
Robustness of Airline Route Networks

Abstract

Airlines shape their route network by defining their routes through supply
and demand considerations, paying little attention to network performance
indicators, such as network robustness. However, the collapse of an airline
network can produce high financial costs for the airline and all its geograph-
ical area of influence. The aim of this study is to analyze the topology
and robustness of the network route of airlines following Low Cost Carriers
(LCC) and Full Service Carriers (FSC) business models. Results show that
FSC hubs are more central than LCC bases in their route network. As a
result, LCC route networks are more robust than FSC networks.

Keywords: Airline route network, Complex networks, Network robustness,
Flight networks

1. Introduction

Air transport is among the most dynamic and toughest competition in-
dustries in today’s global economy. Liberalization of the airline industry
(Goetz and Vowles, 2009) has produced very distinct business models among
the airlines (Lohmann and Koo, 2013), with the design of their route net-
works being a strategic factor, in addition to others such as the cost structure
and the ancillaries offered.

Most times airlines make the choice of operating a route based on ex-
isting supply and demand volumes, paying little attention to other issues
such as the robustness of route network operated by the airline. Network
robustness (i.e., network resilience in facing disruptions like node isolation)
is considered of secondary importance, although a robust route network can
provide great improvement to the stability and security of carrier operations.
Many domestic airlines are often associated with the image of a country or
region and produce a huge economic impact on their national and interna-
tional economies. The collapse or a critical error of an airline network can
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produce high financial costs for the airline and throughout its geographical
area of influence (Guimerà and Amaral, 2004). For instance, the eruption of
volcano Eyjafallajökull on March 14, 2010 in Iceland restricted European air
traffic and left areas out of operation for 30 days (Brooker, 2010). It caused
losses of about 10 million USD because of delays in the operating airports.

The literature on network robustness makes a distinction between errors,
the removal or isolation of one or several nodes picked at random, and at-
tacks, which consist in the removal or isolation of nodes that play a vital role
in maintaining a network’s connectivity (Albert et al., 2000). The exami-
nation of flight networks (Zanin and Lillo, 2013) (i.e., networks where the
airports act as nodes and are connected if at least one direct route between
them exists) through complex networks techniques can provide a deeper un-
derstanding of airline networks’ behavior when facing errors and attacks.
This analysis can be carried out at different levels of analysis (Lordan et al.,
2014a): global or regional, which take into account all connections of a global
or regional network, alliance, which considers the routes operated by mem-
bers of an alliance; and airline, where the routes operated by an airline are
considered.

Recent articles have analyzed the topology of the air transport network
(mainly described by the degree distribution) to understand their distribution
and characteristics, most of them focused on the global (Guimerà et al.,
2005) and regional (Li and Cai, 2004; Guida and Maria, 2007; Wang et al.,
2011; Zeng et al., 2011) levels of analysis. Some studies have optimized
the paths of the transportation network (Du et al., 2013; Liu et al., 2014)
using techniques such as particle swarm optimization (Du et al., 2015; Gao
et al., 2015). Other studies have analyzed the robustness of air transport
network in order to determine which airports can be considered critical if
they were to cease operations. That stream of research considers the regional
(Lacasa et al., 2009; Liu et al., 2011) or global (Lordan et al., 2014b) levels
of analysis. Finally, Cento (2009); Reggiani et al. (2010) and Lordan (2014)
have addressed the study of route networks of individual airlines, and Lordan
et al. (2015) has analyzed the robustness of airline alliance route networks.
But no study, to our knowledge, has attempted to assess the robustness of
airline route networks.

The aim of this study is therefore to analyze the robustness of route
networks of airlines which are following different business models and fac-
ing isolation of nodes picked at random (errors) or the isolation of nodes
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chosen using a node selection criterion (attacks). In order to compare the ro-
bustness of the point-to-point and hub-and-spoke network configurations the
set of airlines to be studied will include Full-Service Carriers and Low-Cost
Carriers.

