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1 Introduction

Consider the following four types of gapping: simple gapping, discontinuous
gapping, determiner gapping, and discontinuous determiner gapping.

(1) a. Leslie met Sandy and Robin (met) Bill.
b. John wants Watford to win and Daniel (wants) Chelsea (to win).

(2) a. Some dogs like Whiskas and (some) cats (like) Alpo.
b. Every cook wants Barça to win and (every) waiter (wants)

Madrid (to win).

Kubota and Levine (2012[2]; 2013[3]; 2015[4]; henceforth K&L) develop an
account of gapping in hybrid type logical grammar (HTLG), an extension of
Lambek calculus admitting functional expressions in the phonological com-
ponent.1 K&L (2015[4]) provide a review of the literature and argue in broad
terms the advantages of an analysis of gapping as hypothetical reasoning, to
which we have nothing to add; we in turn review their type logical proposal.
The Lambek rules of HTLG are as follows:2

(3)

·
·
·

α: C/B:φ

·
·
·

β: B:ψ
/E

α+β: C: (φ ψ)

·
·
·

α: A:φ

·
·
·

β: A\C:ψ
\E

α+β: C: (ψ φ)

n
b: B: y
·
·
·

α+b: C:χ
/In

α: C/B:λyχ

n
a: A: x
·
·
·

a+β: C:χ
\In

β: A\C:λxχ

In these rules α: A:φ signifies a sign with phonology/prosodics α, syntactic
type A, and semantics φ. The elimination (E) rules combine signs by concate-
nation prosodically, modus ponens type-logically, and functional application
semantically; the introduction (I) rules of hypothetical reasoning condition-
alise assumptions: when passing from premise to conclusion the assumption
coindexed with the rule name n becomes closed. Every rule instance has a
fresh index. The introduction rules are semantically interpreted by functional

1 An anonymous referee questions whether gapping is after all a purely combinatoric phe-
nomenon citing split antecedent gapping (i), and non-ATB gapping (ii):

i) Sue goes running 6 times a week, and Alex lifts weights 3 times a week, but neither every day.
ii) Either Pat came with Chris and Sandy came with Kim, or Pat with Kim and the others were
alone.

We cannot enter fully into this question here except to note that such examples do not show
that there is no combinatoric component to gapping, but rather that it is a more generalised
phenomenon in the case of iterated coordination, which we do not address here.

2 We make some notational adjustments in order to smoothen comparison of hybrid TLG and
displacement TLG.
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abstraction. To these directional rules HTLG adds inference rules for a nondi-
rectional type constructor | interpreted by phonological functional application
and phonological functional abstraction:

(4)

·
·
·

α: C|B:φ

·
·
·

β: B:ψ
|E

α(β): C: (φ ψ)

n
v: B: y
·
·
·

α: C:χ
|In

λv.α: C|B:λyχ
These are the characteristic rules of HTLG (for more details we refer the reader
to the papers of Kubota and Levine).

In relation to gapping, K&L (2015[4]) (53) present a type assignment which
is in essence:3

(5) λσ2λσ1λφ.σ1(φ)+and+σ2(0): (X|X)|X:λxλyλz[(y z) ∧ (x z)]
where X = S|(VP/N)

And they derive from this simple gapping such as (1a); see ibid (52) and (55).
In our notation, their (52) is:

(6) robin: N: r

i
φ: VP/N: x bill: N: b

E/
φ+bill: VP: (x b)

E\
robin+φ+bill: S: ((x b) r)

I|i
λφ.robin+φ+bill: S|(VP/N):λx((x b) r)

Continuing the derivation as in their (55) yields:

(7) leslie + met + sandy + and + robin + bill: S: ((met s) l) ∧ ((met b) r)

K&L also assume in their (56) a raised type for an auxiliary:

(8) λσ.σ(must): S|(S|(VP/VP)):λx(Nec (x λyy))

They show that such assignments to auxiliaries license the auxiliary wide-
scope reading of, say, John must eat steak and Mary pizza.

