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SUMMARY

The master-slave approach is adapted to model the kinematic constraints encountered in

incompressibility. The method presented here allows to obtain discrete displacement and pressure

fields for arbitrary finite element formulations that have discontinuous pressure interpolations. The

resulting displacements satisfy exactly the incompressibility constraints in a weak sense, and are

obtained solving a system of equations with the minimum (independent) degrees of freedom. In linear

analysis, the method reproduces the well known stability results for inf-sup compliant elements, and

permits to compute the pressure modes (physical or spurious) when they exist. By rewriting the

equilibrium equations of a hyperelastic material, the method is extended to non-linear elasticity, while

retaining the exact fulfilment of the incompressibility constraints in a weak sense. Problems with

analytical solution in two and three dimensions are tested and compared to other solution methods.
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1. INTRODUCTION

Robust and stable computational methods for incompressibility are crucial for the proper

understanding of Newtonian incompressible fluids or rubber-like materials. In linear analysis,

both applications are governed by equivalent equations (see for instance [18]), but for non-

linear analysis, the two problems lead to rather different expressions. In the present paper we

will concentrate our study to the latter case: elastic incompressible problems, linear and non-

linear. Non-linear incompressible analyses have gained special attention during the last decade,

partly due to its application in metal plasticity, soil mechanics or more recently, biomechanics.

On the other hand, research on the modelling of incompressibility has been carried out for

more than forty years. The stability and solvability conditions of the resulting equations are

now well understood in linear analysis. It has been shown that the existence, uniqueness and

stability of the solution requires the fulfilment of the Ladyzhenskaya-Brezzi-Babuska (LBB)

or inf-sup condition (see for instance [7, 12, 24]), which is satisfied by only certain pairs of

interpolated displacements (or velocities) and pressures. However, discretisations that satisfy

the LBB condition may become computationally expensive (the low order Q1P0 element is not

LBB-compliant). For this reason, it is desirable to either stabilise the discretisations that do

not satisfy the LBB condition by adding additional terms in the weak form (see for instance the

early works [14, 25]), or to provide efficient algorithms for those discretisations that satisfy the

LBB condition [1, 24, 13] . The present paper studies the latter case and extends the solution

of mixed formulations to non-linear elasticity interpolated with general pairs of displacement-

pressure interpolations. Stability predictions are not available for non-linear elasticity, and

only results on the linearised problem or simple numerical examples exist [4, 35]. Moreover, it

has been also demonstrated that in linear elasticity, some of the elements not satisfying the
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LBB condition can provide acceptable solutions for certain boundary conditions or applied

body forces [6]. The mater-slave approach presented here becomes a useful tool to determine

numerically whether the applied boundary conditions can lead to a unstable solution for general

discretisations.

The master-slave approach has been initially designed for the modelling of the constraints

in mechanisms [28, 26, 30]. However, resorting to similar ideas, we show that we can turn

the equations of incompressible elasticity, discretised with mixed finite elements, into a

displacement based system of equations which has the minimal number of degrees of freedom

(dof). In fact, the master-slave approach provides a particular form of the null space method

[8, 9] (or orthogonal projection), as it has been already applied in multibody systems dynamics

[29, 30].

Projection techniques in linear incompressibility have been reported before [22]. However,

in our approach, after using the constraint equations, we eliminate redundant displacement

dof. This is tantamount to projecting the nodal displacements onto a discrete solenoidal

displacement field, which we achieve in a global manner. Other techniques are based on the

construction of elemental solenoidal fields, such as the Taylor-Hood element [36], the mini

element [2], or the Crouzeix-Raviart element [17]. However, they require the enhancement of

the discrete displacement filed by additional spaces . We remark that our method does not use

any problem dependent parameters, in contrast to the penalty approaches or the also related

mean dilatation method [10], or the UZAWA’s algorithm [3, 12, 35].