2. The influence of airline business models on route network con-
figuration

Currently, there are two predominant business models in the airline in-
dustry: Full-Service Carriers (FSC) and Low-Cost Carriers (LCC). These
types of carriers are characterized by having, respectively, hub-and-spoke
(HS) and point-to-point (PP) network configurations. Both HS and PP con-
figurations can be described schematically through a network of four nodes,
as shown on Figure 1. The HS configuration (right) consists of a central node
or hub H connected to the other nodes, thus only three routes are needed
to bond the four destinations. In this configuration the central nodes of the
route network are determinant to network resilience when facing node iso-
lation (OKelly, 2014). The PP configuration (left) uses a total of 6 routes
to connect all possible node pairs. Generalizing these concepts for n air-
ports to connect all their destinations, the PP configuration requires up to
n(n− 1)/2 routes (some of which might not be present if they are not prof-
itable enough) while the basic HS configuration works with only n−1 routes
(Alderighi et al., 2007). It is also important to consider the temporal dis-
tribution of each model, a fact directly related to the schedule of flights for
each airline. The hub of the HS configuration causes the concentration of
high traffic density in space and time (Reynolds-Feighan, 2001).

Arlines’ business models and strategies strongly define their network struc-
ture. Traditional airline network analysis measures the topology variables de-
pending on traffic distribution or concentration of frequencies (Bowen, 2002;
McShan, 1986; Reynolds-Feighan, 2001). One objective of these studies is to
relate, compare and resemble an airline network to the HS and PP configura-
tions. LCC adopt a PP network configuration because they connect city pairs
that offer high load factors and therefore optimize their operability. On the
other hand, FSC often develop a HS configuration, offering more destinations
by using one or more strategic hubs where large passenger flows concentrate.
This allow FSC to get a profitable load factor on routes applying economies
of scale (Alderighi et al., 2007).
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As can be seen in Figure 1, the HS configuration concentrates a larger
volume of flights and passenger traffic in the switching times. For example,
to be able to go from B to A and from C to A one must call at H. Therefore,
it is necessary to coordinate the arrivals of the first section and the exit of
the second at the hub. This would give enough time to operate the connec-
tion without hindering the operability of the airline. The PP traffic model is
temporally and spatially more dispersed because airlines adopting this con-
figuration often operate from airports where planes stay over. The reasons
for this strategy can be a lack of demand on certain routes, the absence of
slots at airports and rotation needs in order to optimize the operational fleet
(Alderighi et al., 2007).

However, the design of an airline network is a complex process adapted to
maximize the profitability of the airline. Thus, it is not surprising that the
FSC and LCC business models evolve depending on market opportunities.
For example, in 2006 Iberia created Clickair as a LCC following a multi-brand
strategy to maintain product differentiation. That same year Aer Lingus was
redefined as a LCC because of the major survival threats it was facing (Cento,
2009). However, robustness issues, although not usually considered in airline
network development, can seriously affect airline profitability in the long term
and have a marked impact on the economy.

The way that airlines configure their route network has an impact on its
robustness in facing airport closure since the robustness of complex networks
is highly dependent on network topology (Albert et al., 2000). On the one
hand scale-free networks, which grow through preferential attachment (new
nodes are more likely to link to high connected links) and with a power law
degree distribution, are resilient to errors and fragile to attacks. On the
other hand random networks, where any two nodes can be connected with
equal probability and with a Poisson degree distribution, are more resilient
to attacks but less resilient to errors than scale-free networks. A real airline
route network might fall somewhere between the scale-free and random net-
work configurations, thus determining its robustness in facing airport closure.
Thus a study of the topology of the airline route networks can give insights
into its robustness in facing airport closure.

