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Abstract 

This work reports on a comparative study comprising three transition metal oxides, MoO3, 

WO3 and V2O5, acting as front p-type emitters for n-type crystalline silicon heterojunction 

solar cells. Owing to their high work functions (>5 eV) and wide energy band gaps, these 

oxides act as transparent hole-selective contacts with semiconductive properties that are 

determined by oxygen-vacancy defects (MoO3-x), as confirmed by x-ray photoelectron 

spectroscopy. In the fabricated hybrid structures, 15 nm thick transition metal oxide layers 

were deposited by vacuum thermal evaporation. Of all three devices, the V2O5/n-silicon 

heterojunction performed the best with a conversion efficiency of 15.7% and an open-circuit 

voltage of 606 mV, followed by MoO3 (13.6%) and WO3 (12.5%). These results bring into 

view a new silicon heterojunction solar cell concept with advantages such as the absence of 

toxic dopant gases and a simplified low-temperature fabrication process.  
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1.   Introduction 

The last years much effort has been devoted by the photovoltaic community to find crystalline 

silicon (c-Si) solar cell technologies with competitive manufacturing costs. Cost reduction 

strategies include using ultra-thin wafers or lower-quality substrates, but in any case lower 

thermal budgets and simplified fabrication processes would be desirable. In this regard, 

silicon heterojunction structures constitute a cornerstone where low-temperature 

manufacturing and high conversion efficiency can be combined. Concepts such Panasonic’s 

back-contact HIT (Heterojunction with Intrinsic Thin layer) combine excellent surface 

passivation with hole/electron-selective contacts deposited at low-temperature, achieving 

record efficiencies of 25.6% [1]. Nonetheless, the p/n-doped hydrogenated amorphous silicon 

(a-Si:H) stacks are deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD), a 

capital-intensive system with mandatory security systems considering the flammable and 

toxic boron/phosphorous gas precursors employed. In this sense, the utilization of risk-free 

materials deposited at low temperature is a comprehensive alternative to further decrease 

production costs.  

 

Subsequently, recent research on organic thin-film photovoltaics has provided a considerable 

number of carrier-selective materials (i.e. with preferential conductivity for either electrons or 

holes) which can be deposited by low-temperature or solution processes. Besides allowing the 

effective separation of carriers, these alternative materials must provide low surface 

recombination velocities and negligible contact resistivities if they were to replace traditional 

dopants in silicon. For instance, organic semiconductor materials such as P3HT and 

PEDOT:PSS have recently attracted much attention in organic/inorganic photovoltaic devices, 

based on their demonstrated hole injection and extraction properties when used as buffer 

layers in organic photovoltaics [2]. Hybrid c-Si/organic structures where the p-doped layer is 

replaced by PEDOT:PSS have already been demonstrated [3,4], achieving an outstanding 

open-circuit voltage (VOC) of 657 mV and a conversion efficiency above 20% [5]. Yet, 

PEDOT:PSS suffers from chemical instability related to its hygroscopic character and can 

cause severe device degradation [6]. A variety of p-type polymeric semiconductors have also 

been studied for silicon hybrid devices [7,8], although they could suffer from similar 

instability issues.  

 

Another kind of materials that have demonstrated excellent carrier-selective properties are 

transition metal oxides (TMOs), wide bandgap semiconductors with a distinctive p- or n-type 



character and a broad range of work functions varying from 2 to 7 eV [9]. Many reports can 

be found in the literature regarding interface engineering with TMOs applied to organic light 

emitting diodes (OLEDs) and organic solar cells [10], such as molybdenum trioxide (MoO3) 

[11], tungsten trioxide (WO3) [12], vanadium pentoxide (V2O5) [13] and rhenium trioxide 

(ReO3) [14]. These TMOs work as hole-selective contacts due to their large work functions 

(>5 eV) laying close to the Highest Occupied Molecular Orbital (HOMO) level of several p-

type organic semiconductors, favoring ohmic contact formation. Since TMOs are more stable 

than their organic counterparts [15] and possess the same low-temperature and solution-based 

processability, it is natural to explore their potential as doping alternatives for c-Si solar cells. 

