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1. Introduction 

Indium iodide is a semiconductor that has a high photon stopping power for X- and gamma-

rays. Although only a few investigations have been made with this material, it has been proved 

that the photon stopping efficiency of indium iodide crystals can be compared to that of CdTe. 

There are many other X- and gamma-ray detectors, but indium and iodine are less toxic than 

these other materials, and that is why InI has a lower risk of environmental pollution. 

One of the methods that permits to obtain InI crystals is the Czochralski crystal growth 

technique. The Czochralski method is a common technology for growing high-quality single 

crystals. The Czochralski system includes various modes of heat transport and a complex range 

of fluid dynamic phenomena. In this configuration, an inductive heating system is frequently 

used to produce heat in the crucible. This crucible is heated inductively and directly by Joule’s 

heat of eddy current induced by a high-frequency current in the coil. This internal heat 

generation is partly conducted into the melt and partly transferred to the surroundings. 

The aim of this work is to simulate the InI crystal growth using the Czochralski method, trying 

to reproduce the physical conditions of the space where the experiment would take place, in 

order to be able to compare the results of future experimentations to the theoretical results 

obtained with the simulation. 

The geometry will be optimized to obtain the appropriate distribution of temperatures in the 

melt. 

At first the electromagnetic field created will be studied. Then the temperature distribution for 

the whole system and the velocity of the melt will be calculated. 

Of specific interest are the thermal gradients in the melt and in the growing crystal, and the 

influence of the rotation of the crystal on the movement of the melt. The radial and axial 

velocities of the melt under the crystal obtained with the simulation will be compared to the 

theoretical velocities that would be obtained with the same material and the same rotation 

rate when using an infinite rotating disk. 
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2. Indium Iodide 

Indium monoiodide (InI) is a compound semiconductor with a high atomic number (ZIn:49 and 

ZI:53) and high density (5.31 g/cm3). InI has a relatively low melting point (351ºC) and exhibits 

no solid-solid phase transition between its melting point and room temperature. Therefore, 

high quality InI crystals can be obtained by using simple melt-based process. InI is a brown-to-

red solid that melts to a darker-colored liquid and becomes black at the boiling point. 

 

Figure 1. Attenuation coefficient for InI, Ge and CdTe as a function of photon energy [1]. 

InI detectors exhibit a high photon stopping power for X- and gamma-rays. As can be observed 

in Figure 1, the photon stopping efficiency of InI is much higher than that of Ge and compares 

with that of CdTe. InI has a wide band gap energy (2.0 eV) which suppresses the thermal 

excitation of carriers and hence permits InI detectors to have low-noise performance at room 

temperature. 

Other compound semiconductors used for fabrication of radiation detectors consist of toxic 

materials such as Cd (CdTe), Hg (HgI), Pb (PbI), As (GaAs) and Tl (TlBr). Therefore there is a 

possibility of occupational poisoning and environmental pollution during the detector 

fabrication and detector handling processes. As In and I are not toxic, low risk of 

environmental pollution is one of the attractive properties of InI radiation detectors. 

In view of these promising characteristics, InI has been studied as a material for room 

temperature X- and gamma-ray detectors and photodetectors for scintillators. Although InI is 

one of the promising materials for radiation detector fabrication, only a few investigations 

have been made. Furthermore, in all reported studies, the crystals were grown by the vertical 

Bridgman process [1-3]. So far, no attempts have been reported to grow InI using the 

Czochralski process. 
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3. Czochralski method 

The Czochralski (CZ) method is the most important technique for growing high quality single 

crystals. The material to be grown is initially melted in a crucible located in a furnace. Due to 

the phase change, a crystal grows when it is vertically pulled. A seed crystal is lowered into the 

liquid. The temperature of the melt is adjusted so that the temperature at the center of the 

surface of the melt reaches the freezing point of the material. The seed crystal is slowly 

rotated and withdrawn and the crystal starts to grow.  

The diameter of the crystal is controlled by adjusting the melt temperature and the pulling 

speed. A successful growth requires the control of heat and mass transport in all media. Seed 

rotation is used to improve the thermal symmetry and to drive forced convection in the melt.  

The Czochralski process has many advantages including: 

- The crystals are not restricted by the crucible walls during growth and cool down. 

- The level of forced convection in the melt is easy to control. 