3. Methods

The route networks of 10 FSCs and 3 LCCs (see Table 1) have been ana-
lyzed. The sample of airlines includes FSCs belonging to the main three cur-
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rent airline alliances (i.e., Star Alliance, oneworld and SkyTeam) fulfilling the
requirements of a maximum number of airports, a maximum number of pas-
sengers per year and/or maximum income within their alliance as published
respectively in their annual report for 2012 (Star Alliance, 2013; oneworld,
2013; SkyTeam, 2013). The sample is completed by three airlines known as
representatives of the low-cost business model. airberlin was considered a
LCC before becoming part of oneworld but in this study has been considered
as a FSC. This is because it belongs to an airline alliance and cooperates
with other airlines, a feature uncommon for a LCC. The sample is completed
by the 3 LCC with the highest number of flights per year: Ryanair, easyJet
and Southwest Airlines. The selected sample includes airlines from North
America, Europe and China with business models clearly identifiable with
FSC and LCC, and airlines that can have a hybrid business model (Klophaus
et al., 2012), like airberlin.

The month of August is the period with the highest passenger traffic
which directly affects passengers relocation, and is the month with the highest
contribution margins for the airlines. The route networks for scheduled flights
of August 2013 have been chosen for the analysis in order to be able to
assume this analysis as static without taking into account the relocation of
passengers. Air routes data have been obtained from the Schedule Reference
Service (SRS), a neutral database of scheduled flights complied by IATA
(http://www.iata.org/publications/srs/Pages/index.aspx).

The unweighted, undirected graph of the route network for each airline
has been constructed for the period considered. Graph nodes represent air-
ports, and two nodes are connected if the airline schedules at least one direct
flight between them.The network is treated as undirected since just a small
number of flights follow a ”circular” pattern (Guimerà et al., 2005). Only
flights that are operated for the selected airlines are being considered and
therefore the flights operating under codesharing agreements are not consid-
ered. The aim of this study is to analyze the robustness of the airline so
adding codesharing flights could blur the results. For example, by consider-
ing the codesharing flights on the network of British Airways, Dallas/Fort
Worth would appear as the airport with the highest degree, followed by Lon-
don Heathrow, O’Hare, Miami and London Gatwick airports. However BA
is actually not allowed to flight a route from Dallas/Fort Worth to another
American destination. If this airport had been selected the resulting ro-
bustness would have been miscalculated. Disconnecting their real hubs (i.e.,
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London Heathrow, London Gatwick and London City) BA would not have
been able to fly any route from Dallas/Fort Worth or O’Hare or Miami air-
ports. Table 2 shows the list of selected airlines together with the number of
airports (N), number of connections (E) and other topological properties of
each network.

Network robustness can be assessed through the effect of the isolation of
a fraction f of nodes on the size of the network’s giant component (ie, the
connected subset of the network with the highest number of nodes). The
network will be robust when the size of the giant component decreases little
for relatively high values of f (Petreska et al., 2010; Mishkovski et al., 2011).
The nodes to isolate can be selected either at random (errors) or through a
criterion usually based on node centrality (attacks) (Albert et al., 2000) The
study of the robustness allows to evaluate the capacity of a network to avoid a
malfunction when a fraction of its components is damaged (Boccaletti et al.,
2006).

To simulate errors, 1, 000 iterations of random airport closures for each
airline were simulated. To simulate attacks, the importance of each airport
according to a measure of centrality has been determined and then the air-
port with the highest value of that centrality has been isolated. After each
disconnection, the centralities are recalculated so that the next attack strikes
the new most central airport. Two standard measures of node centrality in
networks have been used: degree and betweenness. Both measures are com-
puted from the adjacency matrix A. For each pair (i, j) of airports connected
by at least one route the element of the adjacency matrix aij equals 1, and 0
otherwise.

The degree ki of a node i is the number of edges incident with the node,
and is defined as:

ki =
∑
j

aij (1)

For a airline route network the degree equals the number of destinations
operated from airport i by the airline. The histogram of node degree in the
graph allows for the assessment of the degree distribution. The network is
scale-free if the degree distribution follows a power law. The betweenness bi
of a node i is the number of times that a node appears between the shortest
paths of two other nodes:
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bi =
∑
i 6=j

njk(i)

njk

(2)

where njk is the number of shortest paths connecting j and k, while njk(i)
is the number of shortest paths connecting j and k and passing through i.

