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Highlights 

 The compressive behavior of lime mortar masonry is investigated 

 Two types of lime mortars with zero cement content are characterized and applied 

 Very high ratio between the compressive strength of the composite and that of  mortar 

is obtained 

1. Introduction 

The compressive strength of masonry is considered by design codes as the main design 

parameter, on which, additionally, the derivation of its mechanical properties is largely based. For 

this reason, masonry in concentric compression has been extensively studied. Taking into account 

the experimental investigations on masonry composites accompanied by a characterization of the 

masonry constituents, the instances in the literature become fewer in number. A relatively large 

number of such experimental investigations has been performed on stack bond prisms [1–14]. 

Fewer investigations including concentric compression tests on larger members, such as walls in 
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running or Flemish bond or three-leaf samples and columns, have been documented in the literature 

[14–26]. These tests are usually monotonic, but cyclic tests have also been performed [8, 27].  

The different combinations of materials present researchers with a wide range of possible 

choices for experimental study. However, reviewing the available inventory of experimental data, 

one finds a distinct predominance of cement and lime/cement mortars in structural testing. While 

chemical, curing, mechanical property and sustainability issues of modern pure lime mortars have 

been extensively studied [28–34], the investigation of their direct structural application has not 

enjoyed the same attention [35] despite its common use as original material or for restoration 

purposes in historical structures. 

Measurement of the compressive and flexural strength of units and mortar is well documented 

and even codified in guidelines [36–38]. However, no comparable effort has been devoted to the 

characterization of the Young’s moduli of the material constituents and the masonry composite.    

Masonry codes [39] provide empirical relations for the estimation of the masonry Young’s 

modulus using the compressive strength of masonry as the only parameter and hence neglect the 

important influence of the parameters related to the constituent materials.  Regarding experimental 

procedures, there is a lack of guidelines for the measurement of the Young’s modulus of both the 

units and the mortar as well as of the masonry composite.   

Published results on the Young’s modulus of units and mortar often do not explain in detail the 

method used to obtain these results.  However, a few studies include a detailed explanation of such 

measurement methods and often make use of the measured moduli in numerical simulations of the 

experimental processes [5, 7, 8, 11, 40, 41]. 

 Measurements of the mechanical properties of units are easier to perform and are, therefore, 

more common. However, compressive tests on the unit beds are usually performed on entire units 

in the direction perpendicular to the unit bed [4, 5, 21].  Due to the dimensions of units, it is 

foreseeable that this type of tests is significantly affected by both size and shape effects and hence 

may not be offering a reliable measurement of the uniaxial compressive strength of the material. By 
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 3 

measuring cylindrical, cubic or cuboid samples extracted from bricks it has been intended to limit 

or study these size effects or to simply form specimens with appropriate dimensions to facilitate 

measurements [8, 20, 42]. 

The issue of the difference between the properties of the mortars in freestanding samples and in 

the composite persists due to difficulties in obtaining deformation measurements from both the 

joints, which are prohibitively thin, and from cast samples due to differences in curing conditions. 

Efforts have been made to measure isolated deformations of the units and the mortar joints in 

masonry under compression [13, 20]. For other cases, the elastic properties of the mortar in the 

joints are indirectly derived by measurements in the units and in the composite [25]. 

The main objective of the experimental campaign herein presented was to determine the 

compressive strength and Young’s modulus of masonry composed of medium strength solid clay 

bricks and two types of low strength lime/sand mortar with zero Portland cement content. The 

intention was to establish whether this particular combination of materials can produce composites 

of adequate compressive strength and, simultaneously, sufficient deformability so as to be, from a 

structural perspective, compatible with historical masonry for application in intervention projects. 

The tests to be performed and the measurements to be taken during their execution were 

designed so as to give as much information as possible on both the strength and the deformability 

characteristics of the constituent materials. 

2. Description of experimental campaign 

 

The procedures used for the characterization of the component materials and the composite 

specimens are presented in the following paragraphs.  

For the mechanical characterization of the units, it was preferred to measure the uniaxial 

compressive strength and the Young’s modulus of the material of which they are composed, using 
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appropriate brick cores, rather than measuring the strength of an entire brick in compression. As 

mentioned above, the latter approach would involve significant size effects in the compression 

tests. It was also intended to follow a sampling procedure which would allow a large number of 

testable specimens to be extracted from a single brick. In the case of the application of destructive 

testing on historical materials this is advantageous for exerting minimum damage and loss of 

original material in the structure. 

The masonry was constructed in stack bond configuration. This geometrical setup allows for a 

simple way of studying unit-mortar interaction in masonry under concentric compression, as has 

been noted in integrated experimental/numerical masonry analysis projects [43]. 

Whenever possible, existing testing standards were consulted in order to compare the parameters in 

the performed tests and their results against a codified backdrop. It was intended to establish 

whether the materials and the resulting masonry conform to the application spectrum defined or 

implied in the corresponding standards. 

Units 

The units used in the campaign were solid clay bricks with nominal dimensions measuring 

290×140×50 mm
3
. The bricks were hand-molded, which resulted in the bricks having smaller 

actual dimensions and rough, uneven surfaces and, often, slanted heads and faces.  The more 

pronounced scatter in the geometric measurements was obtained for the smaller dimensions of the 

bricks, namely their height. 

The bricks received surface treatment prior to testing. The beds were polished in order to 

ensure smoothness and planarity and to remove surface fissures and other damage, whereupon the 

bricks were reduced to a height of roughly 40 mm. Following the surface treatment, cylindrical 

core samples were extracted from the bricks in the direction perpendicular to the unit bed, 

numbering six to seven from each unit, with a diameter of 45.25 mm. The height to diameter ratio 

in the samples was, therefore, roughly 1, which is not ideal for eliminating size effects in 

compression tests or the confinement afforded on the sample by the loading platen, but provides a 
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significant improvement against the testing of full bricks. Furthermore, the very small height of the 

bricks, and therefore the very small displacements to be measured, would compound the 

uncertainty of the measurements. Coring also allows for the influence of local imperfections to be 

directly measured or even entirely avoided, as internal cracks and voids become visible. Finally, it 

allows for the clearer overview of the variation of the results, since it may now be decomposed in 

the variation of the properties between the units as well as in the localized variation of the area 

from which each sample was extracted. Examples of coring patterns are shown in Figure 1. For 

these reasons, and in order to obtain some understanding of these size effects, the cylindrical 

samples were tested in single, double and triple stacks. The surface treatment of the unit beds 

facilitates this configuration. 