It must be added though, that the global projection has a computational cost, namely the

inversion of an additional matrix whose dimension is equal to the number of pressure degrees

of freedom, and some additional global matrix multiplication. However, due to the fact that
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the resulting system of equations is considerably reduced, and that these additional operations

are easily parallelisable, the overload of the method can be partly compensated, as it will be

detailed.

In the master-slave approach presented here, the computation of the hydrostatic pressures

is performed as a post-processing of the converged solution, and thus, in non-linear analysis,

they do not need to be computed iteratively. Additionally, a set of spurious pressure modes

may arise if (i) the boundary is fully prescribed with Dirichlet conditions, or (ii) non LBB-

compliant mixed elements are used. While the former case is physically consistent (the pressure

is determinated up to a constant value), in the latter case the pressure modes are a byproduct

of the numerical discretisation employed. For both cases, the method presented here allows to

compute the pressure modes, in linear and non-linear analysis.

For clarity in the exposition and in order to relate the method to other existent solution

techniques for mixed formulations, we will first derive the discretised form arising from fully

incompressible linear elasticity in Section 2. In Section 3 we present the master-slave approach

for linear incompressible problems and, in Section 4, we introduced the extension to non-linear

problems. Relevant numerical examples in two and three dimensions are obtained in Section

5, and contrasted against their analytical solution.

2. MIXED-FORMULATION FOR INCOMPRESSIBLE ELASTICITY

2.1. Continuous problem

Let us first cast the equilibrium equations of a compressible linear elastic domain Ω ⊂ R
nsd ,

with nsd the number of space dimensions. Given a displacement field u(x) at each point
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x ∈ Ω, the linear strain tensor is expressible as ε(u) = 1
2 (∇u + ∇uT) = εV (u)

3 I + ε̄(u),

with εV (u) = trace(ε(u)) = div(u) and ε̄(u) = ε(u) − εV (u)
3 I its volumetric and deviatoric

part, respectively. For incompressible materials, no volumetric deformation exists, and thus

div(u) = 0. Let us assume that a surface load g is applied on the boundary Γg and a prescribed

displacement u0 on Γu, with ∂Ω = Γg ∪ Γu and Γg ∩ Γu = ∅. The equilibrium equations can

be then posed as follows (see for instance [12, 18]): Find u ∈ U and p ∈ Q such that,

a(u, v) − b(p, v) = (g, v), ∀v ∈ V (1a)

b(q, u) = 0, ∀q ∈ Q (1b)

where a(, ) and b(, ) are bilinear forms associated to the deviatoric strain-energy and the

incompressible condition, respectively, and (, ) is a inner product (force term) associated to

the external load g. Their explicit expressions read:

a(u, v) = 2µ

∫

Ω

ε̄(u) : ε̄(v)dΩ

b(p, v) =

∫

Ω

p divv dΩ (1c)

(g, v) =

∫

Ω

g · v dΩ,

where µ is the shear modulus. Equation (1b) is the weak form of the local incompressibility

condition εV (u) = div(u) = 0, ∀x ∈ Ω, and p is the hydrostatic pressure. The space Q

of pressures is required to be square-integrable, i.e. Q := L2, and the space U of the trial

functions is given by U = {u ∈ H
1(Ω)|u|Γu

= u0}, where H
1 is the Sobolev space of square-
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integrable functions with integrable first derivatives †. The space of test functions is given by

V = {v ∈ U |v|Γu
= 0}. We omit further details in the nature of the spaces U , V and Q, which

can be found for instance in [12].

2.2. Mixed finite element discretisation

After introducing a suitable finite element discretisation of the domain Ω into nel elemental

domains Ωe, e = 1, . . . , nel, the discrete version of problem (1) can be stated as follows: Find

uh ∈ U
h and ph ∈ Qh such that,

a(uh, vh) − b(ph, vh) = (g, vh), ∀vh ∈ V
h (2a)

b(qh, uh) = 0, ∀qh ∈ Qh. (2b)

The existence, uniqueness and stability of the discrete problem is provided by the (i)

coercivity of the operator a(uh, vh) on kerQh, and (ii) the LBB or inf-sup condition of the

discrete spaces V
h and Qh [12]. A large amount of attention has been dedicated in the literature

for the construction of suitable LBB-compliant spaces (see for instance [7, 12, 17, 20]), or

methods that stabilise the solution [24, 16]. When using non-compliant LBB mixed finite

elements discretisations, a lack of convergence of the pressure field is observed. Alternatively,

in penalty methods, these finite element interpolations suffer a locking phenomenon of the

displacement field as the penalty parameter increases [12, 24].