However, research on the incorporation of TMOs into silicon devices dates from very recent 

years [16,17]. Particularly, heterojunction solar cells based on p-type c-Si (p-Si) and TMOs 

acting as p-type Back Surface Fields (BSFs) were reported recently [18,19], demonstrating 

low contact resistivities and efficiencies of 15%. Furthermore, the use of TMOs as p-type 

emitters in n-type c-Si (n-Si) has also been investigated for MoO3 [18,20,21] and WO3 [22], 

demonstrating a power conversion efficiency of 18.8% for this novel solar cell concept [23].  

  

In this work we comparatively study three transition metal oxides (V2O5, MoO3 and WO3) 

acting as hole-selective contacts in n-type c-Si solar cells, of which V2O5 is the first case to be 

reported. Although these TMOs have similar functionality, differences in their optical and 

electronic properties will be shown. Special emphasis will be put on their capability to 

passivate c-Si surfaces without the influence of additional passivation interlayers (such as 

intrinsic a-Si:H) in order to objectively compare their potential as p-type emitter alternatives.  

 

2.   Experimental methods 

Surface composition of the TMOs was determined by X-ray Photoelectron Spectroscopy 

(XPS). Samples were prepared on flat n-Si wafers previously conditioned by standard RCA 

cleaning [24], followed by 1% HF dip for 1 min. Then, powdered V2O5, MoO3 and WO3 

(>99.99% purity, Sigma Aldrich) were thermally evaporated in vacuum (~8x10
-6

 mbar) from 

a tantalum boat upon the room temperature substrates. The deposition rate was ~0.2 Ȧ /s, as 

controlled by quartz micro-balance previously calibrated with Scanning Electron Microscope 

(SEM) measurements of lamella samples. Since the probing depth in XPS is only a few 

nanometers, a 15 nm transition metal oxide thickness was chosen to representatively 

characterize the oxide without the influence of Si/metal-oxide interactions [25]. After a brief 

exposure to air, samples were transferred from the evaporation chamber into the XPS system 



(SPECS, Germany) and left for 18 hours under ultra-high vacuum (<3x10
-9

 mbar) to improve 

analysis quality. Scans were performed using a non-monochromated Al-Kα X-ray excitation 

source at 1486.6 eV, detecting photoelectrons (Phoibos 150 MCD-9 detector) at a 25 eV pass 

energy in 0.1 eV steps. All binding energies were referred to the C1s binding energy level 

(284.8 eV) for internal reference. Further TMO characterization included spectrophotometry 

measurements (Shimadzu UV3600) on soda-lime glass slides and lateral resistivity 

measurements between two gold electrodes (length/width = 0.01 mm/mm) deposited upon an 

insulating SiO2/c-Si surface. 

 

The structure of the TMO/n-Si heterojunction solar cells fabricated with V2O5, MoO3 and 

WO3 is depicted in Fig. 1(a), while Fig. 1(b) summarizes the main processing steps. Float 

Zone (100) n-Si wafers (1.5 Ωcm, 280 m thick) were randomly-texturized by alkaline 

etching and cleaned by RCA and 1% HF dipping. The substrates were immediately loaded 

into a PECVD system (Elettrorava, Italy) to deposit a stack of layers on the rear side. This 

stack consisted of a 4 nm intrinsic a-SiCx:H (x~0.2) passivation layer, a 15 nm phosphorous-

doped a-Si:H layer and a 80 nm a-SiCx:H (x~1) back reflector. Then, the rear side was laser-

fired to obtain an array of locally-diffused point contacts (0.5% contacted area fraction) [26], 

resulting in a highly passivated back contact with contact resistivities <1 mΩcm
2
. After a 

second 1% HF dip, the TMOs were thermally evaporated on the front side (~8x10
-6

 mbar, 

~0.2 Å/s), of which WO3 has the highest melting point (1,470 ºC) compared to V2O5 and 

MoO3 (690 and 790 ºC respectively). After a brief air exposure, an antireflective indium-tin-

oxide (ITO) front electrode was deposited by RF magnetron sputtering, measuring the 

photoconductance of the samples (Sinton Instruments) before and after ITO deposition. After 

lithographic patterning of 1 cm
2
 active cell areas, back-contact metallization was done by e-

beam evaporation of titanium (15 nm) and thermal evaporation of aluminum (1 μm), whereas 

the front-contact silver grid (50 μm wide fingers, 4.3% shadow) was thermally evaporated. As 

a reference, a device with an a-Si:H emitter was fabricated in parallel.  

