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Abstract—Active and passive microwave observations over land
are affected by surface characteristics in different ways. L-band
radar backscatter and radiometer measurements each have dis-
tinct advantages and problematic issues when applied to surface
soil moisture estimation. Spaceborne radiometry has the advan-
tage of better sensitivity to the geophysical parameter but suffers
from coarse spatial resolution given limitations on antenna dimen-
sions. Active sensing has the advantage of higher spatial resolution,
but the measurements are, relative to radiometry, more affected by
the confounding influences of scattering by vegetation and rough
surfaces. Active and passive measurements can potentially span
different scales and allow the combining of the relative advantages
of the two sensing approaches. This strategy is being implemented
in the NASA Soil Moisture Active Passive (SMAP) mission, which
relies on the relationship between active and passive measure-
ments to provide 9-km surface soil moisture estimates. The aim of
this paper is to study the sensitivity of spaceborne L-band active
and passive temporal covariations to land surface characteristics,
in preparation for SMAP. A significant linear relationship (with
slope β) is obtained between NASA’s Aquarius scatterometer and
radiometer observations across major global biomes. The error in
β estimation is found to increase with land cover heterogeneity and
to be unaffected by vegetation density (up to moderate densities).
Results show that β estimated with two to eight months of Aquar-
ius measurements (depending on vegetation seasonality) reflect
local vegetation cover conditions under surfaces with complex
mixture of vegetation, surface roughness, and dielectric constant.
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I. INTRODUCTION

M ICROWAVE remote sensing in the L-band (1–2 GHz)
is well suited for the remote sensing of surface soil

moisture, representing the state of the land surface water bal-
ance. The atmosphere is nearly transparent at these frequen-
cies, and vegetation cover is semitransparent up to moderate
densities. Active sensors provide their own source of illumi-
nation, containing a transmitter and a receiver, while passive
sensors consist only of a receiver that measures the radiation
naturally emitted from the scene under observation. Active sen-
sors (radars) are typically capable of remotely sensing surface
characteristics at high spatial resolution (∼1 km or even higher
with synthetic aperture processing), but the radar backscatter
is highly influenced by combined effects of surface roughness,
topography, vegetation canopy structure, and water content [1],
[2]. In contrast, passive sensors (radiometers) have a higher
sensitivity to soil water content and a reduced sensitivity to land
surface roughness and vegetation geometry [3], but their spatial
resolution is limited to ∼40–50 km due to practical constraints
on antenna size and the altitude of low Earth orbits.

Soil moisture varies on a range of spatial scales due to the
combined effects of precipitation, vegetation, soil type, and to-
pography [4]. Accurate observations of soil moisture dynamics
are needed to enhance climate prediction skills and weather
forecasting [5], which will benefit climate-sensitive socioe-
conomic activities, including water management, agricultural
productivity estimation, flood prediction, and drought moni-
toring [6], [7]. Two space missions are underway to provide
the first dedicated global measurements of the Earth’s surface
soil moisture using L-band microwave remote sensing: the
European Space Agency (ESA) launched the Soil Moisture and
Ocean Salinity (SMOS) mission [8] in November 2009, and the
National Aeronautics and Space Administration (NASA) plans
to launch the Soil Moisture Active Passive (SMAP) mission [9]
in January 2015. These two missions each include a radiometer
instrument (∼40-km spatial resolution). Additionally, SMAP
includes an L-band high-resolution mapping radar onboard, to
provide a 9-km soil moisture product by combining active and
passive measurements [10], [11].

NASA’s Aquarius sensor is a combined active/passive po-
larimetric L-band microwave instrument launched in 2011,
with the primary purpose to provide information on ocean
salinity. Although designed for ocean applications, Aquarius is
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providing the first long-term simultaneous L-band active and
passive global views of the Earth’s surface. Hence, there is a
unique opportunity to utilize Aquarius active–passive observa-
tions over land to improve our understanding of the geophysi-
cal relationship between the radar backscatter and radiometer
brightness temperatures. Since scatterometer and radiometer
observations offer complementary information on the proper-
ties of the observed scene, the combined measurement may be
more useful than either one by itself. Temporal variations of
combined measurements may provide more effective means to
monitor the development of the vegetation canopy and recog-
nize different vegetation types [12]. Analysis of active–passive
airborne observations [13] and modeled data [14] indicate
that the combination of radar and radiometer could be used
to decouple soil effects from vegetation. Thus, they could
potentially be used to the benefit of improved soil moisture
detection. Also, in a SMAP-like context, an optimal blend of
radar and radiometer signatures could lead to high-resolution
soil moisture retrievals [15]. The slope of the temporal linear
relationship between active and passive observations has been
identified as a key parameter for producing the SMAP 9-km
product [11].

