PFC 2

“DISEÑO DE UN SISTEMA DE CONTROL Y POTENCIA APLICADO A ENERGÍAS RENOVABLES”

PFC presentado para optar al título de Ingeniería Técnica Industrial especialidad ELÉCTRICA por Joan Berenguer Soler DNI 53083471-T

Barcelona, 12 de Enero de 2011

Tutor proyecto: Herminio Martínez García
Departamento de Electricidad (DEE)
Universitat Politècnica de Catalunya (UPC)
ÍNDICE MEMORIA

Resum ... 5
Abstract .. 5
Agradecimientos.. 6

Capítulo 1: Introducción .. 7
 1.1. Objetivo del proyecto .. 7
 1.2. Antecedentes ... 7
 1.3. Emplazamiento .. 8
 1.3.1. Principales vías de acceso .. 9
 1.4. Alcance .. 9
 1.5. Especificaciones básicas ... 9

Capítulo 2: Descripción del sistema ... 10
 2.1. Estudio de viabilidad (orográfico – eólico) .. 10
 2.2. Alternativas de diseño y evolución del sistema 12
 2.2.1. Alternativa 1. Sistema en serie ... 13
 2.2.2. Alternativa 2. Sistema con cargador en paralelo 14
 2.2.3. Alternativa 3. Sistema de dos vías ... 15
 2.3. Solución adoptada .. 15
 2.3.1. Funcionamiento del sistema escogido .. 16
 2.3.2. Justificación de la solución adoptada ... 17
 2.4. Estudio de componentes susceptibles de ser empleados 18
 2.5. Bloque generador de tensión .. 23
 2.6. Bloque de rectificación de señal. Rectificador CA – CC 23
 2.6.1. Alternativas de diseño ... 23
 2.6.2. Solución adoptada .. 25
 2.6.3. Funcionamiento del rectificador .. 25
 2.6.4. Circuito de filtrado de señal de salida 26
 2.7. Bloque elevador de señal. Convertidor elevador 27
 2.7.1. Alternativas de diseño y solución adoptada 27
 2.7.2. Funcionamiento del convertidor elevador 28
 2.7.3. Convertidor elevador B1 ... 31
 2.7.4. Convertidor elevador B2 ... 31
 2.7.5. Control del convertidor elevador .. 32
Capítulo 6: Presupuesto ... 72
Capítulo 7: Distribución y planificación del tiempo de ejecución (Diagrama de GANTT) .. 75
Capítulo 8: Anexos.. 77
Capítulo 9: Conclusiones ... 78
 9.1. Conclusiones... 78
 9.2. Futuro trabajo... 78
RESUMEN

Estudio técnico sobre un sistema de control y potencia para un aerogenerador. El estudio comprende el tratamiento de la señal generada por un aerogenerador trifásico. Esta señal será rectificada y posteriormente se le someterá a una elevación inicial para alcanzar la tensión nominal de carga de un equipo de baterías (48 voltios). A la salida de las baterías será nuevamente elevada para alcanzar la tensión optima para finalmente ser invertida y transformada a corriente alterna a un valor de 220 voltios.

RESUM

Estudi tècnic sobre un sistema de control i potencia per un aerogenerador. L'estudi compren el tractament de la senyal generada per un aerogenerador trifèsic. Aquesta senyal serà rectificada i posteriorment se la sotmetrà a una elevació inicial per assolir la tensió nominal de la carrega d’un equip de bateries (48 volts). A la sortida de les bateries serà novament elevada per assolir la tensió optima per finalment ser invertida i transformada a corrent altern a un valor de 220 volts.

ABSTRACT

Technical study on a system of control and power for a wind turbine. Study includes the processing of the signal generated by a wind phase. This signal is rectified and was subsequently subjected to an initial lift to reach the rated load voltage of a team of batteries (48 volts). A battery output will again be raised to reach the optimum voltage to finally be inverted and transformed to alternating current to a value of 220 volts.
AGRADECIMIENTOS

Papa i mama...

aquest projecte l’heu fet vosaltres tot i que jo he sigut el que l’ha redactat. L’heu fet vosaltres perquè heu sigut els que m’heu donat la gran oportunitat d’estudiar, els que m’heu donat la facilitat de fer-ho sense cap tipus d’inconveni, els que heu dèieu “...mentre jo pugui donar-t’ho, estudia i no treballis...”, els que m’heu educat i els que m’ho heu donat tot, però sobre tot, els que m’heu donat la motivació i forces per fer-ho. Sóc allò que vosaltres heu creat i per aquest motiu penso que aquest projecte així com tota la carrera es feina vostra, jo tan sols he aportat el meu temps i els coneixements i formació que ha aprèn al llarg d’ella.

Us dono les GRÀCIES per tot, però com se la satisfacció que us causa que hagi acabat la carrera, crec que la millor manera d’agrair-vos-ho es brindar-vos-la.

Margarida...

em puc imaginar lo contenta que estaràs i com més d’una vegada diràs “...el meu tete es enginyer...”, això em diu moltes coses. GRÀCIES per preguntar-me sempre com ho portava i per haver-m’hi dit tantes vegades “...dóna-li canya tete...”. GRÀCIES per fer-me el dinar quan estava d’exàmens i per estar sempre pendent de mi.

Pulgui...

tu has “sufrido” in situ mi carrera los últimos dos años y en la distancia algún otro, y me has hecho “sufrir” con tus broncas constantes y tu insistencia, se que era por mi bien, pero ese te doy las GRACIAS. GRACIAS por tu gran apoyo y también por encargarte de todo, el piso, la comida, la ropa...Espero poder darte la recompensa que te has ganado..

Roger...

no se como te lo montas pero siempre me has valorado el trabajo realizado y lo mejor es que me has hecho creer que era bueno, viniendo de ti ciertas palabras tienen mas valor, aunque a veces no te creo porque veo tu intención de hacer sentir bien al otro. Has empleado muchas horas... regulación, convertidores, PIC (creo que no olvidare nunca aquella telefónica noche) y como no en este proyecto (tampoco olvidare el primer esbozo en una servilleta en el rabo). Estoy en deuda contigo. GRACIAS

Albert...

vas ser pacient, et vas sacrificar després de la teva jornada (ja se que hi habia dies que no et venia de gust però hi erats), vas regalar-me part del teu temps i em vas fer entendre els operacionals. El que vas fer val molt i aquestes coses no son facils de pagar, per tant estic en deute amb tu. GRÀCIES.

Olibron...

Tu me ayudaste en los origenes y eso lo agradezco muchisimo, tantas horas en la biblioteca... GRÀCIA

Herminio Martinez...

no tenia obligacion de aceptar la tutoria de un proyecto y lo hizo, aunque fuera el proyecto de un electrico. Me ha atendido fuera de horas de tutoria y además ha sido cercano, cosa que se agradece en el trato profesor alumno. GRÀCIA

Al resto de personas...

GRÀCIA

Esto es el punto final a una larga espera
1.1. Objetivo del proyecto

El objetivo del proyecto es diseñar un sistema de control y generación de potencia utilizando energías renovables. Concretamente el proyecto se ha centrado en la utilización de un aerogenerador. No obstante, la gran mayoría de los bloques presentados se podrían reutilizar en otro tipo de generadores como pueden ser las placas fotovoltaicas o los generadores hidráulicos.

1.2. Antecedentes

La elección de este sistema de generación de energía eléctrica mediante energía eólica se debe a distintos factores. El factor principal viene dado por la elección y petición del cliente, pero independientemente se han realizado los estudios de viabilidad necesarios para validar el sistema y así proceder a su ejecución.

Inicialmente se ha realizado un sondeo en la zona para comprobar la existencia de instalaciones de este tipo de tecnologías y el resultado ha sido positivo.

En los alrededores más inmediatos se ha localizado un aerogenerador, instalado a unos 300 m. del punto de estudio. Se trata de un aerogenerador de 1.5 kW y debido a las características del terreno consigue un aprovechamiento óptimo del viento.

A mayor distancia, entre 35 y 85 km, se pueden encontrar siete parques eólicos con carácter comercial y con potencias del orden de 99 MW, 115 MW o 180 MW.

La Comunidad Valenciana, y en concreto Castellón de la Plana, donde se encuentra la ubicación de la futura instalación, no es una de las comunidades de la península con mayor historia y tradición en instalaciones de energía eólica.
como ocurre con Galicia, Navarra, Castilla la Mancha o Castilla León, pero no por ello ha de considerarse una mala ubicación. Muestra de ello son algunos de los datos que revela la Agencia Valenciana de la Energía, como por ejemplo que en el mes de noviembre de 2009 la producción eólica de Castellón fue un 11% superior a todo el consumo eléctrico de la provincia. Además, dicha comunidad lideró en 2008 el incremento interanual de potencia eólica en España, ya que fue la autonomía con un mayor crecimiento porcentual de potencia eólica.

1.3. Emplazamiento

Se trata de una casa rural ubicada en la provincia de Castellón de la Plana, concretamente a 41 km de la capital, entre las aldeas de Els Ibarsos y Els Rosildos, perteneciente al municipio de la Serra d’En Galceran.

La Serra d’En Galceran es un municipio que cuenta con una población de 1051 habitantes repartidos entre distintas aldeas. Entre ellas la más cercana a la casa rural llamada Els Ibarsos cuenta con 356 habitantes. La superficie del término municipal es de 82 km².

El emplazamiento de la instalación está situado en una pequeña agrupación con un total de seis de casas rurales llamado Masía La Volta, y se encuentra a 384 m. sobre el nivel del mar.

![Figura 1. Vista aérea del emplazamiento de la casa rural.](image)

El acceso a la casa rural desde la salida de la carretera asfaltada se realizará, ya sea mediante vehículo o caminando, por un camino no pavimentado de 450 metros, doble sentido de circulación, con tramos de pendientes pronunciadas, cambios de rasante bruscos y una amplitud máxima de 3 metros.
1.3.1. Principales vías de acceso
Desde Castellón de la Plana se accede por CV-151 hasta Borriol, CV-10 hasta la Pobla Tornesa y CV-15 hasta el punto kilométrico 20.3 donde se gira a la izquierda.
Desde Barcelona se accede por Autopista AP-7 hasta Torreblanca salida 44, CV-10 hasta Cabanes, CV-159 y CV-15 hasta el punto kilométrico 20.3 donde se gira a la izquierda.

1.4. Alcance
El ámbito de aplicación del proyecto se centrará en la parte de control y potencia de un aerogenerador.
Con este sistema de generación eléctrica se alimentará algunas de las zonas de una casa rural. Por sus características no pretende ser el único medio de alimentación de la vivienda. Hay que tener en cuenta las limitaciones del sistema ya que el viento, que es la fuente que permite su puesta en marcha, no siempre es constante y con valores óptimos para la generación.

1.5. Especificaciones básicas
Sistema de control y potencia de una instalación de generación eléctrica mediante generador eólico con las siguientes características:

- **Amplitud de tensión de entrada**: 0 – 48 V\text{rms} (se asegura el funcionamiento del sistema a partir de una tensión de entrada de 6,73 voltios)

- **Número de fases de tensión de entrada**: 3 (trifásica)

- **Frecuencia de tensión de entrada**: Variable (en función de la velocidad de giro del generador eléctrico)

- **Amplitud de tensión interna del sistema**: 5 – 244 V\text{CC}

- **Número de fases de tensión interna**: 2 (monofásica F y N)

- **Frecuencia de tensión interna**: Tensión en corriente continua

- **Amplitud de tensión de salida**: 220 V\text{rms}

- **Número de fases de tensión de entrada**: 2 (monofásica F y N)

- **Frecuencia de tensión de salida**: 50 hercios

- **Factor de rizado de la tensión de salida**: 0,25%
2.1. Estudio de viabilidad (orográfico – eólico)

Se ha realizado un estudio de viabilidad para conocer no tan sólo si es ejecutable sino incluso si puede resultar rentable.

Se ha estudiado la orografía de la zona para saber si las montañas pudieran afectar a la ubicación del aerogenerador debido a la incidencia que tendrían éstas sobre el viento.

El terreno donde hay que realizar la instalación se encuentra a 384 m sobre nivel del mar, justo en la cima de un leve levantamiento respecto al terreno colindante, salvando así cualquier accidente geográfico inmediatamente cercano que pueda obstaculizar el paso del viento o crear rebufo. La vegetación de los alrededores se encuentra formada principalmente por campos de cultivo (almendros y olivos), los cuales debido a su baja altura no interferirán en el funcionamiento de la instalación.

A su vez, el levantamiento escogido está entre dos sierras que se levantan unos 750 m. sobre el nivel del mar (ver Figura 2 y Figura 3), de manera que la instalación estará situada en medio de un corredor natural donde se crean grandes ráfagas de viento.
Figura 2. Curvas de nivel del terreno donde hay que realizar la instalación.

Figura 3. Vista aérea del terreno donde hay que realizar la instalación.

También se han estudiado las velocidades del viento en la provincia de Castellón de la Plana y los resultados en 2009 según el Instituto y diversificación para el ahorro de energía [1] son unos valores medios anuales del orden de 5.0 – 5.5 m/s (metros / segundo).
Figura 4. Representación mediante escala de colores de los valores medios anuales de la velocidad del viento en la provincia de Castellón.

De forma más precisa se han analizado los valores máximos de febrero a mayo de 2010, recogidos en una estación meteorológica de la Agencia Estatal de Meteorología (AEMET), situada en la población de Atzeneta del Maestrazgo a 9.5 km de la ubicación. Los datos revelan que durante el mes de febrero se superaron los 22.2 m/s, alcanzando incluso un día valores superiores a 25 m/s. En marzo de 2010 se superaron los 19.5 m/s. El mes de abril de 2010 se estuvo por debajo de los 19.5 m/s y el mes de mayo de 2010 se volvió a alcanzar los 22.2 m/s.

Después de analizar los datos de los estudios realizados así como los antecedentes en instalaciones eólicas de la zona, se considera viable la instalación desde el punto de vista técnico.

2.2. Alternativas de diseño y evolución del sistema

Las posibilidades de configuración y diseño de un proyecto de estas características son amplias.

Se han estudiado las tecnologías y configuraciones típicas existentes en el mercado y se han adaptado a este proyecto. En la actualidad existen muchos fabricantes dedicados a este tipo de instalaciones y se han tomado como referencia. El uso de todas estas tecnologías ha permitido una evolución constante de la configuración de cada uno de los componentes y los bloques del sistema. Finalmente se ha conseguido un resultado ajustado y un concepto de
generación eléctrica propio y personalizado aunque difiera de las configuraciones típicas comercializadas.

