tram enterrat i canal Rejiband o similar en el tram interior.

Els trams d’inversors es realitzaran amb conductors multipolars de coure tipus RV-K 0,6/1 kV de tensió nominal no inferior als 1.000V i amb muntatge en canal Rejiband o similar en el tram interior.

Per determinar la secció dels cables, es realitzarà mitjançant tres metodologies: per intensitat màxima admissible o escalfament, caiguda de tensió i intensitat de curtcircuit.

Els conductors que discorrin enterrats compliran amb les condicions que es mostren a continuació.

![Imagen de rases per a conductors soterrats](image)

Figura 15. Rases per a conductors soterrats.
(Font: Condicions tècniques i de seguretat de les instal·lacions de distribució, línies subterrànies de FECSA ENDESA – Annex 1)
10.6.6 Proteccions

Tots els circuits, tan els generals com els de distribució, estaran protegits contra les sobrecàrregues i les sobreintensitats mitjançant els dispositius de protecció fusibles o automàtics d’adequat poder de ruptura, que assegurin una bona selectivitat de circuits, tal i com es grafia a l’esquema unifilar que s’adjunta als plànols.

Tota la instal·lació elèctrica es realitzarà de manera que les seves parts actives restin allunyades dels llocs on habitualment es troben o circulen persones. Els conductors elèctrics estaran canalitzats (ITC-BT-024).

La protecció contra contactes indirectes s’efectuarà combinant la col·locació de relés diferencials contra corrents de defecte (300 mA per els circuits de força) amb la instal·lació del sistema general de posada a terra (mitjançant la connexió de totes les parts metàl·liques dels generadors elèctrics, al circuit de posada a terra). En el cas d’instal·lar diferencials en sèrie, aquests seran de característiques selectives.

Els interruptors magnetotèrmics, precintables, es col·locaran en caixes de doble aïllament independents i separades d’altres elements de maniobra o protecció.

Els interruptors de comandament i protecció tindran una plaça indicadora amb indicació precisa dels receptors que governen.

10.6.6.1 Proteccions a les línies captadors

Fusible: amb la finalitat de protegir els conductors que provenen d’una sèrie de captadors en front a sobreintensitats, 10 A i 1000V.

10.6.6.2 Proteccions a les línies inversors

Aquestes línies disposen d’un diferencial per detectar fuites de corrent i un magnetotèrmic contra curtcircuits tal i com s’especifica en el Reglament Electrotècnic de Baixa Tensió.

Magneto-tèrmic automàtic bipolar: amb la finalitat de protegir aquest tipus de conductors en front a sobreintensitats, 25 A i corba C.

Interruptor diferencial: intensitat nominal 40 A i de màxima sensibilitat (300 mA).
10.6.6.3 Proteccions a la línia de connexió de la instal·lació (LCI)

ICP-M tetrapolar: amb la finalitat de protegir la línia per mitjà del control de potència, 160 A i corba C. Tindrà una poder de tall no inferior a 10 kA.

Es col·locarà un protector contra sobretensions transitòries i un protector contra sobretensions permanents.

10.6.6.4 Proteccions a la línia d’alimentació dels inversors

ICP bipolar: amb la finalitat de protegir la línia per mitjà del control de potència, 20 A i corba C. Tindrà una poder de tall no inferior a 4,5 kA.

Aquestes línies disposen d’un diferencial per detectar fuites de corrent i magnetotèrmics contra curtcircuits.

Magnetotèrmic automàtic bipolar: amb la finalitat de protegir aquest tipus de conductors en front a sobreintensitats, 16 A i corba C.

Interruptor diferencial: intensitat nominal 40 A i de màxima sensibilitat (300 mA).

10.6.6.5 Posada a terra

La instal·lació de posada a terra estarà formada per uns electrodos soterrats, un conductor soterrat que unirà aquests electrodos amb el punt de connexió da terra de la instal·lació i els conductors de protecció que discorreran per la instal·lació.

El conductor d’unió i connexió al punt de posada a terra serà de 35 mm² de coure despullat i tindrà una longitud de 15 m. Aquest conductor estarà col·locat a una profunditat mínima de 80 cm.

Es col·locaran 4 electrodos enterrats d’acer amb recobriment de coure amb un diàmetre de 14,6 mm i 2,5 m de longitud.

La línia de 35 mm² es portarà fins a una caixa de connexions situada al costat de l’equip de mesura i estarà proveïda d’un pont seccionable (punt de posada a terra). La connexió de presa de terra serà d’acord al que estableix el REBT en la seva instrucció tècnica complementària ITC-BT 18.
Els conductors del circuit de posada a terra seran identificables en qualsevol punt a través del codi de colors establert, essent la seva senyalització mitjançant franges Grogues i Verdes.

El cable conductor serà de coure del tipus unipolar, amb un aïllament de polietilè reticular amb tensió assignada 0,6/1 kV.

Totes les masses de la instal·lació fotovoltaica estaran connectades a terra, aquest terra serà independent al de la nau.

S’instal·larà un registre per a mesurar la resistència de la presa de terra.

10.7 Manteniment i garanties

10.7.1 Manteniment

El manteniment de la instal·lació s’estableix en tres nivells:

- Manteniment operatiu.
- Manteniment preventiu.
- Manteniment correctiu.

El manteniment operatiu consta d’un seguiment continuat mitjançant la monitorització de la instal·lació, per bé d’assegurar el bon rendiment d’aquesta. Per altra banda s’hauran de realitzar neteges periòdiques dels panells per evitar pèrdues de rendiment per brutícia o pols acumulada sobre les plaques.

El manteniment preventiu es realitzarà mitjançant una visita periòdica a la planta en que es seguirà un protocol d’inspecció i verificació que permeti detectar anomalies i en cas de trobar-ne, procedir o planificar accions correctives.

El manteniment correctiu, que segueix pautes molt similars, serà objecte, juntament amb el manteniment preventiu, d’un contracte de manteniment de la planta.
10.7.2 Accés a la instal·lació, zones de pas i mesures de seguretat de la coberta

L’accés a la coberta es realitzarà mitjançant una escala, per una obertura prevista en la sala dels equips inversors, a la primera planta de l’edifici. En cas d’haver de manipular volums de grans dimensions caldría accedir a la coberta mitjançant un elevador, homologat per aquests tipus de treballs.

Les zones de pas seran els passadissos compresos entre les fileres de plaques. Donat que el mur perimetral de la coberta és de poca alçada (entre 40 i 80 cm, depenent del punt de la coberta), durant la realització dels treballs i en feines d’operació i manteniment serà necessari instal·lar una tanca perimetral de seguretat, o en el seu defecte que l’operari es lligui amb arnés de seguretat en algun punt de l’estructura de l’edifici.

El personal que realitzi els treballs de manteniment haurà d’estar qualificat per a realitzar treballs en alçada.

10.7.3 Garantia

Els panells solars **Sunpower** tenen una garantia envers qualsevol defecte de fabricació de 10 anys. I asseguren un rendiment del 90% de la potència nominal durant els 12 primers anys, i del 80% els 13 següents.

L’inversor **SMA** té una garantia de 5 anys envers qualsevol defecte de fabricació electrònica.
A partir de la simulació del camp generador dissenyat, s’han obtingut les següents dades d’irradiació, producció energètica i rendiment.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Irradiació horitzontal (kWh/m²)</th>
<th>Irradiació pla receptor (kWh/m²)</th>
<th>Irradiació efectiva (kWh/m²)</th>
<th>Irradiació efectiva (kWh/m²·dia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gener</td>
<td>58,9</td>
<td>89,8</td>
<td>81,4</td>
<td>2,626</td>
</tr>
<tr>
<td>Febrer</td>
<td>75,7</td>
<td>101,5</td>
<td>94,0</td>
<td>3,357</td>
</tr>
<tr>
<td>Març</td>
<td>123,1</td>
<td>147,4</td>
<td>137,5</td>
<td>4,435</td>
</tr>
<tr>
<td>Abril</td>
<td>147,6</td>
<td>153,0</td>
<td>142,9</td>
<td>4,763</td>
</tr>
<tr>
<td>Maig</td>
<td>181,4</td>
<td>171,7</td>
<td>159,8</td>
<td>5,155</td>
</tr>
<tr>
<td>Juny</td>
<td>193,8</td>
<td>178,3</td>
<td>167,1</td>
<td>5,570</td>
</tr>
<tr>
<td>Juliol</td>
<td>201,5</td>
<td>187,4</td>
<td>175,2</td>
<td>5,652</td>
</tr>
<tr>
<td>Agost</td>
<td>177,9</td>
<td>180,7</td>
<td>169,6</td>
<td>5,471</td>
</tr>
<tr>
<td>Setembre</td>
<td>141,7</td>
<td>162,6</td>
<td>152,5</td>
<td>5,083</td>
</tr>
<tr>
<td>Octubre</td>
<td>98,0</td>
<td>126,4</td>
<td>117,5</td>
<td>3,790</td>
</tr>
<tr>
<td>Novembre</td>
<td>62,4</td>
<td>89,4</td>
<td>82,0</td>
<td>2,733</td>
</tr>
<tr>
<td>Desembre</td>
<td>50,1</td>
<td>78,7</td>
<td>71,2</td>
<td>2,297</td>
</tr>
<tr>
<td>Anual</td>
<td>1.512,1</td>
<td>1.666,8</td>
<td>1.550,6</td>
<td>4,248</td>
</tr>
</tbody>
</table>

Taula 15. Dades d’irradiació.
Taula 16. Energia, producció i rendiment.
Figura 17. Energia mensual produïda.

Figura 18. Energia mensual específica.
A continuació es realitza una breu descripció de l’afecció mediambiental de la instal·lació objecte de l’estudi.
La instal·lació fotovoltaica s’ha dissenyat tant en la fase constructiva com en el desenvolupament normal de la seva activitat, tenint en compte i reduint al màxim les possibles afectacions mediambientals.

12.1 Afectació mediambiental a la fase de fabricació dels panells fotovoltaics
Els panells fotovoltaics constitueixen el 90% de la instal·lació i per tant, cal considerar la repercussió mediambiental que provoca la seva fabricació.
La fabricació d’un panell solar requereix també la utilització de materials com a l’alumini (pels marcs), vidre (com a encapsulant), acer (per a estructures) etc., sent aquests components comuns a la indústria convencional.
A la producció del panell solar es produeix una despesa energètica, que genera residus, com partícules de NO\textsubscript{x}, SO\textsubscript{2}, CO\textsubscript{2} etc. Això es deu al fet que l’energia utilitzada a la fabricació del panell solar, té el seu origen en la barreja de fonts energètiques convencionals del país de

fabricació. No obstant, podem afirmar que l’emissió d’aquestes substàncies degudes a la fabricació de panells solars és reduïda en comparació amb l’estalvi que suposa la producció d’electricitat amb tecnologia fotovoltaica. La fabricació de panells a gran escala encara redueix més aquesta emissió.

L’obtenció de silici de grau metal·lúrgic és necessària en grans quantitats, per a la indústria de l’acer, una petita proporció d’aquest material es dedica a la indústria de semiconductors. Els inconvenients d’aquesta indústria són: les emissions de pols de sílice (molt perjudicial per a la salut), l’ús de materials tals com el silà en la purificació del silici, la utilització de petites quantitats de compostos tòxics (diborà i fosfina) en els processos de dopat del silici, la utilització d’agents agressius (àcid sulfúric) en els processos de fabricació de les cèl·lules solars i la utilització de grans quantitats d’energia en l’obtenció de les cèl·lules de silici.

Els avenços industrials, en la fabricació de panells solars, en el sentit de reduir pèrdues de material, en tallar els cristalls de silici per a la fabricació de cèl·lules solars, suposa, a més d’un benefici econòmic, la reducció d’energia necessària i, per tant, disminuir l’emissió de contaminants generats per la producció de l’energia.

12.2 Afectació mediambiental a la fase constructiva de la instal·lació

Tots els elements constructius seran reciclables i no tindran cap reacció ni afectació sobre el medi. Així com, en la mesura del possible, els elements i materials necessaris a la fase de construcció.

Els residus generats a l’obra (bàsicament material d’embalatge), seran recollits i gestionats als abocadors corresponents, d’acord amb el que estableix la legislació vigent en matèria de residus.

12.3 Afectació mediambiental a la fase d’explotació

La fase d’explotació no tindrà cap afectació negativa des del punt de vista mediambiental, al contrari, contribuirà a la reducció d’emissions de gasos contaminants i al consum de petroli en centrals tèrmiques convencionals.
12.3.1 Afectació al clima
La generació d’energia elèctrica directament a partir de la llum solar no requereix cap tipus de combustió, per tant, no es produeix pol·lució tèrmica ni emissions de CO$_2$ que afavoreixin l’efecte hivernacle.

12.3.2 Afectació al cicle de l’aigua
L’aigua no intervindrà, en cap cas, en la fase d’explotació de la instal·lació fotovoltaica i cal destacar que el rentat de les plaques que es realitza de manera periòdica dins el manteniment preventiu de la instal·lació, serà mitjançant productes especials per netejar en sec. Així doncs, no es necessitaran ni escomesa d’aigua ni sistemes de recollida i abocament.

Pel que fa a les aigües de pluja, la instal·lació no té cap afectació, les aigües es recolliran i conduiran cap al col·lector de xarxa separativa de manera normal, tal i com el sistema funciona actualment.

12.3.3 Afectació a la geologia
Les cèl·lules fotovoltaiques es fabriquen amb silici, element obtingut de manera natural i molt abundant, del qual no es requereixen quantitats significatives. Per tant, a la fabricació dels panells no es produeixen alteracions a les característiques litològiques, topogràfiques o estructurals del terreny.

12.3.4 Afectació a la flora i la fauna
La repercussió sobre la flora és nul·la ja que s’ubica sobre la coberta d’una nau en un polígon industrial.

L’afectació a la fauna és mínima o inexistent ja que al tractar-se d’un polígon industrial l’existència d’ecosistemes és molt baixa.

A l’implantar una instal·lació fotovoltaica s’està evitant, d’alguna manera, la xarxa elèctrica convencional i s’eviten efectes perjudicials a les aus.
12.3.5 Reciclatge de la instal·lació
Cal tenir en compte que el camp fotovoltaic té una vida mitjana d’uns 30 anys i que en el moment que es procedeixi a la seva retirada, tots els elements són reciclables. Cal destacar que els panells fotovoltaics que constitueixen el 90% de la instal·lació en qüestió, estan fabricats de silici, material reciclable.
Actualment existeixen cicles de reciclatge d’instal·lacions fotovoltaiques, patentats i totalment normalitzats.

12.3.6 Estalvi d’emissions contaminants a l’atmosfera
La realització del camp fotovoltaic de connexió a la xarxa projectat, aportarà una reducció en les emissions contaminats a l’atmosfera (GEH). Segons dades de l’any 2009 en emissions i residus radiactius en la generació d’electricitat, es defineixen els paràmetres següents com a aproximació d’estalvi:

<table>
<thead>
<tr>
<th>Estalvi en l’aportació solar d’1 kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>g. de CO₂</td>
</tr>
<tr>
<td>g. de SO₂</td>
</tr>
<tr>
<td>g. de NOₓ</td>
</tr>
<tr>
<td>cm³. de residus radiactius de mitja i baixa activitat (RRMBA)*</td>
</tr>
<tr>
<td>mg. de residus radiactius d’alta activitat (RRAA)*</td>
</tr>
</tbody>
</table>

Taula 17. Emissions en la generació d’1kWh convencional.
(Font: Dades anuals 2009 de IDAE i l’Observatori d’electricitat WWF)
Estalvi equivalent a la instal·lació de 97.308 Wp

<table>
<thead>
<tr>
<th></th>
<th>kg. de CO₂</th>
<th>g. de SO₂</th>
<th>g. de NOₓ</th>
<th>cm³. de RRMBA*</th>
<th>mg. de RRAA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gener</td>
<td>2609,0</td>
<td>2636,6</td>
<td>2154,7</td>
<td>14,25</td>
<td>1748,5</td>
</tr>
<tr>
<td>Febrer</td>
<td>2997,5</td>
<td>3029,1</td>
<td>2475,5</td>
<td>16,37</td>
<td>2008,9</td>
</tr>
<tr>
<td>Març</td>
<td>4331,6</td>
<td>4377,3</td>
<td>3577,3</td>
<td>23,66</td>
<td>2903,0</td>
</tr>
<tr>
<td>Abril</td>
<td>4431,3</td>
<td>4478,0</td>
<td>3659,6</td>
<td>24,20</td>
<td>2969,8</td>
</tr>
<tr>
<td>Maig</td>
<td>4874,7</td>
<td>4926,1</td>
<td>4025,8</td>
<td>26,62</td>
<td>3266,9</td>
</tr>
<tr>
<td>Juny</td>
<td>4955,8</td>
<td>5008,1</td>
<td>4092,8</td>
<td>27,07</td>
<td>3321,3</td>
</tr>
<tr>
<td>Juliol</td>
<td>5155,2</td>
<td>5209,6</td>
<td>4257,4</td>
<td>28,16</td>
<td>3454,9</td>
</tr>
<tr>
<td>Agost</td>
<td>4969,4</td>
<td>5021,9</td>
<td>4104,1</td>
<td>27,14</td>
<td>3330,4</td>
</tr>
<tr>
<td>Setembre</td>
<td>4550,7</td>
<td>4598,7</td>
<td>3758,2</td>
<td>24,85</td>
<td>3049,8</td>
</tr>
<tr>
<td>Octubre</td>
<td>3629,7</td>
<td>3668,0</td>
<td>2997,6</td>
<td>19,82</td>
<td>2432,6</td>
</tr>
<tr>
<td>Novembre</td>
<td>2607,1</td>
<td>2634,7</td>
<td>2153,1</td>
<td>14,24</td>
<td>1747,3</td>
</tr>
<tr>
<td>Desembre</td>
<td>2297,5</td>
<td>2321,7</td>
<td>1897,4</td>
<td>12,55</td>
<td>1539,7</td>
</tr>
<tr>
<td>Anual</td>
<td>47409,9</td>
<td>47910,2</td>
<td>39153,8</td>
<td>258,94</td>
<td>31773,4</td>
</tr>
</tbody>
</table>

Taula 18. Estalvi aproximat mensual d’emissions i residus radiactius a la instal·lació.

Figura 20. Estalvi mensual d’emissions.
13 Impacte social

L’energia solar fotovoltaica ofereix l’oportunitat, a un cost raonable, d’utilitzar una energia renovable en un àmbit urbà generant una electricitat respectuosa amb el medi ambient.

Un sistema fotovoltaic ajuda a sensibilitzar l’estalvi energètic, a més de constituir un element diferenciador a l’edifici. És a dir, amb la instal·lació d’un sistema fotovoltaic en un edifici urbà no només obtenim un benefici econòmic sinó que també aconseguim millorar l’estatus social de l’edifici.

Actualment moltes empreses del sector comercial i industrial aprofiten la instal·lació fotovoltaica per a fer màrqueting ambiental i així obtenir una resposta social afavoridora envers l’empresa.

14 Estudi econòmic

Per tal de determinar l’interès econòmic del projecte, es realitzarà un anàlisis de rendibilitat de la inversió atenent a criteris com són el termini de recuperació (PAYBACK), el valor net actual (VAN) i la taxa interna de rendibilitat (TIR).

Per realitzar una avaluació correcta i comparar les quantitats que intervenen a l’estudi de rendibilitat, es tindrà en compte la variació dels costos amb el temps per mitjà de l’IPC, índex que expressa el creixement dels preus dels béns de consum durant un temps determinat.

L’estudi de rendibilitat es realitzarà per un període de temps de 25 anys, tenint en compte que el fabricant de panells et dona aquesta garantia mínima pel que fa a la potència.

14.1 Inversió

Com es pot consultar al document pressupost els components a valorar a la inversió inicial són,

- Panells fotovoltaics
- Estructura de panells fotovoltaics
- Instal·lació elèctrica
- Inversor/monitorització
- Muntatge i posada en marxa
• Enginyeria i direcció d’obra

La inversió inicial serà de 426.221,35 €, on el cost més elevat correspon a “Panells fotovoltaics”, un 55 % de la inversió inicial total.

14.2 Previsió d’ingressos

Els ingressos generats a la instal·lació procedeixen de la facturació anual total, calculats a partir d’un volum fix anual en kWh i una tarifa elèctrica de venda en €/kWh, actualitzada anualment amb l’IPC segons indicacions del IDAE.

El RD 1578/2008 imposa un preu per l’energia elèctrica procedent de cada tipus d’instal·lació, en el cas tipus I.2 la tarifa és de 0,32 €/kWh durant els primers 25 anys.

A la prima anual s’hi aplicarà l’increment de l’IPC del 2,5%, i es considerarà un 0,25% de degradació de rendiment anual de la producció.

14.3 Finançament

Degut a la gran inversió de capital que suposa aquest projecte, és molt provable que sigui necessari el finançament bancari.

A l’estudi econòmic B s’ha considerat un sistema de finançament bancari del 80% de la inversió inicial, a amortitzar en un període de 12 anys, a un interès fix del 4,5% (Euríbor + 0,5%).

14.4 Previsió de despeses

La previsió de despeses inclou,

• Assegurança de la instal·lació: S’estima un cost d’un 1,5%/Wp instal·lat, actualitzant-se el valor cada any amb l’IPC.
• Manteniment: Inclou els costos de manteniment preventiu i correctiu de la instal·lació. S’estima en un 2%/Wp instal·lat, actualitzant-se el valor cada any amb l’IPC.
• Despeses de finançament (a l’estudi econòmic B): Interessos a pagar a l’entitat bancària pel préstec concedit. Aquests costos de finançament es simulen com un crèdit real, a mesura que descendeixen els interessos augmenta l’amortització de capital.
L’import del préstec ascendeix a 340.976,80€ el 80% de la inversió, 426.221,35€. El cost d’obertura del préstec es considera d’un 0,5 %.

14.5 Paràmetres d’estudi

Payback

El paràmetre Payback indica quan es recupera la inversió inicial realitzada, i per tant, quan es comença a generar uns beneficis molt superiors als costos.

Valor Net Afegit (VAN)

El paràmetre VAN d’una inversió considera la suma dels valors actualitzats de tots els fluxos de caixa nets esperats deduïts de la inversió inicial.

Taxa Interna de Retorn (TIR)

La Taxa Interna de Retorn indica la taxa de descompte que fa que el VAN d’una inversió sigui igual a zero.

14.6 Resultats de l’estudi econòmic A

Les dades principals a considerar a l’estudi A,

- Inversió inicial: 426.221,35 €.
- Temps d’anàlisis 25 anys.
- **Capital propi**.
- IPC anual estimat del 2,5 %.
- Prima de 0,32 C/kWh.
- Tipus de descompte aplicable a cada any 5% (VAN).
14.6.1 Producció i ingressos d’explotació

<table>
<thead>
<tr>
<th>Període</th>
<th>Rendiment camp fotovoltaic (%)</th>
<th>Producció (kWh/any)</th>
<th>Prima (€/kWh)</th>
<th>Ingressos anuals d’explotació (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any 1</td>
<td>77,10</td>
<td>125.000</td>
<td>0,320</td>
<td>40.000</td>
</tr>
<tr>
<td>Any 2</td>
<td>76,85</td>
<td>124.595</td>
<td>0,328</td>
<td>40.867</td>
</tr>
<tr>
<td>Any 3</td>
<td>76,60</td>
<td>124.189</td>
<td>0,336</td>
<td>41.752</td>
</tr>
<tr>
<td>Any 4</td>
<td>76,35</td>
<td>123.784</td>
<td>0,345</td>
<td>42.657</td>
</tr>
<tr>
<td>Any 5</td>
<td>76,10</td>
<td>123.379</td>
<td>0,353</td>
<td>43.580</td>
</tr>
<tr>
<td>Any 6</td>
<td>75,85</td>
<td>122.973</td>
<td>0,362</td>
<td>44.523</td>
</tr>
<tr>
<td>Any 7</td>
<td>75,60</td>
<td>122.568</td>
<td>0,371</td>
<td>45.485</td>
</tr>
<tr>
<td>Any 8</td>
<td>75,35</td>
<td>122.163</td>
<td>0,380</td>
<td>46.468</td>
</tr>
<tr>
<td>Any 9</td>
<td>75,10</td>
<td>121.757</td>
<td>0,390</td>
<td>47.472</td>
</tr>
<tr>
<td>Any 10</td>
<td>74,85</td>
<td>121.352</td>
<td>0,400</td>
<td>48.497</td>
</tr>
<tr>
<td>Any 11</td>
<td>74,60</td>
<td>120.947</td>
<td>0,410</td>
<td>49.543</td>
</tr>
<tr>
<td>Any 12</td>
<td>74,35</td>
<td>120.542</td>
<td>0,420</td>
<td>50.611</td>
</tr>
<tr>
<td>Any 13</td>
<td>74,10</td>
<td>120.136</td>
<td>0,430</td>
<td>51.702</td>
</tr>
<tr>
<td>Any 14</td>
<td>73,85</td>
<td>119.731</td>
<td>0,441</td>
<td>52.816</td>
</tr>
<tr>
<td>Any 15</td>
<td>73,60</td>
<td>119.326</td>
<td>0,452</td>
<td>53.953</td>
</tr>
<tr>
<td>Any 16</td>
<td>73,35</td>
<td>118.920</td>
<td>0,463</td>
<td>55.114</td>
</tr>
<tr>
<td>Any 17</td>
<td>73,10</td>
<td>118.515</td>
<td>0,475</td>
<td>56.300</td>
</tr>
<tr>
<td>Any 18</td>
<td>72,85</td>
<td>118.110</td>
<td>0,487</td>
<td>57.510</td>
</tr>
<tr>
<td>Any 19</td>
<td>72,60</td>
<td>117.704</td>
<td>0,499</td>
<td>58.745</td>
</tr>
<tr>
<td>Any 20</td>
<td>72,35</td>
<td>117.299</td>
<td>0,512</td>
<td>60.006</td>
</tr>
<tr>
<td>Any 21</td>
<td>72,10</td>
<td>116.894</td>
<td>0,524</td>
<td>61.294</td>
</tr>
<tr>
<td>Any 22</td>
<td>71,85</td>
<td>116.488</td>
<td>0,537</td>
<td>62.609</td>
</tr>
<tr>
<td>Any 23</td>
<td>71,60</td>
<td>116.083</td>
<td>0,551</td>
<td>63.950</td>
</tr>
<tr>
<td>Període</td>
<td>Rendiment camp fotovoltaic (%)</td>
<td>Producció (kWh/any)</td>
<td>Prima (€/kWh)</td>
<td>Ingressos anuals d’explotació (€)</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Any 24</td>
<td>71,35</td>
<td>115.678</td>
<td>0,565</td>
<td>65.320</td>
</tr>
<tr>
<td>Any 25</td>
<td>71,10</td>
<td>115.272</td>
<td>0,579</td>
<td>66.719</td>
</tr>
</tbody>
</table>

Taula 19. Producció i ingressos d’explotació a l’estudi econòmic A.

14.6.2 Despeses d’explotació

Les despeses d’explotació són l’assegurança i el manteniment anual de la instal·lació.

<table>
<thead>
<tr>
<th>Període</th>
<th>Cost assegurança (C)</th>
<th>Cost manteniment anual (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any 1</td>
<td>1.459,62</td>
<td>1.946,16</td>
</tr>
<tr>
<td>Any 2</td>
<td>1.496,11</td>
<td>1.994,81</td>
</tr>
<tr>
<td>Any 3</td>
<td>1.533,51</td>
<td>2.044,68</td>
</tr>
<tr>
<td>Any 4</td>
<td>1.571,85</td>
<td>2.095,80</td>
</tr>
<tr>
<td>Any 5</td>
<td>1.611,15</td>
<td>2.148,20</td>
</tr>
<tr>
<td>Any 6</td>
<td>1.651,43</td>
<td>2.201,90</td>
</tr>
<tr>
<td>Any 7</td>
<td>1.692,71</td>
<td>2.256,95</td>
</tr>
<tr>
<td>Any 8</td>
<td>1.735,03</td>
<td>2.313,37</td>
</tr>
<tr>
<td>Any 9</td>
<td>1.778,41</td>
<td>2.371,21</td>
</tr>
<tr>
<td>Any 10</td>
<td>1.822,87</td>
<td>2.430,49</td>
</tr>
<tr>
<td>Any 11</td>
<td>1.868,44</td>
<td>2.491,25</td>
</tr>
<tr>
<td>Any 12</td>
<td>1.915,15</td>
<td>2.553,53</td>
</tr>
<tr>
<td>Any 13</td>
<td>1.963,03</td>
<td>2.617,37</td>
</tr>
<tr>
<td>Any 14</td>
<td>2.012,10</td>
<td>2.682,80</td>
</tr>
<tr>
<td>Any 15</td>
<td>2.062,40</td>
<td>2.749,87</td>
</tr>
</tbody>
</table>
Taula 20. Despeses d’explotació a l’estudi A.

14.6.3 Balanç final

<table>
<thead>
<tr>
<th>Període</th>
<th>Ingressos anuals d'explotació (€)</th>
<th>Inversió inicial (€)</th>
<th>Costos anuals (€)</th>
<th>Flux de caixa anual (€)</th>
<th>Flux de caixa acumulat (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any 0</td>
<td>426.221,35</td>
<td></td>
<td></td>
<td></td>
<td>-426.221,35</td>
</tr>
<tr>
<td>Any 1</td>
<td>40.000</td>
<td>3.405,78</td>
<td>36.594,22</td>
<td></td>
<td>-389.627,13</td>
</tr>
<tr>
<td>Any 2</td>
<td>40.867</td>
<td>3.490,92</td>
<td>37.376,13</td>
<td></td>
<td>-352.251,00</td>
</tr>
<tr>
<td>Any 3</td>
<td>41.752</td>
<td>3.578,20</td>
<td>38.174,27</td>
<td></td>
<td>-314.076,73</td>
</tr>
<tr>
<td>Any 4</td>
<td>42.657</td>
<td>3.667,65</td>
<td>38.988,95</td>
<td></td>
<td>-275.087,78</td>
</tr>
<tr>
<td>Any 5</td>
<td>43.580</td>
<td>3.759,34</td>
<td>39.820,51</td>
<td></td>
<td>-235.267,28</td>
</tr>
<tr>
<td>Any 6</td>
<td>44.523</td>
<td>3.853,33</td>
<td>40.669,27</td>
<td></td>
<td>-194.598,00</td>
</tr>
<tr>
<td>Any 7</td>
<td>45.485</td>
<td>3.949,66</td>
<td>41.535,59</td>
<td></td>
<td>-153.062,41</td>
</tr>
<tr>
<td>Període</td>
<td>Ingressos anuals d'explotació (€)</td>
<td>Inversió inicial (€)</td>
<td>Costos anuals (€)</td>
<td>Flux de caixa anual (€)</td>
<td>Flux de caixa acumulat (€)</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Any 8</td>
<td>46.468</td>
<td>4.048,40</td>
<td>42.419,81</td>
<td>-110.642,61</td>
<td></td>
</tr>
<tr>
<td>Any 9</td>
<td>47.472</td>
<td>4.149,61</td>
<td>43.322,27</td>
<td>-67.320,33</td>
<td></td>
</tr>
<tr>
<td>Any 10</td>
<td>48.497</td>
<td>4.253,35</td>
<td>44.243,35</td>
<td>-23.076,98</td>
<td></td>
</tr>
<tr>
<td>Any 11</td>
<td>49.543</td>
<td>4.359,69</td>
<td>45.183,40</td>
<td>22.106,42</td>
<td></td>
</tr>
<tr>
<td>Any 12</td>
<td>50.611</td>
<td>4.468,68</td>
<td>46.142,81</td>
<td>68.249,23</td>
<td></td>
</tr>
<tr>
<td>Any 13</td>
<td>51.702</td>
<td>4.580,40</td>
<td>47.121,95</td>
<td>115.371,17</td>
<td></td>
</tr>
<tr>
<td>Any 14</td>
<td>52.816</td>
<td>4.694,91</td>
<td>48.121,20</td>
<td>163.492,37</td>
<td></td>
</tr>
<tr>
<td>Any 15</td>
<td>53.953</td>
<td>4.812,28</td>
<td>49.140,96</td>
<td>212.633,34</td>
<td></td>
</tr>
<tr>
<td>Any 16</td>
<td>55.114</td>
<td>4.932,58</td>
<td>50.181,64</td>
<td>262.814,98</td>
<td></td>
</tr>
<tr>
<td>Any 17</td>
<td>56.300</td>
<td>5.055,90</td>
<td>51.243,64</td>
<td>314.058,62</td>
<td></td>
</tr>
<tr>
<td>Any 18</td>
<td>57.510</td>
<td>5.182,30</td>
<td>52.327,37</td>
<td>366.385,99</td>
<td></td>
</tr>
<tr>
<td>Any 19</td>
<td>58.745</td>
<td>5.311,85</td>
<td>53.433,27</td>
<td>419.819,26</td>
<td></td>
</tr>
<tr>
<td>Any 20</td>
<td>60.006</td>
<td>5.444,65</td>
<td>54.561,75</td>
<td>474.381,01</td>
<td></td>
</tr>
<tr>
<td>Any 21</td>
<td>61.294</td>
<td>5.580,77</td>
<td>55.713,26</td>
<td>530.094,27</td>
<td></td>
</tr>
<tr>
<td>Any 22</td>
<td>62.609</td>
<td>5.720,29</td>
<td>56.888,25</td>
<td>586.982,53</td>
<td></td>
</tr>
<tr>
<td>Any 23</td>
<td>63.950</td>
<td>5.863,29</td>
<td>58.087,17</td>
<td>645.069,69</td>
<td></td>
</tr>
<tr>
<td>Any 24</td>
<td>65.320</td>
<td>6.009,88</td>
<td>59.310,47</td>
<td>704.380,17</td>
<td></td>
</tr>
<tr>
<td>Any 25</td>
<td>66.719</td>
<td>6.160,12</td>
<td>60.558,64</td>
<td>764.938,81</td>
<td></td>
</tr>
</tbody>
</table>

Taula 21. Balanç final a l’estudi A.
Indicadors de viabilitat econòmica a l’estudi econòmic A,

<table>
<thead>
<tr>
<th>Indicador</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PAYBACK</td>
<td>10 anys</td>
</tr>
<tr>
<td>VAN</td>
<td>210.922 €</td>
</tr>
<tr>
<td>TIR</td>
<td>9,1 %</td>
</tr>
</tbody>
</table>

Taula 22. Indicadors de l’estudi A.

Si s’analitzen els indicadors es coneix que la inversió és rendible amb un tipus de descompte del 5%, el VAN és positiu.

El termini de recuperació de la inversió és de 10 anys, degut a que a partir de llavors els ingressos es transformen en beneficis.

La TIR obtinguda és del 9,1%, superior a la taxa aplicada a la inversió, per tant, és aconsellable.

A continuació es realitzarà l’estudi econòmic simulant el finançament del 80% de la inversió inicial.

14.7 Resultats de l’estudi econòmic B

Les dades principals a considerar a l’estudi B,

- Inversió inicial: 426.221,35 €.
- Temps d’anàlisis 25 anys.
- Finançament bancari del 80%, a un tipus d’interès fix del 4,5% en 12 anys.
- IPC anual estimat del 2,5%.
- Prima de 0,32 C/kWh.
- Tipus de descompte aplicable a cada any 5% (VAN).
14.7.1 Producció i ingressos d’explotació

<table>
<thead>
<tr>
<th>Període</th>
<th>Rendiment camp fotovoltaic (%)</th>
<th>Producció (kWh/any)</th>
<th>Prima (€/kWh)</th>
<th>Ingressos anuals d'explotació (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any 1</td>
<td>77,10</td>
<td>125.000</td>
<td>0,320</td>
<td>40.000</td>
</tr>
<tr>
<td>Any 2</td>
<td>76,85</td>
<td>124.595</td>
<td>0,328</td>
<td>40.867</td>
</tr>
<tr>
<td>Any 3</td>
<td>76,60</td>
<td>124.189</td>
<td>0,336</td>
<td>41.752</td>
</tr>
<tr>
<td>Any 4</td>
<td>76,35</td>
<td>123.784</td>
<td>0,345</td>
<td>42.657</td>
</tr>
<tr>
<td>Any 5</td>
<td>76,10</td>
<td>123.379</td>
<td>0,353</td>
<td>43.580</td>
</tr>
<tr>
<td>Any 6</td>
<td>75,85</td>
<td>122.973</td>
<td>0,362</td>
<td>44.523</td>
</tr>
<tr>
<td>Any 7</td>
<td>75,60</td>
<td>122.568</td>
<td>0,371</td>
<td>45.485</td>
</tr>
<tr>
<td>Any 8</td>
<td>75,35</td>
<td>122.163</td>
<td>0,380</td>
<td>46.468</td>
</tr>
<tr>
<td>Any 9</td>
<td>75,10</td>
<td>121.757</td>
<td>0,390</td>
<td>47.472</td>
</tr>
<tr>
<td>Any 10</td>
<td>74,85</td>
<td>121.352</td>
<td>0,400</td>
<td>48.497</td>
</tr>
<tr>
<td>Any 11</td>
<td>74,60</td>
<td>120.947</td>
<td>0,410</td>
<td>49.543</td>
</tr>
<tr>
<td>Any 12</td>
<td>74,35</td>
<td>120.542</td>
<td>0,420</td>
<td>50.611</td>
</tr>
<tr>
<td>Any 13</td>
<td>74,10</td>
<td>120.136</td>
<td>0,430</td>
<td>51.702</td>
</tr>
<tr>
<td>Any 14</td>
<td>73,85</td>
<td>119.731</td>
<td>0,441</td>
<td>52.816</td>
</tr>
<tr>
<td>Any 15</td>
<td>73,60</td>
<td>119.326</td>
<td>0,452</td>
<td>53.953</td>
</tr>
<tr>
<td>Any 16</td>
<td>73,35</td>
<td>118.920</td>
<td>0,463</td>
<td>55.114</td>
</tr>
<tr>
<td>Any 17</td>
<td>73,10</td>
<td>118.515</td>
<td>0,475</td>
<td>56.300</td>
</tr>
<tr>
<td>Any 18</td>
<td>72,85</td>
<td>118.110</td>
<td>0,487</td>
<td>57.510</td>
</tr>
<tr>
<td>Any 19</td>
<td>72,60</td>
<td>117.704</td>
<td>0,499</td>
<td>58.745</td>
</tr>
<tr>
<td>Any 20</td>
<td>72,35</td>
<td>117.299</td>
<td>0,512</td>
<td>60.006</td>
</tr>
<tr>
<td>Any 21</td>
<td>72,10</td>
<td>116.894</td>
<td>0,524</td>
<td>61.294</td>
</tr>
<tr>
<td>Any 22</td>
<td>71,85</td>
<td>116.488</td>
<td>0,537</td>
<td>62.609</td>
</tr>
<tr>
<td>Any 23</td>
<td>71,60</td>
<td>116.083</td>
<td>0,551</td>
<td>63.950</td>
</tr>
<tr>
<td>Període</td>
<td>Rendiment camp fotovoltaic (%)</td>
<td>Producció (kWh/any)</td>
<td>Prima (€/kWh)</td>
<td>Ingressos anuals d'explotació (€)</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Any 24</td>
<td>71,35</td>
<td>115.678</td>
<td>0,565</td>
<td>65.320</td>
</tr>
<tr>
<td>Any 25</td>
<td>71,10</td>
<td>115.272</td>
<td>0,579</td>
<td>66.719</td>
</tr>
</tbody>
</table>

Taula 23. Producció i ingressos d'explotació a l'estudi B.

14.7.2 Despeses de finançament i explotació

La inversió inicial amb finançament bancari és de 340.976,80 € i el cost d'obertura és de 1.704,88 €.

<table>
<thead>
<tr>
<th>Període</th>
<th>Quota anual préstec finançament (€)</th>
<th>Interessos préstec finançament (€)</th>
<th>Amortització préstec finançament (€)</th>
<th>Capital pendent préstec finançament (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any 1</td>
<td>36.825,83</td>
<td>14.895,31</td>
<td>21.930,52</td>
<td>319.046,28</td>
</tr>
<tr>
<td>Any 2</td>
<td>36.825,83</td>
<td>13.887,82</td>
<td>22.938,01</td>
<td>296.108,27</td>
</tr>
<tr>
<td>Any 3</td>
<td>36.825,83</td>
<td>12.834,05</td>
<td>23.991,77</td>
<td>272.116,50</td>
</tr>
<tr>
<td>Any 4</td>
<td>36.825,83</td>
<td>11.731,88</td>
<td>25.093,95</td>
<td>247.022,55</td>
</tr>
<tr>
<td>Any 5</td>
<td>36.825,83</td>
<td>10.579,07</td>
<td>26.246,76</td>
<td>220.775,79</td>
</tr>
<tr>
<td>Any 6</td>
<td>36.825,83</td>
<td>9.373,29</td>
<td>27.452,53</td>
<td>193.323,25</td>
</tr>
<tr>
<td>Any 7</td>
<td>36.825,83</td>
<td>8.112,13</td>
<td>28.713,70</td>
<td>164.609,55</td>
</tr>
<tr>
<td>Any 8</td>
<td>36.825,83</td>
<td>6.793,03</td>
<td>30.032,80</td>
<td>134.576,75</td>
</tr>
<tr>
<td>Any 9</td>
<td>36.825,83</td>
<td>5.413,32</td>
<td>31.412,50</td>
<td>103.164,25</td>
</tr>
<tr>
<td>Any 10</td>
<td>36.825,83</td>
<td>3.970,24</td>
<td>32.855,59</td>
<td>70.308,66</td>
</tr>
<tr>
<td>Any 11</td>
<td>36.825,83</td>
<td>2.460,86</td>
<td>34.364,97</td>
<td>35.943,69</td>
</tr>
<tr>
<td>Any 12</td>
<td>36.825,83</td>
<td>882,14</td>
<td>35.943,69</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Taula 24. Despeses de finançament a l’estudi B.
Les despeses d’explotació són l’assegurança i el manteniment anual de la instal·lació.

<table>
<thead>
<tr>
<th>Període</th>
<th>Cost assegurança (€)</th>
<th>Cost manteniment anual (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any 1</td>
<td>1.459,62</td>
<td>1.946,16</td>
</tr>
<tr>
<td>Any 2</td>
<td>1.496,11</td>
<td>1.994,81</td>
</tr>
<tr>
<td>Any 3</td>
<td>1.533,51</td>
<td>2.044,68</td>
</tr>
<tr>
<td>Any 4</td>
<td>1.571,85</td>
<td>2.095,80</td>
</tr>
<tr>
<td>Any 5</td>
<td>1.611,15</td>
<td>2.148,20</td>
</tr>
<tr>
<td>Any 6</td>
<td>1.651,43</td>
<td>2.201,90</td>
</tr>
<tr>
<td>Any 7</td>
<td>1.692,71</td>
<td>2.256,95</td>
</tr>
<tr>
<td>Any 8</td>
<td>1.735,03</td>
<td>2.313,37</td>
</tr>
<tr>
<td>Any 9</td>
<td>1.778,41</td>
<td>2.371,21</td>
</tr>
<tr>
<td>Any 10</td>
<td>1.822,87</td>
<td>2.430,49</td>
</tr>
<tr>
<td>Any 11</td>
<td>1.868,44</td>
<td>2.491,25</td>
</tr>
<tr>
<td>Any 12</td>
<td>1.915,15</td>
<td>2.553,53</td>
</tr>
<tr>
<td>Any 13</td>
<td>1.963,03</td>
<td>2.617,37</td>
</tr>
<tr>
<td>Any 14</td>
<td>2.012,10</td>
<td>2.682,80</td>
</tr>
<tr>
<td>Any 15</td>
<td>2.062,40</td>
<td>2.749,87</td>
</tr>
<tr>
<td>Any 16</td>
<td>2.113,96</td>
<td>2.818,62</td>
</tr>
<tr>
<td>Any 17</td>
<td>2.166,81</td>
<td>2.889,09</td>
</tr>
<tr>
<td>Any 18</td>
<td>2.220,98</td>
<td>2.961,31</td>
</tr>
<tr>
<td>Any 19</td>
<td>2.276,51</td>
<td>3.035,35</td>
</tr>
<tr>
<td>Any 20</td>
<td>2.333,42</td>
<td>3.111,23</td>
</tr>
<tr>
<td>Any 21</td>
<td>2.391,76</td>
<td>3.189,01</td>
</tr>
<tr>
<td>Any 22</td>
<td>2.451,55</td>
<td>3.268,74</td>
</tr>
<tr>
<td>Any 23</td>
<td>2.512,84</td>
<td>3.350,45</td>
</tr>
</tbody>
</table>
Taula 25. Despeses d’explotació a l’estudi B.

<table>
<thead>
<tr>
<th>Període</th>
<th>Cost assegurança (€)</th>
<th>Cost manteniment anual (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any 24</td>
<td>2.575,66</td>
<td>3.434,21</td>
</tr>
<tr>
<td>Any 25</td>
<td>2.640,05</td>
<td>3.520,07</td>
</tr>
</tbody>
</table>

14.7.3 Balanç final

<table>
<thead>
<tr>
<th>Període</th>
<th>Ingressos anuals d’explotació (€)</th>
<th>Inversió inicial i obertura préstec (€)</th>
<th>Costos anuals (€)</th>
<th>Flux de caixa anual (€)</th>
<th>Flux de caixa acumulat (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any 0</td>
<td>86.949,43</td>
<td></td>
<td></td>
<td></td>
<td>-86.949,43</td>
</tr>
<tr>
<td>Any 1</td>
<td>40.000</td>
<td>40.844,65</td>
<td>-844,65</td>
<td>-87.794,08</td>
<td></td>
</tr>
<tr>
<td>Any 2</td>
<td>40.867</td>
<td>40.945,12</td>
<td>-78,07</td>
<td>-87.872,15</td>
<td></td>
</tr>
<tr>
<td>Any 3</td>
<td>41.752</td>
<td>41.048,10</td>
<td>704,36</td>
<td>-87.167,79</td>
<td></td>
</tr>
<tr>
<td>Any 4</td>
<td>42.657</td>
<td>41.153,66</td>
<td>1.502,94</td>
<td>-85.664,85</td>
<td></td>
</tr>
<tr>
<td>Any 5</td>
<td>43.580</td>
<td>41.261,86</td>
<td>2.317,99</td>
<td>-83.346,85</td>
<td></td>
</tr>
<tr>
<td>Any 6</td>
<td>44.523</td>
<td>41.372,76</td>
<td>3.149,84</td>
<td>-80.197,01</td>
<td></td>
</tr>
<tr>
<td>Any 7</td>
<td>45.485</td>
<td>41.486,43</td>
<td>3.998,82</td>
<td>-76.198,19</td>
<td></td>
</tr>
<tr>
<td>Any 8</td>
<td>46.468</td>
<td>41.602,94</td>
<td>4.865,26</td>
<td>-71.332,92</td>
<td></td>
</tr>
<tr>
<td>Any 9</td>
<td>47.472</td>
<td>41.722,37</td>
<td>5.749,51</td>
<td>-65.583,41</td>
<td></td>
</tr>
<tr>
<td>Any 10</td>
<td>48.497</td>
<td>41.844,79</td>
<td>6.651,92</td>
<td>-58.931,49</td>
<td></td>
</tr>
<tr>
<td>Any 11</td>
<td>49.543</td>
<td>41.970,26</td>
<td>7.572,83</td>
<td>-51.358,66</td>
<td></td>
</tr>
<tr>
<td>Any 12</td>
<td>50.611</td>
<td>42.098,87</td>
<td>8.512,62</td>
<td>-42.846,05</td>
<td></td>
</tr>
<tr>
<td>Any 13</td>
<td>51.702</td>
<td>5.404,87</td>
<td>46.297,47</td>
<td>3.451,43</td>
<td></td>
</tr>
<tr>
<td>Any 14</td>
<td>52.816</td>
<td>5.539,99</td>
<td>47.276,12</td>
<td>50.727,54</td>
<td></td>
</tr>
<tr>
<td>Any 15</td>
<td>53.953</td>
<td>5.678,49</td>
<td>48.274,75</td>
<td>99.002,30</td>
<td></td>
</tr>
</tbody>
</table>
Taula 26. Balanç final a l’estudi B.

Indicadors de viabilitat econòmica a l’estudi econòmic B,

<table>
<thead>
<tr>
<th>Indicador</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PAYBACK</td>
<td>12 anys</td>
</tr>
<tr>
<td>VAN</td>
<td>212.701 €</td>
</tr>
<tr>
<td>TIR</td>
<td>13 %</td>
</tr>
</tbody>
</table>

Si s’analitzen els indicadors es coneix que la inversió és rendible, el VAN és positiu.

El termini de recuperació de la inversió és de 12 anys, degut a que a partir de llavors els ingressos es transformen en beneficis.

La TIR obtinguda és del 13 %, superior a la taxa aplicada a la inversió, per tant, és aconsellable.
15 Planificació i programació

<table>
<thead>
<tr>
<th>Fase</th>
<th>Duració (mesos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol·licitació del punt de connexió</td>
<td>1 2 3</td>
</tr>
<tr>
<td>Realització del projecte tècnic</td>
<td>4</td>
</tr>
<tr>
<td>Gestió de permís d’obres</td>
<td>5 6</td>
</tr>
<tr>
<td>Contracte companyia elèctrica</td>
<td>7</td>
</tr>
<tr>
<td>Inici de les obres</td>
<td>8</td>
</tr>
<tr>
<td>Muntatge de l’estructura de suport dels panells</td>
<td></td>
</tr>
<tr>
<td>Col·locació de panells</td>
<td></td>
</tr>
<tr>
<td>Fase</td>
<td>Duració (mesos)</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>Adequació del recinte d’inversors i quadre CA</td>
<td></td>
</tr>
<tr>
<td>Instal·lació elèctrica</td>
<td></td>
</tr>
<tr>
<td>Muntatge i instal·lació dels inversors</td>
<td></td>
</tr>
<tr>
<td>Gestió i preparació de la llicència d’activitats</td>
<td></td>
</tr>
<tr>
<td>Tràmits OGE</td>
<td></td>
</tr>
<tr>
<td>Verificació final i posada en marxa</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions i recomanacions

En el present projecte s’han establert les característiques i els aspectes tècnics que permetran realitzar l’execució en obra d’una instal·lació solar fotovoltaica connectada a la xarxa elèctrica de baixa tensió, de 93,5 kW i 97,308 kWp.

Realitzant l’estudi i el dimensionament s’ha pogut obtenir una visió completa de l’estructura tècnica, el seu procés d’instal·lació, la generació d’energia disponible i la seva viabilitat econòmica.

S’ha posat especial èmfasis preliminar en els elements més importants de la instal·lació com són el tipus de panell i l’estructura del mateix, no només a nivell tècnic sinó també a nivell econòmic ja que computen un 63% del pressupost total.

La instal·lació elèctrica s’ha detallat considerablement ja que una instal·lació ben dimensionada i protegida no desencadena problemes posteriors i requereix un manteniment mínim.

Respecte a la viabilitat econòmica el projecte es considera rendible a 25 anys i una prima de 0,32 €/kWh amb un termini de recuperació de la inversió de 10 anys amb capital propi o de 12 anys amb un 80% de finançament bancari.

La consideració d’aquests tipus de projectes permetrà donar un impuls afegit a la implantació de les energies renovables i consolidar encara més la nova consciència ambiental reduint les emissions de CO₂ tot gaudint d’una retribució per la venda de l’energia produïda.

Tanmateix, es pot afirmar que s’han complert els objectius per als quals es va procedir a l’estudi i realització del present projecte.
17 Bibliografia i normativa

17.1 Documentació d’Internet (URL)

- PVGIS, Photovoltaic Geographical Information System
- Catastre
- Atlas de radiació solar
- Servei meteorològic
 http://www.meteo.cat/xema/AppJava/SeleccioPerComarca.do - Agost 2010
- Sunpower
- Suntech
- Feina SCP
- SMA
 http://download.sma.de/smaprosa/dateien/2585/WEBBOX-DES103731W.pdf - Desembre 2010
- Rejiband
 http://www.pemsa-rejiband.com/images/stories/descargas/Pemsa%20Cat_218_Sistemas%20de%20Bandejas_e.pdf - Desembre 2010
- Erpasa
 http://www.erpasa.com/es/?page_id=1038 - Desembre 2010
- Hispanofil
 http://www.hispanofil.es/descargas.htm - Desembre 2010
- Pv5
 http://www.pv5.es/infos/img/catalogo.pdf - Desembre 2010
- Techno Sun
- Itec
- Construmatica, bedec
- IDAE condicions tècniques
- CCAE
 http://www.idescat.cat/Classif/Classif?TC=6&V0=1&V1=76&V3=40115 – Setembre 2010
- Gencat, documentació per a nova instal·lació fotovoltaica
- Eic, documentació per a nova instal·lació fotovoltaica
 http://www.eic.cat/wps/wcm/connect/a4c26f804c6301758c5bed1207f234e2/20081007_12420610-2aED.Guia+tramitacio+instal+solar+fot_.pdf?MOD=AJPERES&CACHEID=a4c26f804c6301758c5bed1207f234e2 - Desembre 2010
- Préstec bancari

17.2 Documentació bibliogràfica

- “ENERGÍA SOLAR FOTOVOLTAICA- CÁLCULO DE UNA INSTALACIÓN AISLADA”, Miguel Pareja Aparicio, Marcombo Ediciones técnicas.
17.3 Normativa

La Normativa vigent que s’exposa a continuació, és d’aplicació a les instal·lacions fotovoltaiques de connexió a la xarxa:

- **Reial Decret 661/2007, de 25 de maig**, pel qual s’estableix la metodologia per a l’actualització i sistematització del règim jurídic i econòmic de les activitats de producció d’energia elèctrica en règim especial.

- **Reial Decret 1578/2008, de 26 de setembre**, de retribució de l’activitat de producció d’energia elèctrica mitjançant tecnologia solar fotovoltaica per a instal·lacions posteriors a la data límit de manteniment de la retribució del Reial decret 661/2007, de 25 de maig, per a la tecnologia esmentada.

- **Ordre del 5 de setembre de 1985**, per la que s’estableixen normes administratives i tècniques pel funcionament i connexió a les xarxes elèctriques de centrals hidroelèctriques de fins a 5000 kVA i centrals d’autogeneració elèctrica (BOE núm. 219 de 12/09/1985).

- **Resolució del 31 de maig de 2001** de la Direcció General de Política energètica i Mines (Publicada al BOE núm. 148 de 21 de juny de 2001). La qual estableix el model de contracte tipus i de factura per a les instal·lacions fotovoltaiques connectades a la xarxa de baixa tensió.

- **Reial Decret 314/2006** pel que s’aprova el **Codi Tècnic d’Edificació. Document bàsic de seguretat estructural SE i estalvi energètic HE secció 5**.

- **Decret 328/1992 (DOGC núm. 1714 de 1.3.1993), de 14 de desembre de 1.992**, pel qual s’aprova l’avaluació d’impacte ambiental.

- **Reial Decret 614/2001, de 8 de juny**, sobre protecció de la salut i seguretat dels treballadors front el risc elèctric.

- **Instruccions i normes particulars** de Fecsa Endesa, empresa subministradora.

- **EHE. Instrucció de formigó estructural de 1998.**

- **O.C. 1/1988, de 30 de desembre**, sobre "Senyalitzacions d'obres" i consideracions sobre "Neteja i finalització d'obres".

- **Reial Decret 1627/1997, de 24 d'octubre, de Seguretat i Salut.**

- **Llei 31/1995, de 8 de novembre**, de prevenció de riscos laborals i normativa que desenvolupa la mateixa.