Likewise, K&L (2015[4]) (66) present a type assignment for determiner
gapping which is:

(9) λρ2λρ1λφλσ.ρ1(φ)(σ)+and+ρ2(0)(λχλψ.ψ(χ)): (X|X)|X:
λxλyλzλw[((y z) w) ∧ ((x z) w)]
where X = ((S|((S|(S|N))|CN)|(VP/N)

And they assume, K&L (2015[4]) (65), a raised type for a negative determiner
of the form:

(10) λρ(λφλσ.σ(no+φ)): S|(S|((S|(S|N))|CN)):λx(¬(x λyλz∃w[(y w) ∧ (z w)]))

These enable derivation of the split scope reading of:

(11) No dog eats whiskas or cat alpo.

3 Throughout, VP abbreviates N\S. We limit attention to gapping of the transitive verb cat-
egory; so far as we are aware gapping in other categories raises no new issues differentiating
between hybrid TLG and displacement TLG.
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2 The scopal anomalies are already available in displacement TLG

K&L (2015[4]) state that ‘our own analysis resembles most closely Morrill
et al.’s (2011) (which is a refinement of Hendriks 1995)’. The displacement
type logical grammar (DTLG) gapping assignment is as follows, where � is
discontinuous product, which is semantically interpreted by ordered pairing,
and ‘π1x’ selects the first component of x:4

(12) and: (X\X)/(X�I):λxλyλz[(y z) ∧ (π1x z)]
where X = S↑(VP/N)

Here, the symbols such as I and ↑ are connectives of the displacement calculus,
which we define later. The corresponding determiner gapping assignment
would be:

(13) and: (X\X)/((X�I)�I):λxλyλzλw[((y z) w) ∧ ((π1π1x z) w)]
where X = (S↑(VP/N))↑(((S↑N)↓S)/CN)

The auxiliary and negative determiner assignments would be:

(14) must: (S↑(VP/VP))↓S:λx(Nec (x λyy))

(15) no: (S↑(((S↑N)↓S)/CN))↓S:λx(¬(x λyλz∃w[(y w) ∧ (z w)]))

Thus the analyses of gapping scope anomalies are already available in DTLG.
Indeed K&L (2015[4]) state, ’To be fair, the core of our empirical results, so far
as we can tell, seems to straightforwardly carry over to Morrill et al.’s (2011)
system.’ So K&L’s type logical contribution is the determiner gapping, and
the observation that raised auxiliary and negative determiner assignments
capture the scopal anomalies in HTLG, but also in DTLG. Thus, although
K&L couch their solution in terms of HTLG, HTLG and DTLG are on a par in
respect of gapping and the scopal anomalies. Since this point appears to have
been granted we do not elaborate on it further. But we will see a respect in
which DTLG improves on HTLG, and another respect in which DTLG can be
made to improve further on HTLG.

3 The HTLG determiner gapping assignment overgenerates

Kubota (p.c.) points out that the HTLG analysis of determiner gapping incor-
rectly predicts examples such as the following, where the determiner and the
transitive verb orders are not consistent in the conjuncts:

(16) a. *Some dogs like Whiskas and I (like) (some) cats.
b. * I like some cats and (some) dogs (like) Whiskas.

This permutation overgeneration arises because the |(((S|(S|N))|CN) and |(VP/N)
arguments in the types for determiner gapping do not distinguish the linear

4 The notation π1 (and π2) represents first (and second) projection of an ordered pair, so that
e.g. π1(φ,ψ) = φ.
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order of the phonological variables they bind. Thus, for example, in rela-
tion to (16a), both λvλq.q+dogs+v+Whiskas and λvλq.I+v+q+cats have type
((S|((S|(S|N))|CN)|(VP/N). Note that the issue has nothing to do with the or-
der in which the quantifier and transitive verb arguments are abstracted, but
rather with the left to right position of the variables they bind in the body of
the phonological term, to which the type constructor | is insensitive. DTLG
does not overgenerate in this way because the positions of discontinuity are
indexed for left to right order.