La electrónica de esta instalación se encargará de transformar la tensión generada por el aerogenerador en una tensión apta para el consumo.

A lo largo de la realización de este proyecto las alternativas de diseño, la configuración del sistema y la de los bloques han variado para dar solución a los distintos problemas que han ido apareciendo.

2.2.1. Alternativa 1. Sistema en serie

La primera alternativa planteada ha sido una instalación básica configurada en serie. Ésta se compone de los siguientes bloques:

- **Generación de tensión:** El bloque de generación esta compuesto de un generador eléctrico trifásico que proporciona al sistema una tensión y frecuencia variable en función de la velocidad del viento.

- **Rectificación de la señal (Paso de CA a CC):** Bloque encargado de la transformación de tensión de corriente alterna a corriente continua.

- **Cargado de baterías:** Este bloque se compone de:
 1. Un convertidor CC-CC elevador–reductor encargado de adecuar la tensión a la nominal de cargado de las baterías.
 2. Baterías.
 3. Un convertidor CC-CC elevador encargado de elevar la tensión a 230 voltios.

- **Inversión de la señal (Paso de CC a CA):** Bloque encargado de la transformación de tensión de corriente continua a corriente alterna.

- **Control y procesado de la señal:** Bloque compuesto por dos microprocesadores encargados del monitoreo de la tensión y de la conmutación de los interruptores de los bloques.

El diagrama de bloques representativo de esta configuración se muestra a continuación:
2.2.2. Alternativa 2. Sistema con cargador en paralelo

Para intentar ofrecer mayores prestaciones y un sistema más adaptado a las necesidades se confecciona una segunda alternativa compuesta por los siguientes bloques:

- **Generación de tensión:** El bloque de generación está compuesto de un generador eléctrico trifásico que proporciona al sistema una tensión y frecuencia variable en función de la velocidad del viento.

- **Rectificación de la señal (Paso de CA a CC):** Bloque encargado de la transformación de tensión de corriente alterna a corriente continua.

- **Elevación de la señal:** Bloque compuesto por un convertidor CC-CC elevator encargado de elevar la tensión a 230 voltios.

- **Inversión de la señal (Paso de CC a CA):** Bloque encargado de la transformación de tensión de corriente continua a corriente alterna.

- **Control y procesado de la señal:** Bloque compuesto por dos microprocesadores encargados del monitoreo de la tensión y de la conmutación de los interruptores de los bloques.

- **Cargado de baterías:** Este bloque se ha configurado de manera externa y paralela al resto. El diseño de sus componentes no son objeto de este proyecto:

 1. Un cargador de baterías alimentado en corriente alterna.
 2. Baterías.

La distribución de estos bloques puede verse en el siguiente diagrama:
2.2.3. Alternativa 3. Sistema de dos vías

A medida que se han estudiado las características y posibilidades de funcionamiento que ofrece el sistema de la alternativa 2 se ha modificado y dado paso a una nueva. La alternativa 3 se compone de:

- **Generación de tensión**: El bloque de generación está compuesto de un generador eléctrico trifásico que proporciona al sistema una tensión y frecuencia variable en función de la velocidad del viento.

- **Rectificación de la señal (Paso de CA a CC)**: Bloque encargado de la transformación de tensión de corriente alterna a corriente continua.

- **Circuito directo de consumo**: Un relé gobernado por un microprocesador permite desviar la corriente a este circuito y conducirla a un convertidor CC-CC elevador.

- **Circuito de cargado de baterías**: Un relé gobernado por un microprocesador desvía la corriente a las baterías en el caso que no estén con su carga al máximo. Un segundo relé a la salida de baterías conduce la corriente a un convertidor CC-CC elevador.

- **Elevación de la señal**: Bloque compuesto por un convertidor CC-CC elevador encargado de elevar la tensión a 230 voltios.

- **Inversión de la señal (Paso de CC a CA)**: Bloque encargado de la transformación de tensión de corriente continua a corriente alterna.

- **Control y procesado de la señal**: Un microprocesador se encarga del control del bloque de rectificación, de elevación y de los relés. El bloque de inversión se hace mediante control analógico con un oscilador.

El sistema se representa a continuación:

![Diagrama de bloques simplificado de la alternativa 3 de configuración.](image)

Figura 7. Diagrama de bloques simplificado de la alternativa 3 de configuración.

2.3. Solución adoptada

La solución adoptada ha sido fruto de un estudio de las tecnologías y posibilidades que actualmente ofrece el mercado, a partir de estas tecnologías han aparecido distintas alternativas válidas para este proyecto las cuales han ido evolucionando respecto a la original para finalmente confeccionar un diseño que
se adecue a las necesidades, intentando que éste sea lo más preciso y económico posible, y aproveche la energía generada desde los valores más bajos. Los bloques que componen el diseño final escogido como solución es el siguiente:

- **Generación de tensión**: El bloque de generación está compuesto de un generador eléctrico trifásico que proporciona al sistema una tensión y frecuencia variable en función de la velocidad del viento.

- **Rectificación de la señal (Paso de CA a CC)**: Bloque encargado de la transformación de la tensión de corriente alterna procedente del generador eléctrico trifásico a corriente continua.

- **Primera elevación de la señal**: Este bloque se encargará de elevar la tensión generada mediante un convertidor CC-CC elevador.

- **Segunda elevación de la señal**: Bloque encargado de elevar la tensión de 48 voltios a 244 voltios (Ver apartado 2.7.4).

- **Inversión de la señal (Paso de CC a CA)**: Bloque encargado de la transformación de tensión de corriente continua a corriente alterna.

- **Control y procesado de la señal**: Un microprocesador se encargará del control de los relés del circuito directo y de cargado.

A continuación se puede ver un diagrama para una mejor visualización del sistema tomado como solución adoptada:

![Diagrama de bloques de la configuración adoptada como solución al proyecto planteado.](image)

Figura 8. Diagrama de bloques de la configuración adoptada como solución al proyecto planteado.

2.3.1. **Funcionamiento del sistema escogido**

El generador eléctrico trifásico generará una tensión trifásica con un valor máximo de 48 voltios.

En primer lugar el rectificador se encargará de convertir la tensión alterna generada a una tensión en corriente continua. A la salida del rectificador se instalará un circuito de filtrado mediante condensador e inductor para reducir el rizado de la señal y ofrecer una señal más estable.
A continuación del rectificador se diseñará un convertidor CC-CC elevator (B1). La función de este convertidor consiste en elevar la tensión generada por el generador desde 5 voltios (Ver apartado 2.7.3) hasta un valor de 48 voltios.

A partir de este momento la corriente puede tomar dos vías:

- **Circuito directo de consumo:** En el caso que las baterías estén cargadas por completo, un relé (Relé 1) gobernado por un microprocesador permitirá desviar la corriente a este circuito y conducirla a un segundo convertidor CC-CC elevator (B2).

- **Circuito de cargado de baterías:** Un relé (Relé 2) gobernado por un microprocesador desviará la corriente a las baterías en el supuesto que no estén cargadas por completo. Un segundo relé (Relé 2) a la salida de las baterías permitirá la conducción de la corriente a un segundo convertidor CC-CC elevator (B2).

El microprocesador encargado de controlar los relés de conmutación de circuito directo y de cargado de baterías, actuará sobre éstos en función de una lectura tomada en las baterías para conocer la carga de la que disponen.

El microprocesador será el modelo PIC16F84 de la marca comercial Microchip. Se propone este microprocesador por sus características que son suficientes para la función que deberá desempeñar y es un microprocesador económico.

Indistintamente de la vía tomada (circuito directo o cargado de baterías) la corriente será inyectada al convertidor elevator (B2), el cual se encargará de alimentar al inversor. Para ello la tensión de salida será de 244 voltios como se ha comentado anteriormente.

Finalmente la tensión de salida del convertidor (B2) será transformada a corriente alterna mediante un inversor CC-CA. La tensión de salida será de 220 voltios eficaces a una frecuencia de 50 hercios.

Los sistemas de elevación e inversión de la señal son bloques en lazo cerrado y serán controlados por un circuito integrado, el SG3524, encargado de gobernar los interruptores internos de éstos.

La frecuencia de trabajo de los bloques de elevación e inversión de señal y sus componentes será de 25000 hercios. Se ha escogido esta frecuencia ya que a partir de 20000 hercios no es audible para el ser humano, de esta forma se evitan ruidos molestos perceptibles a las personas. La principal repercusión de una frecuencia elevada es el aumento de las pérdidas de conmutación de los transistores involucrados en los bloques elevator e inversor. No obstante, se considera la opción de incorporar un disipador con ventilación forzada para reducir al máximo el aumento de temperatura del sistema. El dimensionado del sistema de ventilación queda fuera del alcance de este proyecto.

2.3.2. **Justificación de la solución adoptada**

El diseño se ha realizado para conseguir una solución que tenga un máximo aprovechamiento de la energía y sea lo más económica posible. Por este motivo se ha optado por omitir el cargador de baterías y así reducir el coste total del diseño.
El bloque correspondiente al convertidor B1 que se encarga de una primera elevación ha sido introducido en el diseño para ofrecer un máximo aprovechamiento de la energía. Gracias a este convertidor cualquier tensión generada dentro del rango de funcionamiento del convertidor elevator (Ver apartado 2.7.3) será aprovechada para el cargado de las baterías, de no ser así las tensiones con valor inferior a la nominal de la baterías serían desaprovechadas.

La regulación de la tensión de carga de las baterías mediante el convertidor (B1) también contribuye al alargamiento de la vida de éstas, hay que recordar que el cargador ha sido eliminado para abaratar costes. Si la tensión de entrada a las baterías no tuviera su valor nominal podrían llegar incluso a destruirse debido a las reacciones químicas que se producen en su interior.

Otra medida tomada para el aprovechamiento de la energía es la utilización de los relés que permiten la conducción por el circuito directo o de cargado. Éstos relés permiten conmutar a la vía directa cuando las baterías están cargadas y de esta manera se puede mantener intacta la carga almacenada cuando haya demanda de energía.

2.4. Estudio de componentes susceptibles de ser empleados

El objetivo de este breve análisis es conocer el funcionamiento de los principales componentes o dispositivos semiconductores que hay en el mercado, para poder seleccionar de entre todos ellos, y a partir de sus prestaciones y características, los que integrarán los circuitos de la instalación.

Estos dispositivos semiconductores se pueden clasificar en tres grupos según el grado de control que se ejerce sobre los mismos:

- **Dispositivos no controlados:** No disponen de terminal de control externo, el estado de conducción o bloqueo de este depende del propio circuito. El diodo es uno de estos dispositivos.

- **Dispositivos semicontrolados:** Disponen de un terminal de control externo denominado puerta, donde se aplica una señal para controlar el paso de bloqueo a conducción (OFF-ON), mientras que el paso de conducción a bloqueo (ON-OFF) lo determina el propio circuito, de ahí que se denominen semicontrolados, ya que tan solo se ejerce control sobre la puesta en conducción. Los tiristores como el TRIAC ("Triode of Alternating Current") o los rectificadores controlados de silicio SCR ("Silicon Controlled Rectifier") son dispositivos semicontrolados.

- **Dispositivos controlados:** Mediante el terminal de control se puede establecer el estado de conducción y el de bloqueo. Los tiristores como el GTO ("Gate Turn-Off") o el controlado por MOS ("Metal-Oxide Semiconductor") son dispositivos controlados, así como los transistores bipolares BJT ("Bipolar Junction Transistor"), los de efecto de campo MOSFET ("Metal Oxide Semiconductor Field Effect Transistor"), y los bipolares de puerta aislada IGBT ("Insulated Gate Bipolar Transistor").
A continuación se detallan a grandes rasgos las características y el comportamiento en un circuito de cada uno de los principales dispositivos.

Diodo: Es un dispositivo unidireccional por lo que no puede circular corriente en sentido contrario al de conducción. Se dice que está en conducción o polarizado en directa cuando el sentido de la corriente es ánodo-cátodo, y está bloqueado o polarizado en inversa cuando la tensión ánodo-cátodo es negativa. En el supuesto ideal se comportará como un cortocircuito cuando conduzca y como un circuito abierto cuando esté en bloqueo.

![Figura 9. Símbolo y característica estática corriente-tensión del diodo.](image)

Rectificador controlado de silicico SCR (Tiristor): Es un dispositivo unidireccional. Entra en conducción cuando la tensión ánodo-cátodo es positiva y se le aplica una corriente en el terminal de control o puerta. Seguirá en conducción siempre que la corriente siga en sentido ánodo-cátodo y esté por encima de un valor mínimo, denominado nivel de mantenimiento, con lo que el paso a bloqueo depende del circuito y no del terminal de control.

![Figura 10. Símbolo y característica estática corriente-tensión del tiristor.](image)

Tiristor TRIAC ("Triode of Alternating Current"): Es un dispositivo bidireccional con lo que puede circular corriente en ambos sentidos, así que sus terminales se denominan ánodo 1 y 2 (A1 y A2). Su comportamiento es como dos SCR en antiparalelo. Para que entre en conducción puede tener una tensión A1-A2 positiva o negativa y aplicarle una corriente en su terminal de control también con signo indiferente. Están limitados a potencias de 15 kW y frecuencias de 50-60 Hz.
Tiristor de bloqueo por puerta GTO ("Gate Turn-Off"): Es un dispositivo unidireccional. Entra en conducción cuando la tensión ánodo-cátodo es positiva y se le aplica una corriente positiva en el terminal de control, pero además ofrecen la posibilidad de controlar el bloqueo aplicando una corriente negativa en el terminal de control. La corriente negativa debe ser elevada en comparación con la positiva de activación (aproximadamente un tercio de la corriente ánodo-cátodo en estado de conducción), con lo que el circuito encargado del disparo será más complejo. En contraposición es más rápido que los SCR.

Tiristor controlado por MOS ("Metal-Oxide Semiconductor"): Es un dispositivo unidireccional. Se compone de un SCR y dos MOSFET. Es funcionalmente equivalente al GTO, pero sin necesidad de una alta corriente para el bloqueo. Los cambios de estado se efectúan mediante una tensión puerta-cátodo adecuada, en lugar de una corriente de puerta, dicha tensión controla a los MOSFET y éstos al SCR. Un MOSFET se encarga de la puesta en conducción y el otro del bloqueo.
Figura 13. Símbolo y característica estática corriente-tensión del tiristor controlado por MOS.