Pressupost
Índex

1 Estat d’amidaments ... 2
2 Preus unitaris ... 8
3 Pressupost ... 16
4 Resum del pressupost ... 23
1 Estat d’amidaments

CAPÍTOL 1 Panells fotovoltaics

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Quantitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,01</td>
<td>ut</td>
<td>Panell solar monocristal·lí de 318 Wp SunPower o similar, superfície d’1,63 m², 96 cèl·lules solars amb contacte a la cara posterior.</td>
<td>306</td>
</tr>
<tr>
<td>1,02</td>
<td>ut</td>
<td>Brida antirobatori de panell solar</td>
<td>1224</td>
</tr>
</tbody>
</table>

CAPÍTOL 2 Estructura panells fotovoltaics

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Quantitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,01</td>
<td>m</td>
<td>Carril de muntatge MQ-72 3 m</td>
<td>306</td>
</tr>
<tr>
<td>2,02</td>
<td>m</td>
<td>Carril de muntatge MQ-41 6 m</td>
<td>156</td>
</tr>
<tr>
<td>2,03</td>
<td>m</td>
<td>Carril de montaje MQ-41 3 m</td>
<td>21</td>
</tr>
<tr>
<td>2,04</td>
<td>m</td>
<td>Carril de montaje MQ-41 2 m</td>
<td>154</td>
</tr>
<tr>
<td>2,05</td>
<td>ut</td>
<td>Peu de carril MQP-G</td>
<td>620</td>
</tr>
<tr>
<td>2,06</td>
<td>ut</td>
<td>Peu de carril MQP-21-72</td>
<td>312</td>
</tr>
<tr>
<td>2,07</td>
<td>ut</td>
<td>Connexió a carril MQN</td>
<td>1.250</td>
</tr>
<tr>
<td>2,08</td>
<td>ut</td>
<td>Connector de carril MQV-41</td>
<td>40</td>
</tr>
<tr>
<td>2,09</td>
<td>ut</td>
<td>Pinça central MSP-MC 43-47</td>
<td>600</td>
</tr>
<tr>
<td>2,10</td>
<td>ut</td>
<td>Pinça terminal MSP-MQ-EC 46</td>
<td>80</td>
</tr>
<tr>
<td>2,11</td>
<td>ut</td>
<td>Rosca de papallona MQM-M10</td>
<td>2.600</td>
</tr>
<tr>
<td>2,12</td>
<td>ut</td>
<td>Anclatge a segments HSA M12X180/85/105</td>
<td>625</td>
</tr>
<tr>
<td>2,13</td>
<td>ut</td>
<td>Tapa de carril MQZ-E41</td>
<td>100</td>
</tr>
<tr>
<td>2,14</td>
<td>pa</td>
<td>Accessoris varis</td>
<td>1</td>
</tr>
</tbody>
</table>
CAPÍTOL 3 Instal·lació elèctrica

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Quantitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,01</td>
<td>ut</td>
<td>Interruptor automàtic magnetotèrmic de 16 A In, corba C, 2P, de 4,5 kA de poder de tall</td>
<td>17</td>
</tr>
<tr>
<td>3,02</td>
<td>ut</td>
<td>Interruptor automàtic magnetotèrmic de 32 A In, corba C, 2P, de 4,5 kA de poder de tall</td>
<td>17</td>
</tr>
<tr>
<td>3,03</td>
<td>ut</td>
<td>Interruptor diferencial de 40A In, 2P, de 300 mA de sensibilitat, de dispar fix instantani, indicador mecànic de defecte</td>
<td>4</td>
</tr>
<tr>
<td>3,04</td>
<td>ut</td>
<td>Interruptor diferencial de 40A In, 4P, de 300 mA de sensibilitat, de dispar fix instantani, indicador mecànic de defecte</td>
<td>6</td>
</tr>
<tr>
<td>3,05</td>
<td>ut</td>
<td>Protector sobretensions transitòries de 20 kA In, 1,5 kV</td>
<td>4</td>
</tr>
<tr>
<td>3,06</td>
<td>ut</td>
<td>Protector sobretensions permanents tensió AC 230/400V</td>
<td>1</td>
</tr>
<tr>
<td>3,07</td>
<td>ut</td>
<td>Interruptor de control de potència de 20 A In, 2P, de 4,5 kA de poder de tall</td>
<td>1</td>
</tr>
<tr>
<td>3,08</td>
<td>ut</td>
<td>Interruptor de control de potència i maniobra de 160 A In, 4P, de 35 kA de poder de tall</td>
<td>1</td>
</tr>
<tr>
<td>Partida</td>
<td>Unitat</td>
<td>Descripció</td>
<td>Quantitat</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>3,09</td>
<td>ut</td>
<td>Fusible cilíndric de 10 A In, 1000 V, 10x38 gG</td>
<td>51</td>
</tr>
<tr>
<td>3,10</td>
<td>ut</td>
<td>Bases portafusibles mida 10x38</td>
<td>51</td>
</tr>
<tr>
<td>3,11</td>
<td>ut</td>
<td>Envolvent quadre CA alimentació inversors tipus ArTu L ABB o similar, de dimensions funcionals 600x600x165 mm, 72 mòduls</td>
<td>1</td>
</tr>
<tr>
<td>3,12</td>
<td>ut</td>
<td>Envolvent quadre general CA tipus ArTu L ABB o similar, de dimensions funcionals 800x600x165 mm, 96 mòduls</td>
<td>1</td>
</tr>
<tr>
<td>3,13</td>
<td>ut</td>
<td>Envolvent quadre CC tipus ArTu L ABB o similar, de dimensions funcionals 1000x600x165 mm, 120 mòduls</td>
<td>1</td>
</tr>
<tr>
<td>3,14</td>
<td>ut</td>
<td>Armari prefabricat tipus Cahors o similar monobloc de formigó reforçat amb fibra de vidre de mides 2450x800x345 amb porta metàl·lica</td>
<td>1</td>
</tr>
<tr>
<td>3,15</td>
<td>ut</td>
<td>Armari prefabricat tipus Cahors o similar monobloc de formigó reforçat amb fibra de vidre de mides 2150x1120x345 amb porta metàl·lica</td>
<td>1</td>
</tr>
<tr>
<td>3,16</td>
<td>ut</td>
<td>Caixa de seccionament amb sortida superior a la CGP i de la línia de distribució per la part inferior, amb tres bases fusibles de 400 A</td>
<td>1</td>
</tr>
<tr>
<td>Partida</td>
<td>Unitat</td>
<td>Descripció</td>
<td>Quantitat</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>3,17</td>
<td>ut</td>
<td>Caixa general de protecció del tipus 9 - 250 A</td>
<td>1</td>
</tr>
<tr>
<td>3,18</td>
<td>ut</td>
<td>Equip de mesura TMF10 - 160 A de mides 1260x630x171 mm</td>
<td>1</td>
</tr>
<tr>
<td>3,19</td>
<td>ut</td>
<td>Protecció diferencial per a equip de mesura TMF10 160/LAT</td>
<td>1</td>
</tr>
<tr>
<td>3,20</td>
<td>m</td>
<td>Pica d’acer amb recobriment de coure amb un diàmetre de 14,6 mm i 2,5 m de longitud</td>
<td>4</td>
</tr>
<tr>
<td>3,21</td>
<td>m</td>
<td>Conductor de coure depullat de secció nominal 35 mm²</td>
<td>15</td>
</tr>
<tr>
<td>3,22</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, unipolar de 6 mm²</td>
<td>5.574</td>
</tr>
<tr>
<td>3,23</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, multipolar de 3x6 mm²</td>
<td>152</td>
</tr>
<tr>
<td>3,24</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, unipolar de 185 mm²</td>
<td>111</td>
</tr>
<tr>
<td>3,25</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, unipolar de 95 mm²</td>
<td>111</td>
</tr>
<tr>
<td>3,26</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, unipolar de 35 mm²</td>
<td>100</td>
</tr>
<tr>
<td>Partida</td>
<td>Unitat</td>
<td>Descripció</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>3,27</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, multipolar de 5x16 mm²</td>
<td>96</td>
</tr>
<tr>
<td>3,28</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, multipolar de 3x2,5 mm²</td>
<td>152</td>
</tr>
<tr>
<td>3,29</td>
<td>m</td>
<td>Tub rígid corrugat de polipropilè, de 125 mm de diàmetre nominal aïllant i no propagador de flama</td>
<td>100</td>
</tr>
<tr>
<td>3,30</td>
<td>m</td>
<td>Safata de reixa Rejiband o similar de mides 35x100 mm</td>
<td>2.000</td>
</tr>
<tr>
<td>3,31</td>
<td>m</td>
<td>Safata de reixa Rejiband o similar de mides 35x300 mm</td>
<td>200</td>
</tr>
<tr>
<td>3,32</td>
<td>m</td>
<td>Obertura i tancament de rasa de 0,4 m d'amplària i 0,8 m de profunditat per a canalització, excavada en terreny mixt amb mitjans mecànics, estès de jaç de sorra, plaques de protecció, cintes de senyalització i compactació</td>
<td>100</td>
</tr>
<tr>
<td>3,33</td>
<td>pa</td>
<td>Accessoris varis</td>
<td>1</td>
</tr>
</tbody>
</table>

CAPÍTOL 4 **Inversor - Monitorització**

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,01</td>
<td>ut</td>
<td>Inversor de corrent CC/CA Sunny Mini Central 6000 A SMA o similar de 5,5 kW de potència CA</td>
</tr>
<tr>
<td>Partida</td>
<td>Unitat</td>
<td>Descripció</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>4,02</td>
<td>ut</td>
<td>Estació meteorològica d'irradiació solar i temperatura als panells Sunny SensorBox SMA o similar</td>
</tr>
<tr>
<td>4,03</td>
<td>ut</td>
<td>Central de comunicació i emmagatzematge d'informació d'instal·lacions fotovoltaiques Sunny WebBox SMA o similar</td>
</tr>
<tr>
<td>4,04</td>
<td>m</td>
<td>Cable RS485 per a realitzar la connexió entre inversors</td>
</tr>
</tbody>
</table>

CAPÍTOL 5 Muntatge i posada en marxa

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Quantitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,01</td>
<td>h</td>
<td>Instal·lació, muntatge i connexionat elèctric de mòduls, caixes, armaris i equips. Configuració i posada en marxa. 2 operaris oficiais de 1a</td>
<td>800</td>
</tr>
<tr>
<td>5,02</td>
<td>h</td>
<td>Instal·lació, muntatge i connexionat elèctric de mòduls, caixes, armaris i equips. Configuració i posada en marxa. 2 operaris ajudants</td>
<td>800</td>
</tr>
</tbody>
</table>

CAPÍTOL 6 Enginyeria i direcció d’obra

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Quantitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,01</td>
<td>pa</td>
<td>Realització del projecte executiu de la instal·lació i direcció d'obra</td>
<td>1</td>
</tr>
<tr>
<td>Partida</td>
<td>Unitat</td>
<td>Descripció</td>
<td>Quantitat</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>6,02</td>
<td>pa</td>
<td>Realització de gestions i tràmits administratius per a la sol·licitud de permisos i legalització</td>
<td>1</td>
</tr>
<tr>
<td>6,03</td>
<td>pa</td>
<td>Seguretat i Salut</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Preus unitaris

CAPÍTOL 1 Panells fotovoltaics

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Preu unitari (€/ut)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,01</td>
<td>ut</td>
<td>Panell solar monocristal·lí de 318 Wp SunPower o similar, superfície d'1,63 m², 96 cèl·lules solars amb contacte a la cara posterior.</td>
<td>765,00</td>
</tr>
<tr>
<td>1,02</td>
<td>ut</td>
<td>Brida antirobatori de panell solar</td>
<td>1,55</td>
</tr>
</tbody>
</table>

CAPÍTOL 2 Estructura panells fotovoltaics

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Preu unitari (€/ut)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,01</td>
<td>m</td>
<td>Carril de muntatge MQ-72 3 m</td>
<td>16,97</td>
</tr>
<tr>
<td>2,02</td>
<td>m</td>
<td>Carril de muntatge MQ-41 6 m</td>
<td>8,18</td>
</tr>
<tr>
<td>2,03</td>
<td>m</td>
<td>Carril de muntatge MQ-41 3 m</td>
<td>7,31</td>
</tr>
</tbody>
</table>
CAPÍTOL 3 Instal·lació elèctrica

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Preu unitari (€/ut)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,01</td>
<td>ut</td>
<td>Interruptor automàtic magnetotèrmic de 16 A In, corba C, 2P, de 4,5 kA de poder de tall</td>
<td>49,69</td>
</tr>
<tr>
<td>3,02</td>
<td>ut</td>
<td>Interruptor automàtic magnetotèrmic de 32 A In, corba C, 2P, de 4,5 kA de poder de tall</td>
<td>55,31</td>
</tr>
<tr>
<td>Partida</td>
<td>Unitat</td>
<td>Descripció</td>
<td>Preu unitari (€/ut)</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>3,03</td>
<td>ut</td>
<td>Interruptor diferencial de 40A In, 2P, de 300 mA de sensibilitat, de dispar fix instantani, indicador mecànic de defecte</td>
<td>263,19</td>
</tr>
<tr>
<td>3,04</td>
<td>ut</td>
<td>Interruptor diferencial de 40A In, 4P, de 300 mA de sensibilitat, de dispar fix instantani, indicador mecànic de defecte</td>
<td>411,22</td>
</tr>
<tr>
<td>3,05</td>
<td>ut</td>
<td>Protector sobretensions transitòries de 20 kA In, 1,5 kV</td>
<td>94,00</td>
</tr>
<tr>
<td>3,06</td>
<td>ut</td>
<td>Protector sobretensions permanents tensió AC 230/400V</td>
<td>271,95</td>
</tr>
<tr>
<td>3,07</td>
<td>ut</td>
<td>Interruptor de control de potència de 20 A In, 2P, de 4,5 kA de poder de tall</td>
<td>11,45</td>
</tr>
<tr>
<td>3,08</td>
<td>ut</td>
<td>Interruptor de control de potència i maniobra de 160 A In, 4P, de 35 kA de poder de tall</td>
<td>527,30</td>
</tr>
<tr>
<td>3,09</td>
<td>ut</td>
<td>Fusible cilíndric de 10 A In, 1000 V, 10x38 gG</td>
<td>6,94</td>
</tr>
<tr>
<td>3,10</td>
<td>ut</td>
<td>Bases portafusibles mida 10x38</td>
<td>4,38</td>
</tr>
<tr>
<td>Partida</td>
<td>Unitat</td>
<td>Descripció</td>
<td>Preu unitari (€/ut)</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>3,11</td>
<td>ut</td>
<td>Envolvent quadre CA alimentació inversors tipus ArTu L ABB o similar, de dimensions funcionals 600x600x165 mm, 72 mòduls</td>
<td>652,13</td>
</tr>
<tr>
<td>3,12</td>
<td>ut</td>
<td>Envolvent quadre general CA tipus ArTu L ABB o similar, de dimensions funcionals 800x600x165 mm, 96 mòduls</td>
<td>869,50</td>
</tr>
<tr>
<td>3,13</td>
<td>ut</td>
<td>Envolvent quadre CC tipus ArTu L ABB o similar, de dimensions funcionals 1000x600x165 mm, 120 mòduls</td>
<td>1.086,88</td>
</tr>
<tr>
<td>3,14</td>
<td>ut</td>
<td>Armari prefabricat tipus Cahors o similar monobloc de formigó reforçat amb fibra de vidre de mides 2450x800x345 amb porta metàl·lica</td>
<td>831,00</td>
</tr>
<tr>
<td>3,15</td>
<td>ut</td>
<td>Armari prefabricat tipus Cahors o similar monobloc de formigó reforçat amb fibra de vidre de mides 2150x1120x345 amb porta metàl·lica</td>
<td>1.430,00</td>
</tr>
<tr>
<td>3,16</td>
<td>ut</td>
<td>Caixa de seccionament amb sortida superior a la CGP i de la línia de distribució per la part inferior, amb tres bases fusibles de 400 A</td>
<td>219,00</td>
</tr>
</tbody>
</table>
CAPÍTOL 3 Instal·lació elèctrica

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Preu unitari (€/ut)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,17</td>
<td>ut</td>
<td>Caixa general de protecció del tipus 9 - 250 A</td>
<td>260,55</td>
</tr>
<tr>
<td>3,18</td>
<td>ut</td>
<td>Equip de mesura TMF10 - 160 A de mides 1260x630x171 mm</td>
<td>961,00</td>
</tr>
<tr>
<td>3,19</td>
<td>ut</td>
<td>Protecció diferencial per a equip de mesura TMF10 160/LAT</td>
<td>324,00</td>
</tr>
<tr>
<td>3,20</td>
<td>m</td>
<td>Pica d’acer amb recobriment de coure amb un diàmetre de 14,6 mm i 2,5 m de longitud</td>
<td>7,66</td>
</tr>
<tr>
<td>3,21</td>
<td>m</td>
<td>Conductor de coure despullat de secció nominal 35 mm²</td>
<td>1,85</td>
</tr>
<tr>
<td>3,22</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, unipolar de 6 mm²</td>
<td>3,30</td>
</tr>
<tr>
<td>3,23</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, multipolar de 3x6 mm²</td>
<td>9,54</td>
</tr>
<tr>
<td>3,24</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, unipolar de 185 mm²</td>
<td>76,67</td>
</tr>
<tr>
<td>Partida</td>
<td>Unitat</td>
<td>Descripció</td>
<td>Preu unitari (€/ut)</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>3,25</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, unipolar de 95 mm²</td>
<td>41,17</td>
</tr>
<tr>
<td>3,26</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, unipolar de 35 mm²</td>
<td>15,87</td>
</tr>
<tr>
<td>3,27</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, multipolar de 5x16 mm²</td>
<td>39,03</td>
</tr>
<tr>
<td>3,28</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, multipolar de 3x2,5 mm²</td>
<td>4,46</td>
</tr>
<tr>
<td>3,29</td>
<td>m</td>
<td>Tub rígid corrugat de polipropilè, de 125 mm de diàmetre nominal aïllant i no propagador de flama</td>
<td>2,62</td>
</tr>
<tr>
<td>3,30</td>
<td>m</td>
<td>Safata de reixa Rejiband o similar de mides 35x100 mm</td>
<td>5,69</td>
</tr>
<tr>
<td>3,31</td>
<td>m</td>
<td>Safata de reixa Rejiband o similar de mides 35x300 mm</td>
<td>11,21</td>
</tr>
<tr>
<td>Partida</td>
<td>Unitat</td>
<td>Descripció</td>
<td>Preu unitari (€/ut)</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>3,32</td>
<td>m</td>
<td>Obertura i tancament de rasa de 0,4 m d’amplària i 0,8 m de profunditat per a canalització, excavada en terreny mixt amb mitjans mecànics, estès de jaç de sorra, plaques de protecció, cintes de senyalització i compactació</td>
<td>25,00</td>
</tr>
<tr>
<td>3,33</td>
<td>pa</td>
<td>Accessoris varis</td>
<td>400,00</td>
</tr>
</tbody>
</table>

CAPÍTOL 4 Inversor - Monitorització

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Preu unitari (€/ut)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,01</td>
<td>ut</td>
<td>Inversor de corrent CC/CA Sunny Mini Central 6000 A SMA o similar de 5,5 kW de potència CA</td>
<td>2.845,00</td>
</tr>
<tr>
<td>4,02</td>
<td>ut</td>
<td>Estació meteorològica d’irradiació solar i temperatura als panells Sunny SensorBox SMA o similar</td>
<td>306,00</td>
</tr>
<tr>
<td>4,03</td>
<td>ut</td>
<td>Central de comunicació i emmagatzematge d’informació d’instal·lacions fotovoltaiques Sunny WebBox SMA o similar</td>
<td>634,00</td>
</tr>
<tr>
<td>4,04</td>
<td>m</td>
<td>Cable RS485 per a realitzar la connexió entre inversors</td>
<td>1,62</td>
</tr>
</tbody>
</table>
CAPÍTOL 5 Muntatge i posada en marxa

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Preu unitari (€/ut)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,01</td>
<td>h</td>
<td>Instal·lació, muntatge i connexionat elèctric de mòduls, caixes, armaris i equips. Configuració i posada en marxa. 2 operaris oficials de 1a</td>
<td>19,28</td>
</tr>
<tr>
<td>5,02</td>
<td>h</td>
<td>Instal·lació, muntatge i connexionat elèctric de mòduls, caixes, armaris i equips. Configuració i posada en marxa. 2 operaris ajudants</td>
<td>17,43</td>
</tr>
</tbody>
</table>

CAPÍTOL 6 Enginyeria i direcció d’obra

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Preu unitari (€/ut)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,01</td>
<td>pa</td>
<td>Realització del projecte executiu de la instal·lació i direcció d'obra</td>
<td>7.500,00</td>
</tr>
<tr>
<td>6,02</td>
<td>pa</td>
<td>Realització de gestions i tràmits administratius per a la sol·licitud de permisos i legalització</td>
<td>1.500,00</td>
</tr>
<tr>
<td>6,03</td>
<td>pa</td>
<td>Seguretat i Salut</td>
<td>786,48</td>
</tr>
</tbody>
</table>
3 Pressupost

CAPÍTOL 1 Panells fotovoltaics

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,01</td>
<td>ut</td>
<td>Panell solar monocristal·lí de 318 Wp SunPower o similar, superfície d'1,63 m², 96 cèl·lules solars amb contacte a la cara posterior.</td>
<td>306</td>
<td>234.090,00</td>
</tr>
<tr>
<td>1,02</td>
<td>ut</td>
<td>Brida antirobatori de panell solar</td>
<td>1.224</td>
<td>1897,20</td>
</tr>
</tbody>
</table>

SUBTOTAL 235.987,20

CAPÍTOL 2 Estructura panells fotovoltaics

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,01</td>
<td>m</td>
<td>Carril de muntatge MQ-72 3 m</td>
<td>306</td>
<td>5.194,04</td>
</tr>
<tr>
<td>2,02</td>
<td>m</td>
<td>Carril de muntatge MQ-41 6 m</td>
<td>156</td>
<td>1.276,70</td>
</tr>
<tr>
<td>2,03</td>
<td>m</td>
<td>Carril de muntatge MQ-41 3 m</td>
<td>21</td>
<td>153,47</td>
</tr>
<tr>
<td>2,04</td>
<td>m</td>
<td>Carril de muntatge MQ-41 2 m</td>
<td>154</td>
<td>1.125,43</td>
</tr>
<tr>
<td>2,05</td>
<td>ut</td>
<td>Peu de carril MQP-G</td>
<td>620</td>
<td>12.041,64</td>
</tr>
<tr>
<td>2,06</td>
<td>ut</td>
<td>Peu de carril MQP-21-72</td>
<td>312</td>
<td>3.962,33</td>
</tr>
<tr>
<td>2,07</td>
<td>ut</td>
<td>Connexió a carril MQN</td>
<td>1250</td>
<td>1.624,58</td>
</tr>
<tr>
<td>2,08</td>
<td>ut</td>
<td>Connector de carril MQV-41</td>
<td>40</td>
<td>386,64</td>
</tr>
<tr>
<td>2,09</td>
<td>ut</td>
<td>Pinça central MSP-MC 43-47</td>
<td>600</td>
<td>1.414,80</td>
</tr>
<tr>
<td>2,10</td>
<td>ut</td>
<td>Pinça terminal MSP-MQ-EC 46</td>
<td>80</td>
<td>313,11</td>
</tr>
<tr>
<td>2,11</td>
<td>ut</td>
<td>Rosca de papallona MQM-M10</td>
<td>2600</td>
<td>2.506,61</td>
</tr>
<tr>
<td>2,12</td>
<td>ut</td>
<td>Anclatge a segments HSA M12X180/85/105</td>
<td>625</td>
<td>1.234,69</td>
</tr>
</tbody>
</table>
CAPÍTOL 3 Instal·lacions elèctriques

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Interruptor automàtic magnetotèrmic de 16 A In, corba C, 2P, de 4,5 kA de poder de tall</td>
<td>17</td>
<td>844,73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interruptor automàtic magnetotèrmic de 32 A In, corba C, 2P, de 4,5 kA de poder de tall</td>
<td>17</td>
<td>940,27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interruptor diferencial de 40A In, 2P, de 300 mA de sensibilitat, de dispar fix instantani, indicador mecànic de defecte</td>
<td>4</td>
<td>1.052,76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interruptor diferencial de 40A In, 4P, de 300 mA de sensibilitat, de dispar fix instantani, indicador mecànic de defecte</td>
<td>6</td>
<td>2.467,32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protector sobretensions transitòries de 20 kA In, 1,5 kV</td>
<td>4</td>
<td>376,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protector sobretensions permanents tensió AC 230/400V</td>
<td>1</td>
<td>271,95</td>
</tr>
</tbody>
</table>

SUBTOTAL: 32.276,60
<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,07</td>
<td>ut</td>
<td>Interruptor de control de potència de 20 A In, 2P, de 4,5 kA de poder de tall</td>
<td>1</td>
<td>11,45</td>
</tr>
<tr>
<td>3,08</td>
<td>ut</td>
<td>Interruptor de control de potència i maniobra de 160 A In, 4P, de 35 kA de poder de tall</td>
<td>1</td>
<td>527,30</td>
</tr>
<tr>
<td>3,09</td>
<td>ut</td>
<td>Fusible cilíndric de 10 A In, 1000 V, 10x38 gG</td>
<td>51</td>
<td>353,94</td>
</tr>
<tr>
<td>3,10</td>
<td>ut</td>
<td>Bases portafusibles mida 10x38</td>
<td>51</td>
<td>223,38</td>
</tr>
<tr>
<td>3,11</td>
<td>ut</td>
<td>Envolvent quadre CA alimentació inversors tipus ArTu L ABB o similar, de dimensions funcionals 600x600x165 mm, 72 mòduls</td>
<td>1</td>
<td>652,13</td>
</tr>
<tr>
<td>3,12</td>
<td>ut</td>
<td>Envolvent quadre general CA tipus ArTu L ABB o similar, de dimensions funcionals 800x600x165 mm, 96 mòduls</td>
<td>1</td>
<td>869,50</td>
</tr>
<tr>
<td>3,13</td>
<td>ut</td>
<td>Envolvent quadre CC tipus ArTu L ABB o similar, de dimensions funcionals 1000x600x165 mm, 120 mòduls</td>
<td>1</td>
<td>1.086,88</td>
</tr>
<tr>
<td>3,14</td>
<td>ut</td>
<td>Armari prefabricat tipus Cahors o similar monobloc de formigó reforçat amb fibra de vidre de mides 2450x800x345 amb porta metàl·lica</td>
<td>1</td>
<td>831,00</td>
</tr>
<tr>
<td>Partida</td>
<td>Unitat</td>
<td>Descripció</td>
<td>Quantitat</td>
<td>Preu (€)</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>3,15</td>
<td>ut</td>
<td>Armari prefabricat tipus Cahors o similar monobloc de formigó reforçat amb fibra de vidre de midies 2150x1120x345 amb porta metà·lica</td>
<td>1</td>
<td>1.430,00</td>
</tr>
<tr>
<td>3,16</td>
<td>ut</td>
<td>Caixa de seccionament amb sortida superior a la CGP i de la línia de distribució per la part inferior, amb tres bases fusibles de 400 A</td>
<td>1</td>
<td>219,00</td>
</tr>
<tr>
<td>3,17</td>
<td>ut</td>
<td>Caixa general de protecció del tipus 9 - 250 A</td>
<td>1</td>
<td>260,55</td>
</tr>
<tr>
<td>3,18</td>
<td>ut</td>
<td>Equip de mesura TMF10 - 160 A de midies 1260x630x171 mm</td>
<td>1</td>
<td>961,00</td>
</tr>
<tr>
<td>3,19</td>
<td>ut</td>
<td>Protecció diferencial per a equip de mesura TMF10 160/LAT</td>
<td>1</td>
<td>324,00</td>
</tr>
<tr>
<td>3,20</td>
<td>m</td>
<td>Pica d’acer amb recobriment de coure amb un diàmetre de 14,6 mm i 2,5 m de longitud</td>
<td>4</td>
<td>30,64</td>
</tr>
<tr>
<td>3,21</td>
<td>m</td>
<td>Conductor de coure despullat de secció nominal 35 mm²</td>
<td>15</td>
<td>27,75</td>
</tr>
<tr>
<td>3,22</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, unipolar de 6 mm²</td>
<td>5574</td>
<td>18.394,20</td>
</tr>
<tr>
<td>3,23</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, multipolar de 3x6 mm²</td>
<td>152</td>
<td>1.450,08</td>
</tr>
<tr>
<td>Partida</td>
<td>Unitat</td>
<td>Descripció</td>
<td>Quantitat</td>
<td>Preu (€)</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>3,24</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, unipolar de 185 mm²</td>
<td>111</td>
<td>8.510,37</td>
</tr>
<tr>
<td>3,25</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, unipolar de 95 mm²</td>
<td>111</td>
<td>4.569,87</td>
</tr>
<tr>
<td>3,26</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, unipolar de 35 mm²</td>
<td>100</td>
<td>1.587,00</td>
</tr>
<tr>
<td>3,27</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, multipolar de 5x16 mm²</td>
<td>96</td>
<td>3.746,88</td>
</tr>
<tr>
<td>3,28</td>
<td>m</td>
<td>Conductor de coure Afumex, RV-K 0,6/1 kV i de tensió nominal no inferior a 1000 V, multipolar de 3x2,5 mm²</td>
<td>152</td>
<td>677,92</td>
</tr>
<tr>
<td>3,29</td>
<td>m</td>
<td>Tub rígid corrugat de polipropilè, de 125 mm de diàmetre nominal aïllant i no propagador de flama</td>
<td>100</td>
<td>262,00</td>
</tr>
<tr>
<td>3,30</td>
<td>m</td>
<td>Safata de reixa Rejiband o similar de mides 35x100 mm</td>
<td>2000</td>
<td>11.380,00</td>
</tr>
<tr>
<td>3,31</td>
<td>m</td>
<td>Safata de reixa Rejiband o similar de mides 35x300 mm</td>
<td>200</td>
<td>2.242,00</td>
</tr>
</tbody>
</table>
Obertura i tancament de rasa de 0,4 m d'amplària i 0,8 m de profunditat per a canalització, excavada en terreny mixt amb mitjans mecànics, estès de jaç de sorra, plaques de protecció, cintes de senyalització i compactació

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,32</td>
<td>m</td>
<td>Obertura i tancament de rasa de 0,4 m d'amplària i 0,8 m de profunditat per a canalització, excavada en terreny mixt amb mitjans mecànics, estès de jaç de sorra, plaques de protecció, cintes de senyalització i compactació</td>
<td>100</td>
<td>2.500,00</td>
</tr>
<tr>
<td>3,33</td>
<td>pa</td>
<td>Accessoris varis</td>
<td>1</td>
<td>400,00</td>
</tr>
</tbody>
</table>

SUBTOTAL 69.481,87

CAPÍTOL 4 Inversor - Monitorització

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,01</td>
<td>ut</td>
<td>Inversor de corrent CC/CA Sunny Mini Central 6000 A SMA o similar de 5,5 kW de potència CA</td>
<td>17</td>
<td>48.365,00</td>
</tr>
<tr>
<td>4,02</td>
<td>ut</td>
<td>Estació meteorològica d'irradiació solar i temperatura als panells Sunny SensorBox SMA o similar</td>
<td>1</td>
<td>306,00</td>
</tr>
<tr>
<td>4,03</td>
<td>ut</td>
<td>Central de comunicació i emmagatzematge d'informació d'instal·lacions fotovoltaiques Sunny WebBox SMA o similar</td>
<td>1</td>
<td>634,00</td>
</tr>
<tr>
<td>4,04</td>
<td>m</td>
<td>Cable RS485 per a realitzar la connexió entre inversors</td>
<td>10</td>
<td>16,20</td>
</tr>
</tbody>
</table>

SUBTOTAL 49.321,20
CAPÍTOL 5 Muntatge i posada en marxa

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,01</td>
<td>h</td>
<td>Instal·lació, muntatge i connexionat elèctric de mòduls, caixes, armaris i equips. Configuració i posada en marxa. 2 operaris oficials de 1a</td>
<td>800</td>
<td>15.424,00</td>
</tr>
<tr>
<td>5,02</td>
<td>h</td>
<td>Instal·lació, muntatge i connexionat elèctric de mòduls, caixes, armaris i equips. Configuració i posada en marxa. 2 operaris ajudants</td>
<td>800</td>
<td>13.944,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUBTOTAL</td>
<td></td>
<td>29.368,00</td>
</tr>
</tbody>
</table>

CAPÍTOL 6 Enginyeria i direcció d’obra

<table>
<thead>
<tr>
<th>Partida</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,01</td>
<td>pa</td>
<td>Realització del projecte executiu de la instal·lació i direcció d'obra</td>
<td>1</td>
<td>7.500,00</td>
</tr>
<tr>
<td>6,02</td>
<td>pa</td>
<td>Realització de gestions i tràmits administratius per a la sol·licitud de permisos i legalització</td>
<td>1</td>
<td>1.500,00</td>
</tr>
<tr>
<td>6,03</td>
<td>pa</td>
<td>Seguretat i Salut</td>
<td>1</td>
<td>786,48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUBTOTAL</td>
<td></td>
<td>9.786,48</td>
</tr>
</tbody>
</table>
4 Resum del pressupost

<table>
<thead>
<tr>
<th>CAPÍTOL</th>
<th>Descripció</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Panells fotovoltaics</td>
<td>235.987,20</td>
</tr>
<tr>
<td>2</td>
<td>Estructura panells fotovoltaics</td>
<td>32.276,60</td>
</tr>
<tr>
<td>3</td>
<td>Instal·lació elèctrica</td>
<td>69.481,87</td>
</tr>
<tr>
<td>4</td>
<td>Inversor - Monitorització</td>
<td>49.321,20</td>
</tr>
<tr>
<td>5</td>
<td>Muntatge i posada en marxa</td>
<td>29.368,00</td>
</tr>
<tr>
<td>6</td>
<td>Enginyeria i direcció d’obra</td>
<td>9.786,48</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>426.221,35</td>
</tr>
</tbody>
</table>

El pressupost total de la instal·lació és de **QUATRE-CENTS VINT-I-SIS MIL DOS-CENTS VINT-I-UN EUROS AMB TRENTA-CINC CÈNTIMS D’EURO (426.221,35.- C).**
Plec de condicions tècniques
Índex

1 Objecte... 2
2 Definicions .. 2
 2.1 Radiació solar .. 2
 2.2 Instal·lació .. 2
 2.3 Mòduls.. 3
3 Disseny .. 4
 3.1 Disseny del generador fotovoltaic ... 4
 3.2 Orientació, inclinació i ombres .. 4
4 Disseny del sistema de monitorització ... 5
5 Components i materials ... 5
 5.1 Generalitats... 5
 5.2 Sistemes generadors fotovoltaics ... 6
 5.3 Estructura de suport ... 7
 5.4 Inversors ... 8
 5.5 Conductors ... 10
 5.6 Connexió a xarxa .. 10
 5.7 Mesures ... 10
 5.8 Proteccions... 11
 5.9 Connexió de terra de les instal·lacions fotovoltaiques ... 11
 5.10 Harmònics i comptabilitat electromagnètica .. 11
6 Recepció i proves ... 11
7 Requeriments tècnics del contracte de manteniment ... 13
 7.1 Generalitats... 13
 7.2 Programa de manteniment ... 13
 7.3 Garanties... 14
1 Objecte

L’objectiu principal d’aquest document és fixar les condicions tècniques mínimes que han de complir les instal·lacions solars fotovoltaiques connectades a la xarxa elèctrica. Servirà de guia per als instal·ladors i fabricants d’equips, definint les especificacions mínimes per assegurar la qualitat, en benefici de l’usuari i del desenvolupament d’aquesta tecnologia.

Permetrà valorar la qualitat final de la instal·lació en quant al seu rendiment i producció.

L’àmbit d’aplicació del present Plec de Condicions Tècniques (en endavant PCT) s’estén a tots els sistemes mecànics, elèctrics i electrònics que formen part de les instal·lacions del sistema solar fotovoltaic.

2 Definicions

2.1 Radiació solar

- **Radiació Solar**: energia procedent del sol, en forma d’ones electromagnètiques.

- **Irradiància**: densitat de potència incident en una superfície o l’energia incident en una superfície per unitat de temps i unitat de superfície. Es mesura en kW/m².

- **Irradiació**: energia incident en una superfície per unitat de superfície i durant un cert període de temps. Es mesura en kWh/m².

2.2 Instal·lació

- **Instal·lacions fotovoltaiques**: aquelles que disposen de mòduls fotovoltaics per a la conversió directa de la radiació solar en energia elèctrica sense cap pas intermedi.

- **Instal·lacions fotovoltaiques interconnectades**: aquelles que normalment treballen en paral·lel amb l’empresa distribuïdora.
· Línia i punt de connexió: la línia de connexió és la línia elèctrica mitjançant la qual es connecten les instal·lacions fotovoltaiques amb un punt de la xarxa de l’empresa distribuïdora i amb l’escomesa de l’usuari, denominat punt de connexió i mesura.

· **Interruptor automàtic de la interconnexió**: dispositiu de tall automàtic sobre el qual actuen les proteccions d’interconnexió.

· **Interruptor general**: dispositiu de seguretat i maniobra que permet separar la instal·lació fotovoltaica de la xarxa de l’empresa distribuïdora.

· **Generador fotovoltaic**: associació en paral·lel de les branques fotovoltaiques.

· **Branca fotovoltaica**: subconjunt de mòduls interconnectats en sèrie o en associacions sèrie - paral·lel, amb voltatge igual a la tensió nominal del generador.

· **Inversor o ondulador**: convertidor de tensió i corrent continua a tensió i corrent alterna.

· **Potència nominal del generador**: suma de les potències màximes dels mòduls fotovoltaics.

· **Potència nominal de la instal·lació**: suma de les potències nominal dels inversors (especificada pel fabricant) que intervenen en les tres fases de la instal·lació en condicions nominals de funcionament.

2.3 Mòduls

· **Cèl·lula solar o fotovoltaica**: dispositiu que transforma la radiació en energia elèctrica.

· **Mòdul o panell fotovoltaic**: conjunt de cèl·lules solars directament interconnectades i encapsulades com a únic bloc, entre materials que les protegeixen dels efectes de la intempèrie.

· **Condicions Estàndard de mesura (CEM)**: condicions de irradiaència i temperatura de la cèl·lula solar, utilitzades universalment per caracteritzar cèl·lules, mòduls i generadors solars.
Es defineixen de la següent manera:

Irradiància solar: 1000 W/m²

Distribució espectral: AM 1,5 G

Temperatura de cèl·lula: 25 °C

- **Potència pic:** potència màxima del panell fotovoltaic en CEM.
- **TONC:** temperatura d’operació nominal de la cèl·lula, definida com la temperatura a que arriben les cèl·lules solars quan es sotmet al mòdul a una irradiància de 800 W/m² amb distribució espectral AM 1,5 G, temperatura ambient de 20 °C i la velocitat del vent, de 1 m/s.

3 Disseny

3.1 Disseny del generador fotovoltaic

El mòdul fotovoltaic seleccionat en el disseny de la instal·lació, haurà de complir les especificacions de l’apartat 10.2 de la memòria.

Tots els mòduls que integren la instal·lació seran del mateix model, o en el cas de models diferents, el disseny haurà de garantir totalment la compatibilitat entre ells i l’absència de defectes negatius en la instal·lació, per aquesta causa.

3.2 Orientació, inclinació i ombres

L’orientació i inclinació dels generadors fotovoltaics i les possibles ombres sobre el mateix generaran unes pèrdues inferiors als límits de la taula que es mostra a continuació.

Es consideraran tres casos: general, superposició de mòduls i integració arquitectònica. En tots els casos s’han de complir tres condicions: pèrdues per orientació i inclinació, pèrdues per ombres i pèrdues totals inferiors als límits estipulats, respecte als valors òptims.

<table>
<thead>
<tr>
<th></th>
<th>Orientació</th>
<th>Inclinació (OI)</th>
<th>Ombres</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>10%</td>
<td>10%</td>
<td>15%</td>
</tr>
<tr>
<td>Superposició</td>
<td>20%</td>
<td>16%</td>
<td>30%</td>
</tr>
<tr>
<td>Integració arquitectònica</td>
<td>40%</td>
<td>20%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Taula 1. Pèrdues per orientació, inclinació i ombres.
En tots els casos s’hauran d’avaluar les pèrdues per orientació i inclinació del generador i ombres. En els annexos II i III es proposen mètodes de càlcul d’aquestes pèrdues.
Quan existeixin àrees fileres de mòduls, el càlcul de la distància mínima entre elles es realitzarà d’acord amb l’annex III.

4 Disseny del sistema de monitorització

El sistema de monitorització proporcionarà mesures com a mínim de les següents variables:
- Voltatge i corrent CC a l’entrada de l’inversor.
- Voltatge de fase/s en xarxa, potència total de sortida d’inversor.
- Radiació solar en el pla dels mòduls, mesura amb un mòdul o una cèl·lula de tecnologia equivalent.
- Temperatura ambient a l’ombra.
- Potència reactiva de sortida de l’inversor per a instal·lacions més grans de 5 kWp.
- Temperatura dels mòduls.

Les dades es presentaran en forma de mitjanes horàries. Els temps d’adquisició, la precisió de les mesures i el format de presentació es farà conforme al document del JRC-Ispra “Guidelines for the Assessment of Photovoltaic Plants - Document A”, Report EUR16338 EN.

El sistema de monitorització serà fàcilment accessible per a l’usuari.

5 Components i materials

5.1 Generalitats

Com a principi general s’ha d’assegurar, com a mínim, un grau d’aïllament elèctric de tipus classe I tan pel que fa a l’affectació d’equips (mòduls i inversors), com a materials (conductors, caixes i armaris de connexió), exceptuant el cablejat de continua, que serà de doble aïllament.
La instal·lació incorporarà tots els elements i característiques necessaris per garantir en tot moment la qualitat del subministrament elèctric.

El funcionament de les instal·lacions fotovoltaiques no haurà de provocar a la xarxa cap tipus d’avaria, disminució de les condicions de seguretat ni alteracions superiors a les admeses per la normativa d’aplicació vigent.

Tanmateix, el funcionament d’aquestes instal·lacions no podran donar origen a condicions perilloses de treball per a les persones de manteniment i explotació de la xarxa distribuïdora.

Els materials instal·lats a la intempèrie es protegiran contra els agents ambientals, en particular contra l’efecte de la radiació solar i la humitat.

S’inclouran tots els elements de seguretat i protecció propis de les persones i de la instal·lació fotovoltaica, assegurant la protecció davant contactes directes i indirectes, curtcircuit, sobrecàrregues, així com altres elements i proteccions que resultin d’aplicació segons la legislació vigent.

En la documentació que constitueix la memòria del present projecte tècnic es ressalten els diferents tipus d’elements utilitzats i de les especificacions tècniques proporcionades pels fabricants, de tots els components i equips.

Per motius de seguretat i operació dels equips, els indicadors, etiquetes, etc. d’aquests estaran en alguna de les llengües oficials de l’emplaçament de la instal·lació.

5.2 Sistemes generadors fotovoltaics

Tots els mòduls hauran de satisfer les especificacions UNE-EN 61215 per a mòduls de silici cristal·lí, així com disposar de qualificació emesa per algun laboratori homologat, el que s’acreditarà mitjançant la presentació dels certificats oficinais corresponents.

El mòdul fotovoltaic portarà de forma clarament visible i indeleble el model i nom o logotip del fabricant així com una identificació individual o número de sèrie que pugui relacionar-se amb una data de fabricació.
S’utilitzaran mòduls que s’ajustin a les característiques tècniques descrites a continuació:

- Disposició de díodes de derivació per evitar les possibles avaries de les cèl·lules i els seus circuits, en el cas de ombres parcials.
- Protecció IP65.
- Els marcs laterals hauran de ser d’alumini o acer inoxidable.
- La seva potència màxima i corrent de curtcircuit reals referides a condicions estàndard hauran d’estar compreses en el marge del ± 10% dels corresponents valors nominals del catàleg.
- L’estructura del generador s’haurà de connectar a terra.
- Per motius de seguretat i per facilitar el manteniment i reparació del generador, s’instal·laran els elements necessaris (fusibles, interruptors, etc.) per a la desconnexió, de forma independent i en ambdós terminals.

5.3 Estructura de suport

Les estructures de suport hauran de complir les especificacions d’aquest apartat.

L’estructura de suport de mòduls ha de resistir, amb els mòduls instal·lats, les sobrecàrregues de vent i neu, d’acord amb el que indica la norma bàsica de l’edificació NBE-AE-88/95.

El disseny i la construcció de les estructures i el sistema de fixació dels mòduls, permetrà les necessàries dilatacions tèrmiques, sense transmetre càrregues que puguin afectar a la integritat dels mòduls, seguint les indicacions del fabricant.

Els punts de subjecció per als mòduls fotovoltaics seran suficients en nombre, tenint en compte l’àrea de recolzament i la posició relativa, de forma que no es produeixin flexions en els mòduls superiors a les permeses pels fabricants i els mètodes homologats per el model de mòdul.

El disseny de les estructures es realitzarà per a l’orientació i l’angle d’inclinació específicats pel generador fotovoltaic, tenint en compte la facilitat de muntatge i desmontatge i la possible necessitat de substitució d’elements.
L’estructura es protegirà superficialment contra l’acció dels agents ambientals.

La cargoleria serà realitzada en acer inoxidable, complint la norma MV-106. En el cas de ser l’estructura galvanitzada s’admetran cargols galvanitzats, exceptuant la subjecció dels mòduls a la mateixa estructure, que hauran de ser d’acer inoxidable.

El topes de subjecció en cap cas podrà projectarombres sobre els panells posteriors.

Si està construïda amb perfils en acer laminat conformat en fred, complirà la norma MV-102 per garantir totes les característiques mecàniques i de composició química. Si és del tipus galvanitzat en calent, haurà de complir les normes UNE37-501 i UNE 37-508, amb un gruix mínim de 80 micres per eliminar les necessitats de manteniment i prolongar la seva vida útil.

5.4 Inversors

Els inversors seran del tipus adequat per a la connexió a la xarxa elèctrica, amb una potència d’entrada variable perquè tinguin la capacitad’extreure en tot moment la màxima potència de generador fotovoltaic.

Les característiques bàsiques dels inversors seran les següents:

- Principi de funcionament: font de corrent.
- Auto-commutadors.
- Seguiment automàtic del punt de màxima potència del generador.
- No funcionaran en illa o de forma aïllada.

Els inversors compliran amb les directives comunitàries de seguretat elèctrica i compatibilitat electromagnètica (certificades pel fabricant), incorporant proteccions en front a:

- Curtcircuits en alterna.
- Tensió de xarxa fora de rang.
- Frequència de xarxa fora de rang.
- Sobretensions, mitjançant varistors o similars.
Pertorbacions presents en xarxa, com microtalls, polsos, defectes de cicle, absència i retorn de la xarxa, etc.

Cada inversor disposarà de les senyalitzacions necessàries per a la correcta operació, incorporarà controls automàtics imprescindibles que assegurin la seva adequada supervisió i maneig.

També incorporarà els controls manuals mínims següents:

- Encesa i apagat general de l’element.
- Connexió i desconnexió de l’inversor a l’interface CA. Pot ser extern a l’element.

Les característiques elèctriques de l’inversor seran les següents:

- L’inversor seguirà entregant potència a la xarxa en condicions d’irradiància solar un 10% superiors a les CEM. A més, suportarà pics de magnitud d’un 30% per sobre de les CEM durant períodes de fons a 10seg.
- Els valors d’eficiència del 25% i 100% de la potència de sortida nominal hauran de ser superiors al 85% i 88% respectivament (valors mitjos incloent el transformador de sortida, en cas que n’hi hagi) per inversors de potència inferior a 5 kW, i del 90% al 92% per inversor més grans de 5 kW.
- L’autoconsum de l’inversor en mode nocturn ha de ser inferior al 0,5% de la seva potència nominal.
- El factor de potència de la potència generada haurà de ser superior a 0,95 entre el 25% i el 100% de la potència nominal.
- A partir de potències més grans del 10% de la seva potència nominal, l’inversor haurà d’injectar corrent a la xarxa elèctrica.

Els inversor tindran un grau mínim de protecció de IP20 per inversors instal·lats en interior d’edificis i llocs inaccessibles, IP30 pels instal·lats en l’interior d’edificis i llocs accessibles i de IP 65 pels instal·lats a la intemprèrie. En tot cas, compliran la legislació vigent en matèria de protecció.
Els inversors hauran de garantir la seva operació en condicions ambientals d’entre 0 i 40 ºC de temperatura i entre 0 i 85% d’humitat relativa.

5.5 Conductors

Els positius i negatius de cada grup de mòduls es conduiran separats i protegits d’acord a la normativa vigent.

Els conductors seran de coure i tindran la secció adequada per caigudes de tensió i escalfament.

Concretament, per a qualsevol condició de treball, els conductors de la part de CC hauran de tenir secció suficient perquè la caiguda de tensió sigui inferior al 1% i els de la banda de CA perquè aquesta sigui inferior al 1,5%, tenint ambdós casos com a referència les tensions corresponents a les caixes de connexion.

S’inclourà tota la longitud de cable CC i CA. Haurà de tenir la longitud necessària per no generar esforços en els diferents elements ni possibilitar enganxes pel trànsit normal de persones.

Tot el cablejat de contínuu serà de doble aïllament i adequat per a l’ús en intempèrie, a l’aire lliure o enterrat, d’acord amb la norma UNE 21123.

5.6 Connexió a xarxa

Totes les instal·lacions compliran el que disposa el RD 1663/2000 (articles 8 i 9) sobre connexió d’instal·lacions fotovoltaiques connectades a la xarxa de baixa tensió, amb l’esquema unifilar que apareix a la resolució del 31 de maig de 2001.

5.7 Mesures

Totes les instal·lacions compliran el que disposa el RD 1663/2000 (article 10) sobre mesures i facturació d’instal·lacions fotovoltaiques connectades a la xarxa elèctrica de baixa tensió.
5.8 Proteccions

Totes les instal·lacions compliran el que disposa el RD 1663/2000 (article 11) sobre proteccions en instal·lacions fotovoltaïques connectades a la xarxa elèctrica de baixa tensió i amb l’esquema unifilar que apareix a la resolució del 31 de maig de 2001.

En connexions a la xarxa trifàsica les proteccions per a la interconnexió de màxima a mínima freqüència (51 i 49 Hz respectivament) i de màxima i mínima tensió (1,1 Um i 0,85 Um respectivament) seran per a cada fase.

5.9 Connexió de terra de les instal·lacions fotovoltaïques

Totes les instal·lacions compliran el que disposa el RD 1663/2000 (article 12) sobre les condicions de connexió de terra en instal·lacions fotovoltaïques connectades a la xarxa elèctrica de baixa tensió.

Totes les masses de la instal·lació fotovoltaica, tant de la secció continua com de l’alterna, estaran connectades a un únic terra, aquest serà totalmente independent de la del neutre de l’empresa distribuïdora d’acord amb el reglament de baixa tensió.

5.10 Harmònics i comptabilitat electromagnètica

Totes les instal·lacions compliran el que disposa el RD 1663/2000 (article 13) sobre harmònics i compatibilitat electromagnètica en instal·lacions fotovoltaïques connectades a la xarxa elèctrica de baixa tensió.

6 Recepció i proves

L’instal·lador entregarà a l’usuari un document en que hi consti el subministrament dels components, materials i manuals d’ús i manteniment de la instal·lació. Aquest document s’haurà de signar per ambedues parts, conservant cadascuna una còpia. Els manuals entregats a l’usuari estaran en alguna de les llengües oficials de l’emplaçament de la instal·lació.
Abans de la posada en servei dels elements principals (mòduls, inversors, comptadors) aquests hauran d’haver superat les proves de funcionament de fàbrica, adjuntat al manual els corresponents certificats de qualitat.

Les proves a realitzar per part de l’instal·lador, amb independència del que s’exposa anteriorment en aquest PCT, seran com a mínim els següents:

. Funcionament i posada en marxa dels diferents sistemes.
. Proves d’arrencada i parada en diferents instants de funcionament.
. Proves dels diferents elements de mesura, protecció i alarma, així com la seva actuació, amb excepció de les proves referides a l’interruptor automàtic de la desconexió.

Un cop realitzades les proves descrites, es passarà a la fase de Recepció Provisional de la instal·lació. I aquesta es signarà passades 240 hores seguides, sense interrupció o parades causades per fallades o errors del sistema subministrat. A més, s’hauran de complir els següents requisits:

. Entregar al client tota la documentació requerida en el present PCT.
. Retirar de l’obra tot el material sobrant.
. Neteja de les zones ocupades.

Durant aquest període el subministrador serà l’únic responsable de l’operació dels sistemes subministrat, i haurà de formar al personal d’operació que la propietat designi. En cas de mal d’avaries per mal ús, per part de personal no autoritzat, el subministrador no té perquè responsabilitzar-se dels costos derivats.

Tots els elements subministrats, així com la instal·lació en conjunt, estaran protegits en front a defectes de fabricació, d’un any, excepte els mòduls fotovoltaics, que la garantia és de 20 anys i els inversors, que la garantia és de 3 anys. Aquest període comptarà a partir de la data de la firma de l’acta de recepció provisional.
7 Requeriments tècnics del contracte de manteniment

7.1 Generalitats
Es realitzarà un contracte de manteniment preventiu i correctiu de com a mínim tres anys.

El contracte de manteniment de la instal·lació inclourà tots els elements de la instal·lació amb les diferents feines de manteniment aconsellades pels diferents fabricants.

7.2 Programa de manteniment
L’objecte d’aquest apartat és definir les condicions generals mínimes que s’hauran de seguir per a l’adequat manteniment de les instal·lacions d’energia solar fotovoltaica connectades a la xarxa.

Es defineixen dues fases d’actuació per englobar totes les operacions necessàries durant la vida útil de la instal·lació per assegurar el funcionament, augmentar la producció i prolongar la duració de la mateixa:

. Manteniment preventiu.
. Manteniment correctiu.

Pla de manteniment preventiu: operacions d’inspecció visual, verificació d’actuacions i altres, que aplicades a la instal·lació han de permetre dins els límits acceptables, les condicions de funcionament, prestacions, proteccions i durabilitat de la mateixa.

Pla de manteniment correctiu: totes les operacions de substitució necessàries per assegurar que el sistema funciona correctament durant la seva vida útil. Inclou:

. Visita a la instal·lació en el termini indicat i cada cop que l’usuari ho requereixi per avaria greu de la mateixa.

. L’anàlisi i elaboració del pressupost dels treballs i reposicions necessàries per al correcte funcionament de la instal·lació.

. Els costos econòmics del manteniment correctiu, amb l’abast indicat, no formen part del preu del contracte de manteniment, més enllà del
període de garantia. Dins del període de garantia, la mà d’obra es podrà facturar a part.

El manteniment s’haurà de realitzar pel personal tècnic qualificat sota la responsabilitat de l’empresa instal·ladora.

El manteniment preventiu de la instal·lació inclaurà com a mínim una visita anual en que es realitzaran, com a mínim, les següents activitats:

. Comprovació de les proteccions elèctriques.
. Comprovació de l’estat dels mòduls (situació, anclatges, connexions, etc.)
. Comprovació de l’estat de l’inversor (funcionament, làmpades de senyalització, alarmes, etc.)
. Comprovació de l’estat mecànic del cablejat i terminals (inclou connexions de terra), platines, transformadors, ventiladors extractors, unions, revisió dels parells de força de les connexions i cargoleria, neteja, etc.

Realització d’un informe tècnic de cadascuna de les visites en que es reflecteixi l’estat de les instal·lacions i les incidències que s’hagin pogut ocasionar.

Registre de les operacions de manteniment realitzades en un llibre de manteniment, en el que constarà la identificació del personal de manteniment (nom, titulació i autorització de l’empresa).

7.3 Garanties

Sense prejudici de qualsevol possible reclamació a tercers, la instal·lació serà reparada d’acord amb les condicions generals si ha sofert una averia a causa d’un defecte de muntatge o de fabricació dels components, sempre que s’hagi manipulat correctament d’acord amb el que estableix el manual d’instruccions de la instal·lació i dels diferents equips inclosos en aquesta.

El subministrador garanteix la instal·lació durant un període mínim d’un any, per a tots els materials utilitzats i el procés empleat en el seu muntatge. Per als mòduls fotovoltaics, la garantia mínima serà de 10 anys i per als inversors de 2 anys.
La garantia comprèn la reparació o reposició, en el seu cas, dels components i les peces que puguin resultar defectuoses durant el termini de vigència d’aquesta.

Quedant expressament exclosos totes les despeses tals com desplaçaments, mà d’obra, mitjans de transport, ports, etc.
Estudi de seguretat i salut
Índex

1 Objecte ... 2
2 Dades de l’obra ... 2
3 Gestió preventiva ... 3
4 Anàlisis i prevenció dels riscos a l’obra 3
 4.1 Procediments i equips tècnics a utilitzar 4
 4.2 Instal·lació mecànica .. 4
 4.3 Instal·lació elèctrica ... 6
5 Anàlisis i prevenció dels riscos en els mitjans i maquinària 8
 5.1 Mitjans auxiliars ... 8
 5.2 Maquinària i eines .. 9
6 Actuació en cas d’emergència .. 10
7 Accions a seguir en cas d’accident laboral 10
8 Medecina preventiva i primers auxilis 10
9 Pla de seguretat .. 11
10 Llibre d’incidències .. 11
11 Conclusions ... 11
12 Pressupost de seguretat i salut .. 12
1 Objecte

El present Estudi Bàsic de Seguretat i Salut està redactat per a donar compliment al Reial Decret 1627/1997, del 24 d’Octubre, pel qual s’estableixen les disposicions mínimes de Seguretat i Salut en les obres de construcció, en el marc de la Llei 31/1995, del 8 de Novembre, de Prevenció de Riscos Laborals.

A efectes d’aquest RD, l’obra projectada requereix la redacció del present Estudi Bàsic de Seguretat i Salut, ja que no s’inclou en cap dels supòsits contemplats en l’art. 4 del RD 1627/1997:

- El pressupost d’execució per contracta inclòs en el projecte és inferior a 450.000,- € .
- El volum de mà d’obra estimat és inferior a 500 dies de treball.

D’acord amb l’art. 6 del RD 1627/1997, l’Estudi Bàsic de Seguretat i Salut haurà de precisar les normes de seguretat i salut aplicables a l’obra, contemplant la identificació dels riscos laborals evitables que no es puguin eliminar especificant les mesures preventives i proteccions tècniques a utilitzar per tal de controlar i reduir aquests riscos i qualsevol tipus d’activitat a desenvolupar en l’obra.

L’Estudi Bàsic també contemplarà les previsions i informacions útils per tal d’efectuar al seu dia, en les degudes condicions de seguretat i salut, els treballs previsibles posteriors.

2 Dades de l’obra

El present Estudi Bàsic de Seguretat i Salut es refereix al Projecte les dades generals del qual estan al punt 5 de la memòria del present projecte.

- **Emplaçament de l’obra**

L’obra objecte del present Estudi Bàsic de Seguretat i Salut està situat al polígon industrial del municipi de **Valls**, a la comarca de l’Alt Camp, Tarragona.

- **Tipus d’obra**

L’obra consisteix en la **instal·lació solar fotovoltaica de 93,5 kW** nominals connectada a la xarxa eléctrica.

- **Termini d’execució de l’obra**

Es preveu que el termini d’execució de l’obra sigui de **3 mesos**.

- **Previsió de personal**

Segons l’estimació prevista, el número d’operaris, inclosos els de les empreses subcontractades, que en el moment de màxima activitat estaran presents a l’obra serà de **4 treballadors**.

3 Gestió preventiva

La prevenció passa a ser un aspecte important a tenir en compte per tots els estaments de l’empresa constructora, ja que és tasca de tots els nivells de la mateixa involucrar-se en les tasques encaminades a aconseguir millorar les condicions de treball, la seguretat la protecció de la salut dels treballadors. El desenvolupament de l’acció preventiva per part de l’empresa constructora s’ha de basar en l’organització de la documentació per Llei.

4 Anàlisis i prevenció dels riscos a l’obra

Segons l’art. 16 de la P.R.L., l’acció preventiva a l’obra es planificarà per l’instal·lador a partir d’una avaluació inicial de riscos per a la seguretat i salut dels treballadors, que es realitzarà amb caràcter general, tenint en compte la naturalesa de l’obra, i en relació amb aquells que estiguin exposats a riscos especials. L’avaluació inicial dels riscos que no hagi pogut evitar-se haurà d’estendre’s a cadascun dels llocs de treball de l’empresa instal·ladora on hi hagi aquests riscos.

Si els resultats de l’avaluació ho fes necessari, l’instal·lador realitzaria aquelles activitats de prevenció, de tal manera que garanteixin un major nivell de protecció de la seguretat i la salut dels treballadors.
A causa del caràcter variant de les condicions que ens trobarem en aquest tipus de treballs, i coherentment als diferents riscos que van apareixent i desapareixent al llarg del desenvolupament dels mateixos, es fa molt difícil realitzar una valoració de riscos per lloc de treball.

L’avaluació de risc es realitzarà de tal manera que s’identificaran els possibles perills que puguin aparèixer en cadascuna de les tasques, per a posteriorment anar elaborant una sèrie de mesures preventives per a evitar aquests perills en l’execució del treball.

4.1 Procediments i equips tècnics a utilitzar

Es realitzarà la col·locació dels panells de la coberta que es muntaran sobre la base d’una estructura metàl·lica.

Per tal d’elevar els panells fins a la zona de la coberta s’utilitzarà una grua i per l’accés de personal autoritzat s’utilitzaran escales de mà i bastides.

A la coberta s’hi instal·larà una línia de vida.

Una vegada col·locats els panells, es procedirà a realitzar la instal·lació elèctrica i finalment, un cop finalitzada aquesta tasca es realitzarà l’assaig i posada en funcionament.

Altres mitjans a utilitzar a l’obra: escales de mà i bastides.

Eines a utilitzar a l’obra: eines manuals i elèctriques.

4.2 Instal·lació mecànica

Riscos detectables

• Caiguda de persones al mateix nivell.
• Caiguda de persones a diferent nivell.
• Atropellament per vehicles.
• Caiguda d’objectes.
• Trepitjada d’objectes.
• Talls i burxades per maneig de fils conductors.
• Cremades per utilització d’equis de soldadura (acetilè i oxigen).
• Electrocuçió per ús d’equis de soldadura elèctrica.
• Risc de cremades als ulls per intensitat lumínica.
• Projeccions de material en la utilització de martells pneumàtics, serres de disc, tronçadores, taladres, escarpa i martell, etc.
• Cops amb objectes i eines.
• Inhalació de pols.
• Caiguda de material i rebots.
• Sobreesforços per manipulació de càrregues.
• Altres.