- Seeding and growth can be observed 

In the present study, an inductive heating radio frequency system is used to produce heat in 

the graphite susceptor. 

There are two conditions that should be accomplished when growing crystals with the CZ 

method: 

- The temperature distribution in the melt should be such that the temperature at 

the solid-liquid interface is the lowest in the melt. Otherwise there is a strong 

possibility of spurious nucleation. 

- The surface of the melt should be free of foreign particles and films. This implies 

that the surface must be protected from dust particles and flakes of material 

condensed on the sides and top of the growth chamber, and if necessary from the 

atmosphere. 

In a CZ system, different types of heat transfer mechanism coexist in the growth setup. Heat 

transfer includes: (i) convection, conduction and radiation in the melt (in semitransparent 

melts); (ii) conduction and radiation within the crystal; and (iii) gas convection and radiation 

between the surfaces exposed to gases. Modeling of heat generation and heat and mass 

transfer processes during the process is essential to understand and control the crystal growth 

process. 

The essential parts of a crystal puller are: a crucible to hold the melt, a means of heating the 

melt, a seed and a mechanism for producing relative motion of the seed and the melt. 
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Figure 2. Schematic of Czochralski crystal grower. 
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4. CrysMAS 

To conduct this study, the crystal growth simulation software CrysMAS is employed. This 

program was developed by Gerorg Mullers research team at the University of Erlangen 

Nurenberg and at the Fraunhofer Institute of Integrated Systems and Device Technology (IISB) 

in Erlangen, Germany. This package is capable of predicting high temperature heat transfer 

within complex crystal growth furnaces by solving the energy conservation equations using the 

finite volume method on an unstructured triangular grid. Radiant heat transfer calculations are 

implemented using view factors and an enclosure method. CrysMAS can also apply a 

structured grid to perform the heat transfer, fluid flow, and phase change computations within 

the ampoule. The solid-liquid interface is tracked to coincide with the melting-point isotherm 

and also sets the vertices on the appropriate boundary between the structured and 

unstructured mesh (of the melt and the crystal respectively). 

The axial symmetry of the geometry used in the simulation allows for a simplified two-

dimensional model representation in cylindrical coordinated space, with the vertical system 

axis assumed to be aligned with gravity. 
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5. Inductive heating 

The principle of induction heating is frequently used in the Czochralski crystal growth 

technique in order to supply the required heat to the melt. This power is generated by 

induction heater coils that surround the crucible when an AC current is passed through the 

coils. This azimuthal current produces a magnetic field outside the coils which in turn 

generates an oscillating azimuthal electric field. Both fields penetrate the crucible, to an extent 

that depends in part on the electrical conductivity of the material. A parallel current flow is 

caused the electric field within the crucible walls. The product of the electric field strength 

with the current describes the rate of energy dissipation in the metal. This internal heat 

generation is partly conducted into the melt (at the inner wall and bottom) and partly lost to 

the surroundings. 

The skin depth is the measure of the field penetration depth into the conductors. 

2/1
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where  m  is the resistivity of the material,  mH  is the magnetic permeability and 

 Hz  is the frequency. 

The following assumptions are commonly used in CrysMAS in the numerical calculation of 

induction heating: 

i) The system is axi-symetric. 

ii) All materials are isotropic and nonmagnetic and have no net electric charge. 

iii) The displacement current is neglected. 

iv) The distribution of electrical current (also voltage) in the coil is uniform. 

v) The self-inductance effect in the coil is taken into account. 

Under these assumptions, the governing equations are 




J
zrzrrr

0

11


































       (2) 

where 

 tJJ  cos0   in the coil, and 

tr
J







    in the conductors      (3) 

with a solution of the form 

   tzrStzrCtzr  sin),(cos),(),,(        (4) 



___________Modeling of heat transfer during crystallization at low temperatures with induction heating 

 

___________________________________________________________________________8 

 

and 
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2
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where  Wbtzr ),,(  is the magnetic stream function;  WbzrC ),(  and  WbzrS ),(  the in-

phase and out-of phase components, respectively;  3),( mWzrQ  the volumetric generation 

in the crucible;  Hz  the frequency of the electrical current in the induction coil;  2mAJ  

the charge current density;  mS  the electrical conductivity;  mH0  the magnetic 

permeability of free space; and  st  the time. The boundary conditions are 0 , both in the 

far field ( zr, ) and at the axis of symmetry ( 0r ). 