Transistor bipolar BJT ("Bipolar Junction Transistor"): Existen dos tipos de BJTs, NPN y PNP, en cada uno de ellos queda definida la dirección de la corriente. Constán de tres terminales llamados emisor, colector y base. Actúa como amplificador de corriente, ofreciendo una corriente por el emisor, amplificada respecto a la introducida por la base. El factor de amplificación es una característica propia de cada BJT y se denomina beta (β). El BJT tiene tres estados o zonas de trabajo:

- Zona de corte: No se le ofrece corriente al terminal base y el dispositivo no conduce, con lo que no hay circulación entre los terminales emisor y colector.

- Zona activa: Se ofrece una corriente al terminal base y el BJT se comporta como un amplificador con unas características descritas anteriormente. La tensión colector-emisor disminuye debido a que hay conducción (la unión colector-base queda polarizada a la inversa y la base-emisor en directa). En este momento, aunque se esté por debajo de los límites de tensión aceptados, el transistor puede destruirse debido a un calentamiento del mismo por un campo magnético; esto se conoce como ruptura secundaria.

- Zona de saturación: Se ofrece una corriente suficientemente elevada para que la tensión colector-emisor sea casi nula, con lo que el comportamiento del BJT es casi la de un interruptor ideal. Ahora las dos uniones tienen polarización en directa.

En general el BJT es de fácil control pero con un consumo de energía para ello mayor que los SCR. Destaca su baja caída de tensión en saturación pero tiene una ganancia pequeña para tensiones y corrientes grandes.

Transistor de efecto de campo MOSFET ("Metal Oxide Semiconductor Field Effect Transistor"): Este dispositivo tiene tres terminales llamados fuente, drenaje y puerta. Existen dos tipos, NPN y PNP. A diferencia de otros, especialmente del BJT, la corriente de salida no está controlada por corriente de entrada sino por tensión. Para que circule corriente entre fuente y drenador hay que aplicar tensión en la puerta. Según sea NPN o PNP, esta tensión puede ser positiva o negativa respectivamente. Tan sólo es necesaria una pequeña
corriente en la puerta para cargar y descargar las capacidades de entrada del transistor. La resistencia de entrada es del orden de 1012 Ohms.

Cuando la tensión de la puerta es igual a la del sustrato del transistor, éste se encuentra en estado de corte. Cuando la tensión entre drenador y fuente supera cierto límite, se dice que entra en saturación, la corriente entre fuente y drenador no se interrumpe, pero se hace independiente de la diferencia de potencial entre ambos terminales.

Este dispositivo es sensible a voltajes muy elevados o electricidad estática ya que la capa de óxido que tiene es muy delgada.

Figura 15. Símbolo y característica estática corriente-tensión del transistor de efecto campo MOSFET.

Transistor bipolar de puerta aislada IGBT (“Insulated Gate Bipolar Transistor”): Es un dispositivo híbrido que combina las ventajas de los MOSFETs y de los BJTs. Dispone de la facilidad de disparo del MOSFET al controlarlo por tensión y el tipo de conducción del BJT, con capacidad de conducir elevadas corrientes con poca caída de tensión. El IGBT tiene una alta impedancia de entrada, como el MOSFET, y bajas pérdidas de conducción en estado activo como el BJT. Este dispositivo no tiene problemas de ruptura secundaria como los BJT. El IGBT es más rápido que el BJT. Sin embargo, la velocidad de conmutación del IGBT es inferior a la del MOSFET.

Figura 16. Símbolo y característica estática corriente-tensión del transistor bipolar de puerta aislada IGBT.
2.5. Bloque generador de tensión

El bloque generador se encargara de proporcionar una tensión alterna trifásica al sistema de potencia.

El generador que se propone es un generador trifásico de imanes permanentes con una tensión de 48 voltios y una velocidad de giro de 3000 revoluciones por minuto (rpm), con lo que la frecuencia de tensión generada será de 50 hercios. Ya que las velocidades del viento que provocan el giro del generador no serán siempre suficientes, se considera la opción de incorporar una caja multiplicadora que dé el par suficiente para las características del generador.

El conexionado del estator deberá ser en triángulo. La ventaja que ofrece el generador trifásico conectado en triángulo frente a uno monofásico es la reducción del rizado de la tensión de salida, con lo que se facilita el trabajo al sistema de potencia.

El dimensionado del bloque generador (generador eléctrico y sistema de multiplicación) queda fuera del alcance de este proyecto. No obstante se ha propuesto un generador de imanes permanentes que elimina el mantenimiento del mismo.

El conexionado en triángulo del estator del generador también provoca un menor rizado aunque la señal sea de menor amplitud, inconveniente que no afecta al diseño porque el siguiente bloque de elevación de señal se encarga de restar importancia a este hecho.

2.6. Bloque de rectificación de señal. Rectificador CA – CC

El bloque de rectificación es la parte del circuito electrónico encargada de convertir la señal eléctrica de corriente alterna a corriente continua.

La señal de corriente alterna es la procedente del bloque generador con una tensión y una frecuencia variable en función de la velocidad de giro del rotor aunque el rango de trabajo del rectificador será de 6,73 (Ver ecuación 25) a 48 voltios.

La salida del rectificador será inyectada al convertidor B1.

2.6.1. Alternativas de diseño

Se ha realizado un estudio de los posibles diseños para el circuito encargado de rectificar la señal de CA a CC ya que hay diferentes topologías. Algunas de las posibilidades, así como las ventajas que ofrece el rectificador trifásico escogido de onda completa no controlado, se detallan a continuación:

- **En función del número de fases.** Existen distintos rectificadores en función del número de fases de la señal alterna de entrada (monofásico, bifásico, trifásico, hexafásico, etc.). El diseño escogido es trifásico ya que el generador eléctrico del sistema también lo es, y además se obtienen mejores resultados a la salida del rectificador. Gracias a esta topología es posible conseguir una
señal rectificada a la salida con menor rizado que la que se consigue con uno monofásico.

El rectificador trifásico tiene una componente continua a su salida además de unos armónicos de alta frecuencia y baja amplitud, de manera que mediante un filtro LC se puede conseguir una salida con poco rizado.

Escoger un rectificador que tenga menor rizado de salida implica a su vez que el circuito de filtrado pueda ser menor, con lo que el tamaño y el coste de todo el circuito disminuyen en comparación al gran tamaño de los filtros en los rectificadores monofásicos para potencias elevadas.

- **Tipo de conexión de sus componentes.** Según sea la conexión y cantidad de los componentes en un rectificador, éste puede ser de **media onda u onda completa**.

En un rectificador de media onda los diodos que componen el circuito se conectan en cátodo común, y el ánodo de cada diodo unido a cada una de las fases de alimentación. De esta manera entra en conducción el diodo que tenga en su ánodo la tensión más positiva de todas, mientras los demás diodos estarán polarizados en inversa. Al ser en cada instante de tiempo una fase diferente la que tenga mayor amplitud de señal positiva, en cada instante de tiempo conducirá un diodo diferente. Debido a esto la señal de salida tendrá un rizado del triple de la frecuencia de entrada con una amplitud del 50 por ciento de la tensión de pico de entrada.

Para ofrecer una señal mejor, se opta por el otro tipo de diseño, el rectificador de onda completa. Este tipo de rectificador a diferencia del media onda, se encarga de rectificar la parte positiva y negativa de la señal de entrada, es decir, se consigue que durante todo el tiempo se conecte la mayor de las tres tensiones a uno de los terminales de la carga y al otro terminal la menor de las tensiones. De esta manera el rizado de la señal de salida es de una frecuencia seis veces mayor que la de entrada con una amplitud del 14 por ciento.

El inconveniente que tiene este rectificador frente al de media onda es que posee el doble de diodos pero el coste añadido es despreciable en este proyecto.

- **Rectificadores controlados o no controlados.** Los rectificadores controlados están compuestos por tiristores o transistores a los cuales se les puede controlar el instante de disparo, mientras que los no controlados están compuestos por diodos los cuales comutan de forma natural en función de la señal de entrada. Gracias al control de disparo el valor medio de la salida del rectificador es ajustable, característica que no es necesaria para la instalación, con lo que el rectificador no controlado escogido es suficiente para las necesidades de ésta.

Gracias a que el rectificador no posee un circuito de control y disparo de los interruptores que lo componen, ya sean tiristores o transistores, se consigue simplificar el circuito. En caso contrario se hubiera complicado innecesariamente y por lo tanto hubiera aumentado el tiempo de diseño y su coste.
2.6.2. Solución adoptada

Finalmente se puede ver el diseño del rectificador trifásico no controlado de onda completa escogido. Éste se compone básicamente de seis diodos conectados como muestra la siguiente figura y un circuito de filtrado compuesto por un condensador y un inductor:

![Diagrama del rectificador trifásico no controlado de onda completa escogido](image)

Figura 17. Esquema del rectificador no controlado de onda completa escogido.

Para realizar el estudio del rectificador se ha simulado el generador mediante fuentes de alimentación conectadas en triángulo y desfasadas 120 grados simulando la conexión del estator del generador.

La señal de salida del rectificador sin aplicar ningún filtro será una señal compuesta por una componente continua y la suma de sus armónicos de 6°, 12°...orden

2.6.3. Funcionamiento del rectificador

Al tratarse de un rectificador no controlado compuesto por diodos, éstos conmutarán de manera natural forzados únicamente por la señal recibida del generador trifásico en cada uno de sus ánodos.

La secuencia de conducción dependerá del diodo superior del circuito que tenga en su ánodo la tensión más positiva de todas y el diodo inferior que tenga en su cátodo la más negativa, es decir, la de mayor y menor valor respectivamente ofrecida por el generador trifásico. En ese instante el resto de diodos estarán polarizados en reversa con lo que no conducirán. Como en cada instante de tiempo va a ser una fase diferente la que tenga mayor amplitud de señal positiva y negativa, en cada instante de tiempo va a conducir una pareja de diodos diferente. La conducción, por lo tanto, será por parejas y siguiendo la siguiente secuencia [D1 y D5], [D1 y D6], [D2 y D6], [D2 y D4], [D3 y D4] y [D3 y D5].

Visto esto nunca conducirá más de un diodo de la mitad superior del circuito (D1, D2, D3), y el diodo que en ese instante conduzca tendrá su ánodo conectado a la tensión de fase de mayor valor. Tampoco conducirá nunca más de un diodo de la mitad inferior del circuito (D4, D5, D6), y el diodo que en ese instante conduzca tendrá su cátodo conectado a la tensión de fase de menor.
2.6.4. **Circuito de filtrado de señal de salida**

La solución adoptada como rectificador posee además un circuito de filtrado a continuación de los diodos en puente, cuya finalidad es reducir el valor del rizado que existe a la salida de éstos, es decir, obtener una tensión de salida lo más cercano posible a una señal continua.

El principal inconveniente del filtrado son las pérdidas. Este tipo de circuitos no suele usarse en sistemas de elevadas potencias porque el tamaño, coste y pérdidas del mismo serían notables y quitarían rentabilidad al sistema. La potencia de esta instalación permite la utilización de un circuito de filtrado el cual proporciona mejores resultados con un rizado menor.

El circuito de filtrado se compone básicamente de una impedancia serie (inductor L_r) que ofrece alta impedancia a la componente alterna de salida del rectificador, reduce la corriente de pico en los diodos y provoca un retardo en la señal que a su vez suaviza la corriente de salida.

También posee un condensador en paralelo que cortocircuita las componentes de corriente alterna entre los terminales de la carga y mantiene la tensión de salida en un nivel constante, es decir que anula en gran medida el rizado de la señal de salida del rectificador. Esto se consigue gracias a que el condensador se carga en el semiciclo positivo de conducción de los diodos, y en cuanto se alcanza el valor máximo empieza a descargarse, ofreciendo de esta manera toda su energía almacenada a la carga. El inconveniente del condensador es que provoca que los diodos deban soportar picos de corriente elevadas, pero eso queda solucionado con la instalación del inductor ya comentado.

En función de los valores del inductor y condensador el rizado se atenúa en mayor o menor medida. Cuanto mayor sea el condensador más energía aportará a la carga que cuelga de él, con lo que el rizado será menor. A continuación se puede ver la disposición de los componentes que configuran el circuito de filtrado:

![Figura 18. Esquema del rectificador no controlado de onda completa escogido con circuito de filtrado.](image)

Para diseñar el circuito de filtrado y minimizar el rizado de la señal del rectificador se ha fijado el valor de la amplitud del 6º armónico de la señal de salida no rectificada, intentándolo eliminar en la medida de lo posible. Éste armónico es el más cercano a la fundamental y por tanto el que más perjudica y provoca mayor distorsión.
La componente fundamental estará a una frecuencia de 50 hercios, mientras que el sexto armónico estará próximo a los 300 hercios. Mediante el circuito de filtrado se atenuará la señal de salida con una frecuencia de corte aproximadamente entre los dos, de manera que se atenúe en lo posible la distorsión provocada por la componente armónica, pero sin atenuar la fundamental. (Ver apartado 3.1.1)

2.7. Bloque elevador de señal. Convertidor elevator

El bloque elevador se encargará de aumentar la tensión de entrada a una de mayor valor a su salida. Este bloque se utilizará tanto a la salida del rectificador como a la entrada del inversor y se hará mediante un circuito elevador conocido con el nombre procedente del inglés “Boost”, que trabajará en lazo cerrado.

Lo definido en este apartado es válido para los dos convertidores existentes en el sistema.

2.7.1. Alternativas de diseño y solución adoptada

La ventaja principal que ofrece el convertidor frente a otras soluciones es la posibilidad de aumentar la tensión de salida un valor diez veces superior la tensión de entrada sin necesidad de transformador.

Respecto a la configuración de los convertidores pueden ser en lazo abierto o lazo cerrado. La configuración en lazo abierto no permite que la tensión de entrada pueda variar, de ser así la tensión a la salida también variaría. Por lo tanto se ha escogido el convertidor configurado en lazo cerrado como solución a los dos sistemas de elevación mediante un sistema de control basado en la modulación de ancho de pulso, del cual se encargará un circuito integrado que tomará lectura de la salida de los convertidores y las procesará para ofrecer una modulación u otra. De esta manera la tensión de entrada de los dos convertidores del sistema podrán tener valores variables y eso no afectará a la tensión de salida deseada.