The characterization of the tensile strength of the units was done using three-point bending of 

three complete brick specimens, from which the uniaxial tensile strength may be indirectly 

determined. There is no EN standard specific to the determination of the tensile or flexural strength 

of clay units as there are for concrete blocks [36]. Following the aforementioned surface treatment 

and before testing, the units were placed in a drying oven overnight at a temperature of 105±5 
0
C to 

remove existing moisture and to ensure equal moisture for all samples. The units were left to cool 

for 4 hours prior to testing. The testing was performed using a load cell with a 200 kN capacity in a 

hinged configuration and displacement measurements were only taken from the load cell readings. 

The load was applied in force control at a rate of 10 N/sec. The test was performed specifying a 

central span of 200 mm, as illustrated in Figure 2.  

For the compressive tests on the cylindrical samples, a 200 kN capacity load cell was used in a 

hinged configuration. The load was applied in displacement control, in order to record the softening 

branch with more ease, at a rate of 0.002 mm/sec.  Measurements were taken from three   LVDTs 

placed in the perimeter as shown in Figure 3, and from the load cell readings. These devices were 

fixed on the loading plates, as the small height of the cylinders, even when stacked, was not 

sufficient for the LVDTs to be properly attached directly on them. Overall, eleven single samples, 

eight double samples and six triple samples were tested for a total of 25 compression tests. With the 
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exception of one triple sample, the doubles and triples were composed of cores from the same 

brick. 

Mortar 

Two types of mortar were employed in the construction of the masonry: aerial lime mortar 

(ALM) and hydraulic lime mortar (HLM) combined with fine sand made of crushed limestone and 

zero Portland cement content. The ALM mortar was produced in putty form obtained from 

submersion of CL-90 calcium lime in water in a sealed plastic drum and the HLM directly from 

NHL 3.5 natural hydraulic lime powder. The properties of the sand are presented in Figure 4 and 

Table 1. Both mortars were produced in a 1:3 lime-to-sand ratio and were hand-mixed using a 

trowel. The methodology followed in the characterization of the mortars is described in the EN 

1015-11 European standard for mortar testing [37], which includes instructions for the preparation 

and storing of the samples as well as the testing setups and procedures. However, due to the 

composition of the mortars, it was immediately understood that this standard is mainly applicable 

to mortars of higher strength. Nevertheless, it may still be, as it indeed has been, consulted as a 

guideline for planning this and other similar campaigns. 

In parallel with the construction of the prisms, mortar was poured and appropriately compacted 

in steel 3-compartment molds lubricated with mineral oil to prevent adhesion of the mortar to the 

mold walls. The mortar was poured in two layers, each of which was compacted with 25 strokes of 

the tamper. In total, 24 prismatic samples measuring at 160×40×40 mm
3
 were prepared for each 

mortar type. The molds were stored in lab conditions (22.5
0
 Celsius, 70.2% humidity) and the 

samples were extracted after 6 days for the aerial lime and 2 days for the hydraulic lime samples, 

which were subsequently stored in the same lab conditions. The lack of free contact with the air in 

the faces of the prisms adjacent to the steel walls of the mold, resulting in very slow hardening, 

made it necessary to allow a longer period of time to pass before unmolding the aerial lime mortar 

in order to avoid premature deformation and damage to the samples. Inspection of the molds after 

removal of the mortar prisms did not reveal any sign of adhered mortar. 
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The mortars were subjected to flexural and compressive tests. The mortar prismatic samples 

were tested in three-point bending and the two resulting halves were tested in compression. A 10 

kN capacity press was used in force control at a rate of 10 N/s for the bending tests and 50 N/s for 

the compression tests, both rates corresponding to the minimum standard specified values. The test 

setups are shown in Figure 5 and the only quantity measured was the force against time. The small 

dimensions and low strength of the mortars do not allow for accurate displacement measurements 

to be easily taken. Tests were performed at 14, 28, 42 and 49 days for the ALM and 7, 14, 28 and 

49 days for the HLM in order to study the maturation of the mortars. 

Masonry 

Six masonry wallettes were constructed, three for each mortar type. The EN 1052-1 standard 

for the determination of the compressive strength of masonry was consulted as a guideline on the 

preparation of the prisms, the curing and storage, the placement of the measuring instruments and 

the determination of the loading rate during testing [44]. The masonry wallettes consisted of five 

bricks and four mortar bed joints of 10 mm thickness, resulting in overall nominal dimensions 

equaling 290×140×290 mm
3
. The bricks were submerged in water for 30 minutes prior to 

construction, which took place on a flat surface. For each type of mortar, two prisms were capped 

on both ends using a 3 mm thick sulfur-silica sand mortar joint to ensure the flatness of the loading 

surfaces, while one prism from each mortar case was capped on the top end with the sulfur-silica 

sand mortar and a 1.5 mm thick unbonded unreinforced neoprene sheet and with sulfur mortar only 

on the lower end. Immediately following construction, the prisms were covered with polyethylene 

sheets for three days in order to prevent premature drying. Subsequently, the masonry was kept in 

laboratory conditions until it reached an age of 49 days. 

The machine used in the compression testing has a static load capacity of 2000 kN. The load 

cell was set in a hinge configuration to facilitate the adjustment of the load plate with the masonry 

for uniform load distribution. The load cell was fitted with a short steel profile beam to match the 

vertical cross section of the prisms. Finally, the masonry was centered between two thick steel 

plates. 
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Displacement measurements were taken from 6 LVDTs placed on the masonry, as well as from 

the readings of the load cell. The LVDTs were placed in such a manner as to measure the vertical 

deformation of the masonry composite and of an individual unit. The LVDT supports were 

attached to the masonry using a quick setting adhesive resin. The use of the resin offers good 

adhesion with minimal disturbance to the surfaces of the units. Placement of the LVDTs often 

required further surface treatment in the units and the joints in order to properly accommodate their 

supports and to allow free movement of the instruments. This would not have been necessary in 

machine-cut bricks.  

Due to the irregular heads and faces of the units, the placement of the LVDTs in the exact 

desired spots was not always possible. For this reason, slight variations of the LVDT setups were 

attempted, all of which had the same objective. The tests on the aerial lime mortar prisms were 

performed with a horizontally placed LVDT on the mid height unit to measure the lateral 

deformation in order to determine the Poisson’s ratio. Figure 6 shows such vertical and horizontal 

LVDT arrangements on the prisms, while Figure 7 presents a schematic view of the two basic 

LVDT arrangements used. 