It is assumed that the electromagnetic field is independent of the temperature of the crucible. 

Under this assumption, the induction problem is solvable independently. 

The frequency in the coil will be 1.5MHz, and the intensity will vary in order to obtain the 

freezing point temperature in the interface between the crystal and the melt. 

 

Figure 3. Magnetic field in the system studied. 
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6. Geometry and properties of the materials 

The aim of the project is to simulate the Czochralski process when using the materials and 

devices available in the laboratory where the experiment would take place. A schematic 

diagram of the apparatus is shown in Figure 4, and in Figure 5 one can observe the material of 

each part. 

 
Figure 4. Geometry of the Czochralski crystal grower used for the simulation. 

Crystal diameter = 1.2cm 

Melt height = 2cm 

Crucible diameter = 4cm 
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Figure 5. Materials assignment to each part of the geometry.   

The melt is contained in a quartz crucible. This crucible is surrounded by a graphite support 

and a quartz support. The piece made from graphite is heated by inductive heating and 

transmits the heat to the melt (graphite is the only material with an important electrical 

conductivity). 

Table 1 shows the properties of the materials used in the experiment. 

Material ρ 
(kg/m

3
) 

σ (S/m) Cp 
(J/kg·K) 

k 
(W/m·K) 

Transparency ε Transparent 
windows (μm) 

μ 
(kg/m·s) 

β (1/K) α (m
2
/s) 

Air 1 0 1006 0.024 Transparent 1 - - - - 

Ar 1.622 0 520 0.030 Transparent 1 - - - - 

C 2000 100000 710 140 Opaque 0.9 - - - - 

Cu 8900 0 380 401 Opaque 1 - - - - 

InI (sol) 5310 0 864 0.5 Transparent 0.9 - - - - 

InI (liq) 5310 0 864 0.5 Transparent 0.9 - 0.00531 0.0001 0.158x10
-6

 

SiO2 2650 0 743 1.4 Visibility bands 0.93 0.2 - 4.0 - - - 

 

Table 1. Thermophysical properties of the materials used. 
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7. Optimization of the geometry and temperature field 

Since InI has a low freezing point, 355ºC, low temperature gradients are expected in the melt, 

making the control of the process (e.g. diameter control) difficult. A key goal of this project is 

to have as much gradient as possible at the surface of the melt in order to have the freezing 

point temperature only in the center of the surface. 

The graphite crucible is the one heated by the inductive currents and is also the one that 

transmits heat to the melt, its influence to the temperature gradient will be studied in this 

part. Afterwards, the most appropriate height of the graphite is chosen for the final geometry 

of the experiment.  

“L” is defined as the distance between the surface of the melt and the top of the graphite wall. 

Four different values for L have been chosen: 0mm (L1), 3mm (L2), 7mm (L3) and 10mm (L4). 

The values for L have been studied in five different situations, defining in all of them the melt 

as a solid, to avoid the effects of the movement of the liquid. These are the situations: 

(1) Only the melt 

(2) The melt with a crystal seed 

(3) The melt with a crystal seed with a b.c. of 25ºC at the top of the seed 

(4) The melt with a crystal 

(5) The melt with a crystal and seed with a b.c. of 25ºC at the top of the seed 

In the following graphics, the temperature at the surface of the melt is represented in function 

of the radius.  

 
Figure 6. Temperatures profile at the surface of the melt without a seed or a crystal. 
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Figure 7. Temperatures profile at the surface of the melt when there is a crystal seed. 

 
Figure 8. Temperatures profile at the surface of the melt when there is a crystal seed and 25ºC at the top of the 

seed. 
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Figure 9. Temperatures profile at the surface of the melt when there is a crystal. 

 
Figure 10. Temperatures profile at the surface of the melt when there is a crystal and 25ºC at the top of the crystal. 

Observing the graphics, one can see that the size for L that produces the maximum gradient in 

the melt is de L=3mm, which is the length of L finally chosen as it is showed in the previous 

section (geometry). 
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8. Mathematic model and Nondimensional parameters 

In a CZ system, heat transfer includes convection, conduction and radiation within the melt, 

conduction and radiation within the crystal and gas convection and radiation between exposed 

surfaces. 