 

The current density-voltage (J–V) characteristics of the fabricated solar cells were measured 

in the dark and under 1 sun illumination (Oriel Instruments solar simulator, calibrated by 

pyranometer), while the External Quantum Efficiency (EQE) was measured by means of an 

EQE measurement system (QEX10, PV Measurements). A 4 cm
2
 area of the finished device 

was left without the front grid in order to measure the total reflectance by spectrophotometry 

with an integrating sphere.  



 

3. Results and discussion 

3.1 Properties of Transition Metal Oxides 

The adequacy of V2O5, MoO3 and WO3 as large work function carrier-selective materials 

depends on their specific electronic properties. Although they once were misidentified as p-

type semiconductors, their n-type character is now generally accepted. Such n-type 

semiconductivity generates from intrinsic oxygen vacancies in their atomic structure (i.e. 

MoO3-x), ranging from insulators in their fully stoichiometric configuration (MoO3) to 

metallic-like conductors (MoO2). Since their energy band gap (Egap) lies within the O2p- and 

metal d-bands, it is the occupancy of these d-states what determines their conductivity and 

work function value [9].  

 

Oxidation state transitions and generation of states within the Egap have been reported as 

characteristic features of oxygen loss during TMO deposition [27]. In order to identify such 

vacancy-related effects, the XPS photoemission spectra were analyzed. After Shirley 

background subtraction and fitting by Gaussian-Lorentzian curves, a multi-peak 

deconvolution of the spectra was performed by use of the binding energies referenced in the 

literature, allowing to quantify the relative content of each oxidation state and the oxygen to 

metal (O/M) ratios from the integrated peak areas. Since the samples were briefly exposed to 

air (~1 min.), some contamination of the uppermost atomic layers was measured as 

adventitious C-OH compounds and subtracted from the overall oxygen content. The core level 

spectra for the three oxides under study are shown in Fig. 2, while Table 1 summarizes their 

composition and O/M ratios. For V2O5, the V2p core level was decomposed into two doublet 

peaks centered at 518.1 and 516.5 eV binding energies, with a doublet spin-orbit splitting ΔBE 

= 7.6 eV and a peak area ratio of 2:1. These characteristic binding energies are attributed to 

the presence of both V
+5 

and V
+4

 cations [28], as shown in Fig. 2(a). The V
+4 

fraction in the 

overall composition
 
was estimated at 3.1%, while an O/M ratio of 2.29 results in an oxygen-

deficient V2O5-x with x ~0.4. Similarly, the Mo3d core level was deconvoluted into two 

doublets centered at 233.4 and 231.8 eV (ΔBE =3.1 eV, 3:2 area ratio), representative of Mo
+6

 

and Mo
+5

 respectively [29] as shown in Fig. 2(b). The oxygen deficiency in MoO3-x was 

calculated at x ~0.5, with a 0.5% relative content of Mo
+5

 cations in the total composition. 

Thirdly, the W4f core level of WO3 was also decomposed into two doublets centered at 36.8 

and 34.8 eV (ΔBE =2.2 eV, 4:3 area ratio), characteristic of W
+6

 and W
+5

 cations [30]. 

However, the peak for the W
+5

 doublet was almost absent, as seen in Fig. 2(c). This is 



supported by an O/M ratio that results in an oxygen-rich WO3.2, contrary to the observed 

oxygen deficiency in V2Ox and MoOx. This fact is explained by the specific pressure 

conditions under which oxygen loss occurs in thermally evaporated WO3 [31]. Nonetheless, 

the absence of the W
+5

 oxidation state on the air-exposed surface could be caused by tungsten 

reoxidation by air, not excluding oxygen vacancies from the material bulk. The characteristic 

defect states that lie within the band gap of these non-stoichiometric TMOs were also 

identified near the Fermi level [28,29,30], although in a minor degree for WOx (Fig. 2(d)).  