Normes de seguretat
• Normativa de prevenció dirigida i entregada als operaris de les màquines i eines per la seva aplicació en tot el funcionament.
• El personal que manipuli camions, gruies,... serà especialista en la manipulació d’aquests vehicles, i haurà de disposar de la documentació de capacitació acreditativa.
• Compliment de la normativa vigent en manipulació de màquines i eines, moviment de materials i càrregues i utilització dels mitjans auxiliars.
• Mantenir els mitjans auxiliars i les eines en bon estat de conservació.
• Senyalització de l’obra d’acord amb la normativa vigent.
• No s’apilaran materials en zones de pas o de trànsit, retirant aquells que puguin impedir el pas.
• Es prohíbeix a tot el personal de trobar-se sota de càrregues suspeses.
• Es fitarà la zona en la qual pugui caure material, mitjançant cintes i rètols de “PROHIBIT”.
• Els treballs de coberta es suspendran en cas de fort vent, pluja o gelades.
• Col·locació d’una línia de vida a la coberta, mitjançant la qual els treballadors hi tindran ancorats els cinturons de seguretat.
• Les escales de mà que s’utilitzaran seran de tipus tisora.
Protecció individual

- Casc de polietilè.
- Roba de treball.
- Ulleres de seguretat.
- Protecció ulls i pantalla soldadura.
- Botes de seguretat.
- Guants aïllants.
- Cinturó de seguretat.
- Banqueta de maniobra.
- Guants de goma o PVC.
- Guants de cuir per la manipulació de material.
- Botes impermeables.
- Caixa de taps auditius.
- Mascares P2 d’ús diari.
- Cinturons de seguretat anticaiguda.

4.3 Instal·lació elèctrica

Riscos detectables

- Caiguda de persones al mateix nivell.
- Caiguda de persones a diferent nivell.
- Caiguda d’objectes.
- Trepitjada d’objectes.
- Electrocució o cremades per la insuficient protecció de quadres elèctrics.
- Electrocució o cremades per maniobres incorrectes en les línies.
- Electrocució o cremades per ús d’eines sense aïllament.
- Electrocució o cremades per punteig dels mecanismes de protecció.
• Electrocució o cremades per connexions directes sense clavilles mascle-femella.
• Incendi per incorrecta instal·lació de la Xarxa Elèctrica.
• Altres.

Normes de seguretat

• El muntatge d’aparells elèctrics (magneto tèrmics, diferencials, ...), serà executat per personal especialista.
• La il·luminació en els talls no serà inferior a 100 lux.
• Es prohibeix la connexió de cables als quadres sense la utilització de clavilles mascle-femella.
• Les eines a utilitzar pels electricistes, estaran protegides amb material aïllant normalitzat contra contactes elèctrics.
• En la relació del cablejat, i connexions de la instal·lació elèctrica en escales, quan s’utilitzin escales de mà, es protegirà el buit de l’escala, contra caigudes.
• Pel que fa al cablejat, i connexions de la instal·lació elèctrica en, balconades, terrasses, etc., quan s’utilitzin escales de mà, es protegirà el buit entre les plantes amb barana de 90 cm. Des de la superfície de treball.
• Per a evitar la connexió accidental a la xarxa de la instal·lació elèctrica, l’últim cablejat que s’executarà serà el qual va al quadre general de la companyia subministradora.
• Es fitarà la zona en la qual pugui caure material, mitjançant cintes i rètol de “PROHIBIT”.
• Per a la realització de treballs d’altura superior de 2 m., serà imprescindible la protecció del treballador davant el risc de caiguda, bé de protecció col·lectiva o individual.
• Per a la utilització d’equips de soldadura, seran necessaris guants, armilla protectora, i màscares especials amb cristall de protecció contra intensitats luminiques fortes.
• Per a la utilització d’equips d’oxidat, seran necessaris guants, armilla protectora, i ulleres de soldador.
Protecció individual

- Casc de polietilè.
- Roba de treball.
- Botes aïllants de l’electricitat.
- Guants aïllants.
- Cinturó de seguretat.
- Banqueta de maniobra.
- Comprovadors de tensió.
- Eines aïllants.
- Guants de goma o PVC.

5 Anàlisi i prevenció dels riscos en els mitjans i maquinària

5.1 Mitjans auxiliars

Escales de mà

- S’usaran escales metàl·liques telescòpiques on els perills aniran soldats als travessers.
- Aniran proveïts de sabates de suport antilliscants que es donaran suport sobre superfícies planes. S’ancoraran fermament en el seu extrem superior.
- No s’utilitzaran per a treballs allunyats d’elles.
- No deuran pujar dues o més operaris simultàniament sobre ella.
- La seva inclinació serà tal que la seva projecció sobre el sòl, serà una quarta part de la projecció de l’escala sobre el paviment vertical, i deurà sobresortir 1 m sobre el forjat o lloc d’accés.
- La realització de treballs d’altura s’empraran escales de tisora, proveïdes de cadenes per a impedir la seva obertura. No ha de treballar-se sobre elements allunyats d’elles.
• Les escales es col·locaran apartades dels elements mòbils que puguin derroc·car-les i fora dels llocs de passada.

• S’usaran per a comunicar dos nivells diferents de dues plantes o com mitjà auxiliar en els treballs d’ofici de paleta: no tindran una altura superior a 3 m. Es realitzarà l’ascens i descens de cara a l’escala i amb càrregues no superiors a 25 kg.

Bastides

• Els peus de les bastides han d’estar situats sobre punts ferms, que no puguin cedir ni trencar-se. En el cas que la base estigui constituïda per rodes, estaran frenades abans que ningú utilitzi la bastida.

• L’amplada de les zones de pas o treball tindran una amplada de 60 cm. I resistència suficient per suportar les persones i la seva càrrega (3 taulons). La superfície de recolzament serà ferma, sòlida i inamovible.

• L’estabilitat de la bastida es comprovarà regularment i després de qualsevol cop o anomalia.

• Sempre que el risc de caiguda a diferent nivell sigui superior a 2 m, existiran baranes de 90 cm d’alçada, amb rodapeu i barrot intermig.

5.2 Maquinària i eines

La maquinària prevista a utilitzar en aquesta obra és la següent:

- camió
- grua

La previsió d’utilització d’eines és:

- equips de soldadura
- eines manuals diverses
- eines elèctriques diverses

La prevenció sobre la utilització d’aquestes màquines i eines es desenvoluparà en el Pla de Seguretat i Salut d’acord amb els següents principis:
1. **Reglamentació oficial**

Es complirà el que indica el Reglament de màquines, les I.T.C corresponents, i en les especificacions dels fabricants.

2. **Les màquines i eines a utilitzar** a l’obra disposaran de les instruccions de manipulació corresponents que inclouen els riscos i les normes de seguretat.

3. **No es preveu** la utilització de màquines sense reglamentar.

6 **Actuació en cas d’emergència**

A les obres de construcció, les emergències que, de forma més habitual es poden produir, són els accidents laborals i els incendis.

Pels accidents laborals s’ha de preveure els mitjans humans i materials necessaris per proporcionar els primers auxilis als accidentats.

Pel que fa als incendis, serà imprescindible disposar de mitjans d’extinció d’acord amb el grau de risc que existeixi a l’obra, i establir pautes d’actuació adequades.

7 **Accions a seguir en cas d’accident laboral**

En el cas que es produeixi un accident a l’obra, s’actuarà en base als punts següents:

1) Si les lesions són de poca importància seran ateses a la mateixa obra, amb els mitjans dels quals es disposarà.

2) Si es considera que les lesions són de gravetat, i que els mitjans de l’obra no són suficients, es traslladarà l’accidentat al centre mèdic amb ambulància o cotxe particular, depenent de la gravetat.

3) En lloc visible i accessible es col·locarà un cartell amb els telèfons i adreces necessàries per a l’actuació en cas d’emergència.

8 **Medicina preventiva i primers auxilis**

L’obra haurà de disposar d’una farmaciola amb el material necessari.

S’haurà d’informar amb un cartell visible dels diversos centres mèdics (CAP, mútues, hospitals) on s’avisarà en cas d’accident, o per portar l’accidentat per tal que rebi un tractament ràpid i eficaç.
Cada contractista acreditarà que el seu personal a l’obra hagi passat un reconeixement mèdic anual.

9 Pla de seguretat

En compliment de l’art. 7 del Reial Decret 1627/1997 de 24 d’octubre, cada contractista elaborarà un pla de seguretat i salut i s’adaptarà a aquest estudi de seguretat i salut als mitjans i mètodes d’execució.

Cada pla de seguretat i salut haurà de ser aprovat, abans de l’inici de les obres, pel coordinador de seguretat i salut en l’execució d’obres.

Aquest pla de seguretat haurà d’arribar als interessats segons estableix el Reial Decret, amb la finalitat que pugui presentar les suggerències i alternatives que es creguin oportunes.

El pla de seguretat i salut, conjuntament amb l’aprovació del coordinador de seguretat, es presentarà als Serveis Territorials de la Generalitat, tal i com és preceptiu.

Qualsevol modificació que introdueixi el contractista al pla de seguretat i salut, com a resultat de les alteracions i incidències que puguin produir-se durant el desenvolupament de l’obra o per modificació del projecte, requereix l’aprovació del coordinador de seguretat.

10 Llibre d’incidències

A l’obra existirà un llibre d’incidències, sota control del coordinador de seguretat i salut en fase d’execució, i a disposició de la direcció facultativa, l’autoritat laboral o el representant dels treballadors, que podran realitzar anotacions que considerin oportunes amb la finalitat de controlar el compliment.

En cas d’anotació, el coordinador enviarà una còpia de l’anotació a Inspecció de Treball, en el termini de 24 h.

11 Conclusions

L’empresari, amb la finalitat de donar compliment a l’art. 23 de la Llei 31/95, haurà d’elaborar i conservar a la disposició de l’autoritat laboral la següent documentació:
• Avaluació dels riscos per a la seguretat i salut al treball i planificació de l’acció preventiva.

• Mesures de protecció i prevenció a adoptar en cas necessari.

• Pràctica dels controls d’estat de salut dels treballadors.

• Resultat de les condicions de treball i de l’activitat dels treballadors.

• Investigació d’accidents de treball i malalties professionals; en cas que es produís un accident és necessari investigar les causes del mateix amb la finalitat de poder aplicar les mesures correctores que fossin necessàries, així com per a actualitzar aquesta avaluació, si fós necessari. Quan passi han de ser avisats als Delegats de Prevenció de l’empresa.

• Actualització de l’avaluació; la present avaluació haurà de ser actualitzada quan es produeixin canvis en el tipus o en les condicions de treball i es revisarà, si és necessari, en el cas de produir-se algun dany a la salut dels treballadors.

12 Pressupost de seguretat i salut

<table>
<thead>
<tr>
<th>Descripció</th>
<th>Unitats</th>
<th>Preu unitari (€/u)</th>
<th>Preu total (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casc de seguretat</td>
<td>4</td>
<td>10,50</td>
<td>42,00</td>
</tr>
<tr>
<td>Equip complet de soldadura</td>
<td>1</td>
<td>105,00</td>
<td>105,00</td>
</tr>
<tr>
<td>Pantalla de seguretat</td>
<td>2</td>
<td>12,23</td>
<td>24,46</td>
</tr>
<tr>
<td>Ulleres de protecció antiimpacte i antipols</td>
<td>4</td>
<td>12,68</td>
<td>50,72</td>
</tr>
<tr>
<td>Protecció auditiva</td>
<td>4</td>
<td>19,73</td>
<td>78,92</td>
</tr>
<tr>
<td>Guants d’ús general</td>
<td>4</td>
<td>6,50</td>
<td>26,00</td>
</tr>
<tr>
<td>Descripció</td>
<td>Unitats</td>
<td>Preu unitari (€/u)</td>
<td>Preu total (€)</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>--------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Impermeable</td>
<td>4</td>
<td>22,30</td>
<td>89,20</td>
</tr>
<tr>
<td>Botes de seguretat</td>
<td>4</td>
<td>18,50</td>
<td>74,00</td>
</tr>
<tr>
<td>Botes d’aigua</td>
<td>4</td>
<td>11,42</td>
<td>45,68</td>
</tr>
<tr>
<td>Armilla reflectant</td>
<td>4</td>
<td>15,20</td>
<td>60,80</td>
</tr>
<tr>
<td>Arnés</td>
<td>3</td>
<td>37,50</td>
<td>112,50</td>
</tr>
<tr>
<td>Extintor ABC de pols de 6kg, EF 21A-113B</td>
<td>1</td>
<td>60,00</td>
<td>60,00</td>
</tr>
<tr>
<td>Senyalització (cartells)</td>
<td>4</td>
<td>4,30</td>
<td>17,20</td>
</tr>
</tbody>
</table>

TOTAL 786,48

*Taula 1. Elements de Seguretat i Salut per aquesta instal·lació.

El pressupost total de Seguretat i Salut de la instal·lació és de **SETCENTS VUITANTA-SIS EUROS AMB QUARANTA-VUIT CÈNTIMS D’EURO (786,48.- €)**.
Titulació:

Enginyeria Industrial

Alumne (nom i cognoms):

Sònia Bouso Crusellas

Títol PFC:

“Projecte d'implantació d'energia solar fotovoltaica a un hipermercat situat al Polígon Industrial de Valls”

Director del PFC:

Daniel Garcia-Almiñana

Convocatòria de lliurament del PFC:

1ra Convocatòria Curs 2010/2011

Contingut d'aquest volum: -ANNEXOS-
Annexos de càlcul
Índex

1 Simulació amb PVSyst...3
 1.1 Informe resum...3
 1.2 Taules de dades de sortida ...9
 1.3 Diagrames i gràfics...15
 1.3.1 Gràfic d’energia i irradiació incident15
 1.3.2 Gràfic d’energia diària de sortida16
 1.3.3 Diagrama diari entrada-sortida16
 1.3.4 Gràfic de distribució de potència.................................17
 1.3.5 Producció normalitzada i factors de pèrdues..............18
 1.3.6 Rendiment ..19
 1.3.7 Diagrama de pèrdues ..19
 1.4 Perspectives del prototip de simulació26
2 Càlcul de pèrdues per inclinació i orientació dels panells.........28
 2.1 Procediment ..28
3 Càlcul de pèrdues de radiació solar per ombres..................31
 3.1 Procediment ..31
 3.2 Pèrdues per ombres PVSyst ...33
 3.3 Distància mínima entre files de mòduls.........................33
4 Càlcul de seccions de línies elèctriques35
 4.1 Intensitats màximes als conductors.................................36
 4.2 Secció dels conductors. Caiguda de tensió36
 4.3 Procés de càlcul ...37
 4.3.1 Intensitat ..37
 4.3.2 Secció mínima per caiguda de tensió38
 4.3.3 Caiguda de tensió ..39
 4.3.4 Càlculs de les corrents de curtcircuit39
 4.4 Taules resum ..39
5 Càlcul de la resistència a terra..47
6 Procediment administratiu ..49
 6.1 Tràmits amb la companyia distribuïdora..................................50
 6.1.1 Sol·licitud del punt de connexió..................................50
 6.1.2 Contracte amb l’empresa distribuïdora51
 6.1.3 Connexió de la instal·lació ...52
 6.2 Tràmits amb indústria ...52
 6.2.1 Verificació i posada en marxa54
 6.2.2 Sol·licitud al Registre d’Establiments Industrials de
 Catalunya ...55
 6.3 Tràmits amb l’Ajuntament ..56
 6.3.1 Llicència d’obres ...56
 6.3.2 Llicència d’activitats ...56
 6.4 Impresos ..56
1 Simulació amb PVSyst

1.1 Informe resum
Sistema Conectado a la Red: Parámetros de la simulación

<table>
<thead>
<tr>
<th>Proyecto</th>
<th>Projecte fotovoltaic, sobre coberta, connectat a la xarxa, al Poligone de Valls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lugar geográfico</td>
<td>Poligon de Valls</td>
</tr>
<tr>
<td>Ubicación</td>
<td>Latitud 41.3° N</td>
</tr>
<tr>
<td></td>
<td>Longitud 1.3° E</td>
</tr>
<tr>
<td></td>
<td>Hora Legal 0.20</td>
</tr>
<tr>
<td></td>
<td>Huso hor. UT+1</td>
</tr>
<tr>
<td>Data climatológicos</td>
<td>Poligone de Valls, Síntesis datos por hora</td>
</tr>
<tr>
<td>Variante de simulación</td>
<td>Sin efecto de sombreado</td>
</tr>
<tr>
<td>Fecha de simulación</td>
<td>13/11/10 18h00</td>
</tr>
<tr>
<td>Parámetros de la simulación</td>
<td></td>
</tr>
<tr>
<td>Orientación Planor Receptor</td>
<td>Inclinación 35°</td>
</tr>
<tr>
<td>Perfil obstáculos</td>
<td>Elevación Media 2.3°</td>
</tr>
<tr>
<td>Sombras cercanas</td>
<td>Sombreado lineal</td>
</tr>
<tr>
<td>Características generador FV</td>
<td></td>
</tr>
<tr>
<td>Módulo FV</td>
<td>Si-mono SPR-318E-WHT-D</td>
</tr>
<tr>
<td></td>
<td>Fabricante SunPower</td>
</tr>
<tr>
<td>Número de módulos FV</td>
<td>6 módulos</td>
</tr>
<tr>
<td>N°total de módulos FV</td>
<td>306 N°módulos</td>
</tr>
<tr>
<td>Potencia global generador</td>
<td>Nominal 97 kWp</td>
</tr>
<tr>
<td>Caract. funcionamiento del generador (50°C)</td>
<td>V mpp 291 V I mpp 302 A</td>
</tr>
<tr>
<td>Superficie total</td>
<td>499 m²</td>
</tr>
<tr>
<td>Inversor</td>
<td>Modelo Sunny Mini Central 6000A</td>
</tr>
<tr>
<td>Fabricante</td>
<td>SMA</td>
</tr>
<tr>
<td>Características</td>
<td>Tensión Funciona. 246-480 V</td>
</tr>
<tr>
<td>Banco de inversores</td>
<td>17 unidades</td>
</tr>
<tr>
<td>Factores de pérdida Generador FV</td>
<td>Factor de pérdidas térmicas Uc (const) 20.0 W/m²K 0.0 W/m²K / m/s</td>
</tr>
<tr>
<td></td>
<td>Temp. Opera. Nom. Cél. (G=800 W/m², Tamb=20°C, VelViento=1m/s) TONC 56 °C</td>
</tr>
<tr>
<td>Pérdida Óhmica en el Cableado</td>
<td>16 mOhm Fracción de Pérdidas 1.5 % en STC</td>
</tr>
<tr>
<td>Pérdida Calidad Módulo</td>
<td>Fracción de Pérdidas 2.5 %</td>
</tr>
<tr>
<td>Pérdidas Mismatch Módulos</td>
<td>Fracción de Pérdidas 2.0 % en MPP</td>
</tr>
<tr>
<td>Efecto de incidencia, parametrización ASHRAE</td>
<td>IAM = 1 - bo (1/cos i - 1) Parámetro bo 0.05</td>
</tr>
<tr>
<td>Necesidades de los usuarios</td>
<td>Carga ilimitada (red)</td>
</tr>
</tbody>
</table>

Traducción sin garantía, Sólo el texto inglés está garantizado.
Sistema Conectado a la Red: Definición del horizonte

Proyecto: Projecte fotovoltaic, sobre coberta, connectat a la xarxa, al Polígon de Valls

Variante de simulación: Sin efecto de sombreado

<table>
<thead>
<tr>
<th>Parámetros principales del sistema</th>
<th>Conectado a la red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfil obstáculos</td>
<td></td>
</tr>
<tr>
<td>Tipo de sistema</td>
<td>Conectado a la red</td>
</tr>
<tr>
<td>Elevación Media</td>
<td>2.3°</td>
</tr>
<tr>
<td>Sombreado lineal</td>
<td></td>
</tr>
<tr>
<td>Sombras cercanas</td>
<td></td>
</tr>
<tr>
<td>Orientación Campos FV</td>
<td></td>
</tr>
<tr>
<td>Módulos FV</td>
<td></td>
</tr>
<tr>
<td>Módulos FV</td>
<td></td>
</tr>
<tr>
<td>Elevación Media</td>
<td>2.3°</td>
</tr>
<tr>
<td>Género de módulos</td>
<td></td>
</tr>
<tr>
<td>Modelos</td>
<td></td>
</tr>
<tr>
<td>N° de módulos</td>
<td></td>
</tr>
<tr>
<td>Modelos</td>
<td></td>
</tr>
<tr>
<td>Pnom total</td>
<td>97 kWp</td>
</tr>
<tr>
<td>Inversor</td>
<td></td>
</tr>
<tr>
<td>N° de unidades</td>
<td></td>
</tr>
<tr>
<td>Modelos</td>
<td></td>
</tr>
<tr>
<td>Pnom total</td>
<td>94 kW ac</td>
</tr>
<tr>
<td>Necesidades de los usuarios</td>
<td></td>
</tr>
<tr>
<td>Carga ilimitada (red)</td>
<td></td>
</tr>
</tbody>
</table>

Perfil obstáculos

| Altura [°] | 0.0 | 4.0 | 4.7 | 4.2 | 0.0 | 0.0 | 2.4 | 4.4 | 3.3 | 0.0 |
| Acimut [°] | -82 | -82 | -76 | -70 | -70 | 6 | 6 | 47 | 109 | 109 |

Perfil obstáculos

<table>
<thead>
<tr>
<th>Elevación Media</th>
<th>2.3°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor Difuso</td>
<td>0.98</td>
</tr>
<tr>
<td>Factor Albedo</td>
<td>100 %</td>
</tr>
<tr>
<td>Fracción Albedo</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Línea del perfil d’obstacles al conjunt del camp solar

Plano: inclinación 35°, acimut 25°

1: 22 jui
2: 22 may - 23 jul
3: 20 abr - 23 ago
4: 20 mar - 23 sep
5: 21 feb - 23 oct
6: 19 ene - 22 nov
7: 22 dic

Traducción sin garantía. Sólo el texto inglés está garantizado.
Sistema Conectado a la Red: Definición del sombreado cercano

Proyecto: Projecte fotovoltaic, sobre coberta, connectat a la xarxa, al Polígon de Valls

Variante de simulación: Sin efecto de sombreado

<table>
<thead>
<tr>
<th>Parámetros principales del sistema</th>
<th>Tipo de sistema</th>
<th>Conectado a la red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfil obstáculos</td>
<td>Elevación Media</td>
<td>2.3°</td>
</tr>
<tr>
<td>Sombras cercanas</td>
<td>Sombreado lineal</td>
<td></td>
</tr>
<tr>
<td>Orientación Campos FV</td>
<td>inclinación 35°</td>
<td>acimut 25°</td>
</tr>
<tr>
<td>Módulos FV</td>
<td>Modelo SPR-318E-WHT-D</td>
<td>Pnom 318 Wp</td>
</tr>
<tr>
<td>Generador FV</td>
<td>N° de módulos 306</td>
<td>Pnom total 97 kWp</td>
</tr>
<tr>
<td>Inversor</td>
<td>Modelo Sunny Mini Central 6000A</td>
<td>Pnom 5.5 kW ac</td>
</tr>
<tr>
<td>Banco de inversores</td>
<td>N° de unidades 17.0</td>
<td>Pnom total 94 kW ac</td>
</tr>
<tr>
<td>Necesidades de los usuarios</td>
<td>Carga ilimitada (red)</td>
<td></td>
</tr>
</tbody>
</table>

Perspectiva del campo FV y situación del sombreado cercano
Sistema Conectado a la Red: Resultados principales

Proyecto : Projecte fotovoltaic, sobre coberta, connectat a la xarxa, al Polígon de Valls

Variante de simulación : Sin efecto de sombreado

Parámetros principales del sistema

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de sistema</td>
<td>Conectado a la red</td>
</tr>
<tr>
<td>Elevación Media</td>
<td>2.3°</td>
</tr>
<tr>
<td>Sombreado lineal</td>
<td></td>
</tr>
<tr>
<td>Inclinación</td>
<td>35°</td>
</tr>
<tr>
<td>Sombreado lineal</td>
<td>25°</td>
</tr>
<tr>
<td>Módulos FV</td>
<td>SPPR-318E-WHT-D</td>
</tr>
<tr>
<td>N° de módulos</td>
<td>306</td>
</tr>
<tr>
<td>Modelo</td>
<td>Sunny Mini Central 6000A</td>
</tr>
<tr>
<td>N° de unidades</td>
<td>17.0</td>
</tr>
<tr>
<td>Generador FV</td>
<td>318 Wp</td>
</tr>
<tr>
<td>Inversor</td>
<td>5.5 kW ac</td>
</tr>
<tr>
<td>Necesidades de los usuarios</td>
<td>Carga ilimitada (red)</td>
</tr>
</tbody>
</table>

Parámetros principales del sistema

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfil obstáculos</td>
<td></td>
</tr>
<tr>
<td>Elevación Media</td>
<td>2.3°</td>
</tr>
<tr>
<td>Sombras cercanas</td>
<td>Sombreado lineal</td>
</tr>
<tr>
<td>Módulos FV</td>
<td>SPPR-318E-WHT-D</td>
</tr>
<tr>
<td>N° de módulos</td>
<td>306</td>
</tr>
<tr>
<td>Modelo</td>
<td>Sunny Mini Central 6000A</td>
</tr>
<tr>
<td>N° de unidades</td>
<td>17.0</td>
</tr>
<tr>
<td>Necesidades de los usuarios</td>
<td>Carga ilimitada (red)</td>
</tr>
</tbody>
</table>

Resultados principales de la simulación

Producción del Sistema

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía producida</td>
<td>125 MWh/año</td>
</tr>
<tr>
<td>Factor de rendimiento (PR)</td>
<td>77.1 %</td>
</tr>
<tr>
<td>Potencia nominal</td>
<td>97 kWp</td>
</tr>
<tr>
<td>Factor de rendimiento (PR)</td>
<td>0.771</td>
</tr>
</tbody>
</table>

Producciones normalizadas (por kWp instalado): Potencia nominal 97 kWp

<table>
<thead>
<tr>
<th>Mes</th>
<th>GlobHor kWh/m²</th>
<th>T Amb °C</th>
<th>GlobInc kWh/m²</th>
<th>GlobEff kWh/m²</th>
<th>EArray kWh</th>
<th>E_Grid kWh</th>
<th>EffArR %</th>
<th>EffSysR %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>58.9</td>
<td>8.50</td>
<td>89.8</td>
<td>81.4</td>
<td>7235</td>
<td>6884</td>
<td>16.14</td>
<td>15.35</td>
</tr>
<tr>
<td>Febrero</td>
<td>75.7</td>
<td>9.30</td>
<td>101.5</td>
<td>94.0</td>
<td>8251</td>
<td>7909</td>
<td>16.38</td>
<td>15.62</td>
</tr>
<tr>
<td>Marzo</td>
<td>123.1</td>
<td>12.00</td>
<td>147.4</td>
<td>137.5</td>
<td>11966</td>
<td>11429</td>
<td>16.27</td>
<td>15.54</td>
</tr>
<tr>
<td>Abril</td>
<td>147.6</td>
<td>14.00</td>
<td>153.0</td>
<td>142.9</td>
<td>12251</td>
<td>11692</td>
<td>16.04</td>
<td>15.31</td>
</tr>
<tr>
<td>Mayo</td>
<td>181.4</td>
<td>17.80</td>
<td>171.7</td>
<td>159.8</td>
<td>13481</td>
<td>12882</td>
<td>15.73</td>
<td>15.01</td>
</tr>
<tr>
<td>Junio</td>
<td>193.8</td>
<td>22.10</td>
<td>178.3</td>
<td>167.1</td>
<td>13701</td>
<td>13076</td>
<td>15.40</td>
<td>14.69</td>
</tr>
<tr>
<td>Julio</td>
<td>201.5</td>
<td>24.40</td>
<td>187.4</td>
<td>175.2</td>
<td>14247</td>
<td>13602</td>
<td>15.23</td>
<td>14.54</td>
</tr>
<tr>
<td>Agosto</td>
<td>177.9</td>
<td>24.60</td>
<td>180.7</td>
<td>169.6</td>
<td>13740</td>
<td>13112</td>
<td>15.24</td>
<td>14.54</td>
</tr>
<tr>
<td>Septiembre</td>
<td>141.7</td>
<td>21.00</td>
<td>162.6</td>
<td>152.5</td>
<td>12569</td>
<td>12007</td>
<td>15.49</td>
<td>14.80</td>
</tr>
<tr>
<td>Octubre</td>
<td>98.0</td>
<td>17.50</td>
<td>126.4</td>
<td>117.5</td>
<td>10036</td>
<td>9577</td>
<td>15.91</td>
<td>15.19</td>
</tr>
<tr>
<td>Noviembre</td>
<td>62.4</td>
<td>11.80</td>
<td>89.4</td>
<td>82.0</td>
<td>7223</td>
<td>6879</td>
<td>16.20</td>
<td>15.43</td>
</tr>
<tr>
<td>Diciembre</td>
<td>50.1</td>
<td>8.60</td>
<td>78.7</td>
<td>71.2</td>
<td>6377</td>
<td>6062</td>
<td>16.24</td>
<td>15.44</td>
</tr>
<tr>
<td>Año</td>
<td>1512.1</td>
<td>16.01</td>
<td>1666.8</td>
<td>1550.6</td>
<td>131117</td>
<td>125092</td>
<td>15.76</td>
<td>15.04</td>
</tr>
</tbody>
</table>

Leyendas: GlobHor Irradiación global horizontal, T Amb Temperatura ambiente, GlobInc Global incidente en plano receptor, GlobEff Global efectivo, corr. para IAM y sombreados.

Simulación amb ombres

Balances y resultados principales

<table>
<thead>
<tr>
<th>Mes</th>
<th>GlobHor kWh/m²</th>
<th>T Amb °C</th>
<th>GlobInc kWh/m²</th>
<th>GlobEff kWh/m²</th>
<th>EArray kWh</th>
<th>E_Grid kWh</th>
<th>EffArR %</th>
<th>EffSysR %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>58.9</td>
<td>8.50</td>
<td>89.8</td>
<td>81.4</td>
<td>7235</td>
<td>6884</td>
<td>16.14</td>
<td>15.35</td>
</tr>
<tr>
<td>Febrero</td>
<td>75.7</td>
<td>9.30</td>
<td>101.5</td>
<td>94.0</td>
<td>8251</td>
<td>7909</td>
<td>16.38</td>
<td>15.62</td>
</tr>
<tr>
<td>Marzo</td>
<td>123.1</td>
<td>12.00</td>
<td>147.4</td>
<td>137.5</td>
<td>11966</td>
<td>11429</td>
<td>16.27</td>
<td>15.54</td>
</tr>
<tr>
<td>Abril</td>
<td>147.6</td>
<td>14.00</td>
<td>153.0</td>
<td>142.9</td>
<td>12251</td>
<td>11692</td>
<td>16.04</td>
<td>15.31</td>
</tr>
<tr>
<td>Mayo</td>
<td>181.4</td>
<td>17.80</td>
<td>171.7</td>
<td>159.8</td>
<td>13481</td>
<td>12882</td>
<td>15.73</td>
<td>15.01</td>
</tr>
<tr>
<td>Junio</td>
<td>193.8</td>
<td>22.10</td>
<td>178.3</td>
<td>167.1</td>
<td>13701</td>
<td>13076</td>
<td>15.40</td>
<td>14.69</td>
</tr>
<tr>
<td>Julio</td>
<td>201.5</td>
<td>24.40</td>
<td>187.4</td>
<td>175.2</td>
<td>14247</td>
<td>13602</td>
<td>15.23</td>
<td>14.54</td>
</tr>
<tr>
<td>Agosto</td>
<td>177.9</td>
<td>24.60</td>
<td>180.7</td>
<td>169.6</td>
<td>13740</td>
<td>13112</td>
<td>15.24</td>
<td>14.54</td>
</tr>
<tr>
<td>Septiembre</td>
<td>141.7</td>
<td>21.00</td>
<td>162.6</td>
<td>152.5</td>
<td>12569</td>
<td>12007</td>
<td>15.49</td>
<td>14.80</td>
</tr>
<tr>
<td>Octubre</td>
<td>98.0</td>
<td>17.50</td>
<td>126.4</td>
<td>117.5</td>
<td>10036</td>
<td>9577</td>
<td>15.91</td>
<td>15.19</td>
</tr>
<tr>
<td>Noviembre</td>
<td>62.4</td>
<td>11.80</td>
<td>89.4</td>
<td>82.0</td>
<td>7223</td>
<td>6879</td>
<td>16.20</td>
<td>15.43</td>
</tr>
<tr>
<td>Diciembre</td>
<td>50.1</td>
<td>8.60</td>
<td>78.7</td>
<td>71.2</td>
<td>6377</td>
<td>6062</td>
<td>16.24</td>
<td>15.44</td>
</tr>
<tr>
<td>Año</td>
<td>1512.1</td>
<td>16.01</td>
<td>1666.8</td>
<td>1550.6</td>
<td>131117</td>
<td>125092</td>
<td>15.76</td>
<td>15.04</td>
</tr>
</tbody>
</table>

Traducción sin garantía, Sólo el texto inglés está garantizado.
Sistema Conectado a la Red: Diagrama de pérdidas

Proyecto: Projecte fotovoltaic, sobre coberta, connectat a la xarxa, al Polígon de Valls

Variantes de simulación: Sin efecto de sombreado

Parámetros principales del sistema

<table>
<thead>
<tr>
<th>Tipo de sistema</th>
<th>Conectado a la red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevación Media</td>
<td>2.3°</td>
</tr>
<tr>
<td>Sombreado lineal</td>
<td></td>
</tr>
</tbody>
</table>

Perfil obstáculos

<table>
<thead>
<tr>
<th>Elevación Media</th>
<th>Inclinación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3°</td>
<td>35°</td>
</tr>
</tbody>
</table>

Sombras cercanas

<table>
<thead>
<tr>
<th>Elevación Media</th>
<th>Inclinación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3°</td>
<td>35°</td>
</tr>
</tbody>
</table>

Orientación Campos FV

<table>
<thead>
<tr>
<th>Elevación Media</th>
<th>Inclinación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3°</td>
<td>35°</td>
</tr>
</tbody>
</table>

Módulos FV

<table>
<thead>
<tr>
<th>Elevación Media</th>
<th>Inclinación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3°</td>
<td>35°</td>
</tr>
</tbody>
</table>

Generador FV

<table>
<thead>
<tr>
<th>Elevación Media</th>
<th>Inclinación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3°</td>
<td>35°</td>
</tr>
</tbody>
</table>

Inversor

<table>
<thead>
<tr>
<th>Elevación Media</th>
<th>Inclinación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3°</td>
<td>35°</td>
</tr>
</tbody>
</table>

Banco de inversores

<table>
<thead>
<tr>
<th>Elevación Media</th>
<th>Inclinación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3°</td>
<td>35°</td>
</tr>
</tbody>
</table>

Necesidades de los usuarios

<table>
<thead>
<tr>
<th>Elevación Media</th>
<th>Inclinación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3°</td>
<td>35°</td>
</tr>
</tbody>
</table>

Diagrama de pérdida durante todo el año

- Irradiación global horizontal
- Global incidente en plano receptor
- Factor de sombreado horizonte en global
- Factor de sombreado cercano en global
- Factor IAM en global

- Irradiancia efectiva en receptores
- Conversión FV
- Energía nominal generador (en efic. STC)
- Pérdida FV debido a nivel de irradiancia
- Pérdida FV debido a temperatura
- Pérdida calidad de módulo
- Pérdida mismatch campo de módulo
- Pérdida óhmica del cableado

- Energía virtual del generador en MPP
- Pérdida del inversor durante el funcionamiento (eficiencia)
- Pérdida del inversor a través de la Pnom inversor
- Pérdida del inversor debido a umbral de potencia
- Pérdida del inversor debido a umbral de tensión

- Energía Disponible en la Salida del Inversor
- Energía reinyectada en la red

Traducción sin garantía, Sólo el texto inglés está garantizado.
1.2 Taules de dades de sortida
Sistema Conectado a la Red: Resultados específicos

Proyecto: Projecte fotovoltaic, sobre coberta, connectat a la xarxa, al Polígon de Valls

Variante de simulación: Simulació amb ombres

<table>
<thead>
<tr>
<th>Parámetros principales del sistema</th>
<th>Tipo de sistema</th>
<th>Conectado a la red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfil obstáculos</td>
<td>Elevación Media</td>
<td>Elevación lineal</td>
</tr>
<tr>
<td>Sombra cercana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orientación de Campos FV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Módulos FV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator FV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inversor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banco de inversores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Necesidades de los usuarios</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variante de simulación: Simulació amb ombres

Balances y resultados principales

<table>
<thead>
<tr>
<th></th>
<th>GlobHor kWh/m²</th>
<th>T Amb °C</th>
<th>GlobInc kWh/m²</th>
<th>GlobEff kWh/m²</th>
<th>EArray kWh</th>
<th>E_Grid kWh</th>
<th>EffArrR %</th>
<th>EffSysR %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>58.9</td>
<td>8.50</td>
<td>89.8</td>
<td>81.4</td>
<td>7235</td>
<td>6884</td>
<td>16.14</td>
<td>15.35</td>
</tr>
<tr>
<td>Febrero</td>
<td>75.7</td>
<td>9.30</td>
<td>101.5</td>
<td>94.0</td>
<td>8291</td>
<td>7909</td>
<td>16.38</td>
<td>15.62</td>
</tr>
<tr>
<td>Marzo</td>
<td>123.1</td>
<td>12.00</td>
<td>147.4</td>
<td>137.5</td>
<td>11966</td>
<td>11429</td>
<td>16.27</td>
<td>15.54</td>
</tr>
<tr>
<td>Abril</td>
<td>147.6</td>
<td>14.00</td>
<td>153.0</td>
<td>142.9</td>
<td>12251</td>
<td>11692</td>
<td>16.04</td>
<td>15.31</td>
</tr>
<tr>
<td>Mayo</td>
<td>181.4</td>
<td>17.80</td>
<td>171.7</td>
<td>159.8</td>
<td>13481</td>
<td>12862</td>
<td>15.73</td>
<td>15.01</td>
</tr>
<tr>
<td>Junio</td>
<td>193.8</td>
<td>22.10</td>
<td>178.3</td>
<td>167.1</td>
<td>13701</td>
<td>13076</td>
<td>15.40</td>
<td>14.89</td>
</tr>
<tr>
<td>Julio</td>
<td>201.5</td>
<td>24.40</td>
<td>187.4</td>
<td>175.2</td>
<td>14247</td>
<td>13602</td>
<td>15.23</td>
<td>14.54</td>
</tr>
<tr>
<td>Agosto</td>
<td>177.9</td>
<td>24.60</td>
<td>180.7</td>
<td>169.6</td>
<td>13740</td>
<td>13112</td>
<td>15.24</td>
<td>14.54</td>
</tr>
<tr>
<td>Septiembre</td>
<td>141.7</td>
<td>21.00</td>
<td>162.6</td>
<td>152.5</td>
<td>12569</td>
<td>12007</td>
<td>15.49</td>
<td>14.80</td>
</tr>
<tr>
<td>Octubre</td>
<td>98.0</td>
<td>17.50</td>
<td>126.4</td>
<td>117.5</td>
<td>10036</td>
<td>9577</td>
<td>15.91</td>
<td>15.19</td>
</tr>
<tr>
<td>Noviembre</td>
<td>62.4</td>
<td>11.80</td>
<td>89.4</td>
<td>82.0</td>
<td>7223</td>
<td>6879</td>
<td>16.20</td>
<td>15.43</td>
</tr>
<tr>
<td>Diciembre</td>
<td>50.1</td>
<td>8.60</td>
<td>78.7</td>
<td>71.2</td>
<td>6377</td>
<td>6062</td>
<td>16.24</td>
<td>15.44</td>
</tr>
<tr>
<td>Año</td>
<td>1512.1</td>
<td>16.01</td>
<td>1666.8</td>
<td>1550.6</td>
<td>131117</td>
<td>125092</td>
<td>15.76</td>
<td>15.04</td>
</tr>
</tbody>
</table>

Leyendas:
- GlobHor: Irradiación global horizontal
- T Amb: Temperatura Ambiente
- GlobInc: Global incidente en plano receptor
- GlobEff: Global efectivo, corr. para IAM y sombreados
- EArray: Energía efectiva en la salida del generador
- E_Grid: Energía reinyectada en la red
- EffArrR: Eficiencia Esal campo/superficie bruta
- EffSysR: Eficiencia Esal sistema/superficie bruta
Sistema Conectado a la Red: Resultados específicos

Proyecto: Projecte fotovoltaic, sobre coberta, connectat a la xarxa, al Polígon de Valls

Variante de simulación: Simulació amb ombres

<table>
<thead>
<tr>
<th>Parámetros principales del sistema</th>
<th>Tipo de sistema</th>
<th>Conectado a la red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfil obstáculos</td>
<td>Elevación Media</td>
<td>2.3°</td>
</tr>
<tr>
<td>Sombras cercanas</td>
<td>Sombreado lineal</td>
<td></td>
</tr>
<tr>
<td>Orientación Campos FV</td>
<td>Inclinación</td>
<td>35°</td>
</tr>
<tr>
<td>Elevación</td>
<td>Modelo</td>
<td>SP-R-318E-WHT-D</td>
</tr>
<tr>
<td>Módulos FV</td>
<td>Pnom</td>
<td>318 Wp</td>
</tr>
<tr>
<td>Generador FV</td>
<td>N° de módulos</td>
<td>306</td>
</tr>
<tr>
<td>Inversor</td>
<td>Modelo</td>
<td>Sunny Mini Central 6000A</td>
</tr>
<tr>
<td>Banco de inversores</td>
<td>Pnom total</td>
<td>97 kWp</td>
</tr>
<tr>
<td>Necesidades de los usuarios</td>
<td>N° de unidades</td>
<td>17.0</td>
</tr>
<tr>
<td>Carga ilimitada (red)</td>
<td>Pnom total</td>
<td>94 kW ac</td>
</tr>
</tbody>
</table>

Simulació amb ombres

Energía incidente efectiva (Transp., IAM, sombreados)

<table>
<thead>
<tr>
<th>Mes</th>
<th>GlobHor kWh/m²</th>
<th>GlobInc kWh/m²</th>
<th>GlobIAM kWh/m²</th>
<th>GlobShd kWh/m²</th>
<th>GlobEff kWh/m²</th>
<th>DiffEff kWh/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>58.9</td>
<td>89.8</td>
<td>87.1</td>
<td>83.7</td>
<td>81.4</td>
<td>31.43</td>
</tr>
<tr>
<td>Febrero</td>
<td>75.7</td>
<td>101.5</td>
<td>98.3</td>
<td>96.6</td>
<td>94.0</td>
<td>36.93</td>
</tr>
<tr>
<td>Marzo</td>
<td>123.1</td>
<td>147.4</td>
<td>143.2</td>
<td>141.2</td>
<td>137.5</td>
<td>50.82</td>
</tr>
<tr>
<td>Abril</td>
<td>147.6</td>
<td>153.0</td>
<td>148.4</td>
<td>146.8</td>
<td>142.9</td>
<td>58.39</td>
</tr>
<tr>
<td>Mayo</td>
<td>181.4</td>
<td>171.7</td>
<td>166.3</td>
<td>164.5</td>
<td>159.8</td>
<td>66.64</td>
</tr>
<tr>
<td>Junio</td>
<td>193.8</td>
<td>178.3</td>
<td>173.0</td>
<td>171.9</td>
<td>167.1</td>
<td>53.61</td>
</tr>
<tr>
<td>Julio</td>
<td>201.5</td>
<td>187.4</td>
<td>181.5</td>
<td>180.3</td>
<td>175.2</td>
<td>60.89</td>
</tr>
<tr>
<td>Agosto</td>
<td>177.9</td>
<td>180.7</td>
<td>175.4</td>
<td>174.2</td>
<td>169.6</td>
<td>54.99</td>
</tr>
<tr>
<td>Septiembre</td>
<td>141.7</td>
<td>162.6</td>
<td>158.0</td>
<td>156.4</td>
<td>152.5</td>
<td>48.30</td>
</tr>
<tr>
<td>Octubre</td>
<td>98.0</td>
<td>126.4</td>
<td>122.8</td>
<td>120.6</td>
<td>117.5</td>
<td>45.14</td>
</tr>
<tr>
<td>Noviembre</td>
<td>62.4</td>
<td>89.4</td>
<td>86.6</td>
<td>84.4</td>
<td>82.0</td>
<td>33.19</td>
</tr>
<tr>
<td>Diciembre</td>
<td>50.1</td>
<td>78.7</td>
<td>76.3</td>
<td>73.3</td>
<td>71.2</td>
<td>28.38</td>
</tr>
<tr>
<td>Año</td>
<td>1512.1</td>
<td>1666.8</td>
<td>1617.0</td>
<td>1594.1</td>
<td>1550.6</td>
<td>568.72</td>
</tr>
</tbody>
</table>

Leyendas:
- GlobHor: Irradiación global horizontal
- GlobInc: Global incidente en plano receptor
- GlobIAM: Global corregido para incidencia (IAM)
- GlobShd: Global corregido para sombreados
- GlobEff: Global efectivo, corr. para IAM y sombreados
- DiffEff: Difuso efectivo, corr. para IAM y sombreados
Sistema Conectado a la Red: Resultados específicos

Proyecto: Projecte fotovoltaic, sobre coberta, connectat a la xarxa, al Polígon de Valls

Variante de simulación: Simulació amb ombres

<table>
<thead>
<tr>
<th>Parámetros principales del sistema</th>
<th>Conectado a la red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de sistema</td>
<td>Conectado a la red</td>
</tr>
<tr>
<td>Perfil obstáculos</td>
<td>Elevación Media</td>
</tr>
<tr>
<td>Sombras cercanas</td>
<td>Sombreado lineal</td>
</tr>
<tr>
<td>Orientación Campo FV</td>
<td>acimut 25°</td>
</tr>
<tr>
<td>Módulos FV</td>
<td>N° de módulos 306</td>
</tr>
<tr>
<td>Generador FV</td>
<td>N° de unidades 17.0</td>
</tr>
<tr>
<td>Banco de inversores</td>
<td>Carga ilimitada (red)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Necesidades de los usuarios</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simulació amb ombres

Factores ópticos (Transp., IAM, sombreados)

<table>
<thead>
<tr>
<th></th>
<th>GlobHor</th>
<th>GlobInc</th>
<th>FTransp</th>
<th>FIAMBm</th>
<th>FIAMGl</th>
<th>FShdBm</th>
<th>FSIdGl</th>
<th>FIAMShd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>58.9</td>
<td>89.8</td>
<td>1.525</td>
<td>0.976</td>
<td>0.972</td>
<td>0.956</td>
<td>0.948</td>
<td>0.906</td>
</tr>
<tr>
<td>Febrero</td>
<td>75.7</td>
<td>101.5</td>
<td>1.340</td>
<td>0.977</td>
<td>0.972</td>
<td>0.986</td>
<td>0.962</td>
<td>0.926</td>
</tr>
<tr>
<td>Marzo</td>
<td>123.1</td>
<td>147.4</td>
<td>1.198</td>
<td>0.981</td>
<td>0.974</td>
<td>0.993</td>
<td>0.968</td>
<td>0.933</td>
</tr>
<tr>
<td>Abril</td>
<td>147.6</td>
<td>153.0</td>
<td>1.037</td>
<td>0.981</td>
<td>0.973</td>
<td>1.000</td>
<td>0.968</td>
<td>0.934</td>
</tr>
<tr>
<td>Mayo</td>
<td>181.4</td>
<td>171.7</td>
<td>0.947</td>
<td>0.979</td>
<td>0.971</td>
<td>1.000</td>
<td>0.967</td>
<td>0.931</td>
</tr>
<tr>
<td>Junio</td>
<td>193.8</td>
<td>178.3</td>
<td>0.920</td>
<td>0.978</td>
<td>0.973</td>
<td>1.000</td>
<td>0.971</td>
<td>0.937</td>
</tr>
<tr>
<td>Julio</td>
<td>201.5</td>
<td>187.4</td>
<td>0.930</td>
<td>0.977</td>
<td>0.971</td>
<td>1.000</td>
<td>0.970</td>
<td>0.935</td>
</tr>
<tr>
<td>Agosto</td>
<td>177.9</td>
<td>180.7</td>
<td>1.016</td>
<td>0.979</td>
<td>0.973</td>
<td>0.999</td>
<td>0.972</td>
<td>0.939</td>
</tr>
<tr>
<td>Septiembre</td>
<td>141.7</td>
<td>162.6</td>
<td>1.147</td>
<td>0.981</td>
<td>0.975</td>
<td>0.996</td>
<td>0.971</td>
<td>0.938</td>
</tr>
<tr>
<td>Octubre</td>
<td>98.0</td>
<td>126.4</td>
<td>1.290</td>
<td>0.981</td>
<td>0.974</td>
<td>0.989</td>
<td>0.966</td>
<td>0.930</td>
</tr>
<tr>
<td>Noviembre</td>
<td>62.4</td>
<td>89.4</td>
<td>1.432</td>
<td>0.976</td>
<td>0.972</td>
<td>0.968</td>
<td>0.954</td>
<td>0.918</td>
</tr>
<tr>
<td>Diciembre</td>
<td>50.1</td>
<td>78.7</td>
<td>1.570</td>
<td>0.977</td>
<td>0.972</td>
<td>0.946</td>
<td>0.942</td>
<td>0.905</td>
</tr>
<tr>
<td>Año</td>
<td>1512.1</td>
<td>1666.8</td>
<td>1.102</td>
<td>0.979</td>
<td>0.973</td>
<td>0.991</td>
<td>0.966</td>
<td>0.930</td>
</tr>
</tbody>
</table>

Leyendas:
GlobHor Irradiación global horizontal
GlobInc Global incidente en plano receptor
FTransp Factor de transposición GlobInc/GlobHor
FIAMBm Factor IAM en directo
FIAMGl Factor IAM en global
FShdBm Factor de Sombreado Cercano en directo
FSIdGl Factor de Sombreado Cercano en global
FIAMShd Factores IAM y sombreado combinados en global

Traducción sin garantía. Sólo el texto inglés está garantizado.
Sistema Conectado a la Red: Resultados específicos

Proyecto: Projecte fotovoltaic, sobre coberta, connectat a la xarxa, al Polígon de Valls

Variante de simulación: Simulació amb ombres

Parámetros principales del sistema

<table>
<thead>
<tr>
<th>Perfil obstáculos</th>
<th>Elevación Media</th>
<th>Sombreado lineal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientación Campos FV</td>
<td>2.3°</td>
<td>35°</td>
</tr>
<tr>
<td>Módulos FV</td>
<td>Modelo</td>
<td>SPR-318E-WHT-D</td>
</tr>
<tr>
<td>Generador FV</td>
<td>N° de módulos</td>
<td>306</td>
</tr>
<tr>
<td>Inversor</td>
<td>Modelo</td>
<td>Sunny Mini Central 6000A</td>
</tr>
<tr>
<td>Banco de inversores</td>
<td>N° de unidades</td>
<td>17.0</td>
</tr>
<tr>
<td>Necesidades de los usuarios</td>
<td>Carga ilimitada (red)</td>
<td></td>
</tr>
</tbody>
</table>

Conectado a la red

<table>
<thead>
<tr>
<th>Tipo de sistema</th>
<th>Elevación Media</th>
<th>N° de módulos</th>
<th>Pnom total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conectado a la red</td>
<td>2.3°</td>
<td>306</td>
<td>97 kWp</td>
</tr>
<tr>
<td>Pnom</td>
<td>318 Wp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acimut</td>
<td>25°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simulació amb ombres

Pérdidas Detalladas del Sistema

<table>
<thead>
<tr>
<th>Mes</th>
<th>ModQual kWh</th>
<th>MisLoss kWh</th>
<th>OhmLoss kWh</th>
<th>EArrMPP kWh</th>
<th>InvLoss kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>196.7</td>
<td>153.4</td>
<td>50.9</td>
<td>7235</td>
<td>351.2</td>
</tr>
<tr>
<td>Febrero</td>
<td>225.2</td>
<td>175.7</td>
<td>63.7</td>
<td>8291</td>
<td>382.6</td>
</tr>
<tr>
<td>Marzo</td>
<td>324.8</td>
<td>253.4</td>
<td>102.2</td>
<td>11966</td>
<td>536.9</td>
</tr>
<tr>
<td>Abril</td>
<td>332.6</td>
<td>259.4</td>
<td>110.0</td>
<td>12251</td>
<td>558.7</td>
</tr>
<tr>
<td>Mayo</td>
<td>366.4</td>
<td>285.8</td>
<td>123.7</td>
<td>13481</td>
<td>619.1</td>
</tr>
<tr>
<td>Junio</td>
<td>372.5</td>
<td>290.6</td>
<td>139.7</td>
<td>13701</td>
<td>625.4</td>
</tr>
<tr>
<td>Julio</td>
<td>387.7</td>
<td>302.4</td>
<td>143.2</td>
<td>14247</td>
<td>644.8</td>
</tr>
<tr>
<td>Agosto</td>
<td>373.7</td>
<td>291.5</td>
<td>143.6</td>
<td>13740</td>
<td>628.4</td>
</tr>
<tr>
<td>Septiembre</td>
<td>341.4</td>
<td>266.3</td>
<td>129.7</td>
<td>12569</td>
<td>562.0</td>
</tr>
<tr>
<td>Octubre</td>
<td>272.9</td>
<td>212.9</td>
<td>83.7</td>
<td>10036</td>
<td>458.4</td>
</tr>
<tr>
<td>Noviembre</td>
<td>196.5</td>
<td>153.2</td>
<td>50.8</td>
<td>7223</td>
<td>343.5</td>
</tr>
<tr>
<td>Diciembre</td>
<td>173.5</td>
<td>135.3</td>
<td>41.6</td>
<td>6377</td>
<td>314.7</td>
</tr>
<tr>
<td>Año</td>
<td>3563.8</td>
<td>2779.8</td>
<td>1182.9</td>
<td>131117</td>
<td>6025.6</td>
</tr>
</tbody>
</table>

Leyendas:
- ModQual: Pérdida calidad de módulo
- MisLoss: Pérdida mismatch campo de módulo
- OhmLoss: Pérdida óhmica del cableado
- EArrMPP: Energía virtual del generador en MPP
- InvLoss: Pérdidas globales inversor

Traducción sin garantía, Sólo el texto inglés está garantizado.
Sistema Conectado a la Red: Resultados específicos

Proyecto: Projecte fotovoltaic, sobre coberta, connectat a la xarxa, al Polígon de Valls

Variante de simulación: Simulació amb ombres

Paràmetres principals del sistema

<table>
<thead>
<tr>
<th>Tipo de sistema</th>
<th>Conectado a la red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevación Media</td>
<td>2.3°</td>
</tr>
<tr>
<td>Sombreado lineal</td>
<td></td>
</tr>
</tbody>
</table>

Perfil obstáculos

<table>
<thead>
<tr>
<th>Orientación Campos FV</th>
<th>inclinación</th>
</tr>
</thead>
<tbody>
<tr>
<td>35°</td>
<td></td>
</tr>
</tbody>
</table>

Sombras cercanas

<table>
<thead>
<tr>
<th>Módulos FV</th>
<th>Modelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPR-318E-WHT-D</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generador FV</th>
<th>N° de módulos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny Mini Central 6000A</td>
<td>306</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inversor</th>
<th>Modelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5 kW ac</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Banco de inversores</th>
<th>N° de unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>94 kW ac</td>
<td>17.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Necesidades de los usuarios</th>
<th>Carga ilimitada (red)</th>
</tr>
</thead>
</table>

Necesidades de los usuarios: Carga ilimitada (red)

Simulació amb ombres

<table>
<thead>
<tr>
<th>Coeficientes de Rendimiento Normalizados</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Yr</th>
<th>Lc</th>
<th>Ya</th>
<th>Ls</th>
<th>Yf</th>
<th>Lcr</th>
<th>Lsr</th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh/m².día</td>
<td>kWh/kWp/día</td>
<td>kWh/kWp/día</td>
<td>kWh/kWp/día</td>
<td>kWh/kWp/día</td>
<td>kWh/kWp/día</td>
<td>kWh/kWp/día</td>
<td>kWh/kWp/día</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Enero</td>
<td>89.85</td>
<td>0.500</td>
<td>0.03</td>
<td>0.116</td>
<td>2.28</td>
<td>0.172</td>
<td>0.040</td>
</tr>
<tr>
<td>Febrero</td>
<td>101.45</td>
<td>0.580</td>
<td>0.04</td>
<td>0.140</td>
<td>2.90</td>
<td>0.160</td>
<td>0.039</td>
</tr>
<tr>
<td>Marzo</td>
<td>147.42</td>
<td>0.789</td>
<td>0.05</td>
<td>0.178</td>
<td>3.79</td>
<td>0.166</td>
<td>0.037</td>
</tr>
<tr>
<td>Abril</td>
<td>153.01</td>
<td>0.904</td>
<td>0.05</td>
<td>0.191</td>
<td>4.01</td>
<td>0.177</td>
<td>0.038</td>
</tr>
<tr>
<td>Mayo</td>
<td>171.72</td>
<td>1.070</td>
<td>0.06</td>
<td>0.205</td>
<td>4.26</td>
<td>0.193</td>
<td>0.037</td>
</tr>
<tr>
<td>Junio</td>
<td>178.34</td>
<td>1.251</td>
<td>0.06</td>
<td>0.214</td>
<td>4.48</td>
<td>0.210</td>
<td>0.036</td>
</tr>
<tr>
<td>Julio</td>
<td>187.42</td>
<td>1.323</td>
<td>0.06</td>
<td>0.214</td>
<td>4.51</td>
<td>0.219</td>
<td>0.035</td>
</tr>
<tr>
<td>Agosto</td>
<td>180.67</td>
<td>1.273</td>
<td>0.06</td>
<td>0.208</td>
<td>4.35</td>
<td>0.218</td>
<td>0.036</td>
</tr>
<tr>
<td>Septiembre</td>
<td>162.56</td>
<td>1.113</td>
<td>0.06</td>
<td>0.192</td>
<td>4.11</td>
<td>0.205</td>
<td>0.036</td>
</tr>
<tr>
<td>Octubre</td>
<td>126.38</td>
<td>0.750</td>
<td>0.04</td>
<td>0.152</td>
<td>3.17</td>
<td>0.184</td>
<td>0.037</td>
</tr>
<tr>
<td>Noviembre</td>
<td>89.35</td>
<td>0.504</td>
<td>0.03</td>
<td>0.118</td>
<td>2.36</td>
<td>0.169</td>
<td>0.040</td>
</tr>
<tr>
<td>Diciembre</td>
<td>78.67</td>
<td>0.424</td>
<td>0.03</td>
<td>0.104</td>
<td>2.01</td>
<td>0.167</td>
<td>0.041</td>
</tr>
<tr>
<td>Año</td>
<td>1666.84</td>
<td>0.875</td>
<td>0.05</td>
<td>0.170</td>
<td>3.52</td>
<td>0.192</td>
<td>0.037</td>
</tr>
</tbody>
</table>

Leyendas:

- **Yr**: Energía Incidente de Referencia en plano recept.
- **Lc**: Pérdidas Generador Normalizado
- **Ya**: Producción Generador Normalizado
- **Ls**: Pérdidas Sistema Normalizado
- **Yf**: Producción Sistema Normalizado
- **Lcr**: Relación Pérdida generador/Energía incidente
- **Lsr**: Relación Pérdida sistema/Energía incidente
- **PR**: Factor de rendimiento

Traducción sin garantía. Sólo el texto inglés está garantizado.
1.3 Diagrames i gràfics

1.3.1 Gràfic d’energia i irradiació incident

Figura 1. Energia incident al pla receptor (Simulació PVSyst)

Figura 2. Irradiació incident al pla receptor (Simulació PVSyst)
1.3.2 Gràfic d’energia diària de sortida

Figura 3. Energia diària (Simulació PVsyst)

1.3.3 Diagrama diari entrada-sortida

Figura 4. Energia reinjectada a la xarxa respecte l’energia incident (Simulació PVsyst)
1.3.4 Gràfic de distribució de potència

Figura 5. Distribució de potència a la sortida del generator (Simulació PVSyst)

Figura 6. Distribució de potència a la sortida del sistema (Simulació PVSyst)
1.3.5 Producció normalitzada i factors de pèrdues

Figura 7. Energia normalitzada mensual (Simulació PV syst)

Figura 8. Factors de producció normalitzada (Simulació PV syst)
1.3.6 Rendimiento

Figura 9. Rendimiento (Simulación PV Syst)

1.3.7 Diagrama de pérdidas

Figura 10. Diagrama de pérdidas anual (Simulación PV Syst)
Figura 11. Diagrama de pérdides gener (Simulació PVSyst)

Figura 12. Diagrama de pérdues febrer (Simulació PVSyst)
Figura 13. Diagrama de pérdides març (Simulació PVSyst)

Figura 14. Diagrama de pérdides abril (Simulació PVSyst)
Figura 15. Diagrama de perdues maig (Simulació PVSyst)

Figura 16. Diagrama de perdues juny (Simulació PVSyst)
Figura 17. Diagrama de pérdidas juliol (Simulació PVSyst)

Figura 18. Diagrama de pérdidas agost (Simulació PVSyst)
Figura 19. Diagrama de pérdidas setiembre (Simulació PV Syst)

Figura 20. Diagrama de pérdidas octubre (Simulació PV Syst)
Figura 21. Diagrama de pèrdues novembre (Simulació PVSyst)

Figura 22. Diagrama de pèrdues desembre (Simulació PVSyst)
1.4 Perspectives del prototip de simulació

Perspectiva de façanes nord

Figura 23. Perspectiva de façanes nord (Simulació PVSyst)

Perspectiva de façanes sud

Figura 24. Perspectiva de façanes sud (Simulació PVSyst)
Perspectiva general

Figura 25. Perspectiva general (Simulació PVSyst)

Perspectiva superior

Figura 26. Perspectiva superior (Simulació PVSyst)
2 Càlcul de pèrdues per inclinació i orientació dels panells

L’objecte d’aquest annex és mostrar el mètode per determinar els límits en l’orientació dels mòduls d’acord amb les pèrdues màximes permissibles.

