Control of the Twin-Rotor System

Than T. Thinh

A thesis submitted to the Universitat Politècnica de Catalunya in partial fulfilment of the requirements for the degree of

Master of Engineering

Universitat Politècnica de Catalunya

Supervisor
Professor Ramon Costa

External Examiner
Internal Examiner

June 2010
Declaration

I declare that I am the sole author of this thesis and that all the work presented in it, unless otherwise referenced, is my own. I also declare that this work has not been submitted, in whole or in part, to any other university or college for any degree or any other qualification.

I authorise the library of Universitat Politècnica de Catalunya to lend and copy this thesis.

Than Tien Thinh

June, 2010
Abstract:

The problem of Multi-Input-Multi-Output (MIMO) control has always been an interesting sub-field within the field of control. Among the systems that require MIMO control, the helicopter stands out as one of the prominent examples. This type of aircraft requires two rotors, rotating in perpendicular planes, therefore can not rely on Single-Input-Single-Output controllers to maneuver in the space. Also, un-manned helicopters have not yet been seen in armies worldwide, this fact gives the task of developing MIMO control systems for helicopters a large room to grow.

In order to model the helicopter in laboratorial space, a Twin-Rotor Apparatus has been developed by Feedback company. This apparatus is being studied in Universitat Politècnica de Catalunya, Spain, to provide a good model for teaching and research in the field of MIMO control, with the aim to develop more efficient control methods for the real helicopter.

The complete mechanical model for this apparatus has been developed using the software MAPLE. Based on this mechanical model, several control schemes are created to control the apparatus using MATLAB-Simulink. These control schemes are designed to make the Twin-Rotor system go to predetermined points and follow periodical input signals.

The task of designing the control schemes requires the author to work on state-space configuration, linearization and experimental works. Mathematical approximation is also applied to get the approximated polynomials for variables relationship.

The controllers designed work successfully and make ways for the design of similar controllers using for other MIMO systems.
Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>Generalized coordinate for pitch angle</td>
<td>radian</td>
</tr>
<tr>
<td>q_2</td>
<td>Generalized coordinate for yaw angle</td>
<td>radian</td>
</tr>
<tr>
<td>q_3</td>
<td>Generalized coordinate for main rotor angle</td>
<td>radian</td>
</tr>
<tr>
<td>q_4</td>
<td>Generalized coordinate for tail rotor angle</td>
<td>radian</td>
</tr>
<tr>
<td>θ_v</td>
<td>Pitch angle, the same as q_1</td>
<td>radian</td>
</tr>
<tr>
<td>θ_h</td>
<td>Yaw angle, the same as q_2</td>
<td>radian</td>
</tr>
<tr>
<td>α_{main}</td>
<td>Main rotor angle, the same as q_3</td>
<td>radian</td>
</tr>
<tr>
<td>α_{tail}</td>
<td>Tail rotor angle, the same as q_4</td>
<td>radian</td>
</tr>
</tbody>
</table>
Acknowledgements

First and foremost, I would like to thank Professor Ramon Costa for his guidance and encouragement throughout the course of this work. Without his expertise and enthusiasm, this project may have never been accomplished.

I would also like to thank Professor Ana Barjau for her assistance during the academic year, since the very beginning of my student life in Barcelona.

I would like to thank the technical and administrative staff at the Escola Tècnica Superior d’Enginyeria Industrial de Barcelona. Their assistance during this academic year has been invaluable.

I would also like to thank all my fellow Erasmus Mundus students. As we know, we meet each other here among billions of people and millions of years, and we will never forget our time together.

My friends, both in Vietnam and Spain, help me a lot and they deserve a big thank from the bottom of my heart.

Finally, a big warm thank to my parents, my younger brother and Phuong Loan. I could never express how thankful I am to them and how much they have helped me along the way.

Thank you very much!
Contents

Chapter 1: Introduction
1.1. Motivation
1.2. The Twin Rotor MIMO System
1.3. Project Objective

Chapter 2: Mechanical Model Setup
2.1. The MAPLE and Matlab Model
2.1.1. List of Parameters in the Mechanical Model
2.1.2. The Open Loop Simulation Model
2.2. The Controller for the Simulation Model

Chapter 3: Preparation for the Real-Time Controllers
3.1. Designing the Controller for the Electrical Sub-system
3.1.1. System Identification for the Electrical Sub-system
3.1.1.1. Tail Rotor
3.1.1.2. Main Rotor
3.1.1.3. Validation
3.1.2. Non-linearity in the Electrical Sub-system
3.1.3. Electrical Sub-system Controller Design
3.1.3.1. PI Controller
3.1.3.2. Second Order Controller
3.1.3.3. Controller Choice
3.1.4. Anti-windup Scheme
3.2. State Estimator
3.3. Non-linearity Link Between the Two Sub-systems
3.4. Electrical Sub-system Scheme and Non-linear Link

Chapter 4: Real-Time Controllers
4.1. First Controller with Linearization around Point
4.2. Second Controller with Linearization around Point
4.3. Third Controller with Global Linearization
4.4. Sinusoid Tracking with Global Linearization

Chapter 5: Summary and Conclusions

References

Appendix
List of tables and figures

Figures

1.1. Model of aerodynamic force 3
1.2. The more popular model of the helicopter with a lift blade and a tail blade – Russian helicopter Mi24 3
1.3. The Twin Rotor MIMO System (TRMS) 4
1.4. Model of the TRMS 5
1.5. Angular sensors 6
1.6. Control chain for the TRMS 7
2.1. Oscillation of the open-loop TRMS model around one equilibrium point 13
2.2. Oscillation of the open-loop TRMS model in the close neighbourhood of the equilibrium point 14
2.3. The scheme for both the non-linear mechanical plant and the linearized plant 19
2.4. The linearized model converges to $q_{10} = 1$ without integral action 19
2.5. The complete model converges to $q_{10} = 1$ 20
2.6. The complete model converges to $q_{20} = 1$ 20
2.7. The complete model converges to $q_{30} = 2$ 21
2.8. The complete model converges to $q_{40} = 3$ 21
3.1. Model for the DC Motor 24
3.2. Step response of tail speed 27
3.3. Step response of main speed 28
3.4. Step response of the modelled transfer function for the main motor 29
3.5. Step response of the modelled transfer function for the tail motor 30
3.6. Gain-Voltage diagram for tail rotor 31
3.7. Gain-Voltage diagram for main rotor 31
3.8. Validation experiment for the PI controller 34
3.9. Validation experiment for the second-order controller 37
3.10. Anti-windup scheme with a controller 38
3.11. Experiment to get the function $\text{Speed} = f(\text{Torque})$ 40
3.12. Electrical sub-system scheme with the non-linear link between the two sub-
systems as Speed = f(Torque)

4.1. Scheme of the PI controller in Section 4.1

4.2. Performance of the PI controller in Section 4.1, a. Pitch, b. Yaw angles

4.3. Scheme of the controller in Section 4.2

4.4. Performance of the controller in Section 4.2, a. Pitch, b. Yaw angles

4.5. Scheme of the controller in Section 4.3

4.7. Scheme of the controller in Section 4.4

4.8. Performance of the controller in Section 4.4 with the same reference frequency

4.9. Fourier transform of the error signals (reference frequency is 0.03Hz)

4.10. Performance of the controller in Section 4.4 with two different reference frequencies

4.11. Fourier transform of the error signals (reference frequency is 0.03Hz for pitch and 0.06Hz for yaw)

Tables

2.1. List of mechanical parameters