For the determination of the Young’s moduli, and to accommodate the adjustment of the 

loading platens with the test sample, 5 initial loading cycles under force control were executed with 

a final cycle maintained at the maximum load for 1 minute before unloading. The initial cycles 

were performed with a maximum load of 60 kN and the final cycle with a load of 90 kN, all at a 

load rate of 400 N/s. The cyclic loading process is based on previous suggested procedures for 

concrete samples [45] and has been applied on masonry prisms as well [8]. 

Three values of Young’s moduli were measured in the masonry: the initial loading modulus 

measured in the first loading branch during the cyclic tests, the unloading/reloading modulus in the 

cyclic tests and the final modulus in the monotonic compression test, which was determined at 

roughly 40-60% of the compressive strength.  
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The loading to determine the compressive strength was conducted under displacement control 

in order to capture the post peak response of the masonry. The load was applied at a rate of 0.003 

mm/sec. The LVDTs were removed from the structure before the peak in order to avoid damage to 

the equipment, after which point the only displacement measured was that of the stroke of the 

actuator. Therefore, information for the Young’s modulus could be obtained from this set of tests 

as well. The test was stopped once the post peak curve reached roughly 5-10% of the obtained 

capacity. 

Direct measurement of the Young’s modulus of the mortars was impractical both on 

freestanding samples as on the masonry itself. Test samples were required to be of small size, 

otherwise mortar hardening would not be achieved within a practical time limit, and therefore 

direct placement of measuring equipment was not possible. As an alternative course of action, the 

Young’s modulus of the mortars may be indirectly determined. This can be achieved following the 

measurement of the Young’s modulus of the units and of the masonry composite by a simple, one-

dimensional homogenization process. This process idealizes the masonry composite as a set of 

linear elastic springs in series. According to this, the elastic modulus of the masonry composite Ec 

is calculated by the following equation: 

 
 

1

1

m u
c u

m u u m

h h
E E

h E h E




  
 (1) 

where hm and hu are the thickness of the mortar bed joint and the height of the units 

respectively and Em and Eu are the Young’s moduli of the mortar and the units. The model assumes 

perfect normal and shear bond in the unit-mortar interface as well as neglecting Poisson effects, 

which do not have a strong influence on vertical masonry stiffness for stack bond prisms. 

3. Results 

Units 
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The results of the bending tests on the bricks are presented in Table 2. Despite the small 

number of tests, the results were consistent and showed very little scatter. The tensile strength of 

the brick ftu is derived from the flexural strength fflex by way of equation (2), where h is the 

specimen height [46]. 

 
0.7

0.7

0.06

1 0.06
t flex

h
f f

h




 
 (2) 

The compressive test results on the core samples are presented in two tables. The results and 

dimensions of the samples, organized according to the number of cylinders in the sample, are 

presented in Table 3. Similarly, Table 4 summarizes the same results according to the brick from 

which the samples were extracted regardless of sample size. This distinction allows to overview the 

variation of the results according to the parent brick and the sample size. The bricks are again 

designated by roman numerals (it is reminded that I, II and III where the ones tested in bending) 

and the extracted samples by ordinary numerals. 

The failure mode of the samples may be seen in Figure 8. Vertical and diagonal cracks in the 

stacked specimens jump across the polished interfaces, indicating good contact between the 

samples. Continuity of spalling damage was also noticed. 

It was noticed that imperfections such as existing cracks did not have a strong influence on the 

compressive strength or stiffness of the samples, as compared to undamaged samples from the 

same brick. However, damage at the base or the top of the samples, mostly due to the coring 

process, caused a notable reduction of the strength of the samples.  

Examining the results of each brick separately, for example bricks II, III and IV, the 

compressive strength showed a decreasing trend for an increase in sample height. On the contrary, 

the Young’s modulus increased with the specimen height throughout all the cases and on a brick by 

brick basis, despite the fact that the increase of the height of the specimens, which reduces size 

effects, and the existence of horizontal joints normally result in a decrease of the axial stiffness. Of 

further note is the fact that the scatter of the results for the Young’s modulus exhibited a marked 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 11 

decrease for an increase in height, even though the number of tests was smaller for larger heights. 

The scatter of the results on the compressive strength was also the lowest across the triple sample 

cases. 

Moderate variation was discovered in the properties across the bricks, with units VI and VII 

having a Young’s modulus significantly higher than the average and unit I having a compressive 

strength higher than the average. These trends appear to have been partly influenced by the 

properties of the individual bricks from which the samples were extracted. For example, half of the 

triple stacked samples were performed using cores from units VI and VII, which had the highest 

Young’s modulus. Finally, there was no correlation between the flexural strength of the brick and 

the compressive strength of the samples extracted from it. 

Mortars 

The evolution of the strength of the two mortars presents a number of differences. This can be 

attributed to the different maturation process between the binding agents in the two materials 

considered, aerial and hydraulic lime. Figure 9 illustrates the evolution of the compressive and 

flexural strength of the two mortars [47]. 

The compressive strength of the ALM exhibited a low initial rate of increase, which tended to 

decrease after 28 days. At 49 days the rate of increase was low but not zero. The HLM exhibited 

significant strength at 7 days, compared to the one achieved at 49 days. However, the rate of 

increase of strength was comparatively low in the remaining period until 49 days. The difference in 

both cases between the values at 28 and 49 days is significant, however, and should be considered 

in structural design. 

It is unclear whether further maturation of the mortar would result in even higher compressive 

strength values or how long it would take for a substantial increase. Evaluation of the tendency 

lines for the compressive strength seems to indicate that near maximum strength could be reached 

at 49 days for the HLM, but ALM should be expected to increase further in strength, as is 

evidenced by practical experience and the obtained development curve.  Due to the scatter obtained 
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for the flexural strength of the ALM it is difficult to make a similar estimation, though much higher 

strength should not be expected. However, the flexural strength of the HLM appears to be 

increasing significantly even after the 49
th
 day. 

