

UNIVERSITAT POLITÈCNICA DE CATALUNYA

BARCELONATECH

School of Telecommunications Engineering of Barcelona

Simulation algorithms for Network Coding

(Final Project)

Guilherme Pinto Cardoso Alegria Quintela

September 2010

ii

To my parents Divo and Luísa,

brother Gustavo and all of my

family and closest friends.

iii

Acknowledgments:

This work would not have been possible without the support of my family, in

particular my parents and brother, which words cannot express how truthfully grate I

am to them for all that I am today.

I would like to thank my supervisor, Prof. Marcel Fernández (UPC-ENTEL), for

all his support, guidance and assistance throughout the project.

 I am also very much thankful to Prof. Vítor Silva (UC-IT) for his support,

guidance and mainly for giving me the opportunity of developing my final project

abroad.

I also want to thank Alberto J. González (UPC) for all his assistance during the

initial stages of this project presenting me to P2P streaming with Network Coding.

I am grateful to Hamed Firooz (UWEE-FunLab) for his help understanding the

NC OPNET tutorial and not forgetting also the OPNET Google Groups users for their

prompt replies in moments of need.

In last but not least, I would like to thank my closest friends for their love,

support and incessant encouragement during the past months.

iv

Abstract

Network Coding is a new research field which has been growing its interest

among Information Theory and Network Engineering experts for its ability of

improving network throughput and robustness enhancement.

This thesis intends to explore and study Network Coding characteristics in order

to develop a reliable simulation study on a specific network. Simulations were

implemented within OPNET simulator interfaced with MATLAB.

The Linear Information Flow algorithm is also studied and implemented in order

to use the resulting network codes within the network implemented above.

v

Resumen

Network Coding es una nueva área de investigación que ha incrementado su

interés entre los especialistas en Teoría de la Información y Ingeniería de redes por su

capacidad en mejorar el throughput de una red y su robustez.

Este proyecto pretende explorar y estudiar las características de Network Coding

con el objectivo de desarrollar y implementar una simulación de una red específica. Las

simulaciones se han realizado con el simulador OPNET interconectado con MATLAB.

El algoritmo de Linear Information Flow también fue estudiado y implementado

con el intuito de utilizar los network codes generados en la red implementada

anteriormente.

vi

Resum

Network Coding és una nova àrea d'investigació que ha incrementat el seu interès

entre els especialistes en Teoria de la Informació i Enginyeria de xarxes per la seva

capacitat en millorar el throughput d'una xarxa i la seva robustesa.

Aquest projecte pretén explorar i estudiar les característiques de Network Coding

amb l'objectiu de desenvolupar i implementar una simulació d'una xarxa específica. Les

simulacions s'han realitzat amb el simulador OPNET interconnectat amb MATLAB.

L'algorisme de Linear Information Flow també va ser estudiat i implementat amb

el intuit d'utilitzar els network codes generats a la xarxa implementada anteriorment.

vii

Resumo

Network Coding é uma nova área de investigação que tem vindo a aumentar o seu

interesse entre os especialistas em Teoria da Informação e Engenharia de Redes pela sua

capacidade de melhorar o throughput de uma rede e sua robustez.

Esta tese pretende explorar e estudar as características de Network Coding com o

objectivo de desenvolver e implementar uma simulação de uma rede específica. As

simulações foram executadas no simulador OPNET interligado com MATLAB.

O algoritmo de Linear Information Flow também é estudado e implementado,

com o intuito de utilizar os network codes gerados dentro da rede implementada

anteriormente.

viii

Contents

List of figures ... x

List of tables ... xii

List of algorithms .. xiii

Notation ... xiv

1- Introduction .. 1

1.1 Network Coding ... 1

1.2 Objectives .. 2

1.3 Thesis outline ... 3

2 Background ... 4

2.1 Network Coding overview ... 4

2.1.1 The butterfly network example... 4

2.1.2 Main Theorem .. 6

2.1.2.1 Min-Cut Max-Flow ... 7

2.1.3 Linear Network Coding .. 8

2.1.3.1 Encoding.. 9

2.1.3.2 Decoding ... 10

2.1.4 Random Network Coding ... 11

2.1.5 Polynomial Time Algorithms ... 11

2.2 Network Coding Applications ... 11

2.2.1 Ad-Hoc networks .. 11

2.2.1.1 P2P file distribution ... 12

2.2.1.2 Wireless networks ... 13

2.2.2 Security (Secure Network Coding) .. 14

3 Simulation Models .. 16

ix

3.1 Why OPNET? .. 16

3.2 OPNET Network modeling overview .. 17

3.2.1 The Project Editor ... 17

3.2.2 The Node Model ... 17

3.2.3 Process Model .. 18

3.3 OPNET/MATLAB interface .. 18

3.4 Galois Field calculations with MATLAB .. 20

3.4.1 Galois Field functions ... 20

4 Implementation and results ... 24

4.1 OPNET/MATLAB NC Tutorial .. 24

4.1.1 Galois Field operations ... 29

4.1.2 Results .. 29

4.2 Linear Information Flow .. 31

4.2.1 The algorithm ... 31

4.2.2 Network topology ... 33

4.2.2.1 Related work using LNC ... 34

4.2.3 Implementation ... 35

4.2.3.1 Results ... 39

4.3 Simulation methodology .. 42

5 Conclusions .. 44

5.1 Conclusions .. 44

5.2 Future Work ... 45

Appendix A .. 46

References .. 50

x

List of figures

Figure 1.1 – NC articles published along the years. Data retrieved on July/2010 [22]. ... 2

Figure 2.1 - Butterfly network with traditional routing a) node B only forwards symbol

b. b) node B only forwards symbol a. .. 4

Figure 2.2 - Butterfly network using Network Coding. ... 5

Figure 2.3 - Unicast connection in a network with unit capacity edges [3]. 7

Figure 2.4 – LNC: Local/ global coding vectors of 2-dimensional linear network code. 8

Figure 2.5 - LNC: local/ global coding vectors updated. ... 9

Figure 2.6 - NC packet format. Adapted from [25]. ... 10

Figure 2.7 - a) Complete download - every user downloads the full file. b)

Shared download - every user download an equal share of the total of the file [24]. 12

Figure 2.8 - a) Wireless network with traditional routing. b) Wireless network with NC

broadcast. .. 13

Figure 2.9 - Wireless Physical layer NC. ... 14

Figure 2.10 - Secure NC. Secure message s sent with randomness, w. 14

Figure 3.1 - OPNET's simple diagram [29]. ... 16

Figure 3.2 - OPNET's node model and process model snapshot, respectively. 18

Figure 3.3 - OPNET's environment attribute snapshot including the essencial lib files

and respective path. .. 19

Figure 4.1 – OPNET Project window from OPNET NC tutorial, UWEE FunLab [7]. . 24

Figure 4.2 - NC Packet format [6]. ... 25

Figure 4.3 - OPNET NC Node Model: in yellow, SEND/RECEIVE interfaces, in green,

sink and nc_proc processors. .. 26

Figure 4.4 - Node model diagram. .. 27

Figure 4.5 - Timing and Project's packet flows [7]. ... 28

Figure 4.6 - Simulation Console: Final NC packet values. .. 29

Figure 4.7 - NC values and Packet Values for OPNET simulation. Adapted from [7]. . 30

Figure 4.8 - Throughput statistics through selected links. .. 31

Figure 4.9 - Network topology. .. 33

xi

Figure 4.10 - Edge-disjoint paths to each receiver [3]. .. 34

Figure 4.11 - Linear Network Coding (LNC) solution. Coding points: edges BD and GH

[3]. .. 35

Figure 4.12 - Individual b(e) process at each node v ∈ V . .. 38

Figure 4.13 – Example scheme of the calculations performed in nodes S and B, with

resulting b(e) vectors. ... 38

Figure 4.14 - Figure of the topology of the network within MATLAB. 39

Figure 4.15 - Defined local conding vectors (me) in nodes S, B and G. 40

Figure 4.16 - a) OPNET Network Project editor. b) OPNET Animation Viewer. Packet

flow in the network. .. 42

Figure 4.17 - Node Model for node B and respective NC_processor Process Model

within OPNET. ... 43

Figure 4.18 - Throughput in edges AR1 and BD. .. 43

Figure A.1 - Packet flow of the NC tutorial network.. ... 43

xii

List of tables

Table 2.1 - XOR logical operations. .. 6

Table 3.1 - MATLAB Engine functions .. 20

Table 3.2 - MATLAB gf function default primitive polynomial. 21

Table 3.3 - MATLAB gf(8) elements. ... 23

Table A.1 – MATLAB GF(p) operations functions. Adapted from [31]. 48

xiii

List of algorithms

Algotirhm 4.1 – Linear Information Flow .. 36

xiv

Notation

NC Network Coding

� Finite Field

GF Galois Field

LNC Linear Network Coding

RNC Random Network Coding

LIF Linear Information Flow

P2P Peer-to-Peer

LAN Local Area Network

FSM Finite State Machine

UDP User Datagram Protocol

 TCP Transmission Control Protocol

[0i – 1, 1, 0h – 1] a h-length vector with a 1 in the ith location and 0 otherwise

at (c) a vector with the property that x.at (c)≠0 if and only if x is linearly

independent of Bt ∖{��	
} for some c ∈ Ct

b(e) ∈ �h global coding vector for edge e ∈ E

Bt the set of global coding vectors for sink t, Bt={ b(c): c ∈ Ct }

Ct h edges on edge-disjoint paths from s to t

C(e) the capacity of edge e ∈ E

xv

E the set of edges

e ∈ E an edge

{e1, …, eh} input edges connecting s’ with s

f
t a flow of magnitude h from s to t represented by h edge disjoint

paths

←���
 predecessor edge of e on a path from s to t ∈ T

G=(V,E) the graph

h the smallest maximum flow from s to some sink t ∈ T

ΓI (v) set of incoming edges in node v

ΓO (v) set of outgoing edges in node v

me the local coding vector for edge e ∈ E, i.e., me(e’) is the

coefficient multiplied with y(e´) to contribute to y(e)

P(e) the predecessor edges of e in some flow path{
←���
 : t ∈ T }

s source node

 s’ artificial node

 start(e) the node where edge e ∈ E departs

 T ⊆ V the set of sink nodes

 T(e) ⊆ T the sinks supplied through edge e ∈ E, i.e., T(e)= { t ∈ T: e ∈ f
t }

 t ∈ T a sink node

 V the set of nodes

 v ∈ V a node

 y(e) the symbol carried by edge e

1

1- Introduction

Nowadays, practical communication networks such as phone, internet, peer-to-

peer, wireless and ad-hoc networks, represent more and more an indispensable role in

our lives. Traditionally, in order to exchange data between nodes, communication

networks use routing algorithms (store-and-forward), where a node receives a packet or

symbol and consequently forwards it to the next node, in such a manner that packets

travel through the network remaining intact between the source and the

destination/receiver.