Les pèrdues per aquest concepte es calculen en funció de:

- Angle d'inclinació β, definit com l’angle que forma la superfície dels mòduls amb el pla horitzontal. El seu valor és 0° per a mòduls horitzontals i 90° per els verticals.

- Angle d’azimut α, definit com a l’angle entre la projecció sobre el pla horitzontal de la normal a la superfície del mòdul i el meridià de l’indret. Els valors típics son 0° per a mòduls orientats al sud, -90° per a mòduls orientats a l’est i $+90^\circ$ per a mòduls orientats a l’oest. En el cas que ens ocupa l’azimut és de $+25^\circ$.

2.1 Procediment

Cal determinar l’angle d’azimut del generador, es calculen els límits d’inclinació acceptables d’acord amb les pèrdues màximes respecte a la inclinació òptima establerta amb el diagrama que es mostra a continuació.
Figura 28. Pèrdues per orientació i inclinació dels mòduls respecte l’òptim.
(Font: CTE-DB-HE. Estalvi d’energia. Apartat 3.3.2.)

Per el cas general, les pèrdues màximes per aquest concepte són del 10%, per superposició del 20%, i per integració arquitectònica del 40%. Els punts d’inserció del límit de pèrdues amb la recta d’azimut proporciona els valors d’inclinació màxima i mínima.

Si no hi ha intersecció entre elles, les pèrdues són superiors a les permeses i la instal·lació estarà fora dels límits.

Si ambdues corbes s’intercepten, s’obtenen els valors per latitud \(\phi = 41^\circ \) i es corregeix els límits d’inclinació acceptables en funció de la diferència entre la latitud de l’indret en qüestió i la de 41°, d’acord amb les següents fórmules:

- Inclinació màxima = Inclinació (\(\phi = 41^\circ \)) - (41° - latitud)
- Inclinació mínima = Inclinació (\(\phi = 41^\circ \)) - (41° - latitud), sent 0° el seu valor mínim.
En el cas més proper al límit, i com a instrument de verificació, s’utilitzarà la següent formula:

\[
\text{Pèrdues (\%)} = 100 \times \left[1.2 \times 10^{-4}(\beta - \phi + 10)^2 + 3.5 \times 10^{-5} \alpha^2\right], \text{ per } 15^\circ < \beta < 90^\circ
\]

\[
\text{Pèrdues (\%)} = 100 \times \left[1.2 \times 10^{-4}(\beta - \phi + 10)^2\right], \text{ per } \beta \leq 15^\circ
\]

(Nota: \(\alpha, \beta, \phi\) s’expressen en graus, sent \(\phi\) la latitud de l’indret.)

Les pèrdues per inclinació i orientació seran inferiors al 5\% (diagrama), del 2,38\% (expressió).
3 Càlcul de pèrdues de radiació solar per ombres

El present annex es descriu un mètode de càlcul de les pèrdues de radiació solar per ombres que s’ha tingut en compte en la simulació PVsyst. Tals pèrdues s’expressen com a percentatge de la radiació solar global que incidiria sobre la superfície.

3.1 Procediment

El procediment consisteix en la comparació del perfil d’obstacles que afecta a la superfície en particular amb el diagrama de trajectòries de Sol. Els passos a seguir són els següents:

Obtenció del perfil d’obstacles.

Localització dels principals obstacles que afecten a la superfície, en termes de les seves coordenades de posició azimut (angle de desviació respecte al pla horitzontal).

Representació del perfil d’obstacles.

Representació del perfil d’obstacles en el diagrama que es mostra a continuació, en el que es veu la banda de trajectòries de Sol a llarg de tot l’any.

Les bandes estan dividides en porcions, delimitades per les hores solars (negatives avanç del migdia solar i positives després) i identificades per una lletra i un número (A1, A2,.....,D14).

Figura 29. Diagrama de trajectòria solar.
(Font: CTE-DB-HE. Estalvi d’energia. Apartat 3.4.2.)
Selecció de la taula de referència.

Cada una de les porcions del diagrama anterior representa el recorregut de Sol en un cert període de temps (una hora al llarg de varis dies), i per tant una determinada contribució a la irradiació solar global anual que incideix sobre la superfície n particular. El fet de que un obstacle cobreixi una de les porcions suposa una certa pèrdua de irradiació, en particular aquella que resulti interceptada per l’obstacle.

S’ha d’escol·lir, com a referència pel càlcul, la taula més adequada.

<table>
<thead>
<tr>
<th>β=35° ; α=30°</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.10</td>
</tr>
<tr>
<td>11</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>9</td>
<td>0.02</td>
<td>0.10</td>
<td>0.19</td>
<td>0.56</td>
</tr>
<tr>
<td>7</td>
<td>0.54</td>
<td>0.55</td>
<td>0.78</td>
<td>1.80</td>
</tr>
<tr>
<td>5</td>
<td>1.32</td>
<td>1.12</td>
<td>1.40</td>
<td>3.08</td>
</tr>
<tr>
<td>3</td>
<td>2.24</td>
<td>1.60</td>
<td>1.92</td>
<td>4.14</td>
</tr>
<tr>
<td>1</td>
<td>2.69</td>
<td>1.88</td>
<td>2.31</td>
<td>4.67</td>
</tr>
<tr>
<td>2</td>
<td>3.16</td>
<td>2.15</td>
<td>2.40</td>
<td>5.20</td>
</tr>
<tr>
<td>4</td>
<td>2.93</td>
<td>2.06</td>
<td>2.23</td>
<td>5.02</td>
</tr>
<tr>
<td>6</td>
<td>2.14</td>
<td>1.82</td>
<td>2.00</td>
<td>4.46</td>
</tr>
<tr>
<td>8</td>
<td>1.33</td>
<td>1.36</td>
<td>1.48</td>
<td>3.54</td>
</tr>
<tr>
<td>10</td>
<td>0.18</td>
<td>0.71</td>
<td>0.88</td>
<td>2.26</td>
</tr>
<tr>
<td>12</td>
<td>0.00</td>
<td>0.00</td>
<td>0.32</td>
<td>1.17</td>
</tr>
<tr>
<td>14</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Figura 30. Taula de referència pel càlcul.
(Font: CTE-DB-HE. Estalvi d’energia. Annex B.)

Càlcul final

La comparació del perfil d’obstacles amb el diagrama de trajectòries del Sol permet calcular les pèrdues per ombrejat de la irradiació global que incideix sobre de la superfície, al llarg de tot l’any. Per realitzar aquesta operació s’han de sumar les contribucions d’aquelles porcions que resultin total o parcialment tapades pel perfil d’obstacles representat. En el cas d’ocultació parcial s’utilitzarà el factor 0.25, 0.50, 0.75, 1.
3.2 Pèrdues per ombres PVSyst

El diagrama que s'ha obtingut a la simulació PVSyst del procediment anterior es mostra a continuació.

Les ombres provenen del cartell de l’hipermercat i del mur transversal que llinda amb una secció de coberta més elevada.

Les pèrdues totals per ombres, segons la simulació, són del 4,4%.

3.3 Distància mínima entre files de mòduls

La distància d, mesura la horitzontal, entre unes files de mòduls obstacle, d’altura h, que puguin produir ombres sobre la instal·lació que hauria de garantir un mínim de 4 hores de sol al voltant del migdia del solstici d’hivern. Aquesta distància d serà superior al valor obtingut per l’expressió:

$$d = h/ \tan (61^\circ - \text{latitud}) = 1,38/ \tan(61-41) = 3,79 \approx 4 \text{ m}$$
La separació entre la part posterior d’una fila i l’inici de la següent no serà inferior a l’obtinguda per l’expressió anterior, aplicant \(h \) a la diferencia d’altures entre la part alta d’una fila i la part baixa de la següent, efectuant totes les mesures d’acord amb el pla on estan situades les bases dels mòduls.
4 Càlcul de seccions de línies elèctriques

La determinació reglamentària de la secció d’un cable consisteix en calcular la secció mínima normalitzada que compleixi simultàniament les tres condicions següents:

1. **Criteri de la intensitat màxima admissible o d’escalfament.** La temperatura del conductor del cable, treballant a plena càrrega i en règim permanent, no haurà de superar en cap moment la temperatura màxima admissible assignada dels materials que s’utilitzen per a l’aïllament del cable. Aquesta temperatura s’especifica en les normes particulars de cablejat i acostuma a ser de 70ºC per a cables amb aïllament termoplàstic i de 90º per a cables amb aïllaments termoestables.

2. **Criteri de la caiguda de tensió.** La circulació del corrent a través dels conductors origina una pèrdua de la potència que transporta el cable, i una caiguda de tensió o diferència entre les tensions en l’origen i extrem del conductor. Aquesta caiguda de tensió haurà de ser inferior als límits marcats pel REBT en cada part de la instal·lació, amb l’objecte de garantir el funcionament dels receptors alimentats pel cable.

3. **Criteri de la intensitat de curtcircuit.** La temperatura que pot assolir el conductor del cable, com a conseqüència d’un curtcircuit o d’una sobreintensitat de curta durada, no pot sobrepasar la temperatura màxima admissible de curta durada (de menys de 5 segons) assignada als materials utilitzats per a l’aïllament del cable. Aquesta temperatura s’especifica en les normes particulars dels cables i acostuma a ser de 160ºC per a cables amb aïllament termoplàstic i de 250ºC per a cables amb aïllaments termoestables. Aquest criteri, tot i que és determinant en instal·lacions d’alta i mitja tensió, no ho és en instal·lacions de baixa tensió ja que per una part les proteccions de sobreintensitat limiten la durada del curtcircuit a temps molt breus, i a més les impedàncies dels cables fins el punt de curtcircuit limiten la intensitat de curtcircuit.
4.1 Intensitats màximes als conductors

Es donarà compliment a la instrucció ITC- BT 07 i ITC- BT 19. Les intensitats als conductors s’indiquen a la taula de càlcul que s’adjunta posteriorment.

4.2 Secció dels conductors. Caiguda de tensió

La secció dels conductors s’ha determinat segons l’exposició del paràgraf anterior i tenint en compte que la caiguda de tensió màxima no sigui superior al 1% en CC i al 1,5% en CA.

La secció dels conductors es determinarà segons les taules que s’adjunten a continuació.

Tabla 5. Intensidad máxima admissible, en amperios, para cables con conductores de cobre en instalación enterrada (servicio permanente).

<table>
<thead>
<tr>
<th>SECCIÓN NOMINAL</th>
<th>Terna de cables unipolares (1) (2)</th>
<th>Cable tripolar o tetrapolar (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²</td>
<td>XLPE</td>
<td>EPR</td>
</tr>
<tr>
<td>6</td>
<td>72</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>96</td>
<td>94</td>
</tr>
<tr>
<td>16</td>
<td>125</td>
<td>120</td>
</tr>
<tr>
<td>25</td>
<td>160</td>
<td>155</td>
</tr>
<tr>
<td>35</td>
<td>180</td>
<td>185</td>
</tr>
<tr>
<td>50</td>
<td>230</td>
<td>225</td>
</tr>
<tr>
<td>70</td>
<td>280</td>
<td>270</td>
</tr>
<tr>
<td>95</td>
<td>335</td>
<td>325</td>
</tr>
<tr>
<td>120</td>
<td>380</td>
<td>375</td>
</tr>
<tr>
<td>150</td>
<td>425</td>
<td>415</td>
</tr>
<tr>
<td>185</td>
<td>460</td>
<td>470</td>
</tr>
<tr>
<td>240</td>
<td>560</td>
<td>540</td>
</tr>
<tr>
<td>300</td>
<td>620</td>
<td>610</td>
</tr>
<tr>
<td>400</td>
<td>705</td>
<td>690</td>
</tr>
<tr>
<td>600</td>
<td>760</td>
<td>775</td>
</tr>
<tr>
<td>630</td>
<td>885</td>
<td>870</td>
</tr>
</tbody>
</table>

Figura 32. Intensitat màxima admissible, conductors de coure enterrats.
(Font: REBT ITC-BT 07)
Figura 33. Intensitat màxima admissible, conductors de coure superficials.
(Font: REBT ITC-BT 19)

4.3 Procés de càlcul

Els càlculs han estat desenvolupats segons la formulació que s’anota i les prescripcions del Reglament Electrotècnic, vigent.

4.3.1 Intensitat

Per CC:

\[I = \frac{P}{V} \]

\[I = \text{Intensitat (A).} \]

\[P = \text{Potència (W).} \]

\[U = \text{Tensió CC(V).} \]
Per CA trifàsic es calcula:

\[I = \frac{P}{\sqrt{3} \cdot U \cdot \cos \phi} \]

\(I \) = Intensitat (A).
\(P \) = Potència (W).
\(U \) = Tensió entre fases (V).
\(\cos \phi \) = Factor 1.

Per CA monofàsic es calcula:

\[I = \frac{P}{U \cdot \cos \phi} \]

\(I \) = Intensitat (A).
\(P \) = Potència (W).
\(U \) = Tensió entre fase i neutre (V).
\(\cos \phi \) = Factor 1.

4.3.2 Secció mínima per caiguda de tensió

Per a trifàsic es calcula:

\[S_{\text{mín}} = \frac{P \cdot L}{X \cdot e \cdot U} \]

Per a monofàsic es calcula:

\[S_{\text{mín}} = \frac{2 \cdot P \cdot L}{X \cdot e \cdot U} \]

\(L \) = Longitud en m.
\(S_{\text{mín}} \) = Secció mínima per caiguda de tensió màxima en mm².
\(P \) = Potència (W).
\(U \) = Tensió (V).
\(e \) = Caiguda de tensió màxima (V).
\(X \) = 56 – Conductivitat del coure en m/(ohm*mm²).
\(X \) = 35 – Conductivitat de l’alumini en m/(ohm*mm²).
4.3.3 Caiguda de tensió

Per a trifàsic es calcula:
\[e = \frac{P \cdot L}{X \cdot S_{real} \cdot U} \]

Per a monofàsic es calcula:
\[e = \frac{2 \cdot P \cdot L}{X \cdot S_{real} \cdot U} \]

\[L = \text{Longitud en m.} \]
\[S_{mín} = \text{Secció mínima per caiguda de tensió màxima en mm}^2. \]
\[P = \text{Potència (W).} \]
\[U = \text{Tensió (V).} \]
\[e = \text{Caiguda de tensió (V).} \]
\[X = 56 - \text{Conductivitat del coure en m/(ohm*mm}^2). \]
\[X = 35 - \text{Conductivitat de l'alumini en m/(ohm*mm}^2). \]

4.3.4 Càlculs de les corrents de curtcircuit

Aplicant els criteris de la Guia Tècnica publicada pel Ministerio de Ciencia y Tecnología i seguint l'exemple d'aplicació d'aquesta guia, es calcula la intensitat de curtcircuit utilitzant la fórmula que figura a continuació:
\[I_{cc} = \frac{0.8 \cdot U}{R} = \frac{0.8 \cdot U \cdot S}{\rho \cdot L} \]

\[I_{cc} = \text{intensitat de curtcircuit màxima en el punt considerat.} \]
\[U = \text{tensió d'alimentació entre fase i neutre (230 V).} \]
\[R = \text{resistència del conductor de fase entre el punt considerat i l'alimentació.} \]

4.4 Taules resum
<p>	Nº circuit	Origen	Destí	Tensió (V)	Potència (W)	Intensitat (A)	Secció mínima (mm²)	Secció real (mm²)	Densitat (A/mm²)	Longitud (m)	CDT (V)	CDT (%)	Aïllament	Naturalesa	Tipus suport	Material suport
1	Sèrie 1.1	CC. Fusible 1.1	398	1.908	4,8	0,90	6	0,80	21	0,60	0,151	0,6/1kV	Cu	Canal	Metàl·lic rigid	
2	Sèrie 1.2	CC. Fusible 1.2	398	1.908	4,8	0,90	6	0,80	21	0,60	0,151	0,6/1kV	Cu	Canal	Metàl·lic rigid	
3	Sèrie 1.3	CC. Fusible 1.3	398	1.908	4,8	1,33	6	0,80	31	0,88	0,222	0,6/1kV	Cu	Canal	Metàl·lic rigid	
4	Sèrie 2.1	CC. Fusible 2.1	398	1.908	4,8	1,20	6	0,80	28	0,80	0,201	0,6/1kV	Cu	Canal	Metàl·lic rigid	
5	Sèrie 2.2	CC. Fusible 2.2	398	1.908	4,8	1,59	6	0,80	37	1,06	0,265	0,6/1kV	Cu	Canal	Metàl·lic rigid	
6	Sèrie 2.3	CC. Fusible 2.3	398	1.908	4,8	2,02	6	0,80	47	1,34	0,337	0,6/1kV	Cu	Canal	Metàl·lic rigid	
7	Sèrie 3.1	CC. Fusible 3.1	398	1.908	4,8	1,20	6	0,80	28	0,80	0,201	0,6/1kV	Cu	Canal	Metàl·lic rigid	
8	Sèrie 3.2	CC. Fusible 3.2	398	1.908	4,8	1,59	6	0,80	37	1,06	0,265	0,6/1kV	Cu	Canal	Metàl·lic rigid	
9	Sèrie 3.3	CC. Fusible 3.3	398	1.908	4,8	2,02	6	0,80	47	1,34	0,337	0,6/1kV	Cu	Canal	Metàl·lic rigid	
10	Sèrie 4.1	CC. Fusible 4.1	398	1.908	4,8	1,42	6	0,80	33	0,94	0,237	0,6/1kV	Cu	Canal	Metàl·lic rigid	
11	Sèrie 4.2	CC. Fusible 4.2	398	1.908	4,8	1,81	6	0,80	42	1,20	0,301	0,6/1kV	Cu	Canal	Metàl·lic rigid	
12	Sèrie 4.3	CC. Fusible 4.3	398	1.908	4,8	2,24	6	0,80	52	1,48	0,373	0,6/1kV	Cu	Canal	Metàl·lic rigid	
13	Sèrie 5.1	CC. Fusible 5.1	398	1.908	4,8	1,42	6	0,80	33	0,94	0,237	0,6/1kV	Cu	Canal	Metàl·lic rigid	
14	Sèrie 5.2	CC. Fusible 5.2	398	1.908	4,8	1,81	6	0,80	42	1,20	0,301	0,6/1kV	Cu	Canal	Metàl·lic rigid	
15	Sèrie 5.3	CC. Fusible 5.3	398	1.908	4,8	2,24	6	0,80	52	1,48	0,373	0,6/1kV	Cu	Canal	Metàl·lic rigid	
16	Sèrie 6.1	CC. Fusible 6.1	398	1.908	4,8	1,63	6	0,80	38	1,08	0,272	0,6/1kV	Cu	Canal	Metàl·lic rigid	
17	Sèrie 6.2	CC. Fusible 6.2	398	1.908	4,8	2,02	6	0,80	47	1,34	0,337	0,6/1kV	Cu	Canal	Metàl·lic rigid	
18	Sèrie 6.3	CC. Fusible 6.3	398	1.908	4,8	2,45	6	0,80	57	1,63	0,409	0,6/1kV	Cu	Canal	Metàl·lic rigid	
Nº circuit	Origen	Destí	Tensió (V)	Potència (W)	Intensitat (A)	Secció mínima (mm²)	Secció real (mm²)	Densitat (A/mm²)	Longitud (m)	CDT (V)	CDT (%)	Aïllament	Naturalesa	Tipus suport	Material suport	
------------	--------	--------	------------	-------------	---------------	-------------------	-------------------	-----------------	-------------	---------	---------	-----------	-----------	-----------	-------------	----------------
19	Sèrie 7.1	CC. Fusible 7.1	398	1.908	4,8	1,63	6	0,80	38	1,08	0,272	0,6/1kV	Cu	Canal	Metà·lic rigid	
20	Sèrie 7.2	CC. Fusible 7.2	398	1.908	4,8	2,02	6	0,80	47	1,34	0,337	0,6/1kV	Cu	Canal	Metà·lic rigid	
21	Sèrie 7.3	CC. Fusible 7.3	398	1.908	4,8	2,45	6	0,80	57	1,63	0,409	0,6/1kV	Cu	Canal	Metà·lic rigid	
22	Sèrie 8.1	CC. Fusible 8.1	398	1.908	4,8	1,85	6	0,80	43	1,23	0,308	0,6/1kV	Cu	Canal	Metà·lic rigid	
23	Sèrie 8.2	CC. Fusible 8.2	398	1.908	4,8	2,24	6	0,80	52	1,48	0,373	0,6/1kV	Cu	Canal	Metà·lic rigid	
24	Sèrie 8.3	CC. Fusible 8.3	398	1.908	4,8	2,67	6	0,80	62	1,77	0,445	0,6/1kV	Cu	Canal	Metà·lic rigid	
25	Sèrie 9.1	CC. Fusible 9.1	398	1.908	4,8	1,85	6	0,80	43	1,23	0,308	0,6/1kV	Cu	Canal	Metà·lic rigid	
26	Sèrie 9.2	CC. Fusible 9.2	398	1.908	4,8	2,24	6	0,80	52	1,48	0,373	0,6/1kV	Cu	Canal	Metà·lic rigid	
27	Sèrie 9.3	CC. Fusible 9.3	398	1.908	4,8	2,24	6	0,80	52	1,48	0,373	0,6/1kV	Cu	Canal	Metà·lic rigid	
28	Sèrie 10.1	CC. Fusible 10.1	398	1.908	4,8	2,06	6	0,80	48	1,37	0,344	0,6/1kV	Cu	Canal	Metà·lic rigid	
29	Sèrie 10.2	CC. Fusible 10.2	398	1.908	4,8	2,45	6	0,80	57	1,63	0,409	0,6/1kV	Cu	Canal	Metà·lic rigid	
30	Sèrie 10.3	CC. Fusible 10.3	398	1.908	4,8	2,88	6	0,80	67	1,91	0,480	0,6/1kV	Cu	Canal	Metà·lic rigid	
31	Sèrie 11.1	CC. Fusible 11.1	398	1.908	4,8	2,06	6	0,80	48	1,37	0,344	0,6/1kV	Cu	Canal	Metà·lic rigid	
32	Sèrie 11.2	CC. Fusible 11.2	398	1.908	4,8	2,45	6	0,80	57	1,63	0,409	0,6/1kV	Cu	Canal	Metà·lic rigid	
33	Sèrie 11.3	CC. Fusible 11.3	398	1.908	4,8	2,88	6	0,80	67	1,91	0,480	0,6/1kV	Cu	Canal	Metà·lic rigid	
34	Sèrie 12.1	CC. Fusible 12.1	398	1.908	4,8	2,28	6	0,80	53	1,51	0,380	0,6/1kV	Cu	Canal	Metà·lic rigid	
35	Sèrie 12.2	CC. Fusible 12.2	398	1.908	4,8	2,67	6	0,80	62	1,77	0,445	0,6/1kV	Cu	Canal	Metà·lic rigid	
36	Sèrie 12.3	CC. Fusible 12.3	398	1.908	4,8	3,10	6	0,80	72	2,05	0,516	0,6/1kV	Cu	Canal	Metà·lic rigid	</p>
<table>
<thead>
<tr>
<th>Nº circuit</th>
<th>Origen</th>
<th>Destí</th>
<th>Tensió (V)</th>
<th>Potència (W)</th>
<th>Intensitat (A)</th>
<th>Secció mínima (mm²)</th>
<th>Secció real (mm²)</th>
<th>Densitat (A/mm²)</th>
<th>Longitud (m)</th>
<th>CDT (V)</th>
<th>CDT (%)</th>
<th>Aïllament</th>
<th>Naturalesa</th>
<th>Tipus suport</th>
<th>Material suport</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>Sèrie 13.1</td>
<td>CC. Fusible 13.1</td>
<td>398</td>
<td>1.908</td>
<td>4,8</td>
<td>2,28</td>
<td>6</td>
<td>0,80</td>
<td>53</td>
<td>1,51</td>
<td>0,380</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>38</td>
<td>Sèrie 13.2</td>
<td>CC. Fusible 13.2</td>
<td>398</td>
<td>1.908</td>
<td>4,8</td>
<td>2,67</td>
<td>6</td>
<td>0,80</td>
<td>62</td>
<td>1,77</td>
<td>0,445</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>39</td>
<td>Sèrie 13.3</td>
<td>CC. Fusible 13.3</td>
<td>398</td>
<td>1.908</td>
<td>4,8</td>
<td>3,10</td>
<td>6</td>
<td>0,80</td>
<td>72</td>
<td>2,05</td>
<td>0,516</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>40</td>
<td>Sèrie 14.1</td>
<td>CC. Fusible 14.1</td>
<td>398</td>
<td>1.908</td>
<td>4,8</td>
<td>2,50</td>
<td>6</td>
<td>0,80</td>
<td>57</td>
<td>1,66</td>
<td>0,416</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>41</td>
<td>Sèrie 14.2</td>
<td>CC. Fusible 14.2</td>
<td>398</td>
<td>1.908</td>
<td>4,8</td>
<td>2,88</td>
<td>6</td>
<td>0,80</td>
<td>67</td>
<td>1,91</td>
<td>0,480</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>42</td>
<td>Sèrie 14.3</td>
<td>CC. Fusible 14.3</td>
<td>398</td>
<td>1.908</td>
<td>4,8</td>
<td>3,31</td>
<td>6</td>
<td>0,80</td>
<td>77</td>
<td>2,20</td>
<td>0,552</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>43</td>
<td>Sèrie 15.1</td>
<td>CC. Fusible 15.1</td>
<td>398</td>
<td>1.908</td>
<td>4,8</td>
<td>2,50</td>
<td>6</td>
<td>0,80</td>
<td>57</td>
<td>1,66</td>
<td>0,416</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>44</td>
<td>Sèrie 15.2</td>
<td>CC. Fusible 15.2</td>
<td>398</td>
<td>1.908</td>
<td>4,8</td>
<td>2,88</td>
<td>6</td>
<td>0,80</td>
<td>67</td>
<td>1,91</td>
<td>0,480</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>45</td>
<td>Sèrie 15.3</td>
<td>CC. Fusible 15.3</td>
<td>398</td>
<td>1.908</td>
<td>4,8</td>
<td>3,31</td>
<td>6</td>
<td>0,80</td>
<td>77</td>
<td>2,20</td>
<td>0,552</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>46</td>
<td>Sèrie 16.1</td>
<td>CC. Fusible 16.1</td>
<td>398</td>
<td>1.908</td>
<td>4,8</td>
<td>2,71</td>
<td>6</td>
<td>0,80</td>
<td>63</td>
<td>1,80</td>
<td>0,452</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>47</td>
<td>Sèrie 16.2</td>
<td>CC. Fusible 16.2</td>
<td>398</td>
<td>1.908</td>
<td>4,8</td>
<td>3,10</td>
<td>6</td>
<td>0,80</td>
<td>72</td>
<td>2,05</td>
<td>0,516</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>48</td>
<td>Sèrie 16.3</td>
<td>CC. Fusible 16.3</td>
<td>398</td>
<td>1.908</td>
<td>4,8</td>
<td>3,53</td>
<td>6</td>
<td>0,80</td>
<td>82</td>
<td>2,34</td>
<td>0,588</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>49</td>
<td>Sèrie 17.1</td>
<td>CC. Fusible 17.1</td>
<td>398</td>
<td>1.908</td>
<td>4,8</td>
<td>2,71</td>
<td>6</td>
<td>0,80</td>
<td>63</td>
<td>1,80</td>
<td>0,452</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>50</td>
<td>Sèrie 17.2</td>
<td>CC. Fusible 17.2</td>
<td>398</td>
<td>1.908</td>
<td>4,8</td>
<td>3,10</td>
<td>6</td>
<td>0,80</td>
<td>72</td>
<td>2,05</td>
<td>0,516</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>51</td>
<td>Sèrie 17.3</td>
<td>CC. Fusible 17.3</td>
<td>398</td>
<td>1.908</td>
<td>4,8</td>
<td>3,53</td>
<td>6</td>
<td>0,80</td>
<td>82</td>
<td>2,34</td>
<td>0,588</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>Nº circuit</td>
<td>Origen</td>
<td>Destí</td>
<td>Tensió (V)</td>
<td>Potència (W)</td>
<td>Intensitat (A)</td>
<td>Secció mínima (mm²)</td>
<td>Secció real (mm²)</td>
<td>Densitat (A/mm²)</td>
<td>Longitud (m)</td>
<td>CDT (V)</td>
<td>CDT (%)</td>
<td>Aïllament</td>
<td>Naturalesa</td>
<td>Tipus suport</td>
<td>Material suport</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>52</td>
<td>CC. Fusible 1</td>
<td>Inversor 1</td>
<td>397,12</td>
<td>5.724</td>
<td>14,4</td>
<td>0,78</td>
<td>6</td>
<td>2,40</td>
<td>6</td>
<td>0,51</td>
<td>0,13</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>53</td>
<td>CC. Fusible 2</td>
<td>Inversor 2</td>
<td>397,12</td>
<td>5.724</td>
<td>14,4</td>
<td>0,84</td>
<td>6</td>
<td>2,40</td>
<td>6,5</td>
<td>0,56</td>
<td>0,14</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>54</td>
<td>CC. Fusible 3</td>
<td>Inversor 3</td>
<td>396,94</td>
<td>5.724</td>
<td>14,4</td>
<td>0,91</td>
<td>6</td>
<td>2,40</td>
<td>7</td>
<td>0,60</td>
<td>0,15</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>55</td>
<td>CC. Fusible 4</td>
<td>Inversor 4</td>
<td>396,66</td>
<td>5.724</td>
<td>14,4</td>
<td>0,97</td>
<td>6</td>
<td>2,41</td>
<td>7,5</td>
<td>0,64</td>
<td>0,16</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>56</td>
<td>CC. Fusible 5</td>
<td>Inversor 5</td>
<td>396,66</td>
<td>5.724</td>
<td>14,4</td>
<td>1,04</td>
<td>6</td>
<td>2,41</td>
<td>8</td>
<td>0,69</td>
<td>0,17</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>57</td>
<td>CC. Fusible 6</td>
<td>Inversor 6</td>
<td>396,66</td>
<td>5.724</td>
<td>14,4</td>
<td>1,10</td>
<td>6</td>
<td>2,41</td>
<td>8,5</td>
<td>0,73</td>
<td>0,18</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>58</td>
<td>CC. Fusible 7</td>
<td>Inversor 7</td>
<td>396,66</td>
<td>5.724</td>
<td>14,4</td>
<td>1,23</td>
<td>6</td>
<td>2,41</td>
<td>9,5</td>
<td>0,82</td>
<td>0,21</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>59</td>
<td>CC. Fusible 8</td>
<td>Inversor 8</td>
<td>396,66</td>
<td>5.724</td>
<td>14,4</td>
<td>1,30</td>
<td>6</td>
<td>2,41</td>
<td>10</td>
<td>0,86</td>
<td>0,22</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>60</td>
<td>CC. Fusible 9</td>
<td>Inversor 9</td>
<td>396,66</td>
<td>5.724</td>
<td>14,4</td>
<td>1,43</td>
<td>6</td>
<td>2,41</td>
<td>11</td>
<td>0,94</td>
<td>0,24</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>61</td>
<td>CC. Fusible 10</td>
<td>Inversor 10</td>
<td>396,52</td>
<td>5.724</td>
<td>14,4</td>
<td>1,37</td>
<td>6</td>
<td>2,41</td>
<td>10,5</td>
<td>0,90</td>
<td>0,23</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>62</td>
<td>CC. Fusible 11</td>
<td>Inversor 11</td>
<td>396,52</td>
<td>5.724</td>
<td>14,4</td>
<td>1,30</td>
<td>6</td>
<td>2,41</td>
<td>10</td>
<td>0,86</td>
<td>0,22</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>63</td>
<td>CC. Fusible 12</td>
<td>Inversor 12</td>
<td>396,52</td>
<td>5.724</td>
<td>14,4</td>
<td>1,24</td>
<td>6</td>
<td>2,41</td>
<td>9,5</td>
<td>0,82</td>
<td>0,21</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>64</td>
<td>CC. Fusible 13</td>
<td>Inversor 13</td>
<td>396,52</td>
<td>5.724</td>
<td>14,4</td>
<td>1,17</td>
<td>6</td>
<td>2,41</td>
<td>9</td>
<td>0,77</td>
<td>0,20</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>65</td>
<td>CC. Fusible 14</td>
<td>Inversor 14</td>
<td>396,52</td>
<td>5.724</td>
<td>14,4</td>
<td>1,11</td>
<td>6</td>
<td>2,41</td>
<td>8,5</td>
<td>0,73</td>
<td>0,18</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>66</td>
<td>CC. Fusible 15</td>
<td>Inversor 15</td>
<td>396,52</td>
<td>5.724</td>
<td>14,4</td>
<td>1,04</td>
<td>6</td>
<td>2,41</td>
<td>8</td>
<td>0,69</td>
<td>0,17</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>67</td>
<td>CC. Fusible 16</td>
<td>Inversor 16</td>
<td>396,37</td>
<td>5.724</td>
<td>14,4</td>
<td>0,98</td>
<td>6</td>
<td>2,41</td>
<td>7,5</td>
<td>0,64</td>
<td>0,16</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>68</td>
<td>CC. Fusible 17</td>
<td>Inversor 17</td>
<td>396,37</td>
<td>5.724</td>
<td>14,4</td>
<td>0,91</td>
<td>6</td>
<td>2,41</td>
<td>7</td>
<td>0,60</td>
<td>0,15</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
<td>Metàl·lic rigid</td>
</tr>
<tr>
<td>Nº circuit</td>
<td>Origen</td>
<td>Destí</td>
<td>Línia</td>
<td>Tensió (V)</td>
<td>Potència (W)</td>
<td>Cos φ</td>
<td>Intensitat (A)</td>
<td>Secció mínima fase (mm²)</td>
<td>Secció real fase (mm²)</td>
<td>Secció neutre (mm²)</td>
<td>Secció terra (mm²)</td>
<td>Densitat (A/mm²)</td>
<td>Longitud (m)</td>
<td>CDT (V)</td>
<td>CDT (%)</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
<td>--------------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>69</td>
<td>Inversor 1 Quadre CA m 230</td>
<td>5.500</td>
<td>1,0</td>
<td>23,9</td>
<td>2,6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3,99</td>
<td>7</td>
<td>1,00</td>
<td>0,43</td>
<td>4380,95</td>
<td>0,6/1kV</td>
</tr>
<tr>
<td>70</td>
<td>Inversor 2 Quadre CA m 230</td>
<td>5.500</td>
<td>1,0</td>
<td>23,9</td>
<td>2,8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3,99</td>
<td>7,5</td>
<td>1,07</td>
<td>0,46</td>
<td>4088,89</td>
<td>0,6/1kV</td>
</tr>
<tr>
<td>71</td>
<td>Inversor 3 Quadre CA m 230</td>
<td>5.500</td>
<td>1,0</td>
<td>23,9</td>
<td>3,0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3,99</td>
<td>8</td>
<td>1,14</td>
<td>0,50</td>
<td>3833,33</td>
<td>0,6/1kV</td>
</tr>
<tr>
<td>72</td>
<td>Inversor 4 Quadre CA m 230</td>
<td>5.500</td>
<td>1,0</td>
<td>23,9</td>
<td>3,2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3,99</td>
<td>8,5</td>
<td>1,21</td>
<td>0,53</td>
<td>3607,84</td>
<td>0,6/1kV</td>
</tr>
<tr>
<td>73</td>
<td>Inversor 5 Quadre CA m 230</td>
<td>5.500</td>
<td>1,0</td>
<td>23,9</td>
<td>3,3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3,99</td>
<td>9</td>
<td>1,28</td>
<td>0,56</td>
<td>3407,41</td>
<td>0,6/1kV</td>
</tr>
<tr>
<td>74</td>
<td>Inversor 6 Quadre CA m 230</td>
<td>5.500</td>
<td>1,0</td>
<td>23,9</td>
<td>3,5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3,99</td>
<td>9,5</td>
<td>1,35</td>
<td>0,59</td>
<td>3228,07</td>
<td>0,6/1kV</td>
</tr>
<tr>
<td>75</td>
<td>Inversor 7 Quadre CA m 230</td>
<td>5.500</td>
<td>1,0</td>
<td>23,9</td>
<td>3,9</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3,99</td>
<td>10,5</td>
<td>1,49</td>
<td>0,65</td>
<td>2920,63</td>
<td>0,6/1kV</td>
</tr>
<tr>
<td>76</td>
<td>Inversor 8 Quadre CA m 230</td>
<td>5.500</td>
<td>1,0</td>
<td>23,9</td>
<td>4,1</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3,99</td>
<td>11</td>
<td>1,57</td>
<td>0,68</td>
<td>2787,88</td>
<td>0,6/1kV</td>
</tr>
<tr>
<td>77</td>
<td>Inversor 9 Quadre CA m 230</td>
<td>5.500</td>
<td>1,0</td>
<td>23,9</td>
<td>4,1</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3,99</td>
<td>11</td>
<td>1,57</td>
<td>0,68</td>
<td>2787,88</td>
<td>0,6/1kV</td>
</tr>
<tr>
<td>78</td>
<td>Inversor 10 Quadre CA m 230</td>
<td>5.500</td>
<td>1,0</td>
<td>23,9</td>
<td>3,9</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3,99</td>
<td>10,5</td>
<td>1,49</td>
<td>0,65</td>
<td>2920,63</td>
<td>0,6/1kV</td>
</tr>
<tr>
<td>79</td>
<td>Inversor 11 Quadre CA m 230</td>
<td>5.500</td>
<td>1,0</td>
<td>23,9</td>
<td>3,7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3,99</td>
<td>10</td>
<td>1,42</td>
<td>0,62</td>
<td>3066,67</td>
<td>0,6/1kV</td>
</tr>
<tr>
<td>80</td>
<td>Inversor 12 Quadre CA m 230</td>
<td>5.500</td>
<td>1,0</td>
<td>23,9</td>
<td>3,5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3,99</td>
<td>9,5</td>
<td>1,35</td>
<td>0,59</td>
<td>3228,07</td>
<td>0,6/1kV</td>
</tr>
<tr>
<td>81</td>
<td>Inversor 13 Quadre CA m 230</td>
<td>5.500</td>
<td>1,0</td>
<td>23,9</td>
<td>3,3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3,99</td>
<td>9</td>
<td>1,28</td>
<td>0,56</td>
<td>3407,41</td>
<td>0,6/1kV</td>
</tr>
<tr>
<td>82</td>
<td>Inversor 14 Quadre CA m 230</td>
<td>5.500</td>
<td>1,0</td>
<td>23,9</td>
<td>3,2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3,99</td>
<td>8</td>
<td>1,21</td>
<td>0,53</td>
<td>3607,84</td>
<td>0,6/1kV</td>
</tr>
<tr>
<td>83</td>
<td>Inversor 15 Quadre CA m 230</td>
<td>5.500</td>
<td>1,0</td>
<td>23,9</td>
<td>3,0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3,99</td>
<td>8</td>
<td>1,14</td>
<td>0,50</td>
<td>3833,33</td>
<td>0,6/1kV</td>
</tr>
<tr>
<td>84</td>
<td>Inversor 16 Quadre CA m 230</td>
<td>5.500</td>
<td>1,0</td>
<td>23,9</td>
<td>2,8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3,99</td>
<td>7,5</td>
<td>1,07</td>
<td>0,46</td>
<td>4088,89</td>
<td>0,6/1kV</td>
</tr>
<tr>
<td>85</td>
<td>Inversor 17 Quadre CA m 230</td>
<td>5.500</td>
<td>1,0</td>
<td>23,9</td>
<td>2,6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3,99</td>
<td>7</td>
<td>1,00</td>
<td>0,43</td>
<td>4380,95</td>
<td>0,6/1kV</td>
</tr>
<tr>
<td>Nº circuit</td>
<td>Origen</td>
<td>Destí</td>
<td>Línia Tensió (V)</td>
<td>Potència (W)</td>
<td>Cos φ</td>
<td>Intensitat (A)</td>
<td>Secció mínima fase (mm²)</td>
<td>Secció real fase (mm²)</td>
<td>Secció neutre (mm²)</td>
<td>Secció terra (mm²)</td>
<td>Densitat (A/mm²)</td>
<td>Longitud (m)</td>
<td>CDT (V)</td>
<td>CDT (%)</td>
<td>Intensitat CC (A)</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>86</td>
<td>Quadre CA</td>
<td>Comptador TMF10</td>
<td>T</td>
<td>400</td>
<td>93.500</td>
<td>1,000</td>
<td>135,1</td>
<td>99,1</td>
<td>185</td>
<td>95</td>
<td>35</td>
<td>2,14</td>
<td>95</td>
<td>2,14</td>
<td>0,54</td>
</tr>
<tr>
<td>87</td>
<td>Comptador TMF10</td>
<td>CGP</td>
<td>T</td>
<td>400</td>
<td>93.500</td>
<td>1,000</td>
<td>135,1</td>
<td>1,0</td>
<td>185</td>
<td>95</td>
<td>35</td>
<td>0,02</td>
<td>1</td>
<td>0,02</td>
<td>0,01</td>
</tr>
<tr>
<td>88</td>
<td>CGP</td>
<td>Xarxa baixa tensió</td>
<td>T</td>
<td>400</td>
<td>93.500</td>
<td>1,000</td>
<td>135,1</td>
<td>15,7</td>
<td>185</td>
<td>95</td>
<td>35</td>
<td>0,34</td>
<td>15</td>
<td>0,34</td>
<td>0,08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nº circuit</th>
<th>Origen</th>
<th>Destí</th>
<th>Línia Tensió (V)</th>
<th>Potència (W)</th>
<th>Cos φ</th>
<th>Intensitat (A)</th>
<th>Secció mínima fase (mm²)</th>
<th>Secció real fase (mm²)</th>
<th>Secció neutre (mm²)</th>
<th>Secció terra (mm²)</th>
<th>Densitat (A/mm²)</th>
<th>Longitud (m)</th>
<th>CDT (V)</th>
<th>CDT (%)</th>
<th>Intensitat CC (A)</th>
<th>Aïllament</th>
<th>Tipus suport</th>
<th>Material suport</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>CGP existent nau</td>
<td>Comptador TMF10</td>
<td>m</td>
<td>400</td>
<td>1.700</td>
<td>1,0</td>
<td>4,3</td>
<td>0,038</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>0,27</td>
<td>1</td>
<td>0,01</td>
<td>0,002</td>
<td>-</td>
<td>0,6/1kV</td>
<td>Cu</td>
</tr>
<tr>
<td>90</td>
<td>Comptador TMF10</td>
<td>Quadre CA</td>
<td>m</td>
<td>400</td>
<td>1.700</td>
<td>1,0</td>
<td>4,3</td>
<td>3,605</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>0,27</td>
<td>95</td>
<td>0,90</td>
<td>0,225</td>
<td>860,82</td>
<td>0,6/1kV</td>
<td>Cu</td>
</tr>
<tr>
<td>91</td>
<td>Quadre CA</td>
<td>Inversor 1</td>
<td>m</td>
<td>230</td>
<td>100</td>
<td>1,0</td>
<td>0,4</td>
<td>0,047</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>0,17</td>
<td>7</td>
<td>0,04</td>
<td>0,019</td>
<td>1825,40</td>
<td>0,6/1kV</td>
<td>Cu</td>
</tr>
<tr>
<td>92</td>
<td>Quadre CA</td>
<td>Inversor 2</td>
<td>m</td>
<td>230</td>
<td>100</td>
<td>1,0</td>
<td>0,4</td>
<td>0,051</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>0,17</td>
<td>7,5</td>
<td>0,05</td>
<td>0,020</td>
<td>1703,70</td>
<td>0,6/1kV</td>
<td>Cu</td>
</tr>
<tr>
<td>93</td>
<td>Quadre CA</td>
<td>Inversor 3</td>
<td>m</td>
<td>230</td>
<td>100</td>
<td>1,0</td>
<td>0,4</td>
<td>0,054</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>0,17</td>
<td>8</td>
<td>0,05</td>
<td>0,022</td>
<td>1597,22</td>
<td>0,6/1kV</td>
<td>Cu</td>
</tr>
<tr>
<td>94</td>
<td>Quadre CA</td>
<td>Inversor 4</td>
<td>m</td>
<td>230</td>
<td>100</td>
<td>1,0</td>
<td>0,4</td>
<td>0,057</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>0,17</td>
<td>8,5</td>
<td>0,05</td>
<td>0,023</td>
<td>1503,27</td>
<td>0,6/1kV</td>
<td>Cu</td>
</tr>
<tr>
<td>95</td>
<td>Quadre CA</td>
<td>Inversor 5</td>
<td>m</td>
<td>230</td>
<td>100</td>
<td>1,0</td>
<td>0,4</td>
<td>0,061</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>0,17</td>
<td>9</td>
<td>0,06</td>
<td>0,024</td>
<td>1419,75</td>
<td>0,6/1kV</td>
<td>Cu</td>
</tr>
<tr>
<td>96</td>
<td>Quadre CA</td>
<td>Inversor 6</td>
<td>m</td>
<td>230</td>
<td>100</td>
<td>1,0</td>
<td>0,4</td>
<td>0,064</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>0,17</td>
<td>9,5</td>
<td>0,06</td>
<td>0,026</td>
<td>1345,03</td>
<td>0,6/1kV</td>
<td>Cu</td>
</tr>
<tr>
<td>97</td>
<td>Quadre CA</td>
<td>Inversor 7</td>
<td>m</td>
<td>230</td>
<td>100</td>
<td>1,0</td>
<td>0,4</td>
<td>0,071</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>0,17</td>
<td>10,5</td>
<td>0,07</td>
<td>0,028</td>
<td>1216,93</td>
<td>0,6/1kV</td>
<td>Cu</td>
</tr>
<tr>
<td>98</td>
<td>Quadre CA</td>
<td>Inversor 8</td>
<td>m</td>
<td>230</td>
<td>100</td>
<td>1,0</td>
<td>0,4</td>
<td>0,074</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>0,17</td>
<td>11</td>
<td>0,07</td>
<td>0,030</td>
<td>1161,62</td>
<td>0,6/1kV</td>
<td>Cu</td>
</tr>
<tr>
<td>99</td>
<td>Quadre CA</td>
<td>Inversor 9</td>
<td>m</td>
<td>230</td>
<td>100</td>
<td>1,0</td>
<td>0,4</td>
<td>0,074</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>0,17</td>
<td>11</td>
<td>0,07</td>
<td>0,030</td>
<td>1161,62</td>
<td>0,6/1kV</td>
<td>Cu</td>
</tr>
<tr>
<td>Nº circuit</td>
<td>Origen</td>
<td>Destí</td>
<td>Linia</td>
<td>Tensió (V)</td>
<td>Potència (W)</td>
<td>Cos Φ</td>
<td>Intensitat (A)</td>
<td>Secció mínima fase (mm²)</td>
<td>Secció real fase (mm²)</td>
<td>Secció neutre (mm²)</td>
<td>Secció terra (mm²)</td>
<td>Densitat (A/mm²)</td>
<td>Longitud (m)</td>
<td>CDT (V)</td>
<td>CDT (%)</td>
<td>Intensitat CC (A)</td>
<td>Aïllament</td>
<td>Naturalesa</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>-------</td>
<td>---------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>100</td>
<td>Quadre CA</td>
<td>Inversor 10</td>
<td>m</td>
<td>230</td>
<td>100</td>
<td>1,0</td>
<td>0,4</td>
<td>0,071</td>
<td>2,5</td>
<td>2,5</td>
<td>0,17</td>
<td>10,5</td>
<td>0,07</td>
<td>0,028</td>
<td>1216,93</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
</tr>
<tr>
<td>101</td>
<td>Quadre CA</td>
<td>Inversor 11</td>
<td>m</td>
<td>230</td>
<td>100</td>
<td>1,0</td>
<td>0,4</td>
<td>0,068</td>
<td>2,5</td>
<td>2,5</td>
<td>0,17</td>
<td>10</td>
<td>0,06</td>
<td>0,027</td>
<td>1277,78</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
</tr>
<tr>
<td>102</td>
<td>Quadre CA</td>
<td>Inversor 12</td>
<td>m</td>
<td>230</td>
<td>100</td>
<td>1,0</td>
<td>0,4</td>
<td>0,064</td>
<td>2,5</td>
<td>2,5</td>
<td>0,17</td>
<td>9,5</td>
<td>0,06</td>
<td>0,026</td>
<td>1345,03</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
</tr>
<tr>
<td>103</td>
<td>Quadre CA</td>
<td>Inversor 13</td>
<td>m</td>
<td>230</td>
<td>100</td>
<td>1,0</td>
<td>0,4</td>
<td>0,061</td>
<td>2,5</td>
<td>2,5</td>
<td>0,17</td>
<td>9</td>
<td>0,06</td>
<td>0,024</td>
<td>1419,75</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
</tr>
<tr>
<td>104</td>
<td>Quadre CA</td>
<td>Inversor 14</td>
<td>m</td>
<td>230</td>
<td>100</td>
<td>1,0</td>
<td>0,4</td>
<td>0,057</td>
<td>2,5</td>
<td>2,5</td>
<td>0,17</td>
<td>8,5</td>
<td>0,05</td>
<td>0,023</td>
<td>1503,27</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
</tr>
<tr>
<td>105</td>
<td>Quadre CA</td>
<td>Inversor 15</td>
<td>m</td>
<td>230</td>
<td>100</td>
<td>1,0</td>
<td>0,4</td>
<td>0,054</td>
<td>2,5</td>
<td>2,5</td>
<td>0,17</td>
<td>8</td>
<td>0,05</td>
<td>0,022</td>
<td>1597,22</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
</tr>
<tr>
<td>106</td>
<td>Quadre CA</td>
<td>Inversor 16</td>
<td>m</td>
<td>230</td>
<td>100</td>
<td>1,0</td>
<td>0,4</td>
<td>0,051</td>
<td>2,5</td>
<td>2,5</td>
<td>0,17</td>
<td>7,5</td>
<td>0,05</td>
<td>0,020</td>
<td>1703,70</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
</tr>
<tr>
<td>107</td>
<td>Quadre CA</td>
<td>Inversor 17</td>
<td>m</td>
<td>230</td>
<td>100</td>
<td>1,0</td>
<td>0,4</td>
<td>0,047</td>
<td>2,5</td>
<td>2,5</td>
<td>0,17</td>
<td>7</td>
<td>0,04</td>
<td>0,019</td>
<td>1825,40</td>
<td>0,6/1kV</td>
<td>Cu</td>
<td>Canal</td>
</tr>
</tbody>
</table>
5 Càlcul de la resistència a terra

La resistència de terra, en ohms, d’un conductor soterrat al terreny, ve definit per:

\[R = \frac{2 \cdot \rho}{L} \]

\(R = \) resistència a terra del conductor.
\(\rho = \) resistivitat del terreny \((\text{ohms.m})\).
\(L = \) longitud del conductor \((\text{m})\).

Tenint en compte que el terreny està compost per sorra argilosa, es considera una resistivitat de 200 ohms, i que el conductor tindrà una longitud de 15 m:

\[R_{\text{conductor}} = \frac{2 \cdot 200}{15} = 26,7 \Omega > 15 \Omega \]

La resistència a terra haurà de ser sempre inferior a 15 \(\Omega \) per assegurar la inexistència de tensions de contacte superiors als 24 V.

Per tal de disminuir la resistència es col·locaran electrodes d’acer amb recobriment de coure amb un diàmetre de 14,6 mm i 2,5 m de longitud.

\[R_{\text{electrodes}} = \frac{\rho}{L \cdot n} = \frac{200}{2 \cdot n} \]

\(R = \) resistència a terra del conjunt d’electrodes.
\(\rho = \) resistivitat del terreny \((\text{ohms.m})\).
\(L = \) longitud del electrode \((\text{m})\).
\(n = \) nombre de d’electrodes.

\[\frac{1}{R_{\text{terra}}} = \frac{1}{R_{\text{conductor}}} + \frac{1}{R_{\text{electrodes}}} = \frac{1}{26,7} + \frac{n}{100} > \frac{1}{15} \]

\(n > 2,92 \text{ electrodes} \)

Es col·locaran 4 electrodes, per tant, la resistència serà inferior a 15 \(\Omega \).

\[R_{\text{terra}} = 12,9 \Omega < 15 \Omega \]

La tensió de contacte serà inferior a 24V.

\[V = I \cdot R = 0,30 \cdot 12,9 = 3,87V < 24V \]

El conductor de posada a terra serà un conductor nuu de coure i de secció 35 mm\(^2\).
La protecció contra contactes indirectes s’efectuarà combinant la col·locació de relè diferencials contra corrents de defecte amb la instal·lació del sistema general de posada a terra (mitjançant la connexió de totes les parts metàl·liques dels receptors elèctrics al circuit de posada a terra). En el cas d’instal·lar diferencials en sèrie, aquests seran de característiques selectives.
6 Procediment administratiu

Per tal de tenir una visió global dels tràmits que s’hauran de dur a terme, s’adjunta a continuació un diagrama resum per a instal·lacions inferiors a 100 kW.

Figura 34. Diagrama resum de tràmits a Catalunya, instal·lació inferior a 100 kW.
(Font: Guia de tramitació d’instal·lacions solars fotovoltaiques - EIC)
6.1 Tràmits amb la companyia distribuïdora

Tant la sol·licitud del punt de connexió com el contracte de compra/venda d’energia i el conveni d’interconnexió, s’han de tramitar amb la companyia elèctrica propietària de la xarxa.

6.1.1 Sol·licitud del punt de connexió

El titular de la instal·lació ha de sol·licitar a l’empresa distribuïdora el punt i les condicions tècniques de connexió necessàries per a la realització del projecte.

En l’àmbit de Catalunya, l’empresa distribuïdora majoritària és Fecsa-Endesa, i en el seu procediment per iniciar l’estudi del punt de connexió es demanen les dades següents:

a) Nom, adreça, NIF i telèfon.

b) Situació de la instal·lació.

c) Coordenades UTM.

d) Esquema unifilar de la instal·lació.

e) Potència nominal de la instal·lació.

f) Si ja hi ha un consum: còpia de la factura mensual del consum elèctric. Si no hi ha consum: plànols de situació de la instal·lació, general i detall.

g) Dades de contacte de l’enginyeria (nom, adreça, telèfon i adreça electrònica).

En cas que resulti necessària la presentació d’alguna documentació addicional, l’empresa distribuïdora l’ha de sol·licitar en el termini de deu dies des de la recepció de la sol·licitud, justificant-ho.

En el supòsit que la potència nominal màxima disponible de connexió sigui inferior a la potència de la instal·lació fotovoltaica, l’empresa distribuïdora ha de determinar els elements concrets de la xarxa que precisa modificar per igualar ambdues potències. Les despeses d’aquestes modificacions van a càrrec del titular de la instal·lació, tret que no siguin exclusivament per al seu servei, supòsit en el qual s’han de repartir de mutu acord.
L’empresa distribuïdora ha d’acreditar que la suma de les potències de les instal·lacions fotovoltaiques connectades a una xarxa de baixa tensió supera el 50% de la capacitat tèrmica de disseny de la línia en el punt de connexió o bé, si és necessari efectuar la connexió a un centre de transformació, que se supera el 50% de la capacitat de transformació instal·lada.

Aquests supòsits han de disposar de l’autorització de l’òrgan competent de l’Administració, qui en el cas de discrepància entre ambdues parts ha de resoldre-ho en un termini màxim de tres mesos.

L’empresa distribuïdora ha de proporcionar la informació del punt de connexió en el termini màxim d’un mes, i en la seva proposta ha d’incloure, com a mínim:

a) El punt de connexió i mesura proposat.

b) La tensió nominal màxima i mínima de la xarxa en el punt de connexió.

c) La potència de curtcircuit esperada en explotació normal en el punt de connexió.

d) La potència nominal màxima disponible de connexió en el punt, en relació amb la capacitat de transport de la línia o amb la capacitat de transformació del centre transformador.

e) En el cas que el punt de connexió i mesura per a la cessió d’energia per part del titular de la instal·lació sigui diferent del de recepció, informe justificatiu.

Si no compleix es pot sol·licitar la intervenció de l’administració competent, la qual procedeix a requerir les dades esmentades. Si en quinze dies no respon, es pot considerar infracció administrativa.

Una vegada determinat el punt de connexió i realitzats els treballs a la xarxa de distribució, l’empresa envia les característiques del punt. També sol·licita emplenar un imprès-formulari per efectuar el conveni de compra d’energia.

6.1.2 Contracte amb l’empresa distribuïdora

El titular de la instal·lació i l’empresa distribuïdora han de subscriure un contracte pel qual es regeixen les relacions tècniques i econòmiques entre ambdós.
El model de contracte tipus és l’establert per la Resolució de 31-5-2001 de la Direcció General de Política Energètica i Mines.

Una vegada acordat el punt i les condicions de connexió, l’empresa distribuïdora té l’obligació de subscriure’l en el termini màxim d’un mes des que el sol·licitant li hagi requerit. Les discrepàncies sobre el contracte es resolen per l’administració competent, en el termini màxim d’un mes.

Per a la subscripció del corresponent contracte no és necessari que la instal·lació fotovoltaica disposi de la condició d’instal·lació acollida al règim especial, però només és vàlid quan la instal·lació quedi acollida al règim especial.

Les discrepàncies que puguin sorgir entre el titular i l’empresa distribuïdora, sobre el punt de connexió, les condicions de connexió i el contracte a subscriure, les han de resoldre els òrgans competents en el termini màxim de tres mesos.

