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ABSTRACT 

Electrochemical detection of glucose using simple polymeric electrodes without the 

assistance of enzymatic or inorganic catalysts (i.e. metals or metal oxides) has been 

issued a challenge to the scientific community. In this work we present the development 

of a potentiometric glucose sensor based on nanometric films of a very electroactive 

polythiophene derivative bearing a hydroxyl substituent per repeat unit. The sensor, 

which is enzyme free and does not require from additional catalytic nanoparticles, 

exhibits excellent tolerance against interferents, a low detection limit, and a deviation 

lower than 2% with respect to measures in human blood samples with commercial 

sensors. The excellent response of this highly electroactive polythiophene derivative, 

which exhibits a very simple chemical structure, has been attributed to the closeness 

between the hydroxyl substituents and the aromatic groups contained in the linear and 

rigid backbone. This particular chemical distribution favors the activation of the 

hydroxyl substituents, inducing their participation in the oxidation of glucose 

molecules. 
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1. Introduction 

Regular monitoring of glucose levels in the human body is crucial for the diagnosis 

and management of diabetes, which has become a worldwide public health problem. In 

addition, monitoring of the glucose metabolism through the detection of changes in the 

concentration of this important chemical may improve the treatment of brain diseases 

(e.g. brain tumors and traumatic brain injuries) [1,2]. 

To date the most common glucose biosensors, which are based on amperometric 

detection, achieve specific recognition by immobilizing an enzyme called glucose 

oxidase (GOx) that catalyzes the oxidation of glucose to gluconolactone [3]. Within this 

context the application of conducting polymers (CPs) to bioelectronic surfaces has 

gained considerable attention due to a number of advantages, such as their easy 

preparation and direct deposition on the electrode surface [4]. Thus, CPs have been 

successfully used to increase the signal-to-noise ratio in the detection process and to 

immobilize and entrap the enzymes [5-10]. For the specific case of GOx, a large number 

of CPs have been either functionalized or modified at their surface to facilitate the 

effective chemical or physical immobilization of the enzyme, enabling their subsequent 

utilization as amperometric sensors [11-16]. Another important advantage of these CP-

based materials is that they usually minimize the access of interfering compounds to the 

biosensor surface. 

In order to solve the problems associated to enzyme-based sensors (e.g. poor 

reproducibility, complicated immobilization processes and high cost), the development 

of non-enzymatic glucose sensors (NEGSs) has attracted the interest of scientists. Most 

NEGSs are primarily based on the ability of Au, Cu, Ni, Pt and their oxides to catalyze 

glucose oxidation [17-22]. Carbon nanotubes and graphene have also been used to 

fabricate NEGSs [23-26]. In recent years some NEGSs have been fabricated by 



stabilizing catalysts with CPs, e.g. poly(hydroxyl-1,4-naphthoquinone) and poly(3-

octylthiophene) (P3OTh) with Au, and polypyrrole (PPy) with magnetic ZnFe2O4 

[17,18,27]. Although direct electroxidation of glucose is kinetically very slow and, 

therefore, enzymatic or inorganic catalysts are required to speed up the process and to 

offer adequate selectivity, Çiftçi et al. [28] recently developed a new CP able to detect 

glucose without the assistance of any catalytic agent. This sensor, which was based on 

poly(3-aminophenylboronic acid-co-3-octylthiophene) (PAPBAOT) deposited on glassy 

carbon, exhibited a detection limit of 0.5 mM and was selective against common 

interferents, i.e. uric acid (UA), ascorbic acid (AA) and dopamine (DA) [28]. In spite of 

this success, the commercial application of PAPBAOT is drastically limited by its 

complex chemical structure (Scheme 1), which includes boronic acid and alkyl spacer 

functional groups as molecular recognition and penetration agent, respectively. 

