Memòria

“APORTACIÓ AL DISSENY DE SISTEMES EÒLICS”

PFC presentat per optar al títol d’Enginyeria Tècnica Industrial especialitat ELECTRÒNICA, ELECTRICITAT per Anna Mora Sánchez, Pau Sebastián Arcos

Barcelona, 17 de Juny de 2010

Directors: Jordi de la Hoz Cases
Helena Martín Cañadas
Departament EE (709)
Universitat Politècnica de Catalunya (UPC)
ÍNDEX MEMÒRIA

Índex memòria..7
Resum..11
Resumen ..11
Abstract ..12

Capítol 1: Objecte i abast del projecte ... 13
 1.1. Objecte ...13
 1.2. Abast del projecte..14

Capítol 2: Antecedents i justificació del projecte .. 15
 2.1. Antecedents ...15
 2.2. Justificació del projecte..17

Capítol 3: Introducció al disseny de sistemes eòlics 19
 3.1. Introducció ..19
 3.2. El recurs eòlic ..19
 3.2.1. Gradient de pressió i força de Coriolis ..19
 3.2.2. Tipus de vents: globals, geostròfics i locals..21
 3.2.3. Turbulències ..23
 3.2.4. Valors extrems ..24
 3.2.5. Altres efectes ...25
 3.2.6. Valor mig de la velocitat del vent ...26
 3.2.7. Distribució de Weibull ...26
 3.2.8. Rosa dels vents ..28
 3.2.9. Variació de la velocitat del vent amb l’alçada ..28
 3.2.10. Anemometria ..30
 3.2.11. Dades meteorològiques de la zona ..31
 3.3. Seleccion d’emplaçament ...31
 3.3.1. Descripció ..31
 3.3.2. Factors que afecten al funcionament dels sistemes eòlics31
 3.3.3. Criteris bàsics ..32
 3.3.4. Informació necessària per a la selecció d’emplaçaments ...32
 3.3.5. Aspectes particulars en la selecció d’emplaçaments ...33
 3.4. L’aerogenerador ..34
3.4.1. Introducció ... 34
3.4.2. Tipus d’aerogeneradors .. 34
3.4.3. Components bàsics d’un aerogenerador 38
3.4.4. La potència del vent .. 46
3.4.5. Elecció d’un aerogenerador .. 48
3.4.6. Energia produïda per un aerogenerador 49
3.5. Instal·lacions d’interconnexió .. 52
3.5.1. Descripció genèrica .. 52
3.5.2. Estudi del curtcircuit .. 54
3.5.3. Instal·lacions de BT/MT .. 59
3.5.4. Instal·lacions de MT/AT .. 60
3.5.5. Centres de transformació i subestacions 61
3.5.6. Proteccions .. 62
3.6. Xarxes de terra .. 64
3.6.1. Aspectes generals .. 64
3.6.2. Tensió màxima admissible pel cos humà 65
3.6.3. Característiques del terreny .. 65
3.6.4. Tensions de pas i de contacte 66
3.6.5. Xarxa de terra dels aerogeneradors 66
3.6.6. Xarxa de terres dels transformador de BT/MT 67
3.6.7. Xarxa de terra de la subestació 69
3.7. Estudi de viabilitat econòmica .. 71

Capítol 4: Software de pre-disseny. Manual d’us 75
4.1. Introducció .. 75
4.2. Recurs eòlic .. 77
4.3. Selecció de l’aerogenerador .. 82
4.4. Viabilitat econòmica ... 85
4.5. Instal·lacions d’interconnexió .. 92
4.6. Xarxa de terres .. 100

Capítol 5: Software de pre-disseny. Manual de programació 105
5.1. Introducció .. 105
5.2. Disseny de l’estructura del programa 106
5.3. Bloc portada i menú inici .. 108
5.4. Bloc recurs eòlic ... 109
5.5. Bloc aerogenerador .. 115
5.6. Bloc viabilitat econòmica .. 116
5.7. Bloc instal·lacions d’interconnexió ... 124
5.8. Bloc xarxa de terres ... 131

Capítol 6: Conclusions i treballs futurs .. 135

6.1. Respecte a la introducció al disseny d’instal·lacions eòliques 135
6.2. Respecte al software de càlcul .. 135
6.3. Respecte a la introducció a la programació en Matlab 136
6.4. Respecte als objectius docents .. 136
6.5. Treballs futurs ... 136

Capítol 7: Bibliografia .. 139

7.1. Bibliografia de Consulta ... 139
RESUM

‘Aportació al disseny de sistemes eòlics’, pretén donar als alumnes una visió global en la realització d’un projecte d’energia eòlica i aportar uns coneixements bàsics per a la comprensió d’aquest.

En primer lloc es fa una ‘Introducció al disseny de sistemes eòlics’ que avarca diferents àmbits com: recurs eòlic, emplaçament, aerogenerador, instal·lacions d’interconexió, xarxa de terres i estudi de viabilitat econòmica.

A continuació, per facilitar l’aprenentatge, s’ha dissenyat un programa informàtic amb Matlab que pretén ajudar en la comprensió de les diferents parts d’un projecte eòlic. Aquest està format per diferents capítols: introducció, recurs eòlic, selecció aerogenerador, viabilitat projecte, xarxa d’interconexió i xarxa de terres.

També s’ha realitzat un ‘Manual d’ús’ per a guiar a l’alumne en la utilització del programa.

D’altra banda, s’ha realitzat un ‘Manual de programació’ per a una posterior ampliació o modificació d’aquest.

Aquest treball pretén ser el primer pas per a un posterior aprofundiment en la matèria.

RESUMEN

‘Aportación al diseño de sistemas eólicos’, pretende dar a los alumnos una visión global en la realización de un proyecto de energía eólica y aportar unos conocimientos básicos para la comprensión de este.

En primer lugar se hace una ‘Introducción al diseño de sistemas eólicos’ que abarca diferentes ámbitos como: recurso eólico, emplazamiento, aerogenerador, instalaciones de interconexión, red de tierras y estudio de viabilidad económica.

A continuación, para facilitar el aprendizaje, se ha diseñado un programa informático con Matlab que pretende ayudar en la comprensión de las diferentes partes de un proyecto eólico. Este está formado por diferentes capítulos: introducción, recurso eólico, selección aerogenerador, viabilidad proyecto, red de interconexión y red de tierras.
También se ha realizado un 'Manual de uso' para guiar al alumno en la utilización del programa.

Por otra parte, se ha realizado un 'Manual de programación' para una posterior ampliación o modificación de este.

En el anexo consta el pre-proyecto realizado de un parque eólico real localizado en la provincia de Lugo, 'Pungao Sur II. Este consta de una 'Memoria descriptiva del proyecto', de una 'Memoria descriptiva de los cálculos justificativos', 'Presupuesto y estudio de viabilidad', 'Pliego de condiciones' y 'Planos'.

Este trabajo pretende ser el primer paso para una posterior profundización en la materia.

ABSTRACT

Contribution to the design of wind systems', designed to give students an overview on the performance of a wind energy project and provided basic knowledge for understanding this.

First is an 'Introduction to the design of wind systems' which covers various fields such as wind resource, location, wind turbines, interconnection facilities, network of lands and economic viability study.

Then, to facilitate learning, we designed a computer program that tries Matlab help in understanding the different parts of a wind project. This consists of different chapters: introduction, wind resource, turbine selection, project feasibility, network interconnection and network lands.

Have also done a 'Manual' to guide students in using the program.

On the other hand, has produced a 'Manual programming' for a further extension or modification of this.

In the annex there has done the pre-draft of a real wind farm located in the province of Lugo, 'II Pungao Sur. This consists of a 'report describing the project', a 'Memory of the calculations supporting descriptive', 'Budget and feasibility study', 'Specifications' and 'Plans'.

This work aims to be the first step for further study of the subject.
1.1. Objecte

L’objecte del present projecte és introduir a l’alumne en el disseny d’instal·lacions eòliques. Es presenta una visió global dels coneixements necessaris per a realitzar el disseny preliminar d’una instal·lació eòlica.

Es presenta un projecte tipus preliminar en el qual es desenvolupa el disseny d’una instal·lació ubicada a Galícia.

Els camps de coneixements continguts en aquesta guia són diversos:

- Recurs eòlic
- Aerogenerador
- Instal·lació d’interconnexió
- Xarxa de terres
- Estudi de viabilitat

Es pretén donar una visió general del disseny, des de l’ inici de procés fins a la realització del càlculs.

Durant la realització del present projecte, les parts corresponents a l’estudi del recurs eòlic i selecció de l’aerogenerador han estat desenvolupades principalment per l’alumna Anna Mora mentre que, les parts corresponents a les instal·lacions d’interconnexió i xarxes de terra han estat desenvolupades principalment per
l’alumne Pau Sebastián. L’estudi de viabilitat econòmica ha estat realitzat de forma conjunta

1.2. Abast del projecte

Aquest document preveu assolir els següents objectius:

- Aportar els coneixements necessaris pel disseny preliminar d’un parc eòlic.
- Exposar una metodologia de càlcul inicial per les instal·lacions considerades.
- Desenvolupar un software de càlcul on s’implementa la metodologia de càlcul expressada anteriorment.
- Aportar la documentació necessària per a una correcta utilització del software.
- Realitzar un manual de programació per tal d’exposar el procediment seguit i facilitar l’ampliació o modificació posterior del programa.
- Realitzar d’un projecte bàsic preliminar en funció dels coneixements adquirits i mitjançant el software desenvolupat.
CAPÍTOL 2: ANTECEDENTS I JUSTIFICACIÓ DEL PROJECTE

2.1. Antecedents

Les primeres aplicacions de l’energia eòlica van ser les veles dels vaixells, de les que es té notícies en l’any 5.000 aC a Egipte i Mesopotàmia. Els molins de vent són una altra aplicació que data de 2.000 anys.

D’altre banda, el primer aerogenerador modern que va funcionar a Espanya va ser un prototip instal·lat a Tarifa al 1981 de 100 kW; sis anys després van entrar en funcionament els primers aerogeneradors connectats a la xarxa a l’Empordà (Girona) i a Granadilla (Tenerife). Fins al 1991 la introducció va ser lenta, i el Pla Energètic Nacional d’aquest any va ser la primera vegada que es va marcar un objectiu a assolir, 175 MW el 2000. Aquest es va superar a mitjans dels noranta.

Una altra raó que va influir molt en el progrés de l’energia eòlica va ser el desenvolupament de les preocupacions ambientals a partir de la dècada dels vuitanta. Les energies renovables no tenen data de caducitat, a diferència del carbó, gas natural o petroli, el consum no emet gasos d’efecte híbrida, són fonts segures i no produeix residus perillosos com la nuclear. Per tots aquests motius es va fer la Llei del Sector Elèctric de 1997 que estableix la prioritat de
les fonts del Règim Especial (minihidràulica, solar fotovoltaica, eòlica, biomassa i cogeneració) sobre les convencionals al connectar-se a la xarxa elèctrica i incentivava a les renovables mitjançant una prima econòmica per cada unitat d'energia;

En l'actualitat hi ha uns 6.200 MW d'energia eòlica instal·lada a Espanya i les previsions del Pla de Foment de les Energies Renovables de 1999 pronosticaven que es superarien els 9.000 MW l'any 2010. Avui en dia l'energia eòlica és origen d'un 3% de l'electricitat generada a Espanya i som el tercer país del món en potència instal·lada després d'Alemanya i els Estats Units. Per comunitats autònomes Galícia està per davant amb més de 1500 MW.

\[\text{Figura 1. Evolució de la potència (MW) eòlica a Espanya (Font: Associacion de autoproduc}t\text{ores (APPA))}\]

\[\text{Figura 2. Potència instal·lada en CCAA}\]
2.2. Justificació del projecte

El camp de les energies renovables és un àmbit no massa desenvolupat si ho com parem amb les altres energies no renovables, però amb molt de potencial.

Degut a la contaminació del nostre planeta i a l’augment de la conscienciació sobre la contaminació, en els últims anys s’han desenvolupat i estudiat més intensament les energies renovables. L’energia solar és la capdavantera seguida de l’energia eòlica, aquesta segona no és tan coneguda.

Per aquest motiu, s’ha volgut aportar informació sobre aquest tipus de generació d’energia tan vella i tan desconeguda.

El fet de ser capaços de realitzar un projecte en l’àmbit de l’enginyeria, on s’utilitzin coneixements d’aquest i a la vegada es protegeixi el medi ambient, fa que sigui un treball on es pot veure una aplicació real que millora la qualitat de vida del nostre planeta, sense haver de privar-nos de les comoditats de que gaudim.

D’altre banda, es tracta d’un projecte diferent que ens pot ajudar a decidir-nos sobre el nostre futur professional.

Per tots aquest motius i per la nova aplicació del Pla de Bolònia, en el qual es pretén que l’alumnat adquireixi una major autonomia en adquisició conceptes, es presenta aquest document per d’aportar nous coneixements en el camp de l’energia eòlica.
CAPÍTOL 3:
INTRODUCCIÓ AL
DISSENY DE SISTEMES EÒLICS

3.1. Introducció

En aquest capítol es vol aportar els coneixements bàsics necessaris per al disseny de sistemes eòlics. A partir d’aquí, l’alumne ja serà capaç d’utilitzar el programa per calcular un cas pràctic amb el programa i veure un cas real amb el projecte preliminar de l’annex.

3.2. El recurs eòlic

3.2.1. Gradient de pressió i força de Coriolis

La causa del moviment de l’aire és el desenvolupament de gradients horitzontals de pressió dins de l’atmosfera, que són conseqüència de la radiació solar rebuda per la terra. L’atmosfera funciona com una gran màquina tèrmica en la que la diferència de temperatura existent entre els pols i l’equador, proporciona l’energia necessària per a la circulació atmosfèrica.

Els moviment verticals de l’atmosfera estan limitats per l’equilibri existent entre la força gravitatòria i el gradient vertical de pressió (equilibri hidrostàtic):

\[
\frac{\partial p}{\partial z} = -\rho g
\]

(1)
Els mapes de pressions mesurades s’efectuen unint les línies de punts d’igual pressió, les isòbares:

![Mapa isobàric](https://www.kalipedia.com)

Figura 3. Mapa isobàric (Font: www.kalipedia.com)

En l’altitud la forma usual de donar aquests mapes és una altre, per a una determinada pressió es representa l’altura a la que es produeix, mitjançant línies de nivell, com si es tractés d’un mapa topogràfic. Les línies de nivell, isohipses, varien en el mateix sentit que les de pressions.

En la imatge següent es pot veure un mapa amb isòbares i isohipses:

![Mapa amb isòbares i isohipses](https://www.meteored.com)

Figura 4. Mapa amb isòbares i isohipses (Font: www.meteored.com)
La velocitat del vent serà major quan major sigui el gradient de pressió. L’aire es mourà de les zones d’altes presions a les de baixes presions. La força de pressió per unitat de massa, perpendicular a les isòbares s’expressa com:

\[\frac{1}{\rho} \frac{\partial p}{\partial n} \]

\(\frac{\partial p}{\partial n}\) = densitat

\(\frac{\partial}{\partial n}\) = gradient horitzontal de pressió

La direcció del vent hauria de ser perpendicular a les isòbares, encara que lluny de la superfície terrestre, el vent bufa paral·lel a les isòbares. Això és degut a la força de Coriolis, la seva component horitzontal s’expressa:

\[f = -2\Omega \sin \phi v \]

\(\Omega\) = velocitat de la terra (7.29 \cdot 10^{-5} \text{ rad/s})

\(\phi\) = latitud

\(v\) = velocitat del mòbil

La direcció de la força és perpendicular al moviment, i fa que en l’hemisferi nord es desplaci constantment cap a la dreta (al contrari que a l’hemisferi sud).

Figura 5. Força de Coriolis (Font: www.wikipedia.org)

La força de Coriolis és un fenomen que es pot apreciar, per exemple, en les conques dels rius, que estan excavades més d’un cantó depenent de l’hemisferi en el qual ens trobem. Un altre exemple serien les vies del ferrocarril que es desgasten més d’un costat que d’un altre. Llavors, la força de Coriolis afectarà també al vent global.

3.2.2. **Tipus de vents: globals, geostròfics i locals**

El vent puja des de l’equador i es desplaça cap al nord i cap al sud en les capes més altes de l’atmosfera. Al voltant dels 30° de latitud en ambdós hemisferis la
força de Coriolis evita que el vent es desplaci més enllà. En aquesta latitud es troba un àrea d'altes pressions, pel que l'aire comença a descendir de nou. Quan el vent pugi des de l'equador hi haurà un àrea de baixes pressions prop del nivell del sòl atraient els vents del nord i del sud. En els pols, hi hauran altes pressions a causa de l'aire fred. Tenint en compte la força de curvatura de la força de Coriolis, obtenim els següents resultats generals de les direccions dels vents dominants.

Taula 1. Vents dominants.

<table>
<thead>
<tr>
<th>Latitud</th>
<th>90-60°N</th>
<th>60-30°N</th>
<th>30-0°N</th>
<th>0-30°S</th>
<th>30-60°S</th>
<th>60-90°S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direcció</td>
<td>NE</td>
<td>SO</td>
<td>NE</td>
<td>SE</td>
<td>NO</td>
<td>SE</td>
</tr>
</tbody>
</table>

Figura 6. Vents a escala global (Font: Sistemas eólicos de producción de energía eléctrica)

Les direccions dominants del vent són importants per a l'emplaçament d'un aerogenerador, ja que òbviament voldrem situar-lo en un lloc en el qual hi hagi el mínim nombre d'obstacles possibles per a les direccions dominants del vent. No obstant això la geografia local pot influenciar en els resultats.

L'atmosfera és una capa molt fina al voltant del globus. El globus té un diàmetre de 12.000 km. La troposfera, que s'estén fins als 11 km d'altitud, és on tenen lloc tots els fenòmens meteorològics i l'efecte hivernacle. Vist a una escala diferent: si el globus fos una bola de 1,2 metres de diàmetre, l'atmosfera només tindria un espessor de 1 mm

Els vents geostòrfics són generats, principalment, per les diferències de temperatura, així com per les de pressió, i són influenciat per la superfície de la terra. Es troben a una altura de 1.000 metres a partir del nivell del sòl. La velocitat dels vents geostòrfics pot ser mesurada utilitzant globus sonda.
Els vents estan molt més influenciats per la superfície terrestre a altituds de fins a 100 metres. El vent és frenat per la rugositat de la superfície de la terra i pels obstacles. Les direccions del vent prop de la superfície seran lleugerament diferents a les dels vents geostròfics a causa de la rotació de la terra.

Encara que els vents globals són importants en la determinació dels vents dominants d’un àrea determinada, les condicions climàtiques locals poden influir en les direccions dels vents més comuns. Els vents locals sempre es sumen als globals en els sistemes eòlics a gran escala, això és, la direcció del vent és influenciada per la suma dels efectes globals i locals. Quan els vents a gran escala són suaus, els vents locals poden dominar els règims dels vents.

Un exemple poden ser les brises marines. Durant el dia la terra s’esclafa més ràpidament que el mar per l’efecte del sol. L’aire puja, circula cap al mar, i crea una depressió a nivell del sòl que atrau l’aire fred del mar. Això és el que es diu brisa marina. Sovint hi ha un període de calma al vespre, quan les temperatures del sòl i del mar s’igualeu. Durant la nit els vents bufen en sentit contrari. Normalment durant la nit la brisa terrestre té velocitats inferiors, degut al fet que la diferència de temperatures entre la terra i el mar és més petita. El conegut Monsó del sud-est asiàtic és en realitat un forma a gran escala de la brisa marina i la brisa terrestre, variant la seva direcció segons l’estació, degut al fet que la terra s’esclafa o refreda més ràpidament que el mar.

3.2.2. Turbulències

Les turbulències són fluctuacions ràpides i desordenades de les magnituds fluides, fonamentalment de la velocitat del vent, al voltat del seu valor mig.

Per tal de predir les desviacions típiques de la velocitat en cada una de les tres direccions dels eixos de coordenades, de manera que la direcció mitja del vent, la direcció z és la vertical i y és la perpendicular a les altres dues, s’utilitzen les següents expressions:

\[
\sigma_{wx}(t_0) = \frac{1}{T} \int_{t_0-T/2}^{t_0+T/2} (v_x(t) - v_w(t_0))^2 dt
\]

\[
\sigma_{wy}(t_0) = \frac{1}{T} \int_{t_0-T/2}^{t_0+T/2} (v_y(t))^2 dt
\]

\[
\sigma_{wz}(t_0) = \frac{1}{T} \int_{t_0-T/2}^{t_0+T/2} (v_z(t))^2 dt
\]

Una estimació del valor relatiu de la turbulència el dóna la intensitat de la turbulència, definida com:

\[
I_x = \frac{1}{\ln \left(\frac{h}{h_0} \right)}
\]
h₀= altura obtenció de dades, normalment a 10m
h= altura on s’estudia la intensitat de la turbulència

La intensitat de la turbulència disminueix amb l’alçada i augmenta amb l’augment de la rugositat del terreny, de manera que:

\[I_x = \frac{\alpha}{1 - \alpha \ln \left(\frac{h}{15,25} \right)} \]
\[\alpha = \text{paràmetre que depèn de la rugositat} \]

En l’apartat 2.2.11. Variació de la velocitat del vent amb l’alçada i la fricció amb el terra s’expliquen més conceptes sobre el paràmetre \(\alpha \).

Existeix diversa normativa que regula el valor de la intensitat de la turbulència que pot suportar un aerogenerador segons les característiques del vent de l’emplaçament on s’instal·larà. La norma IEC61400-1 marca que:

\[I_x = I_{15} + \frac{15/V_{hub}}{a + 1} \]
\[I_{15} = \text{Intensitat de la turbulència per a una velocitat mitja de 15 m/s} \]
\[a = \text{Paràmetre relacionat amb el tipus d’emplaçament} \]
\[V_{hub} = \text{velocitat a l’alçada del rodet} \]

3.2.4. Valors extrems

En la realització de l’estudi del recurs eòlic en una zona és també interessant conèixer els valors extrems de vent que es poden produir a llarg termini.

La llei de Gumbel o Fisher-Tippett proporciona la probabilitat de que la velocitat del vent màxim en una zona superi un valor determinat.

\[P\left(V_{Textramaural} < U_0\right) = \exp \left[-\exp\left(-\frac{\left(U_0 - U_m\right)}{U_d}\right)\right] \]
On \(U_m \) indica la moda i \(U_d \) la dispersió d’aquesta distribució. Aquests valors es poden obtenir a partir d’una sèrie de mesures mitjançant un procediment similar al que s’indicarà per calcular els coefficients de la corba de Weibull. En general aquests paràmetres augmenten al disminuir el temps T, de tal manera que per a ràfegues més curtes els valors extrems són majors.

A vegades el valor extrem es calcula en funció del recorregut del vent, integrant l’expressió del valor mig. En aquest cas l’anemòmetre mesuraria el temps T que es triga en recórrer una milla i la velocitat màxima seria el valor mínim d’aquest temps.

El nombre d’anys entre dues ràfegues es correspon amb el període de retorn R que es calcula:
\[R = \frac{1}{1 - P} \]

(11)

On P és la probabilitat de que la velocitat mitja excedeixi un valor determinat.

En el cas de disposar d’una estructura amb una vida útil estimada de L anys, amb un risc r de que durant aquest període no incideixi una velocitat del vent superior a una determinada, es compleix:

\[r = 1 - P^L = 1 - \left(1 - \frac{1}{R} \right)^L \]

(12)

\[P = \left(1 - r \right)^\frac{1}{L} \]

(13)

\[R = \frac{1}{1 - \left(1 - r \right)^\frac{1}{L}} \]

(14)

Cas exemple:

Es disposa d’una estructura amb una vida útil de L=25 anys, amb un risc r=0,1 (10%). La probabilitat anual de que no es superi la velocitat i el període de retorn serien:

\[P = \left(1 - 0,10 \right)^\frac{1}{25} = 0,9958 \]

(15)

\[R = \frac{1}{1 - 0,9958} = 238 \text{ anys} \]

(16)

Suposant que en la ubicació escollida la mitjana de la corba de Gumbel és \(U_m = 20 \text{ m/s} \) i la dispersió \(U_d = 10 \text{ m/s} \) per a una alçada concreta, de la expressió (10) s’obté que la velocitat màxima de disseny de l’estructura a aquesta mateixa alçada és \(U_0 = 75 \text{ m/s} \).

3.2.5. Altres efectes

- Efecte del parc: Es produeix quan cada aerogeneradorrellenteix el vent després d’utilitzar-lo per convertir-lo en electricitat. Idealment hauríem de separar les turbines el màxim possible en la direcció de vent dominant per a que això no es produís. La pèrdua d’energia típica és al voltant del 5 per cent.

- Efecte túnel: Aquest es pot observar entre dos edificis alts o en un pas estret entre muntanyes, l’aire es comprimeix en la part dels edificis o de la muntanya que està exposada al vent, i la seva velocitat creix entre els obstacles del vent. Per a obtenir un bon efecte les muntanyes no han de ser molt accidentades ja que sinó es produrien moltes direccions de vent diferents. Si hi ha moltes turbulències, l’avantatge que suposa la major velocitat del vent es veurà completament anul·lada, i els canvis en el vent poden causar trencaments i desgastos innecessaris en l’aerogenerador.
• **Efecte muntanya:** El vent travessant els cims de les muntanyes es fa ràpid i dens, i quan bufa fora d'elles es torna lleuger i lent. Una forma corrent d'emplaçar aerogeneradors és situant-los en muntanyes. En les muntanyes sempre s'aprecien velocitats de vent superiors a les de les àrees del voltant. Això és degut a que el vent és comprimit en la part de la muntanya que dóna al vent, i una vegada l'aire arriba al cim de la muntanya pot tornar a expandir-se al descendir cap a la zona de baixes pressions pel vessant de sotavent.

3.2.6. Valor mig de la velocitat del vent

Una de les característiques més importants del vent és la seva variabilitat, tan espacial com temporal.

Donat que les fluctuacions turbulentes són aleatòries i requereixen un tractament estadístic, s’aconseilla separar-les de les variacions de temps diàries i estacionals.

La forma de fer això és considerar el valor mig de la velocitat durant un període apropiat de temps, T, i suposar al mateix temps les fluctuacions turbulentes. Es requereix de la següent expressió pel càlcul de la velocitat mitjana:

$$v_w(t_0) = \frac{1}{T} \int_{t_0}^{t_0 + \frac{T}{2}} v_{ix}(t) \, dt$$

v_w = Velocitat mitjana del vent
T = Període de temps d’estudi
v_{ix} = Velocitat instantània

3.2.7. Distribució de Weibull

La distribució de Weibull és una funció distribució acumulada que permet predir la variació de la velocitat mitjana durant un període de temps. Així expressa la probabilitat de que la velocitat excedeixi un valor límit durant un període de temps determinat.