6.1.3 Connexió de la instal·lació

Quan el titular disposa de l’autorització de posada en marxa, s’envia a l’empresa distribuïdora perquè tramiti la primera verificació de la instal·lació, que s’ha de dur a terme abans de deu dies. Si la verificació és satisfactòria, es pot connectar la instal·lació fotovoltaica a la xarxa de baixa tensió.

6.2 Tràmits amb indústria

La Llei vigent 54/1997, de 27 de novembre, diferencia un conjunt d’instal·lacions de producció d’energia elèctrica, que constitueixen el denominat “règim especial”. Aquestes disposen d’una certa singularitat jurídica i econòmica respecte a la resta d’instal·lacions de producció.

S’encarrega el Reial decret 661/2007 de regular l’activitat de producció elèctrica en règim especial, en què les instal·lacions fotovoltaiques queden dins la categoria b, grup 1 i subgrup 1.

No obstant això, aquest Reial decret permet a les comunitats autònomes establir un procediment simplificat per a les instal·lacions de menys de 100 kW.
A Catalunya, els tràmits que fan referència al règim especial (acolliment de la instal·lació en el règim especial i inscripció en el Registre d’Instal·lacions de Producció en Règim Especial, RIPRE), es troben regulats pel Decret 352/2001, i s’han de tramitar davant l’Oficina de Gestió Unificada (OGE).

El Decret 352/2001 desenvolupa el procediment simplificat per Catalunya per a instal·lacions de potència nominal fins a 100 kW, mentre que les instal·lacions de potència superior, encara que el tràmit també es porta a terme a través de l’OGE, segueixen l’estipulat pel Reial decret 661/2007.

Per últim, hi ha un altre tràmit que també s’ha de presentar davant l’OGE i que la legislació específica d’instal·lacions fotovoltaiques té en compte per poder-lo realitzar sense haver de visitar una altra finestra. Es tracta del Registre d’Establiments Industrials, en el qual s’han de registrar, entre d’altres, les activitats de generació, distribució i subministrament d’energia i productes energètics.

La documentació necessària per a realitzar el tràmit és la següent:

a) Sol·licitud d’instal·lació fotovoltaica.

b) Fotocòpia del DNI o NIF de la persona física que signa la sol·licitud i fotocòpia del NIF del titular.

c) Fotocòpia de l’escriptura notarial de constitució de la societat.

d) Original o còpia del contracte subscrit amb l’empresa elèctrica titular de la xarxa de distribució a la qual es connecta la instal·lació fotovoltaica.

e) Acord o contracte subscrit amb el propietari dels terrenys o llocs afectats quan aquest no coincideix amb el mateix titular de la instal·lació.

f) Fitxa d’identificació i característiques de la instal·lació.

g) Document de posada en servei.

h) Certificat d’instal·lació elèctrica de baixa tensió signat per un instal·lador especialista autoritzat i amb el segell de l’empresa instal·ladora especialista inscrita, que acrediti que s’ha realitzat la instal·lació d’acord amb el vigent Reglament electrotècnic per a baixa tensió, les instruccions MI BT i les normes de l’empresa subministradora oficialment aprovades.
i) Declaració CE de conformitat emesa per qui fabrica les plaques fotovoltaiques i dels onduladors, segons el RD 154/1995 i el RD 1580/2006. Es pot admetre la declaració de conformitat emesa pel distribuïdor de les plaques si es dóna el cas que el fabricant és d’un país no comunitari.

j) Certificat de qui fabrica, en el cas que les proteccions siguin interiors als equips onduladors, en el qual s’indiquin els valors de regulació de les proteccions i que aquests són inaccessibles per a l’usuari de la instal·lació, segons el RD 1663/2000, article 16, apartats d) i e).

k) Certificació de qui fabrica que acrediti la separació galvànica segons l’article 12 del RD 1663/2000.

l) Original o fotocòpia compulsada del contracte de manteniment subscrit amb una empresa instal·ladora, si la instal·lació està situada en locals de pública concurrència o és de més de 25 kW (Decret 363/2004).

m) Plànol o croquis de l’emplaçament de la instal·lació.

n) Projecte tècnic de la instal·lació signat pel facultatiu competent i visat pel col·legi professional corresponent.

o) Certificat de direcció i acabament d’obra.

p) Informe del gestor de la xarxa o de l’operador del sistema que acreditari que s’han completat els procediments d’accés i connexió, així com els d’informació, tècnics i operatius.

q) Imprès de declaració de dades de l’entitat peticionària.

r) Inscripció en el Registre d’Establiments Industrials de Catalunya (REIC).

s) Certificació emesa per l’encarregat de la lectura que acrediti el compliment del que disposa el Reglament de punts de mesura segons l’article 12 del RD 661/2007.

6.2.1 Verificació i posada en marxa

La instal·lació, ampliació, modificació, manteniment i reparació de les instal·lacions fotovoltaiques han de ser realitzades per empreses instal·ladores inscrites al registre d’empreses instal·ladores fotovoltaiques.
Una vegada superades les proves de la instal·lació realitzades per l’instal·lador autoritzat, aquest ha d’emetre un butlletí de característiques principals de la instal·lació i de superació de les proves.

Si per a la realització de les proves és necessari connectar la instal·lació fotovoltaica a la xarxa, aquesta connexió ha de tenir caràcter provisional i s’ha de comunicar a l’empresa distribuïdora.

Una vegada realitzada la instal·lació, subscrit el contracte i tramitat el butlletí de superació de proves, el titular pot sol·licitar a l’empresa distribuïdora la connexió a la xarxa, per a la qual cosa és necessària la presentació del butlletí.

L’empresa elèctrica distribuïdora pot realitzar una primera verificació del compliment de la normativa tècnica en les instal·lacions fotovoltaiques connectades a la xarxa. Transcorregut un mes des de la sol·licitud de connexió a la xarxa sense que es posin objeccions per l’empresa distribuïdora, el titular de la instal·lació pot efectuar la connexió a la xarxa de distribució.

Si com a conseqüència de la verificació, es detecta alguna incidència en els equips d’interconnexió o en la instal·lació, se n’informa al titular i se li concedeix un període suficient per solucionar-ho.

En cas de disconformitat, el titular de la instal·lació o l’empresa distribuïdora poden sol·licitar a l’Administració competent que ho resolgui en el termini màxim d’un mes (quan la connexió a la xarxa no s’hagi realitzat).

6.2.2 Sol·licitud al Registre d’Establiments Industrials de Catalunya

En la Llei 21/1992, de 16 de juliol, d’Indústria, es va crear el Registre d’Establiments Industrials, que comprèn, entre d’altres, les activitats de generació, distribució i subministrament d’energia i productes energètics, no previst en la seva legislació específica. De la mateixa manera, el Decret 324/1996, d’1 d’octubre, crea i regula el Registre d’Establiments Industrials de Catalunya (REIC), en el qual també s’han d’inscriure, entre d’altres, les activitats de generació, distribució i subministrament d’energia i productes energètics.
En el cas que la instal·lació s’effectuï en un establiment industrial, o que l’activitat de la persona titular sigui específicament explotar industrialment aquest tipus d’instal·lacions, es presenta, simultàniament a la carpeta d’instal·lació fotovoltaica a l’OGU que correspongui, la carpeta de sol·licitud d’inscripció al Registre d’Establiments Industrials de Catalunya (REIC). Es considera que l’activitat principal de la persona titular no és la producció d’energia elèctrica quan la potència de la instal·lació és inferior a 100 kVA.

6.3 Tràmits amb l’Ajuntament

6.3.1 Llicència d’obres
S’haurà de sol·licitar a l’Ajuntament la corresponent llicència d’obres per poder iniciar la construcció de la instal·lació.

6.3.2 Llicència d’activitats
Com a activitat amb possible incidència medioambiental, les instal·lacions fotovoltaiques són susceptibles de necessitar la seva legalització envers l’administració local en referència a la Llei d’Intervenció Integral de l’Administració Ambiental (Llei 20/2009 de 4 de Desembre).

6.4 Impresos
- Sol·licitud de règim especial de producció elèctrica.
- Sol·licitud d’instal·lació fotovoltaica.
- Fitxa d’identificació i característiques de la instal·lació fotovoltaica.
- Dades de l’entitat peticionària.
- Certificat d’instal·lació elèctrica de baixa tensió.
- Certificat d’instal·lador d’electricitat autoritzat. Instal·lació fotovoltaica.
- Certificat de direcció i acabament d’obra. Instal·lació fotovoltaica.
- Model de notificació d’atorgament d’accés a la xarxa de distribució.
- Índex d’aspectes que cal incloure en el projecte d’una instal·lació de producció d’energia elèctrica en règim especial.
Sol·licitud de règim especial de producció elèctrica

1. **Dades del/de la titular i domicili social**

<table>
<thead>
<tr>
<th>Titular de la instal·lació</th>
<th>NIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representant autoritzat</td>
<td></td>
</tr>
<tr>
<td>DNI</td>
<td>Cárrer</td>
</tr>
<tr>
<td>Adreça</td>
<td></td>
</tr>
<tr>
<td>Població</td>
<td></td>
</tr>
<tr>
<td>Codi postal</td>
<td></td>
</tr>
<tr>
<td>Telèfon</td>
<td>Fax</td>
</tr>
<tr>
<td>Correu electrònic</td>
<td></td>
</tr>
</tbody>
</table>

2. **Dades de l’emplaçament de la instal·lació**

<table>
<thead>
<tr>
<th>Adreça</th>
<th>Població</th>
<th>Codi postal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telèfon</td>
<td>Fax</td>
<td></td>
</tr>
</tbody>
</table>

3. **Adreça a efectes de notificacions**

<table>
<thead>
<tr>
<th>Nom de la persona o entitat destinatària de la correspondència</th>
<th>NIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adreça</td>
<td></td>
</tr>
<tr>
<td>Població</td>
<td></td>
</tr>
<tr>
<td>Codi postal</td>
<td></td>
</tr>
<tr>
<td>Telèfon</td>
<td>Fax</td>
</tr>
<tr>
<td>Correu electrònic</td>
<td></td>
</tr>
</tbody>
</table>

4. **Característiques principals de la instal·lació**

<table>
<thead>
<tr>
<th>Potència (KW)</th>
<th>Categoria, grup i subgrup de classificació (segons l’art. 2 del Reial decret 661/2007)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipus i subtipus (només per a instal·lacions fotovoltaïques, segons l’art.3 del Reial Decret 1578/2008)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nom oficial que identifica la instal·lació</th>
<th>Ubicació de la instal·lació:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ Sobre edificis</td>
</tr>
<tr>
<td></td>
<td>□ Sobre el terreny</td>
</tr>
</tbody>
</table>

5. **Per les modificacions, pressupost de la modificació de la instal·lació:**

6. **Sol·licitud que es formula**

- □ Inclús/a al règim especial de producció elèctrica (REPE), al grup de classificació indicat.
- □ Autorització administrativa de la instal·lació.
- □ Autorització administrativa de transmissió de titularitat de la instal·lació (canvi de nom o de persona titular).
- □ Posada en marxa provisional de la instal·lació per a proves.
- □ Inscripció provisional al Registre d'instal·lacions de producció en règim especial.
- □ Posada en marxa definitiva de la instal·lació.
- □ Inscripció definitiva al Registre d'instal·lacions de producció en règim especial (RIPRE).
- □ Notificació del règim econòmic a què es desitja acollir la instal·lació.
- □ Baixa del règim especial.
- □ Modificacions

Signatura

Lloc i data

DIRECCIÓ GENERAL D’ENERGIA I MINES

1. Indiqueu-la si és diferent de l’adreça del domicili social.
Soli·citut d'instal·lació fotovoltaica (segons decret 352/2001)

Autorització Administrativa
Aторgament de la condició d'instal·lació acollida al règim especial.
Autorització de posada en servei
Inscripció definitiva en el registre d'instal·lacions de producció en règim especial

1. Dades del/de la titular i domicili social

<table>
<thead>
<tr>
<th>Titular de la instal·lació</th>
<th>NIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adreça</td>
<td></td>
</tr>
<tr>
<td>Provincia</td>
<td></td>
</tr>
<tr>
<td>Telèfon</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Població</th>
<th>Codi postal</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fax</th>
<th>Correu electrònic</th>
</tr>
</thead>
</table>

2. Dades de l'emplaçament de la instal·lació

<table>
<thead>
<tr>
<th>Adreça</th>
<th>Població</th>
<th>Codi postal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Provincia</th>
<th>Comarca</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Telèfon</th>
<th>Fax</th>
<th>Correu electrònic</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Núm. inscripció REIC</th>
</tr>
</thead>
</table>

3. Adreça a efectes de notificacions (Indiqueu-la si és diferent de l'adreça del domicili social)

<table>
<thead>
<tr>
<th>Nom de la persona o entitat destinataria de la correspondència</th>
<th>NIF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adreça</th>
<th>Població</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Provincia</th>
<th>Codi postal</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Telèfon</th>
<th>Fax</th>
<th>Correu electrònic</th>
</tr>
</thead>
</table>

4. Característiques principals de la instal·lació

<table>
<thead>
<tr>
<th>Potència màxima nominal (sobrecàlculs)</th>
<th>Superficie total de les plaques: m²</th>
<th>Estimació energia anual produïda: kWh</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Grup de classificació</th>
<th>Connexió a la xarxa</th>
</tr>
</thead>
<tbody>
<tr>
<td>(art.2 Reial decreci 661/2007) b.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monofoàlica. Tensió: V</td>
</tr>
<tr>
<td></td>
<td>Trifòrica. Tensió: V</td>
</tr>
</tbody>
</table>

Empresa elèctrica a interconnectar:

Nom oficial que identificarà la instal·lació:

5. Empresa instal·ladora especialista

<table>
<thead>
<tr>
<th>Nom</th>
<th>Número de registre</th>
<th>Telèfon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adreça</th>
<th>Població</th>
<th>Codi postal</th>
</tr>
</thead>
</table>

| | |
| | |
7. Sortidicitat que es formula

☐ Nova instal·lació
☐ Ampliació
☐ Canvi de titular
☐ Modificació o reforma

8. Documentació que es presenta

Per a tot tipus de tràmit

☐ Copia del NIF del titular
☐ Copia autenticada de l’escriptura notarial de constitució i modificació, si és el cas de tractar-se d’entitats jurídiques
☐ Dades de l’entitat pecuniària (Regesp 2)
☐ Copia del contracte subscript amb l’empresa elèctrica titular de la xarxa de distribució a la qual es connecta la instal·lació fotovoltaica, previ compliment de les condicions establertes al RD 1663/2000
☐ Acord o contracte subscript amb el propietari dels terrenys o llocs afectats quan aquest no coincideixi amb el mateix titular de la instal·lació
☐ Fixura d’identificació i característiques de la instal·lació (Annex 2)
☐ Document de posada en servei (Annex 3)
☐ Certificat d’instal·lació elèctrica de baixa tensió segons D363/2004
☐ Declaració CE de conformitat emesa pel fabricant de les plaques fotovoltaiques i dels onduladors, segons RD 1580/2006 i 154/1995
☐ Certificat del fabricant, en el cas de que les proteccions sigui interiors als equips onduladors, indicant els valors de regulació de les proteccions i que aquestes són inaccessibles per a l’usuari de la instal·lació segons RD 1663/2000, article 11 d.e.
☐ Certificació del fabricant que acredití la separació galvànica segons RD 1663/2000, article 12.
☐ Contracte de manteniment amb una empresa instal·ladora segons D 363/2004, article 9., si la instal·lació està situada en locals de pública concurrència o és de més de 25 kW
☐ Certificat emès per l’encarregat de la lectura (empresa distribuidora) de compliment del Reglament de punts de mesura (art. 12 RD 661/2007)
☐ Informe del gestor de la xarxa de distribució conforme s’han completat els procediments d’accés i connexió.
☐ Fuller de declaració de dades del Registre d’Establimentes Industrials de Catalunya (REIC) si és tracta d’un establiment industrial

Per a instal·lacions de potència nominal igual o inferior a 5 kW amb memòria tècnica de disseny

☐ Plànol d’emplaçament
☐ Plànols generals en planta i alçat suficientment amplés, amb l’especificació dels equips, aparells i connexions principals.
☐ Memòria tècnica i càlculs justificatius
☐ Esquema unificar
☐ Certificació emesa per l’instal·lador/la elèctric/a autoritzat que l’ha executat (Annex 4 específic per fotovoltaiques)

Per a instal·lacions de potència nominal entre 5 i 100 KW

☐ Projecte executiu de la instal·lació signat per facultat i competència professional i visat pel col·lei corresponent
☐ Certificat de direcció i acabament d’obra (Annex 5)

La persona que subscriu MANIFESTA que són correctes les dades de la instal·lació descrita, la qual desitja posar en funcionament previament els tràmits corresponents.

Titular o representant autoritzat del/de la titular DNI Càrrec

Signature

Lloc i data

DIRECCIÓ GENERAL D’ENERGIA I MINES
Fitxa d'identificació i característiques de la instal·lació fotovoltaica.
Característiques dels equips de control, connexió, seguretat i mesura

1. Connexió a la xarxa
Potència nominal de la instal·lació (onduladors):
\[\text{KW} \]

<table>
<thead>
<tr>
<th>sí</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monofàsica</td>
<td>Trifàsica</td>
</tr>
</tbody>
</table>

2. Generador fotovoltaic

<table>
<thead>
<tr>
<th>Ondulador 1</th>
<th>Ondulador 2</th>
<th>Ondulador 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricant</td>
<td>Model</td>
<td>Nombre total de plaques</td>
</tr>
<tr>
<td>Potència màxima (Pmàx) Wp</td>
<td>Corrent de màxima potència (Imàx) A</td>
<td>Tensió en circuit obert (Voc) V</td>
</tr>
<tr>
<td>Intensitat de circuit (Isc) A</td>
<td>Tensió de màxima potència (VMàx) V</td>
<td></td>
</tr>
</tbody>
</table>

3. Ondulador AC (a complimentar per cada ondulador instal·lat). En cas necessari afegir fulls addicionals

<table>
<thead>
<tr>
<th>Ondulador 1</th>
<th>Ondulador 2</th>
<th>Ondulador 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricant</td>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>Número de sèrie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensió nominal AC, Vn V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Potència AC, Pn kW</td>
<td>kW</td>
<td>kW</td>
</tr>
<tr>
<td>Vcc màxima V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Vcc mínima V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Connexió RN, TN, SN (monofàsic), trifàsic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protecció contra Vac baixa sí</td>
<td>no</td>
<td>sí</td>
</tr>
<tr>
<td>Tensió d'actuació V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Protecció contra Vac alta sí</td>
<td>no</td>
<td>sí</td>
</tr>
<tr>
<td>Tensió d'actuació V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Protecció contra freqüència baixa sí</td>
<td>no</td>
<td>sí</td>
</tr>
<tr>
<td>Freqüència d'actuació Hz</td>
<td>Hz</td>
<td>Hz</td>
</tr>
<tr>
<td>Protecció contra freqüència alta sí</td>
<td>no</td>
<td>sí</td>
</tr>
<tr>
<td>Freqüència d'actuació Hz</td>
<td>Hz</td>
<td>Hz</td>
</tr>
<tr>
<td>Protecció contra funcionament en illa sí</td>
<td>no</td>
<td>sí</td>
</tr>
<tr>
<td>Potència pic kWp</td>
<td>kWp</td>
<td>kWp</td>
</tr>
</tbody>
</table>

4. Proteccions externes

<table>
<thead>
<tr>
<th>Interruptor general</th>
<th>Fabricant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensió nominal Vn V</td>
<td></td>
</tr>
<tr>
<td>Corrent nominal In A</td>
<td></td>
</tr>
<tr>
<td>Poder de tall kA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interruptor diferencial</th>
<th>Fabricant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensitat nominal A</td>
<td></td>
</tr>
<tr>
<td>Sensibilitat mA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protecció contra Vac baixa *</th>
<th>Fabricant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensió d’actuació V</td>
<td></td>
</tr>
</tbody>
</table>
Protecció contra Vac alta*

<table>
<thead>
<tr>
<th></th>
<th>Fabricant</th>
<th>Model</th>
<th>Tensió d'actuació</th>
</tr>
</thead>
<tbody>
<tr>
<td>sí</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Protecció contra freqüència baixa*

<table>
<thead>
<tr>
<th></th>
<th>Fabricant</th>
<th>Model</th>
<th>Freqüència d’actuació</th>
</tr>
</thead>
<tbody>
<tr>
<td>sí</td>
<td></td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Protecció contra freqüència alta*

<table>
<thead>
<tr>
<th></th>
<th>Fabricant</th>
<th>Model</th>
<th>Freqüència d’actuació</th>
</tr>
</thead>
<tbody>
<tr>
<td>sí</td>
<td></td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* no complimentar en el cas que l’ondulador incorpori aquestes proteccions internament

5. Aparells de mesura i control

<table>
<thead>
<tr>
<th></th>
<th>Comptador de sortida d’energia o bidireccional</th>
<th>Comptador d’entrada d’energia (en el cas que no hi hagi comptador bidireccional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número de fabricació</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relació d’intensitat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensió</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant de lectura</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Accés a la informació. Dades dels interlocutors per a la lectura in situ de comptadors.

<table>
<thead>
<tr>
<th></th>
<th>Telèfon</th>
<th>Fax</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom del titular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per l’ED</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Telèfon</th>
<th>Fax</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom del titular</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La persona que subscriu MANIFESTA que són correctes les dades de la instal·lació descrita

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom i cognoms de l’instal·lador</td>
<td>Nom de l’empresa instal·ladora</td>
</tr>
</tbody>
</table>

Signatura i segells de l’instal·lador i empresa instal·ladora

Direcció General d’Energia i Mines
Dades de l'entitat peticionària

1. Dades del/de la sol·licitant

<table>
<thead>
<tr>
<th>NIF</th>
<th>Titular de la instal·lació</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adreça</th>
<th>Població</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Codi postal</th>
<th>Telèfon</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correu electrònic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

2. Relació de partícips amb un percentatge de participació superior al 5%

<table>
<thead>
<tr>
<th>Nom o entitat</th>
<th>NIF o DNI</th>
<th>Percentatge de participació</th>
<th>Valor de la participació (en euros)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

Capital social total 100%

3. Relació d'empreses filials en què el/la sol·licitant té participació majoritària

<table>
<thead>
<tr>
<th>Nom de l'empresa</th>
<th>NIF</th>
<th>Domicili social</th>
<th>Telèfon</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Relació de les instal·lacions acollides al règim especial en què el/la sol·licitant és titular o explotador/a

<table>
<thead>
<tr>
<th>Identificació de la instal·lació</th>
<th>Núm. d'inscripció al RIPRE</th>
<th>Emplaçament</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signatura

Nom i cognoms
Càrrec
Lloc i data

1. No s’ha d’incloure la instal·lació que se sol·licita.
CERTIFICAT D'INSTAL·LACIÓ ELÈCTRICA DE BAIXA TENSIÓ

Expedient: Núm:

Nom de l'empresa instal·ladora de baixa tensió
Número d'inscripció

Nom i cognoms de l'instal·lador autoritzat:
Telèfon
DNI
NIF

DADES DE LA INSTAL·LACIÓ
- Nova
- Ampliació
- Modificació o reforma

SITUACIÓ:
Carrer o indret:
Localitat:
Us a què es destina:
Termes Municipal:
núm.

Superfície:
m²

TITULAR
Domicili:
Telèfon

CP

NIF:

DOCUMENTACIÓ TÈCNICA:
- Projecte (Grup):
- Memòria tècnica de disseny

Autor
Obreute

CARACTERÍSTIQUES TÈCNIQUES DE LA INSTAL·LACIÓ:

Potència màxima admissible:
Potència instal·lada:
Tensió:
Secció derivació individual:
Resistència de terra de protecció:
Resistència d'àiellament:

Interruptor general automàtic de tall omnipolar

Interruptors diferencials:

Nombre
In
Sensibilitat

A
mA

A
mA

A
mA

OBSERVACIONS:

CERTIFICAT d'inspecció inicial amb resultat FAVORABLE (quan procedeix)

Entitat d'Inspecció i Control que l'ha emès
Data de la inspecció

En / Na
amb carnet individual identificatiu d'instal·lador autoritzat número que pertany a l'empresa instal·ladora amb número d'inscripció d'acord amb les verificacions realitzades seguint la metodologia de la norma UNE 20.480-6-61, CERTIFICA que la instal·lació descrita ha sigut realitzada d'acord amb les prescripcions del Reglament Electrotècnic per a baixa tensió i les seves ITC-BT, aprovat per RD 842/2002 de 2 d'agost, així com amb la documentació tècnica abans esmentada.

Data

Signatura i segell de l'instal·lador i de l'empresa instal·ladora

ANNEX: Informació a l'usuari per a correcte ús i manteniment de la instal·lació.

EIC contractada per l'empresa instal·ladora

ICICT, S.A.

ECA, S.A.

NOTA: Aquest certificat té una validesa de 6 mesos, a efectes d'inscripció de la instal·lació.
Annex 4. Certificat d'instal·lador/a d'electricitat autoritzat. Instal·lació fotovoltaica

<table>
<thead>
<tr>
<th>Dades de l'instal·lador/a d'electricitat autoritzat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom i cognoms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dades de la instal·lació</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adreça</td>
</tr>
<tr>
<td>Localitat</td>
</tr>
<tr>
<td>Municipi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Titular de la instal·lació</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom i cognoms</td>
</tr>
<tr>
<td>Adreça</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empresa instal·ladora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
</tr>
<tr>
<td>Núm. d'inscripció</td>
</tr>
</tbody>
</table>

L'instal·lador/a d'electricitat autoritzat que pertany a l'empresa instal·ladora que consta mes amunt,

CERTIFICIO:

- Que la instal·lació esmentada s'adapta a les especificacions tècniques indicades a la fitxa d'identificació i característiques de la instal·lació d'energia elèctrica fotovoltaica adjunta.

- Que tots els equips i instal·lacions sometesos a condicions tècniques compleixen amb el Reial decret 1663/2000, de 29 de setembre, sobre connexió d'instal·lacions fotovoltaiques a la xarxa de baixa tensió, així com amb la normativa que els és d'aplicació.

- Que els documents adjunts són originals emesos pel fabricant, o fotocòpies fidedignes, d'acord amb l'article 5, punts 2g), 2h) i 2i) del Decret 352/2001, de 18 de desembre, sobre procediments administratius aplicables a les instal·lacions d'energia solar fotovoltaica connectades a la xarxa elèctrica:

 - Declaració CE de conformitat emesa pel fabricant de les plaques fotovoltaiques i dels onduladors, d'acord amb el Reial decret 154/1995 i el Reial decret 1580/2006.

 - Certificat del fabricant, en el cas que les proteccions siguin interiors als equips onduladors.

 - Certificat del fabricant que aredicti que la separació galvànica assoleix els nivells d'èsser que determina la legislació aplicable a aquest tipus d'equips, d'acord amb la tecnologia emprada.

- Que s'han comprovat tots els equips d'acord amb la reglamentació pròpia, amb un resultat favorable, i que es troben en condicions d'entrar en funcionament.

- Que les coordenades UTM de la instal·lació són:

 Signatura i segell del/de l'instal·lador/a d'electricitat

 Signatura i segell de l'empresa instal·ladora especialista

Lloc i data
Generalitat de Catalunya

Annex 5. Certificat de direcció i acabament d'obra. Instal·lació fotovoltaica

Dades de la persona titulara
Nom i cognoms
Titulació
Núm. de col·legiat

Dades de la instal·lació
Adreça
Localitat
Municipi

Titular de la instal·lació
Nom i cognoms
Adreça

Projecte específic
Nom i cognoms de l'autor/a
Objecte
Data de presentació
Oficina

Empresa instal·ladora
Nom
Núm. d'inscripció

La persona que consta com a titular/da, director/ a tècnic/a de la instal·lació esmentada,

CERTIFICO:

- Que la instal·lació s'adapta al projecte específic presentat i disposa dels elements de control requerits.
- Que tots els equips i instal·lacions sotmesos a condicions tècniques compleixen amb el Reial decret 1663/2000, de 29 de setembre, sobre connexió d'instal·lacions fotovoltaiques a la xarxa de baixa tensió, així com amb la normativa que els és d'aplicació.
- Que els documents adjunts són originals emesos pel fabricant, o fotocòpies fidedignes, d'acord amb els punts 2g), 2h) i 2i) de l'article 5 del Decret 352/2001, de 18 de desembre, sobre procediment administratiu aplicable a les instal·lacions d'energia solar fotovoltaica connectades a la xarxa elèctrica:
 □ Declaració CE de conformitat emesa pel fabricant de les plaques fotovoltaiques i dels onduladors, d'acord amb el Reial decrect 154/1995 i el Reial decrect 1580/2006.
 □ Certificat del fabricant, en el cas que les proteccions siguin interiors als equips onduladors.
 □ Certificat del fabricant que acrediti que la separació galvànica assoleix els nivells d’atilament que determina la legislació aplicable a aquest tipus d’equips, d’acord amb la tecnologia emprada.
- Que s'han comprovat tots els equips d'acord amb la reglamentació pròpia, amb un resultat favorable, i que es troben en condicions d'entrar en funcionament.
- Que les coordenades UTM de la instal·lació són: . . .

Signatura del/de la director/a tècnic/a
Visat del col·legi oficial

Lloc i data
Model de notificació d’atorgament d’accés a la xarxa de distribució

Notifiquem que la nostra empresa ha atorgat l’accés a la xarxa elèctrica de distribució, sol·licitada per a connexió d’una instal·lació de producció en règim especial, amb les següents dades:

<table>
<thead>
<tr>
<th>Titular:</th>
<th>NIF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adreça social:</td>
<td></td>
</tr>
<tr>
<td>Població:</td>
<td>Codi postal:</td>
</tr>
</tbody>
</table>

Tipus d’instal·lació, Grup i Subgrup:	
Identificació de la instal·lació:	
Data d’atorgament de l’accés:	Data de la sol·licitud:
Data del Dipòsit de l’aval a la Caixa General de Dipòsits:	
Import de l’aval acreditat, en euros:	

En cas que l’Administració autoritzi la instal·lació la connexió s’efectuarà en les següents condicions:

Potència màxima evacuable kW:	
Línies:	
Punt de línia:	Tensió kV:
Subestació o Centre de Transformació:	Tensió de connexió kV:
Termes municipals:	

I per a que consti davant la Direcció General d’Energia i Mines als efectes del que determina el RD 661/2007, a l’article 5è, i la Disposició final segona, punt 3, es signa el present document.

Signatura

Nom:
Càrrec:

Localitat i data:
INDEX D’ASPECTES QUE CAL INCLoure EN EL PROJECTE D’UNA INSTAL·LACIÓ DE PRODUCCIÓ D’ENERGIA ELÈCTRICA EN RÈGIM ESPECIAL

1.- Memòria

- Titular i Objecte de la instal·lació.
- Emplaçament de la instal·lació i accessos
- Descripció general del projecte.
- Estudi energètic i de rendiments.
 - Dades de radiació solar. Incidència de la orientació i inclinació dels mòduls.
 - Característiques dels mòduls. Camp fotovoltaic.
 - Previsió anual de producció energètica.
- Tensions de treball, corrent continu i corrent alterna.
- Quadres C.C i de CA. Configuració i característiques tècniques.
- Proteccions de C.C i de CA (sobretensions, currcircuit, sobretensions atmosfèriques, contactes directes, contactes indirectes, sincronisme, tensió, freqüència, etc.).
- Posades a terra de la instal·lació. Criteris emprats en el seu disseny y dimensionament. Distàncies entre posades a terra independents.
- Dimensionat de la instal·lació de distribució.
- Descripció del sistema de medició per al seguiment de produccions. Justificació del compliment del Reglament de Punts de Mesura (RD 1110/2007).
- Compliment de prescripcions de locals mullats (ITC-BT 030)
- Centres de transformació i instal·lacions de connexió a xarxa, si és d’aplicació.

2.- Càlculs justificatius, amb especial consideració als següents aspectes,

- Justificació del compliment de la legislació electrotècnica aplicable (Càlculs de circuits, Curtcircuit, etc)
- Vent. Dimensionament de fonaments, suports i estructures (ITC-BT-06)
- Temperatura. Incidència en els diferents elements elèctrics.
- Xarxes de posada a terra. Càlcul dels valors de posada a terra i justificació de les distances per a evitar un possible acoblament entre elles.

4.- Plànols

- Plànol de situació incloent-hi els accessos al lloc de la instal·lació.
- Esquema elèctric unifilar de la instal·lació de potència.
- Esquema de proteccions elèctriques i de protecció de la interconnexió amb l’empresa elèctrica.
- Esquema de la instal·lació de comptatge energètic segons el Reglament de punts de mesura.
- Plànol(s) general(s), i de detall, en planta i alçat suficientment amplies, a escala convenient i amb indicació de cotes essencials, posant de manifest l’emplaçament i la disposició dels equipos, aparells, traçat de circuits, rases, i connexions principals.
- Xarxes de terres.

5.- Estudi de Seguretat i Salut

NOTA: Es pot obtenir informació d’interès per a redactar el projecte en els següents documents:

Altres annexos
7 Altres annexos – Catàleg d’especificacions tècniques
Índex

7 Altres annexos – Catàleg d’especificacions tècniques

- Panell solar SunPower
- Estructura de suport Hilti
- Estructura de suport T10 SunPower
- Inversor SMA
- Monitorització SMA
- Sensor SMA
- CGP-9 Cahors
- CS Cahors
- Quadre elèctric ABB
- Armari CGP-CS Cahors
- Armari TMF Cahors

8 Condicions tècniques i de seguretat – Instal·lacions fotovoltaiques interconnectades a la xarxa de distribució de baixa tensió
Panell solar Sunpower
El módulo fotovoltaico más potente del planeta.

El Panel Solar 318 de SunPower® proporciona la mayor eficiencia y rendimiento disponibles en el mercado. Las 96 células solares con contactos en la cara posterior, así como el diseño optimizado del panel, aseguran una eficiencia de conversión total del 19,5%. El reducido coeficiente voltaje-temperatura del panel SunPower 318, su cristal anti-reflectante, y su excepcional rendimiento en condiciones de baja intensidad de radiación solar, generan una mayor cantidad de energía por Wp.

La ventaja de la alta eficiencia de SunPower

La eficiencia de SunPower® es superior a la de los paneles convencionales y capas finas.

<table>
<thead>
<tr>
<th>Material</th>
<th>Capa fina</th>
<th>Convencional</th>
<th>SunPower Serie E18</th>
<th>SunPower Serie E19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eficiencia (%)</td>
<td>10%</td>
<td>14%</td>
<td>18%</td>
<td>19%</td>
</tr>
</tbody>
</table>
Datos Eléctricos

<table>
<thead>
<tr>
<th>Medidas en condiciones de prueba estándar (STC): Irradiancia 1000W/m², AM 1,5, temperatura de células 25° C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia nominal (+5/-3%)</td>
</tr>
<tr>
<td>Eficiencia</td>
</tr>
<tr>
<td>Voltaje en el punto de máxima potencia</td>
</tr>
<tr>
<td>Corriente en el punto de máxima potencia</td>
</tr>
<tr>
<td>Voltaje de circuito abierto</td>
</tr>
<tr>
<td>Corriente de cortocircuito</td>
</tr>
<tr>
<td>Voltaje máximo del sistema</td>
</tr>
<tr>
<td>Coeficientes de temperatura</td>
</tr>
<tr>
<td>Potencia (P)</td>
</tr>
<tr>
<td>Voltaje (V_{oc})</td>
</tr>
<tr>
<td>Corriente (I_{sc})</td>
</tr>
<tr>
<td>NOCT</td>
</tr>
<tr>
<td>Corriente nominal de fusibles en serie</td>
</tr>
<tr>
<td>Limite de corriente inversa (3 strings)</td>
</tr>
</tbody>
</table>

Datos Eléctricos

<table>
<thead>
<tr>
<th>Medidas en temperatura nominal de operación de célula (NOCT): Irradiancia 800W/m², 20° C, viento 1 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia nominal</td>
</tr>
<tr>
<td>Voltaje en el punto de máxima potencia</td>
</tr>
<tr>
<td>Corriente en el punto de máxima potencia</td>
</tr>
<tr>
<td>Voltaje de circuito abierto</td>
</tr>
<tr>
<td>Corriente de cortocircuito</td>
</tr>
</tbody>
</table>

Datos Mecánicos

- Células solares: 96 células monocristalinas de contacto posterior SunPower
- Vidrio frontal: Cristal templado anti-reflectante de gran transmisividad
- Caja de conexiones: IP-65 con 3 diodos de bypass
- Cables de salida: Cable de 1000 mm de longitud / conectores MultiContact (MC4)
- Bastidor: Aleación de aluminio anodizado (negro) tipo 6063
- Peso: 18,6 kg

Condiciones de Prueba para Certificaciones

- Temperatura: -40° C hasta +85° C
- Carga máxima: 550kg/m² (5400 Pa) frontal (p.ej. nieve) con configuraciones de montaje especificadas
- 245kg/m² (2400 Pa) frontal y posterior (p.ej. viento)
- Resistencia al impacto: Granizo: 25 mm a 23 m/s

Garantías y Certificaciones

- Garantía de potencia durante 25 años
- Garantía del producto durante 10 años
- Certificaciones: IEC 61215 Ed. 2, IEC 61730 (SCII)

Dimensiones

- Aguja de puesta a tierra

PRECAUCIÓN: LEA LAS INSTRUCCIONES DE SEGURIDAD E INSTALACIÓN ANTES DE UTILIZAR EL PRODUCTO. Para obtener información detallada, visite www.sunpowercorp.es
Estructura de suport Hilti
Carreles para instalación

Características:
- Sección dentada y en forma de C
- Mejora esfuerzos a cortante
- Marcas cada 5 cm. Para facilitar el corte y el montaje
- Gran flexibilidad gracias a las ranuras
- Buena apariencia estética
- Carreles dobles roblonados

Datos técnicos:
Material: S 250 GD según norma DIN EN 10147 galvanizado sendzimir aprox. 20 micras (275 g/m²)

<table>
<thead>
<tr>
<th>Carreles</th>
<th>Altura (mm)</th>
<th>U.M.V. (m)</th>
<th>Palet (m)</th>
<th>Peso (kg/m)</th>
<th>Referencia</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>3</td>
<td>150</td>
<td>2.080</td>
<td>MQ-41 3 m</td>
<td>369591</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>300</td>
<td>2.080</td>
<td>MQ-41 6 m</td>
<td>369592</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>4</td>
<td>100</td>
<td>1.759</td>
<td>MQ-41 2 m</td>
<td>304559</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>3</td>
<td>150</td>
<td>2.942</td>
<td>MQ-52 3 m</td>
<td>373795</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>6</td>
<td>300</td>
<td>2.942</td>
<td>MQ-52 6 m</td>
<td>369598</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>3</td>
<td>150</td>
<td>4.101</td>
<td>MQ-72 3 m</td>
<td>373797</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>6</td>
<td>300</td>
<td>4.101</td>
<td>MQ-72 6 m</td>
<td>369599</td>
<td></td>
</tr>
</tbody>
</table>

Los carreles ④ y ⑤ están ensayados contra incendios

<table>
<thead>
<tr>
<th>Carreles dobles</th>
<th>Altura (mm)</th>
<th>U.M.V. (m)</th>
<th>Palet (m)</th>
<th>Peso (kg/m)</th>
<th>Referencia</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>3</td>
<td>75</td>
<td>2.904</td>
<td>MQ-21D 3 m</td>
<td>369601</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>150</td>
<td>2.904</td>
<td>MQ-21D 6 m</td>
<td>369602</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>3</td>
<td>75</td>
<td>4.188</td>
<td>MQ-41D 3 m</td>
<td>369603</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>6</td>
<td>150</td>
<td>4.188</td>
<td>MQ-41D 6 m</td>
<td>369604</td>
<td></td>
</tr>
</tbody>
</table>

Los carreles ② están ensayados contra incendios
Soportes

Características:
- Sección dentada y en forma de C
- Marcas cada 5 cm para facilitar el montaje
- Gran flexibilidad gracias a las ranuras
- Los soportes de los carriles dobles van soldados en todo el perímetro

Datos técnicos:
- Material: S 235 JR según norma DIN EN 10025 galvanizado, Fe/Zn 13 B según norma DIN 50961

<table>
<thead>
<tr>
<th>Longitud (mm)</th>
<th>Sección del carril</th>
<th>Peso (g)</th>
<th>U.M.V.</th>
<th>Referencia</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>MQ-41</td>
<td>950</td>
<td>1</td>
<td>MQK-41/300</td>
<td>369609</td>
</tr>
<tr>
<td>450</td>
<td>MQ-41</td>
<td>1260</td>
<td>1</td>
<td>MQK-41/450</td>
<td>369610</td>
</tr>
<tr>
<td>600</td>
<td>MQ-41</td>
<td>1570</td>
<td>1</td>
<td>MQK-41/600</td>
<td>369611</td>
</tr>
<tr>
<td>1000</td>
<td>MQ-41</td>
<td>2400</td>
<td>1</td>
<td>MQK-41/1000</td>
<td>369612</td>
</tr>
<tr>
<td>1000</td>
<td>MQ-41-D</td>
<td>5080</td>
<td>1</td>
<td>MQK-41D/1000</td>
<td>369620</td>
</tr>
</tbody>
</table>

Los soportes ② están ensayados contra incendios

Conector longitudinal de carril

Características:
- Universal
- Fácil de usar
- Tres dimensiones
- Piezas especiales para conseguir mayor rigidez

Datos técnicos:
- Material: S 235 JR según norma DIN EN 10025
- Espesor: 4 mm
- Galvanizado, Fe/Zn 13 B según norma DIN 50961

<table>
<thead>
<tr>
<th>Peso (g)</th>
<th>U.M.V.</th>
<th>Referencia</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>555</td>
<td>10</td>
<td>MOV-12</td>
<td>369643</td>
</tr>
<tr>
<td>555</td>
<td>1</td>
<td>MOV-41</td>
<td>286101</td>
</tr>
<tr>
<td>555</td>
<td>2</td>
<td>MOV-72</td>
<td>286102</td>
</tr>
</tbody>
</table>
Tuercas de carril

Características:
- Sencillas, compactas, ahorrando tiempo
- Una sola pieza hace la función de dos
- Fáciles de usar
- Universales: la misma tuerca vale para todos los carriles
- Fácil desmontaje

Datos técnicos:
Galvanizado, Fe/Zn 13 B según norma DIN 50961

Tornillo tuerca carril MQN

Tornillo: M10 material 8.8 según norma DIN/ISO 898
Tuerca: QStE 380 TM, SEW 92
Placa: DD11, DIN EN 10111

<table>
<thead>
<tr>
<th>Rosca</th>
<th>Peso (g)</th>
<th>U.M.V.</th>
<th>Embalaje (uds)</th>
<th>Referencia</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>M10</td>
<td>66</td>
<td>50</td>
<td>300</td>
<td>MQN</td>
<td>369623</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Carga a tracción, Z - (kN)</th>
<th>Carga a cortante, Q - (kN)</th>
<th>Par de apriete, M (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQN</td>
<td>5.0</td>
<td>5.0</td>
<td>40</td>
</tr>
<tr>
<td>Carril I</td>
<td>MQ-21, MQ-31, MQ-41, MQ-21 D, MQ-41 D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carril II</td>
<td>MQ-41/3, MQ-52, MQ-72, MQ-52-72 D, MQ-124 XD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) La carga a cortante se aplica a las fijaciones simples Z = (kN) / 10 para dos fijaciones

Colocar en posición
Pulsar y girar
Apretar

Tuerca de carril

Tuerca, M6–M10: QStE 380 TM, SEW 92
Tuerca, M12: QStE 32-2 KGK según norma DIN 1654
Plástico: PA

<table>
<thead>
<tr>
<th>Conexión</th>
<th>Peso (g)</th>
<th>U.M.V.</th>
<th>Embalaje (uds)</th>
<th>Referencia</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6</td>
<td>21</td>
<td>50</td>
<td>800</td>
<td>MQM-M6</td>
<td>369624</td>
</tr>
<tr>
<td>M8</td>
<td>21</td>
<td>50</td>
<td>800</td>
<td>MQM-M8</td>
<td>369698</td>
</tr>
<tr>
<td>M10</td>
<td>21</td>
<td>50</td>
<td>800</td>
<td>MQM-M10</td>
<td>369626</td>
</tr>
<tr>
<td>M12</td>
<td>23</td>
<td>50</td>
<td>800</td>
<td>MQM-M12</td>
<td>369627</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Carga a tracción, Z - (kN)</th>
<th>Carga a cortante, Q - (kN)</th>
<th>Par de apriete, M (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQM-M6</td>
<td>3.0</td>
<td>1.5</td>
<td>10</td>
</tr>
<tr>
<td>MQM-M8</td>
<td>5.0</td>
<td>3.5</td>
<td>20</td>
</tr>
<tr>
<td>MQM-M10</td>
<td>5.0</td>
<td>5.0</td>
<td>40</td>
</tr>
<tr>
<td>MQM-M12</td>
<td>5.0</td>
<td>5.0</td>
<td>40</td>
</tr>
<tr>
<td>Carril I</td>
<td>MQ-21, MQ-31, MQ-41, MQ-21 D, MQ-41 D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carril II</td>
<td>MQ-41/3, MQ-52, MQ-72, MQ-52-72 D, MQ-124 XD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Apoyo de carril

Características:
■ Fiable y fácil de usar
■ Conexión de los carriles en cualquier material base

Datos técnicos:
Material: S 235 JR según norma DIN EN 10025
Espesor: 4 mm
Galvanizado Fe/Zn 13 B según norma DIN 50961
Se debe realizar la comprobación de la fijación sobre el material base

Base giratoria

Características:
■ Fácil de usar
■ Posibilidad de conexión con ángulo variable

Datos técnicos:
Material: S 235 JR según norma DIN EN 10025
Espesor: 4 mm
Galvanizado Fe/Zn 13 B según norma DIN 50961
Se debe realizar la comprobación de la fijación sobre el material base
Accesorios

Características:
- Se adaptan a los elementos del sistema

Placa carril

Material: S 235 JR según norma DIN EN 10025
Galvanizada

<table>
<thead>
<tr>
<th>Para varilla</th>
<th>Peso (g)</th>
<th>U.M.V.</th>
<th>Referencia</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>M8</td>
<td>92</td>
<td>20</td>
<td>MQZ-L9</td>
<td>369678</td>
</tr>
<tr>
<td>M10</td>
<td>88</td>
<td>20</td>
<td>MQZ-L11</td>
<td>369679</td>
</tr>
<tr>
<td>M12</td>
<td>84</td>
<td>20</td>
<td>MQZ-L13</td>
<td>369680</td>
</tr>
</tbody>
</table>

La placa está ensayada contra incendios

Tapas de carril

Fabricado en polipropileno (PP)

<table>
<thead>
<tr>
<th>Adecuado para el carril</th>
<th>Peso (g)</th>
<th>U.M.V.</th>
<th>Referencia</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQ-21, MQ-21D</td>
<td>2</td>
<td>50</td>
<td>MQZ-E21</td>
<td>370598</td>
</tr>
<tr>
<td>MQ-31</td>
<td>2</td>
<td>50</td>
<td>MQZ-E31</td>
<td>369686</td>
</tr>
<tr>
<td>MQ-41, MQ-41/3, MQ-41D</td>
<td>2</td>
<td>50</td>
<td>MQZ-E41</td>
<td>369685</td>
</tr>
</tbody>
</table>

Información de seguridad.

Debido a que el Sistema Hilti MQ, técnicamente, forma por sí mismo una unidad, no debería ser utilizado para otros propósitos que los recomendados por Hilti o en combinación con productos que no estén diseñados para este propósito.

El uso con productos no recomendados por Hilti podría producir una desviación de los valores de carga garantizados por Hilti.

Hilti no acepta ninguna responsabilidad por daños o pérdidas que pudieran resultar por la no aplicación de estas instrucciones de seguridad.
Un anclaje para diferentes profundidades de empotramiento
Pequeña profundidad de taladro para cargas pequeñas y gran profundidad de taladro para elevadas cargas de tracción.

Material Base: hormigón en zona a compresión: reducida - línea rosca estándar - banda azul

Aplicaciones: fijaciones a través, muros cortina, carriles de ascensores, angulares y placas metálicas.

Hilti HSA Anclaje versión espárrago, acero galvanizado con un mínimo de 5 µm

<table>
<thead>
<tr>
<th>Día nominal de rosca (mm)</th>
<th>Long. de anclaje (mm)</th>
<th>Reducida</th>
<th>Estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. mín. de taladro h₁ (mm)</td>
<td>Max. espesor a ropar t₁ (mm)</td>
<td>Prof. máx. de taladro h₂ (mm)</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>45 5</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>65</td>
<td>45 20</td>
<td>55 10</td>
</tr>
<tr>
<td>6</td>
<td>85</td>
<td>45 40</td>
<td>55 30</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>45 55</td>
<td>55 45</td>
</tr>
<tr>
<td>8</td>
<td>57</td>
<td>50 5</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>75</td>
<td>50 23</td>
<td>65 10</td>
</tr>
<tr>
<td>8</td>
<td>92</td>
<td>50 40</td>
<td>65 27</td>
</tr>
<tr>
<td>8</td>
<td>115</td>
<td>50 63</td>
<td>65 50</td>
</tr>
<tr>
<td>8</td>
<td>137</td>
<td>50 85</td>
<td>65 72</td>
</tr>
<tr>
<td>10</td>
<td>68</td>
<td>60 5</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>60 25</td>
<td>70 20</td>
</tr>
<tr>
<td>10</td>
<td>108</td>
<td>60 45</td>
<td>70 37</td>
</tr>
<tr>
<td>10</td>
<td>120</td>
<td>60 57</td>
<td>70 50</td>
</tr>
<tr>
<td>12</td>
<td>80</td>
<td>70 5</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>70 25</td>
<td>95 5</td>
</tr>
<tr>
<td>12</td>
<td>120</td>
<td>70 45</td>
<td>95 25</td>
</tr>
<tr>
<td>12</td>
<td>150</td>
<td>70 75</td>
<td>95 55</td>
</tr>
<tr>
<td>12</td>
<td>180</td>
<td>70 105</td>
<td>95 85</td>
</tr>
<tr>
<td>12</td>
<td>220</td>
<td>70 145</td>
<td>95 125</td>
</tr>
<tr>
<td>12</td>
<td>240</td>
<td>70 165</td>
<td>95 145</td>
</tr>
<tr>
<td>12</td>
<td>300</td>
<td>70 225</td>
<td>95 205</td>
</tr>
<tr>
<td>16</td>
<td>100</td>
<td>90 5</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>120</td>
<td>90 25</td>
<td>115 5</td>
</tr>
<tr>
<td>16</td>
<td>140</td>
<td>90 45</td>
<td>115 25</td>
</tr>
<tr>
<td>16</td>
<td>160</td>
<td>90 65</td>
<td>115 75</td>
</tr>
<tr>
<td>16</td>
<td>180</td>
<td>90 105</td>
<td>115 125</td>
</tr>
<tr>
<td>16</td>
<td>240</td>
<td>90 145</td>
<td>115 125</td>
</tr>
<tr>
<td>20</td>
<td>125</td>
<td>105 10</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>170</td>
<td>105 55</td>
<td>130 30</td>
</tr>
</tbody>
</table>

Nrec = Resistencia recomendada a tracción en hormigón no fisurado de resistencia \(f_{\text{c′k}} = 25 \text{N/mm}^2 \).

Vrec = Resistencia recomendada a cortante en hormigón no fisurado de resistencia \(f_{\text{ct,k}} = 25 \text{N/mm}^2 \).

Los valores recomendados de tracción son para las profundidades máximas de empotramiento.

Para más información consulte nuestro Manual Técnico de Anclajes. Los valores de carga según método Hilti CC.

Los valores de tracción y cortante admisibles estáticos se deben considerar por separado, y son para distancias óptimas entre anclajes y los bordes de hormigón.
Tornillos cincados (DIN 933)

<table>
<thead>
<tr>
<th>Referencia</th>
<th>d x L (mm)</th>
<th>e (mm)</th>
<th>S (mm)</th>
<th>K (mm)</th>
<th>U.M.V.</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tornillo M6x15</td>
<td>11,05</td>
<td>10</td>
<td>4</td>
<td>100</td>
<td>3106097</td>
<td></td>
</tr>
<tr>
<td>Tornillo M6x20</td>
<td>11,05</td>
<td>10</td>
<td>4</td>
<td>100</td>
<td>85005</td>
<td></td>
</tr>
<tr>
<td>Tornillo M6x25</td>
<td>11,05</td>
<td>10</td>
<td>4</td>
<td>100</td>
<td>85006</td>
<td></td>
</tr>
<tr>
<td>Tornillo M6x30</td>
<td>11,05</td>
<td>10</td>
<td>4</td>
<td>100</td>
<td>85007</td>
<td></td>
</tr>
<tr>
<td>Tornillo M6x40</td>
<td>11,05</td>
<td>10</td>
<td>4</td>
<td>100</td>
<td>85009</td>
<td></td>
</tr>
<tr>
<td>Tornillo M8x15</td>
<td>14,38</td>
<td>13</td>
<td>5,3</td>
<td>100</td>
<td>3106113</td>
<td></td>
</tr>
<tr>
<td>Tornillo M8x20</td>
<td>14,38</td>
<td>13</td>
<td>5,3</td>
<td>100</td>
<td>85044</td>
<td></td>
</tr>
<tr>
<td>Tornillo M8x25</td>
<td>14,38</td>
<td>13</td>
<td>5,7</td>
<td>100</td>
<td>85045</td>
<td></td>
</tr>
<tr>
<td>Tornillo M8x30</td>
<td>14,38</td>
<td>13</td>
<td>5,7</td>
<td>100</td>
<td>85046</td>
<td></td>
</tr>
<tr>
<td>Tornillo M8x35</td>
<td>14,38</td>
<td>13</td>
<td>5,7</td>
<td>100</td>
<td>85047</td>
<td></td>
</tr>
<tr>
<td>Tornillo M8x40</td>
<td>14,38</td>
<td>13</td>
<td>5,7</td>
<td>100</td>
<td>85048</td>
<td></td>
</tr>
<tr>
<td>Tornillo M10x20</td>
<td>18,9</td>
<td>17</td>
<td>6,4</td>
<td>50</td>
<td>85073</td>
<td></td>
</tr>
<tr>
<td>Tornillo M10x25</td>
<td>18,9</td>
<td>17</td>
<td>6,4</td>
<td>50</td>
<td>85075</td>
<td></td>
</tr>
<tr>
<td>Tornillo M10x30</td>
<td>18,9</td>
<td>17</td>
<td>6,4</td>
<td>50</td>
<td>3106014</td>
<td></td>
</tr>
<tr>
<td>Tornillo M10x35</td>
<td>18,9</td>
<td>17</td>
<td>6,4</td>
<td>50</td>
<td>85077</td>
<td></td>
</tr>
<tr>
<td>Tornillo M10x40</td>
<td>18,9</td>
<td>17</td>
<td>6,4</td>
<td>50</td>
<td>85078</td>
<td></td>
</tr>
</tbody>
</table>

Tornillo galvanizado en caliente (DIN 933)

<table>
<thead>
<tr>
<th>Referencia</th>
<th>d x L (mm)</th>
<th>e (mm)</th>
<th>S (mm)</th>
<th>K (mm)</th>
<th>U.M.V.</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tornillo M10x25-F</td>
<td>18,90</td>
<td>17</td>
<td>6,4</td>
<td>100</td>
<td>304788</td>
<td></td>
</tr>
<tr>
<td>Tornillo M12x25-F</td>
<td>21,10</td>
<td>19</td>
<td>7,5</td>
<td>50</td>
<td>304789</td>
<td></td>
</tr>
</tbody>
</table>

Tornillo acero inoxidable A4 (DIN 933)

<table>
<thead>
<tr>
<th>Referencia</th>
<th>d x L (mm)</th>
<th>e (mm)</th>
<th>S (mm)</th>
<th>K (mm)</th>
<th>U.M.V.</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tornillo M10x25 - R A4</td>
<td>18,90</td>
<td>17</td>
<td>6,4</td>
<td>25</td>
<td>3105600</td>
<td></td>
</tr>
<tr>
<td>Tornillo M12x20 - R A4</td>
<td>21,10</td>
<td>19</td>
<td>7,5</td>
<td>50</td>
<td>3106177</td>
<td></td>
</tr>
<tr>
<td>Tornillo M12x25 - R A4</td>
<td>21,10</td>
<td>19</td>
<td>7,5</td>
<td>25</td>
<td>3106179</td>
<td></td>
</tr>
</tbody>
</table>

Tuerzas cincadas (DIN 934)

<table>
<thead>
<tr>
<th>d</th>
<th>s (mm)</th>
<th>e (mm)</th>
<th>m (mm)</th>
<th>U.M.V.</th>
<th>Referencia</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 4</td>
<td>7</td>
<td>7,66</td>
<td>3,2</td>
<td>1000</td>
<td>Tuerca ZN M4</td>
<td>52103</td>
</tr>
<tr>
<td>M 6</td>
<td>10</td>
<td>11,05</td>
<td>5</td>
<td>100</td>
<td>Tuerca ZN M6</td>
<td>52205</td>
</tr>
<tr>
<td>M 8</td>
<td>13</td>
<td>14,38</td>
<td>6,5</td>
<td>100</td>
<td>Tuerca ZN M8</td>
<td>52301</td>
</tr>
<tr>
<td>M 10</td>
<td>17</td>
<td>18,90</td>
<td>8</td>
<td>50</td>
<td>Tuerca ZN M10</td>
<td>52403</td>
</tr>
</tbody>
</table>

También disponible en acero inox. A2 y A4 excepto M4.

Arandelas cincadas (DIN 125)

<table>
<thead>
<tr>
<th>DA (mm)</th>
<th>S (mm)</th>
<th>D1 (mm)</th>
<th>U.M.V.</th>
<th>Referencia</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0,8</td>
<td>4,3</td>
<td>1000</td>
<td>Arandela M4</td>
<td>3106071</td>
</tr>
<tr>
<td>12,5</td>
<td>1,6</td>
<td>6,4</td>
<td>100</td>
<td>Arandela M6</td>
<td>3106075</td>
</tr>
<tr>
<td>17</td>
<td>1,6</td>
<td>8,4</td>
<td>100</td>
<td>Arandela M8</td>
<td>3106084</td>
</tr>
<tr>
<td>21</td>
<td>2,0</td>
<td>10,5</td>
<td>50</td>
<td>Arandela M10</td>
<td>3106092</td>
</tr>
</tbody>
</table>

También disponible en acero inox. A2 y A4 excepto M4.

Arandelas cincadas (DIN 9021)

<table>
<thead>
<tr>
<th>DA (mm)</th>
<th>S (mm)</th>
<th>D1 (mm)</th>
<th>U.M.V.</th>
<th>Referencia</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>1,6</td>
<td>6,4</td>
<td>100</td>
<td>Arandela M6</td>
<td>3106081</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>8,4</td>
<td>100</td>
<td>Arandela M8</td>
<td>3106095</td>
</tr>
<tr>
<td>30</td>
<td>2,5</td>
<td>10,5</td>
<td>100</td>
<td>Arandela M10</td>
<td>3106119</td>
</tr>
</tbody>
</table>

Pinzas para paneles fotovoltaicos

Aplicación
■ Para la fijación del panel solar al carril longitudinal.