For the temperature and flow field calculation this model involves the following assumptions: 

i) The system is in quasi-steady state 

ii) The system is axially symmetric 

iii) The melt is incompressible Newtonian fluid 

A realistic model will be obtained if the nondimensional parameters of the model are set equal 

to nondimensional parameters of the growth process. The nondimensional parameters 

relevant to convection in Czochralski melts appear in the governing equations. 

Continuity: 

0· * V           (6) 

Navier-Stokes: 
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V is the dimensional velocity, T is the dimensional temperature, CT  and HT  are the lowest 

and the highest temperatures in the melt, r  is the crystal radius,   is the rotation rate of the 

crystal, p  is the gradient of the nondimensional dynamic pressure, and e  is the axial unit 

vector. Re, Gr and Pr are the nondimensional parameters that need to be set equal. 

Reynolds number: 




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 22
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rr

          (11) 
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Grashof number: 

2

23

2

3
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

 cc TrgTrg
Gr


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        (12) 

Prandtl number: 

k

C p




Pr          (13) 

where  sm2  is the kinematic viscosity,  2smg  is the gravity constant,  k1  is the 

volumetric expansion,  CT º  is the highest temperature difference in the melt,  mrc  is the 

crucible radius and  sm2  is the thermal diffusivity. 

In the experiment, it is necessary that the forced convection is predominant over the natural 

convection. This condition is accomplished when 1
Re2


Gr

. 

The Reynolds number can be matched by adjusting the rotation rate, and the Grashof number 

can be matched by adjusting the size of the melt cr  and/or adjusting the maximum 

temperature difference in the melt T . The size of the melt is fixed, as the crucible used is the 

one available in the laboratory. To obtain the previous relation, it would be interesting to have 

a low temperature difference in the melt. However, as it was said in a previous section, it is 

important to have a high gradient of temperatures to get the melting point temperature only 

in the center of the surface of the melt. Therefore, the parameter that can be changed to 

accomplish the relation mentioned is the rotation rate of the crystal. 

The rotation rate of the crystal chosen will have a frequency of 2Hz. With this value, as it will 

be shown in the next sections, it is possible to obtain a predominant forced convection. 
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9. Boundary conditions, meshing, process parameters  

The grid used in the simulation is showed in Figure 11. 

 
Figure 11. Grid used for the simulation 

A two-dimensional mesh has been used. The size of the grid has to be the appropriate for 

every region. A structured mesh is applied in the melt, as it is useful when a high spatial 

resolution is required. Moreover, the stability of the fluid flow solution algorithm on the 

structured mesh is essentially higher than on the unstructured mesh. 

The thermophysical boundary conditions used in the simulation are the ones that allow 

representing better the conditions in the laboratory where the experiment would take place. 

As far as the temperature is concerned, it is set to be 300K in the far field ( zr, ) and 

323K at the top of the large quartz crucible, as it is in touch with the support structure. 

In the far field, as it is explained in the Inductive Heating section, the in-phase and out-of-

phase components are set to be zero. 

The four physical phenomena included in the simulation are Inductive heating, Temperature, 

Convection (that gives the radial and axial velocities fields in the melt) and Azimuthal Flow 

(that gives the azimuthal velocities).  At first the power distribution in the graphite crucible has 

been computed, and then the temperature and flow field have been calculated using this 

power as a source term. 
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10.  Flow driven by buoyancy forces 

First of all, it is necessary to know how the melt moves only due to the natural convection, that 

is to say, driven by the heat transferred from the walls of the crucible to the melt. To calculate 

that, the rotation rate and the pulling rate of the crystal are set to zero. 

The distribution of temperatures obtained in the system is shown in Figure 12. 

 

 
Figure 12. Distribution of temperatures when the flow is only driven by buoyancy forces. 
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In the following figures, one can observe the radial and axial velocities of the melt.  

 
Figure 13. Radial velocities in the melt when the flow is only driven by buoyancy forces. 

 
Figure 14. Axial velocities in the melt when the flow is only driven by buoyancy forces. 
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As expected, the flow moves upward along the crucible walls. This is because the melt expands 

and becomes less dense when is heated by the walls of the crucible wall. It cools down and 

becomes denser while flowing along the surface. Next, it flows down again through the center 

of the liquid region. 