L’expressió de la distribució de Weibull és:

$$F(V_0) = P(V_0 < V_w) = \exp \left(- \frac{V_0}{C} \right)^k$$

La funció de densitat de probabilitat es calcula:

$$f(V_w) = k \frac{V_w^{k-1}}{C^k} \exp \left(- \left(\frac{V_w}{C} \right)^k \right)$$

Per al càlcul de la distribució de Weibull és necessari obtenir els valors dels paràmetres C y k. Aquest es poden obtenir a partir de les dades de velocitat.
mitjana i les freqüències de classe de cada sector, segons dos mètodes diferents: gràfic o analític.

- Mètode gràfic.

El procediment a seguir consisteix en ajustar per mínims quadrats les dades a la recta:

\[Y = Y_0 + kX \]
\[Y = \ln(-\ln(F)) \]
\[X = \ln(V_0) \]

El valor del pendent de la recta correspon al paràmetre \(k \), mentre que la seva intersecció amb l’eix \(Y \) permet calcular \(Y_0 \) i així determinar \(C \):

\[Y_0 = -k \cdot \ln(C) \]

- Mètode analític.

En primer lloc és necessari conèixer els valors de la velocitat mitja \((v_w) \) i desviació estàndard \((\sigma) \) del vent, pel període de temps estudiat en cada cas:

\[v_w = \frac{1}{N} \sum_{i=1}^{N} V_i \]

\(N \) = nombre total de mesures
\(V_i \) = velocitat de cada mesura

\[\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (V_i - V_m)^2} \]

Pel càlcul de \(c \) i \(k \) són necessàries les següents expressions:

\[k = \left(\frac{\sigma}{V_m} \right)^{-1.086} \quad (1 \leq k \leq 10) \]

\[c = \frac{V_m}{\Gamma(1 + \frac{1}{k})} \]
La funció gamma es defineix com:
\[
\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} \, dt
\]

(28)

3.2.8. **Rosa dels vents**

Per a realitzar la rosa dels vents és necessari un estudi estadístic de la freqüència de cada direcció del vent. S’analitzà la freqüència de la direcció del vent de cada un dels sectors anteriorment anomenats.

La rosa dels vents és un gràfic radial que permet obtenir informació sobre la velocitat i orientació del vent. Mostra les diverses orientacions i velocitats mitges del vent dividint la circumferència en varis sectors. El cas més general és dividir-la en setze sectors, ja que és un model més precís. Llavors, les zones es subdivideixen de la següent manera:

- Nord (N)
- Nord Nord-est (NNE)
- Nord-est (NE)
- Est Nord-est (ENE)
- Est (E)
- Est Sud-est (ESE)
- Sud-est (SE)
- Sud Sud-est (SSE)
- Sud (S)
- Sud Sud-oest (SSO)
- Sud-oest (SO)
- Oest Sud-oest (OSO)
- Oest (O)
- Oest Nord-oest (ONO)
- Nord-oest (NO)
- Nord Nord-oest (NNO)

3.2.9. **Variació de la velocitat del vent amb l’alçada**

El càlcul de la variació del vent amb l’alçada és important per a determinar l’alçada de la torre de l’aerogenerador i les dimensions de les pales.

La velocitat del vent augmenta amb l’alçada, però és important tenir en compte que a major alçada major és la fatiga mecànica que suporten les pales de l’aerogenerador.
Per calcular la velocitat del vent a diferents alçades és necessària l’expressió:

$$V_h = V_0 \left(\frac{h}{h_0} \right)^\alpha$$ \hspace{1cm} (29)

V_h = Velocitat del vent a l’altura escollida
V_0 = Velocitat del vent a l’altura de referència (10m)
h = Altura
h_0 = Altura de referència (10m)

El paràmetre α varia amb l’hora del dia, l’estació, el tipus de terreny, la velocitat del vent i l’estabilitat atmosfèrica. Per tal de predir el seu valor s’utilitzen les següents expressions vàlides per a una atmosfera neutre. En general el paràmetre α augmenta amb la rugositat del terreny i disminueix amb la velocitat del vent i amb el grau d’estabilitat atmosfèrica.

$$\alpha = \left(\frac{h_0}{10} \right)^{0.2} \cdot (1 - 0.55 \cdot \log(V_0))$$ \hspace{1cm} (30)

En la següent expressió el paràmetre α només depèn de la rugositat del terreny:

$$\alpha = \frac{1}{\ln \left(\frac{15.25}{z_0} \right)}$$ \hspace{1cm} (31)

z_0 = Rugositat del terreny

A continuació es presenten les dades de rugositat segons el tipus terreny:

Taula 2. Rugositat del terreny

<table>
<thead>
<tr>
<th>Tipus de terreny</th>
<th>Coeficient de rugositat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel</td>
<td>10^{-5} a $3 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>Aigua</td>
<td>10^{-4} a $3 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>Herba</td>
<td>10^{-3} a 10^{-2}</td>
</tr>
<tr>
<td>Terreny rocós</td>
<td>10^{-2} a $5 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>Pastures</td>
<td>0,1 a 0,3</td>
</tr>
<tr>
<td>Suburbis</td>
<td>0,5 a 1</td>
</tr>
<tr>
<td>Boscos</td>
<td>0,1 a 1</td>
</tr>
<tr>
<td>Ciutats</td>
<td>1 a 5</td>
</tr>
</tbody>
</table>
A la següent taula es mostren els resultats del càlcul del paràmetre α utilitzant l’expressió (31):

Taula 3. Paràmetre α en funció de la rugositat

<table>
<thead>
<tr>
<th>Tipus de terreny</th>
<th>Paràmetre α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel</td>
<td>0,070 a 0,076</td>
</tr>
<tr>
<td>Aigua</td>
<td>0,084 a 0,092</td>
</tr>
<tr>
<td>Herba</td>
<td>0,104 a 0,136</td>
</tr>
<tr>
<td>Terreny rocós</td>
<td>0,136 a 0,175</td>
</tr>
<tr>
<td>Pastures</td>
<td>0,199 a 0,255</td>
</tr>
<tr>
<td>Suburbis</td>
<td>0,293 a 0,367</td>
</tr>
<tr>
<td>Boscos</td>
<td>0,199 a 0,367</td>
</tr>
<tr>
<td>Ciutats</td>
<td>0,367 a 0,897</td>
</tr>
</tbody>
</table>

3.2.10. Anemometria

Per a estudiar les característiques del vent es necessari, a més dels mètodes esmentats anteriorment, realitzar mesures locals que ofereixin informació més acurada i corroborin la validesa d’aquests mètodes.

Es poden establir correlacions entre les mesures locals i les de l’estació meteorològica més propera.

Les mesures de les velocitats del vent es realitzen normalment utilitzant anemòmetres de cassotletes. L’anemòmetre de cassotletes té un eix vertical i tres cassotletes que capturen el vent. El nombre de revolucions per segon és registrat electrònicament. Normalment, l’anemòmetre està equipat amb un penell per a detectar la direcció del vent. L’anemòmetre pot estar equipat amb hèlixs en lloc de cassotletes, encara que no és el més habitual.

Existeixen altres tipus d’anemòmetre, encara que el més habitual és l’anemòmetre de cassotletes.

Per a que les mesures siguin representatives l’anemòmetre ha d’estar lliure d’objectes, edificis o obstacles que puguin interferir en la mesura, inclosa la pròpia estructura de suport. En general s'ha de tenir en compte que qualsevol obstacle artificial pot alterar el vent i que aquesta pertorbació és major a l'estela, o a sotavent, que per sobre de l’objecte. La pertorbació s’estén per sobre de l’obstacle a una distància igual a dos o sis vegades la seva mida, mentre que per sota de l’objecte pot ser de 10 a 20 vegades.
3.2.11. Dades meteorològiques de la zona

El primer pas per al càlcul del recurs eòlic és l’obtenció de les dades sobre la velocitat mitja, freqüència i direcció del vent a la zona d’implantació amb un període mínim d’un any.

Les dades que ens ofereixen són les següents:

- Velocitat mitjana vent (m/s)
- Direcció mitjana vent (graus)
- Ratxa (m/s)
- Direcció ratxa (graus)

D’altre banda, les dades necessàries per la realització dels càlculs són:

- Velocitat mitja diària del vent a 10m d’alçada
- Orientació predominant diària del vent
- Determinar la variabilitat del vent per escollir la tecnologia de generació

A l’hora d’obtenir les dades meteorològiques hem de tenir present el tipus d’estudi que volem dur a terme. És a dir, si voldrem les dades per a realitzar una estimació de l’energia a través d’un mètode estàtic, semi estàtic o quasi dinàmic, això depèndrà de la fiabilitat requerida. Aquest tema es tractarà més en detall en l’apartat de viabilitat.

3.3. Selecció de l’emplaçament

3.3.1. Descripció

La selecció de l’emplaçament és una de les decisions més importants alhora de dissenyar un parc eòlic, ja que determinarà el rendiment del parc, per tant l’energia que podrà produir. Una mala selecció de l’emplaçament podria provocar per exemple, pèrdues en la línia d’evacuació perquè la línia de connexió es trobi molt allunyada, baix rendiment ens els aerogeneradors per ràfegues massa altes, ja que els aerogeneradors no funcionen per sobre d’uns nivells de velocitat per seguretat,...

3.3.2. Factors que afecten al funcionament dels sistemes eòlics

Els factors meteorològics més importants que afecten al disseny, funcionament i emplaçament dels sistemes eòlics són:

- Velocitat mitjana del vent i les seves variacions diürnes, estacionals i interanuals.
- Distribució de probabilitats de velocitats.
• Variació amb l’altura de la velocitat i en menor mesura, de la direcció.
• Distribució de direccions i probabilitats de canvis bruscs de direcció.
• Variacions estacionals i diürnes de la densitat de l’aire i variacions de la densitat amb l’altura.
• Caracterització de sèries temporals d’alts vents i de períodes de calma.
• Interaccions de les pales en parc eòlics.
• Freqüències de condicions extremes de vent (tempestes, huracans, etc).
• Condicions atmosfèriques especials (gelades, sorra, elevada salinitat, etc).

3.3.3. Criteris bàsics

Els emplaçaments òptims dels aerogeneradors s’han de seleccionar en funció dels criteris següents:

• Elevada velocitat mitja. L’emplaçament ha d’estar en un zona d’altes velocitats mitjanes i situat en un terreny amb bona disposició i sense obstacles al flux de l’aire.
• Acceptables variacions diürnes i estacionals, considerant l’acoblament favorable entre el vent disponible i la necessitat de subministrament elèctric.
• Acceptables nivells de vent extremos, que afecten a la vida útil del sistema. S’han de tenir en compte les dades estadístiques per conèixer la probabilitat de superar una determinada velocitat, així com el nombre de vegades en que existeix un determinat nivell de ràfegues.
• Existència d’una línia de distribució propera, per tal de minimitzar les pèrdues en la línia d’evacuació del parc.
• Respectar les zones protegides on no s’hi pot construir, com per exemple paratges naturals, zones urbanitzables, ...

D’altra banda, s’ha de tenir present que els llocs amb un nivell alt de ràfegues no és convenient instal·lar-hi aerogeneradors. Per exemple, en passos entre muntanyes en àrees d’alts gradients de pressió, llargues valls descendents de cadenes muntanyoses, plans elevats, elevacions amb bona exposició, en cims de muntanyes en àrees de forts vents d’altura, llocs costaners ben exposats en àrees de vents d’altura o forts gradients tèrmics o de pressió, llocs amb vegetació acusadament deformada per l’acció dels vents dominants, ...

3.3.4. Informació necessària per a la selecció de l’emplaçament

La informació meteorològica relacionada amb les aplicacions de l’energia eòlica, està considerada per l’ Organització Meteorològica Mundial (WMO, 1981) en funció de varies fases:

a) Fase d’exploració, que implica la prospecció eòlica general i els dissenys preliminars del sistema eòlic.
b) Fase de planificació, que comprèn una detallada avaluació de l’emplaçament i del disseny del sistema eòlic

c) Fase d’operació, que implica la predicció del vent i l’avaluació operacional del sistema.

La primera d’elles constitueix la fase prèvia per emplaçaments de grans màquines, però hauria de ser l’únic nivell d’anàlisi de preinstal·lació de petites màquines.

Cadascun d’aquests procediments implica el següent procés:

Prospecció eòlica general:

- Anàlisi a gran escala (100.000 Km2 ->10.000 Km2)
- Avaluació a mitja escala (10.000 Km2 ->100 Km2)
- Llista de llocs favorables.
- Avaluació de llocs favorables.
- Selecció d’emplaçaments.

Avaluació d’un emplaçament predeterminat:

- Determinació inicial del potencial eòlic
- Avaluació de l’emplaçament
- Definició de l’emplaçament

Pel primer procediment, es poden utilitzar dades d’observacions però només és aplicable a zones extenses de terreny pla on les velocitats mitjanes anuals siguin iguals o superiors a 5m/s.

El pas següent consisteix en realitzar mesures i en establir correlacions aproximades amb els observatoris pròxims, i avaluar així les característiques del potencial eòlic. Si existeix una alta correlació entre l’emplaçament i l’observació de referència, aquest mètode és bastant precís, encara que s’ha de considerar les variacions estacionals de velocitat i direccions del vent.

El procediment més fiable per a realitzar un emplaçament consisteix en instal·lacions mitjanes o grans, en prendre mesures de vent durant almenys un any, valorant si és representatiu i analitzant les dades per obtenir el potencial eòlic mig aprofitable. Aquest mètode és el més precís i es pot aplicar a qualsevol tipus de terreny.

3.3.5. Aspectes particulars en la selecció d’emplaçaments

En la selecció d’un emplaçament, s’ha de tenir en compte les possibles interaccions de les esteles entre aerogeneradors, la potència total subministrada pot quedar reduïda respecte a un nombre equivalent d’unitats completament independents. No existeix un consens sobre la distància mínima desitjable entre màquines per evitar interferències.

En general, la millor disposició consisteix en ubicar el menor nombre possible d’aerogeneradors en la direcció paral·lela als vents predominants i el major nombre possible en la direcció perpendicular. Per a minimitzar els efectes d’esteles en un parc, es considera que la separació lateral mínima ha d’estar
entre 3 i 5 diàmetres, i la separació en la direcció predominant del vent ha d’estar entre 7 i 10 diàmetres.

S’ha de fer un balanç entre la disponibilitat del terreny, les despeses d’infraestructures i interconnexionat i la pèrdua d’energia que impliquen les diverses possibilitats.

3.4. L’aerogenerador

3.4.1. Introducció

Com s’ha esmentat anteriorment el procés de càlcul del recurs eòlic permet obtenir les dades de potència extraïble així com d’energia generada segons l’aerogenerador escollit.

Per a una correcte elecció de l’aerogenerador és necessari conèixer els diferents tipus d’aerogenerador comercialitzats així com les seves tecnologies de generació.

El capítol de selecció de l’aerogenerador de la present guia docent s’inicia amb el procés de càlcul de la potència extraïble del vent per, després, aportar els coneixements necessaris sobre els components dels aerogeneradors així com els tipus existents en el mercat i les seves tecnologies de generació.

3.4.2. Tipus d’aerogeneradors

Les turbines eòliques es poden classificar segons diversos criteris. En aquest apartat es presenten les classificacions més comuns segons el criteri marcat.

En una primera classificació, els aerogeneradors es diferencien entre, aquells que utilitzen rotors d’eix vertical i aquells que utilitzen rotors d’eix horitzontals.

- Rotor d’eix vertical:

La principal característica dels aerogeneradors d’eix vertical és que el seu eix de rotació es troba en posició perpendicular al terra. Tenen l’avantatge fonamental de que no precisen de cap sistema d’orientació actiu per a captar l’energia continguda en el vent.

Una altre avantatge respecte als aerogeneradors d’eix horitzontal, és que disposen del tren de potència, el generador elèctric i els sistemes de control a nivell del terra. També són més econòmics que els d’eix horitzontal a l’estalviar-se gran part de la infraestructura.

Tot i això no són els més habituals degut a la seva escassa capacitat de producció d’energia.

Els dissenys més habituals de turbines d’eix vertical són els rotors tipus Darrieus i els rotors tipus Savonious.

Les turbines tipus Darrieus estan constituïdes per dues o més pales disposades com la forma que pren una corda subjectada pels seus extrems i sotmesa a un moviment giratori. El seu rendiment i velocitat de gir és comparable al de les turbines d’eix horitzontal, si bé presenten certs desavantatges: necessiten motoritzar la turbina perquè comenci a girar ja
que no consten de parell d’engegada, és necessari utilitzar tensors addicionals per tal de garantir l’estabilitat de l’estructura.

Les turbines tipus Savonious disposen de dues pales que són dues meitats d’un cilindre tallades per una generatriu i desplaçades lateralment. Ofereixen parell d’engegada i es poden construir fàcilment, però tenen un baix rendiment i una reduïda velocitat de gir.

Figura 7. Aerogenerador Darrieus, aerogenerador Savonious (Font: www.renewablepowertech.com, www.wikimedia.org)

- **Rotor d’eix horitzontal:**

El rotors d’eix horitzontal es caracteritzen per fer girar les seves pales en direcció perpendicular al vent incident. Són els més habituals ja que ofereixen majors potències que els d’eix vertical, encara que són més costosos.

Les turbines d’eix horitzontal es classifiquen en turbines amb rotor multipala o turbines lentes, i rotor tipus hèlix o turbines ràpides.

Les turbines lentes es caracteritzen per tenir un nombre de pales de entre 6 i 24 i per tant una solidesa elevada. Presenten elevats parells d’engegada i una velocitat de gir reduïda, per això la seva principal aplicació és el bombeig d’aigua i no s’utilitzen per a la generació d’energia.

Les turbines ràpides giren a una velocitat major que les turbines multipala. La velocitat lineal en la punta de la pala és de entre 6 a 14 vegades la velocitat del vent incident, per això, les turbines ràpides són les més apropiades per a la generació d’energia elèctrica. Els models més utilitzats són els de tres pales ja que, tenen una major estabilitat que els d’una o dues pales i un major rendiment energètic.
En una segona classificació, els aerogeneradors es poden classificar segons la seva posició respecte al vent segons es situïn a sobrevent o a sotavent

- A sobrevent:
 Són aquells aerogeneradors en els quals el rotor està situat de cara al vent, evitant així que el cos de la torre s’interposi entre el propi rotor i el vent. Aquest tipus de màquines necessiten un sistema d’orientació actiu ja que la velocitat del vent incideix sobre el rotor i posteriorment sobre la torre. Tot i això, és la configuració més utilitzada degut a les elevades càrregues aerodinàmiques que apareixen sobre la màquina quan la disposició és a sotavent.

- A sotavent:
 Aquest tipus d’aerogeneradors es caracteritzen per tenir situat el rotor a la cara de sotavent de la torre. Les màquines a sotavent tenen l’avantatge d’utilitzar un sistema d’orientació passiu respecte al vent que es basa en la inclinació de les pales. El seu gran desavantatge és una escassa eficàcia.

Els aerogeneradors d’eix horitzontal es poden dividir segons estiguin constituïts per una, dues o tres pales o siguin multipala.

- Una pala:
 Al tenir només una pala aquestes turbines necessiten un contrapèss en l’altre extrem per equilibrar-se. Tenen una velocitat de gir molt elevada, però el seu principal inconveni és que introdueixen en l’eix esforços variables que retallen la vida útil de la instal·lació.

- Dues pales:
 Els aerogeneradors de dues pales tenen l’avantatge sobre els de tres, de resultar més econòmics i tenir un menor pes. El seu principal inconveni
és que necessiten una velocitat de gir major per a produir la mateixa energia de sortida.

- **Tres pales:**

 La majoria dels aerogeneradors moderns tenen dissenys de tres pales, amb el rotor a sobrevent. Utilitzen motors elèctrics per els mecanismes d’orientació. Són els models que ofereixen una major estabilitat estructural i aerodinàmica, menor emissió de soroll i major rendiment energètic.

- **Multipala:**

 Constituïts per entre 6 i 24 pales, presenten una elevada solidesa. Com s’ha esmentat anteriorment no tenen aplicacions per a la producció d’energia.

Les turbines de generació eòliques mòbils utilitzen diversos mètodes per a orientar-se en la direcció predominant del vent en cada moment.

- **Mitjançant conicitat:**

 Aquells que utilitzen un motor elèctric i un sistema d’engranatges per a orientar la gòndola en la direcció del vent. És el sistema utilitzat en els aerogeneradors de producció d’energia mòbils.

 El seu principal inconveni és la seva complexitat, a més del consum de potència per part del motor i els seus possibles errors de funcionament. El seu principal avantatge és la ràpida adaptació a la variabilitat del vent.

- **Mitjançant un penell:**

 És el sistema d’orientació més senzill que existeix. S’utilitza un penell situat a la part posterior de la gòndola per a orientar-la. Només té utilitat per a sistemes petits.

- **Mitjançant molins auxiliars:**

 En aquests sistemes dos rotors ubicats a cada costat de la gòndola són moguts pel propi corrent d’aire i, així, ofereixen l’orientació necessària. És un sistema molt poc utilitzat.

Tots els aerogeneradors han de disposar d’alguns mètode de control de la potència generada per tal d’evitar que es produeixin danys en els diferents components en cas de vent excessiu. Segons el dispositiu que fan servir per controlar la potència, es poden classificar de la següent manera:

- **Sistemes de pas variable:**

 Segons aquest mètode les pales poden variar el seu angle d’incidència respecte el vent. Quan la potència generada és excessiva, les pales comencen a girar sobre el seu eix longitudinal fins adoptar la posició anomenada de bandera. En aquesta posició la resistència al vent és mínima, així com el parell i la potència generada. Un sistema electrònic controla la posició de les pales en funció de la velocitat del vent.

 El mecanisme de canvi d’angle de pas funciona de forma hidràulica.
Aquest tipus de sistemes augmenten la vida útil de la instal·lació, així com el seu rendiment. A mes a més possibiliten l’aprofitament de règims de vents baixos.

- Regulació passiva per pèrdues aerodinàmiques:

Els aerogeneradors de regulació passiva per pèrdues aerodinàmiques tenen les pales instal·lades en un angle fix. Tot i això el perfil de la pala està dissenyat per assegurar que, en el moment que la velocitat del vent sigui massa alta, es creï una turbulència en la part de la pala que no dóna al vent. Aquesta pèrdua de sustentació evita que la força ascensional de la pala actúi sobre el rotor. A l’augmentar la velocitat del vent, l’angle d’incidència de la pala també augmentarà fins arribar al punt de començar a perdre sustentació.

Aquest tipus de sistemes eviten les parts mòbils al rotor i un complex sistema de control. Tenen l’inconvenient que el disseny aerodinàmic de les pales és molt complex.

- Regulació activa per pèrdua aerodinàmica:

Les màquines de regulació activa per pèrdua aerodinàmica són semblants a les de regulació per sistemes de pas variable, en el sentit de que les dues tenen pales que poden canviar el seu angle de pas.

La principal diferència entre elles s’observa quan la màquina amb regulació per pèrdua aerodinàmica arriba a la seva potència nominal: En el moment que el generador es vagi a sobrecarregar, la màquina girarà les pales en direcció contraria a la que ho faria la màquina amb sistema de pas variable. Augmentarà l’angle de pas de les pales per poder ubicar-les en una posició de major pèrdua de sustentació i poder consumir l’excés d’energia del vent.

El principal avantatge d’aquest sistema és que possibilita el funcionament de la màquina quasi exactament a potència nominal a totes les velocitats del vent.

3.4.3. Components bàsics d’un aerogenerador

Ja que existeix una gran varietat de turbines emprades per a la generació elèctrica, ens centrarem en descriure els components bàsics de la configuració de turbines més utilitzades. En l’actualitat la configuració que ofereixen la majoria de fabricants i la que podem trobar en la majoria dels parc eòlics instal·lats, es tracte d’aerogeneradors d’eix horitzontal, de tres pales, orientades a sobrevent i amb torre tubular.

Els principals components d’aquest tipus de sistemes són els representats a la figura, i es descriuen en els següents apartats.
En els aerogeneradors d’eix horitzontal la **torre** és un del components principals. La torre suporta la gòndola i el rotor.

En els grans aerogeneradors les torres tubulars poden ser d’acer, de gelosia o de formigó.

- **Torre tubular d’acer:**

 Aquest és el tipus de torre més utilitzat en l’actualitat. El criteri habitual de construcció d’aquestes torres és mitjançant la unió de diversos trams cilíndrics. El nombre usual de trams per a torres de més de 60 metres és de 2 o 3. Les torres tenen un disseny troncocònic, és a dir, amb un diàmetre creixent cap a la base, per tal d’augmentar la resistència i estalviar material.

- **Torre de gelosia:**

 Són fabricades utilitzant perfils d’acer solats. El seu principal avantatge és el seu menor cost econòmic respecte a les altres torres, ja que, només necessiten la meitat de material que una torre tubular amb la mateixa rigidesa. Pràcticament no s’utilitzen degut al seu impacte visual a distàncies properes.

- **Torre tubular de formigó:**

 Les torres de formigó es poden realitzar amb formigó armat o bé amb formigó pretensat. El formigó pretensat presenta millors característiques pels dissenys de torres d’elevada rigidesa i és una opció econòmicament
competitiva amb les torres tubulars d’acer quan aquestes s’han de dissenyar amb elevada rigidesa.

Independentment del disseny a escollir quant major sigui l’alçada de la torre, major serà la producció d’energia, encara que s’ha de tenir en compte que augmentar l’alçada, augmenta el cost i la dificultat per a la instal·lació dels equips.

Així l’alçada òptima de la torre serà funció del cost per metre de torre, de la variació del vent amb l’alçada al lloc d’implantació i del preu de venda de l’energia.

La gòndola, ubicada en la part superior de la torre, és l’habitatge on es troben els elements elèctrics i mecànics necessaris per tal de convertir el gir del rotor en energia elèctrica.

Es troba unida a la torre per una corona dentada que permet l’orientació del rotor en la direcció del vent.

En la seva part exterior s’instal·la un anemòmetre i un penell connectats als sistemes de control de l’aerogenerador.

Les gòndoles es fabriquen en acer forjat i plaques de fibra de vidre.

El rotor és el conjunt de components d’un aerogenerador que giren fora de la gòndola. Està format principalment per tres components, que són: les pales, la boixa i el mecanisme de canvi de pas de les pales.

- **Boixa:**

 És l’element d’unió entre les pales i el sistema de rotació (eix). Les boixes es poden classificar segons siguin rígides o basculants.

 En els sistemes amb boixa rígida les pales es cargolen a la boixa i aquesta es fixa rígidament a l’eix de gir. Les pales es comporten respecte al sistema de gir com una biga en voladís que transmet totes les càrregues que rep directament al tren de potència.

 En els sistemes amb boixa basculant, la boixa està unida al tren de potència mitjançant un suport que li permet pivotar lliurement. Aquesta peça prem moviments d’angles menors a ±10% en direcció perpendicular al rotor respecte al pla de rotació. Aquest tipus de sistemes és utilitzat habitualment en aerogeneradors de dues pales.

- **Pales:**

 Les pales són els elements encarregats de transformar la velocitat del vent incident en moviment rotatori a l’eix.