The results of the mortar bending tests at 49 days are presented in detail in Table 5, where the 

dispersion of results in the case of the ALM is apparent, whereas the dispersion in the case of the 

HLM was much smaller. Taking into consideration that the tensile strength of the mortar is not 

significant in the study of the compressive strength of masonry, especially in stack bond prisms, the 

scatter of the aerial lime results is of small consequence. Despite using the lowest value of load 

application rate specified in the standard, failure was reached at a time as short as 10 sec, which is 

lower than 30 sec specified in the standard as the shortest recommended duration of the test. 

The results obtained from the compressive tests at 49 days for both mortar types are presented 

in detail in Table 6. The samples are named after the mortar prisms tested in bending from which 

they were produced with the added suffix a or b. Once again, only the actuator force in time was 

measured. As was the case with the unit tests, no distinct relation between flexural and compressive 

strength of samples from the same prism could be discerned. Overall, the scatter of the results was 

quite low and much lower than for the bending tests. 

According to the EN standard, mortar bending and compressive tests should be performed at an 

age of 28 days unless retarding agents have been employed in the mix, which was not the case in 

this campaign. Overviewing the results, it is apparent that the increase in strength in the period 

between 28 and 49 days is significant compared to, for example, the corresponding increase for 

concrete or masonry mortars based on Portland cement stored in laboratory conditions. 

Masonry 

The cyclic loading of the prisms initially performed for each specimen revealed certain aspects 

of the masonry’s response. The initial response in compression is highly nonlinear, as micro-cracks 

in the unit-mortar interface and voids in the mortar are closed. Unloading, even when only a very 

small load has been applied, has a far higher elastic modulus than the initial one in compression. 
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The compressive loading modulus eventually becomes equal to the unloading one, provided 

sufficient load has been applied. This behavior is illustrated in Figure 10. Considering this fact, it 

may be necessary to perform these loading cycles using a higher load in order to get readings of the 

Young’s modulus after the closing of the voids. However, special care must be taken in the case of 

weak component materials in order to limit the risk of premature damage in the masonry specimen.  

Significant agreement was found between the values of the capacity obtained for the two 

prisms with the sulfur mortar cap (prisms 1 and 3). The stress-displacement diagrams for the ALM 

masonry prisms are shown in Figure 11 and the results are summarized in Table 7. The failure 

mode was similar as well. The first visible cracks were observed at around 70% of the load and 

they included diagonal cracks originating from near the edges of the top of the prism and were 

mostly visible on the faces of the units. As cracking progressed, peripheral superficial cracking 

developed which eventually outlined a mostly crack-free core of masonry with its minimum width 

at mid height and spreading to the top and bottom units, which were almost intact. The condition of 

the ALM masonry at the end of the test is shown in Figure 12. 

The prism with the neoprene sheet as the top compensating layer exhibited a lower strength 

value and a different failure mode. Whereas the sulfur mortar layer provides a certain degree of 

confinement on the top and bottom units, as is demonstrated by the largely undamaged state they 

are in at the end of the test, the neoprene layer affords the opposite effect. The lateral expansion of 

the sheet causes major vertical cracks at mid length of all the faces of the top unit for a very low 

load. Further load increase leads to the formation of new vertical cracks, in parallel with the first 

central crack, as well as to the perimetrical spalling noticed in the sulfur cap cases. At the end of 

the test the top unit was found to be significantly cracked, while the bottom unit was once again 

free from extensive damage. 

At the end of the test, the remaining cores were inspected and manipulated and were found to 

be very fragile, which is to be expected from the fact that the test was continued until a very low 

level of residual strength. The sulfur mortar caps were also inspected, and, apart from limited 
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damage near the edges of the masonry where the perimetrical spalling had affected the top and 

bottom units, they were found to be intact. The neoprene sheet did not show significant damage. 

In all three cases the mortar was found to be in a much deteriorated state due to crushing. The 

smooth post peak curve appears to indicate that the failure is governed by compressive yielding, 

which would account for the amount of energy release. Furthermore, examination of the samples 

after testing revealed that the mortar had no residual strength and even completely lacked integrity, 

especially near the edges of the masonry. Finally, the detached pieces of brick had hardly any 

mortar adhering to the beds, indicating either a poor tensile and shear bond or simply complete 

deterioration of the mortar due to crushing. 

  
 

It is possible that the carbonation of the mortar near the center of the joints was incomplete due 

to lack of free contact with the air. In this case, complete carbonation of the entire mass of mortar 

would require a significant amount of time. This could account for the fragility and instability of 

the remaining masonry core. 

The initial and unloading/reloading Young’s moduli of the ALM masonry measured from the 

cyclic tests were lower and higher respectively than the final value registered in the monotonic 

compression test. The average ratio of the final Young’s modulus in the monotonic test over the 

compressive strength was 53.2. 

The HLM prisms exhibited higher capacity and global stiffness and an apparent shift in failure 

mode. Although the initiation and propagation of cracking was similar to the ALM case, as was the 

fact that the top and bottom units remained mostly undamaged, there were a number of noticeable 

differences. Firstly, the mortar retained its integrity to a higher degree, as was evident by inspection 

of the mortar masses adhering to the broken off pieces of brick as well as the existence of intact 

mortar pieces which, after manual manipulation, did not exhibit signs of significant crushing. 

Furthermore, the mortar in the remaining core was not crushed. Hydraulic lime should not normally 

experience problems with curing in areas not in free contact with air. 
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There appeared to be evidence of more extensive unit cracking than in the ALM case. The 

broken off pieces of brick were generally of smaller size and there was noticeable presence of unit 

dust, which was not present in the ALM samples. Due to the relatively high compressive strength 

of the units, it seems unlikely that the unit dust is the result of unit crushing. Overall, the above 

evidence appears to point towards a more prevalent influence of unit cracking in the failure mode. 

The condition of the HLM masonry after the test is shown in Figure 13, 

  
 

The HLM post peak curves were also of a different overall shape, featuring steep, almost 

vertical, decline in the resisting force. However, the remaining masonry core was more stable than 

in the ALM cases and mostly intact due to the better condition the mortar was in at the end of the 

test. The steeper post peak curves corroborate the point of higher involvement of cracking in the 

failure. 

The HLM prism with the neoprene cap (prism 3) exhibited a lower compressive strength than 

the corresponding ALM prism. The failure mode was again similar across both material types, with 

extensive cracking at the top unit in the HLM case. The neoprene sheet itself was torn at the end of 

the test, but it could not be determined whether the failure of the sheet was responsible for the 

reduced apparent capacity of the masonry. The load displacement graphs for the HLM masonry are 

shown in Figure 14. 