La configuración en lazo cerrado implica mayor complejidad en el circuito, con lo que el coste es mayor. En el caso del convertidor a la salida del rectificador esta configuración es imprescindible debido a la oscilación de valores proporcionados por el rectificador, pero el convertidor encargado de elevar la señal procedente de las baterías podría haberse optado por una configuración en lazo abierto, ya que la caída de tensión provocada en las baterías a medida que se descargan se podría tomar como despreciable. El hecho de optar por esta configuración en lazo cerrado también en el segundo convertidor es para ofrecer una mayor fiabilidad y maximizar las prestaciones de la instalación.

El convertidor tiene algunos inconvenientes frente a otras soluciones. Uno de ellos es que no está protegido ante cortocircuitos en la salida, ya que el diodo realiza una conexión directa entre la entrada y la salida como se verá en el siguiente apartado de funcionamiento del convertidor. Este inconveniente podría ser suplido en un futuro mediante un sistema de protección basado en fusibles o cualquier otra tecnología.
Uno de los elementos que componen el convertidor elevador es un interruptor activo, el cual puede ser un transistor BJT, IGBT o MOSFET. Entre las distintas posibilidades finalmente se ha optado por el IGBT como interruptor activo del circuito.

La elección del transistor no ha sido fácil ya que la zona de trabajo del convertidor permite la elección de un IGBT o un MOSFET.

Si finalmente se ha escogido el IGBT es debido a que soporta mayores intensidades que un MOSFET, por lo tanto tendrá menores pérdidas por conducción. El inconveniente que ofrece el IGBT es que el rango de frecuencias de trabajo es menor y por tanto tiene mayores pérdidas por conmutación. En cualquier caso para la frecuencia escogida en el sistema (25 kHz) el IGBT puede operar sin ningún problema. Además el IGBT posee un fácil control mediante voltaje, con lo que el circuito de control de disparo se simplifica.

También se ha tenido en cuenta que el circuito soportará voltajes elevados y para el IGBT no es inconveniente.

Para conocer más características sobre el transistor IGBT consultar el apartado 2.4.

2.7.2. Funcionamiento del convertidor elevador

Se trata de un circuito electrónico de potencia que transforma un voltaje de corriente continua en otro de nivel superior también de corriente continua. El circuito básico consta de un transistor IGBT como interruptor activo (S_B), un inductor (L_B), un condensador (C_B) y un interruptor pasivo (D_B) o diodo, dispuestos tal y como muestra la siguiente figura:

![Figura 19. Esquema del convertidor elevador Boost](image)

La tensión de entrada (V_{in}) es la procedente del rectificador o de las baterías de almacenamiento y para el estudio y simulación del convertidor se ha sustituido por una fuente de corriente continua.

El funcionamiento básico de este convertidor consiste en aumentar la tensión de salida (V_{out}) respecto de la de entrada (V_{in}) en función del ciclo de trabajo del transistor (D, comprendido entre 0 y 1). A medida que aumenta el ciclo de trabajo la tensión de salida es mayor, tal y como se deduce de la siguiente ecuación:

\[V_{out} = \frac{V_{in}}{1 - D} \]

(1)
Con la conmutación del transistor el circuito tiene dos estados de funcionamiento bien diferenciados, con el transistor en conducción y sin conducción.

Para realizar el siguiente estudio se ha considerado en estado estable y la tensión en el condensador constante así como la corriente de salida.

2.7.2.1. **Funcionamiento con el transistor en conducción (S=ON)**

La conducción del transistor se controla con el circuito integrado SG3524 (ver apartado 2.7.5). El estado del circuito en el que el transistor conduce (0 < t < \(T_{ON} \)) se puede ver en la siguiente figura:

![Figura 20. Circuito equivalente del convertidor elevador con el transistor en conducción.](image)

El inductor está directamente conectado a la tensión de entrada y solo se establece flujo de corriente a través de él. Durante este intervalo se producirá un almacenamiento de energía en el inductor y una variación de corriente constante, lineal y creciente que puede verse representada en la figura 21c). Esta variación de corriente en el inductor viene dada por la siguiente ecuación:

\[
\Delta i_{L_{on}} = \frac{V_{in} \cdot T_{ON}}{L_{B}} \tag{2}
\]

donde

\[
T_{ON} = T - \frac{T \cdot V_{in}}{V_{out}} \tag{3}
\]

y (T) es el periodo:

\[
T = \frac{1}{f} \tag{4}
\]

siendo (f) la frecuencia de trabajo del transistor.

En las siguientes representaciones pueden verse las diferentes tensiones y corrientes del circuito:
Figura 21. Tensiones y corrientes del circuito equivalente del convertidor en los dos estados del transistor.
a) Tensión en el inductor.
b) Tensión en bornes del transistor.
c) Variación de corriente en el inductor.
d) Corriente que circula por el transistor.

El diodo cuya conducción depende únicamente del funcionamiento del circuito, está inversamente polarizado durante el estado de conducción del transistor ($0 < t < T_{ON}$). Esto puede verse en la siguiente figura, en la representación a) se muestra el valor de la tensión en bornes del diodo, y en la c) que no circula corriente por él. Además la tensión en el condensador suministra una corriente a la carga y mantiene el nivel de tensión V_{out} representado en la grafica d) y b) respectivamente de la siguiente figura:

Figura 22. Tensiones y corrientes del circuito equivalente del convertidor en los dos estados del transistor
a) Tensión en bornes del diodo.
b) Tensión en bornes del condensador.
c) Corriente que circula por el diodo.
d) Corriente que circula por el condensador.

2.7.2.2. Funcionamiento sin conducción en el transistor ($S=OFF$)

Cuando el transistor no conduce ($T_{ON} < t < T$) debido a que la corriente en el inductor no puede variar de manera instantánea, el diodo se polariza en directa y permite el paso de corriente del inductor. La variación de la corriente en éste es
constante, de manera que la corriente varía linealmente cuando el transistor no conduce. Esta variación de corriente en el inductor tiene que ser la misma que durante el intervalo de conducción del transistor pero de signo contrario, y viene dada por la siguiente ecuación:

\[\Delta i_{L_{off}} = \frac{(V_{in} - V_{out}) \cdot (T - T_{ON})}{L_B} \]

(5)

y se puede ver en la representación c) de la figura 21 en el intervalo \((T_{ON} < t < T)\), donde la pendiente de la corriente ahora es negativa, lo cual responde al fenómeno de que la energía en el inductor está disminuyendo.

En este instante la tensión del inductor, que actúa como generador, se suma a la tensión de entrada \((V_{in})\), con lo que la tensión de salida \((V_{out})\) será superior que la de entrada y de igual polaridad. Esto se puede ver en el siguiente esquema equivalente que representa el instante \((T_{ON} < t < T)\) donde el transistor no conduce:

![Figura 23. Circuito equivalente del convertidor elevador sin conducción en el transistor.](image)

2.7.3. Convertidor elevador B1

El primero de los elevadores se sitúa a continuación del rectificador encargado de convertir la señal de corriente alterna procedente del generador a corriente continua.

Este elevador se ha diseñado para elevar la tensión de salida de dicho rectificador a un valor de 48 voltios. La señal recibida por el convertidor elevador será variable, en función de la tensión generada por el generador. El valor mínimo susceptible de ser elevado será de 5 voltios, ya que para valores inferiores el correcto funcionamiento del elevador no queda asegurado debido al transistor de conmutación. El transistor IGBT necesita una diferencia de potencial mínima entre drenador y fuente para que entre en saturación y pueda haber conducción de corriente entre ellas.

El transistor IGBT conmutará gobernado por el circuito integrado SG3524 (Ver apartado 2.7.5).

2.7.4. Convertidor elevador B2

El segundo elevador está situado inmediatamente antes que el inversor encargado de convertir la señal de corriente continua del sistema a corriente alterna.
La tensión de salida deseada es de 244 voltios, ya que el siguiente bloque a quien B2 alimenta requiere a su entrada una tensión con ese valor (ver ecuación 78).

La tensión de entrada (V_{IN}) del convertidor B2 podrá ser:

- Tensión procedente de la salida del elevador B1. Cuando el sistema esté en funcionamiento directo la tensión de entrada del elevador B2 será una tensión constante a 48 voltios entregados por el elevador B1.

- Tensión entregada por las baterías. Cuando el sistema esté en posición de carga, el elevador B2 tendrá una tensión de entrada con un valor variable cercano a los 48 voltios de las baterías. Esta variación será debida a la descarga de las baterías, de manera que a medida que la carga sea inferior la tensión entregada por estas disminuirá.

Debido a esta variación de la tensión de entrada del convertidor elevador el transistor IGBT tendrá un ciclo de trabajo controlado por el circuito integrado SG3524 en función de la lectura de la tensión de salida del convertidor.

2.7.5. **Control del convertidor elevador**

El control se encargará del instante en el que el transistor de los convertidores B1 y B2 conduce y deja de conducir.

Este control se realiza mediante un modulador de ancho de pulsos, para ello se utiliza el circuito integrado SG3524. Su función consiste en proporcionar un pulso de onda cuadrada con un ciclo de trabajo determinado a la puerta de los transistores. El ancho de cada pulso irá en función de la lectura realizada a la salida de cada circuito a controlar.

El circuito integrado SG3524 de la marca comercial Texas Instruments ha sido escogido por sus prestaciones, versatilidad y practicidad en el control de transistores. Este integrado ha sido diseñado para aplicaciones que usan técnicas de modulación de ancho de pulso (PWM) entre otras, como por ejemplo, para conmutar reguladores en ambas polaridades, transformadores acoplados o convertidores CC-CC. Incorpora todas las funciones necesarias para la configuración del convertidor elevador. El SG3524 incluye en su interior una relación de componentes interconectados tal y como muestra la siguiente figura:

Los componentes internos son: un regulador (reference regulator), un amplificador de error (error amplifier), un oscilador programable (oscillator), un/a control/dirección de pulso flip-flop (biestable T), dos transistores de paso no comprometidos (transistores con las salidas del 11 al 14), un comparador de ganancia alta (comparator), un limitador de corriente (amplificador con las entradas 4 y 5) y circuito de apagado (transistor con base shutdown).

2.7.5.1. Circuito integrado para el control del convertidor elevador

El funcionamiento del circuito integrado SG3524, encargado del control de los transistores que componen cada uno de los convertidores elevadores es el mismo. Consiste básicamente en introducirle una tensión alterna de referencia a una frecuencia determinada y una tensión continua de alimentación para así poder obtener a la salida del integrado un pulso de forma cuadrada. Para poder realizar esta operación el SG3524 tiene distribuidos los pines para su conexiónado en cualquier instalación de la siguiente manera:

El pin 1 (IN-) será el encargado de recibir la señal de lectura tomada a la salida de los convertidores. Se añadirá un divisor de tensión mediante dos resistencias para no dañar el integrado (Ver apartados 3.2.2 y 3.2.4).

Al pin 2 (IN+) se le introduce la tensión de referencia. Esta tensión será una señal continua procedente de un convertidor CC-CC integrado o “buck” que a su vez estará alimentado por las baterías del sistema. El valor de ésta tensión es V_{refB1} para el convertidor B1 y V_{refB2} para el convertidor B2 y se han calculado en los apartados 3.2.2 y 3.2.4, en base a que se ha tenido en cuenta que el circuito integrado tiene un rendimiento máximo del 90% según dice el datasheet del fabricante. (Ver Anexos)

El pin 3 (OSC OUT) se dejará sin conectar, ya que no es necesario para la instalación y el datasheet del componente no indica ningún perjuicio al respecto.

Los pines 4 (CURR LIM+), 5 (CURR LIM-), 8 (GND), 10 (SHUTDOWN), 11 (EMIT1) y 14 (EMIT2) irán conectados a una masa común.

Los pines 6 (RT) y 7 (CT) son pines de configuración del integrado, es decir, a través de estos pines y mediante una resistencia (R_T) y un condensador (C_T) se puede fijar la frecuencia de trabajo del oscilador.

Para este diseño la frecuencia de trabajo del oscilador del SG3524 (f_{OSG}) se ha fijado en 25 kHz que es la frecuencia de trabajo del resto de la instalación.

A partir de la siguiente ecuación proporcionada por el fabricante del integrado se pueden hallar los valores de (R_T) y (C_T):

$$f_{OSG} \approx \frac{1.30}{R_T \cdot C_T}$$

(6)

Donde R_T se mide en kΩ, C_T en μF y f_{OSG} en kHz.

El pin 9 (COMP) se conectará a una resistencia y condensador de descarga.

Los pines 12 (COL1) y 13 (COL2) son la salida del integrado por donde se obtendrá la señal deseada de control. En cualquier caso estos pines no irán conectados directamente a los transistores del inversor sino que el fabricante aconseja la inserción de un circuito “pull-up”. En este diseño, y por motivos de simulación se ha realizado con un “pull-down”

A través del pin 15 (V_{CC}) se alimentará el SG3524 a una tensión entre 8 y 40 voltios CC, tal y como especifica el datasheet.

2.8. Bloque de inversión de señal. Inversor CC - CA

El sistema de inversión es el encargado de convertir la señal eléctrica de CC a CA. La señal de corriente continua a invertir es la procedente del convertidor elevador B2 con un valor de 244 voltios.
La finalidad de este bloque es obtener a su salida una tensión de 220 voltios en corriente alterna con una frecuencia de 50 hercios apta para el uso doméstico.

La precisión de la señal obtenida está únicamente supeditada al consumo en varias líneas independientes y aisladas de una casa rural, esta energía no será entregada a la red eléctrica.

Para realizar esta operación de inversión de la señal ofrecida por el convertidor elevador B2 a una señal de corriente alterna y poder ser consumida en la vivienda, se ha optado por un circuito inversor de puente completo compuesto por transistores IGBT.

2.8.1. *Alternativas de diseño*

Existen varias posibilidades de diseño para conseguir el objetivo propuesto, con lo que se ha realizado un estudio de las posibles configuraciones para el circuito encargado de invertir la señal de CC a CA.

Inversor con transformador de toma media (Push-Pull):

Una posibilidad de diseño es el inversor con transformador de toma media, conocido con el nombre inglés “Push-Pull”. Como su nombre indica, lo primero que cabe destacar es la presencia de un transformador de toma media en el montaje del circuito, de manera que el gasto económico es superior frente al inversor escogido de puente completo que no lo tiene. Además el transformador tiene un grado de utilización bajo en el primario y empeora bastante el rendimiento del circuito con sus correspondientes pérdidas del devanado.