Características
■ Pinzas premontadas, reducen el tiempo de instalación.
■ No se requieren elementos adicionales (tuerces, tornillos, etc.).
■ Instalación sencilla gracias al giro 90° de la tuerca de fijación.
■ Expressamente diseñado para ajustarse a los distintos espesores de panel.
■ Cada pinza central cubre un amplio rango de espesores de paneles.

Datos técnicos
<table>
<thead>
<tr>
<th>Material:</th>
<th>Pinza:</th>
<th>Aluminio extruido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuerca, tornillo, muelle:</td>
<td>Acero Inoxidable, A2 (1.4301)</td>
<td></td>
</tr>
<tr>
<td>Tamaño llave allen:</td>
<td>6 mm</td>
<td></td>
</tr>
<tr>
<td>Par de apriete para pinza final y central:</td>
<td>15 Nm</td>
<td></td>
</tr>
</tbody>
</table>

MSP-MC pinza central

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Altura panel [mm]</th>
<th>Rango de espesor de paneles a fijar [mm]</th>
<th>Tornillo ØxL [mm]</th>
<th>U.M.V. 1</th>
<th>Código</th>
<th>U.M.V. 2</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSP-MC 34–37</td>
<td>34–37</td>
<td>21–37</td>
<td>M8 x 35</td>
<td>10</td>
<td>382931</td>
<td>200</td>
<td>406841</td>
</tr>
<tr>
<td>MSP-MC 38–42</td>
<td>38–42</td>
<td>21–42</td>
<td>M8 x 40</td>
<td>10</td>
<td>382932</td>
<td>200</td>
<td>406842</td>
</tr>
<tr>
<td>MSP-MC 43–47</td>
<td>43–47</td>
<td>25–47</td>
<td>M8 x 45</td>
<td>10</td>
<td>382933</td>
<td>200</td>
<td>406843</td>
</tr>
<tr>
<td>MSP-MC 48–50</td>
<td>48–50</td>
<td>30–50</td>
<td>M8 x 50</td>
<td>10</td>
<td>382934</td>
<td>200</td>
<td>406844</td>
</tr>
</tbody>
</table>

MSP-EC pinza final

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Altura panel [mm]</th>
<th>Tornillo ØxL [mm]</th>
<th>U.M.V. 2</th>
<th>Código</th>
<th>U.M.V. 2</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSP-EC 30</td>
<td>30</td>
<td>M8 x 40</td>
<td>10</td>
<td>388067</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MSP-EC 34</td>
<td>34</td>
<td>M8 x 40</td>
<td>10</td>
<td>382935</td>
<td>200</td>
<td>406831</td>
</tr>
<tr>
<td>MSP-EC 35</td>
<td>35</td>
<td>M8 x 40</td>
<td>10</td>
<td>382936</td>
<td>200</td>
<td>406832</td>
</tr>
<tr>
<td>MSP-EC 36</td>
<td>36</td>
<td>M8 x 45</td>
<td>10</td>
<td>382937</td>
<td>200</td>
<td>406833</td>
</tr>
<tr>
<td>MSP-EC 38</td>
<td>38</td>
<td>M8 x 45</td>
<td>10</td>
<td>382938</td>
<td>200</td>
<td>406834</td>
</tr>
<tr>
<td>MSP-EC 40</td>
<td>40</td>
<td>M8 x 50</td>
<td>10</td>
<td>382939</td>
<td>200</td>
<td>406835</td>
</tr>
<tr>
<td>MSP-EC 42</td>
<td>42</td>
<td>M8 x 50</td>
<td>10</td>
<td>382940</td>
<td>200</td>
<td>406836</td>
</tr>
<tr>
<td>MSP-EC 45</td>
<td>45</td>
<td>M8 x 55</td>
<td>10</td>
<td>388068</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MSP-EC 46</td>
<td>46</td>
<td>M8 x 55</td>
<td>10</td>
<td>382942</td>
<td>200</td>
<td>406838</td>
</tr>
<tr>
<td>MSP-EC 48</td>
<td>48</td>
<td>M8 x 55</td>
<td>10</td>
<td>382943</td>
<td>200</td>
<td>406839</td>
</tr>
<tr>
<td>MSP-EC 50</td>
<td>50</td>
<td>M8 x 55</td>
<td>10</td>
<td>382944</td>
<td>200</td>
<td>406840</td>
</tr>
</tbody>
</table>
Estructura de suport T10 SunPower
VENTAJAS

Generación de energía optimizada
Mayor generación de energía gracias al ángulo de inclinación de 10 grados y a los reflectores solares.

No perfora la cubierta
Las placas solares son modulares y, por lo tanto, fáciles de instalar sin fijaciones mecánicas a la cubierta.

Se instala con rapidez
Tanto la instalación como la puesta en funcionamiento de sistemas solares a gran escala pueden efectuarse rápida y eficazmente.

Se integra con facilidad
Su delgado diseño armoniza perfectamente en edificios con cubiertas planas y facilita la conexión con la red eléctrica existente.

No obstruye
Las placas solares no alteran el funcionamiento ni el drenaje de la cubierta.

Sumamente resistente al viento
Al estar diseñada para ofrecer estabilidad aerodinámica no requiere la unión mecánica a la cubierta, ni siquiera en zonas ventosas.

El sistema Solar SunPower® T10 está diseñado para inclinarse a un ángulo de 10 grados y mejorar así la captación de energía.
Estos sistemas se montan sin perforar la cubierta, con lo que permiten una instalación rápida y segura. El sistema T10 está fabricado con materiales ligeros y de larga duración: su diseño patentado resiste vientos fuertes y la corrosión, y su singular flexibilidad le permite adaptarse al tamaño y los requisitos de prácticamente cualquier cubierta plana.
SISTEMA SOLAR T10 PARA CUBIERTAS
INCLINADO PARA UNA MAYOR GENERACIÓN DE ENERGÍA

Características y especificaciones

<table>
<thead>
<tr>
<th>Características</th>
<th>Especificaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso del conjunto</td>
<td>Tan reducido como < 10,2 kg/m³</td>
</tr>
<tr>
<td>Inclinación de la placa</td>
<td>12,9 grados</td>
</tr>
<tr>
<td>Penetraciones en la cubierta</td>
<td>Ninguna</td>
</tr>
<tr>
<td>Producción típica de potencia</td>
<td>0,9 kWp/10m²</td>
</tr>
<tr>
<td>Opciones de instalación</td>
<td>Cubierta</td>
</tr>
<tr>
<td>Resistencia a vientos fuertes</td>
<td>Hasta 193 km/h</td>
</tr>
<tr>
<td>Acceso</td>
<td>Incluye zonas de paso que permiten un fácil acceso a los módulos, equipo y superficies de la cubierta</td>
</tr>
<tr>
<td>Garantía</td>
<td>Garantía total del sistema</td>
</tr>
</tbody>
</table>

Células y paneles solares SunPower
El sistema solar T10 para cubiertas contiene las células y paneles solares más avanzados y eficientes del mercado.

Características principales:
El diseño con contactos en la parte posterior de la célula reduce el bloqueo del sol, permitiendo una mayor eficiencia en la generación de energía de hasta un 22,4%.

El frente oscuro y uniforme proporciona una apariencia de terciopelo negro.

El vidrio templado de 3,2 mm de espesor de alta transmisión aumenta la rigidez del producto y su resistencia a impactos.

El coeficiente de temperatura más reducido mejora tanto el funcionamiento a altas temperaturas como la generación de energía.

La tecnología SunPower está protegida por la patente estadounidense 6.058.930. Patentes internacionales 1169604 (Francia, Portugal, España y Reino Unido) y 60015950.7 (Alemania). Posiblemente se apliquen otras patentes estadounidenses y/o internacionales ya expedidas o pendientes.

Información acerca de SunPower
SunPower diseña, fabrica e instala tecnología solar de alto rendimiento en todo el mundo. Nuestras células de alta eficiencia generan hasta un 50% más de energía que las células solares convencionales. Nuestros paneles solares, seguidores y placas para cubiertas tienen mayor rendimiento y generan más energía que los sistemas de la competencia.

© Abril 2008 SunPower Corporation. Reservados todos los derechos. Las especificaciones incluidas en esta hoja informativa de datos están sujetas a cambios sin aviso previo

www.sunpowercorp.es
Inversor SMA
Rentable
> Gestión activa de la temperatura gracias al sistema de refrigeración OptiCool
> Rendimiento constantemente optimizado gracias a la regulación MPP OptiTrac

Seguro
> Separación galvánica
> Seccionador de potencia de CC integrado ESS
> SMA Power Balancer para la conexión a la red trifásica

Flexible
> Indicado para la toma a tierra del generador

SUNNY MINI CENTRAL
Ideal para sistemas trifásicos

El principal atractivo de los Sunny Mini Central 4600A, 5000A y 6000A cabe encontrarlo en su excelente rendimiento. No en vano, son capaces de alimentar la red eléctrica pública con unos rendimientos energéticos excepcionales de forma absolutamente fiable. Las diferentes clases de potencia disponibles brindan al usuario un alto grado de flexibilidad a la hora de planificar su instalación fotovoltaica. Son ideales tanto para instalaciones pequeñas como para la realización de parques solares de varios cientos de kW. Además, la separación galvánica permite múltiples posibilidades de conexión. Y es que los inversores Sunny Mini Central pueden ser empleados tanto con células cristalinas como con módulos de capa fina.
Datos técnicos

SUNNY MINI CENTRAL 4600A / 5000A / 6000A

<table>
<thead>
<tr>
<th>Valores de entrada (CC)</th>
<th>SMC 4600A</th>
<th>SMC 5000A</th>
<th>SMC 6000A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia máx. de CC</td>
<td>5250 W</td>
<td>5750 W</td>
<td>6300 W</td>
</tr>
<tr>
<td>Tensión máx. de CC</td>
<td>600 V</td>
<td>600 V</td>
<td>600 V</td>
</tr>
<tr>
<td>Rango de tensión FV, MPPT</td>
<td>246 V - 480 V</td>
<td>246 V - 480 V</td>
<td>246 V - 480 V</td>
</tr>
<tr>
<td>Corriente máx. de entrada</td>
<td>26 A</td>
<td>26 A</td>
<td>26 A</td>
</tr>
<tr>
<td>Número de seguidores de MPPT</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Número máx. de strings (en paralelo)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valores de salida (CA)</th>
<th>SMC 4600A</th>
<th>SMC 5000A</th>
<th>SMC 6000A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia nominal de CA</td>
<td>4600 W</td>
<td>5000 W</td>
<td>6000 W</td>
</tr>
<tr>
<td>Potencia máx. de CA</td>
<td>5000 W</td>
<td>5000 W</td>
<td>6000 W</td>
</tr>
<tr>
<td>Tensión eficaz de CA</td>
<td>26 A</td>
<td>26 A</td>
<td>26 A</td>
</tr>
<tr>
<td>Frecuencia de red de CA (de ajuste automático) / Rango</td>
<td>50 Hz / 60 Hz / ± 4,5 Hz</td>
<td>50 Hz / 60 Hz / ± 4,5 Hz</td>
<td>50 Hz / 60 Hz / ± 4,5 Hz</td>
</tr>
<tr>
<td>Factor de potencia (cos φ)</td>
<td>0,91</td>
<td>0,91</td>
<td>0,91</td>
</tr>
<tr>
<td>Conexión de CA</td>
<td>monofásica</td>
<td>monofásica</td>
<td>monofásica</td>
</tr>
</tbody>
</table>

Rendimiento

- Rendimiento máx.: 96,1 %
- Rendimiento europeo: 95,2 %

Dispositivos de protección

- Protección contra polarización inversa (CC): *
- Seccionador de potencia de CC ESS: *
- Resistencia al cortocircuito (CA): *
- Monitorización de toma a tierra: *
- Monitorización de red (SMA Grid Guard): *
- Separación galvánica: *

Datos generales

- Dimensiones (ancho x alto x fondo) en mm: 468 / 613 / 242
- Peso: 62 kg
- Rango de temperatura de servicio: -25 °C... +60 °C
- Emisiones de ruido (típicos): ≤ 42 dB(A)
- Autoconsumo (nocturno): < 0,25 W
- Topología:
 - transformativo de baja frecuencia
- Sistema de refrigeración: OptiCool
- Lugar de montaje: interior / a la intemperie (electrónica IP65): *

Características

- Conexión de CC: SUNCIX
- Conexión de CA: borne roscado
- LCD: *

Interfaces:

- Bluetooth® / RS485: *
- Garantía: 5 años / 10 años / 15 años / 20 años / 25 años: *

Certificados y autorizaciones:

- www.SMA-Iberica.com

Accesorios

- Interfaz RS485 48SPB-NR
- Bluetooth® Figgy-Back
- Conector PBI SMC-10-NR del SMA Power Balance
- Kit de toma a tierra "positivo" ESH/W-NE

Datos en condiciones nominales: Abril 2010

Curva de rendimiento SUNNY MINI CENTRAL 5000A / 6000A

www.SMA-Iberica.com
Inversor FV
SUNNY MINI CENTRAL 4600A / 5000A / 6000A

Instrucciones de uso

CONTACTO
SMA Ibérica Tecnología Solar, S.L.
Avda. de las Corts Catalanes, 9
Planta 3, Oficinas 17 – 18
08173 Sant Cugat del Vallés (Barcelona)
Tel. +34 900 14 22 22
Fax +34 936 75 32 14
Service@SMA-Iberica.com
www.SMA-Iberica.com

EXPLICACIÓN DE LOS SÍMBOLOS

Símbolos en el inversor
- Indicador de funcionamiento.
- Cortocircuito a tierra o varistor defectuoso.
 Informe a su instalador inmediatamente.
- Se ha producido un error. Informe a su instalador.
- Dándole golpecitos se puede encender la iluminación del display y se puede pasar al próximo aviso.

Símbolos sobre la placa de características.
- Advertencia de tensión eléctrica peligrosa.
- Advertencia de superficie caliente.
- Observe la información incluida con el equipo.
- El inversor no se puede desear junto con la basura doméstica.
- Puede encontrar más información sobre cómo eliminar el equipo en las instrucciones de instalación incluidas con el mismo.
- Identificación “CE”. El inversor cumple con los requisitos de los reglamentos aplicables de la Comunidad Europea.
- Sello de calidad IAL Solar. El inversor cumple con los requisitos del Instituto Alemán de Garantía de Calidad y Certificación.
- Corriente continua (CC)
- Corriente alterna (CA)
- El inversor está protegido contra la infiltración de polvo y chorros de agua desde cualquier ángulo.
- El inversor está provisto de un transformador.
INDICIONES DE SEGURIDAD

¡PELIGRO!
 Peligro de electrocución debido a las altas tensiones del inversor.

Aun si no hay tensiones desde fuera, en el inversor pueden existir todavía altas tensiones. Los siguientes trabajos deberán ser realizados exclusivamente por electricistas cualificados:
- Instalación eléctrica
- Reparación
- Reequipamiento

¡ATENCIÓN!
 Peligro de lesiones al tocar la carcasa durante el funcionamiento. Quemaduras en el cuerpo.

Tocar solamente la tapa y el display durante el funcionamiento.

¡PRECAUCIÓN!
 Hay sobretensión en el inversor si el LED amarillo parpadea 4 veces. Destrucción del inversor.

- Informe a su instalador inmediatamente si el LED amarillo parpadea y se visualiza el aviso de al lado en el display.

VISTA GENERAL DEL PRODUCTO

ESTADOS DE LED

<table>
<thead>
<tr>
<th>Estado</th>
<th>Denominación</th>
<th>Función</th>
</tr>
</thead>
<tbody>
<tr>
<td>Todos los LED están encendidos</td>
<td>Inicialización</td>
<td>El inversor se inicializa.</td>
</tr>
<tr>
<td>Todos los LED están apagados</td>
<td>Desconexión</td>
<td>La tensión de entrada del inversor es demasiado baja para inyectar.</td>
</tr>
<tr>
<td>El LED verde permanece encendido</td>
<td>Inyección a red</td>
<td>El inversor inyecta en la red pública.</td>
</tr>
<tr>
<td>LED verde parpadea</td>
<td>Espera, monitorización de la red</td>
<td>El inversor monitoriza la red y espera a que la tensión de CC alcance un nivel específico para poder empezar a inyectar a la red.</td>
</tr>
<tr>
<td>El LED rojo está encendido</td>
<td>Advertencia</td>
<td>Hay un error de cortocircuito a tierra o uno de los varistores con control térmico en el lado de entrada de CC está defectuoso. Informe a su instalador.</td>
</tr>
<tr>
<td>El LED amarillo permanece encendido</td>
<td>Fallo</td>
<td>El inversor ha pasado al estado de funcionamiento “bloqueo permanente”. Esto puede tener distintas causas. Informe a su instalador.</td>
</tr>
<tr>
<td>El LED amarillo parpadea</td>
<td>Fallo</td>
<td>El inversor indica un fallo. Esto puede tener distintas causas. Informe a su instalador.</td>
</tr>
</tbody>
</table>

DISPLAY

Manejo
El display indica valores actuales de su instalación. Los valores indicados se actualizan cada cinco segundos. El display se manee de golpecitos.

- **1 golpecito** Se activa la iluminación de fondo. La iluminación se apaga automáticamente tras un período de 2 minutos.
- **Otro golpecito** El display pasa al siguiente aviso.

Avisos del display

- **Funcionamiento**
 - Energía generada durante el día actual
 - Estado de funcionamiento
 - Potencia inyectada al instante
 - Tensión del generador fotovoltaico
 - Energía producida hasta el momento
 - Suma total de las horas de servicio en el modo de inyección a red
- **Fallo**
 - En caso de fallo el inversor indica el estado “Defecto” y un aviso de fallo. Informe a su instalador.
 - Se muestran las siguientes indicaciones:
 - Energía generada durante el día actual
 - Estado de funcionamiento “Defecto”
 - Aviso de fallo
 - Valor de medición al momento del fallo
 - Valor de medición actual (solo se muestra si un valor de medición es responsable del fallo)
- **Sobretensión de CC**
 - Hay una tensión de entrada de CC demasiado alta en el inversor. Informe a su instalador inmediatamente.

CANALES DE MEDICIÓN
Si su inversor está equipado con un dispositivo de comunicación, se puede transferir una variedad de canales de medición y avisos para el diagnóstico.

<table>
<thead>
<tr>
<th>Canales de medición</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balancer</td>
<td>Muestra el modo de funcionamiento actual del inversor que se fijó bajo el parámetro de funcionamiento “PowerBalancer”.</td>
</tr>
<tr>
<td>Conex. Red</td>
<td>Suma total de las conexiones a la red</td>
</tr>
<tr>
<td>dZoc</td>
<td>Impedancia de la red</td>
</tr>
<tr>
<td>E-total</td>
<td>Suma total de la energía inyectada</td>
</tr>
<tr>
<td>Event-Cnt</td>
<td>Número de eventos que se han producido</td>
</tr>
<tr>
<td>Foc</td>
<td>Frecuencia de red</td>
</tr>
<tr>
<td>Fallo</td>
<td>Denominación del fallo / error actual</td>
</tr>
<tr>
<td>h-On</td>
<td>Suma total de horas de servicio</td>
</tr>
<tr>
<td>h-Total</td>
<td>Suma total de las horas de servicio en el modo de inyección a red</td>
</tr>
<tr>
<td>Iac</td>
<td>Corriente de red</td>
</tr>
<tr>
<td>Ipv</td>
<td>Corriente de CC</td>
</tr>
<tr>
<td>Modo</td>
<td>Visualización del estado operacional actual</td>
</tr>
<tr>
<td>Número de serie</td>
<td>Número de serie del inversor</td>
</tr>
<tr>
<td>Poc</td>
<td>Potencia de CA emitida</td>
</tr>
<tr>
<td>Rais / Riso</td>
<td>Resistencia del aislamiento de la instalación fotovoltaica antes de la conexión a la red</td>
</tr>
<tr>
<td>Vac</td>
<td>Tensión de red</td>
</tr>
<tr>
<td>Vpv</td>
<td>Tensión fotovoltaica de entrada</td>
</tr>
<tr>
<td>Vpvteórico</td>
<td>Tensión nominal fotovoltaica</td>
</tr>
</tbody>
</table>

AVISOS DE ESTADO
Su inversor se puede encontrar en distintos estados de funcionamiento. Estos se representan en forma de avisos de estado y pueden variar según el tipo de comunicación.

<table>
<thead>
<tr>
<th>Aviso</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balanced</td>
<td>El inversor se ha desconectado de la red o limita su potencia en promedio de 10 minutos a 5 kVA. El inversor es un componente de un sistema trifásico con otros 2 inversores y está equipado con el Power Balancer para evitar cargas desequilibradas.</td>
</tr>
<tr>
<td>control red</td>
<td>Monitorización de red. Este mensaje aparece durante la fase de arranque, antes de que el inversor esté conectado a la red, mayormente por las mañanas y noches, cuando la irradiación es baja y tras un fallo.</td>
</tr>
<tr>
<td>Defecto</td>
<td>Este aviso aparece por razones de seguridad y evita que el inversor se conecte a la red. Informe a su instalador.</td>
</tr>
<tr>
<td>esperando</td>
<td>Las condiciones para la conexión (todavía) no se han cumplido.</td>
</tr>
<tr>
<td>Fallo</td>
<td>Se ha detectado un error. Informe a su instalador.</td>
</tr>
<tr>
<td>MPP</td>
<td>El inversor trabaja en modo MPP. MPP es la indicación estándar en el funcionamiento bajo irradiación normal.</td>
</tr>
<tr>
<td>Off Grid</td>
<td>El inversor se encuentra en el modo Island Mode. Este modo ha sido concebido especialmente para el funcionamiento con un sistema de red aislado.</td>
</tr>
<tr>
<td>Offset</td>
<td>Compensación del offset de la electrónica de medición.</td>
</tr>
<tr>
<td>Parada</td>
<td>Interrupción del funcionamiento.</td>
</tr>
<tr>
<td>Riso</td>
<td>Medición de la resistencia del aislamiento de la instalación fotovoltaica.</td>
</tr>
<tr>
<td>V-const</td>
<td>Funcionamiento de tensión constante.</td>
</tr>
</tbody>
</table>
Monitorització SMA
SUNNY WEBBOX

Monitorización y mantenimiento a distancia para grandes instalaciones fotovoltaicas

Monitorización, diagnóstico a distancia, almacenamiento de datos y visualización: la Sunny WebBox es una potente central de comunicaciones para instalaciones fotovoltaicas de tamaño mediano y grande. Recopila continuamente todos los datos de los inversores y permite informarse del estado de la instalación en todo momento. Como registrador de datos multifuncional y de bajo consumo, la Sunny WebBox dispone de numerosas opciones para la visualización, el almacenamiento y el procesamiento de los datos incluso en redes con exigentes requisitos de seguridad. Si se produce un fallo, la WebBox informa inmediatamente por correo electrónico o SMS*. Los datos de medición pueden incluso transmitirse a Sunny Portal a través de un módem GSM desde lugares remotos en los que no hay una conexión telefónica o ADSL disponible.

*Opcional si tiene módem GSM
Gestión de instalaciones

La Sunny WebBox registra y almacena continuamente todos los valores de medición disponibles de hasta 50 inversores. Además, los parámetros de los inversores se pueden mostrar y modificar. Esto permite, por ejemplo, adaptar los parámetros de forma centralizada desde la Sunny WebBox desde cualquier lugar del mundo.

Con la Sunny WebBox, los técnicos especializados y los operadores de la instalación pueden informarse sobre el estado de una instalación fotovoltaica y reconocer a tiempo los fallos de funcionamiento. Ante cualquier fallo, la Sunny WebBox les avisa inmediata- tamente por correo electrónico u opcionalmente por SMS*. No importa dónde, ya sea en casa, en la oficina o en viaje de negocios: sólo necesita un PC con navegador de Internet y una conexión a Internet para tener acceso a los datos de la Sunny WebBox.

Gestión de datos

Para una gestión profesional de datos, la Sunny WebBox ofrece diversos sistemas de procesamiento de datos moderno. Los valores registrados, que informan detalladamente sobre el rendimiento de la instalación, se almacenan en los formatos de archivo comunes CSV o XML. Estos valores pueden transferirse al PC de forma sencilla mediante el intercambio de datos a través de FTP. De esta manera puede almacenar de forma permanente en el PC los valiosos datos de la instalación, así como visualizarlos como desee, por ejemplo en MS Excel, y crear gráficos de evolución diarios, mensuales y anuales para valorar los datos. Asimismo, los datos de la instalación se pueden enviar a un servidor FTP de su elección, en paralelo con Sunny Portal.

*Sólo si tiene módem GSM
Resulta igual de sencillo utilizar una tarjeta SD para almacenar los datos y transferirlos entre la Sunny WebBox y el PC. Si hay una tarjeta SD insertada, la Sunny WebBox también almacena los datos en esta memoria extraible. Si los datos de la tarjeta SD se leen en un PC, dispone de las mismas opciones individuales de procesamiento como en una transferencia por FTP.

Con Sunny Portal forma una pareja perfecta

El siguiente paso para una gestión eficaz es la conexión de la Sunny WebBox con nuestro portal de Internet gratuito.

En www.SunnyPortal.com ponemos a su disposición un entorno completamente preconfigurado en el cual los datos se procesan, archivan y visualizan automáticamente. Además, si se desea, Sunny Portal envía informes de la instalación diarios o mensuales por correo electrónico. Además, si la Sunny WebBox no envía datos en alguna ocasión, Sunny Portal también informa sobre ello. Si se desea, la plataforma en línea compara automáticamente los rendimientos de todos los inversores de una instalación e informa sobre las posibles desviaciones. Otra ventaja es la actualización automática del software de la WebBox a través de Sunny Portal. De esta manera se garantiza que la monitorización de la instalación esté siempre actualizada.

En combinación, Sunny Portal y la WebBox son un equipo imbatible en la protección del rendimiento de la instalación fotovoltaica. Con el servicio SMA, tanto los operadores como los técnicos especializados reciben asistencia durante toda la vida útil de la instalación. Ante una incidencia, nuestros empleados pueden conectarse a la instalación y ofrecer la asistencia necesaria en el diagnóstico.
<table>
<thead>
<tr>
<th>Datos técnicos</th>
<th>SUNNY WEBBOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comunicación</td>
<td></td>
</tr>
<tr>
<td>Comunicación con inversores</td>
<td></td>
</tr>
<tr>
<td>RS485 / Ethernet</td>
<td></td>
</tr>
<tr>
<td>Alcance máx. de comunicación</td>
<td></td>
</tr>
<tr>
<td>RS485 / Ethernet</td>
<td></td>
</tr>
<tr>
<td>Suministro de tensión</td>
<td></td>
</tr>
<tr>
<td>Suministro de tensión</td>
<td></td>
</tr>
<tr>
<td>Tensión de entrada</td>
<td></td>
</tr>
<tr>
<td>Consumo de potencia</td>
<td></td>
</tr>
<tr>
<td>Condiciones ambientales durante el funcionamiento</td>
<td></td>
</tr>
<tr>
<td>Temperatura ambiente</td>
<td></td>
</tr>
<tr>
<td>Humedad relativa del aire</td>
<td></td>
</tr>
<tr>
<td>Memoria</td>
<td></td>
</tr>
<tr>
<td>Interna</td>
<td></td>
</tr>
<tr>
<td>Externa</td>
<td></td>
</tr>
<tr>
<td>Datos generales</td>
<td></td>
</tr>
<tr>
<td>Dimensiones (ancho / alto / fondo) en mm</td>
<td></td>
</tr>
<tr>
<td>Peso</td>
<td></td>
</tr>
<tr>
<td>Lugar de montaje</td>
<td></td>
</tr>
<tr>
<td>Modo de uso</td>
<td></td>
</tr>
<tr>
<td>Indicación de estado</td>
<td></td>
</tr>
<tr>
<td>Idiomas del software y de las instrucciones</td>
<td></td>
</tr>
<tr>
<td>Características</td>
<td></td>
</tr>
<tr>
<td>Manejo</td>
<td>Servidor web integrado (navegador de Internet)</td>
</tr>
<tr>
<td>Garantía</td>
<td>5 años</td>
</tr>
<tr>
<td>Certificados y autorizaciones</td>
<td>www.SMA-Solar.com</td>
</tr>
<tr>
<td>Accesorios</td>
<td></td>
</tr>
<tr>
<td>Sunny SensorBox / Sunny Matrix</td>
<td>o/o</td>
</tr>
<tr>
<td>Tarjeta SD 128 MB / 512 MB / 1 GB / 2 GB</td>
<td>o/o/o/o</td>
</tr>
<tr>
<td>Antena GSM para exteriores / tarjeta de datos GSM</td>
<td>o/o</td>
</tr>
<tr>
<td>Cable de comunicación RS485</td>
<td>o</td>
</tr>
<tr>
<td>Presentación de los datos de la instalación con Sunny Matrix o Flashview</td>
<td>Visualización automática y gratuita de los datos de medición en Sunny Portal</td>
</tr>
<tr>
<td>Servidor FTP integrado para la transferencia de datos y su almacenamiento en un PC</td>
<td>Procesamiento individual de los datos de medición en el propio PC</td>
</tr>
<tr>
<td>Servidor web integrado para el acceso remoto en línea desde cualquier PC con acceso a Internet</td>
<td>Envío de datos flexible por medio de servidores FTP de libre elección y uso en paralelo con Sunny Portal</td>
</tr>
</tbody>
</table>

Opcional si tiene módem GSM
Monitorización de la instalación

SUNNY WEBBOX

Breve guía para la puesta en funcionamiento

CONTACTO

Si tiene un problema técnico con la Sunny WebBox llame al teléfono de ayuda técnica de SMA: Tenga los siguientes datos a mano para que podamos ayudarle más rápido:

- Sistema operativo
- Tipo de comunicación
- Versión del firmware de la Sunny WebBox

SMA Ibérica Tecnología Solar, S.L.
Avda. de las Cort Catalanas, 19
Pabellón 3, Oficinas 17 - 18
08173 Sant Cugat del Vallés (Barcelona)
Tel: +34 936 75 22 22
Fax: +34 936 75 32 14
ServicioSMASMA-iberica.com
www.SMA-Ibertec.com

REALIZAR CONFIGURACIONES DE RED

Este apartado describe cómo configurar el ordenador a la configuración de red de la Sunny WebBox.

La explicación es válida para estos sistemas operativos:
- Windows Vista/Windows 7
- Windows XP/Windows 2000

Si usa otro sistema operativo, lea en el manual del mismo cómo asignar la dirección IP 192.168.0.100 y la subred de 255.255.255.0 a su ordenador.

WINDOWS 7/WINDOWS VISTA

1. Encienda el ordenador y registrese como administrador.
2. Vaya al punto del menú [Inicio] introduzca mnpa.ppl en el campo de búsqueda y pulse la tecla intro.
3. Haga doble clic sobre "la conexión (LAN)" a la que está conectado la Sunny WebBox.
4. Selecione [Características] en la ventana "Estado de la conexión LAN".
5. En la ventana "Características de conexión LAN" marque "Protocolo de Internet (TCP/IP)" y seleccione [Características].

En la línea "Dirección IP" escribe 192.168.0.100
Máscara de subred: 255.255.255.0

Selecione [OK] en la ventana "Características conexión LAN".

WINDOWS XP/WINDOWS 2000

1. Encienda el ordenador y registrese como administrador.
2. En Windows, seleccione "Inicio > Ejecutar".
3. Introduzca mnpa.ppl en el campo "Run" y seleccione [OK].
4. Haga doble clic sobre "la conexión (LAN)" a la que está conectado la Sunny WebBox.
5. Selecione [Características] en la ventana "Estado de la conexión LAN".
6. En la ventana "Características de conexión LAN" marque "Protocolo de Internet (TCP/IP)" y seleccione [Características].

En la línea "Dirección IP" escribe 192.168.0.100
Máscara de subred: 255.255.255.0

Selecione [OK] en la ventana "Características conexión LAN".

ACTIVAR LA SUNNY WEBBOX

La Sunny WebBox se configura a través del navegador.
1. Inicie el navegador (p. ej. Internet Explorer).
2. Escriba 192.168.0.168 en la barra de direcciones y presione la tecla Intro.
3. Pase a la página de inicio de la Sunny WebBox.
4. Si la página de inicio de la Sunny WebBox no está abierta, haga clic [Ver] y en caso necesario, vuelva a consultar la descripción técnica de la Sunny WebBox.

5. En el campo "Contraseña" introduzca la contraseña correspondiente al grupo de usuario "instalador".
CONSEJO: la contraseña de fábrica es "sma".
6. Selecione [Ingresar].
7. Introduzca las contraseñas nuevas en los campos "Contraseña del usuario" y "Contraseña del instalador". Vuelva a escribirlas a la derecha.
8. Selecione [Guarda].
CONSEJO: puede configurar el acceso FTP y el dispositivo de almacenamiento externo más tarde.
CONFIGURAR TIPO DE CONEXIÓN

La Sunny WebBox se configura de manera distinta según el modo de conexión que se desee o la versión que tenga.

RED LOCAL

INDICACIÓN: Incorporar la Sunny WebBox a una red local (a través de un router, switch o concentrador). Diríjase al administrador de red si desea incorporar la Sunny WebBox a una red de empresa.

Selección en la Sunny WebBox > Configuración > Red

Aparece la pape “Configuraciones de red”.

Selección “Red” en el campo “Identificador de red”.

Introduzca el campo “Dirección IP” la dirección IP para la Sunny WebBox.

La dirección IP estática (protocolo de Internet) la tiene que determinar usted mismo. Para ello utilice el área de direcciones de su router. La dirección de los routers suele ser un grupo de cifras entre 192.168.0.1 y 192.168.255.254. Si necesita más información consulte el manual de su router. Cuando asigna las direcciones IP tenga en cuenta que las tres primeras partes de la dirección IP deben ser idénticas para todos los integrantes de la misma red. No asigna una dirección IP dos veces.

Ejemplo: asignar dirección IP

Ruta: 192.168.0.1
Ordenador1: 192.168.0.100
Ordenador2: 192.168.0.200
Sunny WebBox: 192.168.0.168

Introduzca la máscara de subred en el campo “Máscara de subred”. Esta suele ser 255.255.255.0.

Por lo general hay que introducir la dirección IP del router en los campos “Dirección del gateway” y “Dirección de servidor DNS”.

Selección [Guardar] y después [Confirmar].

La Sunny WebBox guarda las configuraciones de red. Este proceso finaliza cuando se le redirige a la nueva dirección IP o ya no puede acceder a la Sunny WebBox a través de su navegador.

INDICACIÓN

Restablecer las configuraciones de red del ordenador

Restablezca las configuraciones de red en su ordenador para que pueda volver a acceder a él a través de su red local cuando lo necesite (véase punto 8.5) (punto 8.8).

Retire la fuente de alimentación de la toma de corriente.

Conecte la Sunny WebBox a la red local con el cable de red rojo (a un router, switch o concentrador).

Inserte la fuente de alimentación en la toma de corriente.

Ahora se puede localizar la Sunny WebBox en la red local a través de la nueva dirección IP. También puede capturar los equipos y realizar otros ajustes en la instalación fotovoltaica.

MÓDEM o GSM

INDICACIÓN: Incorporar la Sunny WebBox a través de la red telefónica (p. ej. a través de la red fija o GSM). Este modo es posible si tiene una Sunny WebBox que tenga módem analógico o GSM.

Prepare la Sunny WebBox:

• Si la Sunny WebBox está equipada con un módem analógico, una de los cables del módem con la Sunny WebBox y conecte a la toma de conexión telefónica.

• Si la Sunny WebBox está equipada con GSM, conecte y monte la antena GSM a la Sunny WebBox.

Selección WebBox > Configuración > Módem

Selección “#” en el campo “Identificador de la conexión del módem”. Con esto permite que se establezca una conexión de transmisión de datos a distancia a la Sunny WebBox.

Introduzca en el campo “Número de teléfono ISP” el número de teléfono de su proveedor de acceso o a Internet. Si tiene un contrato con los siguientes proveedores alternos: T-Mobile, Vodafone y RPlas, introduzca siempre “99-***-***”. Si tiene contrato con otros proveedores el número de teléfono ISP puede ser diferente. Busque el número en la documentación que haya recibido de su proveedor.

En los campos “Nombre del usuario ISP”, “Contraseña ISP”, “GSM SIM PIN” y “GSM APN”, introduzca los datos correspondientes a la conexión de la Sunny WebBox con GSM los campos “Número del usuario ISP” y “Contraseña ISP” no pueden quedarse vacíos, a pesar de que muchos proveedores no asignan nombre de usuario o contraseña. Escriba en estos campos un texto alternativo. Encontrará más información acerca del tema GSM en la descripción técnica de la Sunny WebBox.

Selección [Guardar].

La Sunny WebBox guarda la configuración del módem. Ya puede capturar los equipos y realizar otros ajustes en la instalación fotovoltaica. Configure la Sunny WebBox para el envío de datos p. ej. a Sunny Portal [www.SunnyPortal.com] o utilice p. ej. la comunicación mediante mensaje de texto directo de la Sunny WebBox con GSM.

REGISTRAR LA INSTALACIÓN EN EL SUNNY PORTAL

La Sunny WebBox ofrece la posibilidad de enviar automáticamente a la página de internet “Sunny Portal” todos los datos relevantes de su instalación fotovoltaica. En www.SunnyPortal.com podrá encontrar más información. Antes de poder usar el Sunny Portal, debe registrarse por medio de la Sunny WebBox. Para ello procede de la siguiente forma:

Selección WebBox > Configuración > Trans. datos.

Aparece la página “Transmisión de datos”.

En “Configuraciones generales” introduzca en el campo “Número de la instalación” el número que desea ponerle a su instalación fotovoltaica. Este nombre se verá en el Sunny Portal como nombre de la instalación.

En el campo “Introducir” escriba el tipo de conexión que quiere que la Sunny WebBox utilice para enviar datos al Sunny Portal (véase [1] en estas instrucciones).

Para configurar la transmisión de datos seleccione los valores que desee en los campos “Número de carga durante el intervalo horario” y “Número máximo de intentos de carga por intervalo”.

En “Configuraciones del portal”, seleccione “#” en el campo “Utilizar Sunny Portal”.

No escriba nada en el campo “Identificación de la instalación”, este número se genera de forma automática. Dicho número, la dirección de correo electrónico y el nombre de la instalación son el identificador imprescindible para la instalación fotovoltaica.

En el campo “Correo electrónico del gestor” introduzca el correo electrónico a o al que el Sunny Portal debe enviar los datos de acceso.

Selección [Guardar].

Selección WebBox > Información.

Selección [Registrar] en el campo “Último registro en Sunny Portal”.

La Sunny WebBox se registra en el Sunny Portal. Cuando aparece “OK” en el campo “Último registro en el portal” significa que el registro funciona. El Sunny Portal le enviará sus datos de acceso por correo electrónico.

Si aparece la indicación “Fallo” el registro ha fallado. Revise los pasos 5 hasta 12 y en caso necesario, vuelva a consultar la descripción técnica de la Sunny WebBox.

Sensor SMA
SUNNY SENSORBOX

La estación meteorológica para instalaciones fotovoltaicas

La Sunny SensorBox se instala directamente en los módulos y mide la irradiación solar y la temperatura. En combinación con la Sunny WebBox y Sunny Portal, permite una comparación continua de los valores nominales y reales de potencia de la instalación. De este modo es posible detectar la proyección de sombras, la suciedad o, el rendimiento reducido del generador lo que maximiza la estabilidad del rendimiento. La conexión de sensores adicionales para la medición opcional de la temperatura ambiente o la velocidad del viento permite obtener cálculos aún más precisos.

<table>
<thead>
<tr>
<th>Segura</th>
<th>Informativa</th>
<th>Cómoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rápida detección de errores mediante la comparación continua de los valores nominales y reales de potencia de la instalación</td>
<td>Registro exacto de la intensidad de irradiación, la temperatura del módulo, la temperatura ambiente y la velocidad del viento</td>
<td>Fácil instalación en el generador solar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conexión sencilla a las instalaciones fotovoltaicas existentes por RS485</td>
</tr>
</tbody>
</table>
SUNNY SENSORBOX

La estación meteorológica para instalaciones fotovoltaicas industriales

Monitorización completa, fácilmente instalada

La Sunny SensorBox se usa sobre todo en instalaciones solares de gran tamaño y de uso industrial. Se instala a la intemperie, en el generador solar y mide la irradiación solar a través de una célula solar integrada. La medición de la temperatura del módulo tiene lugar por medio de un sensor de temperatura, también incluido en la entrega. A través de la irradiación actual y la temperatura del módulo se puede calcular la potencia teórica y compararla con la potencia efectiva medida del inversor. Así, las reducciones de rendimiento temporales o duraderas a causa de fuentes de error no reconocidas pertenecen al pasado.

... y se puede ampliar por módulos

Después de configurar la Sunny SensorBox de acuerdo a los módulos, se la conecta junto con los inversores a través de comunicación serial por línea de datos RS485 a una Sunny WebBox. Partiendo de aquí los datos pueden ser enviados a un ordenador para su procesamiento o al Sunny Portal para el análisis automático de rendimiento. La Sunny SensorBox ofrece, para obtener un cálculo más exacto, posibilidades de conexión para otros sensores, como p. ej. para la medición de la temperatura ambiente, de la velocidad del viento o para un sensor adicional de radiación. Esto le permite un control fiable de la instalación y una seguridad máxima del rendimiento.
El coeficiente de rendimiento como indicador de calidad

No se deben subestimar los efectos negativos en la potencia del generador y en consecuencia, en el rendimiento solar causados por: sombras, fallos, suciedad y fallos latentes, como por ejemplo, la degradación de los módulos. El siguiente hecho suele causar un gran disgusto al propietario de la instalación: en muchos casos, la detección temprana del fallo hubiera evitado la reducción del rendimiento. Teniendo en cuenta esto se puede explicar el importante papel que desempeña un elevado rendimiento en la instalación fotovoltaica (coeficiente de rendimiento). El coeficiente de rendimiento es la relación entre el rendimiento real (valor real) de la instalación fotovoltaica y el rendimiento teóricamente posible (valor nominal). Este indica en qué medida se aprovecha la energía solar incidente sobre el generador y es, por tanto, el factor de calidad decisivo para el rendimiento de toda la instalación fotovoltaica. Por eso necesita una Sunny SensorBox.

Cómo calcular el coeficiente de rendimiento

Divida la energía generada real por el rendimiento energético posible. Mientras que el rendimiento posible se obtiene del rendimiento de los módulos, su superficie y la irradiación medida; el inversor le proporciona los datos reales. Las instalaciones fotovoltaicas conectadas a la red y cuyo funcionamiento sea óptimo, alcanzan unos valores de coeficiente de rendimiento de entre un 60 y 80 %. Si el valor es inferior la instalación no funciona correctamente.
<table>
<thead>
<tr>
<th>Datos técnicos</th>
<th>Sunny SensorBox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comunicación</td>
<td>RS485 al Sunny WebBox, RS485 al Sunny Boy Control, Power Injector de SMA con Bluetooth</td>
</tr>
<tr>
<td>Conexiones</td>
<td>1 SMacom / borne de resorte de tracción</td>
</tr>
<tr>
<td>Alcance máx. de comunicación</td>
<td>1200 m</td>
</tr>
<tr>
<td>Suministro de tensión</td>
<td>100 m</td>
</tr>
<tr>
<td>Temperatura ambiente</td>
<td>-25 °C...+70 °C</td>
</tr>
<tr>
<td>Clase de protección (según CEI 60529)</td>
<td>IP65</td>
</tr>
<tr>
<td>Datos generales</td>
<td></td>
</tr>
<tr>
<td>Dimensiones (ancho x alto x fondo) en mm</td>
<td>120 / 50 / 90</td>
</tr>
<tr>
<td>Peso</td>
<td>500 g</td>
</tr>
<tr>
<td>Lugar de montaje</td>
<td>Exteriores</td>
</tr>
<tr>
<td>Idiomas de las instrucciones</td>
<td>Placa de montaje, ángulo de techo alemán, inglés, francés, italiano, español, neerlandés, checo, portugués griego, coreano</td>
</tr>
<tr>
<td>Equipamiento</td>
<td>Mediada la interfaz de la Sunny WebBox</td>
</tr>
<tr>
<td>Garantía</td>
<td>5 años</td>
</tr>
<tr>
<td>Certificados y autorizaciones</td>
<td>www.SMA-Solar.com</td>
</tr>
<tr>
<td>Accesorios</td>
<td></td>
</tr>
<tr>
<td>Placa de montaje</td>
<td>○</td>
</tr>
<tr>
<td>Ángulo de techo</td>
<td>○</td>
</tr>
<tr>
<td>Anemómetro</td>
<td>○</td>
</tr>
<tr>
<td>Soporte mural para el anemómetro</td>
<td>○</td>
</tr>
<tr>
<td>Sensor de temperatura ambiente PT100</td>
<td>○</td>
</tr>
<tr>
<td>Sensor de temperatura del módulo PT100</td>
<td>●</td>
</tr>
<tr>
<td>RS485 Power Injector</td>
<td>●</td>
</tr>
<tr>
<td>SMA Power Injector con Bluetooth</td>
<td>○</td>
</tr>
</tbody>
</table>

● De serie ○ Opcional — No disponible
CGP-9 Cahors
REFERENCIA CAHORS: 0446730-250
REFERENCIA ENDESA: 6705804

CARACTERÍSTICAS:
- Tensión asignada: 500V
- Intensidad asignada: 250A
- Grados de protección IP41, IK09
- Tres bases seccionables en carga tamaño BUC-1 250A
- Neutro seccionable con borne puesta tierra de 50 mm²
- Esquema 9
- Bornes de entrada mediante tornillo inox M10
- Bornes de salida mediante tornillo inox M10

NORMAS:
- UNE-EN 60439
- UNE-EN 20324
- UNE-EN 50102
- REBT ITC BT13
- DIRECTIVA CE

UTILIZACION:
- Protección de la línea general de alimentación en una instalación de enlace
- Instalación en fachada exterior de los edificios o muros de cierre
- Montaje superficial, empotrada o en nincho de acuerdo al REBT
REFERENCIA CAHORS: 0446150
REFERENCIA ENDESA: 6700034

ESQUEMA ELECTRICO:

CARACTERISTICAS:
- Tensión asignada: 500v
- Intensidad asignada: 400A
- Grados de protección IP43, IK09
- Tres bases fusibles tamaño BUC-2 (400A)
- Neutro amovible
- Bornes de entrada mediante tornillo Inox M10
- Bornes de salida mediante tornillo Inox M10

NORMAS:
- UNE-EN 60439
- UNE-EN 20324
- UNE-EN 50102
- REBT ITC BT13
- DIRECTIVA CE
- GE NNL 01700
- GE CNL 00300

UTILIZACION:
- Lineas subterráneas de distribucion en baja tensión
Quadre elèctric ABB
ArTu L
General information

The ArTu distribution switchboards are enriched by the new L series for applications up to 630A, which widens the ABB offer in the secondary and terminal distribution sector: a series able to combine quality performances with maximum selection and assembly simplicity.

The ArTu L range has two versions, wall-mounted and floor-mounted, consisting of modular kits able to be adapted to very different requirements. The quality of the materials used and the attention paid to detail remain the same, as does compatibility of the accessories, which are common to the other two M and K ranges and ensure the widest versatility of use. The DMBWin technical software, developed especially for the ArTu secondary distribution switchboards, also facilitates configuration, estimation and preparation of the documents to be enclosed with the switchboards once they have been cabled and tested for the new L series.

Both modular apparatus of the pro M System series, and moulded-case Tmax T1-T2-T3 and Isomax S4 and S5 (fixed version with front terminals) circuit-breakers are housed inside the switchboards, with a capacity of 24 modules per row. Apart from in the traditional versions (plain and pre-drilled) with 200 mm height, the modular panels in the new series are also available in the 150 mm height, which allows optimisation of the space available for circuit-breakers and cables.
ArTu L
Technical-functional characteristics

Sturdiness and practicality
The ArTu L switchboards are extremely sturdy. The pickled sheet structure they are made of has a thickness of 15/10 (bottom profile and door) and 12/10 (structure).
The modular kits mean different combinations can be built up, limiting the overall dimensions to a depth of just 200 mm. In the wall-mounted version, the switchboards can also be placed side by side laterally.

Cabling becomes simpler, thanks to the structure which is completely open on all sides: with the switchboard dismantled, it is possible to carry out cabling easily in the workshop or on site, placing the switchboard horizontally on trestles.
The kit for fixing the circuit-breakers further simplifies the job, thanks to the practical rapid snap-on hooking up system and the standardised small items. The Unifix H and L cabling system is also the best solution for cabling the ABB SACE circuit-breakers inside the ArTu L switchboards.

Facilitated insertion of the kits
Possibility of using H=150mm panels with H=200mm panels
Automatic earthing between panels and structure
Automatic earthing between panels and structure
Side-by-side differential module and distribution frame
Prefabricated kits for connection between circuit-breakers and busbars
The busbars, too, can be mounted in the connection boxes
Lateral access is guaranteed, as the possibility of mounting the vertical wiring duct both on the right and on the left. The wiring duct can also be positioned horizontally. The cable riser container available with a width of 300mm is able to take the different busbar systems. The box, to be placed above the switchboard roof, increases the space available for the incoming cables and, together with the distribution frame, makes distribution simpler.

The 400 and 800A certified system of shaped profile busbars is also available for the L series switchboards, with prefabricated connections between circuit-breakers and busbars. Traditional flat busbars can be used. The degree of protection goes from IP 31, for the versions without door, up to IP 43 for the versions with door. The maximum form of segregation which can be obtained is type 2. The ArTu L switchboards are subjected to the type tests required by the CEI EN 60439-1 (CEI 17/13-1) Standards in the ABB laboratories. Using metalwork structures and relative accessories together with modular apparatus and ABB SACE moulded-case and air circuit-breakers, it is therefore possible to construct AS or ANS type switchboards without carrying out further type tests, but simply respecting the selection criteria and the assembly instructions of the various components.

The range

WALL-MOUNTED ArTu L series

<table>
<thead>
<tr>
<th>Heights</th>
<th>600, 800, 1000 e 1200 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
<td>200 mm</td>
</tr>
<tr>
<td>Width</td>
<td>700 mm</td>
</tr>
</tbody>
</table>

FLOOR-MOUNTED ArTu L series

<table>
<thead>
<tr>
<th>Heights</th>
<th>1400, 1600, 1800 e 2000 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
<td>240 mm</td>
</tr>
<tr>
<td>Width</td>
<td>700 mm</td>
</tr>
</tbody>
</table>

Technical characteristics

<table>
<thead>
<tr>
<th></th>
<th>Wall-mounted D=200mm</th>
<th>Floor-mounted D=240mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance with the Standard</td>
<td>CEI EN 60439-1</td>
<td></td>
</tr>
<tr>
<td>Rated service voltage -Ue</td>
<td>fino a 690 V</td>
<td>fino a 690 V</td>
</tr>
<tr>
<td>Rated insulation voltage -Ui</td>
<td>fino a 1000 V</td>
<td></td>
</tr>
<tr>
<td>Rated impulse withstand voltage -Uimp</td>
<td>6 kV</td>
<td>8 kV</td>
</tr>
<tr>
<td>Rated frequency</td>
<td>50-60 Hz</td>
<td></td>
</tr>
<tr>
<td>Rated current -In</td>
<td>up to 250 A</td>
<td>up to 630 A</td>
</tr>
<tr>
<td>Rated short-time short-circuit current -Icw</td>
<td>up to 25 kA</td>
<td>up to 35 kA</td>
</tr>
<tr>
<td>Rated peak short-circuit current -Ipk</td>
<td>up to 52.5 kA</td>
<td>up to 74 kA</td>
</tr>
<tr>
<td>Degree of protection IP</td>
<td>31 without door</td>
<td>31 without door</td>
</tr>
<tr>
<td></td>
<td>43 with door</td>
<td>43 with door</td>
</tr>
</tbody>
</table>
Selection of the structure

Structures

<table>
<thead>
<tr>
<th>No. vertical mod.</th>
<th>No. DIN mod. installable</th>
<th>Overall external dimensions (1)</th>
<th>Functional dimensions (2)</th>
<th>Wall-mounted structure Bottom (3)</th>
<th>Floor-mounted structure Bottom (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H=100mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>96 (24x4)</td>
<td></td>
<td></td>
<td>SL0600</td>
<td>SL0800</td>
</tr>
<tr>
<td>8</td>
<td>120 (24x5)</td>
<td></td>
<td></td>
<td>SL1000</td>
<td>SL1200</td>
</tr>
<tr>
<td>10</td>
<td>144 (24x6)</td>
<td></td>
<td></td>
<td></td>
<td>SL1400</td>
</tr>
<tr>
<td>12</td>
<td>192 (24x8)</td>
<td></td>
<td></td>
<td></td>
<td>SL1600</td>
</tr>
<tr>
<td>14</td>
<td>216 (24x9)</td>
<td></td>
<td></td>
<td></td>
<td>SL1800</td>
</tr>
<tr>
<td>16</td>
<td>240 (24x10)</td>
<td></td>
<td></td>
<td></td>
<td>SL2000</td>
</tr>
<tr>
<td>18</td>
<td>288 (24x12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>312 (24x13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional cable container

<table>
<thead>
<tr>
<th>Overall external dimensions (1)</th>
<th>Functional dimensions (2)</th>
<th>Wall-mounted structure (3)</th>
<th>Floor-mounted structure (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H mm (L) mm (D) mm</td>
<td>H mm L mm D mm</td>
<td>Including roof and base</td>
<td>Including roof and base</td>
</tr>
<tr>
<td>650 390 204</td>
<td></td>
<td>VC0600</td>
<td></td>
</tr>
<tr>
<td>850 1000</td>
<td></td>
<td>VC0800</td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td></td>
<td>VC1000</td>
<td></td>
</tr>
<tr>
<td>1550 390 204</td>
<td></td>
<td>VC1200</td>
<td></td>
</tr>
<tr>
<td>1750 1800</td>
<td></td>
<td>VC1400</td>
<td>VC1600</td>
</tr>
<tr>
<td>1950 2000</td>
<td></td>
<td>VC1800</td>
<td>VC1800</td>
</tr>
<tr>
<td>2150</td>
<td></td>
<td>VC2000</td>
<td>VC2000</td>
</tr>
</tbody>
</table>

(1) The overall external dimensions of the floor-mounted ArTu L switchboards include the palletizable base strip h=100mm (angle and flanges to be ordered separately).
(2) The functional dimensions are equal to the useful space for installation of the apparatus.
(3) The wall-mounted structures cannot be placed on top of each other.
(4) In this catalogue, reference is always made relative to the 200/240mm depths corresponding to the overall dimensions with front door.

Additional information:
- The useful dimensions between panel and the bottom of the structure are 165/195mm.
- See page 16 for more details.

Components .. page 14 In-depth technical information page 30 Overall dimensions page 42
ArTu L
Selection of the structure

Plain lateral closure
Plain removable panel

Lateral closure Base strip Intermediate uprights Base strip Front doors IP43 Connection boxes IP31 Finishing profile

Plain
With plain removable panel
Angles Flanges For placing side by side laterally Angle for side by side laterally Glass door Plain door Roof box

MC0600 M0600
MC0800 M0800
MC1000 M1000
MC1200 M1200
MC1400 M1400
MC1600 M1600
MC1800 M1800
MC2000 M2000
ZL1000 ZL1001 ZL3000
PV0600 PC0601
PV0800 PC0801
PV1000 PC1001
PV1200 PC1201
PV1400 PC1401
PV1600 PC1601
PV1800 PC1801
PV2000 PC2001
RC1000

ZL1000 ZL1001 ZL3000

Solutions recommended for installation of the apparatus

Apparatus Wall-mounted structures Type of structure/installation Floor-mounted structures Connection box

Pro M System modular apparatus OESA OETL

Tmax T1 3/4 poles - fixed / front terminals (++) • • • •
Tmax T2 3/4 poles - fixed / front terminals (++) • • • •
Tmax T3 3/4 poles - fixed / front terminals • (+) • • • •

Kit for side-by-side Tmax Isomax S4 3/4 poles - fixed / front terminals (+) • •
Isomax S5 3/4 poles - fixed / front terminals (+) • •
Busbars with shaped profile Linear busbar holder Linear busbar holder Linear busbar holder
Scaled busbar holder Scaled busbar holder Scaled busbar holder
Flat busbars
Unifix H-L

(++) Also for Isomax S1-S2.
(+) Can also be installed in the additional cable container.
(•) Can only be installed in the additional cable container.
(••) Also for Isomax S3.

Components .. page 14
In-depth technical information page 20
Overall dimensions page 18
ArTu L
Examples of configuration

Wall-mounted structures

Floor-mounted structures
Kit for Pro M System modular apparatus, Tmax T1-T2-T3, Oetl and Isomax S4-S5

<table>
<thead>
<tr>
<th>Modular apparatus, Tmax T1-T2-T3 e Isomax S1-S2</th>
<th>Dimensions (mm)</th>
<th>Fixed circuits-breakers</th>
<th>Vertical on DIN rail</th>
<th>Horizontal</th>
<th>Vertical cable cont.</th>
<th>Kit</th>
<th>Vertical on DIN rail</th>
<th>Horizontal</th>
<th>Vertical cable cont.</th>
<th>Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OT45...63 E3-E4</td>
<td>150</td>
<td>OT</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
</tr>
<tr>
<td>OT80 E3-E4</td>
<td>150</td>
<td>OT</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
</tr>
<tr>
<td>OT100...125 E3-E4</td>
<td>150</td>
<td>OT</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
</tr>
<tr>
<td>Isomax S3-S4</td>
<td>200</td>
<td>Isomax</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
</tr>
<tr>
<td>400D1-D2; 630K3-K4</td>
<td>400</td>
<td>Isomax</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
</tr>
</tbody>
</table>

- **TD** Only for Pro M system modular apparatus.
- **T2** For Tmax with residual current release.

ArTu L

Kits for installation of apparatus

<table>
<thead>
<tr>
<th>Fixed circuits-breakers</th>
<th>Dimensions (mm)</th>
<th>Front terminals 3/4 poles</th>
<th>Vertical on DIN rail</th>
<th>Horizontal</th>
<th>Vertical cable cont.</th>
<th>Kit</th>
<th>Vertical on DIN rail</th>
<th>Horizontal</th>
<th>Vertical cable cont.</th>
<th>Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>200</td>
<td>LD1</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
</tr>
<tr>
<td>T1</td>
<td>200</td>
<td>LD1</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
</tr>
<tr>
<td>T2</td>
<td>200</td>
<td>LD2</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
</tr>
<tr>
<td>T2</td>
<td>200</td>
<td>LD2</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
</tr>
<tr>
<td>T3</td>
<td>200/300</td>
<td>LD3</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
</tr>
<tr>
<td>T3</td>
<td>200/300</td>
<td>LD3</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
</tr>
<tr>
<td>Isomax S3-S4</td>
<td>200/400</td>
<td>LD4</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
</tr>
<tr>
<td>Isomax S5</td>
<td>300/500</td>
<td>LD5</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
<td>GD1520</td>
<td>PM1500</td>
</tr>
</tbody>
</table>

Components .. page 14
In-depth technical information page 20
Overall dimensions page 18
ArTu L
Distribution system

Shaped profile busbars up to 800A and busbar holder up to 630A

Connection box

Wall-mounted structure

Floor-mounted structure

Shaped profile busbars up to 800A

<table>
<thead>
<tr>
<th>Installation</th>
<th>Crosspiece for fixing to the structure</th>
<th>Busbar holder Type</th>
<th>Capacity</th>
<th>No. busb./Capacity (A)</th>
<th>Icw max (kA)</th>
<th>LxL (mm)</th>
<th>Section (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TL1000</td>
<td>PB0803</td>
<td>Linear</td>
<td>BR0250</td>
<td>250 / 500</td>
<td>35</td>
<td>20x20</td>
</tr>
<tr>
<td>B</td>
<td>TL3000</td>
<td>PB0803</td>
<td>Linear</td>
<td>BR0400</td>
<td>400 / 830</td>
<td>35</td>
<td>20x20</td>
</tr>
<tr>
<td>C</td>
<td>TL1000</td>
<td>PB0803</td>
<td>Linear</td>
<td>BR0630</td>
<td>630 / 500</td>
<td>35</td>
<td>30x10</td>
</tr>
<tr>
<td>D</td>
<td>TL3000</td>
<td>PB0803</td>
<td>Linear</td>
<td>BR0630</td>
<td>630 / 830</td>
<td>35</td>
<td>30x10</td>
</tr>
<tr>
<td>E</td>
<td>TL3000</td>
<td>PB0803</td>
<td>Linear</td>
<td>BR0630</td>
<td>630 / 830</td>
<td>35</td>
<td>30x10</td>
</tr>
</tbody>
</table>

Shaped profile busbars up to 800A
Using the correct number of busbar holders ensures withstanding the electrodynamic forces in the case of short-circuit. Assess the maximum distance (X max) not to be exceeded between two consecutive busbar holders according to the maximum Icc.