Both the values of the initial and unloading reloading Young’s moduli measured in the cyclic 

tests were higher than the value recorded during the monotonic compression tests. The average 

ratio of the final Young’s modulus over the compressive strength was 89.81. 

 The vertical deformation measurements, obtained by means of the LVDTs placed in this 

direction, are presented in Table 7 and Table 8. The mean value for the Young’s modulus of the 

units measured directly in the masonry considering all six cases was 6031 MPa, but the coefficient 

of variation was 1.06. The results from the compressive strength tests on the units should, for all 

intents and purposes, be considered more reliable for determining the Young’s modulus of the 
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units.  However, it is worth noting that the brick Young’s modulus measured in the masonry agrees 

with the one measured in the compressive tests carried out on three stacked samples.   

Having acquired the values of the Young’s modulus for the units and the two masonry 

composites it is possible, through equation (1), to estimate the Young’s modulus of the mortars.  

The resulting Young’s moduli for the ALM and HLM are 

 , 125m aerialE MPa  

 , 250m hydraulicE MPa  

The horizontal measurements in the central brick were also successful. The average Poisson’s 

ratio νu over the three ALM cases was 0.162. These results could not be based on the cyclic tests 

but on the monotonic tests for the determination of the masonry strength, as the horizontal 

deformation in the former proved to be too low to be measured accurately. 

The development of the cracks typically observed in the masonry is illustrated in Figure 15, 

where the location and order of appearance of visible crack damage is shown for the two capping 

methods used. Similar crack development was noted for both ALM and HLM masonry. 

For both mortar types, the units and both masonry composites, the ratio between the Young’s 

modulus and the compressive strength was significantly lower than the ratios reported in the 

literature and particularly lower than the ratios provided as rough estimations in design codes, such 

as Eurocode 6 [39]. 

Another major discrepancy between these experimental results and standard design code 

provisions is in the prediction of the compressive strength of the masonry from that of the two 

component materials. The Eurocode 6 equation for the characteristic compressive strength of 

standard masonry composed of clay units and general purpose mortar, such as the ones used in this 

campaign, reads: 
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 0.7 0.3

, ,0.5c c u c mf f f  (3) 

Equation (3) results in a value of 4.7 MPa for the aerial lime mortar masonry and 5.4 MPa for the 

hydraulic lime masonry, which are much lower than the experimentally derived values.  

In the present experiments, an increase of 50% in the compressive strength of mortar, that 

being the difference between the two mortars tested, only resulted in a 14% increase in the 

compressive strength of the masonry composite, considering only the sulfur cap cases. This result 

is almost entirely consistent with the exponent on the mortar compressive strength which yields an 

increase of 13% for the composite when the mortar strength increases by 50%. In terms of 

compressive strength alone, the composite specimens were, in contrast with the mortars, more 

within the applicability spectrum implied in the EN 1052-1 standard for masonry compression 

testing. 

Throughout all the cases the failure mode remained consistent. It was mostly influenced by the 

capping method, as was the compressive strength. The two capping materials did not have a 

significant effect on the global stiffness of the test setup, due to their very low thickness, with 

slightly lower global stiffness in the neoprene cases, as measured in the readings of the stroke of 

the actuator. The LVDT readings are, however, independent of the capping, since they were 

anchored on the masonry and not on the loading plates. The deformation of the composite 

specimen accounted for almost the entire deformation of the setup as noted by comparing the 

stiffness according to the actuator displacement and the deformation of the samples only. 

Concerning the measurement instruments used, the removal of the LVDTs prior to the stress 

peak may not have been entirely necessary, given the fact that the load is applied in displacement 

control, thus eliminating the possibility of explosive failure and, therefore, of damage to the 

instruments. Near the peak the vertical deformation is more uniform, which would allow for better 

measurements to be obtained. 
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4. Conclusions 

In the present work, a series of masonry materials frequently present in historical structures, 

namely fired clay bricks, aerial calcium mortar and hydraulic calcium mortar, was characterized 

mechanically. These materials were used in the construction of masonry prisms, which were 

subsequently tested in compression. A number of conclusions were drawn from these experiments. 

Firstly, it has been established that relatively high masonry strength can be consistently 

achieved using conventional lime mortars and moderately strong units. Specifically, it was possible 

to achieve masonry strength nearly 10 times higher than the compressive strength of the mortar. 

Additionally, it was observed that a significant amount of energy absorption is possible, especially 

in failure modes dominated by mortar crushing. In order to achieve this high masonry compressive 

strength the samples were tested at 49 days instead of the standard 28, a significant increase in the 

compressive strength of the mortar being registered in the intervening time. 

The lime mortars tested in this campaign appear to be situated slightly below the spectrum of 

mortars covered by the EN 1015-11 standard. This was made apparent due to their low resulting 

strength, the length of time required for maturity and the very low loading rates necessary for 

adequately controlled and, therefore, accurate testing, which, nevertheless, resulted in the 

maximum load to be reached before the time specified by the standards. 

The resulting masonry composites had a compressive strength much higher than the ones 

predicted by the EN standard. However, the relative increase in the compressive strength of 

masonry for an increase in the compressive strength of the mortar was consistent with the increase 

predicted by the EN standard, even though the prediction was incorrect in terms of absolute values. 

Lime mortar specimens present a number of difficulties during experimental testing due to their 

low strength and curing characteristics. Due to their low strength, it may be inappropriate to use 

modern testing standards for their characterization. Moreover, and due to the slow curing process 

experienced by them, only small specimens can be reliably tested, especially for aerial lime 

mortars. As far as the testing and measuring equipment is concerned, larger specimens, such as 
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cylinders, might provide more accurate measurements of the mechanical properties; however, the 

proper curing throughout the specimen would not be achieved before a very long time. 

Employing the coring method for extracting samples from the units, it was possible to obtain 

sufficient specimens for one bending test and between two and six compressive strength/Young’s 

modulus tests, depending on the number of cores in the compressed stack. Given sufficient brick 

dimensions, several tests may be performed on a single brick, making the method an interesting 

choice for historical brick testing. 

Boundary conditions during masonry testing, as influenced by the capping method, can have a 

pronounced effect on the estimation of masonry strength and the obtained failure mode. Sulfur caps 

provide lateral confinement to the masonry and limit the initiation of failure in the mid-height of 

the masonry. On the other hand, neoprene caps caused premature failure near the load platen due to 

excessive lateral expansion of the neoprene sheet. 