 En les turbines ràpides un augment del nombre de pales suposa un increment del coeficient de potència màxim. El pas d’1 a 2 pales suposa un increment del 10%, de 2 a 3 pales un 3-4%, i de 3 a 4 només un 1%, per aquesta raó no és rentable utilitzar turbines de 4 pales.
En el funcionament dels aerogeneradors ràpids el perfil aerodinàmic és un dels paràmetres de disseny més determinants. Els perfils més utilitzats són els mateixos que s’utilitzen de forma generalitzada en la indústria aeronàutica.

El material més utilitzat en l’actualitat per a la construcció de les pales és la fibra de vidre amb resina de polièster. El seu principal avantatge és la versatilitat de fabricació i les seves bones propietats estructurals i de resistència a la fatiga. Tenen també un baix coeficient de dilatació i una reduïda conductivitat elèctrica el que fa que aquests materials siguin interessants per a la protecció del sistema contra els raigs.

- **Mecanisme de canvi de pas:**

La majoria d’aerogeneradors actuals incorporen dispositius capaços de fer girar la pala al voltant del seu eix longitudinal. Aquests dispositius tenen una funció doble, per una part controlar la potència i velocitat de gir del rotor i per una altre és capaç de frenar aerodinàmicament el sistema en cas d’avaria.

Existeixen diferents sistemes de canvi de pas explicats en l’apartat de classificació dels aerogeneradors segons el control de potència.

L’eix de baixa velocitat és el que es troba acoblat a la boixa. Gira directament a la velocitat de gir de les pales, provocada per la velocitat del vent incident.

En l’extrem oposat, l’eix de baixa velocitat es troba acoblat a la caixa multiplicadora.

La caixa **multiplicadora** és un element necessari per a tots aquells aerogeneradors que tenen un règim de gir diferent entre el rotor eòlic i el generador elèctric.

L’objectiu de la caixa multiplicadora es clar, augmentar les revolucions per minut que ofereix l’eix de baixa velocitat per transmetre a l’eix d’alta velocitat i d’aquesta manera adaptar la freqüència del generador a la de la xarxa sense que aquest hagi de tenir un nombre de pols molt elevat.

Un dels paràmetres de disseny de les caixes multiplicadores és la relació de transmissió, que és el quocient entre la velocitat de gir de l’eix ràpid i la del lent. Quant menor sigui aquesta relació menor serà la mida de la caixa i el seu cost. Per a reduir la relació de transmissió es pot disminuir la velocitat del generador augmentant el nombre de pols o augmentar la velocitat de gir de la turbina.

Actualment la reducció de la mida de la caixa no és un problema de disseny crític. Existeixen caixes multiplicadores d’elevada potència (2MW) i relació de transmissió (1:100) amb rendiments i fiabilitats molt elevats.

Els engranatges de les caixes poden ser rectes o helicoidals. Els engranatges rectes s’utilitzen en caixes multiplicadores d’eixos paral·lels mentre que els engranatges helicoidals, que tenen un disseny més sofisticat, s’utilitzen en caixes de tipus planetari i ofereixen una relació de multiplicació major. També és possible tenir caixes de multiplicació híbrids amb engranatges rectes i helicoidals.
Les turbinas necessiten almenys dues o tres etapes de multiplicació.

L’eix d’alta velocitat es troba acoblat a la caixa multiplicadora i al generador elèctric. Gira a la velocitat que li transmet la caixa multiplicadora, molt major que la de l’eix de baixa velocitat, per tal de no fer necessari la instal·lació d’un generador amb un nombre elevat de pols.

La funció principal del fre mecànic és mantenir bloquejat l’eix de gir durant les operacions de posada en marxa i manteniment de l’aerogenerador. La seva constitució física consisteix en un disc que gira solidari a l’eix de transmissió i unes sabates de fre que freguen amb el disc quan s’activen ja sigui per via elèctrica, hidràulica o mecànica.

A més a més de la funció de bloqueig alguns dissenys de frens mecànics s’utilitzen per contribuir al fre dinàmic del rotor eòlic durant el procés de parada d’emergència.

Utilitzar el fre mecànic per a contribuir als processos de parada dinàmica només està justificat en turbines de baixa o mitja potència. En màquines d’elevada potència (properes al MW) el fre mecànic no pot contribuir a la parada dinàmica ja que suposaria unes dimensions del disc de frenada excessives.

Aquest componen es pot ubicar tant en l’eix de baixa velocitat com en el d’alta. En l’eix d’alta velocitat la potència mecànica generada pel rotor es transmet amb una elevada velocitat de gir i un parell reduït, el que permet diàmetres de fre més reduïts. L’inconvenient principal d’aquest sistema és que les dents de la caixa multiplicadora estaran sotmesos a esforços durant les parades.

Instal·lar el fre mecànic en l’eix de baixa velocitat és apropriat per turbines de baixa potència, en turbines d’elevada potència aquesta ubicació provocaria unes dimensions excessives de fre.

El generador és l’element central del sistema elèctric dels aerogeneradors i l’element a partir del qual es dimensionen la resta d’elements i el sistema de control. Com a generador en les turbines de producció eòliques s’utilitzen quasi exclusivament les màquines de corrent altern per la seva millor relació potència/pes, la seva capacitat de produir a tensions elevades, i pels seus menors costos de manteniment front les màquines de corrent continu.

Existeixen dos tipus bàsics de generadors de corrent altern: màquines asíncrones o d’induccion, i màquines síncrones.

En aquesta guia teòrica no es pretén donar a conèixer en profunditat cadascuna d’aquestes màquines, sinó, mostrar el seu ús en els aerogeneradors.

- Generador asíncron en sistemes eòlics:

El principal inconvenient del generadors asíncrons és la necessitat de consumir energia reactiva per a la seva excitació magnètica. Com a solució a aquest problema el procediment habitual és instal·lar una bateria de condensadors ja sigui en bornes de la màquina o en el punt de connexió a la xarxa.
La constitució més senzilla de generador asíncron és el generador asíncron amb rotor de gàbia. En aquest tipus de generador el rotor està constituït per una sèrie de barres de coure o alumini connectades en curtscircuit per dos anells. L’esquema de la instal·lació és el següent:

Figura 10. Generador d’inducció amb compensador de reactiva
(Font:es.libros.redsauce.net.)

Una variant d’aquest tipus d’instal·lació és la utilització d’un rotor debanat que permet afegir resistències en el rotor per poder variar la velocitat en un petit rang (10% respecte a la de sincronisme), controlada per un convertidor electrònic.

Figura 11. Generador d’inducció de rotor bobinat amb control de resistència variable (Font:es.libros.redsauce.net.)

La tercera variant en quan a la utilització de generadors asíncrons és aquella que permet denominar al sistema com de velocitat variant. En aquest cas es tracte d’un generador asíncron doblement alimentat i amb convertidor electrònic entre el rotor i la xarxa.
Figura 12. Generador d’inducció doblement alimentat (Font: es.libros.redsauce.net.)

Un altre sistema denominat de velocitat variant és la utilització d’un generador asíncron de rotor de gàbia, amb l’estator connectat a la xarxa a través d’un convertidor. Així la sortida del generador a freqüència variable, es connecta a un convertidor format per rectificador i inversor i, aquest, es connecta a la xarxa a la seva freqüència.

Figura 13. Generador d’inducció de rotor de gàbia amb convertidor (Font: es.libros.redsauce.net.)

- Generador síncron en sistemes eòlics:

El principal problema d’utilitzar generadors síncrons en els sistemes eòlics connectats directament a la xarxa és que, al ser de freqüència constant, la velocitat de gir també ha de ser-ho. Això provoca esforços mecànics importants al sistema de transmissió mecànica i oscil·lacions de la potència elèctrica generada. Per això els generadors síncrons s’utilitzen connectats a la xarxa mitjançant un convertidor de freqüència que permet independitzar la freqüència del generador de la de la xarxa, i que aquest treballi a velocitat variable.
Un primer esquema de muntatge utilitzant generador síncron, és el format per un generador síncron multipol i el convertidor electrònic. La utilització d’un generador amb elevat nombre de pols ofereix la possibilitat de reduir les etapes de multiplicació de la caixa multiplicadora o inclús eliminar-la, encara que augmenta les mides de la màquina i el seu cost. És necessària també la utilització d’un petit convertidor per a l’excitació del debanat en corrent continu.

Figura 14. Generador síncron multipol amb convertidor i excitació del rotor a través del petit convertidor. (Font:es.libros.redsauce.net.)

Una altra possibilitat és la utilització d’un generador síncron d’imants permanents. En aquest cas no es necessària l’alimentació del circuit inductor ja que aquest està format per imants. El problema d’aquest muntatge és que les màquines d’imants permanents no poden oferir grans potències.

Figura 15. Generador síncron d’imants permanents amb convertidor. (Font:es.libros.redsauce.net.)

El mecanisme d’orientació és el dispositiu que gira automàticament la gòndola de l’aerogenerador per posicionar-la en cada moment en la posició en la que la direcció del vent incident és la més perpendicular al pla de gir de les pales.

Els mecanismes d’orientació es poden dividir entre actius i passius. En els sistemes passius s’utilitza un penell o molins auxiliars per orientar l’aerogenerador, encara que com s’ha vist anteriorment no s’utilitzen per a turbines de producció d’energia.
Els sistemes d’orientació actius utilitzen motors elèctrics o sistemes hidràulics per efectuar el moviment de la gòndola. Aquests sistemes són els utilitzats per aerogeneradors ubicats a sobrevent. Normalment estan formats per dos motors, un de gir a dretes i un altre de gir a l’esquerre. Els motors accionen un pinyó que mou l’engranatge tipus corona sobre el que es troba unida rígidament la gòndola.

El mecanisme d’orientació actiu acostuma a dur incorporat un dispositiu per a determinar la torsió dels cables de potència que baixen des de la sortida del generador a la base de la torre.

El controlador d’una turbina eòlica consta de diversos ordinadors que supervisen les condicions de la turbina i recullen estadístiques sobre el seu funcionament.

El controlador electrònic governa el sistema d’orientació i possibilita la transmissió de dades de la turbina a un centre de control on es pot realitzar el monitoratge de tot el parc.

La unitat de refrigeració, és l’element encarregat de la refrigeració del generador elèctric. Per a la refrigeració del generador elèctric el més habitual és utilitzar ventiladors elèctrics.

La unitat de refrigeració conté a més a més una unitat de refrigeració emprada per a refrigerar l’oli de la caixa multiplicadora.

L’anemòmetre i el penell s’utilitzen per a mesurar la velocitat i la direcció del vent. Les senyals electròniques de l’anemòmetre són utilitzades pel controlador electrònic per a connectar l’aerogenerador quan la velocitat del vent supera el mínim necessari (5 m/s habitualment) i aturar la rotació de les pales quan la velocitat del vent excedeix el límit (25 m/s habitualment).

Els senyals del penell són utilitzats pel controlador electrònic per a conèixer la direcció del vent i orientar així l’aerogenerador.

3.4.4. La potència del vent

Per a determinar la potència extraïble del vent per a la generació d’energia elèctrica és necessari realitzar un procés de càlcul que es presenta en el present document.

L’energia eòlica és la transformació de l’energia cinètica del vent en energia mecànica que acciona un generador elèctric.

És necessari per tant determinar l’energia cinètica del vent per a conèixer la seva potència i, posteriorment, a través del càlcul del factor de potència de l’aerogenerador a instal·lar, determinar la potència elèctrica que pot oferir.

La potència teòrica, segons l’alçada, continguda en una massa de vent al seu pas per una turbina ve determinada per la seva energia cinètica i, per tant, per la seva velocitat.
Anteriorment s’ha pogut comprovar que la velocitat del vent augmenta amb l’alçada, de manera, que l’energia cinètica i conseqüentment la potència, també augmentaran a major alçada.

L’energia cinètica d’una massa de vent es pot determinar amb l’expressió:

\[E_c = \frac{1}{2} m V_w^2 \]

\(E_c \) = Energia cinètica del vent (J)
\(m \) = Massa (Kg)
\(V_w \) = Velocitat del vent (m/s)

Tenint en compte que la massa d’aire per unitat de temps pot ser expressada com:

\[m = \rho A V_w \]

\(\rho \) = Densitat de l’aire (Kg/m³)
\(A \) = Àrea que abracen les pales de la turbina (m²)

Així la potència teòrica del vent a l’accionar la turbina:

\[P = \frac{1}{2} \rho A V_w^3 \]

La massa d’aire, al travessar la turbina, descelera perdent energia cinètica, de manera que surt del seu pas pel generador a una velocitat inferior de la inicial.

Degut això tota la potència teòrica continguda en el vent no és aprofitable per la generació d’energia elèctrica.

La potència màxima que es podria extraure del vent al seu pas per un aerogenerador ideal ve determinada pel límit de Betz.

El límit de Betz estableix que la potència màxima que es pot extraure del vent és un 59,26% (16/27) de la potència teòrica que contenia.

Així doncs la potència màxima de l’aerogenerador és:

\[P_{max} = \frac{1}{27} \rho \frac{\pi}{4} D^2 V_w^3 \]

\(D \) = Diàmetre de les pales de la turbina (m)

El factor de potència és un paràmetre adimensional que permet calcular la potència real que pot produir un aerogenerador.

El seu valor màxim és el marcat pel límit de Betz, de manera que:
\[
C_p = \frac{P_{\text{max}}}{\frac{1}{2} \rho \pi D^2 V_w^3} = \frac{16}{27} = 59.26\%
\] (36)

El coeficient de potencia depèn de paràmetres molt diversos com són, la viscositat i densitat de l’aire (\(\mu, \rho\)), la velocitat del vent (\(V_w\)), el diàmetre de les pales així com la velocitat angular a la que giren (\(D, \Omega\)), la rugositat de la superfície de les pales (\(k\)), l’angle de pas de les pales (\(\beta\)) i l’angle d’orientació (\(\psi\)).

Tot i això es poden fer una sèrie de simplificacions de manera que el factor de potència sigui funció, únicament, de la velocitat específica (\(\lambda\)) i de l’angle de pas de les pales (\(\beta\)).

La velocitat específica es defineix com el quocient entre la velocitat de la punta de la pala i la velocitat del vent:

\[
\lambda = \frac{\Omega \cdot (D/2)}{V_w}
\] (37)

L’angle de pas de la pala (\(\beta\)) indica la posició angular de les pales respecte el seu eix, de manera que pot modificar la superfície incident amb el vent, controlant així la potència.

Així el factor de potència seria:

\[
C_p = f(\beta, \lambda)
\] (38)

Tots aquests paràmetres es poden caracteritzar segons la tipologia de l’aerogenerador podent conèixer, així, el factor de potència segons el tipus de màquina i la velocitat específica.

Val a dir que la informació sobre el factor de potència de cada aerogenerador és aportada pel propi fabricant en forma de corbes o taules de valors segons la velocitat del vent.

La potència útil per a la generació elèctrica s’obtindrà de multiplicar el factor de potència per la potència màxima del vent.

\[
P_u = P \cdot C_p
\] (39)

Posteriorment a aquests càlculs s’haurà de tenir en compte les pèrdues dels diversos elements que formen l’aerogenerador com poden ser, les pèrdues per fregament en l’eix, les pèrdues a la multiplicadora, o les pèrdues pròpies del generador, totes elles especificades pel fabricant.

3.4.5. Elecció d’un aerogenerador

Coneguts els diferents tipus d’aerogeneradors existents i els seus components, el següent pas en el disseny d’un parc eòlic és l’elecció de l’aerogenerador que es pretén instal·lar.
Segons el resultat de l’estudi del recurs eòlic de la zona on es vol implantar el parc es determinen les característiques de l’aerogenerador a escollir.

Els resultats de l’estudi determinaran:

- L’alçada més adient, el que determinarà l’alçada de la torre de l’aerogenerador.
- La potència aprofitable a aquesta alçada, el que determinarà la potència nominal del generador.
- La variabilitat del vents, el que determinarà la tecnologia de generació a implantar.

3.4.6. Energia produïda per un aerogenerador

Per a calcular l’energia produïda per un aerogenerador aïllat és necessari disposar de la següent informació:

- Corba de potència de l’aerogenerador

La corba de potència d’un aerogenerador és aquella que ens proporciona la informació sobre la potència que proporcionarà la màquina depenent de la velocitat del vent incident al rotor eòlic.

En aquest tipus de corbes es pot observar el valor de la velocitat per sota de la qual l’aerogenerador no produeix energia així com el valor de velocitat nominal.

La velocitat nominal és aquella per sobre de la qual l’aerogenerador no augmenta la seva potència si no que segueix produint el mateix. És evident que tenint en compte la corba d’un aerogenerador no tindrà sentit augmentar l’alçada de la torre dissenyada per arribar a valors de velocitat per sobre de la nominal ja que la producció serà la mateixa.

Corba de duració del vent a l’emplaçament

La corba de duració del vent ens dóna informació sobre el nombre d’hores anuals que es disposa d’una velocitat. Marca els valors de velocitat del vent en relació a les hores totals que es disposa d’aquella velocitat.

Figura 17. Corba de duració del vent. (Font: Sistemas eólicos de producción de energía eléctrica)

Una vegada es disposa de la informació és fàcilment estimable l’energia anual que produirà la màquina.

S’ha de suposar que la màquina s’orienta i canvia de pas molt ràpidament, de manera que cada velocitat del vent produeix la potència indicada a la corba de potència.

Creuant la corba de potència amb la gràfica de duració del vent és possible determinar la corba de duració de potència:
La integral de corba de duració de potència proporciona el valor d'energia generada:

\[E = \int_0^{8760} P dt \] \hspace{1cm} (40)

\[E = \text{Energia (kWh)} \]

\[P = \text{Potència (kW)} \]

Una forma usual d’indicar l’energia generada és mitjançant el factor de capacitat o d’utilització:

\[FC = \frac{E}{P_n \cdot 8760} \] \hspace{1cm} (41)

Un factor d’utilització superior al 25% es considera acceptable, mentre que un factor superior al 30% es considera bo.

Quan es disposen diversos aerogeneradors formen un parc eòlic i especialment, quan s’ubiquen en terreny no uniforme i interferint entre sí, és necessari tenir en compte que tant la direcció del vent com la seva intensitat poden variar d’una turbina a una altre.
Existint un anemòmetre en un punt del parc i tenint en compte els efectes d’esteles i del terreny, seria possible calcular per a cada velocitat i direcció mesurades, els valors de velocitat i direcció en cada punt del parc, concretament en la boixa de cada turbina. És a dir, a partir de la rosa dels vents de l’indret de mesura, es pot obtenir la rosa dels vents de cada emplaçament. Així es pot obtenir per a cada direcció del vent una corba de cada màquina, referida a la velocitat de l’anemòmetre. Coneguda la rosa dels vents del punt on està l’anemòmetre i ponderant sobre totes les direccions del vent, s’obtindria la corba del parc, referida a la velocitat mesurada en l’anemòmetre.

En el cas d’un parc eòlic sobre terreny uniforme i amb distància suficient entre els diversos aerogeneradors, es pot considerar una aproximació bastant correcte el sumatori d’energies produïdes de forma individual en cada turbina, calculat en l’apartat anterior.

3.5. Instal·lacions d’interconnexió

3.5.1. Descripció genèrica
La instal·lació elèctrica d’un parc eòlic està formada fonamentalment per:

- **Instal·lació elèctrica de Baixa Tensió:**

 On es troben ubicades les línies entre generador i transformador, així com les línies de serveis auxiliars i el transformador de BT/MT. En la present guia docent es planteja el càlcul de la línia principal entre generador i transformador.

- **Instal·lació elèctrica de Mitja Tensió:**

 Formada per la totalitat de les línies de distribució del parc en Mitja Tensió que uneixen els transformadors de BT/MT amb la subestació.

- **Subestació:**

 On es troba el transformador de MT/AT.

Per a la determinació de la secció de tots els conductors de la instal·lació es seguiran els tres criteris reglamentaris:

- **Criteri d’intensitat màxima admissible:**

 La temperatura del conductor del cable, treballant a plena càrrega i en règim permanent, no podrà superar en cap moment la temperatura màxima admissible assignada dels materials utilitzats per l’aïllament del cable. Aquesta temperatura s’especifica a les normes particulars dels cables i acostuma a ser de 70ºC per a cables amb aïllament termoplàstic i de 90º C per a cables amb aïllament termoestables.

 Per a la determinació de la intensitat nominal del conductor s’.utilitza l’expressió:

 \[
 I_n = \frac{P_n}{\sqrt{3}V_n \cdot \cos \varphi}
 \]

 (42)
\[I_n = \text{Intensitat nominal (A)} \]
\[V_n = \text{Tensió nominal (V)} \]
\[P_n = \text{Potència nominal (W)} \]
\[\cos \varphi = \text{Factor de potència} \]

Criteri de caiguda de tensió:

La circulació de corrent a través dels conductors, ocasiona una pèrdua de potència transportada pel cable, i una caiguda de tensió o diferència entre les tensions en l’origen i l’extrem de la canalització. Aquesta caiguda de tensió ha de ser inferior als límits marcats pel Reglament en cada part de la instal·lació, per a garantir el funcionament dels receptor alimentats pel cable.

El càlcul de la caiguda de tensió es determina mitjançant:

\[
\Delta V_{III} = \sqrt{3} \cdot I \cdot L \cdot (R \cos \varphi + X \sin \varphi) \quad (43)
\]

\(R \) = resistència del conductor a 90°C (Ω/Km)
\(X \) = reactància del conductor (Ω/Km)
\(L \) = longitud (Km)
\(I \) = intensitat (A)

Criteri de la intensitat de curtcircuit:

La temperatura a la que por arribar el conductor del cable, com a conseqüència d’un curtcircuit o sobreintensitat de curta durada, no pot sobrepassar la temperatura màxima admissible del cable. Aquesta temperatura s’especifica a les normes particulars dels cables i acostuma a ser de 160°C per a cables amb aïllament termoplàstic i 250°C per a cables amb aïllament termostable.

La secció mínima segons el corrent de curtcircuit i el temps d’actuació de les proteccions es calcula:

\[
s = \frac{I_{cc} \cdot \sqrt{I}}{K} \quad (44)
\]

\(s \) = Secció del conductor (mm²)
\(I_{cc} \) = Intensitat de curtcircuit (A)
\(I \) = Temps d’actuació de les proteccions (s)
\(K \) = Constant que depèn del material conductor (coure=142, alumini=93)
3.5.2. *Estudi del curtcircuit*

Un curtcircuit es manifesta per la disminució sobtada de la impedància d’un circuit determinat, el que provoca un augment del corrent. En sistemes elèctrics trifàsics es poden produir diversos tipus de defectes:

Defecte simètric:
- Trifàsic

Defecte asimètric:
- Monofàsic a terra
- Bifàsic
- Bifàsic a terra.

Cadascun d’aquest defectes genera un corrent d’amplitud definida i característiques específiques.

En els sistemes de distribució, per avaluar els corrents de defecte, només es calculen els corrents de curtcircuit trifàsic i monofàsic.

L’estudi del curtcircuit s’inicia partint d’unes dades inicials:
- Potencia de curtcircuit de la xarxa a la que es connecta el parc
- Tensió de curtcircuit dels transformadors de BT/MT
- Tensió de curtcircuit del transformador de la subestació
- Consideració o no de les impedàncies dels conductors

El següent pas és obtenir un esquema unifilar de la instal·lació i decidir els punts d’avaluació de curtcircuits segons els nivells de tensió presents a la instal·lació.

Els punts d’estudi més habituals són la línia entre generador i transformador (690V de tensió nominal), les línies d’interconnexió del parc (MT), i la sortida del transformador de la subestació en AT.

Es passen a calcular, seguidament, les impedàncies de tots els components de la instal·lació considerats a l’estudi per a cada nivell de tensió.

Es determina el circuit equivalent de la instal·lació per a cada nivell de tensió, ubicant en el punt de curtcircuit una font de tensió de valor:

\[\frac{c \cdot U_n}{\sqrt{3}} \] \hspace{1cm} (45)

\(c \) = Factor de tensió. Per a nivells d’alta tensió el seu valor és 1,1, per a baixa tensió es 1,05.

\(U_n \) = Nivell de tensió \((V)\)
Es calculen els corrents simètric i asimètric.

Les impedàncies dels diversos components de la instal·lació es calculen per a cada nivell de tensió.

Xarxa

La impedància de la xarxa a la que es connecta el parc es determina:

\[
|Z_{xarxa}| = c \cdot \frac{U_{nQ}^2}{S_{kQ}}
\]

(46)

\[c\] = Factor de tensió. Per a nivells d’alta tensió el seu valor és 1,1

\[U_{nQ}\] = Tensió nominal (V)

\[S_{kQ}\] = Potència aparent de la xarxa (VA)

Per a calcular \(R_{xarxa}\) i \(X_{xarxa}\) es té en compte:

\[X_{xarxa} = 0,995Z_{xarxa}\]

(47)

\[R_{xarxa} = 0,1X_{xarxa}\]

(48)

Transformador de la subestació

\[
|Z_{Tsub}| = \frac{U_{kr}}{100} \cdot \frac{U_{rT}^2}{S_{rT}}
\]

(49)

\[
|R_{Tsub}| = \frac{U_{kr}}{100} \cdot \frac{U_{rT}^2}{S_{rT}}
\]

(50)

\[U_{kr}\] = Tensió de curtcircuit del transformador (%)

\[U_{rT}\] = Tensió resistiva de curtcircuit del transformador (pèrdues de curtcircuit)

\[U_{rT}\] = Tensió nominal (V)

\[S_{rT}\] = Potència aparent del transformador (VA)

Transformador principal de l’aerogenerador

Es segueix la mateixa expressió utilitzada en el transformador de la subestació tenint present que en aquest cas la tensió de curtcircuit del transformador serà la corresponent al transformador de BT/MT.

Generador

El tractament del generador varia segons es tracti d’un generador asíncron o síncron.

En el cas de generador asíncron, aquest es tracta com a motor asíncron de manera que la seva impedància bé determinada per:
\[|Z_G| = \frac{I_{NM}^2}{I_{aM}} \cdot \frac{U_{NM}^2}{S_{NM}} \]

\(I_{NM} \) = Intensitat nominal del motor (A)
\(I_{aM} \) = Corrent inicial d’arrencada del motor (A)
\(U_{NM} \) = Tensió nominal del motor (V)
\(S_{NM} \) = Potència aparent del motor (VA)

Es segueixen les següents relacions:

Per a motors amb una potència superior a 1MW:

\[R_G = 0,1X_G \]
\[X_G = 0,995Z_G \]

Per a motors amb una potència inferior a 1MW:

\[R_G = 0,15X_G \]
\[X_G = 0,989Z_G \]

Si es desitja calcular la impedància d’un generador síncron s’utilitza la següent expressió:

\[\left| X_d^* \right| = \frac{x_d^*}{100\%} \cdot \frac{U_{NG}^2}{S_{NG}} \]

\(x_d^* \) = Reactància inicial relativa
\(U_{NG} \) = Tensió nominal del generador (V)
\(S_{NG} \) = Potència aparent del generador (VA)

\[Z_G = R_G + jX_d^* \]

Per a determinar \(R_G \):

Per a generadors amb tensió nominal major a 1kV i potència aparent major a 100MVA:

\[R_G = 0,05X_d^* \]

Per a generadors amb tensió nominal major a 1kV i potència aparent menor a 100MVA:

\[R_G = 0,07X_d^* \]
Per a generadors amb tensió nominal menor a 1kV:

\[R_G = 0,15X_d \]

(60)

El **corrent inicial simètric** de curtcircuit es produeix en el cas d’un defecte trifàsic.