The primary purpose of this paper is to study the sensi-
tivity of L-band active and passive temporal covariations to
land surface characteristics, namely, soil moisture, vegetation
density, and landscape cover heterogeneity, in preparation for
SMAP. Using a year of Aquarius observations, these covari-
ations are expressed as the slope β of the temporal linear
relationship between emissivity and backscattering coefficient.
Emissivity is used to separate the effect of physical temperature
variations on brightness temperatures. The Radar Vegetation
Index (RVI) [16] is used as an indicator of canopy cover.
The Gini–Simpson index (GSI) [17] is employed to assess
the impact of heterogeneity of surface characteristics within
a satellite footprint. The results of this study are relevant to
the design of multiresolution active–passive surface soil mois-
ture retrievals in general. Although Aquarius radiometer and
scatterometer use the same aperture and hence have compara-
ble resolutions, radar systems can potentially provide higher
resolution measurements using synthetic aperture processing.
This approach is being implemented in the SMAP mission. The
SMAP baseline multiresolution active–passive retrieval relies
on the estimation of parameter β to provide intermediate (to
radar and radiometer) surface soil moisture estimates. Although
the Aquarius-based estimates of this parameter are at far coarser
and incompatible resolutions than those possible and required
with SMAP, the results of this study provide some fundamental
insights into the role of landscape vegetation cover on the
seasonal and geographical distribution of the L-band active and
passive measurement covariability.

II. PHYSICS OF MICROWAVE REMOTE

SENSING OVER LAND

This section provides an overview of the theoretical back-
ground to active and passive microwave remote sensing over
land surfaces. A more comprehensive review can be found
in [3].

A. Random Surface Scattering and Emission

Wave scattering and emission from random rough surfaces
are characterized by the bistatic scattering cross section per
unit area or surface scattering coefficient (σ0). It relates the
magnitude of the power scattered in the direction (θs,φs) with
polarization q to the power incident in the surface from the
direction (θ0,φ0) with polarization p [3]. Applying Kirchoff’s
radiation law, Peake [18] demonstrated that polarized emissiv-
ity ep in a chosen observation direction is equal to one minus
reflectivity Γp, expressed as the integral value of the bistatic
scattering cross section over the upper half space

ep;θ =1− Γp;θ. (1)

Γp;θ0,φ0
=

1

4π cos θ0

∫∫
[σ0

pp;θ0,φ0;θs,φs
+σ0

pq;θ0,φ0;θs,φs
]dΩs,

(2)

where dΩs = sin θsdφsdθs and θ and φ are the incidence and
azimuth angles, respectively.

Scattering by a rough surface presents simple analytical
solutions for a limited number of cases only, which correspond
to some combinations of roughness parameters and observation
frequencies. The traditional models include the small pertur-
bation method (SPM) and the Kirchhoff approximation (KA)
[19]. The SPM is valid for slightly rough surfaces, while the
KA is applicable for a rough surface with a large surface curva-
ture. The integral equation model overlaps these two methods
and has been proven to have a wider range of applicability
than the classical methods [20]. Validation of the approximate
methods has been performed by exact numerical methods [21]
or experimental data, mostly collected on conducting surfaces
[20]. Validation using remotely sensed data over natural terrains
is complex, since the bistatic scattering coefficient measured
at various incidence and scattering angles on the whole up-
per space would be needed to validate model performances.
However, radars measure the backscattering coefficient, which
is a particular case of σ0 for the incidence and scattered
directions of the emitting and receiving antennas. In turn,
radiometers measure brightness temperatures—directly related
to emissivity—within a limited range of incidence angles.

In this paper, the relationship between emissivity and radar
backscatter will be estimated statistically using Aquarius pas-
sive measurements globally, for surfaces with a complex mix-
ture of vegetation and surface roughness characteristics.

B. Surface Emissivity

In the microwave region, the dielectric constant of most nat-
ural materials is dominated by its water content. The dielectric
constant is a measure of the surface response to an electromag-
netic wave; it is defined as a complex number (εs = ε′s + jε′′s),
where the real part determines the propagation characteristics
of the energy as it passes through the surface and the imaginary
part determines the energy losses. The theory behind passive
L-band microwave remote sensing is based on the large contrast
between the dielectric constant of dry soil (∼4) and water
(∼80). This contrast results in a broad range of dielectric
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values for soil–water mixtures (εs ≈ 4–40) and is the primary
influence on the natural microwave emission from the soil [22].

The thermal radiation or brightness temperature emitted by
the Earth’s surface (TBp,θ

) for bare soil is determined by its
physical temperature Tph and its emissivity ep,θ, according to

TBp,θ
= ep,θ · Tph, (3)

where the subscript p denotes either vertical (V ) or horizontal
(H) polarization and θ is the incidence angle.

The τ–ω model [23] is generally used to account for the
effects of vegetation on the observed microwave signal

TBp,θ
= ep,θTse

−τ/ cos θ + (1− ω)Tv(1− e−τ/ cos θ)

+ Γp,θ(1− ω)Tv(1− e−τ/ cos θ)e−τ/ cos θ, (4)

where Ts and Tv are the effective temperatures of the soil and
the vegetation, respectively, τ is the vegetation opacity, and
ω is the vegetation single-scattering albedo. The first term of
the aforementioned equation defines the radiation from the soil
as attenuated by the overlying vegetation. The second term
accounts for the upward radiation directly from the vegetation,
while the third term defines the downward radiation from the
vegetation, reflected upward by the soil and again attenuated by
the canopy.