The Grashof number represents the ratio of the buoyancy forces to the viscous forces. The 

highest temperature difference is the melt is 6K. The Grashof number, using equation (12), has 

the following value: 

47088
00531.0

5310·02.0·6·0001.0·81.9
2

23

Gr  

The maximum velocities in the melt calculated using the CrysMAS are:  

smVr /000769.0
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  
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  

corresponding to the Reynolds numbers of, 
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00531.0
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Re max
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

DVr

r  
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00531.0
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

DVz

z  

Re2<<Gr, which shows that natural convection controls the melt. 
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11.  Flow driven by crystal rotation 

This section is focused to study the melt driven by the crystal rotation, without considering the 

effects of the buoyancy forces. Consequently, the value of the gravity will be set to zero and 

the pulling rate too. The rotation of the crystal is set to a frequency of 2Hz (120rpm). This value 

is reasonable for the process studied and for the characteristics of the crystal and crucible 

used, and also permits to accomplish the relation between the Reynolds number and the 

Grashof number desired (explained in section 8) when the melt is under the effects of both 

natural and forced convection (situation studied in section 12).  

The distribution of temperatures obtained in the system is shown in Figure 15. 

 

 
Figure 15. Distribution of temperatures when the flow is only driven by the crystal rotation. 
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In the following figures, one can observe the radial, axial and azimuthal velocities of the melt.  

 
 Figure 16. Radial velocities in the melt when the flow is only driven by the crystal rotation. 

 
Figure 17. Axial velocities in the melt when the flow is only driven by the crystal rotation. 
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Figure 18. Azimuthal velocities in the melt when the flow is only driven by the crystal rotation. 

In contrast to the previous section, the flow along the melt surface is radially outwards. This is 

because of the centrifugal force in the melt, introduced by rotating crystal. The centrifugal 

force makes the liquid at the top to move towards the walls of the crucible.  

The rotation of the crystal also causes azimuthal velocity ( V ). Only the layers of liquid next to 

the crystal are affected by this movement. 

The Reynolds number based on the rotation rate is defined as in equation (11). 

In the present study, its value is: 
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The maximum velocities calculated using the CrysMAS are: 
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Because of the melt convection, the shape of the solid-liquid interface becomes convex. 

The complete geometry of the interface can be observed in Figure 19. 

 
Figure 19. Geometry of the interface when the flow is only driven by the crystal rotation. 
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12.  Combined natural and forced convection 

Once both phenomena have been studied separately, the more realistic situation is 

considered, where the melt is submitted to both natural and forced convection, still without 

pulling the crystal. Consequently, the value for gravity is set again to its real value (9.81m/s2), 

and the frequency of the rotation is kept at 2Hz. 

In these conditions, the distribution of temperatures at the steady state is shown in Figure 20. 

 

 
Figure 20. Distribution of temperatures when the flow is driven by both natural and forced convection. 
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In the following figures, one can observe the radial, axial and azimuthal velocities of the melt.  

 
Figure 21. Radial velocities in the melt when the flow is driven by both natural and forced convection. 

 
Figure 22.  Axial velocities in the melt when the flow is driven by both natural and forced convection. 
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Figure 23. Azimuthal velocities in the melt when the flow is driven by both natural and forced convection. 

As one can observe in the previous pictures, the flow moves outwards, fact that shows that the 

forced convection is predominant over natural convection.  

The relative importance of the forced and natural convection can be estimated through the 

ratio of Re2 and Gr numbers. 

For 
2Re

1
Gr

  the flow is dominated by forced convection. 

The highest T  in the melt is 2K, so the Grashof number has the following value: 

15696
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2
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The Reynolds number has the same value as in the previous case. 

452
00531.0

5310·006.0·2··2
Re

2




 

The relation studied takes the following value: 

13
15696

452Re 22


Gr

 

confirming that the forced convection should control the melt flow. 

The maximum velocities in the melt are the following ones: 

smVr /0142.0
max

  

smVz /0037.0
max

  

smV /0781.0
max

  

Reynolds numbers based on these velocities are: 
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284
00531.0

5310·02.0·0142.0
Re max

max, 


DVr

r  

74
00531.0

5310·02.0·0037.0
Re

max,

max, 


DVz

z  

1562
00531.0

5310·02.0·0781.0
Re

max,

max, 






DV
 

These values are almost the same to the ones got with only forced convection. This was 

expected, since Re2>>Gr. 