Per a realitzar el seu càlcul es necessari determinar la impedància equivalent del circuit i dividir el seu valor pel de la font de tensió equivalent, és a dir:

\[I_k^- = \frac{cU_n}{\sqrt{3}Z_{eq}} \]

(61)

El **corrent màxim asimètric** de curtcircuit es produeix en el cas d’un defecte monofàsic a terra.

Es calcula realitzant el sumatori dels corrents asimètrics del diversos components de la instal·lació.

\[I_{si} = x \cdot \sqrt{2} \cdot I_{k}^- \]

(62)

El paràmetre x té un valor diferent depenent del component de la instal·lació que estigui aportant el corrent en cada cas. Per a la seva determinació es segueix el següent grafic:

Figura 19. Factor x (Font: corrientes de cortocircuito en redes trifásicas)

El **corrent simètric de tall** permet obtenir el valor del poder de tall de les proteccions a instal·lar.
Es calculen les aportacions del diversos equips per a, posteriorment, realitzar el sumatori i obtindre el valor del corrent simètric de tall.

\[I_{ai} = \mu \cdot q \cdot I_{ki} \]

(63)

Els paràmetres \(\mu \) i \(q \) depenen del component analitzat en cada cas.

Figura 20. Factor \(\mu \) (Font: corrientes de cortocircuito en redes trifásicas)

Figura 21. Factor \(q \) (Font: corrientes de cortocircuito en redes trifásicas)
3.5.3. *Instal·lacions de BT/MT*

La instal·lació elèctrica de Baixa Tensió la componen els circuits de potència (línies entre generador i transformador) i els circuit de control i serveis auxiliars.

La instal·lació principal de Baixa Tensió està formada per la línia que uneix la sortida del generador ubicat a la gòndola, amb l’entrada del transformador de BT/MT.

La línia entre generador-transformador estarà usualment dividida en dos trams, la línia que uneix el generador amb l’armari de control de la maquina (ubicat a la gòndola) i la línia que uneix el quadre de control de la maquina amb el transformador.

La línia d’unió entre el generador i el quadre de la maquina tindrà el menor nombre de conductors possible de manera que la seva secció serà la major possible.

Els cables entre el quadre i el transformador han d’oferir una flexibilitat que permeti el funcionament adequat del sistema d’orientació. Per això, s’utilitzen cables amb una rigidesa mecànica classe 5 ó 6 i una secció no superior a 185 mm².

Dins de la instal·lació elèctrica de baixa tensió s’admeten diferents configuracions segons la utilització del transformador de BT/MT:

- Un transformador per a cada aerogenerador:

 En aquest cas cada generador disposa del seu propi transformador de BT/MT de manera que es minimitzen les pèrdues, però augmenta el cost econòmic.

 El transformador pot estar ubicat a la mateixa torre de l’aerogenerador o en un edifici annex a aquesta.

- Un transformador per a diversos aerogeneradors:

 En aquest cas un transformador de BT/MT dóna servei a un nombre determinat de generadors de manera que disminueix el cost econòmic de la instal·lació però augmenten significativament les pèrdues de energia.

Usualment per a generadors de potència inferior a 500kW un transformador de BT/MT dóna servei a diversos generadors, mentre que, per a potències superior a 500kW, cada aerogenerador disposa del seu propi transformador de BT/MT ja sigui dins de la torre com en un edifici annex.

En tota la instal·lació elèctrica de baixa tensió els conductors compliran les següents condicions:

- Els conductors seran de coure o alumini, aïllats, i amb una tensió assignada de 0,6/1kV.

- Els cables seran no propagadors d’incendi i amb emissió de fums i opacitat reduïda.

- La secció dels cables serà uniforme en tot el seu recorregut.

- La màxima caiguda de tensió serà de 1,5%.
Per a la realització dels càlculs de les seccions de les línies de Baixa Tensió es seguiran els tres criteris reglamentaris expressats a la descripció genèrica.

Per a la realització dels càlculs de les seccions de les línies de Baixa Tensió es seguiran els tres criteris reglamentaris expressats a la descripció genèrica.

Per al càlcul de les intensitats màximes admissibles es tindrà en compte la taula 1 de la ITC-BT-19 del reglament electrotècnic de baixa tensió, el coeficient de sobredimensionament de 1,25 segons ITC-BT-40, així com els factors de correcció establiments a la ITC-BT-07:

- Factor de correcció per a temperatura ambient diferent de 40ºC

3.5.4. Instal·lacions de MT/AT

La connexion dels aerogeneradors entre sí i a la subestació del parc eòlic es realitza mitjançant una xarxa de mitja tensió subterrània per evitar l’impacte ambiental que tindria una xarxa aèria.

Els cables utilitzats seran unipolars amb aïllament de material sintètic: polietilè reticulat o etilè propilè.

Les seccions i les capes protectores corresponen, en general, al cable estàndard de mitja tensió segons la recomanació UNESA 3305, amb seccions del conductor de 95, 150, 240 i 400 mm², pantalla de filferros de coure de 16 mm² o 25 mm² i coberta exterior de poliolefina.

Per el càlcul de les seccions del conductors es seguiran els tres criteris reglamentaris indicats a la descripció genèrica.

El traçat de la xarxa de MT depèndrà de la disposició dels aerogeneradors.

Per a l’elecció dels conductors es seguirà la norma UNE 20435 “Guia per a l’elecció de cables d’alta tensió”.

La tensió nominal del cable depèndrà de la tensió nominal de la xarxa a la que està connectat i de les característiques de les seves proteccions. La norma UNE 20435/2 aporta una taula que permet seleccionar la tensió nominal del cable en funció de la tensió nominal de la xarxa i de la categoria del nivell d’aïllament.

La màxima caiguda de tensió serà de 5%.

Els cables s’instal·laran sota tub o directament enterrats.

Les canalitzacions de xarxa de Mitja Tensió tindran una profunditat mínima de 0,8 metres. Seguiran el traçat més rectilini possible i es tindran en compte els radis mínims de curvatura que poden suportar els cables sense deteriorar-se.

La rasa tindrà l’amplada suficient per a permetre el treball d’un home. Sobre el fons de la rasa es col·locarà una capa de sorra o d’un material amb característiques equivalents d’espessor mínim de 5cm. Per sobre del cable es disposarà d’una altre capa de sorra de 10cm d’espessor. Per la rasa també discorrerà el conductor d’unió de les terres dels aerogeneradors.

En un cable de mitja tensió les pèrdues significatives es produeixen en el conductor per efecte Joule, les pèrdues dielèctriques i en les pantalles es poden depreciar.
L’expressió pel càlcul de pèrdues per efecte Joule és:

\[P_{\text{PERDUES}} = 3 \cdot R \cdot L \cdot I^2 \] \hspace{1cm} (64)

\(R \) = Resistència de la línia (Ω/km)
\(L \) = Longitud de la línia (km)
\(I \) = Intensitat de la línia (A)

3.5.5. \textit{Centres de transformació i subestacions}

El transformador de BT/MT estarà ubicat dins de la torre de cada aerogenerador o en un edifici annex on podrà donar servei a un únic aerogenerador o a més d’un.

\textbf{Taula 4. Comparació entre centres de transformació interiors o exteriors a la torre}

<table>
<thead>
<tr>
<th></th>
<th>Dins de la torre</th>
<th>Fora de la torre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impacte visual</td>
<td>No</td>
<td>Si</td>
</tr>
<tr>
<td>Pèrdues a la xarxa de BT</td>
<td>Menors</td>
<td>Majors</td>
</tr>
<tr>
<td>Ample de la porta de la torre</td>
<td>Condiciona dimensions d’equips</td>
<td>No influeix</td>
</tr>
<tr>
<td>Disponibilitat d’espai</td>
<td>Condiciona dimensions d’equips</td>
<td>Major</td>
</tr>
<tr>
<td>Manteniment</td>
<td>Necessitat de desmontar per a substituir</td>
<td>Més fàcil</td>
</tr>
</tbody>
</table>

Serà necessari, doncs, determinar la utilització d’un transformador per generador o bé d’un transformador per a diversos aerogeneradors.

El transformador més utilitzat en els parc eòlics espanyols és del tipus sec, amb una relació de transformació de 0,69/20kV i una connexió triangle estrella Dy11.

Per a la determinació de la potència aparent del transformador i Suposant transformador ideal:

\[\frac{V_{LP}}{V_{LS}} = \frac{I_{LS}}{I_{LP}} \] \hspace{1cm} (65)

\[S = \sqrt{3}V_{LS} \cdot I_{LS} \] \hspace{1cm} (66)

\(V_{LP} \) = tensió de línia en el primari
\(V_{LS} \) = tensió de línia en el secundari
\(I_{LP} \) = Intensitat de línia en el primari
\(I_{LS} \) = Intensitat de línia en el secundari
\(S \) = potencia aparent del transformador
La subestació d’interconnexió de la xarxa de mitja tensió del parc eòlic amb la xarxa d'alta tensió de la companyia sol ser de tipus mixt interior-intempèrie, prevista per a ampliacions futures. La seva composició és: cables o embarrats de MT, cel·les de MT, transformador AT/MT i cel·les d’interior (tall, aïllament, protecció dels transformadors de mesura i protecció).

Segons el transformador a instal·lar es determinaran les dimensions de l’edifici de la subestació així com de la ventilació.

El transformador de MT/AT més utilitzat és el de tipus submergit en dielèctric líquid, amb una relació de transformació de 20/220kV i una connexion Yd11.

Per a la determinació de la potència aparent del transformador es segueixen les mateixes expressions indicades anteriorment per a la determinació de la potència dels transformadors de BT/MT.

3.5.6. Proteccions

En la instal·lació principal de Baixa Tensió (connexió generador-transformador) serà necessària la instal·lació d’un interruptor automàtic principal i d’un interruptor automàtic del generador.

L’interruptor automàtic principal dóna servei, i ofereix la protecció magnetotèrmica, a la línia del generador i la dels serveis auxiliars, i està ubicat al quadre de protecció ubicat a la base de la torre.

L’interruptor automàtic del generador dóna servei a la línia del generador i està ubicat al quadre de control de la maquina a la gòndola.

L’elecció de l’interruptor automàtic més adequat està basat en l’ajust de les corbes de dispar i la selecció dels paràmetres de ruptura: poder assignat de tall últim en curtcircuit, poder assignat de tall de servei en curtcircuit i la sol·licitació tèrmica.

Els criteris de selecció de les proteccions seran:

- La intensitat del dispositiu es trobarà entre la intensitat nominal de la línia i la intensitat màxima admissible.
- El poder de tall de la protecció ha ser major a la intensitat de curtcircuit màxima que es pugui produir.
- El temps de tall de les proteccions ha de ser inferior al temps que el corrent de curtcircuit provoqui un augment de la temperatura per sobre dels límits del conductor.

Les proteccions de les línies de Baixa Tensió es trobaran ubicades en un quadre de proteccions situat a una alçada de entre 1,4 i 2 m segons la ITC-BT-17.

La protecció de la part de BT del centre de transformació depèn de la ubicació d’aquest. En els situats a l’interior de la torre, degut a la curta longitud del cable que uneix el quadre de BT i el transformador, a vegades no es col·loca una altra protecció. L’alternativa és instal·lar un interruptor automàtic de caixa modelada situat al quadre de BT. Aquest interruptor pot estar enclavat elèctricament amb l’interruptor de protecció del transformador en MT i va equipat amb bobina de dispar i protecció diferencial amb ajust de sensibilitat.
Per a la protecció en MT s’utilitza un interruptor-seccionador que protegeix el transformador contra sobrecàrregues, associat amb un fusible que realitza la protecció contra curtcircuits.

Així mateix es disposa d’un seccionador i d’un parallamps.

Les celes modulars dissenyades a tal efecte oferiran la protecció necessària.

Els criteris a seguir per a la determinació de les característiques de les proteccions seran els presentats anteriorment.

Les celes típiques utilitzades en els centres de transformació dels aerogeneradors de potències mitges són de distribució secundària, 24kV i 36kV de tensió nominal i valor eficaç d’intensitat de curtcircuit 1s de 16kA i 20kA.

En els centres de transformació interiors de torre es poden utilitzar celes modulars o compactes. Les modulars són lleugerament més cares, però tenen avantatges en les accions de manteniment al tenir menors dimensions i, en cas d’avaria d’una posició, no és necessària la substitució de tot el conjunt.

Normalment són d’aïllament de SF6 degut a la reducció en dimensions respecte a l’aïllament amb aire.

L’esquema de connexió en MT d’un aerogenerador depèn de la seva posició en la xarxa interna del parc. Existeixen en general dues posicions: aerogenerador intermedi i aerogenerador final de línia.

Així les celes més habituals són: per a aerogenerador intermedi 0L+1L+1P (entrada de línia, protecció de la línia i protecció del transformador), i per a aerogenerador final de línia 0L+1P (entrada de línia i protecció del transformador)

![Figura 22. Cela 0L+1L+1P i 0L+1P (Font:Sistemas eólicos de producció de energia eléctrica)](image)

La protecció del transformador de la subestació a la part de Mitja Tensió consistirà en protecció contra sobrecàrregues i curtcircuits, protecció direccional del neutre amb reenganxat incorporat. Aquestes proteccions permeten detectar faltes trifàsiques i monofàsiques en cada línia d’aerogeneradors i disparen
l’interruptor automàtic de la línia de MT. El relé direccional del neutre es retarda per esperar a una possible autoextinció de la falla.

Les proteccions del transformador de la part d’Alta Tensió són:

- Interruptor automàtic+fusibles
- Parallamps
- Relé diferencial que dispar a ambdós interruptors de AT i MT simultàniament.
- Relé de sobrecàrrega i curtcircuit de fases i neutre amb reenganxat tant en AT com en MT, disparant cada un l’interruptor automàtic del seu nivell de tensió
- Relé de dispar i rearraixament manual activat per la protecció diferencial i el relé de sobrecàrregues i curtcircuits de fases i neutre de la part de MT i per la protecció amb transformador de posta a terra, si existeix.

Així mateix es disposa de dos transformadors d’intensitat i dos de tensió a la cela de mesura de AT.

3.6. Xarxes de terra

3.6.1. Aspectes generals

La xarxa de terres és una part essencial en les instal·lacions elèctriques i s’implanta amb l’objectiu de:

- Limitar la tensió que amb respecte a terra puguin presentar les masses metàl·liques de la instal·lació.
- Permetre l’actuació de les proteccions
- Eliminar o reduir el risc que suposa el que en una avaria en el material utilitzat pugués fer transferir a la BT la tensió existent en AT.

En la xarxa de terres es diferencien dues instal·lacions:

- Xarxa de terres de protecció:
 A la xarxa de terres de protecció es connecten les parts metàl·liques que normalment no estan sotmeses a cap tensió.

- Xarxa de terres de servei:
 Posta a terra d’un element determinat del sistema per a permetre el seu funcionament. Principalment comprèn la posta a terra del neutre del transformador i del parallamps.

Les xarxes de terra de la instal·lació estaran formades per conductor nu enterrat i elèctrodes, i compliran amb les següents consideracions:

- Els conductors seran de coure o acer galvanitzat
- Els elèctrodes (piques) estaran constituïts preferentment per barres de coure amb una longitud mínima de 2 metres.

- Els elements de la instal·lació mantindran les seves característiques inalterables.

- La connexió del conductor de terra amb la presa de terra s’efectuarà de manera que no hi hagi perill de afluir-se.

- La secció mínima del conductor principal de la terra de protecció serà de 35mm2 en coure o de 100mm2 en acer galvanitzat.

- La secció del conductor de la terra de servei serà de 50mm2 en coure.

Per a la determinació de les xarxes de terres del centre de transformació de BT/MT es segueix el mètode desenvolupat per la Comissió de Reglaments d’UNESA: “Método de cálculo y proyecto de instalaciones de puesta a tierra para centros de transformación de tercera categoría”.

3.6.2. Tensió màxima admissible pel cos humà

El Reglament Electrotècnic d’Alta tensió estableix la tensió màxima admissible pel cos humà segons el temps de falla.

Aquesta tensió és aquella que es produeix entre mans i peus, i ve terminada per l’expressió:

\[V_{ca} = \frac{K}{t^n} \]

\(V_{ca} \) = Tensió aplicada (V)
\(t \) = Duració de la falta (s)
\(K, n \) = Constants en funció del temps

Les constants K i n es determinen segons la taula següent:

Taula 5. Tensió en funció del temps de falta

<table>
<thead>
<tr>
<th>Temps de falla (s)</th>
<th>K</th>
<th>n</th>
<th>V_{ca} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,9 ≥ t > 0,1</td>
<td>72</td>
<td>1</td>
<td>[V_{ca} = \frac{K}{t^n}]</td>
</tr>
<tr>
<td>3 ≥ t > 0,9</td>
<td>78,5</td>
<td>0,18</td>
<td>[V_{ca} = \frac{K}{t^n}]</td>
</tr>
<tr>
<td>5 ≥ t > 3</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t > 5</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.6.3. Característiques del terreny

Per al càlcul de la xarxa de terres es necessari determinar dos paràmetres del terreny en el que es disposa la instal·lació:
- Resistivitat del terreny (Ωm)
- Resistivitat superficial el terreny (Ωm)

3.6.4. Tensions de pas i de contacte

Per a garantir que la tensió aplicada al cos humà no superi el valor màxim segons el temps de duració de la falla, es calcula la tensió de contacte entre mans i peus, mentre que per garantir que no superi 10 vegades el valor calculat es determina la tensió de pas (entre peus separats 1m)

En el cas de la tensió de pas pot ser que la resistivitat superficial de terreny sigui diferent per a cada peu. Aquesta situació es pot produir en els centres de transformació i es necessari determinar la tensió de pas en aquestes condicions.

Les expressions necessàries per al càlcul de les tensions de pas i contacte es presenten a continuació:

\[V_c = \frac{K}{t^n} \left(1 + \frac{1.5 \rho}{1000} \right) \quad (68) \]
\[V_p = \frac{10K}{t^n} \left(1 + \frac{6 \rho}{1000} \right) \quad (69) \]

\[V_c = \text{Tensió de contacte (V)} \]
\[V_p = \text{Tensió de pas (V)} \]
\[\rho = \text{Resistivitat del terreny (Ωm)} \]

L’expressió necessària en el cas que la resistivitat del terreny sigui diferent en cada peu (habitualment en l’entrada del centre de transformació, amb un peu a l’exterior i l’altre a l’interior) és:

\[V_{p(acci)} = \frac{10K}{t^n} \left(1 + \frac{3 \rho + 3 \rho'}{1000} \right) \quad (70) \]

\[\rho' = \text{Resistivitat superficial del terreny al centre de transformació (Ωm)} \]

3.6.5. Xarxa de terra dels aerogeneradors

En el cas de disposar d’un transformador per aerogenerador ubicat a la torre, les part metàl·liques de l’aerogenerador es connectaran a la xarxa de terres dels transformadors de BT/MT.

En el cas de que existeixi un centre de transformació per a diversos aerogeneradors, cada aerogenerador disposarà d’una terra individual. La terra dels aerogeneradors està formada per una única terra general que fa les funcions de terra de protecció i terra de servei. Estarà formada per un anell conductor de coure situat a una certa distància de la cimentació i connectat a dos punts, a 180º, de l’armadura de fundació de la torre.
La resistència d’aquesta posta a terra es pot millorar augmentant la longitud de l’anell, afegint dues o més piques, instal·lant dos o més anells a distàncies i profunditats creixents, o utilitzant de forma conjunta una o diverses de les solucions anteriors.

Es connectaran entre si les terres dels aerogeneradors amb conductor de coure que discorrerà pel fons de la rasa de la xarxa de mitja tensió.

3.6.6. Xarxa de terres dels transformador de BT/MT

Els centres de transformació de BT/MT, pel càlcul de la terra de protecció és necessari determinar la resistència del sistema de posta a terra, la intensitat de defecte i la tensió de defecte. L’expressió pel càlcul de la intensitat de defecte és la necessària en el cas d’instal·lacions amb el neutre a terra.

\[
R_t = K_r \cdot \rho
\]

\[
I_d = \frac{V}{\sqrt{3} \cdot \sqrt{(R_n + R_t)^2 + X_n^2}}
\]

\[
V_d = R_t \cdot I_d
\]

- \(R_t \) = Resistència del sistema de posta a terra (Ω)
- \(\rho \) = Resistivitat del terreny (Ωm)
- \(I_d \) = Intensitat de defecte (A)
- \(R_n \) = Resistència de posta a terra del neutre (Ω)
- \(V_d \) = Tensió de defecte (V)
- \(X_n \) = Reactància de la posta de terres del neutre (Ω)

En el cas més favorable es pot suposar \(R_n = 0 \) i \(X_n = 25 \), de manera que:

\[
I_d = \frac{V}{\sqrt{3} \cdot \sqrt{R_t^2 + 25^2}}
\]

La resistència de la terra de protecció \(R_t \) queda limitada pel valor màxim de la tensió de defecte \(V_d \). El valor màxim de la tensió de defecte és el del nivell d’aïllament de les instal·lacions de baixa tensió del centre de transformació (4,6,8, o 10kv valor recomanat per UNESA), així el valor màxim de \(R_t \) seria:

\[
I_d = \frac{V}{\sqrt{3} \cdot \sqrt{R_t^2 + 25^2}} = \frac{V_d}{R_t}
\]

Seguint el mètode anteriorment indicat, és necessari escollir un format de geometria de la instal·lació de posta a terra de protecció, i obtenir els paràmetres característics \(K_r \), \(K_p \) i \(K_c \) que permeten calcular les expressions anteriors.
Segons el mètode UNESA per a aquelles instal·lacions en les que \(V_d \) sigui major de 1000V serà necessària la separació de la terra de servei de la de protecció.

Tot i això, en els centres de transformació de les instal·lacions eòliques no es habitual la separació de la terra de protecció i la de servei ja que la xarxa subterrània de mitja tensió dels parcs te un nivell d’aïllament habitual de 24kV, molt superior a la tensió de defecte que es pot produir, el qual impossibilita que s’indueixi una intensitat de defecte important.

En el cas de que la terra de servei fos independent seguint el mètode UNESA serà necessari escollir una geometria de la instal·lació de terra de servei per a determinar els coeficients i la resistència del neutre:

\[
R_n = K_r \cdot \rho
\]

La resistència del neutre no podrà superar els 37\(\Omega \).

La separació entre les dues terres es determinaria mitjançant l’expressió:

\[
D \geq \frac{\rho \cdot I_d}{2000 \cdot \pi}
\]

Per tal d’evitar l’aparició de tensions de contacte elevades a l’exterior de la instal·lació, les portes i reixes metàl·liques que donen a l’exterior del centre no tindran contacte elèctric amb masses conductores que, a causa de defectes o avaries, siguin susceptibles de quedar sotmeses a tensió.

Amb aquestes mesures de seguretat no serà necessari el càlcul de les tensions de contacte a l’exterior ja que seran pràcticament nul·les.

Les tensions de pas a l’exterior de la instal·lació es determinen:

\[
V_p = K_p \cdot \rho I_d
\]

En el terra del centre de transformació s’instal·larà una malla electrosoldada amb rodons de diàmetre no inferior a 4 mm formant una retícula no superior a 0,30 m x 0,30 m, per a oferir una superfície equipotencial. Aquesta malla es connectarà com a mínim en dos punts oposats de la posta a terra de protecció del centre.

La malla estarà coberta per una capa de formigó de 10cm com a mínim.

Amb aquesta mesura s’aconsegueix que la persona que hagi d’accedir a una part que pugui quedar en tensió, de forma eventual, estarà sobre una superfície equipotencial, amb el que desapareix el risc de tensió de contacte i de pas a l’interior. Així no serà necessari el càlcul de les tensions de contacte i de pas a l’interior de la instal·lació ja que el seu valor serà pràcticament zero.

L’existència d’una superfície equipotencial connectada a terra, fa que la tensió de pas a l’accés sigui equivalent al valor de la tensió de contacte exterior:

\[
V_{p(acc)} = K_c \cdot \rho I_d
\]
L’últim pas per a la determinació de la xarxa de terres és la comprovació de les tensions de pas i de contacte amb les màximes establertes anteriorment.
Si el valor de les tensions de pas o de contacte de la instal·lació preliminar supera el valor màxim calculat, s’haurà de repetir el procés escollint una geometria de la instal·lació diferent per a que les tensions no superin el límit.

3.6.7. **Xarxa de terra de la subestació**
La xarxa de terra de la subestació més habitual està formada per una malla de conductor nu de coure. La resistència del sistema de terres es pot millorar instal·lant piques en diversos punts de la malla.
De l’estudi de curt-circuit es dedueix la intensitat de curt-circuit per al nivell de tensió de la subestació.

La **secció del conductor** a utilitzar es determina mitjançant:

\[
S = \frac{I_{cc}}{I_{sh}}
\]
\[
S = \text{Secció del conductor (mm}^2\text{)}
\]
\[
I_{sh} = \text{Màxima densitat de corrent d’acord amb MIE-RAT 13 (A/mm}^2\text{)}
\]
Per tal de reduir la longitud total del conductor de terres es possible augmentar la seva secció.

La **longitud total** del conductor a instal·lar es determina mitjançant la següent expressió:

\[
L = \frac{K_m \cdot K_i \cdot \rho \cdot I \cdot t^n}{K \cdot \left(1 + \frac{1.5 \cdot \rho}{1000}\right)}
\]
\[
L = \text{Longitud total del conductor (m)}
\]
\[
\rho = \text{Resistivitat del terreny (Ωm)}
\]
\[
I = \text{Intensitat de defecte (A)}
\]
\[
K_m = \text{Coeficient que considera l’efecte que té el nombre de faltes, la distància D, el diàmetre d i la profunditat h dels conductors enterrats.}
\]
\[
K_i = \text{Factor de correcció per la irregularitat del flux de corrent del conductor a terra}
\]
Per al càlcul de Km i Ki:
\[K_m = \frac{1}{2 \cdot \pi} \cdot \ln \left(\frac{D^2}{16 \cdot h \cdot d} + \frac{(D + 2 \cdot h)^2}{8 \cdot D \cdot d} - \frac{h}{4 \cdot d} \right) + \frac{1}{\sqrt{1 + \frac{h}{h_0}}} \cdot \ln \frac{8}{\pi \cdot (2 \cdot n - 1)} \]

(82)

\[K_i = 0,644 + 0,148 \cdot n \]

(83)

\[D = \text{Distància mitja entre conductors de la xarxa (m)} \]

\[d = \text{Diàmetre del conductor (m)} \]

\[h = \text{Profunditat (m)} \]

\[n = \text{Número de conductors paral·lels en una direcció} \]

Així abans de calcular la longitud del conductor es necessari tenir un concepte previ de la malla que es pretén instal·lar:

- Profunditat de la malla
- Diàmetre del conductor
- Nombre de conductors en una direcció
- Distància entre conductors que formen la malla

Una vegada calcula la longitud total del conductor es necessari concebre una geometria de malla. Es determina el nombre de conductors en cada sentit (longitudinal i transversal) i les seves longituds de manera que la suma de longitud del conductor s’adequi a la calculada.