4. Results

4.1. Network topology

Considering the impact of network topology on robustness, an analysis of
degree distributions of the airline network for the selected airlines has been
conducted. As for degree correlations all route networks are dissortative: air-
ports with low degree are more likely connected with highly connected ones
(Boccaletti et al., 2006). Figure 2 shows the cumulative degree distribution
plotted in double-logarithmic scale where P (k)cum is the cumulative proba-
bility for a node to have degree k. There are three different behaviors present
and none of them follows a Poisson distribution as would be expected for ran-
dom graphs. This simple interpretation allows for a distinction between the
topological differences of the business models.

At the top of Figure 2 there are the curves of the route networks of
the LCC: Ryanair, easyJet and Southwest Airlines. They have the lowest
initial gradient and are concave in shape. This means that these carriers
will have a more uniform network connection distribution. This shallow
slope highlights the presence of a high number of airports with 10 or more
connections. This is the characteristic behavior of the PP configuration which
leads these airlines to have the highest values of mean degree 〈k〉 of the
sample (see Table 2). Despite having this configuration, LCCs also have
operating airport bases with a high number of connections which they use
for operating and maintenance purposes. For instance, Ryanair has around
50% of its airports with ten or more connections while already having 115
connections in London Stansted.

At the bottom of Figure 2 the degree distributions of FSCs’ route net-
works can be found. They have a steeper negative slope than both preceding
sets which underlines the existence of many airports with 1 to 5 connections
and very few with over 100 connections. For instance, the network of British
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Airways consists of 186 airports spread over the five continents. London
Heathrow the node with the largest degree in British Airways network with
125 destinations, followed by London Gatwick with 42 and London City with
20. The connections of the rest of the airports are drastically lower: around
75% of airports have just one connection, therefore their values of 〈k〉 are the
lowest in Table 2.

Between the curves of LCCs and FSCs stand the curves of airberlin, China
Eastern and China Southern route networks. The degree distribution of the
route networks of these airlines follow a more linear distribution in a double-
logarithmic scale. Their mean degree values stand between values of the
LCCs and FSCs, as shown in Table 2. Therefore, these carriers stay between
the LCCs and the remaining airlines, all of them FSCs. This suggests that
their route network design stands in the middle of the PP and HS, and
provides evidence that the business model of these airlines stands in the
middle of the traditional business models. These airlines are a case of LCCs
going hybrid, as suggested in Klophaus et al. (2012).

4.2. Robustness

Figure 3 shows the evolution of the size of giant component as a function
of the fraction f for isolated airports as a result of the three criterion of node
isolation: random, degree and betweenness.

The route networks of all the airlines in the sample react in a similar way
facing a random isolation of nodes (see the point-dotted line in Figure 3).
The decrease of the giant component for f = 0.05 ranges from 5 to 10% of the
initial size. Although there are not major differences between FSC and LCC
behaviors against errors, some minor differences can be observed. Reviewing
the decrease caused by a f = 0.05 disconnection, LCC ranges from 5− 5.5%
while FSC ranges from 7 − 10%. FSC are a little less resilient than LCC
against random isolation of nodes.

Figure 3 also shows that the most effective criterion for attack simulation
is betweenness centrality. But in some cases there are small differences be-
tween the results obtained with the degree and betweenness criteria because
of the network size and its structure. These are networks that are relatively
small with a size of between 86 to 362 airports (see Table 2), where the airport
that has the largest number of routes is usually the busiest. For Lufthansa,
US Airways, American Airlines and British Airways the giant component
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variation is identical for both criteria. The airlines with the most distinct
degree and betweenness curves are China Eastern and Ryanair. For China
Eastern, for f = 0.104 the giant component of the degree has 31 more nodes
than the one of betweenness. For Ryanair, the maximal difference between
criteria is 21 nodes for f = 0.270.

A comparison of the robustness of sampled airlines is shown both with the
range of values of f before networks collapse (Figure 4a), and for the lowest
values of f (Figure 4b) to achieve a better insight to the size reduction of the
giant component after disconnecting the first airports. Since the betweenness
criterion has turned out to be the most effective, it will be the one considered
from now on. By analyzing the behavior of the airlines against attacks a clear
difference in the resilience of different business models is observed, which
groups once again airlines into three subsets.