Acknowledgments 

The present study has been supported by funding procured through the SUBTIS project (Study 

of the Sensitivity of Urban Buildings to Tunneling Induced Settlements, BIA2009-13233) funded 

by Ministerio de Educación y Ciencia and the ERDF (European Regional Development Fund). 

References 

1. Barbosa CS, Lourenço PB, Hanai JB (2010) On the compressive strength prediction for concrete 

masonry prisms. Mater Struct 43:331–344. doi: 10.1617/s11527-009-9492-0 

2. Furtmüller T, Adam C (2011) Numerical modeling of the in-plane behavior of historical brick 

masonry walls. Acta Mech 221:65–77. doi: 10.1007/s00707-011-0493-z 

3. Hamid AA, Chukwunenye AO (1986) Compression behavior of concrete masonry prisms. J 

Struct Eng 112:605–613. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 20 

4. Kaushik HB, Rai DC, Jain SK (2007) Stress-Strain Characteristics of Clay Brick Masonry under 

Uniaxial Compression. J Mater Civ Eng 728–739. 

5. McNary WS, Abrams DP (1985) Mechanics of Masonry in Compression. J Struct Eng 111:857–

870. 

6. Hossain MM, Ali SS, Azadur Rahman M (1997) Properties of Masonry Constituents. J Civ Eng 

Inst Eng Bangladesh CE 28:135–155. 

7. Mohamad G, Lourenço PB, Roman HR (2007) Mechanics of hollow concrete block masonry 

prisms under compression: Review and prospects. Cem Concr Compos 29:181–192. doi: 

10.1016/j.cemconcomp.2006.11.003 

8. Oliveira DV de C, Lourenço PB, Roca P (2006) Cyclic behaviour of stone and brick masonry 

under uniaxial compressive loading. Mater Struct 39:247–257. doi: 10.1617/s11527-005-

9050-3 

9. Panizza M, Garbin E, Valluzzi MR, Modena C (2012) Experimental investigation on bond of 

FRP/SRP applied to masonry prisms. 6th Int. Conf. FRP Compos. Civ. Eng. 2012. pp 13–15 

10. Sarangapani G, Reddy BVV, Jagadish KS (2005) Brick-Mortar Bond and Masonry 

Compressive Strength. J Mater Civ Eng 229–237. 

11. Vyas CVU, Reddy BVV (2010) Prediction of solid block masonry prism compressive strength 

using FE model. Mater Struct 43:719–735. doi: 10.1617/s11527-009-9524-9 

12. Reddy BVV, Lal R, Nanjunda Rao KS (2009) Influence of Joint Thickness and Mortar-Block 

Elastic Properties on the Strength and Stresses Developed in Soil-Cement Block Masonry. J 

Mater Civ Eng 21:535–542. 

13. Vermeltfoort AT, Martens DRW, van Zijl GPAG (2007) Brick–mortar interface effects on 

masonry under compression. Can J Civ Eng 34:1475–1485. doi: 10.1139/L07-067 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 21 

14. Gumaste KS, Nanjunda Rao KS, Reddy BVV, Jagadish KS (2007) Strength and elasticity of 

brick masonry prisms and wallettes under compression. Mater Struct 40:241–253. doi: 

10.1617/s11527-006-9141-9 

15. Almeida C, Guedes JP, Arêde a., et al. (2012) Physical characterization and compression tests 

of one leaf stone masonry walls. Constr Build Mater 30:188–197. doi: 

10.1016/j.conbuildmat.2011.11.043 

16. Aprile A, Benedetti A, Grassucci F (2001) Assessment of cracking and collapse for old brick 

masonry columns. J Struct Eng 127:1427–1435. 

17. Binda L, Fontana A, G. Frigerio (1988) Mechanical behaviour of brick masonries derived from 

unit and mortar characteristics. 8th Int. Brick Block Mason. Conf. Vol.1, Dublin, Irel. pp 

205–216 

18. Binda L, Pina-Henriques JL, Anzani A, et al. (2006) A contribution for the understanding of 

load-transfer mechanisms in multi-leaf masonry walls: Testing and modelling. Eng Struct 

28:1132–1148. 

19. Brencich A, Sterpi E (2006) Compressive Strength of Solid Clay Brick Masonry: Calibration of 

Experimental Tests and Theoretical Issues. Struct. Anal. Hist. Constr. New Delhi 2006. pp 

757–766 

20. Domède N, Pons G, Sellier A, Fritih Y (2009) Mechanical behaviour of ancient masonry. Mater 

Struct 42:123–133. doi: 10.1617/s11527-008-9372-z 

21. Eslami A, Ronagh HR, Mahini SS, Morshed R (2012) Experimental investigation and nonlinear 

FE analysis of historical masonry buildings – A case study. Constr Build Mater 35:251–260. 

doi: 10.1016/j.conbuildmat.2012.04.002 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 22 

22. Ewing BD, Kowalsky MJ (2004) Compressive Behavior of Unconfined and Confined Clay 

Brick Masonry. J Struct Eng 130:650–661. 

23. García D, San-José JT, Garmendia L, San-Mateos R (2012) Experimental study of traditional 

stone masonry under compressive load and comparison of results with design codes. Mater 

Struct 45:995–1006. doi: 10.1617/s11527-011-9812-z 

24. Milosevic J, Gago A, Lopes M, Bento R (2012) Experimental Tests on Rubble Masonry 

Specimens–Diagonal Compression, Triplet and Compression Tests. 15th World Conf. Earthq. 

Eng.  

25. Page AW (1981) The biaxial compressive strength of masonry. Proc. Inst. Civ. Eng. pp 893 –

906 

26. Riddington JR, Naom NF (1994) Finite element prediction of masonry compressive strength. 

Comput Struct 52:113–119. 

27. Naraine K, Sinha S (1991) Cyclic behavior of brick masonry under biaxial compression. J 

Struct Eng 117:1336–1355. 

28. Binda L, Papayianni I, Toumbakari E, Hees R van (2002) Mechanical tests on mortars and 

assemblages. Characterisation Old Mortars with Respect to their Repair - Final Rep. RILEM 

TC 167-COM. pp 57–76 

29. Callebaut K, Elsen J, Balen K Van, Viaene W (2001) Nineteenth century hydraulic restoration 

mortars in the Saint Michael’s Church (Leuven, Belgium): Natural hydraulic lime or cement? 