 

Scheme 1: Chemical structure proposed for PAPBAOT in reference 26 

 

In this work we present a new NEGS based on a very simple CP, which was recently 

designed to improve the amperometric detection of DA [29]. This CP, 

poly(hydroxymethyl-3,4-ethylendioxythiophene) (PHMeDOT), was chosen among the 

vast palette of poly(3,4-ethylendioxythiophene) (PEDOT) derivatives that can be 
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prepared using commercial monomers because of the electrocatalytic activity of the 

exocyclic hydroxymethyl group (Scheme 2) [29]. The main advantages of PHMeDOT, 

which acts as glucose sensor without any special modification or treatment, with respect 

to other reported system are the lack of enzymatic or inorganic catalysts and the 

simplicity of its chemical structure, facilitating the synthesis process and reducing its 

economic cost. 

 

Scheme 2: Chemical structure of PHMeDOT 

 

2. Methods 

2.1. Materials  

Thieno[3,4-b]-1,4-dioxin-2-methanol (HMeDOT) monomer, anhydrous lithium 

perchlorate (LiClO4), D-glucose, DA hydrochloride (3-hydroxytyramine hydrochloride), 

AA (L-configuration, crystalline) and UA (crystalline) of analytical reagent grade were 

purchased from Sigma-Aldrich (Spain), while sodium citrate dehydrate was obtained 

from J. T. Baker. All chemicals were used without further purification. Anhydrous 

LiClO4, analytical reagent grade, was stored in an oven at 80 ºC before use in the 

electrochemical trials.  

Glucose oxidase (GOx) from Aspergillus niger (Type VII, lyophilized power) and D-

glucose were purchased from Sigma Aldrich. Phosphate buffer solution (PBS) 0.1 M 

with pH= 7.4 was prepared as electrolyte solution by mixing four stock solutions of 

NaCl, KCl, NaHPO4 and KH2PO4.  
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2.2. Synthesis  

PHMeDOT films were produced by chronoamperometry (CA) under a constant 

potential of 0.80 V. A bare glassy carbon (GC) electrode with a diameter of 2 mm was 

used as working electrode while a silver sheet was employed as counter electrode. The 

reference electrode was an Ag|AgCl electrode.  Films were obtained using a 0.1 M 

monomer aqueous solution with 0.1 M LiClO4 and employing a polymerization time of 

10 s. All electrochemical experiments were conducted on a PGSTAT302N AUTOLAB 

potenciostat-galvanostat (Ecochimie, The Netherlands) equipped with the ECD module 

to measure very low current densities (100 µA-100 pA), which was connected to a PC 

computer controlled through the GPES software.  

 

2.3. Cyclic votammetry (CV)  

CV assays were carried out using the Autolab PGSTAT302N equipment described 

above. Experiments were performed in a glass cell containing 100 µL of 0.1 M PBS 

(pH=7.4) at room temperature and equipped with saturated Ag|AgCl as reference 

electrode and a silver sheet as counter electrode. Voltammograms were recorded in the 

potential range from -0.80 to 0.50 V at a scan rate of 50 mV·s-1. 

 

2.4. Immobilization of glucose oxidase  

In addition to non-enzymatic PHMeDOT sensors, enzyme-containing glucose 

biosensors were prepared by immobilizing GOx on the PHMeDOT films. For this 

purpose, suitable amount of GOx solution (33 mg in 1 mL 0.1 M PBS solution) was 

prepared in a vial. After this, 1 µL of the GOx solution was dropped onto the 

PHMeDOT film and dried in a fridge at 6 ºC for 12 h. 

 



2.5. Atomic force microscopy (AFM)  

Topographic AFM images were obtained with a Molecular Imaging PicoSPM using 

a NanoScope IV controller in ambient conditions. The averaged RMS roughness (r) was 

determined using the statistical application of the Nanoscope software, which calculates 

the average considering all the values recorded in the topographic image with exception 

of the maximum and the minimum. AFM measurements were performed on various 

parts of the films, which produced reproducible images similar to those displayed in this 

work. 

 

2.6. FTIR and UV-vis spectroscopies  

FTIR spectra were recorded on a Bruker Vertex 70 FTIR spectrometer, equipped 

with a diamond ATR device (Golden Gate, Bruker) in transmission mode. 