Otro gran inconveniente que ofrece el inversor tipo Push-Pull y no lo hace el de puente completo es la forma de tensión resultante a la salida, que en el primero es una onda cuadrada con una amplitud igual a la de entrada, mientras que en el segundo tipo la tensión a la salida toma tres valores mediante el control de la conmutación de los transistores el máximo y mínimo de la entrada y el cero. De esta manera la tensión a la salida en el inversor de puente completo es más parecida a una onda sinusoidal que la que ofrece el Push-Pull.

La Figura 26 muestra la forma de onda de tensión en la carga del inversor de puente completo, con una configuración de control de conmutación.

Figura 26. Forma de onda de tensión en la carga del inversor de a) tipo Push-Pull y b) de puente completo con control de la conmutación de los transistores.

Los transistores en el tipo de inversor Push-Pull están sometidos a una tensión dos veces superior la tensión de entrada, mientras que el inversor de puente completo somete a sus transistores a una tensión igual a la máxima de salida. Además en un circuito real, teniendo en cuenta las oscilaciones que existen debido a las conmutaciones, los picos de tensión a los que se someterían los
transistores serian aun mayores a dos veces la tensión de entrada, con lo que estos transistores tienen mas probabilidad de sufrir daños.

Una de las ventajas que posee el inversor tipo Push-Pull es el aislamiento galvánico gracias al transformador.

Inversor de medio puente:

Este tipo de inversor ofrece algunas mejoras para este bloque respecto al anterior Push-Pull como por ejemplo que no posee transformador, pero aún se encuentra en desventaja frente al de puente completo que ha sido escogido como solución.

La tensión resultante en la carga de un inversor de medio puente es una onda cuadrada con su respectivo alto contenido armónico, y con el inconveniente que tiene tan sólo la mitad de la amplitud que hay en la entrada, mientras que el inversor de puente completo ofrece una tensión a su salida de amplitud igual a la de la entrada, con lo que no hay reducción de la misma. Dicho de otra manera, para un mismo valor de entrada el inversor de puente completo es capaz de entregar el doble de potencia que el de medio puente.

El inversor de medio puente necesita tener una toma media en la señal de entrada y el de puente completo no, de manera que el circuito se simplifica.

La tensión que soportan los transistores en el inversor de medio puente es el doble que la amplitud de la señal de salida, es decir la misma que hay en la entrada, así que referente a esta particularidad se encuentra a igual de condiciones que el de puente completo.

2.8.2. **Solución escogida**

A partir de la comparativa y el estudio realizado sobre los distintos tipos de inversores se pueden recoger las principales ventajas por las que se ha escogido el inversor de puente completo frente al resto de opciones existentes:

- Menores costes económicos por no tener transformador.
- No hay pérdidas en el devanado del transformador, al no existir éste.
- Mejor forma de onda de salida, más parecida a una sinusoidal.
- Transistores del circuito sometidos a menores tensiones.
- Ofrece una tensión a su salida de amplitud igual a la de la entrada, sin reducción de la misma

Respecto a los transistores que se encargarán de dar paso a la corriente por el circuito se ha escogido el transistor IGBT. La elección de este transistor se debe a las mismas razones que en el caso del bloque anterior, es decir que soporta mayores intensidades que un MOSFET, por lo tanto tendrá menores pérdidas por conducción.

Además que para la frecuencia escogida en el sistema (25 kHz) el IGBT puede operar sin ningún problema y posee un fácil control mediante voltaje, con lo que el circuito de control de disparo se simplifica.

También se ha tenido en cuenta que el circuito soportará voltajes elevados y para el IGBT no es inconveniente.
Para conocer más características sobre el transistor IGBT consultar el apartado 2.4.

2.8.3. **Funcionamiento del inversor**

Como se ha comentado anteriormente el inversor es el encargado de convertir la señal eléctrica procedente del convertidor elevador B2 de corriente continua a corriente alterna y para ello se ha escogido el inversor de puente completo que se muestra a continuación:

![Diagrama del inversor de puente completo](image)

Figura 27. Esquema del inversor de puente completo.

Básicamente el inversor está compuesto por cuatro transistores y cuatro diodos en antiparalelo con los transistores dispuestos los ocho componentes tal y como se representa en la Figura 27. Esta figura muestra unas etiquetas en la puerta de cada uno de los transistores, las cuales representan el control encargado de excitarlos (Ver apartado de control del inversor).

La función de los diodos es la de liberar la energía reactiva acumulada en la carga, en el caso que no sea puramente resistiva, durante los instantes en que conducen los transistores.

La tensión de entrada (V\text{in}) es la procedente del convertidor elevador B2 y para el estudio y simulación del inversor se ha sustituido por una fuente de corriente continua.

El funcionamiento del circuito inversor consiste en una conmutación de transistores por parejas, de lo que surgen cuatro instantes de conducción:

- **Instante 1:** Los transistores T\(_1\) y T\(_4\) conducen (mientras T\(_2\) y T\(_3\) están abiertos), el extremo “a” de la carga queda conectado al polo positivo de la señal de entrada y el extremo “b” al polo negativo. En este instante la tensión obtenida a la salida del inversor es del mismo valor que la entrada (V\text{in}), representado en la figura 28 a).

- **Instante 2:** Los transistores T\(_1\) y T\(_4\) se bloquean y pasan a conducir los diodos D\(_2\) y D\(_3\). El extremo “b” de la carga tendrá una tensión positiva y el extremo “a” negativa, y la carga se descargará a través de los diodos D\(_2\) y D\(_3\) cediendo potencia reactiva, tal y como se puede ver en la figura 28 b)

- **Instante 3:** Los transistores T\(_2\) y T\(_3\) conducen (mientras T\(_1\) y T\(_4\) están abiertos) y la tensión en la carga se invierte respecto al instante 1, el extremo
“a” de la carga queda conectado al polo negativo de la señal de entrada y el extremo “b” al polo positivo. En este instante la tensión obtenida a la salida del inversor es de un valor \(-V_{\text{in}}\), representado en la figura 28 c).

- **Instante 4:** Los transistores T2 y T3 se bloquean y pasan a conducir los diodos D1 y D4. El extremo “a” de la carga tendrá una tensión positiva y el extremo “b” negativa, y la carga se descargará a través de los diodos D1 y D4 cediendo potencia reactiva, tal y como se puede ver en la representación d) de la siguiente figura.

![Figura 28. Circuito equivalente del inversor de puente completo durante los distintos instantes de conducción de sus componentes. a) instante 1 (T1 y T4 cerrados). b) instante 2 (D2 y D3 en conducción). c) instante 3 (T2 y T3 cerrados). d) instante 4 (D1 y D4 en conducción)](image)

Con esta secuencia de conmutación de manera continuada se consigue obtener una tensión de salida alterna con forma cuadrada y con una amplitud igual a la tensión de entrada \(V_{\text{in}}\). Para mejorar esta señal y eliminar armónicos, es decir que tenga una forma sinusoidal, se hace mediante el control de conmutación y disparo de los transistores, y la colocación de un filtro a la salida del inversor. En cuanto a la estabilidad, regulación y control de la tensión y de la frecuencia se logra, a su vez, mediante el funcionamiento en bucle cerrado.

El sistema de control de la conmutación de los transistores se encargará a su vez de que se cumpla la secuencia descrita, de lo contrario se podría llegar a producir un cortocircuito de la tensión de entrada y los transistores se destruirían. Un ejemplo de secuencia incorrecta sería la conducción simultánea de los transistores T1 y T2 o T3 y T4.

2.8.4. Circuito de filtrado LC

Para el bloque de inversión se ha diseñado un circuito de filtrado para minimizar el rizado de la tensión de salida al igual que en el bloque de rectificación.

Se trata de un filtro de tipo pasa bajo cuya finalidad es permitir el paso de la fundamental con una frecuencia de 5º hercios y atenuar las altas frecuencias.
(25kHz) que aporta el sistema de control de los transistores que estará basado en una modulación de ancho de pulso (PWM).

Debido a la diferencia frecuencial existente entre la fundamental y sus armónicos, este tipo de filtrado se puede dimensionar fijando una frecuencia de corte a partir de la ecuación:

$$\omega = \frac{1}{\sqrt{L C}} \quad (7)$$

En este caso se hará fijando la frecuencia de corte a 100 hercios. (Ver apartado 3.3.1)

2.8.5. *Circuito integrado para el control del inversor*

El funcionamiento del circuito integrado SG3524, encargado del control de los transistores que componen el inversor de corriente continua a corriente alterna, así como sus características, son las mismas que en el bloque elevador. El conexionado del circuito también es el mismo excepto las diferencias que se detallan a continuación:

Los pines 1 (IN-) y 9 (COMP) se conectan para conseguir un seguidor o “buffer” con el amplificador de error interno.

Al pin 2 (IN+) se le introduce la tensión de referencia. Esta tensión será una señal sinusoidal procedente de un oscilador concretamente de un circuito Puente de Wien (ver apartado 1.12.4). La frecuencia de la señal será de 50 hercios para que sea tomada como referencia y obtener esa misma frecuencia en la señal de corriente alterna que se pretende conseguir a partir del inversor y este control. La amplitud de la señal sinusoidal será de 4,5 voltios, aunque el SG3524 tiene un rango de 0 a 5 voltios para coincidir con la amplitud de la señal triangular o de diente de sierra interna que serán comparadas en el amplificador comparador. El valor de 4,5 voltios se debe a que se ha tenido en cuenta que el circuito integrado tiene un rendimiento máximo del 90% según dice el datasheet del fabricante. (Ver Anexos)

2.8.6. *Generación de onda sinusoidal de referencia para el control PWM. Oscilador Puente de Wien*

El circuito encargado de la modulación de ancho de pulso, el SG3524, requiere una tensión de referencia (Vref) de carácter sinusoidal, a una frecuencia de 50 Hz, la frecuencia de salida del inversor CA-CC del sistema. Para conseguir esa tensión se ha realizado previamente un estudio comparativo de las posibilidades existentes y finalmente se ha optado por un oscilador de tipo RC conocido como Puente de Wien, basado en un puente originalmente desarrollado por el físico alemán Max Wien en 1891.

2.8.6.1. *Alternativas de diseño*

Existen muchos tipos de oscilador, como por ejemplo los LC que utilizan inductores y condensadores en su composición. Normalmente estos son utilizados para frecuencias superiores a 100 kHz, ya que a frecuencias menores
la estabilidad de la frecuencia es mala debido a la disminución del factor de calidad de los inductores.

Un inconveniente que ofrecen los osciladores LC es el elevado tamaño y peso de sus inductores, con lo que pierden practicidad.

Algunos de los osciladores LC más utilizados son el modelo Colpitts, Hartley, Seiler y Clapp entre otros. Sus aplicaciones son la generación de frecuencia intermedia y de portadoras para la transmisión de radiofrecuencia.

Otro tipo de oscilador son los de cristal de cuarzo. Estos son utilizados para frecuencias superiores a las necesidades de este proyecto, y aunque tienen una ventaja constructiva ya que no es necesario soldarlos sobre el circuito impreso, el envejecimiento de estos osciladores repercute en los alambres de armado y pérdidas en la elasticidad del cristal.

Por otro lado los osciladores de tipo RC utilizan resistencias y condensadores en su composición. Son utilizados para frecuencias menores de 100 kHz con lo que no se usan los inductores.

Un oscilador que basado en esta topología es el oscilador de cambio de fase. Este tipo de oscilador es muy sencillo cuanto a diseño. El circuito básico consta de un amplificador operacional con realimentación negativa y tres etapas RC. Gracias a la disposición de estas se consigue un desfase de 180° (cada etapa RC proporciona un desfase de 90°), que es lo requerido por la condición de oscilación.

El problema que ofrece este diseño viene dado por su inestabilidad de frecuencia y por tanto se suele descartar en instalaciones donde se requiera precisión frecuencial.

2.8.6.2. **Solución adoptada**

El oscilador elegido para generar la señal sinusoidal ha sido el Puente de Wien gracias a algunas de las siguientes prestaciones y ventajas:

- Se utiliza para generar señales desde 5 Hz a 5 MHz que es un rango adecuado a las necesidades que son 50 Hz.
- Genera ondas sinusoidales sin necesidad de ninguna señal de entrada.
- Con la configuración adecuada las oscilaciones pueden continuar de forma indefinida.
- Tiene menos componentes que el oscilador por corrimiento de fase, y el ajuste de la frecuencia de oscilación es más fácil.
- Se evita el uso de inductores con sus consecuentes inconvenientes respecto a los osciladores LC.
La estabilidad en frecuencia que teóricamente se puede alcanzar está limitada sólo por la ganancia finita del amplificador empleado y cabe destacar que este límite es difícil de alcanzar en la práctica, debido a las bajísimas tolerancias requeridas en los elementos pasivos para lograrlo.

El circuito básico del Puente de Wien se muestra en la siguiente figura:

![Circuito eléctrico básico de Puente de Wien.](Image)

Figura 29. Circuito eléctrico básico de Puente de Wien.

Este circuito se compone de cuatro resistencias, dos condensadores y un amplificador operacional en configuración no inversora con una ganancia \((A_v)\) ajustable mediante los valores de \(R_1\) y \(R_2\) a partir de la siguiente ecuación:

\[
A_v = 1 + \frac{R_2}{R_1}
\]
(8)

La función de transferencia de la realimentación negativa es la siguiente:

\[
V_- = V_{ref} \cdot \frac{R_1}{R_1 + R_2}
\]
(9)

y de la realimentación positiva es:

\[
V_+ = V_{ref} \cdot \frac{Z_p}{Z_p + Z_S}
\]
(10)

donde

\[
Z_p = \frac{R}{1 + j\omega \cdot RC}
\]
(11)

\[
Z_S = R + \frac{1}{j\omega \cdot C}
\]
(12)
\[
\omega = 2 \cdot \pi \cdot f
\]
(13)

La red de realimentación RC es lo que le da al circuito el carácter de oscilador, los valores de R y C son iguales en ambas redes y definen la frecuencia de oscilación \(f_{osc}\). Imponiendo que la parte imaginaria sea nula y cumpliendo con el criterio de Barkhausen resulta la frecuencia de oscilación \(f_o\):

\[
f_{osc} = \frac{1}{2\pi \cdot RC}
\]
(6)

La amplitud de la señal generada se dimensiona mediante la ganancia del amplificador, cumpliendo con la ecuación (X1) y teniendo en cuenta que para que el circuito empiece a oscilar la ganancia del amplificador ha de ser igual o superior a tres.