Cem Concr Res 31:397–403. 

30. Degryse P, Elsen J, Waelkens M (2002) Study of ancient mortars from Sagalassos (Turkey) in 

view of their conservation. Cem Concr Res 32:1457–1463. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 23 

31. Drdácký M, Masin D, Mekonone MD, Slizkova Z (2008) Compression tests on non-standard 

historic mortar specimens. 1st Hist. Mortar Conf. 24-26 Sept. 2008, Lisbon. pp 24–26 

32. Lanas J, Alvarez-Galindo JI (2003) Masonry repair lime-based mortars: factors affecting the 

mechanical behavior. Cem Concr Res 33:1867–1876. doi: 10.1016/S0008-8846(03)00210-2 

33. Lanas J, Pérez Bernal JL, Bello M a., Alvarez-Galindo JI (2004) Mechanical properties of 

natural hydraulic lime-based mortars. Cem Concr Res 34:2191–2201. doi: 

10.1016/j.cemconres.2004.02.005 

34. Lanas J, Pérez Bernal JL, Bello M a., Alvarez-Galindo JI (2006) Mechanical properties of 

masonry repair dolomitic lime-based mortars. Cem Concr Res 36:951–960. doi: 

10.1016/j.cemconres.2005.10.004 

35. Costigan A, Pavía S (2012) Influence of the mechanical properties of lime mortar on the 

strength of brick masonry. 2nd Conf. Hist. Mortars. pp 349–360 

36. CEN (2005) EN 1996-1-1: Rules for reinforced and unreinforced masonry.  

37. CEN (2002) UNE-EN 772-6 - Métodos de ensayo de piezas para fábrica de albañilería - Parte 

6: Determinación de la resistencia a flexotracción de las piezas de hormigón de árido para 

fábrica de albañileria.  

38. CEN (2011) EN 772-1 - Métodos de ensayo de piezzas para fábrica de albañilería - Parte 2: 

Determinción de la resistencia a compresión.  

39. CEN (2007) EN 1015-11 - Methods of test for mortar for masonry - Part 11: Determination of 

flexural and compressive strength of hardened mortar.  

40. (1997) Structural Masonry: An Experimental/ Numerical Basis for Practical Design Rules 

(CUR Report 171). Taylor & Francis 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 24 

41. Vermeltfoort AT, Pluijm R (1999) Materiaalparameters voor constructief metselwerk. Report 

193, CUR, Gouda, The Netherlands 

42. Atkinson R, Amadei B, Saeb S, Sture S (1989) Response of masonry bed joints in direct shear. 

J Struct Eng 115:2276–2296. 

43. Rots JG (1994) Structural masonry: An experimental/numerical basis for practical design rules. 

Report 171, CUR, Gouda, The Netherlands 

44. CEN (1999) EN 1052-1 - Methods of test for masonry - Part 1: Determination of compressive 

strength.  

45. Associação Brasileira de Normas Técnicas (2004) NBR 8522 - Concreto - Determinação dos 

módulos estáticos de elasticidade e de deformação e da curva tensão- deformação.  

46. CEB-FIP (2012) Model Code 2010 Volume 1.  

47. Tohidi M (2012) Experimental Mechanical Characterization of Historical Mortars by Windsor 

Pin Penetrometer. MSc dissertation, Department of Strength of Materials and Structural 

Engineering, Technical University of Catalonia, Barcelona Spain 

 

Notation 

Eu  Young’s modulus of units 

Em  Young’s modulus of mortar 

 Ec  Young’s modulus of masonry 

 fcu  Uniaxial compressive strength of units 

 fcm  Uniaxial compressive strength of mortar 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 25 

 fc,exp  Experimentally derived compressive strength of masonry 

fflex,u  Flexural strength of units 

 ftu  Tensile strength of units 

fflex,m  Flexural strength of mortar 

 νu  Poisson’s ratio of units 

 hu  Height of units 

 lu  Length of units 

tu  Width of units 

 hm  Thickness of mortar bed joint 

Figure Captions 

Figure 1 Sample extraction pattern: full bricks and half bricks obtained from bending test. 

Figure 2 Brick flexural strength setup. 

Figure 3 Test and measurement layout for compressive tests: (a) single, (b) double and (c) 

triple samples. 

Figure 4 Sand grain size cumulative curve. 

Figure 5 Mortar testing setup: (a) bending before and (b) after test, and (b) compression test 

before and (d) after test. 

Figure 6 Typical layout of LVDTs: (a) vertical layout for displacement measurement in the 

unit and the composite and (b) horizontal displacement for measurement of the Poisson’s ratio. 
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Figure 7 Schematic of two LVDT placement arrangements: (a) vertical measurements only 

(HLM) and (b) vertical and horizontal deformation measurement (ALM). 

Figure 8 Samples after testing. (a) single, (b) double and (c) triple samples. Continuity of 

the vertical cracks is visible in the stacked samples. 

Figure 9 Evolution of mortar compressive (left) and flexural strength (right). 

Figure 10 Cyclical loading response of prisms. 

Figure 11 Stress displacement diagrams for aerial lime prisms. Neoprene sheet used for prism 

2. 

Figure 12 ALM prisms after testing: (a) with sulfur mortar cap and (b) with neoprene sheet. 

Figure 13 HLM prisms after testing: (a) with sulfur mortar cap and (b) with neoprene sheet. 

Figure 14 Stress displacement diagrams for hydraulic lime prisms. Neoprene sheet was used 

for prism 3. 

Figure 15 Crack development in masonry: front and side view of prisms (a) with sulfur 

mortar caps and (b) with neoprene top cap, the numbers indicating order of appearance. 

Table Captions 

Table 1 Sand properties 

Table 2 Unit three-point bending test results. 

Table 3 Unit core compression results sorted according to sample size. 

Table 4 Unit core compression results sorted according to sampled brick. 

Table 5 Mortar flexural strength results. 
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Table 6 Mortar compressive strength results. 

Table 7 Masonry compressive strength results for ALM prisms. Neoprene sheet was used 

for prism 2. 