1.1 Network Coding

Network coding is a recent research field in information theory that changes the

traditional idea of routing, instead of simply forwarding data or packets, intermediate

nodes may also be used in order to recombine several input packets into one or more

output packets with the objective of attaining maximum information flow in the

network.

This method was introduced by R. Ahlswede et al. [1] in the beginning of the new

millennium, demonstrating how network coding can increase the throughput of a

network and enhance its robustness. The idea of this method is relatively simple: the

intermediate nodes recombine the received packets, sending a linear combination of

them and forming a new representation of the original packet, that in order to decode it

and retrieve the original message in such a way that the receiver just needs to have a

sufficient number of linear independent combinations of those packets in order to

decode it and retrieve the original message, independently of which specific

combinations it received.

The topics of network coding

algorithms of optimization

networks and network monitoring

A relevant number of research studies

continuous advance of understanding

of articles published concerning

Figure 1.1 – NC articles

1.2 Objectives

The main objectives of this thesis

Network Coding principals and

of it within OPNET network simulator,

algorithm [15] in MATLAB

with OPNET.

0

200

400

600

800

1000

1200

2000 2001

N
o

.
A

rt
ic

le
s

Network Coding

of network coding involve mainly networking,

of optimization, information theory, security, load balancing,

networks and network monitoring.

A relevant number of research studies were reported since [1]

continuous advance of understanding Network Coding, growing each year the number

published concerning this field, as illustrated in Figure 1.1.

articles published along the years. Data retrieved on July/2010

objectives of this thesis are to study and explore

principals and characteristics in order to develop a reliable simulation

of it within OPNET network simulator, implementing the Linear Information Flow

in MATLAB, introducing it on the network simulation developed before

2002 2003 2004 2005 2006 2007 2008 2009 2010

Years

Network Coding articles published along the years

2

networking, graph theory,

load balancing, ad-hoc

reported since [1] resulting in a

, growing each year the number

2010 [22].

and explore all of the main

in order to develop a reliable simulation

the Linear Information Flow

, introducing it on the network simulation developed before

2010

along the years

3

1.3 Thesis outline

Chapter 2 covers all of Network Coding background research and properties

studied.

The simulation models explored and used to simulate the studied algorithms and

networks are described in Chapter 3.

Chapter 4 combines the last chapters with an intensive study of the Linear

Information Flow algorithm, firstly with a theoretical approach and then its

implementation and simulation using MATLAB and OPNET interfaces.

Finally, in chapter 5 the conclusion of this thesis is drawn along with some

future research topics.

4

2 Background

This chapter provides a background on multicasting using Network Coding (NC)

and reviews its major properties and developed researches, since it was first purposed

[1], that were studied . Also will be taken in concern the many applications that have

been associated to NC, for which store-code-forward brings relevant benefits.

2.1 Network Coding overview

Several benefits of using NC among communication networks have been proven

in diverse subjects, such as throughput [1], end-to-end delay [2], wireless resources

[10], security issues and robustness [3]. In this thesis, throughput benefits when

multicasting are the main concern.

2.1.1 The butterfly network example

Assuming a communication network as a directed graph G = (V, E), where V and

E are the sets of vertices (nodes) and edges, respectively, consider the network topology

represented in Figure 2.1.

Figure 2.1 - Butterfly network with traditional routing a) node B only forwards symbol b. b) node B only

forwards symbol a.

a) b)

5

The butterfly network, represented in Figure 2.1 and Figure 2.2, is a classical

example when demonstrating how NC can achieve throughput gain in a communication

network. We have a Source, s, multicasting both bits a and b to receivers R1 and R2 in

each time slot, so every channel/edge has unit capacity.

Using traditional routing, receiver R1 would receive both bits a and b using all the

network resources, where source S could route bit a along the path {AR1} and bit b

along the path {CB, BD, DR1}. Receiver R2 could also receive both bits from s,

receiving bit b through path {CR2} and bit a from path {AB, BD, DR2}, as illustrated in

Figure 2.1.

Now let’s assume multicasting, in other words, let’s consider that both receivers

want to receive from s both bits a and b, simultaneously. If routers/nodes only forward

the information they receive (traditional store-and-forward) the middle edge {BD} will

be a bottleneck, which can either forward a or b to both receivers. If for example the bit

forwarded by node B was bit a, receiver R2 would receive both bits a and b while

receiver R1 would only receive bit a, as shown in Figure 2.1 b.

With NC both bits sent by S can be XORed (or linearly combined) at intermediate

node B, as shown in Figure 2.2.

Figure 2.2 - Butterfly network using Network Coding.

 ⊕

 ⊗ ⊗

b

6

A new packet, c, is created at node B, where c = a ⊕ b, which is then sent through

edge BD. R1 and R2 receive, respectively, {a, a⊕b} and {b, a⊕b}, being both able to

retrieve a and b by solving a simple system of equations. The symbol ⊕ denotes the

logical operation xor that is specified in table 2.1

⊕⊕⊕⊕ 0 1

0 0 1

1 1 0

Table 2.1 - XOR logical operations.

As shown, allowing the intermediate node in the network to codify (combine) the

received packets and consecutively forward the new packet created to both receivers,

achieves an increase of network’s throughput when multicasting since multicast traffic

network capacity can be achieved.

2.1.2 Main Theorem

When unicasting, only one receiver uses the network resources at a time, and the

conditions provided to ensure the support of the network are widely known for a long

time, while for multicasting, where we have to ensure that the same information is

transmitted simultaneously to the multiple receivers within the network, those

conditions have to be taken in concern so that the network supports the multicast at a

certain rate.

NC Main Theorem [3], proved by Ahlswede et al. [1], facts that the conditions

necessary to guarantee multicast at a certain rate to each receiver are the same as unicast

since the intermediate nodes in the network are able to combine each information

received.

7

2.1.2.1 Min-Cut Max-Flow

The Min-Cut Max-Flow Theorem was first proven by Menger [23], being also

demonstrated afterwardsby others, such as Ford-Fulkerson [22]. In this thesis, it will be

stated the Theorem having by reference [3].

Consider G a directed graph, G= (V, E), with a set of vertices V and a set of edges

E. Assuming that each edge E has unit capacity and allows parallel edges, let’s consider

a source (node) S ∈ V which wants to send information to a receiver (node) R ∈ V.

Defining a cut, between S and R, as a set of edges which cannot be removed

without disconnecting S from R, and its smallest value (the sum of the capacities of the

edges in that cut) as min-cut, for unit capacity edges, the number of edges in the cut

equals its value. The basic conclusion from the Min-Cut Max-Flow theorem is that the

maximum information rate sent from S to R is equal to the min-cut value.

Having defined the min-cut, the Theorem states that if the min-cut value equals

h, the maximum rate of the information sent by S to R, will be of h. Therefore, there will

exist h edge-disjoint paths between source S and R, as shown in Figure 2.3.

Figure 2.3 - Unicast connection in a network with unit capacity edges [3].

From the network topology defined in Figure 2.3 we can easily conclude that the

min-cut value from this network equals three, existing three edge-disjoint paths between

S and R that deliver symbols ��, �� and �� to the receiver, R.

8

2.1.3 Linear Network Coding

It has been shown that intermediate nodes in a network, when performing NC, are

able to combine a number of packets received into one or more new outgoing packets.

Linear Network Coding (LNC) [2, 21], permits, instead of binary field operations,

moving to larger field sizes, being able to perform more complex operations when

combining incoming packets in intermediate nodes, becoming one of the most

successful network coding algorithms as it permits achieving network capacity when

multicasting, with relatively low complexity. In LNC each data unit is processed using

finite fields �� with q a prime number or, considering a Galois Field (GF), q= 2� for

some integer m, where ��� refers to �0, 2� �!.
Having a graph G=(V,E), where V represent nodes and E the edges through where

data is transmitted, the butterfly network is once again the chosen example to best

understand LNC operations within a network, illustrated in Figure 2.4.

Figure 2.4 – LNC: Local/ global coding vectors of 2-dimensional linear network code.