<table>
<thead>
<tr>
<th>Installation</th>
<th>Crosspiece for fixing to the structure</th>
<th>Busbar holder Type</th>
<th>Capacity</th>
<th>No. busb./Capacity (A)</th>
<th>Icw max (kA)</th>
<th>LxL (mm)</th>
<th>Section (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>TL2000</td>
<td>PB0802</td>
<td>Scaled</td>
<td>BA0400</td>
<td>630 / 500</td>
<td>35</td>
<td>20x20</td>
</tr>
<tr>
<td>D</td>
<td>TL2000</td>
<td>PB0802</td>
<td>Scaled</td>
<td>BA0800</td>
<td>970 / 830</td>
<td>35</td>
<td>20x20</td>
</tr>
<tr>
<td>E</td>
<td>TL2000</td>
<td>PB0802</td>
<td>Scaled</td>
<td>BA0800</td>
<td>970 / 830</td>
<td>35</td>
<td>20x20</td>
</tr>
</tbody>
</table>

Busbar holder up to 630A

<table>
<thead>
<tr>
<th>Installation</th>
<th>Crosspiece for fixing to the structure</th>
<th>Busbar holder Type</th>
<th>Capacity</th>
<th>No. busb./Capacity (A)</th>
<th>Icw max (kA)</th>
<th>LxL (mm)</th>
<th>Section (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TL1000</td>
<td>BP0630</td>
<td>Linear</td>
<td>BR0250</td>
<td>250 / 30</td>
<td>35</td>
<td>30x5</td>
</tr>
<tr>
<td>B</td>
<td>TL3000</td>
<td>BP0630</td>
<td>Linear</td>
<td>BR0400</td>
<td>400 / 30</td>
<td>35</td>
<td>30x5</td>
</tr>
<tr>
<td>C</td>
<td>TL1000</td>
<td>BP0630</td>
<td>Linear</td>
<td>BR0630</td>
<td>630 / 30</td>
<td>35</td>
<td>30x10</td>
</tr>
<tr>
<td>D</td>
<td>TL3000</td>
<td>BP0630</td>
<td>Linear</td>
<td>BR0630</td>
<td>630 / 30</td>
<td>35</td>
<td>30x10</td>
</tr>
<tr>
<td>E</td>
<td>TL3000</td>
<td>BP0630</td>
<td>Linear</td>
<td>BR0630</td>
<td>630 / 30</td>
<td>35</td>
<td>30x10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Installation</th>
<th>Crosspiece for fixing to the structure</th>
<th>Busbar holder Type</th>
<th>Capacity</th>
<th>No. busb./Capacity (A)</th>
<th>Icw max (kA)</th>
<th>LxL (mm)</th>
<th>Section (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>TL3000</td>
<td>BP0634</td>
<td>Scaled</td>
<td>BR0250</td>
<td>250 / 30</td>
<td>35</td>
<td>30x5</td>
</tr>
<tr>
<td>D</td>
<td>TL3000</td>
<td>BP0634</td>
<td>Scaled</td>
<td>BR0400</td>
<td>400 / 30</td>
<td>35</td>
<td>30x5</td>
</tr>
<tr>
<td>E</td>
<td>TL3000</td>
<td>BP0634</td>
<td>Scaled</td>
<td>BR0630</td>
<td>630 / 30</td>
<td>35</td>
<td>30x10</td>
</tr>
</tbody>
</table>

(1) The busbar terminal protection covers must be ordered separately PB0632.

Components .. page 14
In-depth technical information page 30
Overall dimensions page 42
ArTu L
Distribution system

Distributor frames

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>In (A)</th>
<th>kw (A)</th>
<th>Version</th>
<th>Power supply Ø cable mm²</th>
<th>No. outgoing feeders 2.5:10</th>
<th>No. outgoing feeders 2.5:16</th>
<th>No. outgoing feeders 2.5:25</th>
<th>No. outgoing feeders 6:35</th>
<th>Overall dimensions mm</th>
<th>No. DIN modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD1028</td>
<td>Rated voltage 500V</td>
<td>80</td>
<td>6</td>
<td>four-pole</td>
<td>on DIN 35 rail</td>
<td>6</td>
<td>16</td>
<td>8</td>
<td></td>
<td>80x116x44</td>
<td>7</td>
</tr>
<tr>
<td>AD1029</td>
<td>Rated voltage 500V</td>
<td>125</td>
<td>6</td>
<td>four-pole</td>
<td>on DIN 35 rail</td>
<td>10</td>
<td>35</td>
<td>7</td>
<td>4</td>
<td>80x143x44</td>
<td>8</td>
</tr>
<tr>
<td>AD1027</td>
<td>Rated voltage 500V</td>
<td>160</td>
<td>6</td>
<td>four-pole</td>
<td>on DIN 35 rail</td>
<td>10</td>
<td>50</td>
<td>8</td>
<td>3</td>
<td>90x160x50</td>
<td>9</td>
</tr>
<tr>
<td>AD1034</td>
<td>Rated voltage 500V Threaded busbars (cross-section 25x5)</td>
<td>250 15</td>
<td>four-pole</td>
<td>with crosspiece AD1038</td>
<td>N° 22 holes M5 with 17.5mm pitch per phase</td>
<td>150x600x70</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD1080</td>
<td>Rated voltage 500V Degree of protection IP 20</td>
<td>125 10</td>
<td>single pole</td>
<td>on DIN 35 rail</td>
<td>6</td>
<td>35</td>
<td>6</td>
<td></td>
<td>75x25x47</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>AD1081</td>
<td>Rated voltage 500V Degree of protection IP 20</td>
<td>160 10</td>
<td>single pole</td>
<td>on DIN 35 rail</td>
<td>10</td>
<td>70</td>
<td>6</td>
<td></td>
<td>92x35x49</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>AD1030</td>
<td>Rated voltage 500V Degree of protection IP 20</td>
<td>250 21</td>
<td>single pole</td>
<td>on DIN 35 rail</td>
<td>35</td>
<td>120</td>
<td>4</td>
<td>5</td>
<td>96x45x49</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AD1031</td>
<td>Rated voltage 500V Degree of protection IP 20</td>
<td>400 21</td>
<td>single pole</td>
<td>on DIN 35 rail</td>
<td>95</td>
<td>185</td>
<td>4</td>
<td>5</td>
<td>96x45x49</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Installation completion items

Wiring duct screw fixing up to 100x100mm

Support for vertical/horizontal wiring duct

Code	Description
AD1096 | Metal support for horizontal/vertical wiring duct
AD1098 | Metal support for horizontal/vertical floor

Allows assembly of the cabling wiring duct horizontally and vertically up to 100x100mm (in the case of installation in floor-mounted structure with removable side panel LF,... the vertical wiring duct has maximum dimensions of 100x80mm hxl). The support has compensation drillings as the height and width of the wiring duct varies. The accessory is also prepared with ø7mm holes for assembly of the ABB wiring duct by hooking up.

Fix-O-rapid

Code	Description
05274 | Rapid hooking up for channel base L=60mm
05276 | Rapid hooking up for channel base L=80mm
05278 | Rapid hooking up for channel base L=100mm

Depth adapter

Code	Description
AP6001 | Depth adapter L=600mm for side-by-side Pro M - Tmax T1-T2-T3
AP6000 | Depth adapter L=600mm for side-by-side Pro M - Isomax S1-S2

Allows side-by-side positioning of pro M System modular circuit-breakers and moulded-case Isomax S1, S2 and Tmax T1, T2 and T3 circuit-breakers. It can be cut to size according to requirements.

Hole cover

Code	Description
12863 | Hole cover 4 DIN mod. RAL 7035

Components .. page 14
In-depth technical information page 20
Overall dimensions page 18
Prefabricated kit for connections between apparatus and 400/800A shaped profile busbars

ArTu L

Distribution system

Prefabricated kit for connections between apparatus and 400/800A shaped profile busbars

Type of installation

<table>
<thead>
<tr>
<th>Type busbar holder</th>
<th>From circuit-breaker in the structure towards the busbars in the cable container</th>
<th>From circuit-breaker in the cable container towards the busbars in the structure</th>
<th>From circuit-breaker in the structure towards the busbars on the bottom</th>
<th>From circuit-breaker in the cable container towards the busbars on the bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaled PB0802</td>
<td>Linear PB0803</td>
<td>Linear PB0803</td>
<td>Linear PB0803</td>
<td>Linear PB0803</td>
</tr>
</tbody>
</table>

Apparatus with front terminals

horizontal fixed installation

- **Tmax T1** 4 poles: KB1001 (type B)
- **Tmax T2** 4 poles: KB1002 (type B)
- **Tmax T3** 4 poles: KB1003 (type B)
- **Isomax S4 4 poles**
- **Isomax S5 4 poles 400A**
- **Isomax S5 4 poles 630A**: KB1005 (type A)

Apparatus with front terminals

vertical fixed installation

- **Tmax T3 4 poles (wall-mounted struc.)**
- **Isomax S4**
- **Isomax S5 400A**
- **Isomax S5 630A**

Dimensions of conductors

<table>
<thead>
<tr>
<th>Apparatus</th>
<th>Tmax T1-T2</th>
<th>Tmax T3-Isomax S4</th>
<th>Isomax S5 400A</th>
<th>Isomax S5 630A</th>
</tr>
</thead>
<tbody>
<tr>
<td>AxBxC (mm)</td>
<td>20x5x1</td>
<td>24x6x1</td>
<td>24x10x1</td>
<td></td>
</tr>
</tbody>
</table>

Flexible busbars up to 630A to be cut and bent

<table>
<thead>
<tr>
<th>In (A)</th>
<th>Code</th>
<th>N° busbars/phase</th>
<th>Capacity (A) IP31</th>
<th>AxBxC (mm)</th>
<th>Cross section (mm²)</th>
<th>Length (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>BF1602</td>
<td>1</td>
<td>395</td>
<td>20x3x1</td>
<td>60</td>
<td>2000</td>
<td>1,42</td>
</tr>
<tr>
<td>400</td>
<td>BF2502</td>
<td>1</td>
<td>498</td>
<td>20x5x1</td>
<td>100</td>
<td>2000</td>
<td>2,15</td>
</tr>
<tr>
<td>630</td>
<td>BF4012</td>
<td>1</td>
<td>758</td>
<td>32x5x1</td>
<td>160</td>
<td>2000</td>
<td>3,36</td>
</tr>
</tbody>
</table>

(1) KB1018: only with flat busbars and scaled busbar holder.

Components .. page 14
In-depth technical information page 30
Overall dimensions page 42
Technical characteristics of the Unifix System

<table>
<thead>
<tr>
<th>Unifix H</th>
<th>Unifix L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated service voltage (Ue)</td>
<td>690V ca</td>
</tr>
<tr>
<td>Rated insulation voltage (Ui)</td>
<td>1000V ca</td>
</tr>
<tr>
<td>Rated impulse withstand voltage (Uimp)</td>
<td>8kV</td>
</tr>
<tr>
<td>Rated frequency</td>
<td>50/60Hz</td>
</tr>
<tr>
<td>Rated current (I)</td>
<td></td>
</tr>
<tr>
<td>central power supply</td>
<td>400A</td>
</tr>
<tr>
<td>lateral power supply</td>
<td>320A</td>
</tr>
<tr>
<td>Short-time withstand current (Icw)</td>
<td>25kA</td>
</tr>
<tr>
<td>Maximum peak current (Ip)</td>
<td>52kA-400V</td>
</tr>
<tr>
<td>Maximum circuit-breaker size installable</td>
<td>250A</td>
</tr>
<tr>
<td>Conditioned short-circuit current (Icc)</td>
<td>36kA-400V</td>
</tr>
<tr>
<td>With circuit-breaker</td>
<td>50kA-400V</td>
</tr>
<tr>
<td></td>
<td>25kA-400V</td>
</tr>
<tr>
<td></td>
<td>50kA-400V</td>
</tr>
<tr>
<td></td>
<td>50kA-400V</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP20 with accessory</td>
</tr>
<tr>
<td>Characteristics of the insulating material</td>
<td>Self-extinguishing thermoplastic V1 (UL94)</td>
</tr>
<tr>
<td>Characteristics of the conductive material</td>
<td>Electrolytic copper</td>
</tr>
<tr>
<td>Width (No. modules/mm)</td>
<td>24/600</td>
</tr>
<tr>
<td>Installable apparatus</td>
<td>Tmax</td>
</tr>
<tr>
<td></td>
<td>Isomax S1</td>
</tr>
<tr>
<td></td>
<td>S250-DS650</td>
</tr>
<tr>
<td></td>
<td>S270-DS670</td>
</tr>
<tr>
<td></td>
<td>S280</td>
</tr>
<tr>
<td></td>
<td>Isomax S2</td>
</tr>
<tr>
<td></td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>System Pro-M</td>
</tr>
</tbody>
</table>

(1) Select circuit-breakers in version with front terminals for copper cables.
(2) Select circuit-breakers in version with front terminals.

Unifix System applications

Unifix H

Unifix H

Installation

Wall-mounted structures

Floor-mounted structures

Unifix L

Installation

Wall or floor-mounted structures

<table>
<thead>
<tr>
<th>Components</th>
<th>In-depth technical information</th>
<th>Overall dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>page 14</td>
<td>page 20</td>
<td>page 18</td>
</tr>
</tbody>
</table>

ABB SACE 13
Wall-mounted switchboards

Wall-mounted switchboard structure

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxlxd)</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL0600</td>
<td>Bottom, roof and base for structure</td>
<td>600x600x165 (650x690x204)</td>
<td>1</td>
</tr>
<tr>
<td>SL0800</td>
<td>Bottom, roof and base for structure</td>
<td>800x600x165 (850x690x204)</td>
<td>1</td>
</tr>
<tr>
<td>SL1000</td>
<td>Bottom, roof and base for structure</td>
<td>1000x600x165 (1050x690x204)</td>
<td>1</td>
</tr>
<tr>
<td>SL1200</td>
<td>Bottom, roof and base for structure</td>
<td>1200x600x165 (1250x690x204)</td>
<td>1</td>
</tr>
</tbody>
</table>

Additional wall-mounted cable container structure

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxlxd)</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC0600</td>
<td>Bottom, roof and base for cable container</td>
<td>600x300x165 (650x390x204)</td>
<td>1</td>
</tr>
<tr>
<td>VC0800</td>
<td>Bottom, roof and base for cable container</td>
<td>800x300x165 (850x390x204)</td>
<td>1</td>
</tr>
<tr>
<td>VC1000</td>
<td>Bottom, roof and base for cable container</td>
<td>1000x300x165 (1050x390x204)</td>
<td>1</td>
</tr>
<tr>
<td>VC1200</td>
<td>Bottom, roof and base for cable container</td>
<td>1200x300x165 (1250x390x204)</td>
<td>1</td>
</tr>
</tbody>
</table>

Floor-mounted switchboards

Floor-mounted switchboard structure

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxlxd)</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL1400</td>
<td>Bottom, roof and base for structure</td>
<td>1400x600x195 (1550x690x240)</td>
<td>1</td>
</tr>
<tr>
<td>SL1600</td>
<td>Bottom, roof and base for structure</td>
<td>1600x600x195 (1750x690x240)</td>
<td>1</td>
</tr>
<tr>
<td>SL1800</td>
<td>Bottom, roof and base for structure</td>
<td>1800x600x195 (1950x690x240)</td>
<td>1</td>
</tr>
<tr>
<td>SL2000</td>
<td>Bottom, roof and base for structure</td>
<td>2000x600x195 (2150x690x240)</td>
<td>1</td>
</tr>
</tbody>
</table>

Additional floor-mounted cable container structure

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxlxd)</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC1400</td>
<td>Bottom, roof and base for cable container</td>
<td>1400x300x195 (1550x390x240)</td>
<td>1</td>
</tr>
<tr>
<td>VC1600</td>
<td>Bottom, roof and base for cable container</td>
<td>1600x300x195 (1750x390x240)</td>
<td>1</td>
</tr>
<tr>
<td>VC1800</td>
<td>Bottom, roof and base for cable container</td>
<td>1800x300x195 (1950x390x240)</td>
<td>1</td>
</tr>
<tr>
<td>VC2000</td>
<td>Bottom, roof and base for structure</td>
<td>2000x300x195 (2150x390x240)</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes: The palletizable base strips (ZL1000 or ZL2000) and the flanges (ZL1001 or ZL2001) must be ordered separately.
ArTu L Components

Lateral closure with plain panel

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxd)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF1400</td>
<td>No.2 lateral closure for floor-mounted structures</td>
<td>1400x240</td>
<td>1</td>
</tr>
<tr>
<td>LF1600</td>
<td>No.2 lateral closure for floor-mounted structures</td>
<td>1600x240</td>
<td>1</td>
</tr>
<tr>
<td>LF1800</td>
<td>No.2 lateral closure for floor-mounted structures</td>
<td>1800x240</td>
<td>1</td>
</tr>
<tr>
<td>LF2000</td>
<td>No.2 lateral closure for floor-mounted structures</td>
<td>2000x240</td>
<td>1</td>
</tr>
</tbody>
</table>

(*) The central hinge, contained in the kit, must be mounted on the right or left panel, according to the door opening direction.

Lateral closure with removable panel

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (h)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC0600</td>
<td>No.2 lateral for wall-mounted structures</td>
<td>600x200</td>
<td>1</td>
</tr>
<tr>
<td>MC0800</td>
<td>No.2 lateral for wall-mounted structures</td>
<td>800x200</td>
<td>1</td>
</tr>
<tr>
<td>MC1000</td>
<td>No.2 lateral for wall-mounted structures</td>
<td>1000x200</td>
<td>1</td>
</tr>
<tr>
<td>MC1200</td>
<td>No.2 lateral for wall-mounted structures</td>
<td>1200x200</td>
<td>1</td>
</tr>
<tr>
<td>MC1400</td>
<td>No.2 lateral for floor-mounted structures</td>
<td>1400x240</td>
<td>1</td>
</tr>
<tr>
<td>MC1600</td>
<td>No.2 lateral for floor-mounted structures</td>
<td>1600x240</td>
<td>1</td>
</tr>
<tr>
<td>MC1800</td>
<td>No.2 lateral for floor-mounted structures</td>
<td>1800x240</td>
<td>1</td>
</tr>
<tr>
<td>MC2000</td>
<td>No.2 lateral for floor-mounted structures</td>
<td>2000x240</td>
<td>1</td>
</tr>
</tbody>
</table>

(*) The central hinge, contained in the kit, must be mounted on the right or left panel, according to the door opening direction.

Base strips

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (h)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZL1000</td>
<td>No.2 angles for structure or cable container</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>ZL3000</td>
<td>Angles for side-by-side structures</td>
<td>100</td>
<td>1</td>
</tr>
</tbody>
</table>

Base strip covering flanges

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (l)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZL1001</td>
<td>No.2 flanges for structure base strip</td>
<td>600</td>
<td>1</td>
</tr>
<tr>
<td>ZL2001</td>
<td>No.2 flanges for cable container base strip</td>
<td>300</td>
<td>1</td>
</tr>
</tbody>
</table>

Example of base strip composition for side-by-side structures

<table>
<thead>
<tr>
<th>Type of composition</th>
<th>Angles</th>
<th>Flanges</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 side-by-side structures</td>
<td>1x ZL1000 + 1x ZL3000</td>
<td>2x ZL1001</td>
</tr>
<tr>
<td>1 structure + 1 cable container</td>
<td>1x ZL1000 + 1x ZL3000</td>
<td>1x ZL1001 + 1x ZL2001</td>
</tr>
</tbody>
</table>
ArTu L Components

Glass doors IP43

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxl)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV0600</td>
<td>Glass door for structure</td>
<td>600x600</td>
<td>1</td>
</tr>
<tr>
<td>PV0800</td>
<td>Glass door for structure</td>
<td>800x600</td>
<td>1</td>
</tr>
<tr>
<td>PV1000</td>
<td>Glass door for structure</td>
<td>1000x600</td>
<td>1</td>
</tr>
<tr>
<td>PV1200</td>
<td>Glass door for structure</td>
<td>1200x600</td>
<td>1</td>
</tr>
<tr>
<td>PV1400</td>
<td>Glass door for structure</td>
<td>1400x600</td>
<td>1</td>
</tr>
<tr>
<td>PV1600</td>
<td>Glass door for structure</td>
<td>1600x600</td>
<td>1</td>
</tr>
<tr>
<td>PV1800</td>
<td>Glass door for structure</td>
<td>1800x600</td>
<td>1</td>
</tr>
<tr>
<td>PV2000</td>
<td>Glass door for structure</td>
<td>2000x600</td>
<td>1</td>
</tr>
</tbody>
</table>

Plain doors IP43

Per structures

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxl)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC0601</td>
<td>Plain door for structure</td>
<td>600x600</td>
<td>1</td>
</tr>
<tr>
<td>PC0801</td>
<td>Plain door for structure</td>
<td>800x600</td>
<td>1</td>
</tr>
<tr>
<td>PC1001</td>
<td>Plain door for structure</td>
<td>1000x600</td>
<td>1</td>
</tr>
<tr>
<td>PC1201</td>
<td>Plain door for structure</td>
<td>1200x600</td>
<td>1</td>
</tr>
<tr>
<td>PC1401</td>
<td>Plain door for structure</td>
<td>1400x600</td>
<td>1</td>
</tr>
<tr>
<td>PC1601</td>
<td>Plain door for structure</td>
<td>1600x600</td>
<td>1</td>
</tr>
<tr>
<td>PC1801</td>
<td>Plain door for structure</td>
<td>1800x600</td>
<td>1</td>
</tr>
<tr>
<td>PC2001</td>
<td>Plain door for structure</td>
<td>2000x600</td>
<td>1</td>
</tr>
</tbody>
</table>

For cable container

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxl)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC0602</td>
<td>Plain door for cable container</td>
<td>600x300</td>
<td>1</td>
</tr>
<tr>
<td>PC0802</td>
<td>Plain door for cable container</td>
<td>800x300</td>
<td>1</td>
</tr>
<tr>
<td>PC1002</td>
<td>Plain door for cable container</td>
<td>1000x300</td>
<td>1</td>
</tr>
<tr>
<td>PC1202</td>
<td>Plain door for cable container</td>
<td>1200x300</td>
<td>1</td>
</tr>
<tr>
<td>PC1402</td>
<td>Plain door for cable container</td>
<td>1400x300</td>
<td>1</td>
</tr>
<tr>
<td>PC1602</td>
<td>Plain door for cable container</td>
<td>1600x300</td>
<td>1</td>
</tr>
<tr>
<td>PC1802</td>
<td>Plain door for cable container</td>
<td>1800x300</td>
<td>1</td>
</tr>
<tr>
<td>PC2002</td>
<td>Plain door for cable container</td>
<td>2000x300</td>
<td>1</td>
</tr>
</tbody>
</table>

Finishing profiles IP31

For structures and cable container

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxl)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP1800</td>
<td>No.2 vertical finishing profile for structure and cable container H=1800</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IP2000</td>
<td>No.2 vertical finishing profile for structure and cable container H=2000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IP0601</td>
<td>No.2 horizontal finishing profile for structure L=600</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IP0602</td>
<td>No.2 horizontal finishing profile for cable container L=300</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IP1801</td>
<td>No.2 vertical finishing profile for side-by-side structures H=1800</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IP2001</td>
<td>No.2 vertical finishing profile for side-by-side structures H=2000</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Selection table .. page 6
In-depth technical information page 30
Overall dimensions page 42
ArTu L Components

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxl)</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1431</td>
<td>Internal door for cable container</td>
<td>1400x300</td>
<td>1</td>
</tr>
<tr>
<td>PO1631</td>
<td>Internal door for cable container</td>
<td>1600x300</td>
<td>1</td>
</tr>
<tr>
<td>PO1831</td>
<td>Internal door for cable container</td>
<td>1800x300</td>
<td>1</td>
</tr>
<tr>
<td>PO2031</td>
<td>Internal door for cable container</td>
<td>2000x300</td>
<td>1</td>
</tr>
</tbody>
</table>

Intermediate uprights for lateral side-by-side positioning

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI0600</td>
<td>Intermediate upright for placing structures side by side</td>
<td>H=600</td>
<td>1</td>
</tr>
<tr>
<td>MI0800</td>
<td>Intermediate upright for placing structures side by side</td>
<td>H=800</td>
<td>1</td>
</tr>
<tr>
<td>MI1000</td>
<td>Intermediate upright for placing structures side by side</td>
<td>H=1000</td>
<td>1</td>
</tr>
<tr>
<td>MI1200</td>
<td>Intermediate upright for placing structures side by side</td>
<td>H=1200</td>
<td>1</td>
</tr>
<tr>
<td>MI1400</td>
<td>Intermediate upright for placing structures side by side</td>
<td>H=1400</td>
<td>1</td>
</tr>
<tr>
<td>MI1600</td>
<td>Intermediate upright for placing structures side by side</td>
<td>H=1600</td>
<td>1</td>
</tr>
<tr>
<td>MI1800</td>
<td>Intermediate upright for placing structures side by side</td>
<td>H=1800</td>
<td>1</td>
</tr>
<tr>
<td>MI2000</td>
<td>Intermediate upright for placing structures side by side</td>
<td>H=2000</td>
<td>1</td>
</tr>
</tbody>
</table>

(*) The central hinge, contained in the kit, must be mounted on the right or left, according to the way the door opens.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (lxhxd)</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC1000</td>
<td>Roof box for floor-mounted structures</td>
<td>400x600x200</td>
<td>1</td>
</tr>
<tr>
<td>RC2000</td>
<td>Roof box for floor-mounted cable container</td>
<td>400x300x200</td>
<td>1</td>
</tr>
</tbody>
</table>

Brackets for wall fixing

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL2000</td>
<td>No.2 brackets for wall fixing</td>
<td>1</td>
</tr>
<tr>
<td>AA1000</td>
<td>Brackets for wall fixing of 2 side-by-side structures</td>
<td>1</td>
</tr>
</tbody>
</table>

For the wall-mounted version, order 2 x AL2000.

Eyebolts and lifting reinforcement

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL1000</td>
<td>No.4 M8 steel eyebolts</td>
<td>1</td>
</tr>
<tr>
<td>AL1001</td>
<td>No.2 lifting reinforcements for side-by-side structures</td>
<td>1</td>
</tr>
</tbody>
</table>

Selection table .. page 6
In-depth technical information page 30
Overall dimensions page 42
ArTu L Components

Modular panels for apparatus on DIN rail

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxl)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM1500</td>
<td>Modular panel 1 Din row (only for ArTu L)</td>
<td>150x600</td>
<td>1</td>
</tr>
<tr>
<td>PM2624</td>
<td>Modular panel 1 Din row</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>PM3624</td>
<td>Modular panel 1 Din row</td>
<td>300x600</td>
<td>1</td>
</tr>
<tr>
<td>PM2312</td>
<td>Modular panel 1 Din row for Tmax with differential</td>
<td>300x600</td>
<td>1</td>
</tr>
<tr>
<td>PM3648</td>
<td>Modular panel 2 DIN rows</td>
<td>300x600</td>
<td>1</td>
</tr>
<tr>
<td>PM6672</td>
<td>Modular panel 3 DIN rows</td>
<td>600x600</td>
<td>1</td>
</tr>
</tbody>
</table>

DIN rail kit for Pro-M System modular apparatus, Isomax S1-S2, Tmax T1-T2-T3 and Unifix L

GD1520 DIN rail kit

The modular panels must be ordered separately (see above).

Kit for installation of Tmax and Isomax circuit-breakers

Horizontal installation

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxl)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LK1000</td>
<td>Kit for Tmax T1 - 3/4 poles, fixed - wall/floor-mounted</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>LK2000</td>
<td>Kit for Tmax T2 - 3/4 poles, fixed - wall/floor-mounted</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>LK3000</td>
<td>Kit for Tmax T3 - 3/4 poles, fixed - wall/floor-mounted</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>LK4000</td>
<td>Kit for Isomax S4 - 3/4 poles, fixed - floor-mounted</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>LK5000</td>
<td>Kit for Isomax S5 - 3/4 poles, fixed - floor-mounted</td>
<td>300x600</td>
<td>1</td>
</tr>
<tr>
<td>LK3301</td>
<td>Kit for Tmax T3 with distribution frame - floor-mounted</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>LK1004</td>
<td>Kit for Tmax T1 - 4 poles, fixed + differential</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>LK2004</td>
<td>Kit for Tmax T2 - 4 poles, fixed + differential</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>LK3004</td>
<td>Kit for Tmax T3 - 4 poles, fixed + differential</td>
<td>300x600</td>
<td>1</td>
</tr>
</tbody>
</table>

Vertical installation

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxl)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LK1001</td>
<td>Kit for Tmax T1 - 3/4 poles, fixed - wall/floor-mounted</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>LK2001</td>
<td>Kit for Tmax T2 - 3/4 poles, fixed - wall/floor-mounted</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>LK3001</td>
<td>Kit for Tmax T3 - 3/4 poles, fixed - wall/floor-mounted</td>
<td>300x600</td>
<td>1</td>
</tr>
<tr>
<td>LK4001</td>
<td>Kit for Isomax S4 - 3/4 poles, fixed - floor-mounted</td>
<td>400x600</td>
<td>1</td>
</tr>
<tr>
<td>LK5001</td>
<td>Kit for Isomax S5 - 3/4 poles, fixed - floor-mounted</td>
<td>500x600</td>
<td>1</td>
</tr>
<tr>
<td>LK3200</td>
<td>Kit for placing n°3 Tmax T2 - floor-mounted side by side</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>LK3300</td>
<td>Kit for placing n°3 Tmax T3 - floor-mounted side by side</td>
<td>300x600</td>
<td>1</td>
</tr>
<tr>
<td>LK4100</td>
<td>Kit for placing n°4 Tmax T1 - floor-mounted side by side</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>LK3005</td>
<td>Kit for Tmax T3 - 4 poles, fixed + differential</td>
<td>300x600</td>
<td>1</td>
</tr>
</tbody>
</table>

Vertical installation in the cable container

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxl)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LK3003</td>
<td>Kit for Tmax T3 - 3/4 poles, fixed - wall-mounted</td>
<td>300x300</td>
<td>1</td>
</tr>
<tr>
<td>LK3002</td>
<td>Kit for Tmax T3 - 3/4 poles, fixed - floor-mounted</td>
<td>300x300</td>
<td>1</td>
</tr>
<tr>
<td>LK4002</td>
<td>Kit for Isomax S4 - 3/4 poles, fixed - floor-mounted</td>
<td>400x300</td>
<td>1</td>
</tr>
<tr>
<td>LK5002</td>
<td>Kit for Isomax S5 - 3/4 poles, fixed - floor-mounted</td>
<td>500x300</td>
<td>1</td>
</tr>
</tbody>
</table>

Panels are included in the kits.

Selection table page 8-9
In-depth technical information page 30
Overall dimensions page 42

ABB SACE
ArTu L Components

Supports for terminal box

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxl)</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA1001</td>
<td>No.2 supports for horizontal terminal box in the structure</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>AD1099</td>
<td>No.2 supports for vertical terminal box in the cable container or horizontal in the box</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Plain bottom plates for generic apparatus

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxl)</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF1002</td>
<td>Plain bottom plate</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>PF1003</td>
<td>Plain bottom plate</td>
<td>300x600</td>
<td>1</td>
</tr>
<tr>
<td>PF1004</td>
<td>Plain bottom plate</td>
<td>400x600</td>
<td>1</td>
</tr>
<tr>
<td>PF1006</td>
<td>Plain bottom plate</td>
<td>600x600</td>
<td>1</td>
</tr>
<tr>
<td>PF1008</td>
<td>Plain bottom plate</td>
<td>800x600</td>
<td>1</td>
</tr>
<tr>
<td>PC0600</td>
<td>Plain bottom plate for structure connection box</td>
<td>400x600</td>
<td>1</td>
</tr>
<tr>
<td>PC0300</td>
<td>Plain bottom plate for cable container connection box</td>
<td>400x300</td>
<td>1</td>
</tr>
</tbody>
</table>

Panels must be ordered separately (see below).

Plain and ventilated modular panels

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxl)</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1050</td>
<td>Plain panel for structure</td>
<td>50x600</td>
<td>1</td>
</tr>
<tr>
<td>PC1600</td>
<td>Plain panel for structure</td>
<td>100x600</td>
<td>1</td>
</tr>
<tr>
<td>PC1150</td>
<td>Plain panel for structure</td>
<td>150x600</td>
<td>1</td>
</tr>
<tr>
<td>PC2600</td>
<td>Plain panel for structure</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>PC3600</td>
<td>Plain panel for structure</td>
<td>300x600</td>
<td>1</td>
</tr>
<tr>
<td>PC4600</td>
<td>Plain panel for structure</td>
<td>400x600</td>
<td>1</td>
</tr>
<tr>
<td>PC6600</td>
<td>Plain panel for structure</td>
<td>600x600</td>
<td>1</td>
</tr>
<tr>
<td>PA1600</td>
<td>Ventilated panel for structure</td>
<td>100x600</td>
<td>1</td>
</tr>
<tr>
<td>PA2600</td>
<td>Ventilated panel for structure</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>PC1403</td>
<td>Plain panel for cable container</td>
<td>100x300</td>
<td>1</td>
</tr>
<tr>
<td>PC2401</td>
<td>Plain panel for cable container</td>
<td>200x300</td>
<td>1</td>
</tr>
<tr>
<td>PC3401</td>
<td>Plain panel for cable container</td>
<td>300x300</td>
<td>1</td>
</tr>
<tr>
<td>PC4401</td>
<td>Plain panel for cable container</td>
<td>400x300</td>
<td>1</td>
</tr>
<tr>
<td>PC6401</td>
<td>Plain panel for cable container</td>
<td>600x300</td>
<td>1</td>
</tr>
<tr>
<td>PC8401</td>
<td>Plain panel for cable container</td>
<td>800x300</td>
<td>1</td>
</tr>
</tbody>
</table>
ArTu L Components

Panels for square measuring instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (hxl)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS2720</td>
<td>Panels for 2 instruments 72x72mm</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>PS2960</td>
<td>Panels for 2 instruments 96x96mm</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>PS4720</td>
<td>Panels for 4 instruments 72x72mm</td>
<td>200x600</td>
<td>1</td>
</tr>
<tr>
<td>PS4960</td>
<td>Panels for 4 instruments 96x96mm</td>
<td>200x600</td>
<td>1</td>
</tr>
</tbody>
</table>

Profiles for accessories

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (l)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS4011</td>
<td>N°2 profiles EN50024 C30</td>
<td>2000</td>
<td>1</td>
</tr>
<tr>
<td>TS4012</td>
<td>N°2 profiles EN50035 G32</td>
<td>2000</td>
<td>1</td>
</tr>
<tr>
<td>TS4013</td>
<td>N°2 profiles DIN EN50022</td>
<td>2000</td>
<td>1</td>
</tr>
</tbody>
</table>

Form 2 segregations

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH0600</td>
<td>Form 2 segregation kit</td>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>SH0800</td>
<td>Form 2 segregation kit</td>
<td>300</td>
<td>1</td>
</tr>
<tr>
<td>SH0700</td>
<td>Form 2 segregation kit base/head</td>
<td>200</td>
<td>1</td>
</tr>
</tbody>
</table>

Horizontal shelves

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH0100</td>
<td>Horizontal shelf for wall-mounted structure</td>
<td>600</td>
<td>1</td>
</tr>
<tr>
<td>SH0200</td>
<td>Horizontal shelf for floor-mounted structure</td>
<td>600</td>
<td>1</td>
</tr>
</tbody>
</table>

Horizontal non-supporting shelf allows divisions to be made inside the ArTu L switchboards.

In-depth technical information page 30
Overall dimensions page 42
ArTu L Components

Vertical segregations

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (h)</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV0600</td>
<td>Vertical segregation kit</td>
<td>600</td>
<td>1</td>
</tr>
<tr>
<td>SV0800</td>
<td>Vertical segregation kit</td>
<td>800</td>
<td>1</td>
</tr>
<tr>
<td>SV1000</td>
<td>Vertical segregation kit</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>SV1200</td>
<td>Vertical segregation kit</td>
<td>1200</td>
<td>1</td>
</tr>
<tr>
<td>SV1400</td>
<td>Vertical segregation kit</td>
<td>1400</td>
<td>1</td>
</tr>
<tr>
<td>SV1600</td>
<td>Vertical segregation kit</td>
<td>1600</td>
<td>1</td>
</tr>
<tr>
<td>SV1800</td>
<td>Vertical segregation kit</td>
<td>1800</td>
<td>1</td>
</tr>
<tr>
<td>SV2000</td>
<td>Vertical segregation kit</td>
<td>2000</td>
<td>1</td>
</tr>
</tbody>
</table>

Diagram pocket holder

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA5600</td>
<td>Plastic diagram pocket holder</td>
<td>1</td>
</tr>
</tbody>
</table>

The diagram pocket holder (made of RAL 2004 colour plastic, dim. HxL 237x265mm type A4) is applied to the inside of doors/plain panels of suitable size using the adhesive provided.

Accessories/spare parts

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA1000</td>
<td>Brackets for fixing side-by-side structures</td>
<td>1</td>
</tr>
<tr>
<td>12863</td>
<td>No.30 hole covering shutter 4 DIN mod. RAL 7035 colour</td>
<td>1</td>
</tr>
<tr>
<td>AD1058</td>
<td>Zn+Al+Mg alloy key with double tab</td>
<td>1</td>
</tr>
<tr>
<td>AA6200</td>
<td>ArTu L floor-mounted Yale type insert</td>
<td>1</td>
</tr>
<tr>
<td>AA8202</td>
<td>ArTu L wall-mounted Yale type insert</td>
<td>1</td>
</tr>
<tr>
<td>AD1036</td>
<td>No.20 cage nut kit</td>
<td>1</td>
</tr>
<tr>
<td>AD1033</td>
<td>No.50 three-lobed M6 spare screw kit</td>
<td>1</td>
</tr>
<tr>
<td>VB7035</td>
<td>RAL 7035 colour spray paint for touching up (400 ml can)</td>
<td>1</td>
</tr>
<tr>
<td>AD1057</td>
<td>“ArTu Survival Kit” - Accessories and small items for spare parts</td>
<td>1</td>
</tr>
</tbody>
</table>

ArTu small items

The screws provided with all the ArTu components are of the three-lobed self-threading M6 type: they screw up without the need for a nut and automatically mask the hole. For any spare parts, the code is AD1033.

The cage nuts art. AD1036 allow all the rectangular holes present in the uprights for fixing the various accessories to be used. They are snap-on installed from the front.

In-depth technical information page 30 Overall dimensions page 42
ArTu L

Components

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (l)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA0400</td>
<td>Busbar In=400A</td>
<td>1730</td>
<td>1</td>
</tr>
<tr>
<td>BA0800</td>
<td>Busbar In=800A</td>
<td>1730</td>
<td>1</td>
</tr>
</tbody>
</table>

Shaped profile distribution busbars

Busbar holders for shaped profile busbars

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (l)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB0802</td>
<td>Scaled busbar-holder In=800A - 35kA</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PB0803</td>
<td>Linear busbar-holder In=800A - 35kA</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Seal screws for shaped profile busbars

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (l)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD1064</td>
<td>No.12 M8 hammer seal screws L=27mm, complete</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>with screw cover cap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD1071</td>
<td>No.12 M8 hammer seal screws L=37mm, complete</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>with screw cover cap</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resting bases for shaped profile busbars

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (l)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD1065</td>
<td>No.4 resting bases for busbars</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Flat distribution busbars

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (l)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR0250</td>
<td>No.2 busbars l=250A section 15x5mm</td>
<td>1750</td>
<td>1</td>
</tr>
<tr>
<td>BR0400</td>
<td>No.2 busbars l=400A section 25x5mm</td>
<td>1750</td>
<td>1</td>
</tr>
<tr>
<td>BR0630</td>
<td>No.2 busbars l=630A section 30x10mm</td>
<td>1750</td>
<td>1</td>
</tr>
</tbody>
</table>

Busbar holders for flat busbars

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (l)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP0630</td>
<td>No.2 linear busbar holder l=630A - 32kA</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BP0632</td>
<td>No.2 cover for linear busbar holder BP0630</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BP0634</td>
<td>No.2 scaled busbar holder l=630A - 23kA</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Crosspieces for busbars

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Dimensions mm (l)</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL1000</td>
<td>Crosspiece for fixing linear busbar holder in the structure</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>TL3000</td>
<td>Crosspiece for fixing linear busbar holder in the cable container</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>TL2000</td>
<td>Crosspiece for fixing scaled busbar holder in the cable container</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Prefabricated kit for connection between apparatus and 400/800A shaped profile busbars

Horizontal installation

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>KB1001</td>
<td>Connect. between Tmax T1-T2 in the struc. and busbars in the cable cont. floor-mount.</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>KB1002</td>
<td>Connect. between Tmax T3 in the struc. and busbars in the cable cont. wall/floor-mount.</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>KB1003</td>
<td>Connect. between Isomax S4 in the struc. and busbars in the cable cont. wall-mount.</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>KB1004</td>
<td>Connect. betw. Isomax S5 (400A) in the struct. and busb. in the cable cont. floor-mount.</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>KB1005</td>
<td>Connect. betw. Isomax S5 (630A) in the struct. and busb. in the cable cont. floor-mount.</td>
<td>A</td>
<td>1</td>
</tr>
</tbody>
</table>

Vertical installation

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>KB1006</td>
<td>Connect. between Tmax T3 in the struc. and busbars in the cable cont. wall/floor-mount.</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>KB1008</td>
<td>Connect. between Isomax S5 (400A) in the struct. and busb. in the cable cont. floor-mount.</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>KB1009</td>
<td>Connect. between Isomax S5 (630A) in the struct. and busb. in the cable cont. floor-mount.</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>KB1010</td>
<td>Connect. between Tmax T3 in the cable cont. and busbars in the struct. wall/floor-mount.</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>KB1012</td>
<td>Connect. between Isomax S5 (400A) in the cable cont. and busbars in the struct. floor-mounted</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>KB1013</td>
<td>Connect. between Isomax S5 (630A) in the cable cont. and busbars in the struct. floor-mounted</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>KB1014</td>
<td>Connect. between Tmax T3 in the struct./cable cont. and busbars on the bottom wall/floor-mount.</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>KB1015</td>
<td>Connect. between Isomax S4 in the struct./cable cont. and busbars on the bottom floor-mount.</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>KB1016</td>
<td>Connect. between Isomax S5 (600A) in the struct./cable cont. and busb. on the bot. floor-mounted</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>KB1017</td>
<td>Connect. between Isomax S5 (630A) in the struct./cable cont. and busb. on the bot. floor-mounted</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>KB1018</td>
<td>Connect. between Tmax T3 in the struct./cable container and busb. on the bot. wall/floor-mounted</td>
<td>A</td>
<td>1</td>
</tr>
</tbody>
</table>

(1) Only with flat busbars and scaled busbar holder.

Flexible busbars to be cut and bent

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF1602</td>
<td>Flexible busbars, section 20x3 - 250A</td>
<td>1</td>
</tr>
<tr>
<td>BF2502</td>
<td>Flexible busbars, section 20x5 - 400A</td>
<td>1</td>
</tr>
<tr>
<td>BF4002</td>
<td>Flexible busbars, section 24x6 - 500A</td>
<td>1</td>
</tr>
<tr>
<td>BF4012</td>
<td>Flexible busbars, section 32x5 - 630A</td>
<td>1</td>
</tr>
</tbody>
</table>

Distribution frames

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD1028</td>
<td>Modular four-pole distribution frame 80A</td>
<td>1</td>
</tr>
<tr>
<td>AD1029</td>
<td>Modular four-pole distribution frame 125A</td>
<td>1</td>
</tr>
<tr>
<td>AD1030</td>
<td>Modular four-pole distribution frame 160A</td>
<td>1</td>
</tr>
<tr>
<td>AD1034</td>
<td>No.2 four-pole horizontal distribution frame 250A (L=600mm)</td>
<td>1</td>
</tr>
<tr>
<td>AD1038</td>
<td>Fixing brackets for distribution frame AD1034</td>
<td>1</td>
</tr>
<tr>
<td>AD1080</td>
<td>Modular single-pole distribution frame 125A</td>
<td>1</td>
</tr>
<tr>
<td>AD1081</td>
<td>Modular single-pole distribution frame 160A</td>
<td>1</td>
</tr>
<tr>
<td>AD1083</td>
<td>Connection accessory between two AD1080</td>
<td>1</td>
</tr>
</tbody>
</table>

(1) Only with flat busbars and scaled busbar holder.
ArTu L Components

Unifix H

Frames for Tmax and Isomax

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED2183</td>
<td>Frame with 24 DIN module busbars (L=600mm)</td>
<td>1</td>
</tr>
</tbody>
</table>

Feeder modules

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED2209</td>
<td>4P 400A feeder module (for ED2183)</td>
<td>1</td>
</tr>
</tbody>
</table>

Basic modules I, 16A

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED2894</td>
<td>Basic auxiliary DIN modules L1-N top 16A</td>
<td>1</td>
</tr>
<tr>
<td>ED2902</td>
<td>Basic DIN modules L1-N top 16A</td>
<td>1</td>
</tr>
<tr>
<td>ED2910</td>
<td>Basic DIN modules L1-N bottom 16A</td>
<td>1</td>
</tr>
<tr>
<td>ED2928</td>
<td>Basic DIN modules L1-N bottom 16A</td>
<td>1</td>
</tr>
</tbody>
</table>

Basic modules I, 40A

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED2613</td>
<td>Basic L1 top 40A</td>
<td>1</td>
</tr>
<tr>
<td>ED2621</td>
<td>Basic L2 top 40A</td>
<td>1</td>
</tr>
<tr>
<td>ED2639</td>
<td>Basic L3 top 40A</td>
<td>1</td>
</tr>
<tr>
<td>ED2647</td>
<td>Basic Neutral top 40A</td>
<td>1</td>
</tr>
<tr>
<td>ED2654</td>
<td>Basic L1/Neutral top 40A</td>
<td>1</td>
</tr>
<tr>
<td>ED2662</td>
<td>Basic L2/Neutral top 40A</td>
<td>1</td>
</tr>
<tr>
<td>ED2670</td>
<td>Basic L3/Neutral top 40A</td>
<td>1</td>
</tr>
<tr>
<td>ED2688</td>
<td>Basic L1 bottom 40A</td>
<td>1</td>
</tr>
<tr>
<td>ED2696</td>
<td>Basic L2 bottom 40A</td>
<td>1</td>
</tr>
<tr>
<td>ED2704</td>
<td>Basic L3 bottom 40A</td>
<td>1</td>
</tr>
<tr>
<td>ED2712</td>
<td>Basic Neutral bottom 40A</td>
<td>1</td>
</tr>
</tbody>
</table>

Basic modules I, 63A

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED2530</td>
<td>Basic modules L1 top 63A</td>
<td>1</td>
</tr>
<tr>
<td>ED2548</td>
<td>Basic modules L2 top 63A</td>
<td>1</td>
</tr>
<tr>
<td>ED2555</td>
<td>Basic modules L3 top 63A</td>
<td>1</td>
</tr>
<tr>
<td>ED2563</td>
<td>Basic modules Neutral top 63A</td>
<td>1</td>
</tr>
<tr>
<td>ED2571</td>
<td>Basic modules L1 bottom 63A</td>
<td>1</td>
</tr>
<tr>
<td>ED2589</td>
<td>Basic modules L2 bottom 63A</td>
<td>1</td>
</tr>
<tr>
<td>ED2597</td>
<td>Basic modules L3 bottom 63A</td>
<td>1</td>
</tr>
<tr>
<td>ED2605</td>
<td>Basic modules Neutral bottom 63A</td>
<td>1</td>
</tr>
</tbody>
</table>

Basic modules I, 100A

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED2720</td>
<td>Basic modules with cable L1 top 100A</td>
<td>1</td>
</tr>
<tr>
<td>ED2738</td>
<td>Basic modules with cable L2 top 100A</td>
<td>1</td>
</tr>
<tr>
<td>ED2746</td>
<td>Basic modules with cable L3 top 100A</td>
<td>1</td>
</tr>
<tr>
<td>ED2753</td>
<td>Basic modules with cable Neutral top 100A</td>
<td>1</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Pack.</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>ED2217</td>
<td>Basic modules L top L2 bottom</td>
<td>1</td>
</tr>
<tr>
<td>ED2225</td>
<td>Basic modules L2 top L1 bottom</td>
<td>1</td>
</tr>
<tr>
<td>ED2233</td>
<td>Basic modules L3 top Neutral bottom</td>
<td>1</td>
</tr>
<tr>
<td>ED2241</td>
<td>Basic modules Neutral top L3 bottom</td>
<td>1</td>
</tr>
<tr>
<td>ED2373</td>
<td>Basic modules false pole for residual current release</td>
<td>1</td>
</tr>
<tr>
<td>ED2381</td>
<td>Basic modules false pole for solenoid operating mechanism</td>
<td>1</td>
</tr>
<tr>
<td>ED2761</td>
<td>Basic modules L1 top L2 bottom</td>
<td>1</td>
</tr>
<tr>
<td>ED2779</td>
<td>Basic modules L2 top L1 bottom</td>
<td>1</td>
</tr>
<tr>
<td>ED2787</td>
<td>Basic modules L3 top Neutral bottom</td>
<td>1</td>
</tr>
<tr>
<td>ED2795</td>
<td>Basic modules Neutral top L3 bottom</td>
<td>1</td>
</tr>
<tr>
<td>ED2860</td>
<td>Basic modules false pole for residual current release Isomax RC</td>
<td>1</td>
</tr>
<tr>
<td>ED2803</td>
<td>Basic modules L1 top L2 bottom</td>
<td>1</td>
</tr>
<tr>
<td>ED2811</td>
<td>Basic modules L2 top L1 bottom</td>
<td>1</td>
</tr>
<tr>
<td>ED2829</td>
<td>Basic modules L3 top N bottom</td>
<td>1</td>
</tr>
<tr>
<td>ED2837</td>
<td>Basic N top L3 bottom</td>
<td>1</td>
</tr>
<tr>
<td>ED2878</td>
<td>Basic modules false pole for residual current release Isomax RC</td>
<td>1</td>
</tr>
<tr>
<td>ED2900</td>
<td>Basic modules L1 top</td>
<td>1</td>
</tr>
<tr>
<td>ED2308</td>
<td>Basic modules L2 top</td>
<td>1</td>
</tr>
<tr>
<td>ED2316</td>
<td>Basic modules L3 top</td>
<td>1</td>
</tr>
<tr>
<td>ED2324</td>
<td>Basic modules N top</td>
<td>1</td>
</tr>
<tr>
<td>ED2332</td>
<td>Basic modules L1 bottom</td>
<td>1</td>
</tr>
<tr>
<td>ED2340</td>
<td>Basic modules L2 bottom</td>
<td>1</td>
</tr>
<tr>
<td>ED2357</td>
<td>Basic modules L3 bottom</td>
<td>1</td>
</tr>
<tr>
<td>ED2365</td>
<td>Basic modules N bottom</td>
<td>1</td>
</tr>
<tr>
<td>ED2373</td>
<td>Basic modules false pole for residual current release</td>
<td>1</td>
</tr>
<tr>
<td>ED2404</td>
<td>Basic modules false pole for DDA</td>
<td>1</td>
</tr>
<tr>
<td>ED2852</td>
<td>Basic modules false pole for modular MDRC</td>
<td>1</td>
</tr>
<tr>
<td>ED2407</td>
<td>N°2 IP20 covers (for ED2183-ED2191) L=173 mm (10 DIN mod.)</td>
<td>1</td>
</tr>
<tr>
<td>ED2936</td>
<td>N°6 wiring duct supports</td>
<td>1</td>
</tr>
<tr>
<td>AD1097</td>
<td>Brackets for fixing to the structure</td>
<td>1</td>
</tr>
<tr>
<td>PM3624</td>
<td>Modular front panel 300X600mm (hXl)</td>
<td>1</td>
</tr>
</tbody>
</table>

Selection table page 13
In-depth technical information page 40
Overall dimensions page 45
ArTu L Components

Code | Description |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unifix L</td>
<td></td>
</tr>
<tr>
<td>Busbars 2 poles</td>
<td></td>
</tr>
<tr>
<td>ED2985</td>
<td>Basic 100A 2P 8 modules (L=200mm)</td>
</tr>
<tr>
<td>ED2993</td>
<td>Basic 100A 2P 12 modules (L=300mm)</td>
</tr>
<tr>
<td>ED3009</td>
<td>Basic 100A 2P 18 modules (L=450mm)</td>
</tr>
<tr>
<td>ED3017</td>
<td>Basic 100A 2P 24 modules (L=600mm)</td>
</tr>
<tr>
<td>Busbars 4 poles</td>
<td></td>
</tr>
<tr>
<td>ED2944</td>
<td>Basic 100A 4P 12 modules (L=300mm)</td>
</tr>
<tr>
<td>ED2951</td>
<td>Basic 100A 4P 18 modules (L=450mm)</td>
</tr>
<tr>
<td>ED2969</td>
<td>Basic 100A 4P 24 modules (L=600mm)</td>
</tr>
<tr>
<td>Connections for miscellaneous apparatus</td>
<td></td>
</tr>
<tr>
<td>ED3108</td>
<td>Connections with 2 wires L1/N 16A</td>
</tr>
<tr>
<td>ED3116</td>
<td>Connections with 3 wires L1/L2/L3 16A</td>
</tr>
<tr>
<td>ED3124</td>
<td>Connections with 4 wires L1/L2/L3/N 16A</td>
</tr>
<tr>
<td>ED3355</td>
<td>Connections with 2 wires L1/N 40A</td>
</tr>
<tr>
<td>ED3363</td>
<td>Connections with 3 wires L1/L2/L3 40A</td>
</tr>
<tr>
<td>ED3371</td>
<td>Connections with 4 wires L1/L2/L3/N 40A</td>
</tr>
<tr>
<td>Connections for apparatus</td>
<td></td>
</tr>
<tr>
<td>ED3272</td>
<td>No.10 connections L1-N 40 A</td>
</tr>
<tr>
<td>ED3280</td>
<td>No.10 connections L2-N 40 A</td>
</tr>
<tr>
<td>ED3298</td>
<td>No.10 connections L3-N 40 A</td>
</tr>
<tr>
<td>ED3033</td>
<td>No.10 connections L 1 100A</td>
</tr>
<tr>
<td>ED3041</td>
<td>No.10 connections L 2 100A</td>
</tr>
<tr>
<td>ED3058</td>
<td>No.10 connections L 3 100A</td>
</tr>
<tr>
<td>ED3066</td>
<td>No.10 connections N 100A</td>
</tr>
<tr>
<td>ED3132</td>
<td>Feeders with cable 4P 100A L=350mm</td>
</tr>
<tr>
<td>ED0026</td>
<td>Feeders with cable 4P 100A L=1500mm</td>
</tr>
<tr>
<td>ED0025</td>
<td>Feeders with cable 4P 100A L=2500mm</td>
</tr>
<tr>
<td>Modules for parallel power supply with cable</td>
<td></td>
</tr>
<tr>
<td>ED3082</td>
<td>Power supply modules 2P 100A with cable L=600m</td>
</tr>
<tr>
<td>ED3405</td>
<td>Power supply modules 4P 100A with cable L=400mm</td>
</tr>
<tr>
<td>ED3090</td>
<td>Power supply modules 4P 100A with cable L=600m</td>
</tr>
<tr>
<td>ED3413</td>
<td>Power supply modules 4P 100A with cable L=800mm</td>
</tr>
<tr>
<td>ED3439</td>
<td>Power supply modules 4P 100A with cable L=1500mm</td>
</tr>
<tr>
<td>Modules for power supply without cable in 100A</td>
<td></td>
</tr>
<tr>
<td>ED3101</td>
<td>No.10 single-pole power supply modules L 1</td>
</tr>
<tr>
<td>ED3102</td>
<td>No.10 single-pole power supply modules L 2</td>
</tr>
<tr>
<td>ED3103</td>
<td>No.10 single-pole power supply modules L 3</td>
</tr>
<tr>
<td>ED3104</td>
<td>No.10 single-pole power supply modules N</td>
</tr>
</tbody>
</table>
Unifix L

Accessories

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED3140</td>
<td>No.10 power supply terminals 63A for cable 25mm²</td>
<td>1</td>
</tr>
<tr>
<td>ED2961</td>
<td>No.10 busbar covers L=600mm</td>
<td>1</td>
</tr>
<tr>
<td>GD1520</td>
<td>DIN rail kit and supports for fixing to the structure</td>
<td>1</td>
</tr>
<tr>
<td>PM1500</td>
<td>Modular panel 1 Din row (only for ArTu L) 150x600</td>
<td>1</td>
</tr>
<tr>
<td>PM2624</td>
<td>Modular panel 1 Din row 200x600</td>
<td>1</td>
</tr>
<tr>
<td>PM3648</td>
<td>Modular panel 2 DIN rows 300x600</td>
<td>1</td>
</tr>
<tr>
<td>PM6672</td>
<td>Modular panel 3 DIN rows 600x600</td>
<td>1</td>
</tr>
</tbody>
</table>
Code Dimensions mm (bxh) Pack/metres

Wiring ducts with 8-12mm slit grey RAL 7030 colour

<table>
<thead>
<tr>
<th>Code</th>
<th>Dimensions mm (bxh)</th>
<th>Pack/metres</th>
</tr>
</thead>
<tbody>
<tr>
<td>05 019</td>
<td>15x17</td>
<td>92</td>
</tr>
<tr>
<td>05 033</td>
<td>25x30</td>
<td>116</td>
</tr>
<tr>
<td>05 035</td>
<td>40x30</td>
<td>80</td>
</tr>
<tr>
<td>05 037</td>
<td>60x30</td>
<td>52</td>
</tr>
<tr>
<td>05 043</td>
<td>25x40</td>
<td>96</td>
</tr>
<tr>
<td>05 045</td>
<td>40x40</td>
<td>60</td>
</tr>
<tr>
<td>05 047</td>
<td>60x40</td>
<td>40</td>
</tr>
<tr>
<td>05 049</td>
<td>80x40</td>
<td>32</td>
</tr>
<tr>
<td>05 051</td>
<td>100x40</td>
<td>24</td>
</tr>
<tr>
<td>05 053</td>
<td>120x40</td>
<td>20</td>
</tr>
<tr>
<td>05 063</td>
<td>25x60</td>
<td>68</td>
</tr>
<tr>
<td>05 065</td>
<td>40x60</td>
<td>44</td>
</tr>
<tr>
<td>05 067</td>
<td>60x60</td>
<td>32</td>
</tr>
<tr>
<td>05 069</td>
<td>80x60</td>
<td>24</td>
</tr>
<tr>
<td>05 071</td>
<td>100x60</td>
<td>20</td>
</tr>
<tr>
<td>05 073</td>
<td>120x60</td>
<td>14</td>
</tr>
<tr>
<td>05 083</td>
<td>25x80</td>
<td>56</td>
</tr>
<tr>
<td>05 085</td>
<td>40x80</td>
<td>36</td>
</tr>
<tr>
<td>05 087</td>
<td>60x80</td>
<td>24</td>
</tr>
<tr>
<td>05 089</td>
<td>80x80</td>
<td>16</td>
</tr>
<tr>
<td>05 091</td>
<td>100x80</td>
<td>16</td>
</tr>
<tr>
<td>05 093</td>
<td>120x80</td>
<td>12</td>
</tr>
<tr>
<td>05 094</td>
<td>25x100</td>
<td>40</td>
</tr>
<tr>
<td>05 095</td>
<td>40x100</td>
<td>28</td>
</tr>
<tr>
<td>05 096</td>
<td>60x100</td>
<td>20</td>
</tr>
<tr>
<td>05 097</td>
<td>80x100</td>
<td>14</td>
</tr>
<tr>
<td>05 098</td>
<td>100x100</td>
<td>8</td>
</tr>
<tr>
<td>05 099</td>
<td>150x100</td>
<td>8</td>
</tr>
</tbody>
</table>

Wiring ducts with 4-6mm slit grey RAL 7030 colour

<table>
<thead>
<tr>
<th>Code</th>
<th>Dimensions mm (bxh)</th>
<th>Pack/metres</th>
</tr>
</thead>
<tbody>
<tr>
<td>05 119</td>
<td>15x17</td>
<td>92</td>
</tr>
<tr>
<td>05 133</td>
<td>25x30</td>
<td>116</td>
</tr>
<tr>
<td>05 135</td>
<td>40x30</td>
<td>80</td>
</tr>
<tr>
<td>05 137</td>
<td>60x30</td>
<td>52</td>
</tr>
<tr>
<td>05 143</td>
<td>25x40</td>
<td>96</td>
</tr>
<tr>
<td>05 145</td>
<td>40x40</td>
<td>60</td>
</tr>
<tr>
<td>05 147</td>
<td>60x40</td>
<td>40</td>
</tr>
<tr>
<td>05 149</td>
<td>80x40</td>
<td>32</td>
</tr>
<tr>
<td>05 151</td>
<td>100x40</td>
<td>24</td>
</tr>
<tr>
<td>05 153</td>
<td>120x40</td>
<td>20</td>
</tr>
<tr>
<td>05 163</td>
<td>25x60</td>
<td>68</td>
</tr>
<tr>
<td>05 165</td>
<td>40x60</td>
<td>44</td>
</tr>
<tr>
<td>05 167</td>
<td>60x60</td>
<td>32</td>
</tr>
<tr>
<td>05 169</td>
<td>80x60</td>
<td>24</td>
</tr>
<tr>
<td>05 171</td>
<td>100x60</td>
<td>20</td>
</tr>
<tr>
<td>05 173</td>
<td>120x60</td>
<td>14</td>
</tr>
<tr>
<td>05 183</td>
<td>25x80</td>
<td>56</td>
</tr>
<tr>
<td>05 185</td>
<td>40x80</td>
<td>36</td>
</tr>
<tr>
<td>05 187</td>
<td>60x80</td>
<td>24</td>
</tr>
<tr>
<td>05 189</td>
<td>80x80</td>
<td>16</td>
</tr>
<tr>
<td>05 191</td>
<td>100x80</td>
<td>16</td>
</tr>
<tr>
<td>05 193</td>
<td>120x80</td>
<td>12</td>
</tr>
<tr>
<td>05 194</td>
<td>25x100</td>
<td>40</td>
</tr>
<tr>
<td>05 195</td>
<td>40x100</td>
<td>28</td>
</tr>
<tr>
<td>05 196</td>
<td>60x100</td>
<td>20</td>
</tr>
<tr>
<td>05 197</td>
<td>80x100</td>
<td>14</td>
</tr>
<tr>
<td>05 198</td>
<td>100x100</td>
<td>8</td>
</tr>
<tr>
<td>05 199</td>
<td>150x100</td>
<td>8</td>
</tr>
</tbody>
</table>

In-depth technical information page 30
Overview dimensions page 42

ABB SACE
ArTu L

Components

Accessories for wiring ducts

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pack/metres</th>
</tr>
</thead>
<tbody>
<tr>
<td>05 214</td>
<td>No.100 rivet ø4mm</td>
<td>1</td>
</tr>
<tr>
<td>05 216</td>
<td>No.100 rivet ø6mm</td>
<td>1</td>
</tr>
<tr>
<td>05 224</td>
<td>No.100 wire retainer for wiring ducts base 40mm</td>
<td>1</td>
</tr>
<tr>
<td>05 226</td>
<td>No.100 wire retainer for wiring ducts base 60mm</td>
<td>1</td>
</tr>
<tr>
<td>05 228</td>
<td>No.100 wire retainer for wiring ducts base 80mm</td>
<td>1</td>
</tr>
<tr>
<td>05 230</td>
<td>No.100 wire retainer for wiring ducts base 100mm</td>
<td>1</td>
</tr>
<tr>
<td>05 240</td>
<td>No.100 plastic nameplate</td>
<td>1</td>
</tr>
<tr>
<td>AD1009</td>
<td>No.4 supports for horizontal wiring duct on DIN rail</td>
<td>1</td>
</tr>
<tr>
<td>05 250</td>
<td>No.20 rapid hooking base for wiring duct base 25mm horizontal on DIN rail</td>
<td>1</td>
</tr>
<tr>
<td>05 254</td>
<td>No.20 rapid hooking base for wiring duct base 40mm horizontal on DIN rail</td>
<td>1</td>
</tr>
<tr>
<td>05 256</td>
<td>No.20 rapid hooking base for wiring duct base 60mm horizontal on DIN rail</td>
<td>1</td>
</tr>
<tr>
<td>05 258</td>
<td>No.20 rapid hooking base for wiring duct base 80mm horizontal on DIN rail</td>
<td>1</td>
</tr>
<tr>
<td>05 260</td>
<td>No.20 rapid hooking base for wiring duct base 100mm horizontal on DIN rail</td>
<td>1</td>
</tr>
<tr>
<td>05 262</td>
<td>No.20 rapid hooking base for wiring duct base 120mm horizontal on DIN rail</td>
<td>1</td>
</tr>
<tr>
<td>05 265</td>
<td>Shears for wiring ducts</td>
<td>1</td>
</tr>
<tr>
<td>05 266</td>
<td>Percussion striker for rivets</td>
<td>1</td>
</tr>
</tbody>
</table>

Brackets for fixing to the structure

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pack/metres</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD1096</td>
<td>No.4 supports for hooking onto wall-mounted structure for horizontal/vertical wiring duct</td>
<td>1</td>
</tr>
<tr>
<td>AD1098</td>
<td>No.4 supports for hooking onto floor-mounted structure for horizontal/vertical wiring duct</td>
<td>1</td>
</tr>
</tbody>
</table>

Flexible wiring ducts L=500mm grey RAL 7040 colour

<table>
<thead>
<tr>
<th>Code</th>
<th>Dimensions mm (bxh)</th>
<th>Pack/metres</th>
</tr>
</thead>
<tbody>
<tr>
<td>05 400</td>
<td>12,5x12,5</td>
<td>112</td>
</tr>
<tr>
<td>05 402</td>
<td>16x16</td>
<td>84</td>
</tr>
<tr>
<td>05 405</td>
<td>20x20</td>
<td>112</td>
</tr>
<tr>
<td>05 410</td>
<td>25x25</td>
<td>70</td>
</tr>
<tr>
<td>05 415</td>
<td>30x30</td>
<td>50</td>
</tr>
<tr>
<td>05 420</td>
<td>40x40</td>
<td>50</td>
</tr>
<tr>
<td>05 425</td>
<td>50x50</td>
<td>32</td>
</tr>
</tbody>
</table>

Wiring ducts

The lamellar wiring ducts are made of thermoplastic self-extinguishing material complying with the UL 94V0 Standard, resistant to abnormal heat and fire up to 960°C (glow wire test) according to the IEC 695-2-1 Standard. Dimensional stability is guaranteed from -20°C to + 60°C. The standard length of the wiring ducts is 2 metres and the colour is grey RAL 7030. Products have the IMQ mark, UL and CSA approvals, and RINA homologation.