La \textit{resistència} total de la malla es calcula:

\[R = \frac{\rho}{4 \cdot r} + \frac{\rho}{L} \]

(84)

\[r = \text{Radi del cercle equivalent a l’àrea ocupada per l’elèctrode (m)} \]

\[L = \text{Longitud del conductor (m)} \]

\[r = \frac{A}{\sqrt{\pi}} \]

(85)

El valor usual de la resistència del sistema de posta a terra en substacions amb terra única es troba entre 0,5 i 1 Ω.
3.7. Estudi de viabilitat econòmica

Per tal de calcular els beneficis que pot aportar l’energia generada, és necessari conèixer la retribució econòmica que es pot rebre per la seva venda.

El Real Decret 661/2007, de 25 de maig, pel qual es regula l’activitat de producció d’energia elèctrica en règim especial, en l’article 2 classifica les instal·lacions en funció del combustible utilitzat com a matèria primera.

- L’article 24 preveu dues modalitats a l’hora de vendre la energia elèctrica:
 - Mitjançant una tarifa regulada, expressada en cèntims d’€ per kW.
 - Vendre l’electricitat en el mercat de producció. En aquest cas el preu de venda a aplicar és el resultant del mercat organitzat, complementat amb una prima en cèntims d’€ per kW.

El preu de venda a tarifa regulada és:
- 7,8183 cèntims d’€/kWh (els primers 20 anys).
- 6,5341 cèntims d’€/kWh (la resta d’anys).

Mentre que si s’escull el lliure mercat, el preu es trobaria englobat en uns límits:
- Límit superior 9,0692 cèntims d’€/kWh.
- Límit inferior 7,6098 cèntims d’€/kWh.
- Prima de 2,9291 cèntims d’€/kWh (els 20 primers anys).

Els **costos d’instal·lació** i explotació d’un parc eòlic són molt diversos i és necessari conèixer el seu valor exacte per tal de preveure els beneficis anuals que es podran obtenir.

Per això és necessari realitzar un pressupost acurat de la instal·lació on s’exposin exhaustivament els costos dels equips així com dels treballs d’instal·lació i manteniment.

Els ingressos anuals constitueixen els **guanys** que s’obtenen del parc eòlic, amb el quals haurà de cobrir despeses i obtenir beneficis. Serà la diferència entre els ingressos del parc i les despeses obtingudes en l’estudi de viabilitat.

Dependrà de:
- Recurs eòlic de la zona
- Selecció aerogenerador
- Finançament
- Ingressos a obtenir
- Indicadors econòmics
- ...
La taxa d’interès és el benefici que obté el banc quan li returnes el crèdit, és el que li afegeixes al valor que has de pagar al banc.

La taxa de descompte és el interès utilitzat per a descomptar pagament futurs quan es calcula el valor descomptat en el present, és a dir, és un interès de descompte que s’aplica en el present a un objecte a pagar.

El període de retorn és el temps que s’estableix per tal de finalitzar el crèdit sol·licitat. Aquest termini es pacta entre el banc i el deutor o empresa sol·licitant.

L'amortització és el temps en que es rentabilitza l’objecte adquirit.

En finances i en economia s'entén per flux de caixa o flux de fons (en anglès cash flow) els fluxos d'entrades i sortides de caixa o efectiu, en un període donat. El flux de caixa és l'acumulació neta d'actius líquids en un període determinat i, per tant, constitueix un indicador important de la liquiditat d'una empresa.

L'estudi dels fluxos de caixa dins d'una empresa pot ser utilitzat per determinar:

- Problemes de liquiditat. L’ésser rendible no significa necessàriament tenir liquiditat. Una companyia pot tenir problemes d'efectiu, tot i ser rendible. Per tant, permet anticipar els saldos en diners.
- Per a analitzar la viabilitat de projectes d'inversió, els fluxos de fons són la base de càlcul del valor actual net i de la taxa interna de retorn.
- Per a mesurar la rendibilitat o creixement d’un negoci quan s'entenguï que les normes comptables no representen adequadament la realitat econòmica.

Els fluxos de liquiditat es poden classificar en:

1. Fluxos de caixa operacionals: efectiu rebut o expesos com a resultat de les activitats econòmiques de base de la companyia.
2. Fluxos de caixa d’inversió: efectiu rebut o expesos considerant les despeses en inversió de capital que beneficiaran el negoci a futur. (Ex: la compra de maquinària nova, inversions o adquisicions.)
3. Fluxos de caixa de finançament: efectiu rebut o expesos com a resultat d'activitats financeres, com ara recepció o pagament de préstecs, emissions o recompra d'accions i / o pagament de dividends.

Una inversió és l'entrega de recursos econòmics amb l'objectiu de rebre a canvi uns altres recursos econòmics, renunciant a una satisfacció immediata i certa, a canvi d'una espera futura que proporcioni més utilitat.

Seleccionar la inversió consisteix en decidir si un projecte ha de ser realitzat o no. Qualsevol inversió es pot definir pel corrent de costos i ingressos que origina, considerant cada un en el moment que es produeixen. Així, l’empresa ha d’avaluar totes les entrades i sortides de caixa que es produeixin com a conseqüència de la inversió, tant en l’actualitat com en el futur, per obtenir una mitja del valor de cada projecte.

Els mètodes de selecció d’inversions també serveixen per ajudar a l’empresa a comparar inversions entre si i poder escollir les millors.
Aquests mètodes clàssics es divideixen en estàtics i dinàmics, segons tinguin en compte o no el factor temps. Entre els mètodes estàtics, destaca el mètode de període de recuperació (pay-back). Els mètodes dinàmics més utilitzats són el valor capital o valor actualitzat net (VAN) i la taxa d’interès intern (TIR).

El **Pay-back** és un mètode que consisteix en determinar quant de temps tarda en recuperar l’empresa la inversió inicial.

El període de recuperació s’obté restant de la inversió inicial els fluxos de caixa obtinguts en anys successius, fins que els fluxos generats igualin o superin la inversió inicial.

Serveix per comparar inversions, escollint la que tingui un pay-back més curt.

El **Valor actual net** (VAN) calcula el valor actual net dels fluxos de caixa generats pel projecte i mesura la rendibilitat de les inversions realitzades.

En aquest sentit, el VAN és la suma de valors positius (ingressos) i de valors negatius (costos) que es produeixen en diferents moments.

Així doncs, es tracta d’un criteri de selecció d’inversions que té en compte el valor del diner en el temps. Donat que el valor del diner varia amb el temps, és necessari descomptar de cada període un percentatge anual estimat com a valor perdut pel diner durant el període d’inversió. Un cop descomptat aquest percentatge, es poden sumar els fluxos positius i negatius. Si el resultat és major de zero, significarà que el projecte és rendible. Si és menor de zero, no ho serà.

La fórmula per calcular el VAN és la següent:

\[
VAN = -Q_0 + \frac{Q_1}{1+k} + \frac{Q_2}{(1+k)^2} + \ldots + \frac{Q_n}{(1+k)^n} = \sum_{t=0}^{n} \frac{Q_t}{(1+k)^t}
\]

La taxa **interna de retorn o taxa interna de rendibilitat** (TIR) d’una inversió, està definida com la taxa d’interès amb la qual el valor actual és igual a zero. És un indicador de la rendibilitat d’un projecte, a més gran TIR, major rendibilitat.

S’utilitza per decidir sobre l’acceptació o rebuig d’un projecte d’inversió. La TIR es compara amb una taxa mínima o taxa de tall, el cost d’oportunitat de la inversió. Si la taxa de rendiment del projecte la TIR supera la taxa de tall s’accepta la inversió, en cas contrari, es rebutja.
CAPÍTOL 4: SOFTWARE DE PRE-DISSENY. MANUAL D’US

4.1. Introducció

L’objecte d’aquesta guia docent és mostrar el funcionament del programa dissenyat.

Està format per cinc mòduls on es tracten diferents àrees del projecte d’un parc eòlic:

- Recurss eòlic i situació
- Selecció aerogenerador
- Modelització
- Xarxa de potència
- Xarxa de terres

Es pretén guiar a l’usuari del programa al llarg d’aquests mòduls. Seguint els passos descrits en aquesta guia, l’usuari serà capaç d’utilitzar el programa correctament.

La carpeta ‘Parc eòlic - Programa’ conté diversos arxius:

- Arxiu d’Excel: ‘entrada_dades’
- Diversos arxius amb extensió: *.m, *.fig, *.asv
Encara que l’usuari només haurà de tenir en compte els arxius: ‘entrada_dades’ i ‘cap1pag1.m’

A continuació s’explica més detalladament.

Per tal d’utilitzar el programa correctament és necessari seguir els passos següents:

- Carregar les dades en l’arxiu Excel (‘entrada_dades’), tal i com s’indica en aquest. Concretament, copiar en la fulla ‘entrada de dades’ els valors de velocitat (columna A) i direcció (columna B), començant per A1 i B1 respectivament. Aquests han de contenir el mateix nombre de dades tant en la columna A com en la B.

- Seguidament guardar les dades sense modificar el nom de l’arxiu, ja que si no és així el programa no trobarà l’arxiu.

- Obrir el programa Matlab 7.5.0 (R2007b).

- Buscar la carpeta on es troba el programa ‘Parc eòlic - Programa’.

- Dins d’aquest perímer amb el botó esquerre sobre l’arxiu: ‘cap1pag1’ i seleccionar ‘Run’

- El programa ja es troba en funcionament.

El programa està pensat perquè l’usuari no hagi d’anar escrivint els valors cada capítol, ja que queden guardats. El programa va preguntant si es vol utilitzar els valors guardats o utilitzar-ne de nous.

Aquest és un programa que dóna una visió general dels passos a tenir en compte en el disseny d’un parc eòlic. S’han menyspreat paràmetres, ja que no es busca aprofundir en cada mòdul sinó donar una visió general.

La primera pàgina que es veurà serà la següent:

Figura 23. Cap1pag1
Seguidament, en la pàgina següent, es veuen diversos botons que mostren els diferents mòduls pels quals està format el programa. Es pot escollir si es vol dur a terme tot el programa d’inici a fi (prémer següent) o escollir un mòdul en concret.

Figura 24. Cap1pag2

És important tenir en compte que:

- Els decimals s’han d’introduir separats amb punts no comes.
- El programa està dissenyat per avançar, anar passant de pàgina prement següent, ja que si es prem anterior o inici s’eliminen els valors guardats.
- Es tracta d’un programa docent.

4.2. Recurs eòlic

Aquesta part del programa és on es guarden les dades del recurs eòlic: vent i direcció, que seran utilitzades al llarg de tot el programa. És important tenir en compte que les dades d’entrada han d’estar obtingudes a 10m d’alçada, ja que els càlculs es realitzen en base a aquesta premissa.

Com ja s’ha explicat en l’apartat anterior, es guardaran les dades en l’arxiu Excel: ‘entrada_dades’.

En les pàgines següents serà possible calcular:

- La velocitat mitja i freqüència dels diferents sectors de la Rosa dels Vents a 10 m
- Representar la distribució de Weibull a 10m
- Representar la Rosa dels Vents a 10 m
- Representar la variació del vent amb l’alçada

Seguidament es mostra la primera pàgina del capítol 2 (cap2pag1).

Figura 25. Cap2pag1

En la pàgina següent, s’han d’escol·lir les opcions d’entrada de dades. És a dir, triar quantes dades diàries s’obtenen, si es tracta d’una sola dada de velocitat diària, si es tracta de dades de cada hora o bé de cada mitja hora. També s’ha de precisar si es tracta de dades d’un sol dia, d’un mes o d’un any, i de quants dies en concret. La dimensió ha de coincidir amb les dades introduïdes en l’arxiu Excel. Si no és així, el programa no calcularà els sectors en la pàgina següent i sortirà un missatge d’error.

Figura 26. Cap2pag2
En la pàgina cap2pag3 es farà un càlcul de sectors a una alçada de 10 m, que és la introduïda inicialment. Dividim la rosa dels vents en 16 sectors, busquem la freqüència i velocitat mitja, i la mostrem per a cada sector. En cada sector la freqüència correspon a la primera etiqueta i la velocitat a la segona.

Figura 27. Cap2pag3

En la pàgina cap2pag4 es fa una representació de la distribució de Weibull, de la funció de probabilitat i de la seva distribució acumulada, també es mostren els paràmetres k, c i vm els quals explicarem a continuació.

Figura 28. Cap2pag4
Seguidament es mostren les funcions de probabilitat i probabilitat acumulada de Weibull amb les seves respectives funcions. Els paràmetres de forma i escala de la figura no son representatius en el nostre cas, però sí la forma que adopten les gràfiques, veiem que segons els valors de c i k les gràfiques varien de forma.

\[
f(x;c,k) = \frac{k}{c} \left(\frac{x}{c}\right)^{k-1} e^{-\left(x/c\right)^k}
\]

(87)

Figura 29. Funció densitat de probabilitat de Weibull (Font: www.wikipedia.com)

\[
F(x;c,k) = 1 - e^{-\left(x/c\right)^k}
\]

(88)

Figura 30. Funció densitat de probabilitat acumulada de Weibull (Font: www.wikipedia.com)
Recordem que l’expressió de la distribució de Weibull és la següent:

\[F(V_0) = P(V_0 \leq V_W) = \exp \left(-\frac{V_0}{C} \right)^k \] \hspace{1cm} (89)

En la pàgina cap2pag5 es realitzarà la Rosa dels Vents. Aquesta ens mostra la direcció principal del vent, així sabrem com orientar el nostre aerogenerador:

Figura 31. Cap2pag5

En la pàgina cap2pag6 es realitza una gràfica que relaciona la velocitat del vent amb l’alçada, això ens servirà per saber quina alçada ha de tenir el nostre aerogenerador. Només s’ha d’introduir el paràmetre de la rugositat.

Taula 6. Rugositat del terreny

<table>
<thead>
<tr>
<th>Tipus de terreny</th>
<th>Paràmetre (\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel</td>
<td>0,070 a 0,076</td>
</tr>
<tr>
<td>Aigua</td>
<td>0,084 a 0,092</td>
</tr>
<tr>
<td>Herba</td>
<td>0,104 a 0,136</td>
</tr>
<tr>
<td>Terreny rocós</td>
<td>0,136 a 0,175</td>
</tr>
<tr>
<td>Pastures</td>
<td>0,199 a 0,255</td>
</tr>
<tr>
<td>Suburbis</td>
<td>0,293 a 0,367</td>
</tr>
<tr>
<td>Boscos</td>
<td>0,199 a 0,367</td>
</tr>
<tr>
<td>Ciutats</td>
<td>0,367 a 0,897</td>
</tr>
</tbody>
</table>
4.3. Selecció de l’aerogenerador

En aquest capítol es pretén escollir un aerogenerador en funció de la potència. Aquesta es calcularà a partir de les dades de vent i alçada obtingudes en l’apartat anterior.

S’ha de dir, que aquest treball està realitzat per a utilitzar un tipus d’aerogenerador concret prèviament escollit, es tracta del model G87 2MW de Gamesa. És un AG (aerogenerador) de molt alta potència, que ens servirà per fer-nos una idea dels valors amb el quals es treballa. Tot i així el programa també permet utilitzar altre aerogeneradors.

Aquest fet és degut a que, a més a més d’aquestes dues guies docents, també existeix un projecte realitzat. Aquest està localitzat en un emplaçament, i s’hi ha generat un estudi, i precisament aquest aerogenerador és el que s’ha utilitzat. S’ha volgut simplificar el procés ja que en funció de la potència obtinguda tenim molts aerogeneradors en el mercat segons les marques, models, alçades,...

<table>
<thead>
<tr>
<th>Alçada (m)</th>
<th>Velocitat mitjana (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.51</td>
</tr>
<tr>
<td>20</td>
<td>3.09</td>
</tr>
<tr>
<td>30</td>
<td>3.42</td>
</tr>
<tr>
<td>40</td>
<td>3.80</td>
</tr>
<tr>
<td>50</td>
<td>4.07</td>
</tr>
<tr>
<td>60</td>
<td>4.30</td>
</tr>
<tr>
<td>70</td>
<td>4.50</td>
</tr>
<tr>
<td>80</td>
<td>4.69</td>
</tr>
<tr>
<td>90</td>
<td>4.85</td>
</tr>
<tr>
<td>100</td>
<td>5.01</td>
</tr>
<tr>
<td>110</td>
<td>5.15</td>
</tr>
<tr>
<td>120</td>
<td>5.29</td>
</tr>
</tbody>
</table>

Figura 32. Cap2pag4

Es pot accedir a aquesta pàgina, bé des de la pàgina cap1pag2 o des de la pàgina cap2pag6. Tant si s’accedeix d’una manera o de l’altra es podrà treballar igualment en aquest mòdul, ja que les dades estan guardades en el programa, o sinó podran ser novament introduïdes.

En la primera pàgina es veu la presentació d’aquest capítol.
Segons les dades lliurades per Gamesa, en la seva fitxa tècnica del G87 2kW, podem veure la variació de potència segons diferents velocitats:

Taula 7. Potència aerogenerador segons vent mitjà-model G87

<table>
<thead>
<tr>
<th>Ws[m/s]</th>
<th>Potència[kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>78,8</td>
</tr>
<tr>
<td>5</td>
<td>181,2</td>
</tr>
<tr>
<td>6</td>
<td>335,5</td>
</tr>
<tr>
<td>7</td>
<td>549,8</td>
</tr>
<tr>
<td>8</td>
<td>831,5</td>
</tr>
<tr>
<td>9</td>
<td>1174,8</td>
</tr>
<tr>
<td>10</td>
<td>1528,3</td>
</tr>
<tr>
<td>11</td>
<td>1794,7</td>
</tr>
<tr>
<td>12</td>
<td>1931,1</td>
</tr>
<tr>
<td>13</td>
<td>1981,0</td>
</tr>
<tr>
<td>14</td>
<td>1995,3</td>
</tr>
<tr>
<td>15</td>
<td>1998,9</td>
</tr>
<tr>
<td>16</td>
<td>1999,8</td>
</tr>
<tr>
<td>17</td>
<td>2000,0</td>
</tr>
<tr>
<td>18</td>
<td>2000,0</td>
</tr>
<tr>
<td>19 a 25</td>
<td>2000,0</td>
</tr>
</tbody>
</table>

Aquí podem veure com prenent la densitat de l’aire per defecte de 1,225Kg/m³, es veu la potència en funció de la direcció del vent.
En la pàgina següent, cap3pag3, es pretén calcular la potència del AG.

Es podrà realitzar el càlcul de la potència una vegada s’hagi introduït diverses dades mitjançant els edit texts disposat a la pàgina. Primer s’ha d’escollir un AG per obtenir el valor de l’alçada i el Cp i poder calcular la potència. El valor de Cp, és una dada lliurada pel fabricant, aquesta es pot trobar en la seva fitxa tècnica, i s’introduirà manualment.

Taula 8. Cp segons vent mitjà per el model G87

<table>
<thead>
<tr>
<th>Ws[m/s]</th>
<th>Cp</th>
<th>15</th>
<th>0,163</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0,337</td>
<td>16</td>
<td>0,134</td>
</tr>
<tr>
<td>5</td>
<td>0,398</td>
<td>17</td>
<td>0,112</td>
</tr>
<tr>
<td>6</td>
<td>0,426</td>
<td>18</td>
<td>0,094</td>
</tr>
<tr>
<td>7</td>
<td>0,440</td>
<td>19</td>
<td>0,080</td>
</tr>
<tr>
<td>8</td>
<td>0,446</td>
<td>20</td>
<td>0,069</td>
</tr>
<tr>
<td>9</td>
<td>0,443</td>
<td>21</td>
<td>0,059</td>
</tr>
<tr>
<td>10</td>
<td>0,420</td>
<td>22</td>
<td>0,052</td>
</tr>
<tr>
<td>11</td>
<td>0,370</td>
<td>23</td>
<td>0,045</td>
</tr>
<tr>
<td>12</td>
<td>0,307</td>
<td>24</td>
<td>0,040</td>
</tr>
<tr>
<td>13</td>
<td>0,248</td>
<td>25</td>
<td>0,035</td>
</tr>
<tr>
<td>14</td>
<td>0,200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Es dona a escollir a l’usuari el valor de l’alçada a la que s’instal·laran els aerogeneradors. El fabricant Gamesa ens informa que els valors d’alçada estàndard per al G87 són: 60, 67, 78 i 100m.

- La rugositat (α) és un paràmetre que depèn del terreny, com ja s’ha mostrat en el capítol anterior.

A continuació clicarem al botó velocitat mitja per obtenir quina és la velocitat mitjana a l’alçada seleccionada. A partir d’aquí ja podrem buscar quina és el Cp corresponent al nostre AG.

- Com ja s’ha dit, la densitat (ρ) de l’aire que utilitzarem serà 1,225Kg/m3, s’utilitza per defecte.

- L’àrea (A) la trobarem a partir del diàmetre del rotor.

- Vi és la velocitat mitjana a l’alçada de 10 metres.

Finalment, premerem el botó ‘Calcula’. Just a sobre apareixerà el resultat.

Figura 35. Cap3pag3

Si el valor de potència està comprès entre 1500kW i 2000kW l’elecció d’aquest AG és correcte en el cas del G87 de Gamessa. Per tant, les variables a tenir en compte són la velocitat i les característiques de terreny (rugositat), així com l’alçada del aerogenerador, les altres són fixes i venen definides per l’AG escollit.

Aquesta pàgina es pot utilitzar també per treballar amb altres aerogeneradors gràcies a poder introduir alçada, àrea, cp,…

4.4. Viabilitat econòmica

En aquest capítol es pretén obtenir resultats d’un estudi econòmic del parc eòlic dissenyat. Es parteix de les dades obtingudes en els capítols anteriors o de les dades introduïdes novament, fins a arribar a un estudi financer final, passant per varis càlculs entremitjós que veurem a continuació.
El resultat final de l’estudi serà la determinació del VAN i del TIR de la instal·lació projectada per tal de determinar la seva rendibilitat.

La primera pantalla que es veu és la d’inici:

Figura 36. Cap4pag1

En la pantalla següent, podem veure la composició d’aquest capítol. Cal dir que és un capítol que conté diversos apartats, és convenient utilitzar valors fiables per tal de que els càlculs realitzats tinguin sentit.

Figura 37. Cap4pag2

En la pàgina cap4pag3 (Figura 38) es prenen els valors referents a l’aerogenerador utilitzat, al nombre d’aerogeneradors, a l’energia d’un aerogenerador i a l’energia total generada anualment.
En la primera part es vol obtenir el preu de l’aerogenerador utilitzat. Aquest valor servirà per calcular internament el cost dels aerogeneradors i es guardará el valor per calcular posteriorment el cost de generació.

Seguidament, s’introduiran el nombre d’aerogeneradors pels quals està format el parc.

En aquest apartat es pretén obtenir la potència generada per un sol aerogenerador. Es pot introduir manualment o bé introduint els valors de: Cp, rugositat, diàmetre rotació pales i altura aerogenerador. És necessari seleccionar el tipus de dades d’entrada que s’utilitza, és a dir, quantes dades diàries s’han introduït: 1, 24 ó 48. I per últim, quantes hores útils funcionarà l’aerogenerador. Ja que només funciona si la velocitat està entre 4 i 25m/s. Cal tenir present que en el cas de disposar d’una dada diària el càlcul d’hores equivalent no seria correcte ja que el programa depència els valors de velocitat que no estiguin dins del rang d’operació de l’aerogenerador. Aquest càlcul seria correcte en el cas de disposar de dades horàries o de cada mitja hora, però en el cas de dades diàries, ja que les dades són una mitja, poques vegades la velocitat mitja d’un dia estarà fora del rang d’operació i així el càlcul d’hores equivalents seria erroni.

L’últim apartat realitza el càlcul de la potència generada en tot el parc, multiplicarem doncs, el valor anterior pel nombre d’aerogeneradors.

A continuació, es mostren els preus de l’energia. Hi ha dues modalitats: tarifa regulada o tarifa mercat. Els preus utilitzats són els actualment vigents (juny 2010) encara que es poden introduir preus nous manualment:
Figura 39. Cap4pag4

Seguidament, en la pàgina cap4pag5 es calcularan els ingressos anuals. Es realitzarà el producte entre les tarifes mostrades anteriorment i la potència total generada en tot el parc en un any, aquest últim valor es calcula en el cap4pag3. D’aquesta manera, sabrem els diversos ingressos que podríem obtenir segons la tarifa escollida. Els ingressos anuals s’actualitzen segons el valor d’inflació introduït per l’usuari.

A cada tarifa, la primera columna expressa els ingressos anuals durant els 20 primers anys de la instal·lació, mentre que la segona columna expressa els ingressos una vegada superats aquests vint anys. Aquesta segona columna és merament informativa ja que, per a aquest tipus d’instal·lacions es considera una vida útil de 20 any, de manera que els següents càlculs es realitzen en base als ingressos obtinguts durant els 20 primers anys. Tenint en compte la magnitud dels parcs eòlics els resultats s’expressen en milions d’euro.
En la pagina següent s’introduirà el cost d’inversió de la instal·lació. Es pot dur a terme de dues maneres:

- Introduint els valor total del cost d’inversió en euros.
- Introduint els costos de cada una de les partides i el cost total d’inversió. En aquest cas mitjançant els botó “calcula (%)” s’obtenen els valors percentuals de cadascuna de les partides front el valor total del cost d’inversió.

A la partida de generació es possible utilitzar el valor calculat anteriorment o introduir un valor nou.

Es necessari introduir com a mínim el valor del cost total per a passar a la pagina següent.
A continuació es calcula el cost d’operació i manteniment anual. Es considera un cost unitari els costos de manteniment, lloguer dels terrenys i costos administratius per tal de simplificar els càlculs. Així es necessari introduir el valor del cost d’operació i manteniment anual previst (en euros) i, mitjançant el valor d’inflació introduït anteriorment, el programa realitza l’actualització d’aquest cost pels 20 anys previstos de vida útil. Com a la pagina 5 els resultats s’expressen en milions d’euro.

Figura 41. Cap4pag6

Figura 42. Cap4pag7
Dins de l’apartat paràmetres del projecte, es demana a l’usuari que ingressi la resta de dades necessàries per a la realització dels càlculs posteriors. És necessari introduir tots els valors sol·licitats per tal de que el programa continuï.

El valor del cost d’inversió i de la inflació es carreguen segons els indicats anteriorment.