"# = %&
' () *

+�,, -
 = %(
) * +�,, .
 = %&

'*

"/ = 01
23

+�., 45
 = 0&+
'+3

+�., 6
 = %&7
'7* +�-, 6
 = %(8

)8 *

+�-, 9:
 = %(;
); *

+�6, <
 = 0&71 + (82
'71 +)82 3

"> = �? @!

+�<, 45
 = 0&71? + (82?
'71? +)82? 3

+�A, 4:
 = 0&71@ + (82@
'71@ +)82@ 3

B� B�

9

2.1.3.1 Encoding

As shown in Figure 2.4, we have B�, … , BC original packets generated by

source S, where n=2 in the previous example (2-dimensional linear network code). Each

packet is associated to a sequence of encoding vectors D�, … , DC in field ��� and

equals to an information vector,

1

n
i

i

i

X g M
=

=∑ (2.1)

being the sum executed (over the finite field ���) in each symbol position so,

1

n
i

k i k

i

X g M
=

=∑ (2.2)

where k
X and i

kM is the kth symbol of X and iM .

 Updating Figure 2.4, the field associated is ��= {0, 1} being B�= a and B�= b,

consecutively we have the result in Figure 2.5.

Figure 2.5 - LNC: local/ global coding vectors updated.

"# = %5
E E5*
+�,, -
 = %E

5*
+�,, .
 = %5

E*

"/ = %5
5* +�., 45
 = %5

E*

+�., 6
 = %5
E* +�-, 6
 = %E

5*

+�-, 4:
 = %E
5*

+�6, <
 = %5
5*

"> = �5 5!
+�<, 45
 = %5

5*
+�A, 4:
 = %5

5*

+�E, ,
 = %5
E* +�E, ,′
 = %E

5*

Concluding, with LNC

field ��� , where the resulting packets

with the same length as the original

Figure

In Figure 2.6 it is illustrated a NC packet format where L stands for the length of

each packet and S for S bits of

2.1.3.2 Decoding

At LNC, the original packets (

executing a simple Gaussian elimination (decoding).

The encoded packet, as seen before,

vectors D�,…,DC and information vector

of Xs (m G n), it is able to decode them and retrieve

Therefore the rank of the matrix

to (2.3) have to be linearly independent.

LNC characteristics will be better

algorithm implementations and simulations take place.

LNC, addition and multiplication are performed over the

, where the resulting packets are linear combinations of the original

with the same length as the original packets.

Figure 2.6 - NC packet format. Adapted from [25].

In Figure 2.6 it is illustrated a NC packet format where L stands for the length of

each packet and S for S bits of i

kM .

Decoding

At LNC, the original packets (B�, … , BC) are retrieved at the receiver nodes by

executing a simple Gaussian elimination (decoding).

, as seen before, carries two kinds of information

information vector X. When a node receives (receiver)

n), it is able to decode them and retrieve successfully the original packets

rank of the matrix (2.3) has to be n, in other words, the vectors belonging

to be linearly independent.

1

1

1

, ,

, ,

..............

, ,

n

n

n

g g

g g

g g

… 
 

… 
 
 

… 

LNC characteristics will be better focused in the following chapters, where

implementations and simulations take place.

10

addition and multiplication are performed over the finite

are linear combinations of the original ones, still

In Figure 2.6 it is illustrated a NC packet format where L stands for the length of

) are retrieved at the receiver nodes by

carries two kinds of information: encoding

a node receives (receiver) m number

the original packets.

ords, the vectors belonging

(2.3)

focused in the following chapters, where

11

2.1.4 Random Network Coding

Random Network Coding (RNC) was first purposed by T. Ho et al. [26]. The

main difference between RNC and LNC is the random selection of the linear

combinations each node performs, being the selection over the field ��� .
With RNC the probability of selecting linearly dependent combinations, as shown

by T. Ho et al., is at least I1 − L MN OP
 for q > d, where d is the number of receivers and

v is the maximum number of edges receiving packets with independent randomized

coefficients in any set of edges constituting a solution path from all sources to any

receiver, [26]. Like LNC, as receiver nodes receive the many independent linear

combinations as many as the number of sources, they can decode the message received.

2.1.5 Polynomial Time Algorithms

Alternatively to RNC and LNC, using of deterministic algorithms to design

network codes is also a possibility.

S. Jaggi et al. in [24] describe a Linear Information Flow (LIF) algorithm, which

will be implemented and reviewed in the following chapters.

2.2 Network Coding Applications

In this section, some of the applications where NC can have a significant impact

are briefly described.

2.2.1 Ad-Hoc networks

The literal meaning of ad hoc in Latin is "for this", "for this purpose", so an ad-

hoc network is a local area network (LAN) that is built as devices connect to each other.

Mainly wireless, mobile, and P2P ad-hoc networks may be improved using NC.

2.2.1.1 P2P file distribution

The most famous method of this type would be BitTorrent, where each

capable of analyzing and

BitTorrent protocol. A peer

The interest in this thesis in

to the collaboration from

applied to the implementations and simulations

next chapters.

In networks such as P2P

before, allows a throughput

download, as illustrated in Figure 2.7,

blocks of the original file

throughput increase. The redundancy of the av

enhances the use of NC characteristics, increasing the number of

combinations of packets, solving

complete the download.

Figure 2.7 - a) Complete download

 b) Shared download

As the efficiency of the network increases, it

packet information and also the

P2P file distribution

The most famous method of this type would be BitTorrent, where each

analyzing and transmitting any type of file over a network, using the

peer is any computer running an instance of a client

The interest in this thesis in peer-to-peer (P2P) networks using NC

to the collaboration from A.J. González [24], which would have a fu

applied to the implementations and simulations developed in this thesis,

P2P streaming networks this mechanism, as others described

a throughput increase. Considering a P2P streaming with shared

download, as illustrated in Figure 2.7, sending a linear combination of the different

of the original file that the peer wishes to send into the network

The redundancy of the available information between

enhances the use of NC characteristics, increasing the number of

combinations of packets, solving the problem of locating the last missing blocks to

a) Complete download - every user downloads the full file.

b) Shared download - every user download an equal share of the total of the file

ficiency of the network increases, it reduces the probability of losing

and also the load which supports the Ad-hoc network.

12

The most famous method of this type would be BitTorrent, where each peer is

transmitting any type of file over a network, using the

is any computer running an instance of a client.

using NC was first due

have a further interest

developed in this thesis, described in the

streaming networks this mechanism, as others described

Considering a P2P streaming with shared

sending a linear combination of the different

wishes to send into the network, permits a

ailable information between peers

enhances the use of NC characteristics, increasing the number of possible linear

the problem of locating the last missing blocks to

every user download an equal share of the total of the file [24].

probability of losing

hoc network.

13

2.2.1.2 Wireless networks

The two main properties of wireless networks [32] that differ from wired

networks are the possibility of broadcast transmission and also interference. Wireless

networks are constantly affected at diverse aspects, such as low throughput, dead

transmition spots and inadequate ability for mobility.

NC brings to wireless networks a possibility of exploring the broadcasting of

wireless nodes through the shared wireless medium providing benefits concerning end-

to-end delay, bandwidth and transmission power effectiveness.

A developed research named the COPE project [33] demonstrated benefits of

NC for wireless networks, at MAC layer, even using simple codification with XOR

coding, and that is why [33] was named “Xors in the air”, making all the sense.

Ahlswede et al.[1], on an early approach to wireless networks, ignored the interference

upon a receiver. An example set at Physical Layer NC, represented in Figures 2.8 and

2.9, demonstrates the NC benefits compared to traditional routing.

Figure 2.8 - a) Wireless network with traditional routing. b) Wireless network with NC broadcast.

 In the example described in Figure 2.8, a typical NC wireless approach is set.

There are three wireless nodes A, B and S where nodes A and B want to exchange

packets via S. A traditional store and forward approach is described in Figure 2.8 a),

a) b)

14

where the number of transmissions, for both nodes to receive both packets a and b, is

four. In Figure 2.8 b), a wireless NC approach is described, where both packets are

XORed in node S and consequently sent to both its outgoing edges, being three the

number of transmissions.

Figure 2.9 - Wireless Physical layer NC.

Two wireless nodes X and Y want to exchange packets via an intermediate node

S. With physical layer NC and utilization of broadcast, the number of transmissions is

two. Because of physical layer NC, the classical view of interference that it is harmful is

changed,

2.2.2 Security (Secure Network Coding)

The example model set for exploring NC benefits within security in a network [8] is

the same as network multicast using NC but, in terms of secure NC, the packets

transmitted through the sets of edges can be wiretapped, deleted, observed by

unauthorized users, or even altered by channel errors. Network codes can be designed

for networks such as shown in Figure 2.10.

Figure 2.10 - Secure NC. Secure message s sent with randomness, w.

15

The network code has to be set in a way such that the multicast packet is

information theoretically secure, independently of which compromised set of edges. As

shown is Figure 2.10, the multicast information generated at the source S, (s,w),

represent the secure packet s and the randomness w. Each edge in red can be

compromised (wiretrapped), but since only one set can be accessed by the unauthorized

user, with NC it can not be obtained any useful information about packet s.

 Finally, it is easy to retrieve the secure information sent by S at any receiver

node performing simple algebra calculations.

16

3 Simulation Models

Since they first appeared, Network simulators have aroused and improved their

quality, performance, management and prediction tools over the past years.

The only few known NC simulations implemented are NECO (NEtwork COding)

[19] and an OPNET (Optimized Network Evaluation Tool) NC tutorial by C. Lydick

[7]. The last reference was the starting point in this thesis as there is no standard NC

library for this platform or any other, being OPNET [27] the network simulator chosen

to simulate the networks in this thesis.