At Aquarius morning overpasses (6 A.M.), temperature gra-
dients within the soil and vegetation are minimized so that the
temperature of the vegetation canopy is in equilibrium with
the soil temperature (Ts = Tv = Tph) [24]. Also, under low
vegetation cover conditions, the single-scattering albedo can be
neglected since ω �1. Under these assumptions and using (1),
(4) becomes simply

TBp,θ
= Tph(1− Γp,θe

−2τ/ cos θ). (5)

Surface reflectivity can be decomposed as Γp,θ = Γ∗
p,θe

−h,
where h is the roughness parameter related to the root mean
square of surface roughness and Γ∗

p,θ stands for the power
reflection of the flat soil. Now, (5) becomes

TBp,θ
= Tph(1− Γ∗

p,θe
−he−2τ/ cos θ). (6)

Using the Fresnel equations, Γ∗
p,θ can be related to soil

moisture through the dielectric constant.

C. Surface and Volume Scattering

Terrain scattering is governed by both the surface roughness
and its dielectric properties. If the roughness of a surface re-
mains unchanged, the measured radar backscattering increases
with increasing moisture content and may exhibit a dynamic
range of about 10 dB between dry soil and very wet soil
conditions [25].

Electromagnetically, a surface is considered smooth if its
height variations are much smaller than the wavelength of
the radiation. Scattering from a perfectly flat surface consists
of only the specularly reflected coherent part, which is given

by a Dirac delta function centered at the specular direction.
Scattering from a slightly rough surface consists of a large
reflected coherent component in the specular direction and
a small noncoherent or diffuse scattered component which
consists of power scattered in all directions. As the surface
becomes rougher, the coherent component becomes negligible,
and the scattering pattern is composed entirely of the diffuse
component. For the perfectly rough surface, emissivity (and
reflectivity) is polarization and angle independent [3].

When the soil is covered by vegetation, the backscattering
coefficient at polarization pq (=HH , V V , or HV ) and inci-
dence angle θ is highly influenced by the canopy structure, its
biomass, and its water content and can be described as a sum of
three dominant contributions

σ0
pq,θ = σs

pq,θe
−2τ/ cos θ + σv

pq,θ + σsv
pq,θ. (7)

The first term represents the scattering cross section of the
soil surface σs

pq,θ, a function of εs and soil roughness char-
acteristics, which is modified by the two-way vegetation at-
tenuation (e−2τ/ cos θ). The second term σv

pq,θ is the scattering
cross section of the vegetation volume, an intricate function of
vegetation alone. The third term σsv

pq,θ represents the scattering
interaction between the soil and vegetation, which depends
on εs, soil roughness characteristics, and vegetation canopy in
complex ways [3].

Surface scattering is dominated by like-polarized backscat-
ters (σV V and σHH ), whereas cross-polarized backscatters
(σHV = σV H ) are typically associated with volume or multiple
scattering. This is due to the differing depolarization effects
associated with these mechanisms. Surface scattering does
not cause a significant change in polarization, so the cross-
polarized receiving antenna receives little energy from bare soil
or rock. For vegetated areas, a significant depolarization of the
radar signal occurs: it penetrates to varying degrees (depending
on wavelength) and interacts with stems, leaves, twigs, and
trees’ branches, leading to scattered waves vibrating in various
directions.

III. DATA AND METHODS

A. Aquarius Data

The Aquarius/SAC-D mission, launched in June 2011, is
a joint U.S./Argentinian mission to map the surface salinity
field of the oceans from space. It has equatorial crossing times
of 6 A.M. (descending) and 6 P.M. (ascending) and a seven-
day repeat cycle. Its primary payload is the NASA Aquarius
sensor, the first combined active/passive polarimetric L-band
microwave instrument in space. It consists of three radiometers
at 1.413 GHz and a scatterometer (a real aperture radar) at
1.26 GHz, which sequences with the three radiometer’ antenna
beams so as to have active/passive collocated observations [26].
The spacecraft orbits the Earth with the sun at the left and the
three beams pointing across-track toward the right, arranged to
image in a pushbroom fashion with 29.36◦ (inner beam), 38.49◦

(middle beam), and 46.29◦ (outer beam) incidence angles, with
footprints of 76 × 94 km, 84 × 120 km, and 96 × 156 km,
respectively, providing a swath of about 390 km.
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Fig. 1. Schematic of the sampling method used to grid Aquarius data.
Footprints with centers less than a threshold (0.22◦ in this study) are included in
the grid cell (red). Here, D2 < 0.22, so the corresponding footprint is included
in the grid cell (solid black); D1 > 0.22, so the corresponding footprint is
excluded (dashed black).

In the present study, version 2.0 Aquarius brightness temper-
ature (H and V polarizations) and normalized radar cross sec-
tion (HH , V V , and HV polarizations) data from the descend-
ing overpasses at 38.49◦ incidence angle (central beam) have
been used. Descending overpasses are preferred to minimize
the gradients between the soil and vegetation temperature (see
Section II). Data from the central beam are selected since, out of
the three available beams, more independent information can be
obtained from the vertical and horizontally polarized brightness
temperatures at 38.49◦; it is also the closest to SMAP constant
incidence angle (40◦). The data have been screened for all
Aquarius maneuvers and radio frequency interference in either
the radar or radiometer. In addition, data over ocean, land-
sea transitions, Antarctica, and Greenland have been masked
out. One year of worldwide observations has been considered,
from September 1, 2011, to August 31, 2012. This is the full
annual cycle of Aquarius measurements available at the time
of this study.