The natural convection does not have a significant effect on the velocity of the melt, but the 

changes on the interface geometry are significant. It can be observed in the previous images 

and in Figure 24 that the solid-liquid interface is almost flat.  

 
Figure 24. Geometry of the interface when the flow is driven by both natural and forced convection. 
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12.1. Comparison to analytical solution for the infinite rotating disk for Gr<<Re2 

Von Kármán studied the steady flow of an incompressible viscous fluid, due to rotating infinite 

disk. The cylindrical polar coordinates are r ,   and z ; the flat disc is taken at 0z  and it is 

rotating with constant angular velocity   about axis 0r . The motion of the fluid is 

considered on the side of the plane for which z  is positive. The fluid is infinite in extent and 

0z  is the only boundary. 

If rV , V  and zV  are the components of the velocity of the fluid in the directions of r ,   and 

z , and p  is the pressure, then von Kármán shows that the equations of motion and 

continuity are satisfied by taking 

)(zrfVr  , )(zrgV  , )(zhVz  , )(zpp       (14) 

The boundary conditions are 0rV , rV   , 0zV  at 0z , and 0rV , 0V  at 

z . zV  does not vanish at z but must tend to a finite negative limit. This means that 

there is a steady inflow against the rotating wall as is to be expected for reasons of continuity. 

Owing to the adherence of the fluid, the rotating wall acts like a kind of centrifugal fan. Next to 

the wall the fluid is continuously carried to the outside, to be replaced by axial inflow. 

To obtain the equations in a non-dimensional form: 

)(Ff  , )(Gg  , )( Hh  , )(Pp  , 



 z   (15) 

Cochran (1934) improved the accuracy with matched inner and outer expansions. Rogers and 

Lance (1960) gave very accurate numerical solutions.  

In the next figure, one can find the numerical solutions for F , G , H  and P .  

 
Figure 25. Numerical solutions of F, G, H and P for the infinite rotating disk [9]. 
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The values of F , G , H  and P  (which are also tabulated [9]), define the velocities in the 

infinite melt driven by an infinite rotating disk. 

In this section, the velocities in the finite melt obtained by the numerical simulation (CrysMAS) 

are compared to the above analytical solution for the infinite melt and disk. Radial ( rV ) and 

axial ( zV ) velocities are compared. As can be observed in equations (14), the radial velocity 

depends on the radius, and the axial velocity only depends on the distance to the disk. The 

radial velocity are studied at r=0.5R (R=0.006m) and at r=R. The results obtained can be 

observed in the following figures. 

 
Figure 26. Theoretical and simulated radial velocities at r=0.5R when f=2Hz. 

 
Figure 27. Theoretical and simulated radial velocities at r=R when f=2Hz. 
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In the simulation, negative values for the radial velocity appear. This phenomena would also 

happen in a real experiment, and it is due to the non-infinit disk. As it can be observed in 

Figure 21 and in Figure 22, the flow moves radially outwards.  

The axial velocity will be compared at r=0, r=0.5R and r=R, but all are plotted in a single chart, 

since according to the analytical solution, the axial velocity should not depend on the radial 

distance. 

 
Figure 28. Theoretical and simulated axial velocities at r=0, r=0.5R and r=R when f=2Hz. 

It has been proved that the velocities obtained with the simulation are very similar to the 

theoretical ones. The next step is to set the range of rotation rates that permit this to happen. 
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12.2. Comparison to analytical solution for infinite rotating disk for f=1Hz 

When the frequency of the rotation is reduced from 2Hz to 1Hz, the radial and axial velocities 

obtained in the melt are the following ones.  

 
Figure 29. Radial velocities in the melt when the flow is driven by both natural and forced convection, and f=1Hz. 

 
Figure 30. Axial velocities in the melt when the flow is driven by both natural and forced convection, and f=1Hz. 
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The highest T  in the melt is still 2K and the Grashof number has the same value: 

15696Gr  

The Reynolds number has the following value: 

226
00531.0

5310·006.0·1··2
Re

2




 

The relation between the Grashof number and the Reynolds number squared is the following 

one: 

25.3
15696

226Re 22


Gr

 

This value shows that the forced convection still controls the movement of the melt, but the 

natural convection has more influence than in the previous situation studied. This can be 

observed in Figure 29 and in Figure 30.  

In the next graphics one can see the comparison between the velocities obtained in the melt 

and the velocities that would be obtained with an infinite rotating disk. 