We will resort next to a finite element interpolation of the spaces V and Q by using a set of

†We denote with bold font space functions where each component of the elements of the space belong to the

associated space function with non-bold font.
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standard Lagrangian polynomials as follows: uh = Iiui and ph = hjpj , where Ii and hj are the

(nodal) displacement and pressure trial functions. The vectors ui are the nodal displacements,

and pj are elemental pressure values computed at certain interior points of each element e.

Henceforth, we will assume that our discretised domain has nnodes nodes and np pressure dof.

The test functions v ∈ V are discretised in the same way as the displacements u ∈ U . Using

the mentioned interpolation, the discretised version of the equilibrium equations in (2) leads

to the following system of equations [18]:

Ku− BTp = g (3a)

Bu = 0. (3b)

The vectors u contains all the nodal displacements ui, i = 1, . . . , nnodes. Vector p contains

the elemental pressure degrees of freedom pj, j = 1, . . . , np. Matrix K is the standard Jacobian

constructed by assembling the elemental matrices kij
e = 2µ

∫
Ωe(∇Ii · ∇Ij)IdΩ − 2µ

3

∫
Ω
∇Ii ⊗

∇Ij dΩ corresponding to the coupling of nodes i and j, and the load vector g is the assembly

of the nodal contributions gi =
∫
Ωe Iig dΩ for each elemental domain Ωe. On the other hand,

the block ij of the gradient operator matrix B associated to pressure dof i and node j can be

expressed as,

Bij =






∫
Ω hi(∇Ij)TdΩ , pressure dof i and node j are in the same element

0 , otherwise,

(4)

where ∇Ij denotes the gradient of the shape function Ij of node j. If we use a space

Qh of piecewise constant functions (like in the Q1P0 quadrilateral), the equation Bu = 0 is
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equivalent to the satisfaction of the np = nel equations that impose the elemental conservation

of volumes Ωe :

∫

Ωe

div(ue)dΩe = ue
j ·
∫

Ωe

∇IjdΩe = bj
e · ue

j = 0, ∀e = 1, . . . , nel,

where only summation over the j nodes for each element e is understood. In our approach

though, the pressure field can be of any order, and we will develop a solution method of (3a)

for general mixed finite element interpolation, with a piecewise continuous pressure.

In the optimisation context, it can be shown that the equilibrium equations (3) are the

Karush-Kuhn-Tucker (KKT) conditions of a constrained minimisation problem (or saddle point

problem), which can be stated as follows [32]:






min
uh∈Uh

1

2
a(uh, uh) − (g, uh)

s.t. b(ph, uh) = 0.

The hydrostatic pressures ph can be then interpreted as a field of Lagrange multipliers that

impose the condition divuh = 0 weakly. In the next section we describe a method to solve

the constrained system of equations (3) which circumvents the computation of the Lagrange

multipliers (or the pressure variables).

3. MASTER-SLAVE APPROACH FOR LINEAR ELASTICITY

3.1. General approach

The solution of the constraint equations in (3) can be performed resorting to the so-called null

space method [8, 32, 9]. It consists in finding a projection matrix, let’s say N, whose range is
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equal to kerB, i.e. rangeN = kerB. Such matrix will therefore satisfy the properties,

NTBT = 0, BN = 0. (5)

In this way, we can project the discretised equilibrium equations in (3) onto rangeN by

pre-multiplying equation (3a) by NT, which leads, after using (5), to the following system of

equations:

NT (Ku− g) = 0, (6a)

Bu = 0 (6b)

As it will explained in the next paragraphs, the master-slave approach provides in fact a

general way to obtain such matrix N.