4 HTLG requires distinct type assignments for simplex and discontinuous
gapping

Our analysis is inspired by that of Kubota and Levine, which assigns coordi-
nator conjunct types and phonology as follows:

conjunt type gapping determiner gapping
&

coordinator
phonology

simplex S|(VP/N) (S|(VP/N))|((S|(S|N))|CN)
λσ2λσ1λφ.σ1(φ)+and+σ2(0) λρ2λρ1λφλσ.ρ1(φ)(σ)+and+ρ2(λχλψ.ψ(χ))(0)

K&L (2012[2]) (5) K&L (2013[3]) (13) K&L (2013[3]) (24) K&L (2015[4]) (66) (83)
K&L (2015[4]) (53)

discont. S|(VP|N) (S|(VP|N))|((S|(S|N))|CN)
λρ2λρ1λφ.ρ1(φ)+and+ρ2(λπ.π) λρ2λρ1λφλσ.ρ1(φ)(σ)+and+ρ2(λχλψ.ψ(χ))(λω.ω)

K&L (2012[2]) (20) (by extrapolation)

However, our analysis of gapping represents an improvement on the HTLG
analysis in that we require only a single type for simple and discontinuous
gapping. HTLG requires two types because simplex gapping conditionalises
VP/N of sort string whereas discontinuous gapping conditionalises VP|N of
sort function, and these require two distinct phonological operations: applica-
tion to the empty string 0 (of sort string) and to the identity function λπ.π (of
sort function) respectively.

5 Our account

We give an account of simple and discontinuous gapping as in (1) and sim-
plex and discontinuous determiner gapping as in (2) which is optimal in that
a single coordinator type generates discontinuous gapping with simple gap-
ping as a special case and a single coordinator type generates discontinuous
determiner gapping with simplex determiner gapping as a special case. The
account is expressed in an extension of displacement calculus (D; Morrill et
al. 2011[5]) which we call second-order displacement calculus D2.
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5.1 Second-order displacement calculus

Displacement calculus is a logic of discontinuous strings. By discontinuous
strings we mean strings punctuated by a distinguished vocabulary item ‘1’
called the separator. In contrast to HTLG, the phonological terms of displace-
ment calculus have no lambda abstraction and, instead of a set of variable
placeholders, DTLG has a single placeholder, the separator. The sort of a
discontinuous string is the number of separators it contains. We notate by
Li, i ≥ 0, the set of all strings of sort i with respect to some alphabet. We
consider the operations concatenation, intercalation, and adjunction on dis-
continuous strings. Concatenation is represented in (17).

(17) α + β

=

α β

concatenation + : Li,L j → Li+ j

For example, the concatenation of Leslie+1+Sandy and and+Robin+Bill is:

(18) Leslie+1+Sandy + and+Robin+Bill
=

Leslie+1+Sandy+and+Robin+Bill

Intercalation is represented in (19):

(19) α 1 γ ×k β

=

α β γ

intercalation ×k : Li+1,L j → Li+ j

For example, the intercalation at the second separator of 1+dogs+1+Whiskas
+and+cats+Alpo and like is:

(20) 1+dogs+1+Whiskas+and+cats+Alpo ×2 like
=

1+dogs+like+Whiskas+and+cats+Alpo

Finally, adjunction is represented in (21):

(21) α 1 γ 1 ε ∧k,l β 1 δ

=

α β γ δ ε

adjunction ∧k,l : Li+2,L j+1 → Li+ j
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For example, the adjunction at the first separators of John+1+Watford+1+and+
Daniel+Chelsea and wants+1+to+win is:

(22) John+1+Watford+1+and+Daniel+Chelsea ∧1,1 wants+1+to+win
=

John+wants+Watford+to+win+and+Daniel+Chelsea

We will have three families of type-constructors defined in relation to the
three prosodic operations of concatenation, intercalation, and adjunction. The
syntactic types are sorted Tp0,Tp1,Tp2, . . . according to the number of points
of discontinuity 0, 1, 2, . . . their expressions contain. The sets Tpi of types of
sort i are defined by mutual recursion in terms of sets Pi of primitive types of
sort i as follows:

Tpi ::= Pi

Tpi ::= Tpi+ j/Tp j T(C/B) = T(B)→T(C) over
Tp j ::= Tpi\Tpi+ j T(A\C) = T(A)→T(C) under

Tpi+ j ::= Tpi•Tp j T(A•B) = T(A)&T(B) continuous product
Tp0 ::= I T(I) = > cont. unit

Tpi+1 ::= Tpi+ j↑kTp j, 1 ≤ k ≤ i+1 T(C↑kB) = T(B)→T(C) extract
Tp j ::= Tpi+1↓kTpi+ j, 1 ≤ k ≤ i+1 T(A↓kC) = T(A)→T(C) infix

Tpi+ j ::= Tpi+1�kTp j, 1 ≤ k ≤ i+1 T(A�kB) = T(A)&T(B) disc. product
Tp1 ::= J T(J) = > disc. unit

Tpi+2 ::= Tpi+ j⇑k,lTp j+1, 1 ≤ k ≤ i+1, 1 ≤ l ≤ j+1 T(C⇑k,lB) = T(B)→T(C) 2nd order extract
Tp j+1 ::= Tpi+2⇓k,lTpi+ j, 1 ≤ k ≤ i+1, 1 ≤ l ≤ j+1 T(A↓k,lC) = T(A)→T(C) 2nd order infix
Tpi+ j ::= Tpi+2}k,lTp j+1, 1 ≤ k ≤ i+1, 1 ≤ l ≤ j+1 T(A}k,lB) = T(A)&T(B) 2nd order disc. product

Tp2 ::= K T(K) = > 2nd order disc. unit

The second column of this table shows the standard categorial semantic type
map for the connectives.5 Each type of sort i is interpreted as a set of (discon-
tinuous) strings of sort i. The prosodic interpretation is as follows:

[[C/B]] = {s1| ∀s2 ∈ [[B]], s1+s2 ∈ [[C]]}
[[A\C]] = {s2| ∀s1 ∈ [[A]], s1+s2 ∈ [[C]]}
[[A•B]] = {s1+s2| s1 ∈ [[A]] & s2 ∈ [[B]]}

[[I]] = {0}

[[C↑kB]] = {s1| ∀s2 ∈ [[B]], s1×ks2 ∈ [[C]]}
[[A↓kC]] = {s2| ∀s1 ∈ [[A]], s1×ks2 ∈ [[C]]}
[[A�kB]] = {s1×ks2| s1 ∈ [[A]] & s2 ∈ [[B]]}

[[J]] = {1}

[[C⇑k,lB]] = {s1| ∀s2 ∈ [[B]], s1
∧k,l s2 ∈ [[C]]}

[[A⇓k,lC]] = {s2| ∀s1 ∈ [[A]], s1
∧k,l s2 ∈ [[C]]}

[[A}k,lB]] = {s1
∧k,l s2| s1 ∈ [[A]] & s2 ∈ [[B]]}

[[K]] = {1+1+1}

Although linguistically only some of the power, and hence only some of the
rules, are necessary here, the framework of DTLG complies with the modern

5 For example, if T(N) = e where e is the semantic type for individuals, and T(S) = t where t is
the semantic type corresponding to truth-values, we have then that T(N\S) = e→ t.
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logical paradigm of logic as an interpreted formal language, and aspiration
to soundness (that everything said is true) and completeness (that everything
true is said). This, to us, is the rock on which type logical grammar is founded.
Thus, we present here all the rules so that the reader has the complete picture
of which the gapping analysis uses just a part.