In this chapter, a brief review of OPNET methodology, applied also with Matlab,

is described.

3.1 Why OPNET?

Besides OPNET being one of the top most famous network simulator tool used

both by commercial and research communities, having the possibility of having [7] as a

starting point was a main reason as also as the opportunity to learn, study and explore

the capabilities that this powerful tool offers. In Figure 3.1, a simple OPNET diagram,

resuming an OPNET’s project simulation process, is illustrated.

Figure 3.1 - OPNET's simple diagram [29].

17

3.2 OPNET Network modeling overview

To develop OPNET models and simulation scenarios, an object-oriented

approach is used. Like in any other object-oriented programming language, the models,

as a class, can be reused any time during the simulation.

The available basic models can be reprogrammed to satisfy the desired functions

for the specific simulation, hence, the attributes of the customized models can be

defined by the user in order to satisfy any kind of particular or enterprise specifications.

With OPNET, the steps used to build a network model and run simulations,

workflow, take place around the Project Editor. Simulation models are organized, by

hierarchal order, in two more main levels: node editor and process model editor.

3.2.1 The Project Editor

The Project Editor is the main stage for creating the desired network simulation

scenario. At this editor, a network model can be built using the models available from

the object palette, choose individual statistics about the network, run a simulation and

view the results.

3.2.2 The Node Model

The Node Editor, at the second level in the hierarchy, defines the behavior of each

network object, describing the diverse functions of the node.

Its function is defined using different modules, which are implemented using

process models (lowest level in the hierarchy) and define the behavior of the node, as

data creation, data process, data storage, etc.

The final network object function is made up by the multiple modules connected

through packet streams and/or statistic wires, as illustrated in Figure 3.2.

Figure 3.2 - OPNET's n

3.2.3 Process Model

The Process model control

It is represented by finite state machines (FSMs)

states and lines/links which represent transitions between states

Each state or transition

each state or transition are described in C/C++ code blocks.

The defined structure of the models,

programming, allows an easy development of commun

3.3 OPNET/MATLAB i

 In this thesis, an interface between

understand how to implement it.

Matlab is a known software used for

of toolboxes.

The interest of integrating Matlab with OPNET in this thesis

the desired Finite Fields in order to generate the global/local coding vector

created network.

OPNET's node model and process model snapshot, respectively

Process Model

controls the defined functionality of the node models created.

represented by finite state machines (FSMs), symbolized by icons that represent

states and lines/links which represent transitions between states (Figure 3.2

transition is programmed in C or C++ languages so, operations in

each state or transition are described in C/C++ code blocks.

structure of the models, together with the support for C language

easy development of communication or networking models.

OPNET/MATLAB interface

In this thesis, an interface between OPNET and Matlab was studied

understand how to implement it. OPNET is known as a powerful simulation engine.

Matlab is a known software used for many type of calculations, providing diverse types

The interest of integrating Matlab with OPNET in this thesis, relies in calculating

in order to generate the global/local coding vector

18

, respectively.

lity of the node models created.

symbolized by icons that represent

Figure 3.2).

languages so, operations in

support for C language

ication or networking models.

studied in order to

simulation engine.

type of calculations, providing diverse types

relies in calculating

in order to generate the global/local coding vectors in the

In order to use Matlab

by MATLAB allows C programs to call functions

developed in MATLAB. To get this interface working is

guidelines:

• In OPNET, including

attribute: libmat.lib; libeng.lib; libmex.lib; libmx.lib.

directory/path into the repository flag

attribute’s window is displayed in Figure 3.3.

Figure 3.3 - OPNET's environment attribute

• In a Windows OS, inserting

and the header file engine.h

After these steps, the MATLAB engine can be called by OPNET with the function

engOpen, which provides a pointer to

to MATLAB engine.

Diverse functions can be called within MATLAB engine

manipulation of variables or strings between platforms.

Matlab functions within OPNET, the MX-interface

allows C programs to call functions, in OPNET the

To get this interface working is necessary

including the following lib files in the bind_shobj_libs

attribute: libmat.lib; libeng.lib; libmex.lib; libmx.lib. Include also their

path into the repository flags. A snapshot of the environment

attribute’s window is displayed in Figure 3.3.

OPNET's environment attribute snapshot including the essencial lib files and respective path.

In a Windows OS, inserting MATLAB’s directories, that contains the above files

engine.h, in the environment variable PATH.

After these steps, the MATLAB engine can be called by OPNET with the function

which provides a pointer to a memory allocation that consequently

Diverse functions can be called within MATLAB engine that allow a simple

lation of variables or strings between platforms.

19

interface (API)provided

theprocess models,

 to follow some

bind_shobj_libs environment

Include also their

the environment

files and respective path.

ies, that contains the above files

After these steps, the MATLAB engine can be called by OPNET with the function

consequently forwards it

that allow a simple

20

Some of the most common and studied functions in this thesis are displayed in the

following Table 3.1.

MATLAB Engine function Purpose

engClose Quit MATLAB engine session

engEvalString Evaluate expression in string

engGetVariable Copy variable from MATLAB engine

workspace

engGetVisible Determine visibility of MATLAB engine

session

Engine Type for a MATLAB engine

engOpen Start MATLAB engine session

engOpenSingleUse Start MATLAB engine session for single,
nonshared use

engOutputBuffer Specify buffer for MATLAB output

engPutVariable Put variables into MATLAB engine

workspace

engSetVisible Show or hide MATLAB engine session

Table 3.1 - MATLAB Engine functions

3.4 Galois Field calculations with MATLAB

As mentioned before, the OPNET/MATLAB interface in this thesis was taken in

interest because MATLAB has the capacity of generating Galois Fields (Finite Fields)

and being also able to perform calculations within them.

3.4.1 Galois Field functions

The main function used is gf(x,m), which creates a GF array with 2m elements,

with m an integer between 1 and 16, from the matrix x. The resulting output is a GF

array which MATLAB recognizes and distinguishes from an array of integers.

21

At Table 3.2, is listed the primitive polynomial that the gf function uses by

default, for each GF(2m) created, is listed. With this table a better understanding of the

defined polynomials within GFs, using MATLAB, can be achieved.

m Default Primitive

Polynomial

Integer Representation

1 D + 1 3

2 D2 + D + 1 7

3 D3 + D + 1 11

4 D4 + D + 1 19

5 D5 + D2 + 1 37

6 D6 + D + 1 67

7 D7 + D3 + 1 137

8 D8 + D4 + D3 + D2 + 1 285

9 D9 + D4 + 1 529

10 D10 + D3 + 1 1033

11 D11 + D2 + 1 2053

12 D12 + D6 + D4 + D + 1 4179

13 D13 + D4 + D3 + D + 1 8219

14 D14 + D10 + D6 + D + 1 17475

15 D15 + D + 1 32771

16 D16 + D12 + D3 + D + 1 69643

Table 3.2 - MATLAB gf function default primitive polynomial.

When using function gf to perform calculations between arrays, simple operators

as “+”, “-” or “*” can be used. As an example, the code below creates a GF(22) array,

m=2, and adds another GF array with the same field, GF(4) :

x = 0:3; % [0 1 2 3] row vector

m = 2; % Work in the field GF(2
2
) -> GF(4).

a = gf(x,m) % Creates GF array in GF(2
m
)

b = gf([0,1,3,1],m) %

c= a + b % Adds a to b, creating c.

22

Making a simple analysis, the output indicates the values of GF arrays a, b and c,

showing each output:

• The field, GF(2^2) = GF(4).

• The primitive polynomial for the field, by default for GF(4).

• The array of GF values each variable contains.

• The command that creates c shows how, having defined the variable b as a

Galois array, you can add a to b by using the ordinary + operator. MATLAB

performs the addition operation in the field GF(4). The output shows that c

compared to a, is in the same field and uses the same primitive polynomial.

• For example, the second element of c is zero because the sum of any value with

itself, in a Galois field of characteristic two, is zero, differing from the typical

sum within infinite fields for integers.

%%%%% The resulting output is %%%%%

a = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

 0 1 2 3

b = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

 0 1 3 1

c = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

 0 0 1 2

23

To illustrate what the array elements in a Galois array mean, Table 3.3 lists the

elements of the field GF(8) as integers and as polynomials in a primitive element, A.

The table helps to interpret a Galois array like

gf8 = gf([0:7],3); % Galois vector in GF(2^3)

Integer Representation Binary Representation Element of gf(8)

0 000 0

1 001 1

2 010 A

3 011 A+1

4 100 A2

5 101 A2+1

6 110 A2+A

7 111 A2+A+1

Table 3.3 - MATLAB gf(8) elements.

Other functions for performing operations within GF can be considered using

GF(p) arrays, where p stands for a prime number. In Table A.1 a brief resume of those

functions description is made.

4 Implementation

All the simulations and implementations in this thesis were performed using the

network simulator OPNET

computing software, MATLAB version 7.9.0

4.1 OPNET/MATLAB NC Tutorial

This tutorial presented by UW

and an example for the simulations and imp

concerning OPNET and OPNET/MATLAB interface.

[7]. In Figure 4.1, a snapshot of this tutorial Project Editor is displayed.

Figure 4.1 – OPNET

Implementation and results

and implementations in this thesis were performed using the

network simulator OPNET Modeler version 14.5 [9] and the developer of technical

computing software, MATLAB version 7.9.0 [32].

OPNET/MATLAB NC Tutorial

presented by UWEE FunLab [6], was studied and taken like a first step

and an example for the simulations and implementations realized in this thesis,

concerning OPNET and OPNET/MATLAB interface. The source code is available in

In Figure 4.1, a snapshot of this tutorial Project Editor is displayed.