Land surface temperature and soil moisture data from
the National Centers for Environmental Prediction (NCEP)
are provided along with Aquarius observations as auxiliary
information. They are interpolated from the daily 0.25◦

product to the exact time and location of the Aquarius obser-
vations. In this paper, Aquarius brightness temperatures TBp,θ

are normalized by NCEP collocated land surface temperature
using (3) to eliminate dependences between Tph and TBp,θ

.

B. Footprint Gridding

Since Aquarius measurements do not exactly overlap across
half-orbits over time, a sampling strategy needs to be defined in
order to produce global temporal views. The first seven days of
observations have been used to set up a grid (see the red circle
on Fig. 1). Subsequent overlapping footprints with centers less
than 0.22◦ from a grid center are included in that grid cell (e.g.,
black circle, Fig. 1). Otherwise, they are excluded (e.g., dashed
circle, Fig. 1). Note that some observations may be included
in multiple grid footprints. This gridding strategy has been
chosen so as to keep the spatial resolution of the analysis to
the instrument’s spatial resolution.

Fig. 2. Red squares delineate the location and extent of target areas.

C. IGBP Land Cover

The 2005 MODIS MCD12Q1 International Geosphere-
Biosphere Program (IGBP [3]) collection 5 land cover product
[4] has been used in this study to characterize the dominant land
cover within the target areas and to account for surface hetero-
geneity. It is a worldwide product at 500-m spatial resolution
that encloses 17 distinctive land cover classes. In this paper,
the dominant IGBP land cover type has been determined for
each Aquarius footprint. MODIS products are freely distributed
by the U.S. Land Processed Distributed Active Archive Center
(www.lpdaac.usgs.gov).

D. Target Areas

Due to the poor dynamic range of the data on a global
basis, eight target areas were selected for more detailed study
of temporal behaviors, vegetation, and heterogeneity impacts.
These target areas are shown in Fig. 2. They were selected
to be representative of a wide range of vegetation character-
istics and heterogeneity within a ∼100-km Aquarius footprint
across major biomes. Also, they are among the SMAP calibra-
tion/validation core sites so that the experience gained about
them is useful for broader applications; core sites such as the
Murrumbidgee catchment [27], SMAPVEX12 [28], and U.S.
Midwest [29] are equipped with soil moisture networks that
routinely acquire ground data. Specific location, area, domi-
nant land cover type, median RVI (a measure of vegetation
scattering; see Section IV-C), heterogeneity (given as median
GSI; see Section IV-D), and number of Aquarius collocated
active–passive observations acquired at each target area are
included in Table I. Note that the areas in Table I are ordered
by increasing canopy cover according to IGBP, where Sahara
and Amazon are end members. For the target area analysis, all
of the Aquarius measurements with footprints entirely enclosed
within the target areas’ boundaries were selected. No gridding
was performed.

IV. RELATIONSHIP BETWEEN AQUARIUS

ACTIVE AND PASSIVE OBSERVATION

As indicated in Section II, both surface emissivity and
backscatter cross section at L-Band respond to changes in
surface soil dielectric constant. Hence, they are both indicators
of surface soil moisture volumetric content. However, the two
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TABLE I
DESCRIPTION OF TARGET AREAS

Fig. 3. Percentage explained variance (R2) between passive eV and active σV V Aquarius measurements from September–October–November 2011.

measurements are variably affected by the surface roughness
and vegetation canopy characteristics. These differences are
potentially a major obstacle to the joint use of the two mea-
surements for more robust geophysical retrievals. On the other
hand, the differences can be regarded as an opportunity for
enhanced science data products, especially if they are charac-
terized by different resolutions. This paper studies the synergy
of Aquarius active and passive observations in pursuit of those
opportunities.

A. Strength of Relationship

To study the temporal covariability between Aquarius pas-
sive ep and active σpq observations over land, the percentage
variance explained by linear regression R2 was first calcu-
lated. Fig. 3 shows eV –σV V R2 for a period of three months
(from September 1 to November 30, 2011). It demonstrates
the strength of the active–passive relationship in Aquarius
measurements. Note that exceptions (R2 < 0.7) are in densely
vegetated areas such as the Amazon and the Congo, where the
L-band radar and radiometer cannot penetrate, and in areas
where there are no dynamics in soil moisture (e.g., deserts).
Also, some coastal areas present low values of R2, which

could be an effect of land-sea contamination. This analysis
has also been performed using the other possible polarization
combinations eV –σHH , eH–σV V , and eH–σHH (not shown)
with comparable results. The eV –σV V combination is shown
here as it had the highest degree of correlation in airborne obser-
vations from SGP99, SMEX02, CLASIC, and SMAPVEX08
field experiments [10, Fig. 2] and is the one reported in the
follow-on studies [11].