The rules for second-order displacement calculus fall into three groups for
the concatenative, intercalative, and adjunctive connective families. Each fam-
ily contains four connectives: the two implicational residuals, the conjunctive
product, and product unit. Each connective has two rules, namely a rule of
elimination (E), eliminating the connective reading from premise to conclu-
sion, and a rule of introduction (I) introducing the connective reading from
premise to conclusion.6 Although there are many rules, the reader should be
aware of the high degree of symmetry between them, and that the rules simply
formalise the necessary and sufficient conditions for membership of syntactic
types: the rules are essentially the result of restating the interpretation clauses
given above.

The labelled natural deduction for second-order displacement calculus is
as follows, where we use three conventions. Firstly, where a is a syntactical
constant of sort i, the vector −→a is a0+1+a1+1+ · · ·+1+ai; for example, if a is of
sort 1, −→a = a0+1+a1. Secondly, where α is a discontinuous string of sort i > 0,
α |k β, 1 ≤ k ≤ i, is the result of replacing the kth separator in α by β (count-
ing from the left); for example John+1+Watford+1+and+Daniel+Chelsea |2
to+win = John+1+Watford+to+win+and+Daniel+Chelsea. Thirdly, α ||k β
abbreviatesα |k 1+β+1; for example John+1+and+Daniel+Chelsea ||1 Watford
= John+1+Watford+1+and+Daniel+Chelsea.

Continuous family:

– Elimination rules for implications

·
·
·

α: C/B:φ

·
·
·

β: B:ψ
/E

α+β: C: (φ ψ)

·
·
·

α: A:φ

·
·
·

β: A\C:ψ
\E

α+β: C: (ψ φ)

– Elimination rule for product

·
·
·

γ: A•B:χ

n
−→a : A: x

n−→
b : B: y

·
·
·

δ(−→a +
−→
b ): D:ω(x, y)

•En

δ(γ): D:ω(π1χ, π2χ)

6 Except we omit the elimination rules for product units which, as well as being unmotivated
linguistically, are awkward to formulate in the format used here.
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– Introduction rules for implications

n−→
b : B: y
·
·
·

α+
−→
b : C:χ

/In

α: C/B:λyχ

n
−→a : A: x
·
·
·

−→a +β: C:χ
\In

β: A\C:λxχ

– Introduction rules for product and product unit

·
·
·

α: A:φ

·
·
·

β: B:ψ
•I

α+β: A•B: (φ,ψ)

II
0: I: 0

Discontinuous family:

– Elimination rules for implications

·
·
·

α: C↑kB:φ

·
·
·

β: B:ψ
↑E

α |k β: C: (φ ψ)

·
·
·

α: A:φ

·
·
·

β: A↓kC:ψ
↓E

α |k β: C: (ψ φ)

– Elimination rule for product

·
·
·

γ: A�B:χ

n
−→a : A: x

n−→
b : B: y

·
·
·

δ(−→a |k
−→
b ): D:ω(x, y)

�En

δ(γ): D:ω(π1χ, π2χ)

– Introduction rules for implications

n−→
b : B: y
·
·
·

α |k
−→
b : C:χ

↑In

α: C↑kB:λyχ

n
−→a : A: x
·
·
·

−→a |k β: C:χ
↓In

β: A↓kC:λxχ

– Introduction rules for product and product unit
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·
·
·

α: A:φ

·
·
·

β: B:ψ
•I

α |k β: A�kB: (φ,ψ)

IJ
1: J: 0

Second-order discontinuous family:

– Elimination rules for implications

·
·
·

α ||k γ: C⇑k,lB:φ

·
·
·

β: B:ψ
⇑E

α |k (β |l γ): C: (φ ψ)

·
·
·

α ||k γ: A:φ

·
·
·

β: A⇓k,lC:ψ
⇓E

α |k (β |l γ)β: C: (ψ φ)