 

Another feature of the studied TMOs is their peculiarly large work function (ΦTMO) and how 

it changes as a result of redox environments, contamination by adsorbates and chemical 

interaction with adjacent interfaces [27]. In this sense, the ΦTMO values after thermal 

evaporation will be several meV smaller than those of in-situ metal oxidation. Furthermore, as 

the oxides are exposed to ambient air, ΦTMO will further decrease ~1 eV until stabilizing [32]. 

As indicated in Table 1, the reported work function values vary from ΦTMO ~6–7 eV (as-

deposited) to ~5.0–5.3 eV (after air-exposure). These values are close to the ionization 

potential of c-Si (5.1 eV), suggesting that Fermi level alignment between both materials is 

feasible. Accordingly, TMOs exhibit a double functionality depending on the relative work 

function difference ΦTMO–ΦSi of both materials [33]. For n-Si, these TMOs will induce an 

electrostatic potential (band bending) owing to a large ΦTMO–Φn-Si, depleting silicon’s surface 

out of majority carriers (electrons) and acting as p-emitters. For p-Si, TMOs act as ohmic-like 

contacts given a small ΦTMO–Φp-Si, accumulating majority carriers (holes) in the surface and 

acting as p-BSFs. As it will be discussed in Section 3.3, this functionality occurs 

irrespectively of the n-type character of these oxides. 

 

Finally, a benefic property of TMOs in general is a wider energy band gap (>3 eV) than 

conventional a-Si:H emitters (Egap ~1.7 eV) (see Table 1). This translates into lower 

absorption losses in the near-ultraviolet and visible ranges when used as window layers [34]. 

Fig. 3 shows the optical absorbances measured by spectrophotometry, subtracting the 

contribution of the glass slide. By comparing with a-Si:H (calculated from extinction 

coefficient data [35]), all three oxides are less absorbent up to ~600 nm in wavelength, while 

MoOx is the most transparent. In parallel, electrical measurements of the oxide films at room 

temperature yielded rather low lateral conductivities (σV2Ox ~8 x10
-8

 S/cm, σMoOx ~1.8 x10
-7

 

S/cm and σWOx ~1.1 x10
-7

 S/cm) in accordance with previous reports [9,18]. These results 

limit the oxide thickness on the final device to only a few nanometers and justifies the need 



for an ITO collecting electrode. Ultimately, actual conductivities will depend on the 

morphology of thermally-evaporated TMOs, which has been reported as completely 

amorphous for MoOx [20] and nano-crystalline for WOx [30]. Further study of preparation 

methods and post-deposition treatments could promote oxide crystallinity in order to enhance 

film conductivities. 

 

Overall, the identification of oxygen-vacancy defects in the TMOs under study (at least for 

the V2Ox and MoOx cases), as well as their inherently large work functions (>5eV) and 

excellent optical transparency, strongly indicate that these materials possess the functionality 

required for carrier-selective contacts in c-Si heterojunctions. In the following, the 

aforementioned properties will be related to the operating conversion efficiency of finished 

solar cells with V2Ox, MoOx and WOx as hole-selective contacts. 

 

3.2 Transition Metal Oxide/n-Si Solar cells  

Since TMO thickness is a critical design variable, preliminary solar cell devices were 

fabricated on flat wafers with varying MoOx thicknesses (30, 60 and 90 nm). The obtained 

open-circuit voltages (VOC) were almost invariant at 603 ±7 mV, suggesting that the capability 

of MoOx to passivate silicon’s surface does not depend on its thickness. In contrast, the short-

circuit current densities (JSC) decreased from 30.6 mA/cm
2
 (30 nm) to 25.6 (90 nm) due to 

parasitic absorbance and reflectance losses of the MoOx/ITO layers. Contrary to expectation, 

the Fill Factors (FF ~70%) and series resistances (RS ~ 1.2 Ωcm
2
) remained relatively 

constant, indicating that transverse electrical conductance is still moderate for thicker oxide 

layers.   