B. Temporal Linear Relationship

Since Aquarius makes coincident and constant look-angle
radar and radiometer measurements, their covariations over
short time periods can be considered mostly related to changes
in soil dielectric constant—that depends on surface soil mois-
ture changes—rather than contributions of vegetation and sur-
face roughness. The latter two factors generally change over
long time periods such as seasons: surface roughness changes
mostly due to disturbances, erosion, and deposition events;
vegetation characteristics follow seasonal phenology. Agricul-
tural practices such as harvesting and ploughing, however, may
markedly change vegetation and surface roughness, respec-
tively, within short periods of time.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 4. Parameter linking active and passive measurements (β): slope of eV − σV V linear relationship obtained using temporal series of Aquarius data from
September–October–November 2011. Only values with statistical significance (p < 0.05) are shown with color shading. Black dots indicate positive values,
outside the valid range of β.

Taking advantage of the approximately linear temporal re-
lationship between radar backscatter and brightness tempera-
ture, the slope β of the linear regression eV = α+ β · σV V is
estimated for each grid cell using three months of data (from
September 1 to November 30, 2011). The resulting global fields
of β are filtered by statistical significance. Only values with
statistical significance (p < 0.05) are shown as color-shaded
pixels in Fig. 4.

According to theory, the slope of the linear regression
between emissivity and backscatter under 50◦ incidence
angles—which is the case of Aquarius and upcoming SMAP
observations—is positive for water surfaces (high dielectric
constant). Land surfaces with low dielectric constant (low soil
moisture) will typically have a negative slope, and this slope
may change from negative to positive when the dielectric
constant increases (due to a soil moisture increase or complex
surface roughness effects) [3]. Over three months, changes in
soil moisture state are expected to dominate the active–passive
temporal covariability, with an increase of surface soil moisture
leading to a decrease in emissivity (at polarization v or h) and
an increase in radar co-pol (hh or vv) measurements, and vice-
versa. In this scenario, soil moisture variations in time result
in TB and σpp being negatively correlated. As expected, Fig. 4
shows that Aquarius three-month β estimates over landmasses
are generally negative, with positive values (in black) mostly
located in dense forests, where L-band does not penetrate, areas
with no dynamics in soil moisture (deserts), and coastal areas.
The statistical estimation of β is susceptible to noise as evident
in the random but sparse occurrence of positive values away
from dense forests, deserts, and coastal regions.

Recent studies on the linear functional relationship between
time series of TB and σp have been performed using airborne
passive and active data from multiple field campaigns in [30].
They show the strength of the TB-σpp linear relationship and
report that the slope changes over time are negative in sign and

its magnitude decreases for denser vegetation conditions. In
this paper, β is estimated from Aquarius emissivity and radar
backscatter, which prevents direct comparison of magnitudes
in kelvin per decibel reported in the literature. However,
this study demonstrates that β (qualitative) estimates from a
satellite platform are in line with results from experimental
campaigns. Over a three-month period, Fig. 4 shows that
global β estimates are statistically robust and correspond with
expected land cover characteristics. It is foreseen that β varies
seasonally as well as geographically. Its seasonal dependence
is examined in Section IV-E, where the impact of the temporal
window used in β estimation is discussed.

Scatter plots of Aquarius passive eV against active σV V

observations acquired over the target areas are presented in
Fig. 5. Plots are shown for the hemisphere warm season (three
months) at each target area. These are representative of the
remaining seasons at the target areas (not shown) with expected
but only slight variations in the slope and dynamic range of
the data. Seasonality in soil moisture and vegetation canopy
are reflected in the plots. The variation in estimated β per
target area across time periods demonstrates its dependence on
roughness and seasonally varying vegetation phenology (this
is further discussed in Section IV-C). The range of emissivity
in the y-axis is common for all of the plots, and the range of
radar backscatter in the x-axis is set to 14 dB for all target
areas except for Sahara, where it is set to 24 dB. This is needed
to make the plots comparable and, at the same time, show
full σV V variability. Colors indicate the NCEP volumetric soil
moisture associated with each pair of collocated observations.
A soil moisture gradient can be observed in most areas from
dry soils (high eV and low σV V , in red) to wet soils (low eV
and high σV V , in blue), which reflects the inverse relationship
of Aquarius active and passive observations with soil dielectric
constant, and a general agreement with NCEP soil moisture
estimates.
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Fig. 5. Scatter plots of Aquarius radiometer eV versus radar σV V over the target areas on Fig. 2. Hemisphere warm season (three months) plots are shown
for each focus area. Other seasons (not shown) show similar regional behavior with slight changes in slope and dynamic range of data consistent with climate
seasonality. Colors indicate the NCEP soil moisture [m3/m3] associated to each pair of collocated observations. The variance λmax explained by the principal
component of the scatter plots is used as an indicator of the dynamic range and the spread of the observations. Nonphysical emissivity values (eV > 1) can be
explained by inconsistencies between NCEP land surface temperatures and Aquarius brightness temperatures.