The algebraic equations Bu = 0 introduce a set of dependences among the discretised

displacement variables. Therefore, and in parallel with other applications of the master-slave

approach [26, 31, 30, 29], we can split the nodal displacement degrees of freedom u into a set of

ns slave (dependent) displacements us, and nm master (independent) displacements um. The

global vector of displacements is then expressible as uT = {uT

s uT

m}, and the incompressible

constraint equations Bu = 0 may be in turn partitioned as B = [Bs Bm]. Accordingly, we

can rewrite Bu = 0 as,

Bsus + Bmum = 0. (7)

If the constraint equations in (7) are independent (we will discuss in Section 3.3 the case

when they are not), matrix Bs is invertible and we may rewrite the dependence relationship



MASTER-SLAVE INCOMPRESSIBILITY 9

as,

us = −B−1
s Bmum.

Thus, any displacement field with the form

u =






−B−1
s Bmum

um





= Num, (8a)

will satisfy the constraint equation (3b), and hence, is a weakly solenoidal discretised field.

The master-slave transformation matrix N in (8a) is defined by,

N =




−B−1

s Bm

I



 , (8b)

with I the nm ×nm identity matrix. It can be verified that the columns of matrix N belong

to kerB, and thus BN = 0, as we wanted. It follows that matrix N may be used to project

the equilibrium equations as shown in (6a), which together with relation (8a) leads to the

following system of equations:

NTKNum − NTg = 0. (9)

The advantage of this system of equations with respect to the original system (3) is two-

fold:(i) the pressure unknowns p have been eliminated, and (ii) it contains ns displacement

dof less than u in (3). Note also that if we compute our nodal displacements according to (8a),

the constraint Bu = 0 will be always satisfied by construction, and thus, it does not need to

be explicitly imposed.
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On the other hand, the elemental hydrostatic pressures can be computed from the first ns

components of equation (3a). More explicitly, if we split the rows of the vectors Ku and g

according to the same partitioning used for B, we may write them as,

Ku =






(Ku)s

(Ku)m





, g =






(g)s

(g)m





,

where (v)s ∈ R
ns and (v)m ∈ R

nm denote the rows associated to the slave and master dof

of a vector v ∈ R
ndof , respectively. From the first ns equations of (3a) we can deduce the

following expression for p:

p = B−T

s (Ku− g)s . (10)

It can be verified that this p satisfies as well the last nm equations of (3a), which can be

written as

(Ku)m − BT

mp = (g)m. (11)

Indeed, inserting the expression of N in (8b) into the reduced system of equilibrium equations

NT(Ku− g) = 0, we obtain the relation:

BT

mB−T

s (Ku− g)s = (Ku − g)m .

If we replace p in (11) by its expression in (10), it can be observed that the previous equation

and (11) are identical.
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We note that all the terms contained in (10) have been computed previously, or can be

obtained in parallel with the computation of the term B−1
s Bm in matrix N, which will be

explained next.

3.2. Implementation of the method

The solution process given so far is well defined as far as Bs is non-singular. In our

implementation of the code, we transform the gradient operator B = [Bs Bm] into the matrix

form [I −B−1
s Bm] using a Gaussian decomposition process. This strategy permitted us to

choose the slave degrees of freedom us as those that provided the maximum pivots, which

minimises the lost of arithmetical precision in matrix N. We note though that while the

number of slave dof ns is independent of the chosen strategy, there are different suitable

options for a selection of the actual partitioning of the dof. For instance, a plausible choice

when sparseness is exploited may be to minimise the lost of sparseness of matrix K after

the matrix product NTKN is performed. A similar solution method in the context of linear

analysis and using graph theory can be found in [1]. For the numerical examples we have

tested, different strategies have always provided identical results.

The decomposition process and the matrix products in (9) are in fact the main additional

computational costs introduced by the solution method. However, both operations are easily

parallelisable. This fact, and the reduction of the number of variables in the system of equations

(9), alleviate this additional cost.