 

A compromise between optical and electrical losses was obtained for a MoOx thickness of 15 

nm and an ITO thickness of 80 nm, as determined by ray tracing modeling of the solar cell 

structure with Wafer Ray Tracer simulation tool [36], using a refractive index mismatch of 

nMoOx/nITO = 2.1/2.0 (Fig. 4). Thinner ITO thicknesses could also be used but this would result 

in higher power losses due to excessive series resistance, given the quality of the ITO (130 

Ω/sq) and the current finger grid design. By assuming a constant VOC of 600 mV and a 

conservative FF of 70%, a maximum power conversion efficiency (PCE) of 16.9% was 

obtained. A MoOx thickness of 15 nm also ensures an adequate layer uniformity (i.e. no pin-

holes) over the surface area of a texturized substrate. Consequently, TMO thicknesses of 15 

nm were also chosen for V2Ox and WOx, given their similar refractive indexes. 



 

Fig. 5(a) shows the current density-voltage (J–V) response of the fabricated TMO/n-Si solar 

cells, measured under standard illumination conditions (AM1.5g solar spectrum, 1000 W/m
2
) 

at 25 ºC. The best performance is achieved for V2Ox with a PCE of 15.7% and a VOC of 606 

mV. It is followed by MoOx (13.6%, 581mV) and WOx (12.5%, 577 mV), whose reduced 

efficiencies are a result of lower VOC and FF values. The underperformance of WOx could be 

partially explained by the absence of oxygen vacancies or merely by its lower passivation 

potential. It is worth noting that these VOC.s are remarkable for such simplified structures, 

considering the thinness of the oxide film and the absence of a passivation interlayer. For 

comparison, a reference a-Si:H/c-Si heterojunction with good front surface passivation 

reaches a VOC value of 685 mV. The measured series resistances (RS = 0.72–1.5 Ωcm
2
) are 

moderate considering the high lateral resistivities of these films, resulting in modest FF 

values. A summary of the obtained solar cell parameters is shown in Table 2.  

 

The short-circuit current densities are very similar for all devices, with a small variation 

between V2Ox reaching a maximum of 34.4 mA/cm
2 

and WOx a minimum of 33.3 mA/cm
2
. 

These JSC.s (4.3% grid shadow included) match the JSC values obtained from the integration of 

the External Quantum Efficiency (EQE) response with the photon flux spectrum at AM1.5g. 

As can be observed in Fig. 5(b), all oxides show a substantial EQE improvement in the 300–

600 nm range when compared to a-Si:H, accounting for a gain in photocurrent of 1.19 

mA/cm
2
. Moreover, V2Ox shows an additional absorption feature between 800 and 1000 nm, 

possibly explained by its higher passivation quality.  

 

A shortfall of silicon heterojunction solar cells is the passivation damage and VOC loss 

induced by sputtering and e-beam evaporation [37]. In this sense, the contactless Quasi-

Steady-State Photoconductance (QSSPC) [38] technique can be very useful to assess the 

intrinsic VOC potential of undamaged device structures. In particular, the implicit open-circuit 

voltages (i-VOC) measured before and after sputtering of the ITO layer are shown in Fig. 6. A 

notable i-VOC of 631 mV is obtained for the V2Ox device, enhancing the achievable 

conversion efficiency to 16.3% if no sputtering damage was present. A similar improvement 

is measured for MoOx, while the effect on WOx is less important. In standard a-Si:H/c-Si solar 

cells, the recovery of the VOC is routinely done by post-fabrication thermal annealing (160 ºC 

for 20 minutes) [37], enhancing the current collection efficiency. However, the hereby 



reported solar cells were not annealed after having observed FF absolute losses of 25–35%, 

attributed to TMO instabilities but needing further investigation. 

 

Furthermore, by use of the methodology proposed by [39], we determined the emitter term of 

the saturation current density J0e as a function of the effective lifetime τeff : 

 
             

   
     

   
          

   
                                          (1) 

where q is the elementary charge, ni the intrinsic carrier concentration in silicon, W the wafer 

thickness, ND the wafer doping concentration and Δn the minority excess carrier density 

(under high injection conditions). The term 1/τbulk can be neglected owing to the long bulk 

lifetime of high quality wafers, whereas the surface recombination velocity Srear for the laser-

fired a-Si:H/SiC:H stack was estimated at ~50 cm/s [26]. Hence, the characteristic emitter 

saturation currents for the TMOs are J0 V2Ox ~150, J0 MoOx ~230 and J0 WOx ~420 fA/cm
2
, which 

are close to the reported value of 300 fA/cm
2
 for MoOx/n-Si contacts [18]. These emitter 

saturation values are not far from boron-diffused state of the art technology (J0e ~100 fA/cm
2
), 

confirming the true potential of transition metal oxides as hole-selective contacts. 