Fig. 5 shows that the linear relationship between eV –σV V

holds in all of the studied regions except for Sahara and
Amazon, as expected. In the Amazon, dense vegetation domi-

nates the apparent surface emissivity and backscatter, with both
active and passive measurements having a low dynamic range
and not following even a seasonal cycle. The Tanzania region
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exhibits a low dynamic range (more than the Amazon but still
lower than other regions) for the emissivity and backscattering
coefficient, possibly due to heavy vegetation cover. Also, this
region comprises several inland water bodies, which could lead
to the reduced dynamic range in emissivity. Both of these fac-
tors result in a large value of β (−0.028). In the Sahara, which
is a desert, the soil moisture is consistently low throughout the
year. The red color of the data in the Sahara panel of Fig. 5 is
due to persistent dessicated surfaces. As a result of the lack of
dynamic range in the emissivity, the slope between eV − σV V

is near zero. During the few precipitation episodes that moisten
the surface, even the Sahara data show a sloped relationship
between emissivity and radar backscatter cross section. Over
the U.S. Midwest, South America Pampas, and Nordeste re-
gions, a clear (negative slope) relationship between emissivity
and backscatter coefficient is evident. This is also evident across
the Murrumbidgee basin where SMAPEx airborne experiments
are conducted [31]. However, not enough coincident airborne
active and passive measurements are available to independently
estimate β. Over SMAPVEX, a β value of −0.009 is obtained
using three months of Aquarius data. During the Soil Moisture
Active Passive Validation Experiment 2012 (SMAPVEX12) in
June–July 2012, an average β value of −0.018 is obtained
using nearly a month of Passive Active L-band System (PALS)
airborne data. However, the comparison of the obtained mag-
nitudes is subject to time- and spatial-sampling differences.
Regarding β estimation time, there are not enough Aquarius
overpasses to match PALS estimation more precisely in time,
so the β value is obtained using nearly one-month period for
PALS and using three months for Aquarius. Regarding data
spatial coverage, the SMAPVEX12 domain covered by PALS
is nearly 2500 km2, whereas the Aquarius footprint size is
10 000 km2. Also, TB footprints impacted by water bodies
and urban areas are removed from PALS data and not from
Aquarius; the presence of water bodies, urban areas, and forest
in the larger footprint of Aquarius could explain the reduced
magnitude of β.

Heterogeneity in surface parameters, especially vegetation
cover, is suspected to affect the eV –σV V linear relationship.
In Section IV-D, an index of vegetation heterogeneity is intro-
duced to analyze the impact of land surface heterogeneity on β
estimation.

C. Impact of Canopy Cover

In this paper, the RVI [16] is used as a measure of vegetation
scattering. It is a polarimetric parameter defined by

RVI =
8 · σHV

σHH + σV V + 2 · σHV
, (8)

where the radar backscatter cross sections are in units of power.
RVI should vary between zero for nearly bare soil [σHV �
(σHH or σV V )] and unity for full volume scattering by dense
vegetation [(σHH and σV V ) ≈ 3 · σHV ]. Since Aquarius σHV

is not well calibrated over land, RVI will only be used as an
indicator of canopy cover. A thorough RVI error analysis using
Aquarius scatterometer observations can be found in [32].

Fig. 6. Boxplot of RVI versus target areas ordered by increasing canopy cover,
according to its dominant IGBP land cover.

A boxplot containing RVI statistics over a year-long
Aquarius radar data at the target areas is shown in Fig. 6. The
target areas in the x-axis have been ordered from left to right by
increasing canopy cover, according to its dominant IGBP land
cover. A clear correlation of RVI with percentage of canopy
cover can be observed, confirming the adequacy of its use as a
measure of vegetation scattering. Note that croplands (Pampas
and SMAPVEX12) and agricultural regions (U.S. Midwest)
exhibit a higher RVI variance, which is consistent with their
changing (seasonal) vegetation patterns.

The scatter plots in Fig. 5 show that the dynamic range
of the passive and active observations is significantly reduced
with increasing canopy cover, especially in forested areas, i.e.,
Tanzania, Nordeste, and Amazon. As expected, the presence
of a vegetation canopy reduces the dynamic range of radar
backscatter cross section faster than that of the radiometer
brightness temperatures. The Sahara region requires particular
attention. Radiometric observations over the Sahara have a very
limited range, whereas the radar observations extend across
all its dynamic range (∼20 dB). The limited range of eV can
be explained by the absence of precipitation and vegetation
changes in this region. The wide range of σV V can, in turn,
be explained by the strong winds producing changes in surface
roughness. This example illustrates that passive sensors have a
reduced sensitivity to land surface roughness, and in contrast,
active observations are highly influenced by it.