OPNET Project window from OPNET NC tutorial, UWEE FunL

24

and implementations in this thesis were performed using the

developer of technical

taken like a first step

lementations realized in this thesis,

source code is available in

Lab [7].

This project consists in implementing NC in a specific network topology, as

defined in Figure 4.1, through OPNET, with the objective of investigating NC

throughput.

As told in the past chapters, the basic idea of LNC is that intermediate nodes

receive packets, process those packets and forwards the resulting packet

outputs. In this tutorial, routers (nodes

coefficients and forward the resulting packet

coefficient.

The Ethernet station is the

operation and sends out three different packets on its three

process occurs at other routers, as

tracing demand.

Each node model (router

NC or non-NC packets in the network.

model) role in the node model, interfaces which receive NC packets are defined as

RECEIVE interfaces and those who send NC packets are defines as

non-NC packets (normal packets)

By definition, NC is intended to implement over Network Layer (layer 3), through

IP frames, however, in this project NC is employed over Transport

it is easier to implement as it allows

frame in OPNET, being invisible to the user and not entering in the simulation statistics

as the packet format includes a

NC or non-NC packet.

A m-bit field (���) is assigned within the TCP/UDP heade

exactly LNC field, as illustrated in Figure 4.2.

consists in implementing NC in a specific network topology, as

ined in Figure 4.1, through OPNET, with the objective of investigating NC

chapters, the basic idea of LNC is that intermediate nodes

receive packets, process those packets and forwards the resulting packet

routers (nodes) receive packets, multiply them with chosen

he resulting packet. For each output link there is a unique NC

Ethernet station is the one generating the packets, so the first router do

three different packets on its three outgoing links. T

at other routers, as packets are identified as UDP packets from the NC

Each node model (router “nc_router”) in OPNET was changed in order to handle

NC packets in the network. To define the role of each processor (process

odel) role in the node model, interfaces which receive NC packets are defined as

interfaces and those who send NC packets are defines as SEND

NC packets (normal packets) are processed regularly.

By definition, NC is intended to implement over Network Layer (layer 3), through

IP frames, however, in this project NC is employed over Transport Layer (layer 4)

it is easier to implement as it allows adding a kind of hidden data within the TCP/UDP

frame in OPNET, being invisible to the user and not entering in the simulation statistics

as the packet format includes a flag bit within the UDP header whether the packet is

) is assigned within the TCP/UDP header for the LNC, called

, as illustrated in Figure 4.2.

Figure 4.2 - NC Packet format [6].

25

consists in implementing NC in a specific network topology, as

ined in Figure 4.1, through OPNET, with the objective of investigating NC

chapters, the basic idea of LNC is that intermediate nodes

receive packets, process those packets and forwards the resulting packet through its

) receive packets, multiply them with chosen

. For each output link there is a unique NC

first router does a NC

outgoing links. The same

packets are identified as UDP packets from the NC

in OPNET was changed in order to handle

each processor (process

odel) role in the node model, interfaces which receive NC packets are defined as

SEND interfaces, as

By definition, NC is intended to implement over Network Layer (layer 3), through

Layer (layer 4) since

a kind of hidden data within the TCP/UDP

frame in OPNET, being invisible to the user and not entering in the simulation statistics

within the UDP header whether the packet is a

r for the LNC, called

Figure 4.3 - OPNET NC Node Model: i

processors.

In Figure 4.3, a snapshot of the Node model

arrows represent packet streams

operates on unidirectional links

where SEND interfaces will

the sink processor. RECEIVE

which basically copies the packet

function,

op_pk_send

 The processor nc_proc

network created as it requires having a constant number of outputs so it can remain

constant to all routers, therefore the necessity to send some of the packets to the

processor.

Packet stream

Model: in yellow, SEND/RECEIVE interfaces, in green,

In Figure 4.3, a snapshot of the Node model of the projectis displayed, dark blue

streams identified as UDP packets. As explained before,

on unidirectional links so each interface is set as SEND or RECEIVE

interfaces will assume NC packets in error and consequently forward to

RECEIVE interfaces forward NC packets to the nc_proc

ich basically copies the packet and sends it to its output streams with OPNET

op_pk_send(op_pk_copy(*Packet),output_streams);

nc_proc is implemented dependently of the topology of the

created as it requires having a constant number of outputs so it can remain

constant to all routers, therefore the necessity to send some of the packets to the

Packet stream

26

in green, sink and nc_proc

is displayed, dark blue

As explained before, NC

RECEIVE interface,

assume NC packets in error and consequently forward to

nc_proc processor

and sends it to its output streams with OPNET

);

is implemented dependently of the topology of the

created as it requires having a constant number of outputs so it can remain

constant to all routers, therefore the necessity to send some of the packets to the sink

The Node model role could be described, in a very simple approach, as illustr

Figure 4.4.

At the processors, functions are implemented in order to obtain the NC packets,

place them in queues so that later they

interfaces. This is where timeouts in the network take place, in some routers this

timeout is unnecessary as NC packets sometimes only need to be copied, combined with

nc_value, defined in the SEND

Other parameters can be defined in

Value and Output NC value

Finite Field operations can be defined in the

valuedefines how the nc_value

specifying the value as desired.

The defined timeouts and packet flows for this network can be better understood

in Figure 4.5.

ode model role could be described, in a very simple approach, as illustr

Figure 4.4 - Node model diagram.

At the processors, functions are implemented in order to obtain the NC packets,

place them in queues so that later they can be combined and sent along the

This is where timeouts in the network take place, in some routers this

timeout is unnecessary as NC packets sometimes only need to be copied, combined with

SEND, interface and sent to the next router.

Other parameters can be defined in the SEND interfaces,

value. As the names indicate, the size of the code used in the

Finite Field operations can be defined in the Bitsize of NC Value as the

nc_value is calculated, setting its value randomly as a 0 or

as desired.

he defined timeouts and packet flows for this network can be better understood

27

ode model role could be described, in a very simple approach, as illustrated in

At the processors, functions are implemented in order to obtain the NC packets,

combined and sent along the SEND

This is where timeouts in the network take place, in some routers this

timeout is unnecessary as NC packets sometimes only need to be copied, combined with

, Bitsize of NC

As the names indicate, the size of the code used in the

as the Output NC

randomly as a 0 or

he defined timeouts and packet flows for this network can be better understood

28

Figure 4.5 - Timing and Project's packet flows [7].

From a quick analysis of Figure 4.5, the packet flow within the network can be

easily understood and consequently, also its timeouts. Red arrows represent the packets

flowing from R1. Since it only receives them from a single interface, it does not need to

wait to the send the packets. The same happens to routers R2 and R5 as they only

receive packets from one interface.

Router R4 is different as it will receive firstly the packet from the red flow (R1)

and later the ones from the blue flows (R2 and R5), therefore a timeout must be defined

so that packets can be enqueued, combined and sent to R3. Same case for router R3.

As C. Lydick says in [7], a simple way to think is to divide each packet flow in

time steps, red arrows occur at time step one, blue at time step two, black at time step

three, and yellow at time step four.

A way to simulate how the network would respond to link failure is simply to

define the timeout, in the pretended interface, with an infinite value, such as 100.

4.1.1 Galois Field operations

After each timeout, the interface dequeues all packets received and combines

them using finite fields operations with

interface.

 y=0;

y = gf(y, nc_bitsize

Performing the above calculations

each interface received. For example for R1,

resulting value is multiplied

y = gf(y, nc_bitsize

4.1.2 Results

After each simulation being performed, or during it, the console output can be

verified, taking the form:

(Current simulation time | Process ID) At <NC Value at the output interface> = Value

of packet after combination and multiplication of nc value at output.

Figure

Galois Field operations

, the interface dequeues all packets received and combines

finite fields operations with MATLABfunction gf(), through its mx

nc_bitsize) + gf(packet_received, nc_bitsize);

Performing the above calculations x times depending on the how many packets

each interface received. For example for R1, x=1 and for R4, x=3.

is multiplied with the output nc_value defined.

y = gf(y, nc_bitsize) * gf(nc_value, nc_bitsize);

simulation being performed, or during it, the console output can be

(Current simulation time | Process ID) At <NC Value at the output interface> = Value

of packet after combination and multiplication of nc value at output.

Figure 4.6 - Simulation Console: Final NC packet values.

29

, the interface dequeues all packets received and combines

, through its mx-

times depending on the how many packets

 Afterwards, the

simulation being performed, or during it, the console output can be

(Current simulation time | Process ID) At <NC Value at the output interface> = Value

of packet after combination and multiplication of nc value at output.

 The NC values used in [7] were set and the calculations were performed first

through MATLAB and then through the simulation within OPNET

resulting values obtained.

 In Figure 4.6, a snapshot of the simulation console of the project is displayed.

With the notation set above, it can be verified for example that at time

the value at processor ID 14995, which refers to n

value of 171, gives a nc-value

Figure 4.7 - NC values and Packet Values for OPNET simulation. Adapted from [7].

The individual statistics chosen to

displayed through the graphic in Figure 4.8

in Figure A.1. The resulting throughput

throughput enhancement in the network as NC

The NC values used in [7] were set and the calculations were performed first

and then through the simulation within OPNET to compare

In Figure 4.6, a snapshot of the simulation console of the project is displayed.

With the notation set above, it can be verified for example that at time

the value at processor ID 14995, which refers to node 5 in Figure 4.7, with output nc

value product of 197.