For instance, it can be verified that for a 2D squared domain with nel equal quadrilateral

elements, the reduction in the system of equations approaches 50% and 62.5% for Q1P0

and Q2P1 interpolations, respectively, as nel increases. However, the solution of nm systems
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of equations with dimensions ns × ns, plus two matrix multiplications of nm × (ns + nm)

must be added. Since the number of operations of the Gaussian decomposition is equal

to [27] n3
s/3 + nm × n2

s − ns/3, and the product NTKN requires at least 2(ns + nm)2nm

operations (without taking into account the sparseness of the matrices involved), it can be

estimated that, for the mentioned problem and with equivalent displacement interpolations,

the computational cost of the master-slave approach is at least four times larger. However,

the additional operations can be easily parallelisable, as we have done in our implementation.

Moreover, since we are exactly satisfying the discretised kinematic constraints, we show in

Section 5, that for non-linear problems, coarser meshes within the master slave-approach lead

to more accurate results than finer meshes using penalty methods.

The singularity of matrix Bs, detected by the presence of maximum pivots which are equal

(or very close) to 0, is related to the stability conditions of the system in (3). The latter is

in turn dependent on the nature of the finite element spaces employed for the displacement

and pressure fields [34, 23]. We show in the next section that whenever Bs is singular, a set of

pressure modes arises which are associated to the rank-deficiency of Bs [34, 7, 24].

3.3. Spurious pressure modes

The stability and solvability conditions of the discretised problem in (3) are governed by the

inf-sup condition, which has the following matrix expression [5, 11, 12, 7]:

inf
06=uh∈Vh

sup
06=qh∈Qh

qTBu

‖uh‖Vh‖qh‖Q
≥ β > 0, (12)

with β a parameter independent of the mesh size. If Bs is singular, we can find a vector

p0 6= 0 such that BTp0 = 0, which nullifies the numerator in (12), and thus violates the inf-sup
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condition. In fact, kerBT defines a set of pressure modes p0, whose spurious nature is revealed

by noting that since BTp0 = 0, any solution of the form p̄ = p + p0 will also satisfy the

equilibrium equations (3). The singularity of Bs can be interpreted as the underconstricton of

the displacement field [24], which in many cases is a pathological byproduct of the numerical

discretisation. The conditions under which such modes arise have been largely studied (see

for instance [23] for a study of the chess-board modes in the 4-node quadrilateral element).

However, for fully Dirichlet boundary conditions, a physically consistent constant pressure

mode exists, which the solution method of the equilibrium equations should detect. For this

reason, we will describe next a method to compute such potential pressure modes.

We will assume that equation Bu = 0 includes ns constraint equations, r independent

equations and t = ns − r > 0 dependent equations. Therefore, B is a ns × ndof matrix,

where ndof is total number of displacement degrees of freedom of the discretised domain,

and rankB = r < ns, i.e. B is rank-deficient. This can be regarded as the presence of

dependent constraint conditions which do not impose further restrictions on the divergence-free

displacement field u (imposing r conditions already leads to a divergence-free displacements

in a weak sense, for the space of pressures Qh considered). Thus, the constraint equation

Bu = 0 contains t = ns − r dependent constraints which we will discard. The greater the

rank-deficiency of B the greater the dimensions of kerBT, and thus the larger the number of

pressure modes that satisfy BTp0 = 0.

This fact can be demonstrated algebraically by further partitioning matrix Bs into r and t

rows with the linearly independent and dependent constraints, respectively, i.e.
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B =




Brr Brt Brm

Btr Btt Btm



 ,

where Brr is now an invertible r× r matrix. From the dependency of the last t rows, matrix

B accepts also the form:

B =




Brr Brt Brm

Btr BtrB
−1
rr Brt BtrB

−1
rr Brm



 =




I 0

0 BtrB
−1
rr








Brr Brt Brm

Brr Brt Brm



 . (13)

The last expression clearly shows that the second block of t rows in the equation Bu = 0

adds redundant constraints in the displacement field u, and therefore can be discarded without

altering the solution of the mixed problem. Consequently, when a singular Bs is detected in

the Gaussian elimination process, the following reduced gradient operator and master-slave

transformation matrix will be used:

B̄ =

[
Brr Brt Brm

]
; N̄ =





−B−1
rr Brt −B−1

rr Brm

I 0

0 I




.