The radial velocities are shown in Figure 31 and Figure 32 and the axial velocities in Figure 33. 

 
Figure 31. Theoretical and simulated radial velocities at r=0.5R when f=1Hz. 
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Figure 32. Theoretical and simulated radial velocities at r=R when f=1Hz. 

 
Figure 33. Theoretical and simulated axial velocities at r=0, r=0.5R and r=R when f=1Hz. 
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12.3. Comparison to analytical solution for infinite rotating disk for Gr~Re2 

In this section the frequency of the rotation is 0.5Hz. The radial and axial velocities obtained in 

the melt are the following ones.  

 
Figure 34. Radial velocities in the melt when the flow is driven by both natural and forced convection, and f=0.5Hz. 

 
Figure 35. Axial velocities in the melt when the flow is driven by both natural and forced convection, and f=0.5Hz. 
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The highest T  in the melt is still 2K and the Grashof number has the same value: 

15696Gr  

The Reynolds number has the following value: 

113
00531.0

5310·006.0·5.0··2
Re

2




 

The relation between the Grashof number and the Reynolds number squared is the following 

one: 

8.0
15696

113Re 22


Gr

 

This value, Figure 34 and Figure 35 show that, in this situation, the natural convection is as 

important as the forced convection. When looking at the movement of the melt, it is possible 

to observe that under the crystal the melt is controlled by the movement of the crystal, that is 

to say, the forced convection. On the other hand, the rest of the melt is controlled by natural 

convection, in the same direction than in section 10. 

In the next graphics one can see the comparison between the velocities obtained in the melt 

and the velocities that would be obtained with an infinite rotating disk. 

The radial velocities are shown in Figure 36 and in Figure 37 and the axial velocities in Figure 

38. 

 
Figure 36. Theoretical and simulated radial velocities at r=0.5R when f=0.5Hz. 
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Figure 37. Theoretical and simulated radial velocities at r=R when f=0.5Hz. 

 
Figure 38. Theoretical and simulated axial velocities at r=0, r=0.5R and r=R when f=0.5Hz. 
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13.  Natural and forced convection with pulling rate 

To have the whole Czochralski process simulated, the only thing missing is pulling the crystal, 

factor that lets the crystal to grow vertically. The pulling rate used is 1mm/h (low velocities are 

needed) and the rotation rate is kept at 2Hz. 

In the following figures, one can observe the temperatures obtained in the system. 

 

 
Figure 39. Distribution of temperatures when the flow is driven by both natural and forced convection and the 

crystal is pulled. 
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In the following figures, the radial, axial and azimuthal velocities of the melt are shown.  

 
Figure 40. Radial velocities in the melt when the flow is driven by both natural and forced convection and the crystal 

is pulled. 

 
Figure 41. Axial velocities in the melt when the flow is driven by both natural and forced convection and the crystal 

is pulled. 
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Figure 42. Azimuthal velocities in the melt when the flow is driven by both natural and forced convection and the 

crystal is pulled. 

As one can observe in the previous pictures, pulling up the crystal does not affect to the 

movement of the melt, the flow still moves outwords. The relation between the Reynolds 

number and the Grashof needs to be checked. 

The highest T  in the melt is 1K, so the Grashof number has the following value: 

7848
00531.0

5310·02.0·1·0001.0·81.9
2

23

Gr  

The Reynolds number has the same value as in the previous case. 

452
00531.0

5310·006.0·2··2
Re

2




 

The relation studied takes the following value: 

26
7848

452Re 22


Gr

 

so it is possible to conclude that the forced convection still controls the movement of the melt. 

The maximum velocities in the melt are the following ones: 

smVr /0142.0
max

  

smVz /00363.0
max

  

smV /0781.0
max

  

Reynolds numbers based on these velocities are: 

284
00531.0

5310·02.0·0142.0
Re max

max, 


DVr

r  
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6.72
00531.0

5310·02.0·00363.0
Re

max,

max, 


DVz

z  

1562
00531.0

5310·02.0·0781.0
Re

max,

max, 






DV
  

It can be concluded that such a small pulling rate does not influence to the values of the 

velocities. It has not either repercussion on the geometry of the interface, as it is still almost 

flat. The interface can be observed in Figure 43. 