 

3.3 Origin of rectification in TMO/n-Si heterojunctions 

In order to elucidate the carrier transport mechanism in TMO/n-Si heterojunctions, their dark 

J–V characteristics were measured at varying temperatures and fitted for the double diode 

solar cell model, extracting J01 and J02 for the diffusion and recombination diodes respectively 

(Fig. 7(a)). The thermally-activated behavior of each J0 is defined by a specific activation 

energy (Ea) [34]: 

                                                                            

where J00 is the saturation current pre-factor, kT the thermal voltage and n the ideality factor 

for each fitted diode (n1 = 1 and n2 = 2). From the exponential fit of the Arrhenius plots in Fig. 

7(b), the obtained activation energies seem to be related to crystalline silicon´s bandgap (Ea1 = 

Egap, Ea2 = ½Egap). This result suggests that the J–V response is limited by diffusion of 

injected minority carriers (J01) and recombination in the space-charge region (J02), rather than 

alternative processes such as thermionic emission. 

 

Based on the obtained J0 (Egap) dependence, the classical depletion approximation was then 

used to analyze the TMO/n-Si heterojunction. Parting from equilibrium conditions, the Fermi 

level difference between both semiconductors is distributed between the induced built-in 



potential Vbi across the heterojunction and the dipole Δ that very likely occurs at the interface 

[33]:  

                                                                    (3) 

This Vbi is expected to be mostly allocated on the silicon bulk, given the thinness of the TMO 

layer. As mentioned before, the effect of the Vbi is a pronounced band bending of silicon’s 

valence band up to the point of surface inversion, creating a p
+
 contact appropriate for hole 

transfer, as depicted in Fig. 8. Similarly, up-bending of the conduction band creates a barrier 

for electrons, promoting the separation of photogenerated carriers. Assuming a strongly 

inverted surface potential ψs = Vbi = 0.7 V, solving of Eq. (2) gives a dipole of Δ ~  –0.5 V, 

which accounts for negative trap charges in the TMO/n-Si interface. The presence of negative 

dipoles in TMOs has been previously reported, originating from shallow O vacancies and 

playing an important role in energy level alignment with several organic semiconductors 

[10,40,41]. Furthermore, given their n-type nature and their relatively low density of gap 

states, it can be argued that the transport of photogenerated holes across the oxide bulk does 

not occur, but instead they recombine in the TMO/n-Si interface with those electrons supplied 

by the ITO contact [42]. At any rate, further characterization of TMO/c-Si interfaces is 

needed to fully understand the charge-transfer mechanism of these devices.  

 

4.   Conclusion 

Three n-type transition metal oxides (V2Ox, MoOx and WOx) with work function values >5eV 

were effectively used as hole-selective contacts for n-Si heterojunction solar cells, obtaining a 

maximum VOC of 606 mV for the V2Ox/n-Si device with a corresponding PCE of 15.7%. 

After MoOx (13.6%), the lowest performance was for WOx (12.5%), possibly due to the 

absence of oxygen vacancies in its atomic structure as determined from XPS analyses. Even 

though high lateral resistivities were measured for these oxides, series resistances in the solar 

cells were moderate because of the thin layers utilized (15 nm). A wide energy band gap 

resulted in an estimated JSC gain of ~1.2 mA/cm
2
 (for 300–600 nm wavelengths) when 

compared to a reference a-Si:H emitter. Although diffusion of injected minority carriers 

appears to be the predominant transport process, questions remain regarding the specific 

extraction mechanism of photogenerated holes via gap states in these oxides. In future works, 

the possibility to include additional passivation interlayers to further increase VOC values 

should be investigated. Additionally, a significant improvement could be achieved by fine-

tuning the transition metal oxide work function (for instance, by avoiding air-exposure) or by 

eliminating the i-VOC losses of ~20 mV caused by sputtering damage. Given the obtained 



results, prospective applications of these doping-free heterojunctions could be extended to 

advanced silicon technologies such as ultra-thin wafers or interdigitated back-contacts, taking 

advantage of the demonstrated low-temperature and solution processability of transition metal 

oxides. 
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the valence-band regions and the position of gap states near the Fermi level (EF).  