In Figure 4a it can be observed that LCCs are much more robust and have
a higher tolerance to attacks than FSCs. For LCCs, to have less than 5% of
the network connected is necessary to disconnect up to a routes fraction of
0.28 for Ryanair and 0.26 for Southwest Airlines. For easyJet the fraction
of nodes to delete is lowered to 0.17. It can also be observed that at the
start of the disconnection process (Figure 4b) the LCC also behave with a
higher robustness. After removing a fraction of nodes f = 0.04, the giant
component of the network of Southwest Airlines, Ryanair and easyJet still
have 91%, 84% and 70% of the initial size, respectively. Southwest’s air route
network is the most robust, although it has the lowest number of airports, as
airline network robustness is not proportional to network size but its intrinsic
structure.

In consequence with Figure 4a it is considered that Ryanair and Southwest
fall into the first of the three categories introduced above. As can be observed
in Figure 4a, Southwest is initially more robust than Ryanair, while when
for f > 11% the latter reaches the first place in the robustness rank. Despite
the fact of also being a LCC, easyJet demonstrates similar behavior to China
Eastern, China Southern and airberlin.

According to what has been shown in the degree distribution section,
China Eastern (MU), China Southern (CZ) and airberlin (AB) show a par-
ticular behavior as FSC both on the global range (Figure 4a) of disconnection
and on the initial region (Figure 4b). In order to have the network almost
disconnected, i.e. just 5% of its original size, these airlines must have a frac-
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tion of their airports disconnected closer to easyJet than to the other FSC,
and have values of f = 0.13 (MU), 0.14 (CZ) and 0.12 (AB). For f ∼ 0.04 the
network size is much higher than it is for the other three carriers being 56%,
46% and 48% respectively. This can be interpreted as the result of a network
structure laying somewhere in between the PP and HS. Although it is true
that each airline has one or two central airports both in terms of degree and
in betweenness measures (Shanghai and Kunming for MU, Dusseldorf and
Berlin-Tegel for AB and Guangzhou for CZ) the rest of the network has a
structure similar to a PP. The size of the giant component against attacks is
substantially more gradual than in the HS configuration.

The last category of airlines includes Delta, British Airways, United Air-
lines, US Airways, Lufthansa and American Airlines. These are the airlines
where the isolations to central nodes have greater impact. For f ' 0.04
the size of their network plunges to under 5% of the initial size generating
a severe state of operativity lack (Figure 4b). This behavior can be associ-
ated to the HS structure as, once the most central nodes are attacked, the
network is almost completely disconnected. Given the rapid pace of network
breakage, in this case it is important to assess the damage to lower fractions.
For f = 0.01, the decrease in size is not uniform and varies in relation to the
existence of a single hub or more (i.e., multi-hub-and-spoke configuration).

From the results, it can be concluded that the FSC have a network con-
figuration that makes them weaker against the isolation of central nodes.
For example, Charlotte-Douglas, Phoenix and Philadelphia are US Airways’
three main airports. They are followed by a less central airport but with
a big difference in centrality from the fifth, Washington-National airport.
After attacking the first two (f = 0.01) the size of the giant component is re-
duced to 64%, maximum robustness in this category, but after attacking the
third and fourth (f = 0.02) it is reduced to just 6%. On the other extreme
there is British Airways which, as discussed above, centralizes its operations
at Heathrow, followed by Gatwick and London City. By removing only a
fraction f = 0.01 (i.e. the first two airports) the size of the giant component
falls to 12% of its initial value, the minimum robustness of this category. For
f = 0.02, after closing the third and forth airports, the size drops to 5%. By
also considering that an incident affecting Heathrow would suppose the clo-
sure of the nearby airspace and consequently all the airports in London, the
network of British Airways would be virtually disconnected and practically
inoperative with a single incident affecting London air space.
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The response to attacks of Delta, the airline with the largest route network
is also noteworthy. After removing its four most central airports, Atlanta,
Minneapolis St. Paul, Detroit and New York JFK its network still has half of
its nodes connected. Atlanta stands out significantly in terms of degree and
betweenness while the other three airports have similar but lower indices.
After the isolation of the next three airports reaching f = 0.02, the size falls
to 23%. Finally it is important to highlight Air France’s robustness which
after falling sharply to f = 0.01 with the disconnection of its main hub Paris-
Charles De Gaulle the size is lowered to 38%. However, subsequent isolation
of Paris-Orly and the other airports downsize in a much more gradual way
since the degree and betweenness indices decrease at a significantly lower
rate than the other airlines. The network that remains after removing Paris-
Charles De Gaulle has a structure similar to a PP configuration, thus leaving
a network structure similar to airberlin, China Eastern and China Southern
but with a much more prominent central hub.