El circuito será mejorado con una red de compensación de amplitud mediante dos diodos y un potenciómetro \(R_d\). De esta forma se conseguirá que la señal de salida no se vuelva inestable y la amplitud de la onda se mantenga en el nivel deseado. Gracias al potenciómetro se podrá ajustar la salida de forma más precisa. El circuito tendrá la siguiente configuración:

Figura 30. Circuito eléctrico de Puente de Wien mejorado con compensación de amplitud.

El amplificador operacional utilizado para realizar el oscilador será el TL081. Se ha escogido este modelo porque posee unas características próximas al comportamiento ideal. Su ancho de banda es bueno y está compensado internamente, siendo estable a todas las ganancias. Además su impedancia de entrada es elevada frente a otros amplificadores operacionales.
2.9. Control del sistema

El sistema de control de los transistores de los convertidores elevadores y el inversor, se hace mediante una modulación de ancho de pulso o PWM (Pulse Width Modulation). Los bloques del sistema que requieren este tipo de control estan configurados en lazo cerrado.

2.9.1. Modulación de ancho de pulso. PWM

La idea fundamental de la modulación de ancho de pulso es comparar una tensión de referencia sinusoidal de baja frecuencia (que sea imagen de la tensión de salida deseada) con una señal triangular simétrica de alta frecuencia cuya frecuencia determine la frecuencia de conmutación.

La frecuencia de la onda triangular conocida como señal portadora debe ser, como mínimo 20 veces superior a la máxima frecuencia de la onda de referencia, para que se obtenga una reproducción aceptable de la forma de onda sobre una carga después de efectuado el filtraje.

![Diagrama de modulación de ancho de pulso](image.png)

Figura 31. Representación de la diferencia entre señal portadora y senoidal (superior) y resultante de la señal modulada (inferior).

La señal resultante de dicha comparación será la encargada de controlar los transistores del sistema.
CAPÍTULO 3: MEMORIA DE CÁLCULO

3.1. Bloque de rectificación de señal. Rectificador CA – CC

Todos los cálculos realizados en este apartado son considerando una tensión de entrada de 48 voltios.

Se sabe que la tensión media de salida (V_{OUT}) del rectificador sin contemplar la caída de tensión en los diodos será:

$$V_{\text{OUT}} = \frac{3}{\pi} V_{\text{INpico}} = 0,95 \cdot 48 = 45,6V$$

(14)

De manera que la salida quedará atenuada respecto a la de entrada.

Considerando la caída de tensión de los diodos que se ha fijado en 0,7 voltios por diodo y debido a la configuración del rectificador y la conducción por parejas, la caída de tensión total de los diodos en cada instante de conducción será de:

$$\Delta V_d = 1,4V$$

(15)

Con lo que el valor de la tensión media en la salida del rectificador será de:

$$V_{\text{OUT}} = 45,6 - 1,4 = 44,2V$$

(16)

El factor de rizado (Fr) se ha fijado en 0,25% para obtener una tensión con el mínimo rizado:

$$Fr = \frac{V_r}{V_{\text{OUTmax}}} = 0,0025$$

(17)

siendo V_r el voltaje de rizado.
Diseño de un sistema de control y potencia aplicado a energías renovables

\[V_{r} = V_{\text{OUT max}} - V_{\text{OUT min}} \] \hspace{1cm} (18)

Este factor de rizado supondrá a la salida un rizado con una amplitud de:

\[V_{r} = 0,0025 \cdot 48 = 0,12V \] \hspace{1cm} (19)

Para la elección de los diodos es necesario saber la corriente que deben soportar, y esa corriente en valor eficaz es:

\[I_{\text{Drms}} = \frac{1}{\sqrt{3}} \cdot I_{\text{OUT rms}} \approx \frac{1}{\sqrt{3}} \cdot 38,43 \approx 22,19A \] \hspace{1cm} (20)

Donde \(I_{\text{OUT rms}} \) es la corriente en valor eficaz de la carga o salida del rectificador que es aproximadamente igual a la corriente media de carga, ya que los términos de alterna son pequeños:

\[I_{\text{OUT rms}} \approx I_{\text{OUT}} = \frac{V_{\text{OUT}}}{R} = \frac{44,2}{1,15} = 38,43A \] \hspace{1cm} (21)

donde \(R \) es la carga existente a la salida del rectificador:

\[R = \frac{V^2}{P} = \frac{48^2}{2000} = 1,15\Omega \] \hspace{1cm} (22)

La potencia disipada en los diodos será de:

\[P_{D} = \Delta V_{D} \cdot I_{\text{OUT rms}} = 1,4 \cdot 38,43 = 53,80W \] \hspace{1cm} (23)

Para asegurar el funcionamiento del sistema el rectificador debe ofrecer un valor medio de salida de 5 voltios, que es la tensión demandada por el siguiente bloque. Considerando una caída de tensión en los diodos de 1,4 voltios, la tensión \(V_{\text{OUT}} \) resulta:

\[V_{\text{OUT}} = 5 + 1,4 = 6,4V \] \hspace{1cm} (24)

Por lo tanto la tensión mínima de entrada requerida por el rectificador que asegura el funcionamiento del sistema será:

\[V_{\text{IN pico-min}} = \frac{V_{\text{OUT}}}{3} \cdot \frac{6,4}{0,95} \approx 6,73V \] \hspace{1cm} (25)

3.1.1. Circuito de filtrado LC

Se sabe que la tensión a la salida del rectificador presenta una componente continua junto con la influencia de los armónicos tal como muestra la siguiente ecuación:
\[V_{OUT}(t) = \frac{3}{\pi} V_{\text{pico}} \cdot (1 + \frac{2}{35} \cos 6\omega t + ...) \] \hspace{1cm} (26)

Para minimizar el rizado de la señal se intentará eliminar el sexto armónico debido a que es el que más afecta a la señal de salida mediante un filtro LC.

A partir de la función de transferencia de un filtro LC se puede calcular el valor atenuado de cada uno de los armónicos \((V_{n_{\text{rms atenuado}}})\) de la tensión de salida \((V_{OUT})\):

\[V_{n_{\text{rms atenuado}}} = \left| \frac{-1}{(n \cdot \omega)^2 \cdot LC - 1} \right| V_{n_{\text{rms}}} \] \hspace{1cm} (27X)

donnde:

\[n = 6 \] \hspace{1cm} (28)

\[\sigma = 2\pi f = 2\pi 50 \text{rad/s} \] \hspace{1cm} (29)

y \(V_{n_{\text{rms}}}\) es la amplitud en valor eficaz del sexto armónico antes de filtrar que se puede calcular a partir de la ecuación (1x)

\[V_{n_{\text{rms}}} = \frac{3}{\pi} V_{\text{pico}} \cdot \frac{2}{35} = \frac{0.95 \cdot 48}{35} = \frac{2.62}{\sqrt{2}} = 1.85\text{V} \] \hspace{1cm} (30)

Debido a que se quiere obtener un valor de rizado máximo del 0,25%:

\[Fr = \frac{V_r}{V_{OUT_{\text{max}}}} = 0.0025 \] \hspace{1cm} (31)

siendo \(V_r\) el voltaje de rizado:

\[V_r = V_{OUT_{\text{max}}} - V_{OUT_{\text{min}}} \] \hspace{1cm} (32)

Se obtiene que el rizado máximo de la tensión de salida será de:

\[V_r = 0.0025 \cdot 48 = 0.12\text{V} \] \hspace{1cm} (33)

Como el armónico que más afecta a la componente fundamental es el sexto se intentará fijar la amplitud máxima de éste una vez filtrado a 0,12V:

\[V_{n_{\text{rms atenuado}}} = 0.12\text{V} \] \hspace{1cm} (34)

A partir de estos datos y mediante la ecuación (27) se puede calcular el valor del producto LC:
A partir del resultado obtenido se determinan valores comerciales de condensador e inductor a:

\[C = 470 \mu F \quad (36) \]

\[L = 10 mH \quad (37) \]

3.2. Bloque elevador de señal

3.2.1. convertidor elevador B1

Todos los cálculos realizados en este apartado son considerando el caso más desfavorable, es decir cuando la tensión de entrada es mínima (5 voltios).

La conmutación del transistor estará controlada por el circuito modulador de ancho de pulso pero para realizar los cálculos del convertidor se requiere el valor del ciclo de trabajo (D) del transistor, con lo que se tomará el valor teórico del convertidor configurado en lazo abierto. A partir de la ecuación (1) se puede encontrar el ciclo de trabajo del transistor:

\[D = 1 - \frac{V_{in}}{V_{out}} = 1 - \frac{5}{48} = 0,8958 \quad (38) \]

Por lo tanto el transistor conducirá durante el 89,58 % del tiempo de un periodo, esto se ha definido como T\textsubscript{ON}:

\[T_{ON} = T - \frac{T \cdot V_{in}}{V_{out}} \quad (39) \]

donde T es el periodo correspondiente a una frecuencia de 25kHz:

\[T = \frac{1}{f} = \frac{1}{25000} = 0,00004 \, \text{segundos} \quad (40) \]

Por lo tanto:

\[T_{ON} = T - \frac{T \cdot V_{in}}{V_{out}} = 0,00004 - \frac{0,00004 \cdot 5}{48} = 0,0358 \cdot 10^{-3} \, \text{segundos} \quad (41) \]

El valor mínimo que deberá tener el inductor (L\textsubscript{B1}) para asegurar el correcto funcionamiento del convertidor se calcula a partir de la siguiente ecuación:

\[L_{B1\, \text{min}} = \frac{D(1-D)^2 \cdot R_{B1}}{2 \cdot f} \quad (42) \]
donde \(R_{B1} \) es la carga que debe soportar el convertidor, en este caso tiene un valor de:

\[
R_{B1} = \frac{U^2}{P} = \frac{48^2}{2000} = 1,15\Omega
\]

Por lo tanto:

\[
L_{B1\min} = \frac{D(1-D)^2 \cdot R_{B1}}{2 \cdot f} = \frac{0.8958(1-0.8958)^2 \cdot 1.15}{2 \cdot 25000} = 0.224\mu H
\]

La corriente media en el inductor será:

\[
I_{LB1} = \frac{V_{in}}{(1-D)^2 \cdot R_{B1}} = \frac{5}{(1-0.8958)^2 \cdot 1.15} = 400.44A
\]

Durante el intervalo de conducción del transistor, en el inductor se producirá un almacenamiento de energía y una variación de corriente constante, lineal y creciente con un valor de:

\[
\Delta i_{Lon} = \frac{V_{in} \cdot T_{ON}}{L_{B1\min}} = \frac{5 \cdot 0.0358 \cdot 10^{-3}}{0.224 \cdot 10^{-6}} = 799.11A
\]

mientras que durante el intervalo de no conducción del transistor la variación de corriente será:

\[
\Delta i_{Off} = \frac{(V_{in}-V_{out}) \cdot (T-T_{ON})}{L_{B1\min}} = \frac{(5-48) \cdot (0.04 - 0.0358) \cdot 10^{-3}}{0.224 \cdot 10^{-6}} = -799.15A
\]

Los valores máximo y mínimo que deberá soportar el inductor serán:

\[
I_{max} = I_{LB1} + \frac{\Delta I_{Lon}}{2} = 400.44 + \frac{799.11}{2} = 799.99A
\]

\[
I_{min} = I_{LB1} - \frac{\Delta I_{Lon}}{2} = 400.44 - \frac{799.11}{2} = 0.88A
\]

Los valores obtenidos en las corrientes (45), (48), y (49) son muy elevados pero están fundamentados en el gran potencial del sistema.

Estas corrientes, a su vez, son las que deberá soportar el transistor, con lo que son de utilidad también para realizar la elección de dicho componente.

Viendo el rango de corrientes que deberán soportar, se contempla la posibilidad de montar diversos transistores en paralelo para reducir la corriente de paso por cada uno de ellos.

La capacidad del condensador viene definida por la ecuación:
Diseño de un sistema de control y potencia aplicado a energías renovables

\[C_{B1} = \frac{D}{R_{B1} \cdot f \cdot Fr} \] \hspace{1cm} (50)

donde el factor de rizado de la tensión de salida se a fijado al 0,25% ya que está señal deberá poder cargar las baterías del sistema, con lo que se requiere una señal con un mínimo rizado:

\[Fr = \frac{V_r}{V_{OUT\text{max}}} = 0,0025 \] \hspace{1cm} (51)

Este factor de rizado supondrá a la salida un rizado con una amplitud de:

\[V_r = 0,0025 \cdot 48 = 0,12V \] \hspace{1cm} (52)

Por lo tanto el valor mínimo del condensador \((C_{B1})\) para asegurar un funcionamiento correcto y un rizado del 0,25% es el siguiente:

\[C_{B1} = \frac{D}{R_{B1} \cdot f \cdot (Fr) = \frac{0,8958}{1,15 \cdot 25000 \cdot (0,0025)} = 12,46mF \] \hspace{1cm} (53)

El circuito resultante mediante los cálculos realizados es el siguiente:

Figura 32. Circuito eléctrico dimensionado del convertidor elevador o Boost B1.

3.2.2. Consideraciones del circuito integrado SG3524 para el convertidor B1

Para no dañar el circuito integrado hay que considerar un divisor de tensión. Considerando \(V_{\text{refB1}}\) la tensión de referencia para el circuito integrado y \(V_{\text{lecturaB1}}\) la tensión leída a la salida del convertidor elevador, el divisor se calcula a partir de:

\[V_{\text{refB1}} = V_{\text{lecturaB1}} \cdot \frac{R_2}{R_1 + R_2} \] \hspace{1cm} (54)

Se ha considerado que la tensión \(V_{\text{lecturaB1}}\) pueda alcanzar el valor de 60 voltios como caso extremo(debido a la inserción de un diodo zener, ve apartado4.2.2), pero el valor máximo normalizado será de 48 voltios (\(V_{\text{OUT}}\) de B2) y el valor
máximo de entrada de referencia del SG3524 es de 5 voltios, con lo que V_{refB1} tendrá un valor de:

$$\frac{5}{V_{refB1}} = \frac{60}{48} ; \quad V_{refB1} = 4V$$ \hspace{1cm} (55)

Tomando un valor comercial para $R_1=1000 \, \Omega$:

$$4 = 48 \cdot \frac{1000}{R_1 + 1000} ; \quad R_1 = 11000 \, \Omega$$ \hspace{1cm} (56)

3.2.3. convertidor elevador B2

Como se ha definido en el apartado 2.7.4, la tensión de salida deseada es de 244 voltios.