 

2.7. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) 

spectroscopy 

 EDX spectroscopy and SEM studies were performed to examine the composition of 

the synthesized nanocomposites and to examine the effect of the clay on the surface 

morphology, respectively. Dried samples were placed in a Focussed Ion Beam Zeiss 

Neon 40 scanning electron microscope operating at 3 kV, equipped with an EDX 

spectroscopy system. 

 

2.8. Electrochemical detection of glucose 

Chronoamperometric measurements were carried out at room temperature in the 

reaction cell containing 100 µL of 0.1 M PBS at a polarization potential of -600 mV 

using the Autolab PGSTAT302N equipment described above. Glucose solutions were 



prepared in 10 mM PBS and allowed to mutarotate overnight. Choroamperometric 

curves were obtained after adding 4 µL of a desired concentration of glucose solution 

under constant stirring at 100 s intervals. 

AU, AA and DA were used as interfering agents for chronoamperometric detection 

of glucose. 25 mM solutions of these species were prepared in 10 mM PBS. 

Choroamperometric curves in presence of interfering agents were obtained after adding 

4 µL of a 25 mM solution of each of such species under constant stirring at 100 s 

intervals. 

 

3. Results and discussion 

The success of the anodic polymerization process was proved by FTIR spectroscopy 

(Figure 1). Thus, the absence of the absorption band at 3099 cm-1 in the polymer 

spectrum is consistent with the lack of hydrogen atoms at the Cα-position, which are 

clearly detected in the monomer spectrum. This proves that the anodic polymerization 

of the monomers occurs at the α-α’ position of the thiophene rings, providing linear 

molecules. The most relevant bands in the PHMeDOT spectrum are observed at 3669 

cm1 (O–H stretching) and 2980-2900 cm-1 (–C–H aliphatic stretching) and 1238 cm-1 (-

CH deformation), from CH2 lateral groups and methylenedioxy groups. The strong and 

broad band vibrations at 1388 and 1059 cm−1 are attributed to the stretching modes of 

thiophene ring and ether group, respectively, while the main bands in the monomer 

spectrum are centered at 3208 cm-1 (O–H stretching), 3099 cm-1 (=C–H stretching), 

2937-2869 cm-1 (–C–H stretching), 1578 cm-1 (C=C stretching) and 1484 to 1339 cm-1 

(C-C thiophene ring vibrations).  

PHMeDOT films polymerized with only 10 s of galvanostatic potential and 

electrodeposited on glass carbon (GC) electrodes had a thickness and root-mean-square 



roughness, determined by scratch AFM, of 90±5 nm and 83±6 nm, respectively. SEM 

micrographs indicate that nanometric PHMeDOT films exhibit a granular surface 

morphology (Figure 2a) that closely resembles the one obtained for linear PEDOT 

prepared using the same experimental conditions [30]. The surface topography observed 

by AFM (Figure 2b) shows small clusters of aggregated molecules homogenously 

distributed. This corresponds to the topography typically found in heterocyclic CPs with 

a linear growing [31], in which molecules are exclusively formed by α-α linkages 

because the β-positions of the aromatic ring are locked.  

The doping level, which has been roughly estimated using the Cl/S ratio derived 

from EDX spectroscopy (Figure 2c), is 0.87, this value being slightly higher than that of 

PEDOT [32]. This high oxidation degree explains the noticeably high electroactivity 

observed in the control voltammogram of PHMeDOT (Figure 3a). Comparison of the 

voltammetric response of PHMeDOT in 0.1 M phosphate buffered saline solution (PBS, 

pH= 7.4) as prepared and after immobilize GOx onto its surface indicates that the 

enzyme does not play any electro-catalytic effect in oxidation-reduction processes 

(Figure 3a), harming the intrinsic electrochemical behaviour of PHMeDOT. 