NC values and Packet Values for OPNET simulation. Adapted from [7].

The individual statistics chosen to express the throughput within links/edges is

displayed through the graphic in Figure 4.8 as the packet flow in the network is shown

The resulting throughput curves are not conclusive for proving a

throughput enhancement in the network as NC operations are applied in every node.

30

The NC values used in [7] were set and the calculations were performed first

to compare with the

In Figure 4.6, a snapshot of the simulation console of the project is displayed.

With the notation set above, it can be verified for example that at time 140 (seconds),

in Figure 4.7, with output nc-

NC values and Packet Values for OPNET simulation. Adapted from [7].

express the throughput within links/edges is

as the packet flow in the network is shown

conclusive for proving a

operations are applied in every node.

Figure

4.2 Linear Information Flow

Considering an acyclic graph

algorithm as it basically consists in finding

G. It is a polynomial time

was chosen to explore, study, implement (MATLAB) and simulate (O

this thesis.

4.2.1 The algorithm

Every coding in the algorithm

|�|=2m as it performs linear combinations of every packet or information received in

any node, LNC.

The algorithm consists in two main stages. The first is expressed by finding the

max-flow h for each sink/receiver

Figure 4.8 - Throughput statistics through selected links.

Linear Information Flow

Considering an acyclic graph G= (V, E), the LIF algorithm [15] is called

as it basically consists in finding global coding vectors for each edge

polynomial time algorithm drawn toward multicast code construction

dy, implement (MATLAB) and simulate (OPNET(C/C+

The algorithm

in the algorithm [15] is linear with symbols from

it performs linear combinations of every packet or information received in

The algorithm consists in two main stages. The first is expressed by finding the

for each sink/receiver t ∈ T, defining a set of h edge-disjoint

31

is called a trendy

for each edge e ∈ E, in

algorithm drawn toward multicast code construction which

PNET(C/C++)) in

from �, with size

it performs linear combinations of every packet or information received in

The algorithm consists in two main stages. The first is expressed by finding the

disjoint paths, f t, from

32

source S to each t ∈ T. The edges belonging to each edge-disjoint path defined are

considered in the second stage.

 Going through the nodes in topological order1 allows that, when in each step it is

codified the outgoing edges of the respective vertex/node v ∈ V, it is known that all the

incoming edges of that node have already been codified before. The codification

selected to an outgoing edge is based in the theory that if the information stream

selected to the edge from the source s to the receiver t, min-cut, are linearly

independent, then the receiver can decode it and reconstruct the information sent by the

source.

 To describe the algorithm in a more specific approach, considering receiver t ∈T,

let Ct ⊂ E be any set of h edges such that it contains one edge from each h edge-disjoint

paths from s to t, corresponding min-cut, and Bt an hxh matrix. Hence, if the information

sent through the edges c ⊂ Ct are linearly independent, receiver t can reconstruct the

message originally sent by source s.

If an edge c belongs to a path for more than one receiver, the linear

independency for that edge must be verified to each receiver.

For Bt, its h columns correspond to the h edges of Ct, and the column for edge

c∈Ct represents the linear combination of b1,…,bh that flows through edge c, where

b1,…,bh correspond to the original source symbols. As edge c transports

bc(1)b1+…+bc(h)bh, the corresponding column for that c ∈ Ct will be [bc(1)+…+bc(h)]T.

 Thus, it is ensured that Bt is, at every time step, invertible, permitting that the

original source symbols b1,…,bh arriving at each sink t ∈ T, remain recoverable with

every coding vector formed.

To better explore the algorithm, following the notation in [15], let ΓI (v)

represent the set of incoming edges in node v; ΓO (v) represent the set of outgoing edges

in node v and start(e) represent the node where edge e starts. Over each edge e it is set

the length local coding vector - |ΓI (start(e))|, where

me : ΓI (start(e)) ⟶ �XY �Z�[\��]

,
as the vector that allows to determine the linear combination of the symbols on the

edges of ΓI (start(e)), generating the symbol on edge e. Considering that y(e) is the

symbol transported by edge e, it is given

1 A topological order exists for every edge of an acyclic graph G. It is simply a partial order.

33

(())

() () ().
I

e

p start e

y e m p y p
∈Γ

= ∑
 (4.1)

 The objective here is to determine the coefficients me(p) in order that all sinks

can successfully recover the original symbols from the incoming packets.

4.2.2 Network topology

The network topology studied in order to simulate and implement the LIF

algorithm, was chosen from [3] with the intention of comparing the results obtained for

this network using the LIF algorithm and the given approach from [3].

Figure 4.9 - Network topology.

 The chosen network topology is represented in Figure 4.9. To analyze the

network graphic G=(V,E), firstly it must be found h edge-disjoint paths connecting each

sink/receiver to the source. In Figure 4.10 are shown the two edge-disjoint paths for

34

each receiver, being also easy to notice that the paths to different receivers collapse over

edges BD and GH.

Figure 4.10 - Edge-disjoint paths to each receiver [3].

If the transmission was restricted to traditional routing, when symbols σ1 and σ2

would share the same unit capacity edge, it could only be possible to forward only one

of the symbols. As said before in chapter 2, using LNC to combine both symbols over a

finite field of size, �q , that transmission would become possible.

4.2.2.1 Related work using LNC

In [3] a LNC approach is made to the referred network described in Figures 4.9

and 4.10. It basically consists on assigning a local coding vector me for that edge which

is being shared by the two symbols, that are multiplied to the incoming symbols of edge

e, ΓI (e), performing the linear combination referred before. The local coding vector me,

vector of coefficients over �q, has a 1 x |ΓI (e)| dimension.

 Through the analysis of this network, edges BD and GH are coding points, the

edges where symbols collapse and therefore need to linearly combine the received

symbols. In [3] approach, since the value of the local coding vectors are unknown, they

are assigned as

mBD = [α1 α2] ; mGH = [α3 α4]

35

 This LNC solution is described in the following Figure 4.11. In this solution the

vector of coefficients of the source symbols linearly combined with the respective local

coding vector me, assigned to an edge e, are defined as global coding vector b(e). The

dimension of b(e) is 1 x h, so it would be a h-dimensional vector over �q.

Figure 4.11 - Linear Network Coding (LNC) solution. Coding points: edges BD and GH [3].

 The resulting global coding vectors joined together with the input edges of a

receiver, defines a system of linear equations which the receiver can solve with a simple

Gaussian elimination and retrieve the original source symbols.

4.2.3 Implementation

As said before, the implementations of the algorithms were made with MATLAB,

mainly because of the ability of performing operations within finite fields with a simple

function call.

 The LIF algorithm [15] is summarized in the following Algorithm 4.1. It was the

most studied algorithm, being the implementation of it now described. As said before,

the chosen network topology to implement the LIF algorithm is described in Figures

4.9-4.11.

36

For a better approach and understanding of the algorithm, it was divided in six stages:

i. Find max-flow (line 1, Algorithm 4.1)

ii. Add artificial edges (lines 2-3, Algorithm 4.1)

iii. Define source → receiver path (lines 4-5, Algorithm 4.1)

iv. Set initial vectors that span �h (lines 6-12, Algorithm 4.1)

ALGORITHM 4.1: LINEAR INFORMATION FLOW

1: h ⇐ mint∈T |max flow from s to t |

2: insert a new source s’ into V

3: insert h edges { e1,…,eh } from s’ to s into E

4: f t ⇐ set of h edge-disjoint paths from s to t // chosen flow from s to t

5: � ⇐ finite field size G 2 |T |
6: For all i do:

7: b(ei) ⇐ [0i – 1, 1, 0h – 1] // i-th unit vector of �h

8: For all sinks (t ∈ T) do:

9: Ct ⇐ {e1, …, eh} // t is supplied through Ct

10: Bt ⇐ {b(e1),…, b(eh)} // coding vectors

11: For all vectors (c ϵ Ct) do:

12: at (c) ⇐ b(c) // inverse vectors

13: For each vertex (v ∈ V \ {s’ }
 do: // in topological order

14: For all ΓO (v) do:

15: b(e) ⇐ ∑ vwxy�]
 e(p) b(p) such that //choose linear combinations

16: For any t ϵ T (e)
17: Bt \{b{
←���
|} ∪ {b�e
} ⇚ is linearly independent
18: For all sinks (t ∈ T(e)) do:

19: C’t ⇐ Ct \{
←���
} ∪ {e} //advance set of edges Ct

20: B’t ⇐ Bt \{b{
←���
|} ∪ {b�e
} //update Bt
21: a’t (e) ⇐ (b�e
. at (
←���
))-1 at (
←���
) //update at
22: For all c ϵ Ct\ {
←���
}:

23: a’t (c) ⇐ at (c) – (b�e
. at (c)) a’t (e)

24: (Ct ,Bt ,at) ⇐ (C’t , B’t ,a’t)

37

v. Find resulting global coding vector b(e) for all receivers, linearly

independency test (lines 13-17, Algorithm 4.1)

vi. Update variables (lines 18-24, Algorithm 4.1)

Firstly, it was considered the sources S1 and S2, from the original topology of the

network described in Figure 4.11, as an unique source s multicasting the input

symbols/packets through its two outgoing edges, as shown in Figure 4.9. Therefore,

having an acyclic graph G= (V, E) as described in Figure 4.9, dealing with the

underlying cycle {FG, GH, HF} with the introduction of memory for node F for

example, it is determined the max-flow h for each receiver t ∈ T, defining a set of h

edge-disjoint paths, f t , from source s to each t ∈ T. From Figure 4.10 it was shown that

there are two edge-disjoint paths for each receiver t and hence it is set h=2. This being

set, the algorithm outputs a linear network code that guaranties the delivery of the two

(h=2) symbols to all receivers t ∈T.