Flexible wiring ducts

Made of thermoplastic material resistant to a permanent temperature of 80°C and peaks of up to 110°C, according to the IEC 216 Standard. Self-extinguishing property is according to the UL 94V2 Standard. The standard length is 500mm and the colour is grey RAL 7040.
Armari CGP-CS Cahors
ARMARIO PARA CGP + CAJA SECCIONAMIENTO

Descripción:
Armario prefabricado monobloque más peana, con puerta metálica con capacidad para albergar una Caja General de Protección más una Caja de Seccionamiento.

Características Técnicas:
• Estructura monobloque de hormigón reforzado con fibra de vidrio.
• Composición GRC según UNE-EN 1169.
• Resistencia Flexión GRC ≥ 8 N/mm² (Mpa) según UNE-EN 1170-4.
• Tipo de cemento: CEM I 52,5 R.
• Puerta en chapa galvanizada RAL 7035 de ≥ 1,2 mm, pliegue perfil en forma □.
• Apertura de la puerta ≥ 150º con anticierre fijado.
• Cierre por pestillo.
• Cerradura triangular 11 mm de lado y dispositivo para candado ≥ 8 mm Ø (para otros tipos de cerradura, consultar).
• Marco en chapa galvanizada RAL 7035 ≥ 1,5 mm en inglete.
• Peso: 380 kg
Se suministra con peana especial, diseñada y obligatoria por la Compañía ENDESA.

<table>
<thead>
<tr>
<th>REF. CAHORS</th>
<th>CODIGO ENDESA</th>
<th>DESIGNACION</th>
<th>DIMENSIONES INT. UTILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0926433</td>
<td>6703951</td>
<td>ZCS + CGP</td>
<td>1377x657x260</td>
</tr>
</tbody>
</table>
Armari TMF Cahors
ARMARIO PARA TMF

Descripción:
Armario prefabricado monobloque con puerta metálica, con capacidad para albergar un TMF de 80 A a 400 A o similar.

Características Técnicas:
• Estructura monobloque de hormigón reforzado con fibra de vidrio.
• Composición GRC según UNE-EN 1169.
• Resistencia Flexión GRC ≥ 8 N/mm² (Mpa) según UNE-EN 1170-4.
• Tipo de cemento: CEM I 52,5 R.
• Puerta en chapa galvanizada RAL 7035 de ≥ 1,2 mm, pliegue perfil en forma □
• Apertura de la puerta ≥ 150º con anticierre fijado.
• Cierre de palanca, con bombín tipo JIS CFE, con cierre de palanca y 3 puntos de anclaje, según especificaciones de la Compañía (para otros tipos de cerradura, consultar).
• Marco en chapa galvanizada RAL 7035 ≥ 1,5 mm en inglete.
• Peso: 480 kg

<table>
<thead>
<tr>
<th>REF. CAHORS</th>
<th>DESIGNACION</th>
<th>DIMENSIONES INT. UTILES alto x ancho x prof. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0926535</td>
<td>ZTMF10</td>
<td>1500x1022x260</td>
</tr>
</tbody>
</table>
8 Altres annexos – Condicions tècniques i de seguretat – Instal·lacions fotovoltaïques
CONDICIONS TÈCNIQUES I DE SEGURETAT
DE LES INSTAL·LACIONS DE DISTRIBUCIÓ
DE
FECSA ENDESA

NORMA TÈCNICA PARTICULAR
INSTAL·LACIONS FOTOVOLTAIQUES INTERCONNECTADES
A LA XARXA DE DISTRIBUCIÓ DE BAIXA TENSIÓ
(NTP-FVBT)

(PRESENTADA A LA DIRECCIÓ GENERAL D’ENERGIA I MINES EL 14/07/09)

JUNY DEL 2009
ÍNDICE

1 OBJETE .. 4

2 ÀMBIT D'APLICACIÓ ... 4

3 DEFINICIONS ... 4

4 REGLAMENTACIÓ .. 5

5 COMPONENTS DE LA INSTAL·LACIÓ ... 6

6 ESQUEMES BÀSICS DE LES INSTAL·LACIONS .. 7

7 CONDICIONS GENERALS .. 9

8 CRITERIS TÈCNICS PER A LA SELECCIÓ DEL PUNTO DE CONNEXIÓ .. 9

9 PUNT DE CONNEXIÓ I MESURA (PCM) .. 10

10 LÍNIA DE CONNEXIÓ PRIMÀRIA (LCP) .. 10

11 CAIXES GENERALS DE PROTECCIÓ (CGP) ... 11

11.1 EMPLAÇAMENT I INSTAL·LACIÓ ... 11

11.2 ELECCIÓ DE LA CGP .. 11

12 LÍNIA DE CONNEXIÓ SECUNDÀRIA (LCS) .. 13

13 CONJUNTS DE PROTECCIÓ I MESURA PER A INSTAL·LACIONS FV (CPMFV) 13

13.1 CARACTERÍSTIQUES .. 13

13.2 UNITATS FUNCIONALS ... 13

13.3 TIPIUS ... 14

13.4 UBICACIÓ ... 14

13.5 ARQUITECTURA ORIENTATIVA DELS CPMFV ... 15

14 EQUIP DE MESURA ... 15

14.1 CLASSIFICACIÓ DELS PUNTS DE MESURA .. 15

14.2 ESQUEMES BÀSICS DELS EQUIPS DE MESURA ... 16

14.3 CARACTERÍSTIQUES DELS EQUIPS DE MESURA ... 17

14.4 COMPTADORS ELECTRÒNICS MULTIFunció (D'ENERGIA ACTIVA I REACTIVA) 17

14.5 CONDUCTORS .. 18

14.6 EQUIPS INDIRECTES .. 18

14.7 EQUIPS DIRECTES .. 18

14.8 TELEMESURA .. 19

15 INTERRUPTOR GENERAL I PROTECCIÓ DIFERENCIAL .. 19

15.1 INTERRUPTOR GENERAL Manual de la IFV ... 19

15.2 PROTECCIÓ DIFERENCIAL ... 20

16 LÍNIA DE CONNEXIÓ DE LA INSTAL·LACIÓ (LCI) .. 20

17 QUADRE DE COMANDAMENT I PROTECCIÓ .. 20

17.1 PROTECCIONS ... 21

17.2 CARACTERÍSTIQUES TÈCNIQUES I AJUSTS ... 21

17.3 SEPARACIÓ GALVÀNICA .. 22

Juny del 2009
17.4 POSADA A TERRA .. 22

18 INVERSORS .. 22
 18.1 HARMÒNICS ... 22
 18.2 CERTIFICACIÓ DEL FABRICANT ... 22

19 VERIFICACIÓ I POSADA EN SERVEI ... 23
 19.1 CONDICIONS PRÈVIES ... 23
 19.2 POSADA EN SERVEI I PRIMERA VERIFICACIÓ .. 23
 19.3 PROVES RELATIVES A LA QUALITAT D’ONA .. 24

20 REVISIONS PERIÒDIQUES .. 24

21 NORMES DE REFERÈNCIA .. 24
1 OBJETE

Aquesta Norma Tècnica Particular té per finalitat definir els esquemes i establir les condicions tècniques i de seguretat per a les Instal·lacions Fotovoltaïques de Producció en Règim Especial (PRE), interconnectades a la xarxa de distribució de Baixa Tensió d’Endesa Distribució Elèctrica S.L.U. a Catalunya, d’ara endavant FECSA ENDESA, segons el que es disposa en el Reglament Electrotècnic de BT (ITC-BT-40) i en el RD 1663/2000 de 29 de setembre, sobre connexió d’instal·lacions fotovoltaïques a la xarxa de Baixa Tensió, i altra reglamentació aplicable.

2 ÀMBIT D’APLICACIÓ

Aquesta NTP aplica a totes aquelles Instal·lacions Fotovoltaïques interconnectades, és a dir, que treballen normalment en paral·lel amb la xarxa de distribució de Baixa Tensió de FECSA ENDESA a Catalunya, i la potència nominal de les quals no sigui superior a 100 kVA.

Els criteris que es defineixen en aquest document, s’aplicaran d’igual manera a aquelles instal·lacions fotovoltaïques que formin part d’agrupacions, de potència total no superior a 100 kVA, que comparteixen infraestructura d’evacuació comuna.

Les centrals fotovoltaïques de no més de 100 kVA el punt de connexió de les quals tingui un nivell de tensió de Mitjana Tensió, hauran de complir la Norma Tècnica Particular d’Instal·lacions Fotovoltaïques connectades a la xarxa de distribució de Mitjana Tensió (NTP-FVMT).

3 DEFINICIONS

Instal·lacions Fotovoltaïques Interconnectades

Instal·lacions fotovoltaïques que normalment treballen en paral·lel amb la xarxa de l’empresa distribuïdora. Són les instal·lacions objecte d’aquesta norma.

Productors en Règim Especial (PRE)

En l’àmbit d’aquesta norma s’aplica aquesta denominació per referir-se en particular a les Instal·lacions Fotovoltaïques en Baixa Tensió i en general referir-se a instal·lacions de generació no gestionable.

Punt de Connexió i Mesura (PCM)

Punt de la xarxa de distribució existent on es connecta la Línia de Connexió. És el punt frontera entre la xarxa de distribució existent i la instal·lació d’extensió.

Línia de Connexió (LC)

Línia elèctrica mitjançant la qual es connecta la instal·lació fotovoltaica amb el Punt de Connexió i Mesura.

De manera general estarà constituïda per:

♦ Elements de connexió a la xarxa.
♦ Elements de protecció de la línia de connexió.
♦ Equips de mesura.

Es distingeixen els següents trams diferenciats:

♦ Línia de Connexió Primària (LCP): Tram de la Línia de Connexió entre el PCM i la CGP o Conjunt de Protecció i Mesura del PRE. Es correspondrìa amb l’Escomesa en instal·lacions d’usuari.

♦ Línia de Connexió Secundària (LCS): Tram de la Línia de Connexió entre la CGP i el Conjunt de Protecció i Mesura del PRE. Es corresponderia amb la Línia General d’Alimentació en instal·lacions d’usuari.

♦ Línia de Connexió de la Instal·lació (LCI): Tram de la Línia de Connexió entre el Conjunt de Protecció i Mesura del PRE i la Instal·lació Fotovoltaica. Es corresponderia amb la Derivació Individual en instal·lacions d’usuari.

Potència de la instal·lació fotovoltaica o potència nominal
És la suma de la potència dels inversors que intervenen en les tres fases de la instal·lació en condicions nominals de funcionament.

4 **REGLAMENTACIÓ**

El disseny i construcció de les instal·lacions de connexió a la xarxa de Baixa Tensió d’Instal·lacions Fotovoltaïques es farà d’acord amb les normes i disposicions vigents que puguin ser d’obligat compliment, i particularment amb l’establert en els següents Reglaments i Normes:

♦ Reglament sobre Condicions i Garanties de Seguritat en Centrals, Subestacions i Centres de Transformació (RD 3275/1982, de 12 de Novembre).

♦ Instruccions Tècniques Complementàries del RAT (ITC MIE-RAT) (Ordres del Ministeri d’Indústria i Energia de 06-07-84 y de 18-10-84).

♦ Instruccions Tècniques Complementàries al reglament de punts de mesura dels consums i trànsits d’energia elèctrica (Ordre del Ministeri d’Indústria i Energia de 12-04-99)

♦ Llei de Prevenció de Riscos Laborals (LPRL), (Llei 31/1995, de 8 de Novembre).

♦ Reial Decret 614/2001, de 8 de Juny, sobre disposicions mínimes per a la protecció de la salut i seguretat dels treballadors enfront del risc elèctic.

♦ Reglament Electrotècnic de Baixa Tensió i Instruccions Tècniques Complementàries (ITC-BT), (Reial Decret 842/2002 de 2 d’Agost).

♦ Reglament de Punts de Mesura (RD 1110/2007, de 24 d’Agost).

♦ Llei de garantia i qualitat del subministrament elèctric (Llei 18/2008, del 23 de Desembre, de la Generalitat de Catalunya).

♦ Resolució ECF/4548/2006, de 29 de desembre, per la que s’aproven a FECSA ENDESA les Normes Tècniques Particulares relatives a les instal·lacions de xarxa i a les instal·lacions d’enllaç.
Normes UNE d’obligat compliment segons es desprèn dels Reglaments, en les seves corresponents actualitzacions efectuades pel Ministeri d’Indústria Turisme y Comerç.

Ordre del Ministeri d’Indústria i Energia de 05-09-85, per la que s’estableixen normes administratives i tècniques per al funcionament i connexió a les xarxes elèctriques de centrals hidroelèctriques de fins a 5000 kVA i centrals d’autogeneració elèctrica.

Reial Decret 1663/2000, de 29 de setembre, sobre connexió d’instal·lacions fotovoltaiques a la xarxa de baixa tensió.

Resolució de 31-05-01, de la Direcció General de Política Energètica i Mines, per la que s’estableixen models de contracte tipus i model de factura per a instal·lacions solars fotovoltaiques connectades a la xarxa de baixa tensió.

Reial Decret 661/2007, de 25 de maig, per el que es regula l’activitat de producció d’energia elèctrica en règim especial.

Decret 308/1996, de 2 de setembre, del Departament d’Indústria Comerç i Turisme, per el que s’estableix el procediment administratiu per l’autorització de les instal·lacions de producció en règim especial.

Decret 352/2001, de 18 de desembre, del Departament d’Indústria Comerç i Turisme, sobre procediment administratiu aplicable a les instal·lacions fotovoltaiques d’energia solar connectades a la xarxa elèctrica.

5 COMPONENTES DE LA INSTAL·LACIÓ

Les Instal·lacions d’Enllaç de les centrals fotovoltaiques de Baixa Tensió estan constituïdes pels següents components:

- Línia de Connexió Primària (LCP)
- Caixa General de Protecció (CGP)
- Línia de Connexió Secundària (LCS)
- Conjunt de Protecció i Mesura per a Instal·lacions Fotovoltaiques (CPMFV)
- Línia de Connexió a la Instal·lació (LCI)
- Instal·lació fotovoltaica (IFV), composta per:
 - Quadre de Control i Protecció
 - Inversors
 - Plaques Fotovoltaiques

Figura 1. Esquema de blocs
ESQUEMES BÀSICS DE LES INSTAL·LACIONS

En funció de la ubicació i configuració dels components es distingeixen els següents tipus d’esquemes bàsics:

♦ Instal·lació amb Punt de Connexió en xarxa subterrània de Baixa Tensió.
 ♦ Amb CPMFV en límit de propietat
 ♦ Amb CPMFV en local de Centralització de Comptadors
♦ Instal·lació amb punt de connexió en xarxa aèria de Baixa Tensió
♦ Instal·lació amb Punt de Connexió en Centre de Transformació.

Figura 2. Connexió en xarxa subterrània
Figura 3. Connexió en xarxa aèria

Figura 4. Connexió en CT
7 CONDICIONS GENERALS

Les centrals fotovoltaiques són instal·lacions de propietat i de responsabilitat del PRE.

Serà responsabilitat del titular de la Instal·lació Fotovoltaica la correcta actuació de les proteccions, de la vigilància de les condicions de connexió a la xarxa, així com del bon funcionament de l’equip de mesura.

La instal·lació es realitzarà d’acord amb l’indicat en la Norma Tècnica Particular “Embrancaments i instal·lacions d’enllaç en baixa tensió” (NTP-IEBT), en tot allò que li sigui aplicable i que no s’expliciti en la present norma.

A efectes de càlcul per al dimensionat de la instal·lació, s’adoptaran els següents valors nominals:

♦ La Tensió Nominal serà de 230 V per a les monofàsiques i 400 V per a les trifàsiques.
♦ El factor de potència serà el més pròxim possible a 1.
♦ La instal·lació haurà d’estar dissenyada per a un corrent de curtcircuit de la xarxa de baixa tensió de 10 kA.

A continuació s’indiquen les potències màximes que es poden connectar en els diferents nivells de tensió habitualment emprats.

<table>
<thead>
<tr>
<th>NIVELL DE TENSIÓ</th>
<th>POTÈNCIA MÀXIMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 V Monofàsica</td>
<td>5 kVA</td>
</tr>
<tr>
<td>400 V Trifàsica</td>
<td>100 kVA</td>
</tr>
</tbody>
</table>

La instal·lació fotovoltaica haurà de disposar dels corresponents Certificats de marcat CE de tots els equips, que garanteixin el compliment de la Directiva Europea de Compatibilitat electromagnètica (DC 89/336/CEE), de compliment de la Directiva Europea de Baixa Tensió (DC/73/23/CEE) i de compliment del Reglament Electrotècnic de Baixa Tensió.

8 CRITERIS TÈCNICS PER A LA SELECCIÓ DEL PUNTO DE CONNEXIÓ

Per determinar el Punt de Connexió s’hauran de tenir en compte les següents condicions:

Les instal·lacions fotovoltaiques es connectaran directament a la xarxa de distribució de FECSA ENDESA en el Punt de Connexió i Mesura (PCM), que serà determinat per FECSA ENDESA, procurant que sigui el punt tènicament possible més proper al lloc d’ubicació de l’esmentada instal·lació fotovoltaica BT.

En cap cas no s’acceptarà la connexió sobre instal·lacions particulars.
El funcionament del conjunt dels PRE connectats, no provocarà en cap punt de la xarxa de distribució, que la tensió sobrepassi els marges reglamentaris del ± 7% de la tensió nominal de la xarxa.

La connexió-desconnexió de la Instal·lació Fotovoltaica no provocarà en el Punt de Connexió variacions superiors al 5% de la tensió.

Per a qualsevol punt de la línia entre la Baixa Tensió del transformador i el punt de connexió, la suma de les potències de les instal·lacions de Règim Especial connectades a aquesta línia no superarà el 50% de la capacitatsèlica de la línia, entenent aquesta com el límit imposat pel tram més feble en el circuit que uneix aquest punt amb la capçalera de la línia i considerant també els elements de protecció.

La suma de potències de les instal·lacions de Règim Especial connectades a un transformador MT/ BT, no podrà superar la meitat de la capacitatsèlica de transformació instal·lada en el mateix. Es considerarà la totalitat de PRE’s, amb independència de la seva connexió directa al quadre de BT del transformador o connexió a través de línies de BT existents.

La potència d’una IFV no podrà superar el 5% de la potència de curtcircuit en el punt de connexió.

La suma de potències de les instal·lacions de Règim Especial connectades a un transformador MT/ BT no serà superior al 5% de la potència de curtcircuit de la xarxa BT a què es connecten.

La connexió de la instal·lació fotovoltaica no afectarà al funcionament normal de la xarxa ni a la qualitat del subministrament dels clients connectats a ella. Tampoc no produirà canvis en la filosofia d’explotació, protecció i desenvolupament de la mateixa.

9 PUNT DE CONNEXIÓ I MESURA (PCM)

El Punt de Connexió i Mesura serà determinat per FECSA ENDESA en un punt de la xarxa el més pròxim possible a la instal·lació fotovoltaica, i considerant els criteris tècnics per a la selecció del punt de connexió indicats anteriorment.

La connexió a la xarxa es realitzarà sempre mitjançant una Caixa General de Protecció o element funcional equivalent. Aquesta CGP serà exclusiva per a aquest ús, i per tant independent de qualsevol altra CGP que ja existeixi o que s’instal·li per al subministrament BT, en cas d’haver-n’hi.

10 LÍNIA DE CONNEXIÓ PRIMÀRIA (LCP)

És la part de la Línia de Connexió que uneix la xarxa de distribució amb la Caixa General de Protecció o unitat funcional equivalent. En el cas de línia dedicada a un PRE des d’un Centre de Transformació és la que uneix el Quadre de Baixa Tensió del CT, amb funció de CGP, amb el CPMFV instal·lat al recinte del PRE.

En aquest últim cas la titularitat de la LCP corresponderà al PRE havent d’imputar-se a aquest les pèrdues en la mateixa, tal com s’indica més endavant.

La LCP es dissenyarà i construirà d’acord amb els requeriments indicats en la NTP-IEBT per als Embrancaments.
Respecte al criteri d’independència d’instal·lacions, en el cas de que línies d’evacuació de titularitat del PRE hagin de discórrer fora de les seves instal·lacions no podrà emprar conductes, canalitzacions ni altres elements propietat de FECSA ENDESA que estiguin lliures o ocupats per cables de la mateixa.

Aquestes instal·lacions titularitat del PRE no podran emprar elements (tubs, arquetes, cintes o plaques d’avis d’equips elèctrics, etc) amb identificatius d’ENDESA amb la finalitat d’evitar confusions sobre la propietat de les mateixes una vegada entrin en funcionament, havent d’utilitzar identificatius propis.

11 CAIXES GENERALS DE PROTECCIÓ (CGP)

Són les caixes que allotgen els elements de protecció de les línies de connexió. Les caixes generals de protecció (CGP) o unitats funcionals equivalents assenyalen el principi de la propietat de les instal·lacions dels PRE, sent ja elles mateixes de la seva propietat.

Per a tot el no indicat en aquesta norma, se seguirà l’establert en la NTP-IEBT.

11.1 Emplaçament i instal·lació

S’instal·larà en llocs lliure i permanent accés. La seva situació es fixarà de comú acord entre el PRE i FECSA ENDESA, procurant, en tots els casos, que la situació elegida sigui el més pròxima possible a la xarxa de distribució pública.

Les CGP estaran previstes per a la seva instal·lació en muntatge superficial o en poselles. S’instal·laran en el límit de la propietat, sobre les façanes exteriors dels edificis.

Quan la façana no limiti amb la via pública, la CGP es situarà en el límit entre les propietats públiques i privades, o en la tanca, si existeix, o bé en una posella disposada a l’efecte.

Quan l’escomesa sigui subterrània, la CGP s’instal·larà sempre en una posella a la paret, que es tancarà amb una porta preferentment metàl·lica i complint l’especificat per a les CGP en la norma NTP-IEBT.

Quan l’escomesa sigui aèria podran instal·lar-se en muntatge superficial a una altura sobre el terra compresa entre 3 m i 4 m. Quan es tracti d’una zona en la qual hi hagi previst el pas de la xarxa aèria a xarxa subterrània, la CGP es situarà com si es tractés d’una escomesa subterrània.

Per al cas d’instal·lacions en les quals el CPMFV estigui ubicat complint els requeriments indicats per a les CGP, els fusibles del CPMFV assumeixen la funció de CGP.

El PRE o l’instal·lador electricista autoritzat només tindran accés i podran actuar sobre les connexiones de la Línia de Connexió Secundària, prèvia comunicació a FECSA ENDESA.

11.2 Elecció de la CGP

L’esquema i tipus de la CGP a utilitzar estarà en funció de la potència generada per la instal·lació fotovoltaica a interconnectar.
11.2.1 Esquemes de CGP

Les CGP que s’utilitzaran a les instal·lacions de FECSA ENDESA s’ajustaran als següents esquemes:

<table>
<thead>
<tr>
<th>CGP 7 amb entrada i sortida de cables per la part inferior</th>
<th>CGP 9 amb entrada de cables per la part inferior i sortida per la superior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 5. Esquemes CGP

La CGP-7 serà d’aplicació en Línies de Connexió connectades a xarxes aèries i la CGP-9 per a xarxa subterrània.

11.2.2 Caixes Generals de Protecció seleccionades

A la taula adjunta s’indica la designació de les CGP seleccionades, així com el número i mida de les bases unipolars tancades (BUC) de què han d’estar proveïdes i el corrent màxim dels fusibles que en elles s’hagin de col·locar.

Taula 2. Tipus de CGP seleccionades

<table>
<thead>
<tr>
<th>Designació de la CGP</th>
<th>Bases</th>
<th>Intensitat màxima del fusible (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Número</td>
<td>Mida</td>
</tr>
<tr>
<td>CGP-7-160 BUC</td>
<td>3</td>
<td>00</td>
</tr>
<tr>
<td>CGP-9-160 BUC</td>
<td>3</td>
<td>00</td>
</tr>
</tbody>
</table>

11.2.3 Càlcul del calibre dels fusibles

Per determinar el calibre dels fusibles a instal·lar en la CGP s’hauran de tenir en compte els següents criteris:

- El calibre dels fusibles de la CGP serà tal que protegeixi la línia de connexió i mesura
- Han de ser selectius amb el fusible de seguretat de major calibre
- Es comprovarà que el calibre triat permeti una correcta coordinació de proteccions de BT.
12 LÍNIA DE CONNEXIÓ SECUNDÀRIA (LCS)

És la part de la Línia de Connexió mitjançant la qual es connecta la CGP amb el CPMFV, sent a més única per a cada CGP i el seu CPMFV corresponent.

Els conductors seran de coure. La secció dels cables serà uniforme a tot el seu recorregut i sense empalmaments. La secció mínima serà de 16 mm².

La seva configuració serà sempre de 3 fases i neutre, i el seu càlcul, instal·lació i materials seran segons els requeriments indicats en la NTP-IEBT per a la Línia General d’Alimentació.

13 CONJUNTS DE PROTECCIÓ I MESURA PER A INSTAL·LACIONS FV (CPMFV)

13.1 Característiques

Els conjunts de protecció i mesura estaran formades per la unió de mòduls de material aïllant de classe A, com a mínim, segons UNE 21305, i compliran tot el que sobre el particular s’indica en la Norma NTP-IEBT.

Quan es proporcioni al mòdul ventilació interior per evitar possibles condensacions d’humitat, es realitzarà de manera que no redueixi el grau de protecció establert.

Tots els mòduls que constitueixin les diferents unitats funcionals estaran proveïts de dispositius de tancament precintables.

La unitat funcional de mesura disposarà d’un accés registrable que faci practicable el dispositiu de visualització de les diferents funcions de mesura. Una vegada tancat mantindrà el grau de protecció assignat al conjunt i serà precintable.

Tots els cables seran no propagadors de l’incendi i amb emissió de fums i opacitat reduïda.

Els cables amb característiques equivalents a la Norma UNE 21027-9 (barreges termoestables) o a la Norma UNE 211002 (barreges termoplàstiques) compleixen amb aquesta prescripció.

13.2 Unitats funcionals

Les unitats funcionals que constitueixen els CPMFV són:

♦ Unitat funcional de CGP
♦ Unitat funcional de transformadors de mesura (si procedeix)
♦ Unitat funcional de comprovació (si procedeix)
♦ Unitat funcional de mesura
♦ Unitat funcional de comunicacions
♦ Unitat funcional d’Interruptor General Manual
♦ Unitat funcional de protecció diferencial
♦ Unitat funcional de dispositius de sortida
13.3 Tipus

Aquests conjunts es designaran mitjançant les sigles CPMFV, seguides de les sigles del “típus”, que indica els elements que allotja, segons la Taula 3 i les lletres IFV indicatiu de les instal·lacions fotovoltaiques.

<table>
<thead>
<tr>
<th>Tipus</th>
<th>Contingut</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMF1-IFV</td>
<td>1 comptador multifunció trifàsic directe o</td>
</tr>
<tr>
<td></td>
<td>1 comptador multifunció monofásic directe</td>
</tr>
<tr>
<td>TMF10-IFV</td>
<td>1 comptador multifunció trifásic indirecte</td>
</tr>
<tr>
<td></td>
<td>3 transformadors de corrent</td>
</tr>
<tr>
<td></td>
<td>1 bloc de dispositius de comprovació</td>
</tr>
</tbody>
</table>

13.4 Ubicació

El CPMFV s’instal·larà en llocs d’accés lliure i permanent, i al costat de la Caixa de Seccionament quan aquesta existeixi.

S’instal·larà en el límit de la propietat, sobre la façana exterior de l’edifici.
Quan la façana no limiti amb la via pública, es situarà en el límit entre les propietats públiques i privades, o en la tanca, si existeix, i sempre en una posella disposada a l’efecte.

En cas d’existir un recinte de centralització exclusiu per a comptadors amb capacitat segons la NTP-IEBT, es podrà instal·lar en ell el CPMFV.

En qualsevol cas serà de lliure accés al personal de la empresa distribuïdora les 24 h del dia, tots els dies de l’any.

En el cas de línia BT dedicada des del centre de transformació es comptabilitzaràn les pèrdues al cable de BT, fent constar al contracte de compravenda el percentatge a aplicar sobre la facturació.

13.5 Arquitectura orientativa dels CPMFV

1.- Comptador; 2.- Interruptor General Manual; 3.- Interruptor diferencial

Figura 7. TMF 10 – IFV
Figura 8. TMF 1 – IFV

14 EQUIP DE MESURA

14.1 Classificació dels punts de mesura

Segons l’article 7 del REIAL DECRET 1110/2007, de 24 d’Agost, pel qual s’aprova el Reglament unificat de punts de mesura del sistema elèctric, els punts de mesura d’instal·lacions de generació en BT es poden classificar en:
- Tipus 5: els situats a les fronteres d’instal·lacions de generació amb una potència nominal igual o inferior a 15 kVA.

- Tipus 3: els situats a les fronteres d’instal·lacions de generació amb una potència nominal superior a 15 kVA i inferior a 450 kVA.

14.2 Esquemes bàsics dels equips de mesura

![Diagrama del comptador estàtic multifunció bidireccional (IMP-EXP)](image-1.png)

Figura 9. Xarxa monofàsica (mesura directa)

![Diagrama de la xarxa trifàsica (mesura directa)](image-2.png)

Figura 10. Xarxa trifàsica (mesura directa)
14.3 Característiques dels equips de mesura

Els comptadors a instal·lar disposaran de la corresponent autorització de model atorgada pel Centre Espanyol de Metrologia, per la Comunitat Autònoma o per l’organisme oficial competent; i disposaran de la verificació oficial en origen (disposarà del Certificat de conformitat UNE-EN60617 (Activa) i UNE-EN61268 (Reactiva)). A més, estarà acceptat per a la seva utilització en l’àmbit de FECSA ENDESA.

Amb referència a la classe de precisió (de comptadors i transformadors de mesura), de mesures redundants o comprovants, comunicacions, lectura, etc., estaran subjectes a la legislació vigent (RD 1110/2007, de 24 d’Agost, pel qual s’aprova el Reglament unificat de punts de mesura del sistema elèctric; i les seves Instruccions Tècniques Complementàries).

Prèviament a la seva posada en explotació, els equips de mesura s’hauran de compactar pel Laboratori de Comptadors de FECSA ENDESA, que facilitarà les etiquetes identificatives de codi de barres preceptius per a la seva correcta identificació en els sistemes, havent de presentar en aquest laboratori, els transformadors (si existeixen), els comptadors i els seus protocols d’assaig.

En l’envoltant dels equips de mesura, es disposarà d’una etiqueta identificativa amb el nom de la instal·lació i el número de RIPRE (Registre d’Inscripció de Productors de Règim Especial).

14.4 Comptadors electrònics multifunció (d’energia activa i reactiva)

S’utilitzaran comptadors estàtics multifunció amb registrador de mesures inclòs en el mateix envoltant, per a la mesura d’energia activa en ambdós sentits de circulació d’energia (compra i venda) i reactiva a 4 quadrants programats amb la discriminació horària vigent i necessària per a la facturació. En el programa “contracte 2” es programarà la importació i en el “contracte 3”
l’exportació. Així mateix, portarà habilitats els tancaments automàtics a dia 1 per a tots els contractes.

El comptador permetrà la verificació per LED en els dos sentits de l’energia.

Per a instal·lacions amb una potència superior a 15 kVA serà de caràcter obligatori que el comptador registri la mesura d’energia reactiva.

Per a les instal·lacions amb una intensitat \(\leq 63 \) A s’utilitzaran comptadors de mesura directa; i mesura indirecta per a intensitats superiors.

La precisió dels comptadors d’energia elèctrica serà l’indicada a la següent taula.

<table>
<thead>
<tr>
<th>Equip de mesura</th>
<th>Activa</th>
<th>Reactiva</th>
<th>Corba de càrrega</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipus 3 ((P_n > 15 \text{ kVA}))</td>
<td>0.5s</td>
<td>1</td>
<td>Obligatoria</td>
</tr>
<tr>
<td>Tipus 5 ((P_n \leq 15 \text{ kVA}))</td>
<td>1</td>
<td>2</td>
<td>Opcional</td>
</tr>
</tbody>
</table>

Per a la bonificació de l’energia reactiva, serà obligatori que l’equip de mesura registri la corba de càrrega horària i quart horària.

Els equips de mesura tipus 5, estaran integrats en un sistema de telegestió i telemesura implantat per ENDESA, com a responsable de la lectura corresponent.

14.5 Conductors

Els conductors seran no propagadors de l’incendi i amb emissió de fums CIH i opacitat reduïda, resistència a la tracció, etc., que es defineixen en la NTP-IEBT.

14.6 Equips indirectes

En els equips de mesura indirecta, s’instal·laran regletes de comprovació amb separadors i senyalització, segons s’especifica en la NTP-IEBT.

La secció dels conductors per al cablejat de tot el secundari de mesura en equips indirectes, es realitzarà amb cable de coure de classe 5 segons Norma UNE 21022, aïllat per a una tensió de 450/750 V, de 4 mm\(^2\) de secció per a les intensitats i 1,5 mm\(^2\) per a les tensions, senyalitzat de color blau clar per al neutre i negre, marró i gris (R, S, T) per a les fases.

14.7 Equips directes

Per al cablejat dels equips de mesura directa trifàsica, els conductors seran de coure, aïllats i normalment, unipolars amb una tensió assignada 450/750 V. Quan s’utilitzin multiconductors, la
tensió assignada serà de 0.6/1 kV, de 16 mm2 de secció per a les fases i neutre, senyalitzat de color blau clar per al neutre i negre, marró y gris (R, S, T) per a les fases.

En comptadors directes monofàsics el cablejat serà amb cable de coure flexible de 10 o 16 mm2 de secció tant per a la fase com per al neutre, senyalitzat de color blau clar per al neutre i marró per a la fase.

14.8 Telemesura

14.8.1 Obligatorietat

Serà obligatòria la telemesura a les instal·lacions de generació amb potència superior a 15 kVA, segons el disposat en el RD 1110/2007.

14.8.2 Alimentació del mòdem

Es realitzarà des de la instal·lació interior de la pròpia instal·lació fotovoltaica. Es podrà col·locar aquesta alimentació en un mòdul de doble aïllament, incorporant una base Schuko amb presa de terra, un relè magnetotèrmic i un relè diferencial si fos necessari.

![Figura 13. Mòdul d'alimentació auxiliar](image)

14.8.3 Característiques de la targeta GSM

En les instal·lacions en les quals la comunicació remota es realitzi per mitjà de tecnologia GSM, les targetes compliran els següents requisits:

♦ Disposaran de número de veu i de número de dades.
♦ Codi PIN inhabilitat.
♦ Tots els serveis addicionals inhabilitats (bústia de veu, trucada en espera, trucada a tres, etc).

15 INTERRUPTOR GENERAL I PROTECCIÓ DIFERENCIAL

15.1 Interruptor General Manual de la IFV

Es tracta del dispositiu de seguretat i maniobra que permet separat la Instal·lació Fotovoltaica de la xarxa de distribució. Haurà de poder accionar-se manualment.

Les característiques dels IGM-IFV tant constructives com de tipus de desconexió de corrents nominals, seran les indicades en la Norma UNE 20317.

Tindrà poder de tall suficient per al corrent de curcircuit que pugui produir-se en el punt de la seva instal·lació, de 4.500 A com a mínim.
Pel nombre de pols, podrà ser bipolar (dos pols protegits) o tetrapolar (tres pols protegits mes neutre seccionable), en funció del tipus d’instal·lació. Per tractar-se d’un element de control haurà de disposar de la corresponent Verificació.

La protecció magnetotèrmica actuarà com a màxim a la potència de pic de la instal·lació i en cap cas per damunt del 130% de la potència nominal de la instal·lació.

15.2 Protecció diferencial

A fi de protegir les persones en el cas de derivació d’algun element de la instal·lació, es disposarà d’un interruptor automàtic diferencial.

16 LÍNIA DE CONNEXIÓ DE LA INSTAL·LACIÓ (LCI)

És la part de la Línies de Connexió que connecta les instal·lacions fotovoltaiques pròpiament dites amb el CPMFV.

Els conductors seran de coure. La secció dels cables serà uniforme a tot el seu recorregut i sense empalmaments. La secció mínima serà de 10 mm2.

Cada línia portarà el seu conductor de neutre així com el conductor de protecció.

El punt de connexió del conductor de protecció estarà situat en el quadre de comandament i protecció.

En el cas d’edificis destinats principalment a habitatges, en edificis comercials o d’oficines, discorreran per llocs d’ús comú o, en cas contrari, quedaran determinades les seves servituds corresponents.

El seu càlcul, instal·lació i materials seran segons els requeriments indicats en la NTP-IEBT per a les Derivacions Individuals.

17 QUADRE DE COMANDAMENT I PROTECCIÓ

Les proteccions que aquí es descriuen, es refereixen, principalment a les que desconecten les instal·lacions fotovoltaiques de la xarxa de distribució de Baixa Tensió, així com les proteccions mínimes contra sobretensions.

Aquestes proteccions han de limitar les interferències sobre la xarxa i sobre altres clients en el cas de defecte, tant a les instal·lacions fotovoltaiques com a la pròpia xarxa.

En cas de defecte intern a la instal·lació fotovoltaica, la protecció l’ha de separar automàticament de la xarxa.

Han d’evitar que la instal·lació fotovoltaica continui alimentant un defecte o mantenint en tensió una part de la xarxa en defecte (per a la seguretat de persones i instal·lacions).

Han d’evitar el funcionament en illa.

Han d’impedir la reconexió de la instal·lació abans de 3 minuts des del restabliment de la tensió, després d’haver estat desconectada la instal·lació.
Han d’evitar, sempre que sigui possible, la desconexió injustificada de la instal·lació fotovoltaica com a conseqüència de variacions normals en els paràmetres de funcionament de la xarxa així com de defectes externs a la seva línia de connexió.

17.1 Proteccions

Es disposarà almenys dels següents elements, integrats a l’inversor:

- Protecció de màxima i mínima tensió.
- Protecció de màxima i mínima freqüència.
- Protecció anti-illa.

Es disposarà també de:

- Aïllament galvànic:
 - Mitjançant transformadors separadors.
 - Integrat en el propi inversor.
- Dispositius destinats a la protecció contra les sobretensions permanents.
- Dispositius destinats a la protecció contra les sobretensions transitòries.
- Contactor o Interruptor automàtic per realitzar les funcions de connexió-desconnexió de la xarxa.

El titular de la Instal·lació Fotovoltaica podrà instal·lar a més aquelles proteccions que consideri necessàries per al bon funcionament de la instal·lació.

17.2 Característiques tècniques i ajusts

17.2.1 Protecció de màxima i mínima tensió

Es controlarà la tensió fase neutre en instal·lacions monofàsiques i les tensions entre fases en les instal·lacions trifàsiques.

Dispar per màxima tensió a 1.1 Un de qualsevol de les tensions, mantinguda durant 0.5 s.
Dispar per màxima tensió a 0.85 Un de qualsevol de les tensions, mantinguda durant 1.2 s.

17.2.2 Protecció de màxima i mínima freqüència

Es controlarà la freqüència.

Dispar per màxima freqüència a 51 Hz, mantinguda durant 0.2 s.
Dispar per màxima freqüència a 48 Hz, mantinguda durant 3 s.

17.2.3 Protecció anti-illa

La protecció anti-illa disposarà de mètodes de detecció passius o actius (detecció de salt fase, control de potència reactiva, desplaçament freqüència, etc) que permetin evitar el funcionament d’aquests equips en condicions de pèrdua de xarxa, segons norma UNE-EN 50438.

El senyal de dispar per funcionament en illa, no desapareixerà fins que les seves magnituds de referència romanguin correctes durant 3 minuts interromputs, impedint durant aquell temps la connexió de la Instal·lació Fotovoltaica a la xarxa.
17.3 Separació galvànica

La instal·lació haurà de disposar d’una separació galvànica entre la xarxa de distribució de baixa tensió i la planta fotovoltaica, bé sigui per mitjà d’un transformador d’aïllament o qualsevol altre mitjà degudament acreditat per certificat emès per un Laboratori Oficial Independent en el qual constarà de forma inequívoca que el mitjà utilitzat compleix amb el requisit indicat, d’acord amb el RD 1663/2000.

La rígidesa dielèctrica de la separació galvànica haurà de ser com a mínim de 2.500 V.

17.4 Posada a terra

La posada a terra de la instal·lació fotovoltaica serà independent de la del neutre de la xarxa de FECSA ENDESA.

La posada a terra de les instal·lacions fotovoltaiques interconnectades es farà sempre de manera que no s’alterin les condicions de posada a terra de la xarxa de FECSA ENDESA, assegurant-se de que no es produeixin transferències de defectes a la xarxa de distribució.

18 INVERSORS

Per evitar generació de forma desequilibrada, els inversors seran trifàsics, llevant de les instal·lacions de potència nominal inferiors a 5 kVA connectades a la xarxa mitjançant connexió monofàsica.

18.1 Harmònics

Els corrents harmònics que pugui injectar a la xarxa el inversor, estaran dins dels límits establerts per les següents normes:

♦ EN 61000-3-2. Equips amb corrent nominal menor o igual a 16 A.
♦ EN 61000-3-12. Equips amb corrent nominal major a 16 A i menor o igual a 75 A.
♦ EN 61000-3-4. Equips amb corrent nominal major a 75 A.

18.2 Certificació del fabricant

El fabricant de l’inversor facilitarà un certificat segons model de l’annex 1 al que s’inclouran els següents conceptes:

♦ Acompliment de les Normes Tècniques particulars de FECSA ENDESA.
♦ Integració de les proteccions en el inversor.
♦ Existència de protecció anti-illa.
♦ Ajusts de les proteccions e impossibilitat de la seva modificació pel usuari.
♦ Acompliment dels límits d’emissió d’huiònics.
♦ Tipus de separació galvànica o equivalent.
19 VERIFICACIÓ I POSADA EN SERVEI

19.1 Condicions prèvies

El promotor de la instal·lació fotovoltaica, per sol·licitar la interconnexió amb la xarxa de Baixa Tensió de FECSA ENDESA, haurà de sol·licitar la inspecció prèvia de la instal·lació.

FECSA ENDESA tramitarà la realització de la supervisió de la instal·lació, que es realitzarà en un termini màxim de 10 dies, i en cas de ser satisfactoria, FECSA ENDESA emetrà els següents documents:

♦ Certificat de compliment del Reglament de Punts de Mesura (RD 1110/2007), emès per l’encarregat de la lectura.
♦ Informe del gestor de xarxa conforme s’han completat els procediments d’acés i connexió.

L’abast de la inspecció prèvia implica la revisió de:

♦ Cablejat de l’equip de mesura, l’interruptor automàtic i el relè diferencial.
♦ Instal·lació d’enllaç.
♦ Precintat de l’equip de mesura i control.

En cas de que es detectin anomàlies, hauran de ser corregides i comunicar la seva resolució a FECSA ENDESA.

Amb aquests certificats, el PRE podrà sol·licitar a la OGE (Oficina de Gestió Empresarial) de la Generalitat de Catalunya, el “Justificant d’acompliment del procediment administratiu aplicable a les instal·lacions d’energia solar fotovoltaica”.

19.2 Posada en servei i primera verificació

La posada en servei de la Instal·lació Fotovoltaica la realitza i és responsabilitat del promotor o representant de la Planta Fotovoltaica i no es podrà fer fins que s’aconseguixi el “Justificant d’acompliment del procediment administratiu aplicable a les instal·lacions d’energia solar fotovoltaica”. (Annex 3 emès per la Generalitat de Catalunya).

Aquest document inclou:

♦ Atorgament de la condició d’instal·lació acollida al Règim Especial
♦ Autorització administrativa
♦ Autorització de Posada en Servei
♦ Inscripció en el registre d’instal·lacions de PRE (RIPRE)

L’abast de la primera verificació implica:

♦ Verificació metrològica del comptador.
♦ Obtenció dels paràmetres de qualitat de l’ona.
♦ Posada en servei de les comunicacions remotes (telemesura).
♦ Captura de lectures inicials.
19.3 Proves relatives a la qualitat d’ona

Abans de la posada en servei de la instal·lació fotovoltaica, FECSA ENDESA podrà realitzar una anàlisi de la qualitat de l’ona en el punt de connexió, a fi de verificar que es respecten les característiques de tensió reglamentàries (fonamentalment en els aspectes d’oscil·lació de tensió i THD), amb la finalitat d’assegurar que la nova instal·lació connectada no afecta la resta de clients de l’empresa distribuïdora per sobre dels límits establerts.

A fi de realitzar les proves i un eventual registre de l’ona en el punt de connexió, FECSA ENDESA podrà instal·lar sempre que el sol·liciti, un analitzador de xarxa. En cas d’incompliment dels límits establerts anteriorment, s’haurà de desconnectar la instal·lació fotovoltaica a fi de realitzar en ella les modificacions oportunes, per tal que compleixin els reglaments en vigor i les normes de FECSA ENDESA, UNESA i CE.

20 REVISIONS PERIÒDIQUES

El titular de la instal·lació fotovoltaica realitzarà la revisió i manteniment de la seva instal·lació d’acord amb el que determinin les Administracions Públiques competents, remitent cópia dels informes d’inspecció a FECSA ENDESA.

Per als equips de mesura, es realitzaran les revisions establertes reglamentàriament segons el tipus de punt de mesura.

FECSA ENDESA podrà revisar quan el consideri oportú, la regulació i estat funcional dels sistemes de protecció, control, mesura i connexió de la instal·lació fotovoltaica interconnectada a la seva xarxa.

Si es produeix qualsevol modificació en les condicions d’explotació en el punt de connexió, FECSA ENDESA i el titular de la Instal·lació Fotovoltaica acordaran les mesures necessàries per adaptar-se a la nova situació.

21 NORMES DE REFERÈNCIA

UNE-EN 61000-3-2 Límits per a les emissions de corrent harmònica (equips amb corrent d’entrada \(\leq 16 \) A per fase).

UNE-EN 61000-3-12 Límits per als corrents harmònics produïts pels equips connectats a les xarxes públiques de baixa tensió amb corrent d’entrada \(> 16 \) A i \(\leq 75 \) A per fase.

UNE-EN 50160 Característiques de la tensió subministrada per les xarxes generals de distribució.

UNE-EN 50438 Requisits per a la connexió de microgeneradors en paral·lel amb xarxes generals de distribució en Baixa Tensió.

CEI IEC 61000-3-4 Limitació de les emissions de corrents harmònics a les xarxes de baixa tensió per a equips amb corrent assignat superior a 16 A.
Annex 1
MODEL DE CERTIFICAT DEL FABRICANT DE L’INVERSOR

DADES DE L’INVERSOR

Nº de fabricació de l’inversor: ___________________________

Fabricant: __________________________ Model: ________________________________

Tipus d’equip (monofàsic o trifàsic): _________________

Potència nominal: ___________ W Potència màxima: ___________ W

La companyia ___ amb domicili social en __________________________

CERTIFICA

Que l’inversor a dalt descrit compleix amb les Normes tècniques Particulars de FECSA ENDESA aplicables: NTP-FVBT y NTP-FVMT i en particular amb les següents condicions tècniques:

1. Les funcions de protecció de màxima i mínima tensió i màxima i mínima freqüència estan integrades a l’equip inversor, i les maniobres de desconexió-connexió per actuació de les mateixes són realitzades mitjançant un contactor que realitza el rearmament automàtic de l’equip no abans de tres minuts després que es restableixin les condicions normals de subministrament de la xarxa.

2. Així mateix es certifica que en el cas que la xarxa de distribució a la qual es connecta la instal·lació fotovoltaica es desconnecti per qualsevol motiu, l’inversor no mantindrà la tensió en la línia de distribució, disposant per això de la corresponent protecció anti-illa.

3. Les proteccions estan ajustades amb els següents valors:
 Máxima tensió a 1,1 \(U_n \), 0,5 s. Mínima tensió a 0,85 \(U_n \), 1,2 s.
 Máxima freqüència a 51 Hz, 0,2 s. Mínima freqüència a 48 Hz, 3 s.
 \((U_n = 400 \text{ V en cas d’inversors trifàsics y 230 V en caso de inversores monofàsics).} \)

4. No existeix possibilitat de modificar els valors d’ajust de les proteccions per l’usuari mitjançant software.

5. Els límits d’emissió harmònica es certifiquen mitjançant la norma (marcar amb una “X”):
 ___ EN 61000-3-2. (Equips monofàsics amb \(I_n \leq 16 \text{ A})
 ___ EN 61000-3-12. (Equips monofàsics amb \(I_n > 16 \text{ A i trifàsics amb } I_n \leq 75 \text{ A})
 ___ EN 61000-3-4. (Equips trifàsics amb \(I_n > 75 \text{ A})

6. L’inversor disposa de separació galvànica o equivalent entre la xarxa de distribució de BT y la instal·lació fotovoltaica, constituïda per (marcar amb una “X”):
 ___ Transformador d’aïllament.
 ___ Sistema de separació galvànica equivalent, segons Certificat emes per Laboratorí Oficial Independent que confirmi tal exigència. (S’adjunta)

Es lliura el present CERTIFICAT a __________________________ el dia ___ de ___________ del ________

(Nom, càrrec i signatura de la persona autoritzada per declarar la conformitat)
Titulació:

Enginyeria Industrial

Alumne (nom i cognoms):

Sònia Bouso Crusellas

Títol PFC:

“Projecte d'implantació d'energia solar fotovoltaica a un hipermercat situat al Polígon Industrial de Valls”

Director del PFC:

Daniel Garcia-Almiñana

Convocatòria de lliurament del PFC:

1ra Convocatòria Curs 2010/2011

Contingut d'aquest volum: -PLÀNOLS-
Índex

1 Situació
2 Emplaçament
3 Planta baixa hipermercat
4 Planta altell – Planta administració
5 Planta coberta
6 Distribució línies inversors
7 Línies de connexió i terra
8 Unifilar I
 8.1 Unifilar II
 8.2 Unifilar III
9 Unifilar IV – Alimentació inversors
10 Detall estructura suport panells
11 Detall TMF10 – CGP9
12 Façana sud-est
13 Façana nord-oest – Façana sud-oest
14 Seccions longitudinal i tranversal
LLISTA DE MATERIALS

1. Carril MQ-72
2. Carril MQ-41
3. Peu de carril MQP-21-72
4. Base gíratoria MQP-G
5. Cargol Femella MQN
6. Anclatge HSA M12x180/85/105
7. Rosca carril MQM-M10
 Cargol M10x25
 Volandera DIN 9021 M10
8. Rosca carril MQM-M6
 Cargol M6x20
 Volandera DIN 125 M6
EQUIP DE MESURA TMF10

ARMARI CGP I CS

ARMARI EQUIP DE MESURA

CAIXA GENERAL DE PROTECCIÓ CGP 9