 
Figure 43. Geometry of the interface when the flow is driven by both natural and forced convection and the crystal 

is pulled. 
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14.  Summary and conclusions 

The heat transfer and fluid flow occurring during the Czochralski process were simulated using 

CrysMAS code. The growth of InI was considered. InI has an unusually low melting point, which 

makes the Czochralski growth process difficult. InI is a promising X- and gamma-ray detector 

material. 

The simulation included several steps. First, the geometry was designed, adapting the shapes 

and sizes of the devices and materials to the features of the program. Once the materials were 

assigned to each region, the grid was created, making it thinner or structured in the zones that 

required it. Then the heater, the boundary conditions and the process parameters were 

defined, according to the power supply available, the thermophysical conditions that the 

laboratory presents and considering the crystal growth requirements, respectively. 

The first simulations were done using the dimensions of the materials and devices available in 

the laboratory. Due to InI’s low freezing point, low temperature gradients were expected in 

the melt. In order to increase this gradient, the size of the graphite size was modified several 

times. The length of the piece that produced the highest gradient in the melt was chosen and 

used for all the simulations in this study.  

The distribution of temperatures and the behavior of the melt were studied in different 

situations. The distribution of temperatures was almost the same in all the situations, small 

changes could be observed, but the melt behaved differently in the four cases. 

The first case considered was natural convection alone driven by buoyancy forces, which 

produced a flow from the crucible wall towards the crystal, along the surface of the melt. The 

second case considered was forced convection alone, flow driven by a crystal rotating at 120 

RPM. Here the centrifugal forces produced a flow pattern along the melt surface, from the 

crystal towards the crucible walls. Moreover, the velocities of the melt were much higher 

when the flow was driven by forced convection. 

The third case considered was mixed convection, driven by both buoyancy and centrifugal 

forces. In this case, the goal was to set the rotation rate of the crystal sufficiently high to 

ensure that the forced convection had more influence on the melt flow than the natural 

convection. This was verified by observing the flow pattern, which was similar to the one 

produced by the forced convection alone, and also using nondimensional parameters. 

The fourth situation studied was the most realistic case, including the translation of the 

growing crystal (the pulling rate of the crystal was set to 1mm/h) and the mixed convection in 

the melt (both natural and forced convection occurring together). Introducing the pulling rate 

did not change significantly the flow pattern and the velocities in the melt. 

Finally, the radial and axial velocities obtained when there were both natural and forced 

convection were compared to the analytical solution for the infinite rotating disk. The values 

obtained with the CrysMAS simulation were very similar to the analytical solution. Yet, there 

were two significant differences:  
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(i) In the CrysMAS simulation, the radial velocities in the furthest positions from the 

crystal were negative. This is because the volume studied was not infinite and 

there was recirculation. In the theoretical situation, the disk is infinite and the 

recirculation occurs in the infinity. 

(ii) The second difference was in the axial velocities, when the distance from the 

center of the melt was equal to the radius of the crystal. As this is the point when 

the flow loses the contact with the surface of the crystal, the velocities were a bit 

lower than the theoretical ones. However, they had the same evolution. 

After checking the good correspondence between the results of the simulation and the 

analytical solution, the range of velocities for which this correspondence was possible was 

studied. Two more values for the rotation rate were studied.  

a) The frequency was reduced to 1Hz (1/2 of the initial value). The agreement was 

still acceptable. The forced convection was still controlling the flow, but the 

natural convection gained influence. This caused that the negative values of the 

radial velocity were higher (in absolute value), and also caused a higher difference 

between the analytical axial velocities at the end of the crystal and the values 

obtained from the simulation. 

b) Finally, the frequency was reduced to ¼ of the initial value. This made the natural 

convection as important as the forced convection. With this value, the melt under 

the crystal was controlled by the movement of the crystal, and the rest of the 

melt was controlled by buoyancy forces. When comparing the radial velocities, it 

was possible to observe that the negative values were more negative than in the 

other situations.  The axial velocities were more different to the theoretical ones 

than before, overall the velocities at the end of the crystal. These velocities were 

all negative, because at this point the natural convection controlled the flow. 

It can be concluded that the Cochran’s analytical solution for the infinite rotating disk predicts 

accurately the flow in Czochralski melts, provided that the flow is dominated by crystal 

rotation, 2Re Gr  (where Re is the rotational Reynolds number, based on the crystal 

rotation rate and diameter, and r is the Grashof number of the melt). 
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