To further analyze the change of dynamic range of passive
and active observations with percentage of canopy cover, a
principal component analysis has been performed with the
observations acquired over each target area during the study
period. The variance λmax explained by the principal compo-
nent of the scatter plot eV –σV V at every target area has been
computed as an indicator of the dynamic range and the spread
of the observations (see annotations on Fig. 5). Fig. 7 shows
λmax versus the median RVI observed at the target areas. The
decrease of λmax with increasing RVI is clear in all target areas
except for Sahara and U.S. Midwest. As already discussed,
the high λmax in the Sahara is due to wind inducing surface
roughness changes. The high λmax in the U.S. Midwest could
be mainly due to its high heterogeneity (GSI = 0.79). Also, a
strong change in surface roughness or vegetation conditions
may have significantly affected radar observations over the
area. Note that its σV V is the second greatest, after Sahara.
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Fig. 7. Plot of the variance explained by the principal component of the scatter
plot eV –σV V (λmax) versus median RVI at target areas. Sahara and Amazon
have not been included in the regression.

Fig. 8. Plot of β standard error of estimation versus median GSI at target
areas. Sahara and Amazon have not been included in the regression.

D. Impact of Heterogeneity

In this paper, we propose the use of the GSI as a measure
of land cover heterogeneity. Based on the work of [17] and
[33], GSI is a common measure of diversity that is equal to
the probability that two values drawn from a dataset, with
replacement, will be of different types. It is defined as

GSI = 1−
∑
i

p2i , (9)

where pi is the proportion of pixels belonging to IGBP class
i. GSI always lies within the interval [0, 1), with its value
approaching unity as land class diversity becomes large (no
matter how dissimilar the communities are [34]).

Accounting for land heterogeneity is critical in the retrieval
of geophysical parameters from satellite observations since it
can significantly degrade the quality of the retrievals. In this
paper, the median GSI of each target area has been calculated
(see Table I) to account for their heterogeneity and is used to
assess the limitations imposed by heterogeneity of vegetation
cover and soil characteristics within a satellite footprint. Fig. 8
displays the median GSI of each target area against β standard

Fig. 9. Schematic of circular moving window used to obtain a set of β
estimations with one year of Aquarius data.

error of estimation. Excluding the Sahara and Amazon as being
extreme cases with no changes in soil moisture and having
dense forest, respectively, it shows that the error on β estimates
increases linearly with the degree of heterogeneity. The error
on β estimates over the U.S. Midwest is probably increased
due to rapidly changing crop conditions (growth and harvest)
during the study period. This result indicates that heterogeneity
in vegetation may introduce a bias in the estimation of β. This
may be more problematic for instruments with coarse footprint
data such as Aquarius and generally in regions with strong
vegetation gradients.

E. Impact of Temporal Window

As discussed in the aforementioned sections, the statistically
estimated slope β is specific for a given location and reflects
the fixed local roughness and vegetation cover conditions. This
section addresses β dependence on the temporal window used
to estimate it. If the moving window is too long, vegetation
properties will change with season, and the linear relationship
between emissivity and backscatter will be weakened, compro-
mising β estimation. Conversely, if the window is too short,
sample sizes will be too small, and β estimates will be statis-
tically insignificant. In addition, β estimation is possible only
if there is adequate soil moisture variation within the window
period (drydown or wetting event) to cause variations in both
TB and σpp to allow estimation of a slope in the regression.

A circular moving window (see Fig. 9) has been defined to
assess how long the radar-radiometer time series needs to be for
a robust estimate of β. Regression of the time series (formed
based on multiple overpasses, no gridding or averaging) for eV
and σvv is used to statistically estimate β for each target area
using moving window lengths T of one month, three months,
six months, and one year, with t time step of one week. Results
are shown in Fig. 10 for Pampas, SMAPVEX12, U.S. Midwest,
Murrumbidgee, Tanzania, and Nordeste target areas. These
plots show that the effect of seasonality in β is important. As
anticipated, with a temporal window of one year, seasonal veg-
etation changes are not captured (β estimates remain constant
for all initial t). With a temporal window of six months, slight
variations on β can be observed. These variations are more pro-
nounced with temporal windows of three and (most variability)
one months. Also, note that several nonrobust estimates (de-
picted as circles and shaded areas) have been obtained predomi-
nantly when using one-month temporal windows. The dynamic
range of active and passive observations is shown to decrease
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Fig. 10. Slope of Aquarius eV –σV V linear relationship (βT (x, t)) over Pampas, SMAPVEX12, U.S. Midwest, Murrumbidgee, Tanzania, and Nordeste target
areas computed using the moving circular window in Fig. 9 with t=1 week and T =1 month (red solid line), 3 months (green dashed line), 6 months (blue dot-
dashed line), and 1 year (dotted black line). The shaded area indicates values outside the valid range ofβ. Circles indicate statistically insignificant estimates (p>0.05).

with increasing RVI in Fig. 7 for one year of data. The same
behavior is observed when analyzing one, three, and six-month
time series of active–passive observations (not shown). Also,
the linear dependence of β standard error of estimation with
land surface heterogeneity shown in Fig. 8 for one-year window
length holds when using shorter time series to estimate β.