Figura 43. Cap4pag8

En l’apartat de flux de caixa del capítol 4 es realitzen tots els càlculs dels fluxos de caixa per els 20 anys de vida útil de la instal·lació, així com el valor del VAN i TIR de la instal·lació.

Per a la realització del càlculs dels fluxos de caixa es realitzen una sèrie de càlculs previs:

- **Càlcul del benefici brut:** És el resultat de restar les despeses de manteniment als ingressos anuals.

- **BAIT:** És el resultat de descomptar el valor de l’amortització anual de la instal·lació als beneficis bruts abans de pagar impostos.

- **BAT:** resulta de la resta dels interessos del crèdit BAIT.

- **Benefici net:** És el que s’obté de la resta de l’impost de societats (aplicant un 30%) al BAT.

Finalment es calcula el flux de caixa anual, que és el resultat de sumar l’amortització al benefici net i restar la quota anual del préstec bancari. El valor de l’amortització anual és reingressat en aquest punt a la caixa ja que es descomptava anteriorment a l’hora de pagar impostos però, realment és un valor existent a la caixa al haver estat pagat en la seva totalitat en l’any 0.

Tots els càlculs d’aquesta pagina es poden obtenir segons la modalitat de venta d’energia escollida.
Els resultats dels diversos càlculs s’expressen en columnes en valors anuals. Les unitats en les quals s’expressen aquest resultats son milions d’euro.

Figura 44. Cap4pag9

4.5. Instal·lacions d’interconnexió

El capítol d’instal·lacions d’interconnexió es basa en la determinació de les seccions dels conductors de baixa tensió i mitja tensió així com la potència aparent necessària dels transformadors de MT/BT i de la subestació.

El capítol 5 s’inicia amb la pagina de portada com la resta dels capítols que formen el programa, Figura 45:

Figura 45. Cap5pag1
A continuació es presenta la estructura del capítol:

a) Línies entre generadors i transformadors: On es determinarà la secció del conductor d’unió entre el generador i el transformador.

b) Transformadors de MT/BT: Per tal de calcular la potència aparent dels transformadors de MT/BT.

c) Línies de mitja tensió: Càlcul de seccions dels conductors de mitja tensió.

d) Estació transformadora: On es determinarà la potència aparent del transformador de la subestació.

![Infraestructura de les instal·lacions d’interconnexió](image)

Figura 46. Cap5pag2

A l’apartat a) del capítol es determina la secció del conductor a la instal·lació principal de baixa tensió, la qual està formada pels conductors que uneixen el generador i el transformador de MT/BT.

Es dóna a escollir entre utilitzar l’aerogenerador G-87 de Gamesa, amb una potència nominal de 2 MW, o un altre aerogenerador, introduint manualment la seva potència en W. Introduint el cosinus de fi de la instal·lació i prement el botó "In" s’obté el resultat de la intensitat nominal de la línia multiplicada per un factor de 1,25 segons ITC-BT-40.

Coneixent la intensitat nominal, l’usuari podrà escollir la secció dels conductors a utilitzar consultant la taula 1 de la ITC-BT-19. S’haurà d’introduir la secció total dels conductors a utilitzar així com la seva intensitat màxima admissible. Per exemple si és necessari utilitzar 4 conductors per fase de 300 mm2 cadascun i intensitat màxima 640 A, es necessari introduir al programa una secció total de 1200 mm2 i una intensitat màxima de 2560 A.

Consultant la ITC-BT-07 es determinen els factors de correcció aplicables. Després d’indicar els factors de correcció, prement el botó "Compleix?” Es calcula la intensitat màxima admissible pels conductors tenint en compte els factors de correcció indicats i es determina si és admissible segons el criteri tèrmic.
Posteriorment l’usuari marca la longitud de la línia així com la seva resistència i reactància consultant les dades del fabricant dels conductors. Es calcula la caiguda de tensió present a la línia i mitjançant el botó “Compleix?” s’informa sobre si la caiguda de tensió supera el 1,5%.

Si la secció no és admissible segons algun dels dos criteris és necessari escollir una secció superior.

Figura 47. Cap5pag3

A la pagina sobre els transformadors de MT/BT es calcula la intensitat nominal del secundari del transformador i posteriorment la potencia aparent necessària del transformador.

La tensió del primari es troba fixada en 690 V mentre que la intensitat del primari es calcula a la pagina anterior i en aquesta es manté guardat el seu valor. La intensitat del primari serà la intensitat nominal de l’aerogenerador sense el factor de sobredimensionament de 1,25 necessari per al dimensionament dels conductors.

L’usuari indica la tensió del secundari (tensió de la xarxa de mitja tensió) i mitjançant els botons “calcular” obté la intensitat del secundari i la potencia del transformador.
El següent pas en els càlculs de la xarxa de potencia, són els càlculs de les línies de mitja tensió.

En aquest punt es necessari escollir una configuració per a la xarxa de mitja tensió:

- **Configuració 1:**

 Segons aquesta configuració cada transformador de MT/MT es troba connectat a la subestació mitjançant una línia de mitja tensió.

Figura 48. Cap5pag4

Figura 49. Configuració 1
A la pàgina 5 del present capítol es poden realitzar els càlculs segons la configuració 1.

S’introduceixen els valors de la potència del circuit i el cosinus de fi i es calcula la intensitat nominal prement el botó “In circuit”. El valor de la tensió de la xarxa queda fixat segons l’indicat per l’usuari a la pàgina anterior.

Consultant les dades del fabricant l’usuari indica els valors de la secció, la intensitat nominal i els factors de correcció. Mitjançant el botó “Compleix?” es comprova si la intensitat màxima, tenint en compte els factors de correcció, és admissible.

Introduint els valors de longitud, resistència i reactància es calcula la caiguda de tensió present a la línia i si el seu valor supera el 5%.

L’últim càlcul ofereix el valor de les pèrdues per efecte Joule presents a la línia.

Figura 50. Cap5pag5

- **Configuració 2:**

En aquesta cas un circuit col·lector de mitja tensió rep l’energia de diversos transformadors de MT/BT. Aquest circuit col·lector es troba dividit en circuits entre els diversos transformadors.
Figura 51. Configuració 2
En el cas d’escollir la configuració 2 els càlculs necessaris s’inicien a la
pagina 6 del present capítol.
En primer lloc s’indica per part de l’usuari el nombre de generadors que
marcaran el nombre de circuits a determinar. Es te en compte que cada
aerogenerador disposa del seu propi transformador de MT/BT.

Figura 52. Cap5pag6
Cada pagina de les línies de mitja tensió segons la configuració 2 té
capacitat per acollir les dades i els càlculs de dos circuits, de tal manera
que si el nombre de circuits necessari és superior (indicat anteriorment) un
missatge a la part inferior de la pagina ens indica que prement el botó
"següent" podrem realitzar els càlculs dels següents circuits.
S’ha de tenir en compte que el circuit 1 és el més llunyà a la subestació, és a dir, el que es troba entre l’aerogenerador 1 i el 2, i l’últim circuit és el més proper a la subestació de tal manera que conte la línia que uneix l’aerogenerador més proper a la subestació amb aquesta.

El procediment a seguir per part de l’usuari és el mateix que anteriorment, és a dir, introduir potencia del circuit (potencia dels aerogeneradors aigües avall) i cosinus de fi, per a calcular la intensitat nominal. Posteriorment amb les dades del fabricant escollir la secció i la intensitat màxima així com els factor de correcció i determinar la seva idoneïtat o no.

Les dades de longitud, resistència i reactància permeten calcular la caiguda de tensió, i el botó de “pèrdues” permet obtenir les pèrdues del circuit.

La caiguda de tensió i les pèrdues de cada circuit seran el sumatori de les pròpies de cada circuit amb les dels circuits anteriors a ell, de tal manera que abans de realitzar els càlculs d’un circuit és necessari haver realitzat els càlculs dels circuit anteriors.

Figura 53. Cap5pag6

En cas de disposar de 50 aerogeneradors l’última pagina seria la 624 on es poden calcular els circuits 49 i 50. Es dona la possibilitat de calcular fins a 50 aerogeneradors en aquesta disposició per tal de mostrar clarament a l’usuari les pèrdues de tensió i de potencia que suposaria una instal·lació així. En una instal·lació real de 50 aerogeneradors no es disposaria d’un sol circuit col·lector ja que les pèrdues serien molt elevades, en tot cas es determinarien un nombre majors de circuits col·lectors segons la disposició física dels aerogeneradors al terreny, el que reduiria les pèrdues.
Figura 54. Cap5pag624
L’última pagina del capítol 5 permet calcular la potència aparent del transformador de la subestació.

L’usuari indica la intensitat del primari així com la tensió del secundari mentre que la tensió del primari queda marcada per la introduïda anteriorment a la xarxa de mitja tensió.

d) Subestació
- Determinació de la potència aparent del transformador:

Tensió del primari (kV) Intensitat del primari (A)
Tensió del secundari (kV) Intensitat del secundari (A) calcular

Potència aparent del transformador (kVA) calcular
4.6. Xarxa de terres

El capítol 6 sistematitza el càlcul de terres dels transformadors de MT/BT seguint el mètode UNESA “Mètode de càlculo y proyecto de instalaciones de puesta a tierra para centros de transformación de tercera categoría”.

El capítol s’inicia amb la seva pagina inicial com la resta de capítols del present programa.

![Capítol 6. Xarxa de terres](Cap6pag1)

Figura 56. Cap6pag1

Després de prémer “següent” a la pagina inicial del capítol s’obre la segona pagina.

En aquesta es realitzarà el càlcul de:

- Tensió màxima admissible pel cos humà
- Tensió de pas
- Tensió de contacte
- Tensió de pas en accés

Per tal de realitzar aquest càlculs el programa demana una sèrie de dades a l’usuari com són, el temps de defecte a terra en segons (temps d’actuació de les proteccions), la resistivitat mitja del terreny on es troba ubicat el centre de transformació i la resistivitat superficial del terreny on es troba el transformador (habitualment el terra del transformador està format per una capa superficial de formigó de resistivitat 3000 Ωm).

Al prémer el botó “Vca” s’obté el resultat de la tensió admissible pel cos humà segons el temps de defecte.

Després de facilitar les dades de resistivitat del terreny, prement a “calcular” s’obtenen les tensions de pas, de contacte i de pas a l’accés.
Aportació al disseny de sistemes eòlics

Determinació de xarxes de terres segons el mètode UNESA

-Tensió màxima admisible pel cos humà
Temps de defecte a terra (s) \(V_{ca} \) (V)

-Tensions de pas i contacte
Resistivitat mitjà del terreny (ohm·m)
Resistivitat superficial del terreny (ohm·m)
Tensió de pas (V) \(\text{Calcular} \)
Tensió de contacte (V)
Tensió de pas en accés (V)

Figura 57. Cap6pag2

El capítol continua amb la tercera pagina on es calcula la tensió i intensitat de defecte així com la resistència del sistema segons els paràmetres característics de la geometria de la terra de protecció indicats per l’usuari.

Així doncs en aquesta pagina es necessari que l’usuari consulti els documents del mètode UNESA per tal d’escollir una geometria de la terra de protecció.

Escollida la geometria de la instal·lació és necessari introduir al programa els seus paràmetres característics \(K_r \), \(K_p \) i \(K_c \) així com la tensió de la xarxa de mitja tensió. Prement el botó “calcular” s’obtenen els resultats dels càlculs.

Figura 58. Cap6pag3

Segons el mètode UNESA si el valor de la tensió de defecte supera els 1000V és necessària la separació de la terra de servei de la de protecció.
Per això quan es produeix aquest fet el programa retorna un missatge indicant que es necessària la separació de les terres i possibilita realitzar els càlculs de la terra de servei.

Igual que anteriorment l’usuari haurà d’escollir una geometria per a la instal·lació de la terra de servei i indicar al programa els valors dels paràmetres característics Kr i Kp. Prement “calcular” s’obté el valor de la resistència del neutre i la distància mínima entre terra de protecció i servei.

![Figura 59. Cap6pag3](image)

L’última pagina del capítol de terres calcula el valor de la tensió de pas a l’exterior de la instal·lació i el valor de la tensió de pas en accés.

Aquests valor són comparats amb els valors màxims calculats a la segona pagina i el programa ens indica si la instal·lació és correcte o no.

En el cas de que els valors obtinguts amb la instal·lació indicada per l’usuari siguin superiors als màxims admissibles calculats a la segona pagina, el programa indica que és necessari escollir una nova geometria per a la instal·lació de terres.

No es calcula la tensió de contacte a l’exterior ja que, com s’indica a la guia docent teòrica, es suposa una instal·lació on les portes i reixes metàl·liques que donen a l’exterior del centre no tindran contacte elèctric amb masses conductores que a causa de defecte puguin quedar sotmeses a tensió.

Igualment no es calculen les tensions de pas i contacte a l’interior per estar instal·lada al terra del centre de transformació una malla electrosoldada que, connectada a dos punts oposats de la terra de protecció, ofereix una superfície equipotencial.
-Tensions a l’exterior de la instal·lació

Tensió de pas (V)

-Calculeu

-Tensions a l’interior de la instal·lació

Tensió de pas en accés (V)

-Calculeu

Figura 60. Cap6pag4
CAPÍTOL 5:
SOFTWARE DE PRE-DISSENY. MANUAL DE PROGRAMACIÓ

5.1. Introducció

Aquesta guia pretén explicar com s’ha realitzat el ‘Programa parc eòlic’.

Des de l’estructura fins al funcionament intern, passant per les interfícies d’usuari. Gràcies a aquesta guia, serà possible entendre com s’ha programat i els passos a seguir si es vol realitzar una modificació o una ampliació del programa.

Es poden diferenciar dues parts: el disseny de l’estructura i el disseny del funcionament intern. El disseny de l’estructura s’ha realitzat com es mostra a continuació:

- Inicialment es va crear una interfície d’usuari base per tal de que totes les pàgines tinguessin el mateix format: color fons, botons amb igual lletra i dimensió, mida tipus de títol i text, mida etiquetes,...
- Seguidament es va crear una portada i una pàgina menú per tal d’accedir a cada un dels diferents blocs anteriorment anomenats.
- Es va decidir com seria el funcionament intern o de recorregut, aquest es mostra en el capítol següent.

I pel que fa al disseny del funcionament intern, es realitza separatament cada capítol. Ja inicialment en el PFC1, es divideix el treball en cinc grans blocs:

- Recurs eòlic
 Selecció aerogenerador
 Modelització
 Xarxa de potència
 Xarxa terres

S’ha seguit aquesta estructura en cada un dels dossiers presentats per tal de facilitar-ne la comprensió.

5.2. Disseny de l’estructura del programa

Com ja s’ha dit, el primer pas és crear la plantilla base d’interfície d’usuari anomenada guide o GUI

Se’n pot crear una anant a la pestanya File, prement en New i seguidament en GUI. Llavors prement en Blank GUI (Default) per començar per una GUI buida.

File>New>GUI> Blank GUI (Default)

Si es prem el botó dret sobre el fons apareixen diverses opcions, es clica sobre Property Inspector: Seguidament apareix una finestra on es mostren totes les propietats d’aquest fons. En el nostre cas en l’opció Color és de color blau.

Pel que fa a la mida de la pàgina, es va decidir fer-la més gran fins que en la Position mostri aproximadament [520,141,950,649], és a dir, en la part inferior dreta. Això es pot aconseguir col·locant-nos en un vèrtex del nostre fons, on apareixerà una fletxa amb doble sentit.

Seguidament es crearan els botons que ens permetran avançar, retrocedir o anar a l’inici. A la part esquerra superior es troba una icona que mostra la paraula OK, hi clicarem i dibuixarem un botó. Seguint la malla que veiem a la GUI, els botons són de dos unitats de base i una d’alçada i estan separats per una unitat. Els marges són d’una unitat, la lletra és Verdana 12 i el fons gris.

Es definirà la resta de text, es clicarà sobre la icona de TEXT i es realitzarà un de mostra. Clicarem en el Property Inspector tal i com s’ha explicat abans i es canviarà la lletra per a una de Verdana 14, el fons d’aquesta serà també serà de color blau. A continuació es realitzarà el mateix variant la mida a Verdana 12. La seva col·locació serà, si prenen el vèrtex superior esquerre com a zero, (-1,-2) la base inferior aquesta de l’etiqueta primera i (-2,-3) per a l’altra.

En aquest punt ja tenim la plantilla realitzada, procedirem a guardar-la.

File>Save

S’hi escriurà el nom que es vulgui i es guardarà, veiem que a continuació apareixerà una pàgina amb text amb extensió *.m. Aquí és on s’hi escriurà la part de programació pròpiament dita, cada pàgina estarà formada per dos arxius, un *.fig (GUI) i un altre *.m (text).

Si cliquem a File>New>GUI>Open Existing GUI>Browse... es pot obrir la GUI anteriorment guardada. En aquest punt es pot fer Save as i guardar-la amb un altre nom i ja tenim una altre pàgina igual. S’ha provat que aquesta és la millor manera de realitzar-ne una còpia.

Una vegada s’hagi trobat la funció, en el cas del botó Següent s’hi escriurà:

close all, cap2pag3;

En aquest cas es tancaran totes les finestres i la pàgina de destí serà cap2pag3 que la posem com a exemple, ja es modificarà posteriorment.

En el cas de botó ‘Anterior’, s’hi escriurà:

clear all

close all, cap2pag1;

S’eliminarà el valor de totes les variables, es tancaran totes la finestres, i s’obrirà la pàgina cap2pag1.

I en el cas del botó Inici:

clear all

close all, cap1pag2;

S’eliminarà el valor de totes les variables, es tancaran totes les finestres, i s’obrirà la pàgina cap1pag2, aquesta es troba a la pantalla inicial i ens permet accedir a qualsevol bloc. Guardarem la GUI i ja tenim la base per passar al pas següent.

El programa està pensat perquè es pugui accedir als diferents capítols segons mostra la Figura 1. Cal ressaltar que en qualsevol moment es pot tornar a l’inici.

Figura 61. Diagrama de flux
S’ha de dir que aquest programa està pensat per anar sempre endavant, és a dir, un cop premem el botó ‘Anterior’ o ‘Inici’, s’eliminaran els valors de les variables i haurem de tornar a començar. S’ha pres aquesta decisió per tal de no provocar conflictes entre variables, ja que està provat que no sempre funciona el procediment d’utilitzar una variable global per tot el programa, és doncs una mesura de seguretat per la realització dels càlculs.

5.3. Bloc portada i menú inici

Una vegada estigui dissenyada la plantilla base, la portada i el menú, es procedirà a dissenyar els diferents blocs pels quals està format el programa.

Aquest bloc està format per les pàgines següents:

<table>
<thead>
<tr>
<th>Taula 9. Capítol 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>cap1pag1</td>
</tr>
<tr>
<td>cap1pag2</td>
</tr>
</tbody>
</table>

A la pàgina inicial s’hi mostra una portada, el nom del treball, els noms dels programadors i una imatge de fons.

Per tal de configurar el fons procedirem en primer lloc a buscar una imatge adequada, ‘forcap.jpg’ per exemple. A continuació, buscarem a la part dreta superior una icona semblant a un gràfic, en crearem un que ocupi tota la pantalla i li posarem un nom anant a Property Inspector>Tag, per exemple fondo. Guardarem la GUI i obrirem l’arxiu corresponent amb extensió *.m. Posem com a exemple que estem treballant en la pàgina cap4pag8 i la imatge ‘forcap.jpg’, llavors en la funció ‘cap4pag8_OpeningFcn’, hi escriurem:

<table>
<thead>
<tr>
<th>Taula 10. Codi: Imatge</th>
</tr>
</thead>
<tbody>
<tr>
<td>fondo=imread('forcap.jpg');</td>
</tr>
<tr>
<td>axis off;</td>
</tr>
<tr>
<td>imshow(fondo);</td>
</tr>
</tbody>
</table>

Així quedará configurada la imatge i ens sortirà inicialment a l’obrir la pàgina, ja que es configura en la funció ‘OpeningFcn’.

El menú d’inici ubicat a la pàgina cap1pag2 funcionarà com a enllaç amb els diferents capítols pels quals està format el programa. Crearem cinc botons que ens dirigiran a les diferents pàgines d’inici de cada mòdul, tal i com s’ha mostrat a la Figura 1.

- Recurs eòlic
- Selecció aerogenerador
- Modelització
- Xarxa de potència
- Xarxa de terres

Es programaran de la mateixa manera que els botons: ‘Inici’, ‘Anterior’ i ‘Següent’.
5.4. Bloc recurs eòlic

Aquest capítol està format pels diferents punts que es mostren en la taula següent:

Taula 11. Capítol 2

<table>
<thead>
<tr>
<th>Capítol 2</th>
<th>Capítol 2: Inici recurs eòlic</th>
</tr>
</thead>
<tbody>
<tr>
<td>cap2pag1</td>
<td></td>
</tr>
<tr>
<td>cap2pag2</td>
<td>Capítol 2: Tipus dades entrada</td>
</tr>
<tr>
<td>cap2pag3</td>
<td>Capítol 2: Sectors: velocitat i freqüència</td>
</tr>
<tr>
<td>cap2pag4</td>
<td>Capítol 2: Distribució de Weibull</td>
</tr>
<tr>
<td>cap2pag5</td>
<td>Capítol 2: Rosa dels vents</td>
</tr>
<tr>
<td>cap2pag6</td>
<td>Capítol 2: Variació del vent amb l'alçada</td>
</tr>
</tbody>
</table>

Taula 12. Dades entrada

l=xlsread('entrada_dades',2);%copiem tota la matriu
a=l(:,1);%copiem la velocitat a 'a'
b=l(:,2);%copiem la direcció a 'b'

D’altra banda, els valors seleccionats per l’usuari de ‘Dades diàries’ i ‘Estudi’ també es guarden, tal i com mostra la taula següent:

Taula 13. Dades entrada

<table>
<thead>
<tr>
<th>Dades diàries</th>
<th>Estudi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 dada-cada dia</td>
<td>Diari 1</td>
</tr>
<tr>
<td>24 dades-cada 60 min.</td>
<td>Mensual: 28,29,30 ó 31</td>
</tr>
<tr>
<td>48 dades-cada 30 min.</td>
<td>Anual: 365 ó 366</td>
</tr>
</tbody>
</table>

Com podem veure, el codi dissenyat per guardar amb quin tipus de dades treballam és el següent:

Taula 14. Codi: Dades diàries

```matlab
%Dades diàries
if(get(handles.radiobutton_48, 'Value')==1)
h=48;
elseif (get(handles.radiobutton_24, 'Value')==1)
h=24;
elseif (get(handles.radiobutton_1dada, 'Value')==1)
h=1;
end
```

Taula 15. Codi: Estudi

```matlab
%Estudi
if (get(handles.radiobutton_diari, 'Value')==1)%Diari
d=1;
elseif (get(handles.radiobutton_mensual, 'Value')==1)%Mensual
    if (get(handles.radiobutton_28, 'Value')==1)
d=28;
    elseif (get(handles.radiobutton_29, 'Value')==1)
d=29;
```
elseif (get(handles.radiobutton_30, 'Value')==1)
 d=30;
elseif (get(handles.radiobutton_31, 'Value')==1)
 d=31;
end
elseif (get(handles.radiobutton_anual, 'Value')==1)
 if (get(handles.radiobutton_365, 'Value')==1)
 d=365;
 elseif (get(handles.radiobutton_366, 'Value')==1)
 d=366;
 end
end

Quan a la pàgina cap2pag2 es seleccionen els punts de dies i hores, es realitza el càlcul de la Taula 8. Multipliquem les dues variables guardades anteriorment, per tal de saber la dimensió total de les dades amb les quals tractem. En la Taula 7 veiem les diferents possibilitats amb les que ens podem trobar i en la Taula 8 el càlcul a realitzar.

Taula 16. Càlcul dades entrada

<table>
<thead>
<tr>
<th>1 dada x 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 dada x (28,29,30 ó 31)</td>
</tr>
<tr>
<td>1 dada x (365 ó 366)</td>
</tr>
<tr>
<td>24 dades x 1</td>
</tr>
<tr>
<td>24 dades x (28,29,30 ó 31)</td>
</tr>
<tr>
<td>24 dades x (365 ó 366)</td>
</tr>
<tr>
<td>48 dades x 1</td>
</tr>
<tr>
<td>48 dades x (28,29,30 ó 31)</td>
</tr>
<tr>
<td>48 dades x (365 ó 366)</td>
</tr>
</tbody>
</table>

Taula 17. Codi: Càlcul total dades

%mesures d'un dia * dies mesurats
k=h*d;

En el **cap2pag3**, en la fulla d’Excel s’utilitza la funció dimensió que es calcula allà mateix i el programa la guarda. Hem de tenir en compte que aquest valor es troba en una columna oculta i la fulla està bloquejada per tal de que l’usuari no ho modifiqi.

El producte realitzat ha de coincidir amb el valor guardat.

Taula 18. Codi: Comprovació dimensió

%el número de valors a guardar
n=xlsread('entrada_dades',1,'I20');
%comprovem la dimensió
if ((n==0) |(k~=n))
 if la dimensió no coincideix hi escrivim un missatge
 set(handles.text61,'Visible','ON');
 set(handles.text62,'Visible','ON');
 set(handles.text62,'String','---La dimensió de dades introduïdes en Excel no correspon amb les de la pàgina anterior!!!---');
 else
 if la dimensió coincideix amaguem l’etiqueta anterior del missatge error
 set(handles.text62,'Visible','OFF');
 set(handles.text61,'Visible','OFF');

S’ha realitzat així per poder saber de quin tipus de dades estem parllant, en el cas de que es vulguin obtenir representacions de la Rosa dels Vents de cada dí,

-110-
mes o període, en una possible ampliació del programa. En el nostre cas, ens serveix per seguretat.

D’altra banda, la Rosa dels Vents es divideix en 16 sectors de 22,5º cadascun, segons els punts cardinals:

- Nord (N)
- Nord Nord-est (NNE)
- Nord-est (NE)
- Est Nord-est (ENE)
- Est (E)
- Est Sud-est (ESE)
- Sud-est (SE)
- Sud Sud-est (SSE)
- Sud (S)
- Sud Sud-oest (SSO)
- Sud-oest (SO)
- Oest Sud-oest (OSO)
- Oest (O)
- Oest Nord-oest (ONO)
- Nord-oest (NO)
- Nord Nord-oest (NNO)

El primer pas que farem és ordenar els valors obtinguts de l’Excel i agrupar-los segons la seva direcció. S’ha de dir, que la direcció nord, des de -11.25 a 11.25, l’haurem de fer en dos passos i la sumarem posteriorment.