La conmutación del transistor estará controlada por el circuito modulador de ancho de pulso pero para realizar los cálculos del convertidor se requiere el valor del ciclo de trabajo (D) del transistor, con lo que se tomará el valor teórico del convertidor configurado en lazo abierto. A partir de la ecuación (1) se puede encontrar el ciclo de trabajo del transistor:

$$D = 1 - \frac{V_{in}}{V_{out}} = 1 - \frac{48}{244} = 0,8033$$ \hspace{1cm} (57)

Por lo tanto el transistor conducirá durante el 80,33 % del tiempo de un periodo, esto se ha definido como T_{ON}:

$$T_{ON} = T - \frac{T \cdot V_{in}}{V_{out}}$$ \hspace{1cm} (58)

donde T es el periodo correspondiente a una frecuencia de 25kHz:

$$T = \frac{1}{f} = \frac{1}{25000} = 0,00004 \, segundos$$ \hspace{1cm} (59)

Por lo tanto:

$$T_{ON} = T - \frac{T \cdot V_{in}}{V_{out}} = 0,00004 - \frac{0,00004 \cdot 48}{244} = 0,0321 \cdot 10^{-3} \, segundos$$ \hspace{1cm} (60)

El valor mínimo que deberá tener el inductor (L_{B2}) para asegurar el correcto funcionamiento del convertidor se calcula a partir de la siguiente ecuación:

$$L_{B2min} = \frac{D(1-D)^2 \cdot R_{B2}}{2 \cdot f}$$ \hspace{1cm} (61)

donde R_{B2} es la carga que debe soportar el convertidor, en este caso tiene un valor de:
Por lo tanto:

$$L_{B2_{min}} = \frac{D(1-D)^2 \cdot R_{B2}}{2 \cdot f} = \frac{0.8033(1-0.8033)^2 \cdot 29.76}{2 \cdot 25000} = 18.49 \mu H$$

La corriente media en el inductor será:

$$I_{LB2} = \frac{V_{in}}{(1-D)^2 \cdot R_{B2}} = \frac{48}{(1-0.8033)^2 \cdot 29.76} = 41.68 A$$

Durante el intervalo de conducción del transistor, en el inductor se producirá un almacenamiento de energía y una variación de corriente constante, lineal y creciente con un valor de:

$$\Delta i_{Lon} = \frac{V_{in} \cdot T_{DN}}{L_{B2_{min}}} = \frac{48 \cdot 0.0321 \cdot 10^{-3}}{18.49 \cdot 10^{-6}} = 83.33 A$$

mientras que durante el intervalo de no conducción del transistor la variación de corriente será:

$$\Delta i_{Loff} = \frac{(V_{in} - V_{out}) \cdot (T - T_{ON})}{L_{B2_{min}}} = \frac{(48 - 244) \cdot (0.04 - 0.0321) \cdot 10^{-3}}{18.49 \cdot 10^{-6}} = -83.34 A$$

Los valores máximo y mínimo que deberá soportar el inductor serán:

$$I_{max} = I_{LB2} + \frac{\Delta I_{Lon}}{2} = 41.69 + \frac{83.33}{2} = 83.35 A$$

$$I_{min} = I_{LB2} - \frac{\Delta I_{Lon}}{2} = 41.69 - \frac{83.33}{2} = 0.02 A$$

Los valores obtenidos en las corrientes (64), (67), y (68) son muy elevados, aunque menores que en el convertidor B1, pero están fundamentados en el gran potencial del sistema.

Estas corrientes, a su vez, son las que deberá soportar el transistor, con lo que son de utilidad también para realizar la elección de dicho componente.

Viendo el rango de corrientes que deberán soportar, se contempla la posibilidad de montar diversos transistores en paralelo para reducir la corriente de paso por cada uno de ellos.

La capacidad de condensador viene definida por la ecuación:

$$C_{B2} = \frac{D}{R_{B2} \cdot f \cdot Fr}$$
donde el factor de rizado de la tensión de salida se a fijado al 0,25%:

\[Fr = \frac{Vr}{V_{OUT\,\text{max}}} = 0,0025 \]

(70)

Este factor de rizado supondrá a la salida un rizado con una amplitud de:

\[Vr = 0,0025 \cdot 244 = 0,61V \]

(71)

Por lo tanto el valor mínimo del condensador \((C_{B2})\) para asegurar un funcionamiento correcto y un rizado del 0,25% es el siguiente:

\[C_{B2} = \frac{D}{R_{B2} \cdot f \cdot Fr} = \frac{0,8033}{29,76 \cdot 25000 \cdot (0,0025)} = 0,432mF \]

(72)

3.2.4. Consideraciones del circuito integrado SG3524 para el convertidor B2

Para no dañar el circuito integrado hay que considerar un divisor de tensión. Considerando \(V_{\text{ref}B2}\) la tensión de referencia para el circuito integrado y \(V_{\text{lectura}B2}\) la tensión leída a la salida del convertidor elevador, el divisor se calcula a partir de:

\[V_{\text{ref}B2} = V_{\text{lectura}B2} \cdot \frac{R_2}{R_1 + R_2} \]

(73)

Se ha considerado que la tensión \(V_{\text{lectura}B2}\) pueda alcanzar el valor de 300 voltios como caso extremo (debido a la inserción de un diodo zener, ve apartado 4.2.4.), pero el valor máximo normalizado será de 244 voltios \((V_{OUT}\,\text{de B2})\) y el valor máximo de entrada de referencia del SG3524 es de 5 voltios, con lo que \(V_{\text{ref}B2}\) tendrá un valor de:

\[\frac{5}{V_{\text{ref}B1}} = \frac{300}{244} ; \quad V_{\text{ref}B2} = 4,06V \]

(74)

Tomando un valor comercial para \(R_1=1000 \,\Omega\):

\[4,06 = 244 \cdot \frac{1000}{R_1 + 1000} \quad ; \quad R_1 = 59098\Omega \]

(75)

El circuito resultante mediante los cálculos realizados es el siguiente:
3.3. Bloque de inversión de señal. Inversor CC – CA

La tensión eficaz de salida viene dada por:

\[V_{OUT_{rms}} = \sqrt{\frac{2}{T} \int_0^T V_{IN}^2 dt} = V_{IN} \] (76)

La tensión instantánea del valor de salida del inversor en series de Fourier es:

\[V_{OUT}(t) = \sum_{n=1,3,5,...}^{\infty} \frac{4V_{IN}}{n\pi} \text{sen}(n\omega t) \] (77)

Para \(n=1 \) se obtiene el valor de la tensión eficaz de la componente fundamental desarrollada en la siguiente ecuación.

\[V_{OUT_{rms}}(t) = \frac{4V_{IN}}{\pi\sqrt{2}} = 0,90V_{IN} \] (78)

Se ha tenido en cuenta que al seleccionar como tensión de salida únicamente esta componente, se reduce la amplitud de la salida. Con lo que para mantener una tensión en valor eficaz de 220 voltios a la salida se ha tenido que subir la tensión de entrada \((V_{IN})\):

\[220 = 0,90 \cdot V_{IN} \quad ; \quad V_{IN} \approx 244V \] (79)

Para calcular la distorsión armónica total (THD) de forma exacta necesitamos conocer la tensión aportada por todos los armónicos:

\[\text{THD} = \frac{1}{V_{OUT_{rms}}} \sqrt{\sum_{n=3,5,7,...}^{\infty} V_{OUTn}^2 - V_{OUT_{rms}}^2} = \frac{1}{V_{OUT_{rms}}} \sqrt{V^2_{OUT_{rms}} - V^2_{OUT_{rms}}} \] (80)

Si:

\[V_{OUT_{rms}} = V_{IN} = 244V \] (81)

entonces:

\[\text{THD} = \frac{1}{V_{OUT_{rms}}} \sqrt{V^2_{OUT_{rms}} - V^2_{OUT_{rms}}} = \frac{1}{219,16} \sqrt{244^2 - 219,16^2} = 48,43\% \] (82)

3.3.1. Circuito de filtrado LC
Para conseguir mejorar la distorsión armónica total se ha añadido un filtro LC paso bajo dimensionado a partir de la siguiente ecuación:

$$\omega = \frac{1}{\sqrt{LC}} \quad (7)$$

Tomando una frecuencia de corte de 100 hercios para eliminar la distorsión provocada por los armónicos y a su vez no reducir la amplitud de la fundamental\[y:

$$\omega = 2\pi f \quad (83)$$

entonces la ecuación (7) resulta:

$$LC = 2,53 \cdot 10^{-6} \quad (84)$$

A partir del resultado obtenido se determinan valores comerciales de condensador e inductor a:

$$C = 250\mu F \quad (85)$$

$$L = 10mH \quad (86)$$

3.4. Oscilador puente de Wien

Se desea que el valor de salida del oscilador sea a una frecuencia de 50 hercios, mediante la ecuación (6) se obtiene el valor de RC para que eso sea posible:

$$50 = \frac{1}{2\pi \cdot RC} \quad (87)$$

El valor de RC que resulta al despejar la ecuación (87) es:

$$RC = 3,18 \cdot 10^{-3} \quad (88)$$

A partir del resultado obtenido y determinando un valor comercial para el condensador de:

$$C = 100nF \quad (89)$$

la R resulta:

$$R = 31,8k\Omega \quad (90)$$

El valor de amplitud deseado a la salida del oscilador es de 4,5 voltios, esta amplitud será regulada por la ganancia del operacional. Inicialmente, para el arranque del oscilador se ha definido una ganancia 5 a partir de la ecuación (8) y fijando el valor de R_1 en:
Diseño de un sistema de control y potencia aplicado a energías renovables

\[R_1 = 10k\Omega \]
(91)

con lo que \(R_2 \) tendrá un valor de:

\[R_2 = 40k\Omega \]
(92)

Cuando el circuito haya empezado a oscilar la ganancia fijada en 5 se reducirá a un valor cercano a 3 (\(\Delta v_{est} \)) para mantener la estabilidad y la amplitud de la onda al nivel deseado.

\[A_{v_{est}} = 1 + \frac{R_{eq}}{R_1} = 3 \]
(93)

Siendo \(R_{eq} \) el valor de la suma en paralelo de la resistencia \(R_2 \) y el potenciómetro (\(R_d \)):

\[R_{eq} = \frac{R_2 \cdot R_d}{R_2 + R_d} \]
(94)

el valor de \(R_d \) resulta:

\[R_d = 40,2k\Omega \]
(89)
Los circuitos que aparecen en la memoria de cálculo han sido simulados con el programa de simulación electrónica PSIM v6.0 de los que se han obtenido unos valores de simulación.

4.1. Sistema de rectificación de señal. Rectificador (CA-CC)

Los valores obtenidos mediante los cálculos para el inductor y el condensador del rectificador CC-CC son:

\[C = 470 \mu F \]
\[L = 10 mH \]

En la simulación se ha considerado la caída de tensión de los diodos que se ha fijado en:

\[\Delta V_d = 1,4 V \]
El resultado obtenido en la simulación de la tensión de salida (V_{OUT}) frente a la señal trifásica de entrada (V_{IN}), representada como V_{IN1}, V_{IN2} y V_{IN3} tiene el siguiente aspecto:

Figura 34. Tensión de salida (V_{OUT}) y de entrada (V_{IN1}), (V_{IN2}) y (V_{IN3}) del rectificador (CA-CC).

La tensión de salida (V_{OUT}) queda estabilizada en 0,053 segundos.

Se confirman los datos obtenidos en el cálculo con un valor medio de tensión de salida (V_{OUT}) en la simulación de 44,43 voltios.

Esta tensión de salida (V_{OUT}) tiene un rizado de amplitud 0,23 voltios que equivale al 0,48%. Este valor dobla prácticamente lo fijado en los cálculos (0,25%), pero se acepta como válido ya que el valor en amplitud es lo suficientemente pequeño como para no perturbar el comportamiento del bloque que esta señal debe alimentar. A continuación se puede ver una representación ampliada de la tensión (V_{OUT}) para visualizar el rizado con mayor facilidad:
Figura 35. Detalle del rizado de tensión de salida (V_{out}) del rectificador (CC-CA).

La corriente que circulará por el diodo es la siguiente:

![Gráfico de corriente por el diodo](image)

Figura 36. Intensidad que circula por el diodo (I_D) del rectificador (CA-CC).

El valor eficaz obtenido en el cálculo ha sido de 22,19 A y en la simulación 22,11 A, de manera que la simulación es válida.

La corriente eficaz en la carga ha resultado mediante cálculo un valor 38,43 A y en la simulación 37,81 A. A continuación se muestra esta corriente:

![Gráfico de corriente por la carga](image)

Figura 37. Intensidad que circula por la carga del rectificador (CA-CC).
También se ha representado la tensión de salida del rectificador con el valor mínimo de pico en la entrada del mismo. Con una entrada de 6,73 voltios de pico, ha sido capaz de rectificar la señal a un valor medio de salida de 4,99 voltios:

Figura 38. Tensión de salida (V_{OUT}) con las tensiones mínimas de entrada (V_{IN1}), (V_{IN2}) y (V_{IN3}) del rectificador (CA-CC) que aseguran el funcionamiento del sistema.

El resultado de la simulación de todo el bloque es correcto y por lo tanto se valida el diseño del mismo.

4.2. Sistema elevador de señal. Convertidores elevadores

4.2.1. Convertidor elevador B1 calculado

Los valores obtenidos mediante los cálculos para el inductor y el condensador del convertidor elevador B1 son:

\[L_{B1_{min}} = 0,224 \cdot 10^{-6} \, H \]

\[C_{B1} = 12,46 \cdot 10^{-3} \, F \]
Y el resultado de la tensión de salida (V_{OUT}) con una tensión de entrada (V_{IN}) ideal de 5 voltios ha sido el siguiente:

Figura 39. Tensión de salida (V_{OUT}) y de entrada (V_{IN}) del convertidor B1 con valores obtenidos en el cálculo.

La señal de salida (V_{OUT}) tiene un valor medio de 47,92 voltios una vez transcurrido el transitorio y un pequeño rizado que se muestra a continuación:

Figura 40. Detalle del rizado de tensión de salida (V_{OUT}) del convertidor B1 con valores obtenidos en el cálculo.