The current response of PHMeDOT films as prepared and with GOx immobilized at 

the surface was compared by applying a polarization potential of -600 mV vs AgAgCl 

to a 0.1 M PBS stirred solution. For this purpose, 4μL of a 25 mM glucose solution 

were injected into the PBS-containing electrochemical cell, representing an effective 

glucose concentration of only 1 mM. The chronoamperometric response to the glucose 

injection of the two sensors was very similar (Figure 3b), evidencing that the 

PHMeDOT electrode can be directly used as a NEGS.  

The presence of interfering species, such as UA, AA and DA, in biological samples 

can influence the performance of the sensor during the oxidation of glucose. In order to 



investigate the selectivity of PHMeDOT, the chronoamperometric response of the 

PHMeDOT NEGS upon the successive injection of glucose and interferents into the 

PBS-containing cell was examined. Results (Figure 4) clearly prove that AU, AA and 

DA do not block the glucose signal. Moreover, superposition of the profiles obtained 

with and without injection of interfering species indicates that the sensitivity increases 

significantly in presence of interfering agents (Figure 4). Thus, the current density of the 

peak associated to the glucose injection at t= 600 s, after addition of interfering species, 

is 9 and 16 µA/cm2 higher than the first and fourth glucose injections peaks (i.e. those at 

t= 300 and 600 s, respectively) displayed in the profile without interfering agents. These 

results reflect that the PHMeDOT NEGS can be successfully used in presence of 

interfering agents, offering analytical selectivity to the sensor.  

Figure 5 plots the oxidation peak current density versus glucose concentration (eight 

different measures for each concentration using the standard addition method). A linear 

relationship between the current density and the glucose concentration was established 

in the concentration range from 1 to 9 mM (R2= 0.963), and a sensitivity of 2.241 

µA/cm2 was obtained from the slope in the linear range. When the concentration is 

above 9 mM, deviation from linearity is detected, presumably due to a change from 

mass transport controlled to kinetically controlled current at concentrations higher than 

9 mM. The detection limit, which was calculated on the basis of signal to noise ratio of 

3, was 0.9 mM. 

PHMeDOT NEGSs are comparable in terms of sensitivity and selectivity to other 

sensors reported in the literature. For example, the detection limit of non-enzymatic 

PAPBAOT (Scheme 1), which exhibits a very complex chemical structure, is 0.5 mM 

[28]. Other representative NEGSs are P3OTh functionalized with Au NPs [18] and PPy 

with CuxO NPs [22], which exhibit a detection limit of 0.2 and 6.2 mM, respectively. 



Accordingly, when compared to other biosensors the superiority of PHMeDOT rests on 

its simplicity, which is based on the substitution of the electrocatalytic activity 

associated to the GOx and/or inorganic agents by that of the exocyclic hydroxyl groups. 

Thus, comparison between FTIR spectra recorded for the polymer and the monomer 

evidences a red shift for the O–H stretching vibration (Figure 1). This has been 

attributed to a reduction of the intermolecular polymer···polymer hydrogen bonds [33], 

which facilitates the accessibility of hydroxyl side groups and, therefore, their 

participation in the catalysis of the glucose oxidation. Thus, the closeness of the 

hydroxyl groups to the electroactive polythiophene backbone, combined with such 

accessibility, favors their activation in response to the application of the electric 

potential inducing their participation as catalyst in the global reaction mechanism. It 

should be noted that the backbone planarity and by extension the backbone 

rigidification of PEDOT derivatives are due to the restrictions imposed by the fused 

dioxane ring and to the electron-donating effects provided by the oxygen atoms 

contained in such cyclic substituent, as was recently proved by quantum mechanical 

calculations [34]. The π-conjugation of the planar anti conformation induced by the 

dioxane ring and the above mentioned electron-donating effects provided by the oxygen 

atoms attached to the positions three and four of each thiophene ring give a significant 

gain in aromaticity and more favorable electrostatic interactions [34]. This feature 

explains the excellent electronic properties of PHMeDOT backbone, which play a very 

important role in the activation of hydroxyl catalytic effects.  