 

Fig. 3. Absorbance (A) measurements of transition metal oxides films (25 nm). Dotted lines are absorbance 
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, 80nm) and p-type 

amorphous silicon (a-Si:H, 20 nm) films. 

 

Fig. 4. Distribution of the incident photocurrent density (AM1.5g solar spectrum) simulated by ray tracing 

modeling of a MoOx/n-Si solar cell. The generated photocurrent (Jph) is reduced by reflectance losses (JRef) and 

absorbance losses in the front ITO/MoOx stack (JA-front) and rear layers (JA-back). On the right axis the achievable 

conversion efficiency is shown based on a VOC of 600 mV and a FF of 70%. 

 

Fig. 5. (a) Current-voltage (J–V) response of the fabricated solar cells with transition metal oxides (15 nm) as 

hole-selective contacts (AM1.5g standard illumination). A reference heterojunction device with a-Si:H emitter is 

also shown. (b) External Quantum Efficiency (EQE) and Reflectance (R) responses for the fabricated solar cells. 

 

Fig. 6. Effect of indium-tin oxide (ITO) sputtering on the passivation of the TMO/nSi solar cells, measured as 
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Fig. 7. (a) Dark current-voltage (J–V) response of the TMO/c-Si solar cells, showing the saturation currents for 

the diffusion diode (J01) and the recombination diode (J02). From temperature variation measurements (inset), the 

activation energies (Ea) for each diode were obtained from the Arrhenius plots J0 vs 1/kT shown in (b). 

 

Fig. 8. Proposed band diagram for the n-n TMO/c-Si heterojunctions. 

 

 

 

 



Highlights 

 

 Transition metal oxide/n-crystalline silicon solar cells were fabricated. 

 V2Ox, MoOx and WOx were obtained after thermal evaporation under vacuum. 

 XPS analyses revealed the presence of oxygen vacancies and/or gap states. 

 Highest efficiency (open-circuit voltage) was 15.7% (606 mV) for V2Ox/silicon. 

 Current-voltage response is limited by diffusion of injected minority carriers. 
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TMO 
Core level peaks (eV)  Content (%) O/M 

ratio 

ΦTMO (eV) / Egap (eV) 

Transition M
n
 M

n-x
  M

n
 M

n–x
 O1s As-deposited Air-exposed 

V2Ox 
V2p3/2 518.1 516.6 

 27.3 3.1 69.6 2.3 7 / 2.8 5.3 / 3.6 [28] 
V2p1/2 525.7 524.2 

MoOx 
Mo3d5/2 233.4 231.8  

28.1 0.5 71.4 2.5 6.7 / 3.2 5.4 / 3.2 [32] 
Mo3d3/2 236.5 234.9  

WOx 
W4f7/2 36.8 34.8  

23.6 <0.1 76.4 3.2 6 / 3.1 5.0 / 3.1 [30] 
W4f5/2 38.9 37.0  

 

 

Table 1 

Peak positions (eV) of fitted XPS spectra and relative content of each oxidation state identified, including O/M 

ratios and reported work functions (ΦTMO) for as-deposited and air-exposed oxides. The oxidation state 

variations M
n 
→ M

n–x
 identified for each transition metal were V

+5 
→ V

+4
, Mo

+6 
→ Mo

+5
 and W

+6 
→ W

+5
. Note 

also the energy band gap (Egap) sensitivity to redox conditions. 

 

 

 

 

Hole 

contact 

VOC 

(mV) 

JSC 

(mA/cm
2
) 

FF 

(%) 

RS 

(Ωcm
2
) 

RP 

(kΩcm
2
) 

PCE 

(%) 

V2Ox 606 34.4 75.3 0.72 440 15.7 

MoOx 581 34.1 68.8 0.84 80 13.6 

WOx 577 33.3 65.0 1.51 75 12.5 

a-Si:H 685 34.4 77.6 0.67 570 18.3 

 

 

Table 2 

Photovoltaic parameters obtained for the fabricated solar cells with transition metal oxides (15 nm) as hole-

selective contacts, compared to a reference heterojunction device with a-Si:H emitter.  
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