Taula 19. Codi: Ordena sectors

```matlab
%ordenar en sectors segons la direcció
j=1;
while j<=17
    i=1;
    while i<=k %mesures d'un dia * dies mesurats
        if ((-11.25+22.5*(j-1)<= b(i)) & (b(i) <(-11.25+22.5*(j))))
            c(i,j)=a(i);
        else
            c(i,j)=0;
        end
    i=i+1;
end
j=j+1;
end
c(:,1)=c(:,1)+c(:,17);
c(:,17)=0;
```
%suma rosa dels vents-queda tractar el nord, suma 17 i 1
y=[0:22.5:360];
N=hist(b,y);
N(:,1)=N(:,1)+N(:,17);
N(:,17)=0;

%suma de cada j
m(1,:)=sum(c,1);

En aquest punt ja podrem calcular la velocitat mitja i la freqüència de cada sector. En la matriu ‘m’ agruparem els valors més rellevants, en la fila 1 hi guardarem la suma de les velocitats de cada sector, en la fila 2 hi constarà la freqüència de cada sector i en la fila 3 la velocitat mitja.

Taula 20. Codi:Càlcul velocitat mitja i freqüència

%freqüència de cada j
m(2,:)=N;
a4y=N;

%velocitat mitja de cada j
j=1;
while j<=16
 if (m(2,j)==0)
 m(3,j)=0;
 else
 m(3,j)=m(1,j)/N(j);
 end
 j=j+1;
end
u=m(3,:);

En la taula següent es mostra el codi per tal de visualitzar els valors de la velocitat mitja i la freqüència. S’ha de tenir en compte que s’ha de tractar la *cadena de caràcters* (strings) per tal de visualitzar els decimals que necessitem en el format adequat. En el cas de la velocitat es mostraran dos decimals i la freqüència serà un valor enter.

Taula 21. Codi:Visualització etiquetes de freqüència i velocitat

%escriure en la GUI el valor en cada sector
set(handles.frequenciaN, 'string', (m(2,1)));
set(handles.velocitatN, 'string', num2str(m(3,1), '%6.2f
'));
set(handles.frequenciaNNE, 'String',m(2,2));
set(handles.velocitatNNE, 'String',num2str(m(3,2),'%6.2f
'));
set(handles.frequenciaNE, 'String',m(2,3));
set(handles.velocitatNE, 'String',num2str(m(3,3),'%6.2f
'));
set(handles.frequenciaENE, 'String',m(2,4));
set(handles.velocitatENE, 'String',num2str(m(3,4),'%6.2f
'));
set(handles.frequenciaE, 'String',m(2,5));
set(handles.velocitatE, 'String',num2str(m(3,5),'%6.2f
'));
set(handles.frequenciaESE, 'String',m(2,6));
set(handles.velocitatESE, 'String',num2str(m(3,6),'%6.2f
'));
set(handles.frequenciaSE, 'String',m(2,7));
set(handles.velocitatSE, 'String',num2str(m(3,7),'%6.2f
'));
set(handles.frequenciaSSE, 'String',m(2,8));
set(handles.velocitatSSE, 'String',num2str(m(3,8),'%6.2f
'));
set(handles.frequenciaS, 'String',m(2,9));
set(handles.velocitatS, 'String',num2str(m(3,9),'%6.2f
'));
set(handles.frequenciaSSO, 'String',m(2,10));
set(handles.velocitatSSO,'String',num2str(m(3,10),'%6.2f\n'));
set(handles.frequenciaSO,'String',m(2,11));
set(handles.velocitatSO,'String',num2str(m(3,11),'%6.2f\n'));
set(handles.frequenciaO,'String',m(2,12));
set(handles.velocitatO,'String',num2str(m(3,12),'%6.2f\n'));
set(handles.frequenciaONO,'String',m(2,14));
set(handles.velocitatONO,'String',num2str(m(3,14),'%6.2f\n'));
set(handles.frequenciaNO,'String',m(2,15));
set(handles.velocitatNO,'String',num2str(m(3,15),'%6.2f\n'));
set(handles.frequenciaNNO,'String',m(2,16));
set(handles.velocitatNNO,'String',num2str(m(3,16),'%6.2f\n'));

Seguidament a la pàgina cap2pag4 es mostra la distribució de probabilitat de Weibull i la seva funció acumulada. Primer es guardaran els valors d’origen novament, ja que s’ha demostrat que utilitzar variables globals no sempre funciona.

La teoria ens diu que aquest tipus de procediment funciona, encara que a la pràctica treballar amb variables globals al llarg del programa no sempre és així, sovint les variables importades estan buides.

Taula 22. Codi: Guardar dades d’entrada

```
%dades entrada
l=xlsread('entrada_dades',2); %copiem tota la matriu
a=l(:,1); %copiem la velocitat a ‘a’
b=l(:,2); %copiem la direcció a ‘b’
```

En aquest punt es programa la Distribució de Weibull, primer es calculen els seus paràmetres i seguidament es programen les funcions.

Taula 23. Codi: Distribució de Weibull

```
v=sort(a,1);
%parametres
PARMHAT = WBLFIT(v);
k=PARMHAT(2);
c=PARMHAT(1);

i=1;
while i<=length(a)
    fw1=wblpdf(v,c,k); %prov densitat weibull
    fw2=wblcdf(v,c,k); %funció distribució acumulada
    i=i+1;
end
```

En el primer paràgraf es visualitzen els paràmetres ‘c’ i ‘k’, seguidament es realitza la visualització de les dues corbes de Weibull en una sola gràfica. La funció plot serveix per representar gràfiques, i la funció xlabel per anomenar l’eix x. Per tal de visualitzar les dues gràfiques simultàniament és necessari utilitzar ‘hold on’, sinó n’apareixeria només una.

Taula 24. Codi: Visualització gràfica i paràmetres

```
set(handles.parmk1,'string','Paràmetre k:');
set(handles.text66,'string',num2str(k,'%6.2f\n'));
set(handles.paramlambc1,'string','Paràmetre c:');
set(handles.text67,'string',num2str(c,'%6.2f\n'));
set(handles.text68,'string','Velocitat mitja:');
```
La programació de la rosa dels vents es realitza al cap2pag5. Per començar es guardaran els valors d’entrada corresponents a la freqüència de l’arxiu ‘entrada_dades’. Seguidament s’utilitza la funció rose. És important dir que la gràfica s’ha girat 90 graus ja que la funció rose pren l’inici en l’est.

Inicialment hi ha una etiqueta que tapa quasi tota la pantalla perquè no es vegin els axes (eixos) on es representarà la Rosa dels vents, al prémer el button (botó) es fa invisible l’etiqueta.

Taula 25. Codi: Rosa dels vents

```matlab
function Rosa_Callback(hObject, eventdata, handles)
    set(handles.text60,'Visible','OFF');
l=xlsread('entrada_dades',2); %copiem tota la matriu
b=l(:,2); %copiem la direcció a 'b'
a2dir=90-b;
a2dirRAD=a2dir*pi/180;
[angle,freq]=rose(a2dirRAD);
rose(a2dirRAD);
```

Seguidament es vol representar la variació de la velocitat amb l’alçada. En aquesta pàgina, cap2pag6, s’ha d’introduir la rugositat en un edit (etiqueta) per tal de realitzar el càlcul com veiem a continuació:

Figura 62. GUI cap2pag6
En primer lloc es va a la GUI i es defineix un edit, i es guarda amb el nom de ‘edit1’, per exemple. A continuació en l’arxiu cap2pag6.m es busquen les funcions ‘edit1_Callback’ i ‘edit1_CreateFcn’. La funció ‘edit1_Callback’ la programarem perquè illegeixi el valor introduït de la rugositat en l’edit1, i el guardarem en una variable que l’anomenarem ‘handles.rugositat’. La funció ‘edit1_CreateFc’ no la modificarem.

Taula 26. Codi: Edit rugositat 1

```matlab
function edit1_Callback(hObject, eventdata, handles)
a=get(hObject,’string’);
b=str2double(a);
handles.rugosit=b;
guidata(hObject,handles);
end
```

Una altra manera d’introduir aquesta part de codi és la que es mostra a continuació, i que utilitzarem quan haguem de tornar a programar edits per simplificar-ho.

Taula 27. Codi: Edit rugositat 2

```matlab
handles. rugosit=str2double(get(hObject,’string’));
guidata(hObject,handles);
```

Quan el valor ja el tenim en un variable ja pot ser utilitzat, en aquest cas ‘handles.rugosit’.

D’altra banda, es procedeix a realitzar el càlcul, visualitzar i mostrar per pantalla la gràfica obtinguda:

Taula 28. Codi: Variació de la velocitat amb l’alçada

```matlab
l=xlsread(’entrada_dades’,2); % copiem tota la matriu
a=[l(:,1); % copiem la velocitat a ’a’
B=mean(a);
C=handles.rugosit;
h=10:10:120;
v=B.*(h./10).^C;
set(handles.velocitat,’string’,num2str(v,’%6.2f\n’));
set(handles.resultats,’string’,h);
plot(h,v);
xlabel(’alçada (m)’);
ylabel(’velocitat (m/s)’);
```

En aquest capítol s’ha vist la majoria dels procediment utilitzats al llarg del programa. A partir d’aquí s’utilitzaran el mateixos conceptes amb algunes ampliacions.

5.5. Bloc aerogenerador

En la primera pàgina mostra el títol d’aquest bloc, selecció d’un aerogenerador. Aquest tercer capítol consta de les pàgines següents:
Seguidament, a la pàgina cap3pag2, es pretén mostrar la corba de potència de l’aerogenerador, les dades s’han extret directament de les característiques de l’aerogenerador G87:

Taula 30. Codi: Corba de potència

```matlab
% del annex Gamesa, pàg 32/84 taula 3, representació corba potència del AEG G87 2MW
ws=[4:1:25];
potgam=[78.6 181.2 335.4 549.8 831.5 1174.3 1528.7 1931.1 1981.0 1995.3
axis([4 25 0 2500]);
plot(ws,potgam);
xlabel('Velocitat del vent (m/s)');
ylabel('Potència (kW)');
```

A la pàgina 3 d’aquest capítol es realitzarà el càlcul de la potència de l’aerogenerador. Es dona a l’usuari la possibilitat d’introduir les dades d’alçada, Cp, diàmetre del rotor per obtenir la potència del AG.

Taula 31. Codi: Potència aerogenerador

```matlab
l=xlsread('entrada_dades',2);%completa tota la matriu
a=l(:,1);%completa la velocitat a 'a'
vi=mean(a);
Cp1=handles.a3coefp;%Cp
dens=1.225;%densitat a nivell del mar, l’agafem per defecte
area=pi*(handles.diame/2)^2;%area pales
alpha=handles.a3rugos;%rugositat del terreny
h=handles.altura;%alçada variable segons les opcions del aerogenerador
va=vi*(h/10)^alpha;%calcul de la velocitat a l’alçada que volem
pgene=((1/2)*Cp1*dens*area*va^3)/1000;
set(handles.missatge,'String',num2str(pgene,'%6.2f\n'));
```

5.6. Bloc viabilitat econòmica

La primera pàgina del capítol és merament de presentació.

A la pàgina cap4pag2 es disposen una sèrie de textos on s’indica el procediment a seguir en el capítol de modelització
Seguidament es mostren:

Taula 32. Capítol 4

cap4pag1	Capítol 4: Inici Viabilitat econòmica
cap4pag2	Capítol 4: Estructura bloc
cap4pag3	Capítol 4: Dades producció
cap4pag4	Capítol 4: Preu energia
cap4pag5	Capítol 4: Ingressos anuals
cap4pag6	Capítol 4: Cost inversió
cap4pag7	Capítol 4: Cost operació i manteniment
cap4pag8	Capítol 4: Paràmetres del projecte
cap4pag9	Capítol 4: Flux de caixa

En la GUI de la pàgina **cap4pag3** veiem que consta de diferents apartats, es calcularà l’energia generada per un AG i la total el parc. Veiem com és la pàgina per entendre-ho millor:

La taula següent mostra com calcular l’energia generada per un aerogenerador en un 1 any. Al prèmer el primer botó de calcular, es llegeix les dades de l’Excel directament, a continuació una variable guarda les vegades que la velocitat està entre 4 i 25. La variable diària (1, 24 ó 48) que l’usuari ha guardat ens servirà per calcular el nombre total d’hores, la freqüència de velocitats serà multiplicada o dividida segons correspongui.

Com s'ha esmentat a la guia docent practica el càlcul d’hores equivalents realitzat amb una dada diària no serà un valor a prendre com a real, i en aquests casos s’haurà d’introduir el nombre d’hores de forma manual.

A partir de les dades anteriors es calcula l’energia generada per un AG i es visualitza. El procés de crear les etiquetes (edits), es realitzarà com s’ha explicat anteriorment.

Figura 63. GUI cap4pag3
La primera pregunta de la pàgina cap4pag3, Figura2, correspon al preu del AG, si es marca sí s’utilitzarà el preu que ja està guardat dins el programa i si es marca no es podrà introduir un preu diferent.

També, es demana el nombre d’aerogeneradors, aquest valor s’utilitzarà per saber el cost total dels aerogeneradors i per multiplicar l’energia generada d’un AG i obtenir la total del parc.

Seguidament s’obté l’energia unitària d’un AG, es pot introduir directament o es pot calcular.

Amb la funció ‘calcula_energiaSumAG_Callback’ es pretén:

- Obtenir el preu dels AG.
- Calcular el preu de tots els AG.
- Guardar en un variable el valor de l’energia generada, ja sigui calculada novelment o introduïda per l’usuari.
- Obtenir l’energia total generada.
- Visualitzar l’energia generada total.
Taula 34. Codi:Càlcul energia total aerogeneradors 1 any

```matlab
function calcula_energiaSumAG_Callback(hObject, eventdata, handles)

global a40 a4pgensum epwdens
%quin preu ag utilitzem a43
if (get(handles.radiobutton1,'Value')==1)
a43=1662525.86;%quan val un ag Gamesa 2MW
elseif (get(handles.radiobutton2,'Value')==1)
a43=handles.naerog1;
end.
%nombre ag
if (get(handles.radiobutton18,'Value')==1)
nega=1;
elseif (get(handles.radiobutton19,'Value')==1)
nega=handles.quage;
end
% preu de tots els aerogeneradors
a40=a43*nag;
%obtenir l’energia generada per 1 aerogenerador
if (get(handles.radiobutton5,'Value')==1)
a4pgeneral=handles.potgern;
elseif (get(handles.radiobutton4,'Value')==1)
a4pgeneral=epwdens;
end.
%energia generada pel conjunt d’aerogeneradors
a4pgensum=a4pgeneral*nag;%nag és el nº aerogeneradors
%visualitzem per pantalla l’energia total generada per tots el Ag
set(handles.text13,'String',num2str(a4pgensum,'%6.2f n'));

En la següent pàgina es mostra per pantalla el preu de les dues tarifes, per tal de que l’usuari les conegui o bé utilitzi uns preus més actualitzats introduint-los manualment. A l’acabar el procés es passa a l’altre pàgina:

**Taula 35.** Codi:Preu energia

```matlab
function següent_Callback(hObject, eventdata, handles)

global a4tar1r1 a4tar2r1 a4tamerLS1 a4tamerL11 a4tamerPrim1
if(get(handles.valors_guar,'Value')==1)
 %a4pgensum valor de la potència generada en tot el parc i per tots els ag
 a4tar1r1=7.7471/100;
a4tar2r1=6.4746/100;
a4tamerLS1=8.8966/100;
a4tamerL11=7.5405/100;
a4tamerPrim1=3.0988/100;
elseif (get(handles.nousvalors,'Value')==1)
a4tar1r1=handles.tra20;
a4tar2r1=handles.trd20;
a4tamerLS1=handles.tmLS;
a4tamerL11=handles.tmL1;
a4tamerPrim1=handles.tmpri;
end

close all, cap4pàg5;

Seguidament es procedeix a calcular els ingressos anuals, a la pàgina **cap4pag5**, es realitzen les multiplicacions dels preus amb la potència total
generada anualment i es visualitzen per pantalla. Es realitza l’actualització anual dels ingressos amb el valor de la inflació indicada per l’usuari.

Els resultats es mostren en milions d’euro.

S’utilitzen variables globals per tal d’obtenir els valors d’entrada i poder utilitzar-los després.

Taula 36. Codi: Ingressos anuals

```matlab
function calcular_Callback(hObject, eventdata, handles)
any=1:1:20;
set(handles.text41,'String',num2str(anys,'%6.0f
'));

global a41rp a42rp a41rLS a41rLI a42rLS a42rLI a4pgensum2 a4tarar1 a4tarar2 a4tamerLS1 a4tamerLI1 a4tamerPrim1

%tarifa mercat i regualda
i=2;
a41rp(1)=a4tarar1*a4pgensum2;
a42rp(1)=a4tarar2*a4pgensum2;
a41rLS(1)=(a4tamerPrim1+a4tamerLS1)*a4pgensum2;%LS els 20 primers anys
a41rLI(1)=(a4tamerPrim1+a4tamerLI1)*a4pgensum2;%LI els 20 primers anys
a42rLS(1)=(a4tamerLS1)*a4pgensum2;%LS els 20 següents
a42rLI(1)=(a4tamerLI1)*a4pgensum2;%LI els 20 següents
while i<=20
  %tarifa regulada
  a41rp(i)=a41rp(i-1)*(1+(handles.IPC/100));%els 20 anys següents
  a42rp(i)=a42rp(i-1)*(1+(handles.IPC/100));%els 20 anys següents
  %tarifa mercat
  a41rLS(i)=a41rLS(i-1)*(1+(handles.IPC/100));%els 20 anys següents
  a41rLI(i)=a41rLI(i-1)*(1+(handles.IPC/100));
  a42rLS(i)=a42rLS(i-1)*(1+(handles.IPC/100));
  a42rLI(i)=a42rLI(i-1)*(1+(handles.IPC/100));
  i=i+1;
end
set(handles.text24,'String',num2str(a41rp/1000000,'%6.2f
'));
set(handles.text25,'String',num2str(a42rp/1000000,'%6.2f
'));
set(handles.text26,'String',num2str(a41rLS/100000000,','6.2f
'));
set(handles.text27,'String',num2str(a41rLI/100000000,','6.2f
'));
set(handles.text28,'String',num2str(a42rLS/100000000,','6.2f
'));
set(handles.text29,'String',num2str(a42rLI/100000000,','6.2f
'));
```

El ingrés dels valors de costos de les diferents partides així com del valor de cost total, es realitza la pàgina cap4pag6.

Una vegada s’han introduït els valors de ’Cost inversió i els valors de cada un dels costos de: generació, obra civil, sistema col·lector,... podem prémer la funció ’Calcula(%)’ i s’obtindran el tant per cent del total que representa cadascun aquests.

En la taula següent es pot veure com es treballa amb els valors introduïts per l’usuari en les etiquetes, se’n fa el tant per cent i es visualitzen per pantalla.
Taula 37. Codi: Calcula (%)

```matlab
function Calctantper100_Callback(hObject, eventdata, handles)

global cosinv a40

cosinv = handles.valtot;
if (get(handles.nouvalor, 'Value') == 1)
    a40 = handles.generacio; % sino hi ha el valor a40 on conté el preu total dels aerogenradors
end
a402 = (a40/cosinv)*100;
obra2 = (handles.obracivil/cosinv)*100;
cole2 = (handles.sistimacolector/cosinv)*100;
cen2 = (handles.centdemetj/cosinv)*100;
edi2 = (handles.edificiccontrol/cosinv)*100;
est2 = (handles.restarmediamb/cosinv)*100;
ges2 = (handles.gestioidirecio/cosinv)*100;
lic2 = (handles.llicenciper/cosinv)*100;

set(handles.text22, 'String', num2str(a402, '%6.2f\n'));
set(handles.text23, 'String', num2str(obra2, '%6.2f\n'));
set(handles.text24, 'String', num2str(cole2, '%6.2f\n'));
set(handles.text25, 'String', num2str(cen2, '%6.2f\n'));
set(handles.text27, 'String', num2str(edi2, '%6.2f\n'));
set(handles.text28, 'String', num2str(est2, '%6.2f\n'));
set(handles.text29, 'String', num2str(ges2, '%6.2f\n'));
set(handles.text30, 'String', num2str(lic2, '%6.2f\n'));

En la pàgina cap4pag7 es realitza l’actualització anual del cost d’operació i manteniment segons la inflació indicada per l’usuari anteriorment.

El cost de manteniment i operació indicat per l’usuari serà la variable d’entrada “mant”, mentre que el resultat obtingut, serà un vector de 20 columnes anomenat “taumant” que es declara global per utilitzar-lo posteriorment. Els elements d’aquest vector es visualitzen per pantalla en milions d’euro.

**Taula 38. Codi: cost operació i manteniment**

```matlab
function pushbutton5_Callback(hObject, eventdata, handles)

global taumant mant IPC

anyx = 1:1:20;
set(handles.text19, 'String', num2str(anys, '%6.2f\n'));

mant = handles.mant;

totan = 0;
taumant(1) = handles.mant*(1+(IPC/100));
i = 2;
while i <= 20
 taumant(i) = taumant(i-1)*(1+(IPC/100));
 i = i + 1;
end
set(handles.text1, 'String', num2str(taumant/1000000, '%6.2f\n'));
```

A la pagina 8 del present capítol es realitza la recollida de les dades necessàries pels càlculs de la pagina següent. Es dur a terme en el Callback de cada edit text i les variables es declaren globals al primer el botó següent.


**Taula 39. Codi:següent**

```matlab
function seguent_Callback(hObject, eventdata, handles)

global amort aportat fin interes des retorn
amort=handles.amortitzacio;
aportat=handles.capitalaportat;
fin=handles.capitalfinan;
interes=handles.interes;
des=handles.descompte;
retorn=handles.perioderetorn;
close all, cap4pag9;

A l’última pàgina del capítol és on es realitzen els càlculs dels fluxos de caixa anuals. Tots els càlculs es duen a terme al prémer el botó “calcular”.

El primer pas és visualitzar per pantalla els valors dels ingressos calculats anteriorment, segons la tarifa a escollir per part de l’usuari.

Taula 40. Codi:ingressos segons tarifa

```matlab
function calcular_Callback(hObject, eventdata, handles)

global amort aportat fin interes des retorn
if (get(handles.radiobutton1,'Value')==1)
ing=a41rp;
elseif (get(handles.radiobutton2,'Value')==1)
ing=a41rLS;
elseif (get(handles.radiobutton3,'Value')==1)
ing=a41rLI;
end

A continuació es visualitza el cost d’operació i manteniment anual i es realitza el càlcul del benefici brut.

**Taula 41. Codi:Benefici brut**

```matlab
i=1;
while i<=20
 Bbrut(i)=ing(i)-taumant(i);
 i=i+1;
end

El següent pas és el càlcul de l’amortització anual i del BAIT.

Taula 42. Codi:BAIT

```matlab
amortitzacio=-(cosinv/amort);
n=ones(1,amort);
amortitzacion=amortitzacio.*n;
i=amort+1;
while i<=20
    amortitzacion(i)=0;
    i=i+1;
end
BAIT=Bbrut + amortitzacion;

Pel càlcul dels interessos i del BAT és necessari realitzar abans el càlcul de la quota anual del préstec bancari. La variable “fin” correspon al valor del capital finançat mentre que la variable “retorn” correspon a al temps de retorn del préstec.
### Aportació al disseny de sistemes èolics

#### Taula 43. Codi: BAT

```matlab
quota=fin/retorn;
m=ones(1,retorn);
quoram=quota.*m;
i=retorn+1;
while i<=20
 quoram(i)=0;
i=i+1;
end
j=1;
while j<=retorn
 interessos(j)=(quota*(retorn-j+1)).*(interes/100);
 j=j+1;
end
i=retorn+1;
while i<=20
 interessos(i)=0;
i=i+1;
end
BAT=BAIT-interessos;
```

El càlcul del benefici net i del flux de caixa es realitza:

#### Taula 44. Codi: Benefici net i flux de caixa

```matlab
impostos=0.3.*BAT;
Bnet=BAT-impostos;
fcaixa=Bnet-amortitzacion-quoram;
```

A continuació es realitza la programació per a la visualització per pantalla del càlculs realitzats anteriorment. Tots els resultats s’expressen en milions d’euro.

#### Taula 45. Codi: Visualització

```matlab
set(handles.text53,'String',num2str(interessos/1000000,'%6.2f\n')); %interessos
set(handles.text64,'String',num2str(quoram/1000000,'%6.2f\n')); %Quota
set(handles.text52,'String',num2str(BAIT/1000000,'%6.2f\n')); %BAIT
set(handles.text51,'String',num2str(amortitzacion/1000000,'%6.2f\n')); %amortització
set(handles.text63,'String',num2str((-amortitzacion/1000000),'%6.2f\n')); %amortització
set(handles.text47,'String',num2str(Bbrut/1000000,'%6.2f\n')); %benefici brut
set(handles.text46,'String',num2str(taumant/1000000,'%6.2f\n')); %cost manteniment
set(handles.text45,'String',num2str(ing/1000000,'%6.2f\n')); %ingressos
set(handles.text57,'String',num2str(BAT/1000000,'%6.2f\n')); %BAT
set(handles.text59,'String',num2str(Bnet/1000000,'%6.2f\n')); %benefici net
set(handles.text65,'String',num2str(fcaixa/1000000,'%6.2f\n')); %flux de caixa
set(handles.text58,'String',num2str(impostos/1000000,'%6.2f\n')); %impostos
```

Els últims càlculs del capítol es basen en la determinació del VAN i del TIR. També es realitzen al prèmer el botó “calcular” indicat anteriorment.

#### Taula 46. Codi: VAN i TIR