Finally, the applicability of the PHMeDOT NEGSs was examined by considering 

real blood samples extracted from two different individuals. Measures were performed 

depositing 2 drops of blood directly onto the surface of the electrode, applying a 

polarization potential of -600 mV, and, enabling equilibration of the current density 



(Figure 6). Results, which were obtained by applying the calibration curve displayed in 

Figure 5, are compared in Table 1 with those obtained using the OneTouch UltraMini® 

blood glucose meter, commercialized by the Johnson&Johnson company (Figure 6, 

insets). The glucose concentrations determined using the PHMeEDOT NEGSs differ by 

less than 2% from those concentrations measured using the commercial sensor, proving 

again the excellent performance of this CP-based sensor. 

 

4. Conclusions 

In summary, the application of PHMeDOT nanometric films for the electrochemical 

detection of glucose in absence of enzymatic or inorganic catalytic agents has been 

explored. Overall results indicate that PHMeDOT behaves a NEGS with good activity 

towards the determination of glucose with the linear concentration range of 1-9 mM. 

The sensor is effective in presence of UA, AA and DA interfering agents. In spite of its 

simple chemical structure, PHMeDOT performance is comparable to those obtained 

using more sophisticated and commercial sensors. In addition to its simplicity, other 

important advantages of this hydroxylated NEGS are its electrochemical stability and 

ease of fabrication. The excellent response of PHMeDOT has been attributed to a 

combination of the backbone aromatic properties and the closeness between the 

hydroxyl groups and the thiophene ring. These features facilitate the activation of the 

hydroxyl groups, which promotes the oxidation of glucose molecules without the 

assistance of enzymatic or inorganic catalytic agents. 

In summary, the advantageous features exhibited by the proposed polythiophene 

derivative hold the promise for the development of a cost-effective practicable 

application in a near future. 
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Table 1. Blood glucose level measured for two different individuals using the 

PHMeDOT NEGSs and commercial OneTouch UltraMini® blood glucose meters. 

 

 Individual 1 (mg/dL) Individual 1 (mg/dL) 

PHMeDOT NEGS 90.96 122.81 

OneTouch UltraMini® 90 125 

Deviation (in %) +1.07 -1.75% 

 

 

  



CAPTIONS TO FIGURES 

Figure 1. FTIR spectra of (a) PHMeDOT and (b) the HMeDOT monomer.   

Figure 2. (a) SEM micrograph, (b) AFM image and (c) representative EDX analysis of 

PHMeDOT.   

Figure 3. (a) Control voltammograms in 0.1 M PBS of bare GC, PHMeDOT as 

prepared, and PHMeDOT coated with GOx (PHMeDOT-GOx). (b) Current-time plot 

for PHMeDOT as prepared and PHMeDOT-GOx upon the successive addition of 1 mM 

glucose in 0.1 M PBS at polarization potential -600 mV vs AgAgCl. 

Figure 4. Current-time plots for the PHMeDOT NEGS upon the successive addition in 

0.1 M PBS of: (i) 1 mM UA, 1 mM AA, 1 mM DA and 1 mM glucose (blue profile); 

and (ii) 1 mM glucose (red profile). Polarization potential: -600 mV vs AgAgCl. 

Figure 5. Current density response versus glucose concentration for PHMeDOT 

NEGSs. Error bars indicate standard deviations for eight measurements using 

independent electrodes. The calibration curve equation is also displayed. 

Figure 6. Current-time plot registered after deposit two drops of blood onto the surface 

of a PHMeDOT non-enzymatic glucose sensor. Profiles correspond to the blood of two 

different individuals. The graphic of the inset indicates that the current density is 

perfectly equilibrated after 195 seconds. Polarization potential: -600 mV vs AgAgCl. 

The figure also displays the concentration of glucose measured using the OneTouch 

UltraMini® blood glucose meter, commercialized by the Johnson&Johnson company. 

The blood used to measure such concentrations correspond to the individuals 1 and 2 

(marked with arrows). The concentration of glucose in blood is expressed in mg/dL. 
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Figure 5 
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