Table 8 Masonry compressive strength for HLM prisms. Neoprene sheet was used for 

prism 3. 
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Sand Grain Size 

Sieve size 

[mm] 

Weight 

% Retained 

Cumulative Weight 

% Retained 

Weight 

% Pass 

5 0.2 0.2 99.8 

4 1.13 1.33 98.67 

2 18.86 20.19 79.81 

1 30.21 50.4 49.6 

0.5 18.24 68.65 31.35 

0.25 11.43 80.08 19.92 

0.125 7.28 87.36 12.64 

0.063 6.87 94.23 5.77 

Tray 4.29 98.52 1.48 

Sand Properties 

Apparent density [kg/m
3
] 1750

 

Particle density [kg/m
3
] 2690 

% saturated porosity 11.3 

% Absorption 1.70 
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Sample 
Height 

[mm] 

Width 

[mm] 

fflex,u 

[N/mm
2
] 

ftu 

[N/mm
2
] 

I 39.25 135 7.71 3.39 

II 42.00 134 7.06 3.18 

III 42.25 134 7.11 3.21 

Mean 41.17 134.33 7.29 3.26 

St. Dev. 1.66 0.58 0.295 0.110 

C.oV. 4.0% 0.4% 4.0% 3.4% 
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Single 

Samples 

Height 

[mm] 

fcu 

[N/mm2] 

Eu 

[N/mm2] 

Double 

Samples 

Height 

[mm] 

fcu 

[N/mm2] 

Eu 

[N/mm2] 

Triple 

Samples 

Height 

[mm] 

fcu 

[N/mm2] 

Eu 

[N/mm2] 

Ι1 39.5 28.5 3598 I2+I7 79 29.76 3795 IV3+V6+IV1 125.25 22.02 5854 

Ι3 39.5 31.03 4054 II2+II7 85 21.87 4750 IV4+IV2+IV5 124 16.57 5317 
Ι5 39.5 27.31 3872 II1+II4 84.75 23.38 4947 V3+V4+V5 127 26.18 5068 

Ι6 39.5 22.56 2084 III1+III3 85.5 15.39 4389 VI3+VI7+VI1 121.25 27.24 6038 

ΙΙ3 42.25 21.86 3239 III2+III5 85.5 19.17 4801 VII4+VII6+VII1 115 22.01 5394 
ΙΙ6 42.25 24.41 4544 V1+V7 84.5 17.38 4863 VII5+VII2+VII3 113.5 25.21 5730 

ΙΙΙ4 42 22.69 2498 VI2+VI5 81.25 24.19 5057 

 

ΙΙΙ6 42.25 20.41 2181 VI4+VI6 81.25 19.22 4322 

IV6 41.25 31.45 4488 
 V2 41.5 16.31 1304 

VII7 38 26.54 5172 

Mean 40.68 24.83 3298 Mean 83.34 21.30 4653 Mean 121.00 23.21 5567 
St. Dev. 1.51 4.64 1258 St. Dev. 2.48 4.53 493 St. Dev. 5.57 3.90 367 

C.oV. 3.7% 18.7% 38.1% C.oV. 3.0% 21.3% 10.6% C.oV. 4.6% 16.8$ 6.6% 
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Brick I II III IV V VI VII All 

No. of tests 5 4 4 2 3 3 3 24 

 
fcu [N/mm

2
]  

Mean 27.83 22.88 19.42 24.01 19.96 23.55 24.59 23.18 

St. Dev. 3.261 1.244 3.056 10.519 5.418 4.047 2.328 2.86 

C.oV. 11.7% 5.4% 15.7% 43.8% 27.1% 17.2% 9.5% 12.3% 

 
Eu  [N/mm

2
]  

Mean 3481 3535 3467 4903 3745 5139 5432 4243 

St. Dev. 798 1552 1319 586 2116 861 281 874 

C.oV. 22.9% 43.9% 38.1% 12.0% 56.5% 16.7% 5.52% 20.6% 
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Sample 
fflex,m 

[N/mm
2
] 

 Sample 
fflex,m 

 [N/mm
2
] 

ALM1 0.23  HLM1 0.82 

ALM2 0.55  HLM2 0.93 

ALM3 0.18  HLM3 0.90 

ALM4 0.20  HLM4 0.92 

ALM5 0.71  HLM5 0.80 

ALM6 0.72  HLM6 0.70 

Mean 0.43  Mean 0.84 

St. Dev. 0.235  St. Dev. 0.082 

C.oV. 54.5%  C.oV. 9.6% 
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Sample 
fcm 

[N/mm
2
] 

 Sample 
fcm 

 [N/mm
2
] 

ALM1a 1.25  HLM1a 1.76 

ALM1b 1.27  HLM1b 1.90 

ALM2a 1.19  HLM2a 1.98 

ALM2b 1.19  HLM2b 2.09 

ALM3a 1.32  HLM3a 2.02 

ALM3b 1.19  HLM3b 1.72 

ALM4a 1.18  HLM4a 1.89 

ALM4b 1.18  HLM4b 1.81 

ALM5a 1.23  HLM5a 1.93 

ALM15b 1.24  HLM5b 1.77 

ALM6a 1.21  HLM6a 1.98 

ALM6b 1.36  HLM6b 1.98 

Mean 1.23  Mean 1.90 

St. Dev. 0.061  St. Dev. 0.080 

C.oV. 4.9%  C.oV. 4.2% 
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Sample 
Height 

[mm] 

fc 

[N/mm
2
] 

Initial Ec 

[N/mm
2
] 

Unloading Ec 

[N/mm
2
] 

Final Ec 

[N/mm
2
] 

Prism 1 273 12.30 360 2574 488 

Prism 2 266 9.68 474 2643 501 

Prism 3 265 11.75 - - 804 

Mean 268 11.24 417 2609 598 

St. Dev. 4.36 1.38 80.61 48.79 178.8 

C.o.V. 1.6% 12.2% 19.3% 1.9% 29.9% 

Mean (sulfur mortar caps) - 12.03 - - - 
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Sample 
Height 

[mm] 

fc 

[N/mm
2
] 

Initial Ec 

[N/mm
2
] 

Unloading Ec 

[N/mm
2
] 

Final Ec 

[N/mm
2
] 

Prism 1 265 13.80 1153 2836 1021 

Prism 2 268 13.66 1326 2488 1053 

Prism 3 280 9.05 1928 3078 1204 

Mean 271 12.17 1469 2801 1093 

St. Dev. 7.94 2.70 406.81 296.58 97.7 

C.o.V. 2.9% 22.2% 27.7% 10.6% 8.9% 

Mean (sulfur mortar caps) - 13.73 - - - 
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