– Elimination rule for product

·
·
·

γ: A}k,lB:χ

n
−→a ||k −→c : A: x

n−→
b : B: y

·
·
·

δ(−→a |k (
−→
b |l −→c )): D:ω(x, y)

}En

δ(γ): D:ω(π1χ, π2χ)

– Introduction rules for implications

n−→
b : B: y
·
·
·

α |k (
−→
b |l γ): C:χ

⇑In

α ||k γ: C⇑k,lB:λyχ

n
−→a |l −→c : A: x

·
·
·

−→a |k (β |l −→c ): C:χ
⇓In

β: A⇓k,lC:λxχ

– Introduction rules for product and product unit

·
·
·

α ||k γ: A:φ

·
·
·

β: B:ψ
•E

α |k (β |l γ): A}k,lB: (φ,ψ)

IK
1+1+1: K: 0

We adopt the convention that when subscripts k and l are omitted they are 1,
i.e. they default to 1.

By way of example, the following auxiliary derivation shows that a subject
followed by an object has type S⇑(VP↑N):
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(23) sbj: N: sbj

i
a0+1+a1: VP↑N: x obj: N: obj

↑E
a0+obj+a1: VP: (x obj)

\E
sbj+a0+obj+a1: S: ((x obj) sbj)

⇑Ii

sbj+1+obj+1: S⇑(VP↑N):λx((x obj) sbj)

5.2 Analyses

The account of gapping consists in an assignment to the coordinator of the
following type:

(24) and: (X\X)/(X}J):λxλyλz[(y z) ∧ (π1x z)]
where X = S⇑(VP↑N)

Consider example (1a) of simple gapping: Leslie met Sandy and Robin Bill. Then
there is the following derivation of (1a) using (23):

Leslie Sandy

L+1+S+1:
S⇑(VP↑N):
λx((x s) l)

and:
((S⇑(VP↑N))\(S⇑(VP↑N)))/

/((S⇑(VP↑N))}J):
λxλyλz[(y z) ∧ (π1x z)]

Robin Bill

R+1+B+1:
S⇑(VP↑N):
λx((x b) r)

JR
1: J: 0

}I
R+B: (S↑(VP/N))}J: (λx((x b) r), 0)

/E
and+R+B: (S⇑(VP↑N))\(S⇑(VP↑N)):λyλz[(y z) ∧ ((z b) r)]

\E
L+1+S+1+and+R+B: S⇑(VP↑N):λz[((z s) l) ∧ ((z b) r)]

met: VP/N: meet
i

a: N: x
/E

met+a: VP: (meet x)
↑Ii

met+1: VP↑N:λx(meet x)
⇑E

L+met+S+and+R+B: S: [((meet s) l) ∧ ((meet b) r)]

And from the same coordinator type assignment (24) there is the following
derivation of the discontinuous gapping (1b) John wants Watford to win and
Daniel Chelsea:

John Watford

J+1+W+1:
S⇑(VP↑N):
λx((x w) j)

and:
((S⇑(VP↑N))\(S⇑(VP↑N)))/

/((S⇑(VP↑N))}J):
λxλyλz[(y z) ∧ (π1x z)]

Daniel Chelsea

D+1+S+1:
S⇑(VP↑N):
λx((x s) d)

JR
1:
J:
0
}I

D+C:
(S↑(VP/N))}J:
(λx((x c) d), 0)

/E
and+D+C:

(S⇑(VP↑N))\(S⇑(VP↑N)):
λyλz[(y z) ∧ ((z s) d)]

\E
J+1+W+1+and+D+C:

S⇑(VP↑N):
λz[((z w) j) ∧ ((z c) d)]

wants:
(VP/VP)/N:

want

i
a:
N:
x
/E

wants+a:
VP/VP:
(want x)

to win

to+win:
VP:
win

/E
wants+a+to+win:

VP
: ((want x) win)

↑Ii

wants+1+to+win:
VP

↑N:λx((want x) win)
⇑E

J+wants+W+to+win+and+D+C: S: [(((want w) win) j) ∧ (((want c) win) d)]

Observe how in the last step of both of the above derivations adjunction
combines a string of sort 2 and a string of sort 1. But, in the first, simplex, case
the separator of the second operand is right peripheral, whereas in the second,
complex, case the separator of the second operand is medial. This is how the
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account unifies simplex and complex gapping under a single coordinator
type.