La amplitud del rizado es de 0,19 voltios, es decir el 0,41%.
El resultado obtenido no coincide exactamente con lo solicitado en los cálculos. Esto es debido a pérdidas no contempladas.

Además se dispara un pico de tensión durante el transitorio y esto puede causar daños en el circuito con lo que éste ha sido modificado para reducir el valor del pico.

4.2.2. Convertidor elevador B1 escogido

La nueva representación de la tensión de entrada frente a la tensión de salida del convertido elevador B1 es la siguiente:

\[V_{OUT} \quad V_{IN} \]

Figura 41. Tensión de salida \((V_{OUT})\) y de entrada \((V_{IN})\) del convertidor modificado B1 con valores obtenidos en el cálculo.

La modificación adoptada para reducir el pico de tensión ha sido un diodo zener en paralelo con la carga, con una tensión de corte de 60 voltios: Este diodo recorta el pico de tensión a un máximo de 60 voltios (ver planos).

El valor de la corriente en el inductor \((I_{LB1})\) mediante la simulación ha sido de
801,33 amperios:

Figura 42. Corriente que circula por el inductor \(I_{LB1} \) del convertidor B1 con valores obtenidos en el cálculo.

4.2.3. Convertidor elevador B2 calculado

Los valores obtenidos mediante los cálculos para el inductor y el condensador del convertidor elevador B2 son:

\[
L_{B2_{\text{min}}} = 19,53 \cdot 10^{-6} \, H
\]

\[
C_{B2} = 0,273 \cdot 10^{-3} \, F
\]

Y el resultado de la tensión de salida \(V_{\text{OUT}} \) con una tensión de entrada \(V_{\text{IN}} \) ideal de 48 voltios ha sido el siguiente:

Figura 43. Tensión de salida \(V_{\text{OUT}} \) y de entrada \(V_{\text{IN}} \) del convertidor B2 con valores obtenidos en el cálculo.
La señal de salida \((V_{\text{OUT}}) \) tiene un valor medio de 243,94 voltios una vez transcurrido el transitorio y un pequeño rizado que se muestra a continuación:

![Gráfico de voltaje](image)

Figura 44. Detalle del rizado de tensión de salida \((V_{\text{OUT}}) \) del convertidor B2 con valores obtenidos en el cálculo.

La amplitud del rizado es de 2,07 voltios, es decir el 0,85%. En este caso el resultado es algo mayor de tres veces lo fijado en los cálculos. De todos modos se valida el resultado porque el siguiente bloque que reciba esta tensión acepta este rango debido a su construcción.

El circuito ha sido modificado para reducir el pico de tensión del transitorio.

4.2.4. **Convertidor elevador B2 escogido**

La modificación adoptada para reducir el pico de tensión ha sido un diodo zener en paralelo con la carga, con una tensión de corte de 300 voltios: Este diodo recorta el pico de tensión a un máximo de 300 voltios (ver planos)

El resultado de la tensión de salida es el siguiente:
La corriente que circula por el inductor \(I_{L_{B2}} \) es de un valor de 41,89 amperios:

\[I_{L_{B2}} = 41.89 \, \text{A} \]

Figura 46. Corriente que circula por el inductor \(I_{L_{B2}} \) del convertidor B2 con valores obtenidos en el cálculo simuladas con PSIM.

4.3. Sistema de inversión de señal. Inversor (CA-CC)

La tensión obtenida por el inversor tiene el siguiente aspecto:
La tensión de salida tiene aspecto sinusoidal con un valor eficaz de 224,01 voltios.

La frecuencia de la tensión de salida tiene un valor de 49.96 Hz en régimen permanente, quedando estabilizada a 0.1 sec

4.4. Circuito integrado SG3524

Para poder realizar las simulaciones con PSIM se ha tenido que recrear la circuitería interna, ya que el programa no contempla este componente en su base de datos. Los resultados son los siguientes:
Figura 48. Tensión de salida del circuito integrado SG3524 en caso particular del convertidor B2 simuladas con PSIM

4.5. Oscilador Puente de Wien

El puente de Wien ha sido simulado con PSIM obteniéndose esta señal oscilante al valor deseado de 4,5 voltios de pico:

Figura 49. Tensión de salida del oscilador puente de Wien ($V_{OUT osc}$) y de entrada (V_{IN}) del convertidor B2 con valores obtenidos en el cálculo simuladas con PSIM

4.6. Sistema definitivo. Conjunto completo

Para finalizar las simulaciones se ha realizado una unión de todos los bloques mediante la herramienta que facilita el PSIM de “subcircuitos”.

Se han creado los distintos bloques y se han unido uno con otro.

El resultado obtenido es el siguiente:
El valor de tensión de cada bloque es el siguiente:

Figura 50. Esquema del sistema realizado mediante "subcircuitos" del programa PSIM

Figura 51. Tensiones de salida del bloque inversor, convertidor B2, B1 y rectificador simuladas con PSIM

La representación final de la tensión de salida del bloque inversor es:

Figura 52. Tensión de salida del bloque inversor con todo el sistema junto simulado con PSIM
El valor obtenido es una tensión de 228,53 voltios en valor eficaz a una frecuencia de 49,87 hercios.

El sistema queda validado por completo con resultados satisfactorios.
CAPÍTULO 5:
BIBLIOGRAFÍA

5.1. Referencias bibliográficas

Agencia Estatal de Meteorología (AEMET). http://www.aemet.es/ (accedido 30 de abril, 2010)
Figura 2. urvas de nivel del terreno donde hay que realizar la instalación. Obtenida en http://www.earthtools.org/ (accedido 15 de mayo, 2010)
Figura 5 y 6. Elaboración propia mediante microsof office word.
(accedido 7 de mayo, 2010)
5.2. Bibliografía de consulta

BORNAY. http://www.bornay.com/ (accedido 8 de mayo, 2010)

Muhammad H. Rashid, ed. 2ª. Electrónica de potencia: Circuitos, dispositivos y aplicaciones. Prentice Hall.

CAPÍTULO 6:
PRESUPUESTO

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Identificador</th>
<th>Descripción</th>
<th>Precio unitario (€)</th>
<th>Precio total (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>60APU04PBF</td>
<td>Ultra fast recovery 60A</td>
<td>5,93</td>
<td>35,58</td>
</tr>
<tr>
<td>1</td>
<td>LR</td>
<td>Inductor 0.01H 50A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>CR</td>
<td>Condensador electrolítico 470uF 63V</td>
<td>1,37</td>
<td>1,37</td>
</tr>
<tr>
<td>1</td>
<td>Proto</td>
<td>Placa prototipo para circuito impreso</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td></td>
<td>40,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Identificador</th>
<th>Descripción</th>
<th>Precio unitario (€)</th>
<th>Precio total (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SG3524</td>
<td>Controlador modulación</td>
<td>0,97</td>
<td>0,97</td>
</tr>
<tr>
<td>1</td>
<td>R</td>
<td>Resistencia 1/4W 50k</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>1</td>
<td>R</td>
<td>Resistencia 1/4W 4k7</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>1</td>
<td>R</td>
<td>Resistencia 1/4W 1k</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>1</td>
<td>R</td>
<td>Resistencia 1/4W 11K</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>Condensador 1nF 16V</td>
<td>0,15</td>
<td>0,15</td>
</tr>
<tr>
<td>1</td>
<td>CB1</td>
<td>Condensador electrolítico 12000uF 63V</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>DB1</td>
<td>Diode standard recovery 40-85A</td>
<td>5,93</td>
<td>5,93</td>
</tr>
<tr>
<td>1</td>
<td>LB1</td>
<td>Inductor 0.25H</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>ZB1</td>
<td>Diodo zener 60V 5W</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>1</td>
<td>TB1</td>
<td>IGBT 400V</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>IR2110</td>
<td>Driver IGBT</td>
<td>4,2</td>
<td>4,2</td>
</tr>
<tr>
<td>1</td>
<td>R</td>
<td>Resistencia 1/4W</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>Condensador 100nF 16V</td>
<td>0,1</td>
<td>0,2</td>
</tr>
<tr>
<td>1</td>
<td>Proto</td>
<td>Placa prototipo para circuito impreso</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td></td>
<td>40,55</td>
</tr>
</tbody>
</table>
Bloque Elevador Boost 2

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Identificador</th>
<th>Descripción</th>
<th>Precio unitario (€)</th>
<th>Precio total (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SG3524</td>
<td>Controlador modulación</td>
<td>0,97</td>
<td>0,97</td>
</tr>
<tr>
<td>1</td>
<td>R</td>
<td>Resistencia 1/4W 50k</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>1</td>
<td>R</td>
<td>Resistencia 1/4W 4k7</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>1</td>
<td>R</td>
<td>Resistencia 1/4W 1k</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>1</td>
<td>R</td>
<td>Resistencia 1/4W 79K</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>Condensador 1nF 16V</td>
<td>0,15</td>
<td>0,15</td>
</tr>
<tr>
<td>1</td>
<td>CB2</td>
<td>Condensador electrolítico 470uF 400V</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>DB2</td>
<td>Diode standard recovery 40-85A</td>
<td>5,93</td>
<td>5,93</td>
</tr>
<tr>
<td>1</td>
<td>LB2</td>
<td>Inductor 25uH</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>ZB2</td>
<td>Diodo zener 300V 50W</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>IRG4PC40SPBF</td>
<td>IGBT 600V 60A</td>
<td>4,4</td>
<td>4,4</td>
</tr>
<tr>
<td>1</td>
<td>IR2110</td>
<td>Driver IGBT</td>
<td>4,2</td>
<td>4,2</td>
</tr>
<tr>
<td>1</td>
<td>R</td>
<td>Resistencia 1/4W</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>Condensador 100nF 16V</td>
<td>0,1</td>
<td>0,2</td>
</tr>
<tr>
<td>1</td>
<td>Proto</td>
<td>Placa prototipo para circuito impreso</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Subtotal: 30,35 €

Bloque Inversor

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Identificador</th>
<th>Descripción</th>
<th>Precio unitario (€)</th>
<th>Precio total (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SG3524</td>
<td>Controlador modulación</td>
<td>0,97</td>
<td>0,97</td>
</tr>
<tr>
<td>1</td>
<td>TL081</td>
<td>Amplificador operacional</td>
<td>0,58</td>
<td>0,58</td>
</tr>
<tr>
<td>1</td>
<td>R</td>
<td>Resistencia 1/4W 40k</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>1</td>
<td>R</td>
<td>Resistencia 1/4W 40200</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>1</td>
<td>R</td>
<td>Resistencia 1/4W 10k</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
<td>Resistencia 1/4W 32K</td>
<td>0,1</td>
<td>0,2</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>Condensador 0,1uF</td>
<td>0,3</td>
<td>0,6</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>Diodo 1N4148</td>
<td>0,08</td>
<td>0,16</td>
</tr>
<tr>
<td>4</td>
<td>IRG4PC40SPBF</td>
<td>IGBT 600V 60A</td>
<td>4,4</td>
<td>17,6</td>
</tr>
<tr>
<td>2</td>
<td>IR2110</td>
<td>Driver IGBT</td>
<td>4,2</td>
<td>8,4</td>
</tr>
<tr>
<td>4</td>
<td>R</td>
<td>Resistencia 1/4W</td>
<td>0,1</td>
<td>0,4</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>Condensador 100nF 16V</td>
<td>0,1</td>
<td>0,2</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>Condensador 220uF 400V</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>Inductor 0.01H</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Proto</td>
<td>Placa prototipo para circuito impreso</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Subtotal: 42,41 €

<table>
<thead>
<tr>
<th>Subtotal materiales</th>
<th>154,26</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVA 18%</td>
<td>27,7668</td>
</tr>
<tr>
<td>TOTAL</td>
<td>182,0268</td>
</tr>
</tbody>
</table>
Costes de ingeniería

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Identificador</th>
<th>Descripción</th>
<th>Precio unitario (€)</th>
<th>Precio total (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>H1</td>
<td>Estudio preliminar</td>
<td>35</td>
<td>525,00</td>
</tr>
<tr>
<td>28</td>
<td>H2</td>
<td>Diseño</td>
<td>35</td>
<td>980,00</td>
</tr>
<tr>
<td>19</td>
<td>H3</td>
<td>Simulación</td>
<td>35</td>
<td>665,00</td>
</tr>
<tr>
<td>15</td>
<td>H4</td>
<td>Documentación</td>
<td>35</td>
<td>525,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td></td>
<td>2695,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal costes</td>
<td></td>
<td>2695,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVA 18%</td>
<td></td>
<td>485,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>3180,10</td>
</tr>
</tbody>
</table>

Costes indirectos

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Identificador</th>
<th>Descripción</th>
<th>Precio unitario (€)</th>
<th>Precio total (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2%</td>
<td></td>
<td>Material de documentación</td>
<td>636,02</td>
<td>636,02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td></td>
<td>636,02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal costes</td>
<td></td>
<td>636,02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVA 18%</td>
<td></td>
<td>114,4836</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>750,50</td>
</tr>
</tbody>
</table>

TOTAL 4112,63
CAPÍTULO 7:
DISTRIBUCIÓN Y PLANIFICACIÓN DEL TIEMPO DE EJECUCIÓN (DIAGRAMA DE GANTT)
CAPÍTULO 8: ANEXOS
9.1. Conclusiones

Este proyecto ha supuesto una puesta en práctica de muchas de las tecnologías actuales.

El campo de diversas especialidades ha provocado el tener que documentarse en todas ellas con el beneficio que ello supone. Desde estudios meteorológicos, hasta electrónica de potencia, pasando por varias especialidades mas.

La posibilidad de simulación mediante programas informáticos ha permitido el diseño y dimensionado de este sistema así como su evaluación.

Finalmente el resultado es validado, ya que los valores obtenidos son plenamente satisfactorios. La señal resultante es apta para el consumo.

9.2. Futuro trabajo

El trabajo más inmediato que se propone es un sistema de ventilación forzada para reducir pérdidas por calentamiento y un sistema de protecciones basado en fusibles.

Para conseguir una mayor autosuficiencia se podría complementar el actual sistema con una instalación de energía solar mediante paneles fotovoltaicos, con lo cual desde aquí se aconseja una futura ampliación del sistema.

Además se podría realizar una ampliación par la mejora de la potencia reactiva.