```matlab
i=1;
while i<=20
```
\[ V(i) = \frac{f\text{caixa}(i)}{1 + \left(\frac{\text{des}}{100}\right)^20}; \]
\[ i = i + 1; \]
end
\[ V1 = \text{sum}(V); \]
\[ \text{VAN} = -\text{aportat} + V1; \]
\[ \text{set(handles.text68, 'String', num2str(VAN/1000000, '%6.2f\n'))}; \]
\[ i = 1; \]
while \( i \leq 20 \)
\[ Vtir(i) = f\text{caixa}(i); \]
\[ i = i + 1; \]
end
\[ V2 = \text{sum}(Vtir); \]
\[ \% \text{flux de caixa} \]
\[ \text{qq} = V2/\text{aportat}; \]
\[ r = \text{nthroot}(\text{qq}, 20); \]
\[ \text{TIR} = (r - 1) * 100; \]
\[ \text{set(handles.text69, 'String', num2str(TIR, '%6.2f\n'))}; \]

5.7. Bloc instal·lacions d’interconnexió

El capítol 5, on es realitzen els càlculs referents a les instal·lacions elèctriques, està format en la seva totalitat per 31 pàgines, si bé el nombre de pàgines que utilitzarà l’usuari depèndrà de la disposició de la xarxa de mitja tensió del parc.

**Taula 47. Capítol 5**

<table>
<thead>
<tr>
<th>cap5pag1</th>
<th>Capítol 5: Inici instal·lacions d’interconnexió</th>
</tr>
</thead>
<tbody>
<tr>
<td>cap5pag2</td>
<td>Capítol 5: Estructura del bloc</td>
</tr>
<tr>
<td>cap5pag3</td>
<td>Capítol 5: Línies entre generadors i transformadors</td>
</tr>
<tr>
<td>cap5pag4</td>
<td>Capítol 5: Transformadors de MT/BT</td>
</tr>
<tr>
<td>cap5pag5</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 1</td>
</tr>
<tr>
<td>cap5pag6</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 1 i 2</td>
</tr>
<tr>
<td>cap5pag61</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 3 i 4</td>
</tr>
<tr>
<td>cap5pag62</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 5 i 6</td>
</tr>
<tr>
<td>cap5pag63</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 7 i 8</td>
</tr>
<tr>
<td>cap5pag64</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 9 i 10</td>
</tr>
<tr>
<td>cap5pag65</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 11 i 12</td>
</tr>
<tr>
<td>cap5pag66</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 13 i 14</td>
</tr>
<tr>
<td>cap5pag67</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 15 i 16</td>
</tr>
<tr>
<td>cap5pag68</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 17 i 18</td>
</tr>
<tr>
<td>cap5pag69</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 19 i 20</td>
</tr>
<tr>
<td>cap5pag70</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 21 i 22</td>
</tr>
<tr>
<td>cap5pag611</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 23 i 24</td>
</tr>
<tr>
<td>cap5pag612</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 25 i 26</td>
</tr>
<tr>
<td>cap5pag613</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 27 i 28</td>
</tr>
<tr>
<td>cap5pag614</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 29 i 30</td>
</tr>
<tr>
<td>cap5pag615</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 31 i 32</td>
</tr>
<tr>
<td>cap5pag616</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 33 i 34</td>
</tr>
<tr>
<td>cap5pag617</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 35 i 36</td>
</tr>
<tr>
<td>cap5pag618</td>
<td>Capítol 5: Línies de mitja tensió. Configuració 2. Circuits 37 i 38</td>
</tr>
</tbody>
</table>
La primera pàgina del capítol la forma la portada del mateix. Conté la plantilla bàsica de totes les pàgines del programa (color de fons, botons inici, anterior i següent) així com un static text amb el títol del capítol.

En pàgina següent es realitza una petita descripció de l’estructura del capítol.

Esta formada per una sèrie de static texts que aporten la informació necessària a l’usuari.

A la tercera pàgina es realitza el càlcul de la línia de baixa tensió entre el generador i el transformador.

Es disposen una sèrie de edit text a la GUI per tal de que l’usuari aporti les dades necessàries per a la realizació del càlculs. Mitjançant el comandament get s’obtenen aquest valors.

El primer càlcul es realitzar al prémier el boto “In (A)”. Segons l’elecció de l’usuari als radiobuttons el càlcul serà diferent. En els radiobutton es dona la oportunitat a l’usuari d’escollir si es pretén treballar amb l’aerogenerador G-87 de Gamesa o amb un altre aerogenerador indicant la seva potencia nominal.

Es declara global el resultat del càlcul (variable I) ja que serà necessari posteriorment. La intensitat nominal es troba afectada per un factor de sobredimensionament de 1,25 segons ITC-BT-40.

**Taula 48. Codi: In**

```matlab
function pushbutton4_Callback(hObject, eventdata, handles)
F=handles.coseno;
global I;
if (get(handles.radiobutton1, 'Value') == 1)
 P=2000000;
 V=690;
 I=(P/(sqrt(3)*V*F)*1.25);
 set(handles.text8, 'string', num2str(I, '%6.2f
'));
end
if (get(handles.radiobutton2, 'Value') == 1)
 P=handles.potencia;
 V=690;
 I=(P/(sqrt(3)*V*F)*1.25);
 set(handles.text8, 'string', num2str(I, '%6.2f
'));
end
handles.intensitat=I;
guidata(hObject,handles);
```

Una vegada l’usuari disposa del valor de la intensitat nominal, pot escollir una secció de conductor. Després d’introduir al programa la secció del conductor, la intensitat màxima i els factors de correcció, al botó “Compleix?” es calcula la intensitat màxima afectada pels factors de correcció i es determina si el seu valor es admissible o no.
**Taula 49. Codi: Compleix?**

<table>
<thead>
<tr>
<th>function pushbutton5_Callback(hObject, eventdata, handles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T=handles.temperatura;</td>
</tr>
<tr>
<td>G=handles.agrupacio;</td>
</tr>
<tr>
<td>I2=handles.intensitat;</td>
</tr>
<tr>
<td>I3=handles.imax;</td>
</tr>
<tr>
<td>Imax=I3<em>G</em>T;</td>
</tr>
<tr>
<td>set(handles.text20,'string',num2str(Imax,'%6.2f\n'));</td>
</tr>
<tr>
<td>if (I2&lt;Imax)</td>
</tr>
<tr>
<td>set(handles.text9,'string','Admissible');</td>
</tr>
<tr>
<td>elseif (I2&gt;Imax)</td>
</tr>
<tr>
<td>set(handles.text9,'string','No admissible');</td>
</tr>
<tr>
<td>end</td>
</tr>
</tbody>
</table>

Per a realitzar el càlcul de la caiguda de tensió present a la línia es demana a l’usuari el valor de la longitud, la resistència i la reactància. Així es realitza el càlcul al botó “Caiguda de tensió” i al botó “Compleix?” es determina si és admissible el resultat.

**Taula 50. Codi: Caiguda de tensió i Compleix?**

<table>
<thead>
<tr>
<th>function pushbutton7_Callback(hObject, eventdata, handles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L=handles.longitud;</td>
</tr>
<tr>
<td>R=handles.resistencia;</td>
</tr>
<tr>
<td>RA=handles.reac;</td>
</tr>
<tr>
<td>I2=handles.intensitat;</td>
</tr>
<tr>
<td>F=handles.coseno;</td>
</tr>
<tr>
<td>V=sqrt(3)<em>I2</em>L*(R<em>F+RA</em>(sin(acos(F))));</td>
</tr>
<tr>
<td>set(handles.text15,'string',num2str(V,'%6.2f\n'));</td>
</tr>
<tr>
<td>handles.ten=V;</td>
</tr>
<tr>
<td>guidata(hObject,handles);</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>function pushbutton6_Callback(hObject, eventdata, handles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1=handles.ten;</td>
</tr>
<tr>
<td>if (V1&lt;(690*0.015))</td>
</tr>
<tr>
<td>set(handles.text13,'string','Admissible');</td>
</tr>
<tr>
<td>elseif (V1&gt;(690*0.015))</td>
</tr>
<tr>
<td>set(handles.text13,'string','No admissible');</td>
</tr>
<tr>
<td>end</td>
</tr>
</tbody>
</table>

La potència aparent del transformador de MT/BT es calcula a la pàgina cap5pag4. En primer lloc es calcula la intensitat que circularà pel secundari del transformador. L’usuari indica el valor de la tensió del secundari, mentre que, la tensió del primari es troba fixada a 690 V i la intensitat del primari resulta dels càlculs realitzats a la pàgina anterior. La intensitat del primari es troba dividida per 1,25 per obtenir la intensitat nominal de l’aerogenerador sense el factor de sobredimensionament dedicat als conductors.

**Taula 51. Codi: Intensitat del secundari**

<table>
<thead>
<tr>
<th>function pushbutton4_Callback(hObject, eventdata, handles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>global I;</td>
</tr>
<tr>
<td>V2=handles.tensio2;</td>
</tr>
<tr>
<td>I2=(690/(V2<em>10^3))</em>(I/1.25);</td>
</tr>
<tr>
<td>set(handles.text8,'string',num2str(I2,'%6.2f\n'));</td>
</tr>
<tr>
<td>handles.intensitat2=I2;</td>
</tr>
<tr>
<td>guidata(hObject,handles);</td>
</tr>
</tbody>
</table>
Seguidament es calcula la potencia aparent del transformador.

**Taula 52. Codi: Potència aparent del transformador**

```matlab
function pushbutton5_Callback(hObject, eventdata, handles)
 V2=handles.tensio2;
 I2=handles.intensitat2;
 S=sqrt(3)*V2*I2;
 set(handles.text11,'string',S);
end
```

A la pàgina cap5pag5 es calculen les seccions dels conductors de mitja tensió segons la configuració 1. Com s’explica a la guia docent practica la configuració 1 és aquella en la que cada transformador de mitja tensió es troba connectat individualment amb la subestació.

La programació per a aquesta pagina es essencialment igual a la del conductor de baixa tensió entre generador y transformador amb certes diferencies.

S’utilitza el valor de tensió indicat a la pagina anterior.

**Taula 53. Codi: Intensitat nominal**

```matlab
function pushbutton4_Callback(hObject, eventdata, handles)
 global v2
 F=handles.cosenom;
 P=handles.potenciam;
 I=(P*10^3)/(sqrt(3)*(v2*10^3)*F);
 set(handles.text8,'string',num2str(I,'%6.2f\n'));
 handles.intensitatm=I;
 guidata(hObject,handles);
end
```

Coneixent la intensitat nominal, l’usuari introdueix els valors de secció, intensitat màxima i factors de correcció i es realitza el càlcul de intensitat màxima afectada pels factors de correcció.

**Taula 54. Codi: Intensitat màxima**

```matlab
function pushbutton5_Callback(hObject, eventdata, handles)
 T=handles.temperaturam;
 G=handles.agrupaciom;
 Po=handles.profunditat;
 R=handles.resistivitat
 Im=handles.intensitatm;
 I3=handles.imaxm;
 Imax=I3*T*G*Po*R;
 set(handles.text26,'string',num2str(Imax,'%6.2f\n'));
 if (Im<Imax)
 set(handles.text13,'string','Admissible');
 elseif (Im>Imax)
 set(handles.text13,'string','No admissible');
 end
end
```

Segons els valors de longitud de la línia, resistència i reactància, es determina la caiguda de tensió i si es un valor admissible o no.

**Taula 55. Codi: Caiguda de tensió**

```matlab
function pushbutton7_Callback(hObject, eventdata, handles)
 L=handles.longitudm;
 R=handles.resistenciam;
 RA=handles.reacm;
 I2=handles.intensitatm;
end
```
Anna Mora Sanchez, Pau Sebastián Arcos

F = \text{handles.cosenom}; 
V = \sqrt{3} \cdot I^2 \cdot L \cdot (R \cdot F + R_A \cdot \sin(\arccos(F))) ;
set(handles.text21, 'string', num2str(V, '%6.2f n')); 

handles.ten = V; 
guidata(hObject, handles);

\textbf{function} pushbutton6_Callback(hObject, eventdata, handles)
\textbf{global} v2
V1 = \text{handles.ten}; 
if (V1 < ((v2*10^3)*0.05))
\text{set(handles.text20, 'string', 'Admissible');}
elseif (V1 > ((v2*10^3)*0.05))
\text{set(handles.text20, 'string', 'No admissible');}
end

Per últim es calcula el valor de les pèrdues per efecte Joule presents al conductor al prèmer el botó “Calcular” ubicat al costat del static text “-Pèrdua de potència en el circuit (W)”.

\textbf{Taula 56. Codi: Pèrdues}

\textbf{function} pushbutton8_Callback(hObject, eventdata, handles)
L = \text{handles.longitudm};
R = \text{handles.resistenciam};
I_2 = \text{handles.intensitatm};
\text{Perdues} = 3 \cdot R \cdot L \cdot (I_2^2);
set(handles.text23, 'string', num2str(Perdues, '%6.2f n'));

A la pagina sis del present capítol es realitzen els càlculs de les línies de mitja tensió segons la configuració2. La configuració 2 és aquella en la que es disposa d’un circuit col·lector de mitja tensió subdividit en circuits entre transformadors de MT/BT.

La nova funció incorporada en aquesta pagina es basa en la utilització d’un listbox per escollir el nombre de generadors presents a la instal·lació. Al camp string de les propietats del listbox es poden introduir els valors a escollir per part de l’usuari. Segons el valor escollit (nombre d’aerogeneradors) variarà la programació.
En cada pagina de mitja tensió segons configuració 2 es disposa dels elements necessaris per a realitzar els càlculs de dos circuits.

La programació del botó següent en aquesta pagina es troba en funció del nombre d’aerogeneradors indicat per l’usuari de tal manera que, si treballem amb 1 o 2 aerogeneradors, al prémer el botó següent passarem a la pagina 7 (subestació) mentre que, si treballem amb 3 o més aerogeneradors, al prémer el boto següent passarem a la pagina 61.

**Taula 57. Codi: Següent**

```matlab
function pushbutton1_Callback(hObject, eventdata, handles)
if (get(handles.listbox6, 'Value') == 1) || (get(handles.listbox6, 'Value') == 2)
 close all, cap5pag7;
elseif (get(handles.listbox6, 'Value') >= 3)
 close all, cap5pag61;
end
```

Els elements pels càlculs de les línies es troben ocults. En funció del valor del listbox es visualitzen els elements de cada circuit. Si el valor escollit és major al nombre de circuits present a la pagina es visualitza un missatge indicant que els càlculs dels següents circuits es podran realitzar després de prémer el botó següent.
Per tal d’evitar declarar tots els elements dels circuits invisibles i després fer-los visibles, en funció del nombre d’aerogeneradors, es disposen dos static text amb el mateix color que el fons de la pantalla que oculten aquests elements. En funció del nombre d’aerogeneradors es declaren invisibles un o dos d’aquests static text.

Es declara global el valor introduït en el listbox per tal de poder realitzar la mateixa programació a les demes pagines.

**Taula 58. Codi: Listbox**

```matlab
function listbox6_Callback(hObject, eventdata, handles)
 global list
 if (get(handles.listbox6, 'Value')==1)
 set(handles.text68,'Visible','OFF');
 elseif (get(handles.listbox6, 'Value')==2)
 set(handles.text68,'Visible','OFF');
 set(handles.text69,'Visible','OFF');
 elseif (get(handles.listbox6, 'Value')>=3)
 set(handles.text68,'Visible','OFF');
 set(handles.text69,'Visible','OFF');
 set(handles.text71,'Visible','ON');
 end
 list=get(handles.listbox6,'Value');
end
```

La programació per tal de determinar en cada circuit la intensitat nominal, intensitat màxima afectada pels factors de correcció, caiguda de tensió i pèrdues es igual a la descrita anteriorment a la pagina 5.

A la pagina 61 es presenten els elements necessaris per tal de realitzar els càlculs dels conductors de mitja tensió si el nombre de generadors escollits és 3 o 4. Es presenta la programació d’aquesta pagina com a exemple de les pages següents ja que és esencialment la mateixa en tots els casos amb la variació del nombre de circuits a tractar.

Igual que a la pagina anterior la programació del botó següent es veu afectada pel nombre d’aerogeneradors escollit, és a dir, en el cas d’escollir 3 o 4 aerogeneradors, als prèvi el botó següent passarem a la pagina 7 mentre que, en cas d’escollir un nombre d’aerogeneradors superior, passarem a la pagina 62.

Això es repeteix a les pages següents de tal manera que si ens trobèssim a la pagina 62 i el nombre de generadors fos 5 o 6, el botó següent ens dirigiria a la pagina 7. Si el nombre de generadors fos major a 6, el botó següent ens dirigiria a la pagina 63.

**Taula 59. Codi: Següent**

```matlab
function pushbutton1_Callback(hObject, eventdata, handles)
 global list
 if list==3|list==4
 close all, cap5pag7;
 elseif list>=5
 close all, cap5pag62;
 end
end
```

La visualització dels diversos elements de la pagina també es troba en funció del nombre de generadors escollit, de tal manera que si escollim tres aerogeneradors, visualitzarem els elements per a calcular el circuit 3 però no el 4 que en aquest cas no existiria.
La diferencia amb la pagina anterior és que en aquest cas la programació no es realitza al Callback d’un listbox, ja que en aquesta pagina no n’hi ha, es realitza a l’apartat cap5pag61_OpeningFcn.

**Taula 60. Codi: cap5pag61_OpeningFcn.**

```matlab
function cap5pag61_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
global v2;
set(handles.text7,'string',v2);
set(handles.text30,'string',v2);
global list
if list==3
 set(handles.text68,'Visible','OFF');
elseif list==4
 set(handles.text68,'Visible','OFF');
 set(handles.text69,'Visible','OFF');
elseif list>=5
 set(handles.text68,'Visible','OFF');
 set(handles.text69,'Visible','OFF');
 set(handles.text71,'Visible','ON');
end
```

A la darrera pàgina del capítol es realitza el càlcul de la potència aparent del transformador de la subestació.

És necessari introduir la intensitat del primari i la tensió del secundari, mentre que la tensió del primari es carrega de la indicada en pàgines anteriors.

Així es realitza el càlcul de la intensitat del secundari del transformador i de la potència aparent necessària.

**Taula 61. Codi: Intensitat del secundari i potencia aparent del transformador de la subestació**

```matlab
function pushbutton4_Callback(hObject, eventdata, handles)
global v2;
V3=handles.tensio3;
I2=handles.intensitat2;
I3=((v2*10^3)/(V3*10^3))*I2;
set(handles.text8,'string',num2str(I3,'%6.2f
'));
handles.intensitat3=I3;
guidata(hObject,handles);
```

```matlab
function pushbutton5_Callback(hObject, eventdata, handles)
V3=handles.tensio3;
I3=handles.intensitat3;
S=sqrt(3)*V3*I3;
set(handles.text11,'string',S);
```

5.8. Bloc xarxa de terres

En l’últim capítol del programa es realitza el càlcul de terres dels transformadors de mitja tensió segons el mètode UNESA “Método de cálculo y proyecto de instalaciones de puesta a tierra para centros de transformación de tercera categoría”. El capítol 6 està format per les següents pàgines:
La pàgina inicial és la portada del capítol formada pels botons inici, anterior i següent i per un static text amb el títol del capítol.

En la segona pàgina es calcula en primer lloc la màxima tensió admissible pel cos humà segons el temps del defecte a terra. Es disposa d’un edit text per tal de que l’usuari indiqui el temps de defecte a terra i mitjançant el botó Vca es realitza el càlcul.

**Taula 63. Codi: Vca**

```
function pushbutton4_Callback(hObject, eventdata, handles)
T=handles.temps;
if T<=0.9
 K=72;
 n=1;
 Vca=K/T^n;
 set(handles.text14,'string',num2str(Vca,'%6.2f'));
elseif T>0.9
 K=78.5;
 n=0.18;
 Vca=K/T^n;
 set(handles.text14,'string',num2str(Vca,'%6.2f'));
elseif T>3
 Vca=64;
 set(handles.text14,'string',num2str(Vca,'%6.2f'));
elseif T>5
 Vca=50;
 set(handles.text14,'string',num2str(Vca,'%6.2f'));
end
handles.ka=K;
handles.ene=n;
guidata(hObject,handles);
```

Seguidament es calcula el valor de les tensions de pas i contacte així com de la tensió de pas en accés, després de conèixer el valor de la resistivitat mitja i superficial del terreny.

Es declaren globals les tensions de pas ja que seran necessàries posteriorment.

**Taula 64. Codi: Calcular**

```
function pushbutton5_Callback(hObject, eventdata, handles)
global Vp Vpcc
R=handles.resistivitat;
R1=handles.resistivitats;
K=handles.ka;
n=handles.ene;
t=handles.temps;
Vc=(K/t^n)*(1+((1.5*R)/1000));
set(handles.text12,'string',num2str(Vc,'%6.2f'));
Vp=((10*K)/t^n)*(1+((6*R)/1000));
```
En la pagina 3 del capítol de xarxa de terres es realitzen els càlculs de la terra de protecció i de la terra de servei (en cas de ser necessària la seva separació).

Per a la realització dels càlculs de la terra de protecció es disposen quatre edit text per tal de que l’usuari indiqui la tensió de AT, i els paràmetres característics de la instal·lació segons la geometria escollida en els documents del mètode UNESA. A partir d’aquestes dades d’entrada i a través del botó “Calcular” s’obtenen els valors de tensió de defecte, intensitat de defecte i resistència del sistema.

**Taula 65. Codi: Calcular**

```matlab
function pushbutton4_Callback(hObject, eventdata, handles)
kr=handles.parametrekr;
global resistivitat Id
V=handles.tensio;
Rt=kr*resistivitat;
set(handles.text9,'string',Rt);
Id=V/(sqrt(3)*sqrt((Rt^2)+(25^2)));
set(handles.text10,'string',num2str(Id,'%6.2f\n'));
Vd=Rt*Id;
set(handles.text11,'string',num2str(Vd,'%6.2f\n'));
if Vd>1000
 set(handles.text20,'Visible','ON');
 set(handles.text25,'Visible','OFF');
end
if Vd<1000
 set(handles.text22,'Visible','ON');
end
```

En el cas de que la tensió de defecte superi els 1000V es preveu la separació de la terra de servei. Així es mostra un missatge indicant la necessitat de separació de les terres i es disposen els elements pel càlcul de la resistència de la terra de servei.

**Taula 66. Codi: Calcular**

```matlab
function pushbutton5_Callback(hObject, eventdata, handles)
kr2=handles.parametrekr2;
global resistivitat Id
Rn=kr2*resistivitat;
set(handles.text19,'string',num2str(Rn,'%6.2f\n'));
D=(resistivitat*Id)/(2000*pi);
set(handles.text24,'string',num2str(D,'%6.2f\n'));
```

“Rn” calcula la resistència de la terra de servei, mentre que “D” calcula la separació necessària entre terres.

A la ultima pagina del capítol es realitza la comparació entre els valors de tensió de pas i tensió de pas en accés, calculades segons la instal·lació projectada, amb els valors màxims determinats segons el temps de defecte i la resistivitat del terreny.
Si els valors de la tensió de pas o tensió de pas en accés son major als màxims calculats anteriorment es retorna un missatge al usuari indicant la necessitat de variar les característiques de la instal·lació. Aquest missatge es troba ubicat al static text9.

**Taula 67. Codi: Calcular(1)**

```matlab
function pushbutton4_Callback(hObject, eventdata, handles)
 global resistivitat k1 Id Vp %resistivitat del terreny, parametre Kp, intensitat de defecte
 Vp2=resistivitat*k1*Id;
 if (Vp2<Vp)
 set(handles.text8,'string','Admissible');
 elseif (Vp2>Vp)
 set(handles.text8,'string','No admissible');
 end
end
```

**Taula 68. Codi: Calcular(2)**

```matlab
function pushbutton5_Callback(hObject, eventdata, handles)
 global resistivitat Id kc Vpcc
 Vpcca=resistivitat*Id*kc;
 if (Vpcca<Vpcc)
 set(handles.text7,'string','Admissible');
 elseif (Vpcca>Vpcc)
 set(handles.text7,'string','No admissible');
 end
end
```
CAPÍTOL 6: CONCLUSIONS I TREBALLS FUTURS

6.1. Respecte a la introducció al disseny d’instal·lacions eòliques

Podem afirmar que s’han complert les perspectives generades inicialment en l’aportació dels coneixements pel disseny preliminar d’un parc eòlic.

La redacció d’aquest document aporta el conceptes inicialment qüestionats. Es dóna a l’alumne una introducció dels nous elements a tenir en compte com per exemple, recurs eòlic, l’aerogenerador, instal·lacions d’interconnexió, xarxes de terra, viabilitat,... i igualment es descriu la metodologia de càlcul.

D’altre banda, també s’ha realitzat un projecte bàsic preliminar en funció dels coneixements adquirits i mitjançant el software desenvolupat, per tal de mostrar un projecte real.

6.2. Respecte al software de càlcul

S’ha desenvolupat un software de càlcul que facilitat la comprensió dels diferents punts del disseny. La divisió ha estat en sis blocs:

- Inici
- Recurs eòlic
- Selecció aerogenerador
- Viabilitat econòmica
- Instal·lació d’interconnexió
Aquest software s'ha realitzat amb la versió 'MATLAB R2007b' ja que és la que disposa l'escola, i per tant, la que els alumnes utilitzaran.

Igualment s'ha realitzat un 'Manual d’ús' per tal de guiar a l’alumne en la utilització de software i descriure el passos a seguir per tal do’obtenir un funcionament òptic.

6.3. Respecte a la introducció a la programació en Matlab

Aquest projecte també aporta un document sobre com s’ha realitzat la programació del software. Val a dir, que no es pretén aportar coneixements de programació, sinó que s’ha volgut donar una visió general de com s’ha programat per a una posterior modificació o ampliació del programa.

S’explica com es crea una interfície d’usuari, i es comenten les diferents funcions realitzades en cada pàgina (GUI), per tal de mostrar com s’han programat les diferents funcions. En aquest document s’han escrit les equacions o procediments no s’han justificat, ja que no es el motiu d’aquest manual, aquesta part es troba a 'Introducció al disseny de sistemes eòlics' del present document.

La realització del software no ha estat fàcil i s’hi ha dedicat moltes hores, d’altra banda, el resultat final ha estat de tot satisfactori.

6.4. Respecte als objectius docents

Podem dir, que s’ha complert els objectius creats inicialment ja que s’han redactat diferents documents i manuals on l’estudiant podrà obtenir informació per a una bona comprensió dels sistemes eòlics.

Aquest documents avarquen des d’un projecte preliminar que consta de memòria i càlculs, fins a un programa amb manual d’usuari que l’ajudarà a comprendre millor cadascun dels passos a seguir.

6.5. Treballs futurs

El projecte s’ha realitzat segons les perspectives creades. A partir d’aquest punt es podrien desenvolupar diferents blocs segons convingui. Igualment s’exposen possibles ampliacions a realitzar:

- Obtenció d’un full resum de resultats en Excel a la finalització del programa.
- Ampliació en la generació de roses del vent i generació de tantes gràfiques com l’usuari vulgui en funció de l’hora del dia, mes o any sol·licitat.
- Ídem per la Distribució de Weibull.
Generació d’una recopilació de diferents aerogeneradors i característiques per a una utilització en el programa. Agrupar els AG segons potència, altura,...i discriminar-los segons els característiques que escollim.

Crear un programa que donada la topografia puguis situar el AG i veure la situació per pantalla, podent obtenir també les distàncies entre AG i realització del càlcul directe de la instal·lació d’interconnexió.
CAPÍTOL 7:

BIBLIOGRAFIA

7.1. Bibliografía de Consulta

Rodríguez Amenedo, José Luis, Burgos Díaz, Juan Carlos, Arnalte Gómez, Santiago. Sistemas eólicos de producción de energía eléctrica. Rueda 2003.


Centro de Investigaciones Energéticas, Medioambientales i Tecnológicas. Principios de conversión de la energía eólica. Madrid, 2005. 1ª ed. 84-7834-492-6


Fawzi A.L. Jowder. 'Wind power analysis and site matching of wind turbine generators in Kingdom of Bahrain'. http://www.elsevier.com/ locate/apenergy


University of Oradea, Faculty of Environmental Protection. Monica Costea. 'Aeolian potential estimation in areas with complex orography'

ALSTOM http://www.ecotecnia.es

Natural resources Canada http://www.retscreen.net/es/home.php

Portal d’accés obert al coneixement de la UPC http://upcommons.upc.edu/

Red electrica española http://www.ree.es

Servei Meteorològic de Catalunya http://www.meteocat.net

Siemens http://www.siemens.com

Web de l’estadística oficial de Catalunya http://www.idescat.es