The account of determiner gapping consists in an assignment to the coor-
dinator of the following type (Q is ((S↑N)↓S)/CN):

(25) and: (X\X)/((X}J)�I):λxλyλzλw[((y z) w) ∧ ((π1π1x z) w)]
where X = (S⇑(VP↑N))↑Q

Consider example (2a) of simplex determiner gapping: Some dogs like Whiskas and
cats Alpo. We use the following auxiliary derivation showing that a common
noun followed by an object has type (S⇑(VP↑N))↑Q:

(26)

i
a: N: x

j
b0+1+b1: VP↑N: y obj: N: obj

↑E
b0+obj+b1: VP: (y obj)

\E
a+b0+obj+b1: S: ((y obj) x)

↑Ii

1+b0+obj+b1: S↑N:λx((y obj) x)

k
c: Q: z cn: CN: cn

/E
c+cn: (S↑N)↓S: (z cn)

↓E
c+cn+b0+obj+b1: S: ((z cn) λx((y obj) x))

⇑I j

c+cn+1+obj+1: S⇑(VP↑N):λy((z cn) λx((y obj) x))
↑Ik

1+cn+1+obj+1: (S⇑(VP↑N))↑Q:λzλy((z cn) λx((y obj) x))

The derivation of (2a) is given in Figure 1. Finally, from the same coordinator
type assignment (25) we can derive the case of discontinuous determiner
gapping (2b) Every cook wants Barça to win and waiter Madrid in Figure 2.

6 Conclusion

The categorial analysis of gapping as like-type coordination was established
in Steedman (1990[6]) and Hendriks (1995[1]). In the framework of HTLG
Kubota and Levine (2012[2]) go further in that they provide like-type coordi-
nation for discontinuous gapping. Our analysis is inspired by that of Kubota
and Levine (2012[2]; 2013[3]). However, our analysis of gapping represents
an improvement on the HTLG analysis because we do not require two types
for simple and discontinuous gapping: a single type suffices.

Finally, we have noted that the HTLG account of gapping suffers from
determiner-transitive verb permutation overgeneration; the same problem
would arise for HTLG in relation to discontinuous determiner gapping:

(27) a. *Some boy wants Everton to win and Mary (wants) (some) London
club (to win)

b. *Mary wants some London club to win and (some) boy (wants)
Everton (to win)

In addition to capturing simplex gapping (and determiner gapping) as a spe-
cial case of complex gapping (and determiner gapping), our DTLG account
does not have the permutation overgeneration problem of determiner gap-
ping and discontinuous determiner gapping.
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dogs:C
N

:dogs
W

:N
:w

1+
dogs+

1+
W

+
1:

(S
⇑(V

P
↑N

))↑Q
:

λzλ
y((z

dogs)
λx((y

w
)x))

and:
(((S
⇑(V

P
↑N

))↑Q
)\((S
⇑(V

P
↑N

))↑Q
))/

/((((S
⇑(V

P
↑N

))↑Q
)�

I)}
J):

λxλ
yλzλw

[((y
z)w

)
∧

((π
1 π

1 x
z)w

)]

cats:C
N

:cats
A

:N
:a

1+
cats+

1+
A

+
1:(S
⇑(V

P
↑N

))↑Q
:λzλ

y((z
cats)

λx((y
a)x))