An artificial source s’ ∈ V is created in the beginning. This allows inserting two

edges {e1, e2} ∈ E from s’ to s, carrying the input symbols for the source s. To get

access to the flows, the receivers supplied through edge e are set as T(e) and the

predecessor edges of e in some flow path {
←���
: � ∈ T��
} are set as P(e).

The finite field is defined satisfying [15, Theorem 3], which states that any finite

field of size |�| ≥ 2 |T | can be used and hence sufficient for fulfilling the condition that

Bt matrices are always invertible at each receiver t. As

T ={F,E,K} ⟹ |T|=3

a finite field of size |�| ≥ 6 was chosen and set as �7={0,1,2,3,4,5,6}, completing the

first three stages of the Algorithm 4.1.

 Afterwards, it is defined the t initial Bt matrices 2x2 (h x h) set by the global

coding vectors b(e) at the last h visited edges, in the flow f t
, which define the Ct matrix

that supply the receiver t. At the beginning of the algorithm, each Bt matrix is defined

by (4.2), an h-length vector with a 1 in the i-th location, corresponding to the vectors

b(ei) = [0i – 1, 1, 0h – 1] (4.2)

which span �h, therefore, as h=2, the initial Bt matrices would be defined as the identity

matrix I2= %1
0

0
1*, and each Ct ={e1, e2}. For all edges c ϵ Ct , a vector at (c) is created for

38

assuring the linear dependency of the Bt matrix, being initially set at this stage as

equally as the corresponding b(c) vectors.

 In the fifht stage, the nonzero coefficients for the local coding vectors me are

defined from �7 therefore, the calculation of the respective global coding vectors b(e) for

edge e take place over �� � (A.1), defined by (4.3).

(())

() () ()
I

e

p start e

b e m p b p
∈Γ

= ∑ , for e � E (4.3)

As said before, the created source s’ at beginning of the algorithm supplies the

original symbols through edges {e1, e2} which are then processed as (4.3), sending

through its output edges the resulting global coding vectors b(e) as explained

individually for each node in Figure 4.12.

Figure 4.12 - Individual b(e) process at each node v ∈ ∈ ∈ ∈ V V V V .

In the following Figure 4.13, it can be better understood the operations

developed within the network.

Figure 4.13 – Example scheme of the calculations performed in nodes S and B, with resulting b(e) vectors.

 Finally, matrices Bt

topological order. The matrix C

←���
 by the actual visited edge

the global coding vector of the predecessor edge

actual edge e, in order that the f

defined by (4.4).

 In the final, if the vectors b(

columns of at, then the invariant (4.5) is verified over

4.2.3.1 Results

As in MATLAB every variable

topology was designed with

calculations were taking place, resulting

Figure 4.13.

Figure 4.14 -

t , Ct and at are updated along the algorithm, as

he matrix Ct exchange its column referring to the predecessor edge

by the actual visited edge e, the final Bt matrix exchange its column referring to

the global coding vector of the predecessor edge b{
←���
| by the b(e) calculated for the

in order that the final Bt matrix is always linearly independent

a’t (e) =
[� ��←� �]

��]
.[� ��←� �]

In the final, if the vectors b(e) are set as the rows of Bt and a matrix

, then the invariant (4.5) is verified over �7.

At = Bt
-1

Results

every variable has to be assigned, the implemented network

designed with Matgraph [40] to better understand in which node/edge the

calculations were taking place, resulting the output graph of the network shown in

 Figure of the topology of the network within MATLAB.

39

are updated along the algorithm, as it runs in a

column referring to the predecessor edge

exchange its column referring to

) calculated for the

matrix is always linearly independent and at is

 (4.4)

and a matrix At is set with

 (4.5)

the implemented network

[40] to better understand in which node/edge the

output graph of the network shown in

40

Defining the variables in the beginning of the algorithm as, for example,

T={F,E, K} ; ΓI (E) ={CE, DE} ; ΓI (K) ={DK, HK} ; start(GH)=G ; T(DG)={F,K} ;

←����
=b(CB).

When the algorithm reaches node B, the resulting global coding vector b(BD)

will be defined as

b(BD)=
 ()

() () () () () ()
I

BD BD BD

p B

m p b p m AB b AB m CB b CB
∈Γ

= +∑ (4.6)

As the algorithm finishes processing and hence reaches all receivers, having

defined the local coding vectors me in the beginning, in topological order, as show in

Figure 4.15:

Figure 4.15 - Defined local conding vectors (me) in nodes S, B and G.

• [mSA(e1)=1, mSA(e2)=2]

• [mSC(e1)=1, mSC(e2)=1]

• mAF(SA)=1; mAB(SA)=1

41

• mCB(SA)=1; mCE(SA)=1

• [mBD(AB)=1, mBD(CB)=2]

• mDG(BD)=1; mDK(BD)=1; mDE(BD)=1

• mFG(AF)=1

• [mGH(DG)=1, mGH(FG)=2]

• mHF(GH)=1; mHK(GH)=1

After the calculations, always over �7, as an example, the global coding vector for

edge BD, b(BD), will be

b(BD)=

() () () ()
BD BD

m AB b AB m CB b CB+ = 1.[1 2] + 2.[1 1] = [3 4]

The final resulting matrices Bt and Ct for each receiver t ∈ T, after performed all

calculations, over �7, are:

• For R1,

BR 1= %I1
2O I5

1O* and CR1 = {AF, HF}

• For R2,

BR2 = %I3
4O I1

1O* and CR2 = { DE, CE}

• For R3,

BR3 = %I5
1O I3

4O* and CR3 = {HK, DK}

The original input symbols can then be easily retrieved solving the following system of

linear equations:

0��	�

��	�
3 = Bt %x�x�* (4.7)

Where the i-th row of Bt is the global coding vector b(c) of the last visited edge c ∈ Ct,

y(c) the last symbol carried on the last edge c ∈ Ct and x1 and x2 the original input

symbols transmitted.

Therefore, as shown before,

4.3 Simulation methodology

Within OPNET simulator it was

this chapter and described in Figure 4.11

The Node Model of the s

generate two different packets, defined as integers, multicasting through its output edges

SA and SC. The Project model is shown in Figure 4.16a and the packet flow in the

network, presented by the

Figure 4.16b.

Figure 4.16 - a) OPNET Network Project editor. b) OPNET Animation

It was created as bas

model, with respective point

of OPNET models, and then changed in order to execute a simple

situation in such a way that

a)

Therefore, as shown before,

%x�x�* = I1 0
0 1O

methodology

Within OPNET simulator it was implemented the network topology studied in

pter and described in Figure 4.11.

of the source node S is set by two process models which

generate two different packets, defined as integers, multicasting through its output edges

. The Project model is shown in Figure 4.16a and the packet flow in the

, presented by the Animation Viewer application within OPNET is shown in

a) OPNET Network Project editor. b) OPNET Animation Viewer. Packet flow

as based model for each other Node Model a simple sink

model, with respective point-to-point transmitters and receivers, available in the palette

of OPNET models, and then changed in order to execute a simple store

that packets could flow in the network as desired

b)

42

implemented the network topology studied in

two process models which

generate two different packets, defined as integers, multicasting through its output edges

. The Project model is shown in Figure 4.16a and the packet flow in the

Animation Viewer application within OPNET is shown in

acket flow in the network.

ed model for each other Node Model a simple sink process

available in the palette

store-and-forward

as desired.

In nodes B and G,

by FIFO buffers, named “NC_processor

the incoming edges, performing LNC operati

then forwarding the resulting packet through its output edges

Process Model are shown in the following Figure

Figure 4.17 - Node Model fo

In the end of the simulation, OPNET displays many statistical options. The

throughput (bits/sec) in each edge can be selected

therefore only the size of the packets transmitted through each edge is displayed along

the time of the simulation, as drawn in Figure 4.18.

Figure

In nodes B and G, represented in red in Figure 4.16, these sink

NC_processor”, which store the two received packets

, performing LNC operations between them, as in Figure 4.11,

forwarding the resulting packet through its output edges. Such Node Model and

shown in the following Figure 4.17.

for node B and respective NC_processor Process Model within OPNET.

In the end of the simulation, OPNET displays many statistical options. The

throughput (bits/sec) in each edge can be selected but not for the entire network

therefore only the size of the packets transmitted through each edge is displayed along

the time of the simulation, as drawn in Figure 4.18.

Figure 4.18 - Throughput in edges AR1 and BD.

43

represented in red in Figure 4.16, these sinks were replaced

store the two received packets through

between them, as in Figure 4.11, and

Such Node Model and

within OPNET.

In the end of the simulation, OPNET displays many statistical options. The

but not for the entire network

therefore only the size of the packets transmitted through each edge is displayed along

44

5 Conclusions

5.1 Conclusions

This thesis has investigated Network Coding (NC) influence and characteristics.

The objective of this thesis was to develop a simulation of a specific network in OPNET

performing NC operations and implement NC algorithms such as the Linear

Information Flow algorithm (LIF) in MATLAB.

Through the implementation of the LIF algorithm it was observed the effectiveness

of NC within a network in such a way that the throughput of the network really

increases as the intermediate nodes when faced with multiple incoming edges, combine

the incoming packets allowing the transmission of only one combined packet avoiding

the unnecessary need of sending each packet received in different time steps, forcing to

a throughput decrease as the transmission time of the packets through the network

increases. The robustness of the network and hence its security, is also proven in such a

manner that the received packets at the receiver nodes can only retrieve the original sent

packets solving a system of linear equations with the diverse coding vectors for each

receiver calculated through each flow between source and receiver, as every

calculations are performed using a specific finite field size.