To further explore the choice of window length T , β is
considered to follow vegetation phenology. For a simple annual
cycle, most of the spectral density is concentrated in the first
and second harmonics. The metric z is introduced as the percent
variability contained in the first and second harmonics

z =
c1 + c2∑∞

i=0 ci
, (10)

where ci is the spectral density in the ith harmonic. This metric
was applied to the β time series calculated using different
window lengths T (zT ). By varying the window length, the
possible presence of a period in the year which has a distinct
and different β behavior is examined; the proposed z metric
is expected to catch almost any kind of seasonality (smooth
sinusoid as well as almost a square or notch). If T is too
small, high-frequency noise will remain in the time series,
flattening the spectrum and decreasing z. If T is too large, a
genuine variability in β will be averaged out, also decreasing z.
For instance, in the limit of T → ∞, all variability will be
averaged out, the time series will be a constant, and all of the
spectral density will be concentrated in the zeroth harmonic.
The maximum z occurs when the chosen window size results
in a time series closest to an annual cycle.

Fig. 11. Plot of percent variability contained in two harmonics (annual and
semiannual) for the time series of β calculated using the moving circular
window in Fig. 9 and t = 1 week for different window lengths T (zT ) over
Pampas, SMAPVEX12, U.S. Midwest, Murrumbidgee, Tanzania, and Nordeste
target areas. The maximum zT occurs when the chosen window length results
in the β time series closest to an annual cycle. The T for the maximum zT is
the optimal window size (added in brackets to the legend, in month units).

A plot of zT for different β time series—calculated using
a moving circular window with t=1 week and window sizes
T—over Nordeste, Pampas, SMAPVEX12, Murrumbidgee,
Tanzania, and U.S. Midwest target areas, is shown in Fig. 11.
It illustrates that, for every target area, there is an interval of
T values that provide relative z maximums and could therefore
be appropriate window lengths. Also, the window length T at
which the maximum z is reached is geographically dependent.
A temporal window of three to six months serves the areas
with a highest percentage of canopy cover (Nordeste, Tanzania,
and Murrumbidgee), while for croplands (SMAPVEX12 and
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Pampas), a longer window of six to eight months would be
necessary. Note that cereals, canola, and corn are the dominant
crops in SMAPVEX12, with a seed-to-harvest time of about
six months, whereas soybean is the dominant crop in Pampas,
having a seed-to-harvest time of around eight months. A shorter
window of two months results to be more adequate for U.S.
Midwest, which could be due to the high intra-annual variabil-
ity of grasslands.

The results in Figs. 10 and 11 indicate that the appropriate
window length to calculate β depends on local effects such
as the degree of seasonality in vegetation cover and dynamic
variability of soil moisture. Three regimes on the β window
length have be identified: 1) when the window is too small,
there are few points in the eV –σV V regression, and there is
statistical estimation noise; 2) when the window is too large
(T > 9 months), the β estimated does not track the seasonal cy-
cle; and 3) for intermediate window sizes, the window reaches
into different parts of the seasonal cycle and causes a phase shift
induced by and a function of window size.

It is important to remark that the experimental setup used
in this paper does not match the orbit conditions of SMAP
(two- to three-day revisit and eight-day exact repeat), with the
focus regions having multiple pixels within them and several
eV –σV V pairs observed daily. This implies important differ-
ences in issue 1), so the β estimates obtained for Aquarius
cannot be directly applied as the initial values for SMAP.
However, results suggest that the SMAP β window length
could be adapted to dominant land cover, with a maximum of
∼2 months for grasslands and of 6–8 months for croplands.

V. CONCLUSION

A sensitivity study of NASA’s Aquarius active–passive mea-
surement temporal covariability to land surface characteristics
has been performed. The study is relevant to the design of
multiresolution active–passive surface soil moisture retrievals
in general. Active–passive covariations over short time periods
are expected to be mainly due to soil moisture changes; over
longer periods (from two to six months), the slope of their
temporal linear relationship (β) is demonstrated to be a robust
parameter depending on local vegetation conditions with sea-
sonally varying phenology. Results show the strength of the
temporal linear relationship between spaceborne scatterome-
ter and radiometer observations across major global biomes
(R2 > 0.7 for three months).

Aquarius active and passive observations have a similar
spatial resolution. However, radars can make measurements at
relatively high spatial resolutions through synthetic aperture
processing (∼3 km in SMAP). Temporally consistent covaria-
tions of active and passive observations as captured by the β pa-
rameter are key in the baseline SMAP active–passive algorithm
that combines radar high spatial resolution and radiometer
high sensitivity to soil water content into high-resolution soil
moisture fields. While the study here does not provide maps of
the parameter that can be used in the SMAP multiresolution
retrieval process, the study does provide insights into what
landscape and seasonality factors affect the change in the key
parameter. An index of landscape heterogeneity (GSI) is intro-

duced to quantify and account for land surface heterogeneity
within a satellite footprint. Using this metric, the β error of
estimation is demonstrated to increase with land surface hetero-
geneity. The RVI is shown to be a good indicator of vegetation
scattering, consistent with land cover percent canopy cover. The
dynamic range and spread of active–passive observations are
shown to decrease with increasing RVI. However, vegetation
density (up to moderate densities) does not seem to have an
impact on β estimation error. The study also addresses the
temporal window to estimate β, which has a minimum given
by statistical estimation noise and a maximum depending on
the seasonality of the dominant land cover (e.g., ∼2 months for
grasslands and 6–8 months for croplands).
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