Such considerations can determine that the damage caused by intentional
attacks to networks with an HS configuration is higher than to those with a
PP configuration. The more important the hubs are in the route network the
more severe the damage that results from their isolation. The fact that hubs
are located closer geographically can increase the potential damage, because
of the damage associated with the disconnection of the nearby airspace as
exemplified by Wilkinson et al. (2011).

5. Conclusions

In this article the analysis of the network robustness based on error and
attack simulation is performed. An airline sample of thirteen airlines rep-
resenting the existing business models in the airline industry route network
configuration so that differences between different business models on net-
work robustness can be taken into account.

The analysis has confirmed that Full Service Carriers (FSC) adopting
a hub-and-spoke (HS) route network are more sensitive to closure of cen-
tral airports (i.e., with high betweenness centrality) than Low Cost Carriers
(LCC) adopting a point-to-point (PP) route network. That is, disconnecting
the hubs of an FSC with HS route network causes greater harm than the
disconnection of the base airports of a LCC adopting a PP network. As a
consequence, Southwest Airlines and Ryanair, the most important LCC at
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the moment turned out to be the airlines with the most robust route network
against attacks. Within the set of FSC there are three airlines with unusual
behavior. These are China Eastern and China Southern (the only ones in
regions outside of Europe or North America) and airberlin, which was an
LCC before it joined oneworld. These airlines adopt a hybrid business model
which leads them to build a more robust route network than the FSCs, but
less than LCCs.

Whereas Figure 4b grants a more realistic approach to the isolation of the
most central airports, Figure 4a allows for the evaluation of the consequences
of disconnecting a higher number of airports. Comparing the robustness of
the set of studied airlines, it can be concluded that it is possible to attenu-
ate the consequences of attacks by means of a multi-hub-and-spoke network.
This network should be built by hub airports strategically placed at a dis-
tance from each other in order to avoid larger problems related to airspace
closure. So, the spatial nature of air route networks has to be taken into ac-
count to increase network robustness (Ducruet and Beauguitte, 2013). This
distance would allow for homogenization of the importance and centrality of
the network without either losing operability or the possibility of applying
economies of scale. A second action to increase robustness would be to sched-
ule PP connections in the less central airports and to connect them if one
of their hubs fails, thus achieving with this a structure somewhere between
HS and PP. This second solution should take into account the supply and
demand of each route in order not to hinder airlines’ profitability.

It is worth mentioning that these considerations are based on topological
criteria applied to complex networks. In the day to day running of airlines
there are many other aspects that define airline strategies (Daft and Albers,
2013), that can have an impact on route structure and network strategy.
Therefore the application of the proposed solution has to be evaluated in
depth and in detail. In future studies the passenger flux could be taken
into account and, as a result, an interpretation of the traffic loss caused
by the closure of airports may arise. Passenger flows are also central to
assess other kinds of disruptions, such as demand vulnerabilities (Connors
and Watling, 2014), that can be tackled via hub flow optimization (OKelly,
2010). A similar result would be expected because most central airports are
those that concentrate a higher volume of aerial traffic in terms of flights and
passengers. Further studies in this area would a complement the evaluation
of protection, stability and safety of each airline network according to their
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business model.
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Airline Name Alliance Region