As the simulation developed by C. Lydick [7] is, so far, the only developed

example for the use of NC characteristics in OPNET, and as his tutorial was only

designed for that specific network , the unsuccessful try of reaching the author lead that

the use of MATLAB/OPNET interface used for NC operations developed in [7], was

only useful to manipulate that specific network and understand the NC calculations

performed at each node.

 Through the OPNET simulation implemented it was observed how packets do

flow in the chosen network topology and its consequences. As OPNET only states the

45

resulting throughput statistic for each desired edge, an overall network throughput

improvement was unable to demonstrate, so the simulation would not bring any

conclusive observation.

Network Coding is really a very interesting and enticing research area with many

different kinds of applications being discovered, performed and experienced since it was

first introduced. I have no doubts that this technique will represent more and more an

important role in networking algorithms as it is already being approached by many

important enterprises.

5.2 Future Work

With this thesis I was introduced to OPNET and found that there is indeed a steep

learning curve to get to a point that you can confidently perform the needed

implementations in the Process Models of OPNET in order to produce the desired

simulation and results. This being said, a long time was taken to figure how to

implement a NC algorithm in a specific network topology and even though it would be

needed more time to produce a reliable simulation of it.

The first objective of this thesis was to introduce the resulting vectors from the

LIF algorithm in the implemented network within OPNET and therefore demonstrate

the accuracy of the algorithm, which could be a very interesting to step to carry on and

it could be simple if a way of defining the input packets as vectors in OPNET.

After a deep understanding of OPNET and effective manipulation of its

potentialities, as also proposed in the beginning of this thesis, it could be simulated a

P2P streaming network using the NC algorithms developed in this thesis.

46

Appendix A

Here are set some of the MATLAB functions used for performing the needed

calculations over the finite fields set for the implementation of the algorithms, as the

vectors of the spanned finite field used in the implementations of the LIF algorithm, ���.

It is also shown the packet flow of the NC Tutorial [7] within OPNET.

47

Function Purpose

gfadd(a,b,p)

Adds two �p polynomials, where p is a

prime number. Variables a and b are row

vectors that give the coefficients of the

corresponding polynomials in order of

ascending powers. Each coefficient is

between 0 and p-1. If a and b are matrices

of the same size, the function treats each

row independently.

(equal to c=(a+b) mod p).

gfsub(a,b,p)

Calculates a minus b, where a and b

represent polynomials over �p and p is a

prime number. a and b are row vectors

that give the coefficients of the

corresponding polynomials in order of

ascending powers. Each coefficient is

between 0 and p-1. As before, if a and b

are matrices of the same size, the function

treats each row independently.

gfmul(a,b,p)

Multiplies a and b in �p. Each entry of a

and b is between 0 and p-1. p is a prime

number. If a and b are matrices of the

same size, the function treats each element

independently.

gfdiv(b,a,p)

Divides b by a in �p and returns the

quotient. p is a prime number. As before,

if a and b are matrices of the same size,

the function treats each element

independently. All entries of b and a are

between 0 and p-1.

Table A.1 – MATLAB

Figure

MATLAB GF(p) operations functions. Adapted from [31].

Figure A.1 – Packet flow of the NC tutorial network.

48

GF(p) operations functions. Adapted from [31].

49

The vectors of the spanned finite field ���, used in the calculations of the algorithms are:

��� ⟼

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��0 0

�0 1

�0 2

�0 3

�0 4

�0 5

�0 6

�1 0

�1 1

�1 2

�1 3

�1 4

�1 5

�1 6

.

.

.

.
�5 0

�5 1

�5 2

�5 3

�5 4

�5 5

�5 6

�6 0

�6 1

�6 2

�6 3

�6 4

�6 5

�6 6
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

50

References

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, R. W. Yeung, “Network information flow”,

IEEE Trans. on Information Theory, vol. 46, pp. 1204-1216, July 2000.

[2] C. Fragouli, J. Widmer, “Network coding: an instant primer” ACM SIGCOMM

Computer Communication Review, vol. 36, pp. 63--68, 2006.

[3] C. Fragoulli, E. Soljanin, “Network Coding Fundamentals”, Foundations and

Trends in Networking, Vol. 2, No. 1, 2007.

[4] P. Chou and Y. & Jain, K. Wu, “Practical Network Coding”, Proceedings of the

annual Allerton Conference on Communication Control and Computing, vol. 41,

pp. 40-49, 2003.

[5] http://www.networkcoding.info/

[6] http://www.ee.washington.edu/research/funlab/network_coding/index.html

[7] http://www.ee.washington.edu/research/funlab/network_coding/opnet_nc.pdf

[8] N. Cai, R. W. Yeung, “Secure network coding” ISIT, 2002.

[9] N.Thomos, P. Frossard, “Network Coding: from theory to media streaming”

June 2009.

[10] P. A. Chou, “Practical Network Coding for the Internet and Wireless Networks”

Globecom Tutorial, December 3, 2004.

[11] J. L. Van Wyk, , A. S. J. Helberg, and M. J. Grobler, “Comparing the

implementations of Network Coding on different OSI layers”, SATNAC, Royal,

Swaziland, 2009.

[12] M, Wang, B. Li, “Network Coding in Live Peer-to-Peer Streaming” IEEE

Transactions On Multimedia, Vol. 9, No. 8, December 2007.

[13] R. Koetter, “An Algebraic Approach to Network Coding” IEEE/ACM

Transactions On Networking, Vol. 11, No. 5, October 2003.

51

[14] H. Wang, J. Liang, C.C. J. Kuo, “Overview of Robust Video Streaming with

Network Coding”, Journal of Information Hiding and Multimedia Signal

Processing, Vol. 1, No. 1, January 2010.

[15] S. Jaggi, P. Sanders, P. A. Chou, M. Efros, S. Egner, K. Jain, L. M. G. M.

Tolhuizen, “Polynomial Time Algorithms for Multicast Network Code

Construction”, IEEE Transactions on Information Theory, Vol. 51, No. 6, June

2005.

[16] J. K. Sundararajan, M. Médard, M. Kim, A. Eryilmaz, D. Shah, R. Koetter,

“Network Coding in a Multicast Switch”, Proceedings of IEEE. Infocom, 2007.

[17] M. Langberg, A. Sprintson, J. Bruck, “Network Coding: A Computational

Perspective”, IEEE Transactions On Information Theory, Vol. 55, No. 1,

January 2009.

[18] J. Barros, “Mixing Packets: PROS and CONS of Network Coding”, The 11th

International Symposium on Wireless Personal Multimedia Communications

(WPMC’08).

[19] http://www.dcc.fc.up.pt/~neco/Docs/report.pdf

[20] M. Langberg, A. Sprintson, J. Bruck, “The Encoding Complexity of Network

Coding”, IEEE Transactions On Information Theory, Vol. 52, No. 6, June 2006

[21] S. Y. R. Li, R. W. Yeung, N. Cai, “Linear Network Coding”, IEEE Transactions

On Information Theory, Vol. 49, No. 2, February 2003

[22] L. R. Ford Jr., D. R. Fulkerson, “Maximal flow through a network,” Canadian

Journal of Mathematics, Vol. 8, pp. 399–404, 1956.

[23] K. Menger, “Zur allgemeinen Kurventheorie,” Fundamenta Mathematicae,

Vol. 10, pp. 95–115, 1927.

[24] A.J. González, D. Rodríguez, J. López, F. I. Rillo, J. Alcober, “Streaming P2P

robusto en redes Ad-hoc utilizando información social”, Jornadas De Ingeniería

Telemática, 2009.

[25] http://cs.nju.edu.cn/wuxb/NC.pdf

[26] T. Ho, R. Koetter, M. Medard, D. R. Karger, M. Effros, "The Benefits of Coding

over Routing in a Randomized Setting", IEEE International Symposium on

Information Theory, 2003.

[27] Á. Barbero, Ø. Ytrehus, “Knotwork coding”, Proceedings Information Theory

and Applications Workshop, San Diego, CA, Feb. 6-10, 2006.

[28] http://www.cse.psu.edu/~venkates/index_files/opnet_tips.html

52

[29] J. Dumas, T. Gautier, C. Pernet, “Finite field linear algebra subroutines”, Proc.

Int. Symp. Symbolic and Algebraic Computation(ISSAC), Lille, France, pp.63–

74, Jul. 2002.

[30] V. Dham, “Link establishment in ad hoc networks using smart antennas.”

Master thesis, Virginia Polytechnic Institute and State University, 2003.

[31] K. Imamura, “A method for computing addition tables in GF(p
n
)”, IEEE

Transactions on Information Theory, Vol. IT-26, No. 3, pp. 367–369, May 1980.

[32] S. Katti, D. Katabi, “Wireless Network Coding: Opportunities and Challenges”,

MILCOM, 2007

[33] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, J. Crowcroft, “Xors in the air:

practical wireless network coding.”, SIGCOMM. Pisa, Italy: ACM, September

2006, pp. 24 –254.
[34] Online Documentation, OPNET Modeler 12.0.A.

[35] http://www.opnet.com/

[36] Product Help, Matlab 7.9.0

[37] www.mathworks.com/

[38] http://scholar.google.com/advanced_scholar_search

[39] http://www.gliffy.com/gliffy/#

[40] http://www.ams.jhu.edu/~ers/matgraph/