II
0:I:0

�
I

cats+
1+

A
+

1:((S
↑(V

P
/N

))↑Q
)�

I:(λzλ
y((z

cats)
λx((y

a)x)),0)
JI

1:J:0
}

I
cats+

A
:(((S
↑(V

P
/N

))↑Q
)�

I)}
J:((λzλ

y((z
cats)

λx((y
a)x)),0),0)

/E
and

+
cats+

A
:((S
⇑(V

P
↑N

))↑Q
)\((S
⇑(V

P
↑N

))↑Q
):λ

yλzλw
[((y

z)w
)
∧

((z
cats)

λx((w
a)x)]

\E
1+

dogs+
1+

W
+

1+
and

+
cats+

A
:(S
⇑(V

P
↑N

))↑Q
:λzλw

[((z
dogs)

λx((w
w

)x))
∧

((z
cats)

λx((w
a)x)]

som
e:Q

:
∃

↑E
som

e+
dogs+

1+
W

+
1+

and
+

cats+
A

:
S
⇑(V

P
↑N

):
λw

[((∃
dogs)

λx((w
w

)x))
∧

((∃
cats)

λx((w
a)x)]

like:V
P
/N

:like
i

a:N
:x
/E

like+
a:V

P:(like
x)

↑I i

like+
1:V

P
↑N

:λx(like
x)

⇑E
som

e+
dogs+

like+
W

+
and

+
cats+

A
:S:[((∃

dogs)
λx((like

w
)x))
∧

((∃
cats)

λx((like
a)x)]

Fig. 1 Determiner gapping
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cook:C
N

:cook
B

:N
:b

1+
cook

+
1+

B
+

1:
(S
⇑(V

P
↑N

))↑Q
:

λzλ
y((z

cook)
λx((y

b)x))
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⇑(V

P
↑N

))↑Q
)\((S
⇑(V

P
↑N

))↑Q
))/

/((((S
⇑(V

P
↑N

))↑Q
)�

I)}
J):

λxλ
yλzλw

[((y
z)w

)
∧

((π
1 π

1 x
z)w

)]

w
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:w

aiter
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:N
:m

1+
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1+
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+

1:
(S
⇑(V

P
↑N

))↑Q
:

λzλ
y((z

w
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λx((y
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)x))
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0:I:0

�
I

w
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+
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↑(V

P
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))↑Q
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y((z
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m
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JI
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}
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w
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M
:

(((S
↑(V

P
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))↑Q
)�
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J:

((λzλ
y((z

w
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λx((y
m

)x)),0),0)
/E
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+

w
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M
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⇑(V

P
↑N

))↑Q
)\((S
⇑(V

P
↑N

))↑Q
):λ

yλzλw
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z)w
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∧
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w
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λx((w

m
)x)]

\E
1+

cook
+

1+
B

+
1+

and
+

w
aiter+

M
:(S
⇑(V

P
↑N

))↑Q
:λzλw

[((z
cook)

λx((w
b)x))

∧
((z

w
aiter)

λx((w
m

)x)]
every:Q

:
∀

↑E
every

+
cook

+
1+

B
+

1+
and

+
w

aiter+
M

:S
⇑(V

P
↑N

):λw
[((∀

cook)
λx((w

b)x))
∧

((∀
w
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λx((w

m
)x)]

w
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(V
P
/V

P)/N
:

w
ant

i
a:N

:x

/E
w

ants+
a:V

P
/V

P:(w
antx)

to
w

in

to
+

w
in:V

P:w
in
/E

w
ants+

a+
to

+
w

in:V
P:((w

antx)w
in)

↑I i

w
ants+

1+
to

+
w

in:V
P
↑N

:λx((w
antx)w

in)
⇑E

every
+

cook
+

w
ants+

B
+

to
+

w
in

+
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+
w

aiter+
M

:S:[((∀
cook)

λx(((w
antb)w

in)x))
∧

((∀
w
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λx(((w

antm
)w

in)x)]

Fig. 2 Discontinuous determiner gapping
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