LH Lufthansa Star Alliance Europe
UA United Airlines Star Alliance North America
US US Airways Star Alliance North America
AB airberlin oneworld Europe
AA American Airlines oneworld North America
BA British Airways oneworld Europe
AF Air France SkyTeam Europe
MU China Eastern SkyTeam China
CZ China Southern SkyTeam China
DL Delta SkyTeam North America
FR Ryanair LCC Europe
U2 easyJet LCC Europe
WN Southwest Airlines LCC North America

Table 1: Airlines analyzed by IATA code
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N E 〈k〉 L C

FR 178 1, 396 15.69 2.16 0.44
WN 86 507 11.79 1.97 0.72
U2 131 601 9.18 2.19 0.39

CZ 178 576 6.47 2.45 0.62
MU 182 571 6.27 2.5 0.55
AB 119 361 6.07 2.31 0.51

DL 328 882 5.38 2.38 0.88
UA 362 933 5.15 2.57 0.91
US 203 408 4.02 2.26 0.96
AA 272 523 3.85 2.3 0.94
LH 209 395 3.78 2.18 0.93
AF 178 258 2.9 2.42 0.46
BA 186 223 2.4 2.87 0.15

Table 2: Main topological properties of airlines route network. The quantities measured
are: number of vertices N , number of edges E, characteristic path length L, clustering
coefficient C and average degree 〈k〉.
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Figure 1: HS and PP configurations. Source: (Alderighi et al., 2007)

New Hub-and-Spoke and Point-to-Point Airline Network Configurations 531

modern carriers’ network design and, if possible, to account for differences
between LCC and FSC networks in Europe. This is a relatively new research
attempt with a few notable earlier exceptions. First, the problem of measuring the
network configuration is addressed in terms of the HS versus the PP network and
not only the hub concentration. Second, both the spatial and the temporal dimen-
sions are assessed and combined in one picture in order to reach a broader and
more complete description of the network configuration. Third, the paper applies
empirical methods originating from social network analysis, i.e. the Freeman
index and what is called the Bonacich approach.

The paper is organized as follows. The second section provides some basic defi-
nitions of airline networks. The third section explores the network configurations
of European FSCs and LCCs over the last 8 years. It reviews different measures of
spatial configuration, i.e. the traditional measures used by the transport literature,
such as the Gini concentration index, and those developed by social network anal-
ysis (the Freeman and the Bonacich centrality indexes). Finally, an operational
measure is provided to capture time-based centrality that is called the ‘connectiv-
ity ratio’. The fourth section presents the overall results of the analysis. The fifth
section concludes the paper.

Network Definitions: A Review

There is no unique or even widely used definition of what exactly constitutes an
HS or a PP network. Instead, a number of definitions coexist. From a network
design perspective the HS or PP network can be described by using a simple
network of four nodes. Figure 1 depicts two ways of connecting the nodes. On
the left the nodes are fully connected through PP relations; on the right there is an
HS relation. Airport H is the hub through which the other airports are connected.
Note from Figure 1 that it takes three routes to connect all the nodes in the HS
system, whereas this takes six routes in the PP network. Generalizing the exam-
ple, given n airports, the possible number of city-pair combinations is: n(n – 1)/2.
Hence, the pure PP system requires n(n – 1)/2 routes to cover all combinations,
whereas the HS system allows carriers to cover the same airport combinations
with only n – 1 routes.
Figure 1. Point-to-point network versus a hub-and-spoke networkFrom an air traffic management perspective, HS and PP structures are related
not only to spatial concentration, but also to temporal concentration.

Burghouwt and De Wit (2003) explained the spatial configuration by the levels
of concentration of an airline network around one or a few central hubs. This
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Figure 2: Cumulative degree distribution plotted in double-logarithmic scale
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Figure 3: Error and attack vulnerability of each airline transport networks. y = size of the
giant component (%), x = fraction f of disconnected airports (%). Plain line: betweenness
attack, Dotted line: degree attack, Point-dotted line: error
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Figure 4: Betweenness attack vulnerability of airline transport networks. y = size of the
giant component (%), x = fraction f of disconnected airports (%). a. Global (f ≤ 25%).
b. Detail (f ≤ 4%)
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