It can be deduced that a vector of nodal hydrostatic pressures satisfying the equilibrium

equation in (3a) is expressible as

p =






B−T

rr ((Ku)r − gr)

0





,

which can be proved following the steps in Section 3.1. On the other hand, any vector with

the form,



MASTER-SLAVE INCOMPRESSIBILITY 15

p0 =






−B−T

rr BT

trpt

pt






will satisfy the relation BTp0 = 0 (use last expression in (13)), and thus, will be a pressure

mode. The vector pt, which is arbitrary and is t-dimensional, spans kerBT, i.e. the space of all

pressure modes. Some numerical examples that exhibit pressure modes are shown in Section

5.

4. MASTER-SLAVE APPROACH FOR HYPERELASTIC MATERIALS

We extend the master-slave approach to non-linear problems with kinematic constraints,

in particular to incompressible non-linear elasticity. We will first briefly introduce the key

ingredients of non-linear elasticity, and then write the equations of an incompressible material

as a constrained problem, onto which we apply similar techniques to those introduced in the

previous section.

4.1. Hyperelastic compressible material

We will denote by Ω0 ⊂ R
nsd and Ω ⊂ R

nsd the undeformed and deformed configurations

of an elastic body B. Following standard notation [10, 21, 33], such a deformation may be

mathematically described by the map φ(X, t) : R
3 × R → R

3 of material points X onto the

spatial points x = φ(X, t). We introduce the deformation gradient tensor as the tangent map

F = ∂x
∂X

and its determinant J = det(F). We will also use the right Cauchy-Green deformation

tensor C = FTF, its invariants IC = det(C) = J2, IIC = C : C and IIIC = trace(C),

and a strain energy function which is assumed to depend exclusively on these invariants
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Ψ(IC , IIC , IIIC).

For simplicity, we assume that no body forces are applied, and therefore the local spatial

equilibrium equation of body B in statics reads [10, 33]:

divσ = 0, (15)

where σ is the Cauchy stress tensor, related to the strain energy function through the

relation

σ = 2J−1F
∂Ψ

∂C
FT. (16)

The stress tensor σ can be understood as a function of the material points X, i.e. σ(X), or

alternatively a function of a displacement field u(X) = x(X)−X, i.e. σ(u). We will hereafter

refer to the latter case, although we will omit its argument for clarity.

The solution of the equilibrium equation consists in finding a displacement u, such that

satisfies (15) at all points of the domain Ω0. As it is customary, the associated weak form is

obtained by multiplying (15) by a test function v ∈ V , integrating over the deformed domain

and integrating by parts, which leads to: Find u ∈ U such that

ā(u, v) = (g, v), ∀v ∈ V , (17a)

where ā(u, v) and (g, v) are given by

ā(u, v) :=

∫

Ω

σ : ∇xv dΩ (17b)

(g, v) :=

∫

Γg

g · v dΓ, (17c)
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and g is a field of surface forces acting on the boundary Γg of B.

The finite element discretisation of (17) can be derived resorting to the standard Lagrangian

functions Ii(X), i = 1, . . . , nnodes and interpolating the displacement field and test functions

in the usual manner: u(X)h = Ii(X)ui and v(X)h = Ii(X)vi, where ui and vi are a set of

nodal values. From the arbitrariness of the nodal values of the test functions, the following

non-linear equations are obtained:

t − f = 0, (18)

where the component associated to the dof of node i of the elastic load vector t and the

external load vector are given by ti =
∫
Ω σ∇xIi(X) dΩ and gi =

∫
Γg

gIi(X) dΓ, respectively

(see for instance [10]). We remark that for the usual strain energy functions, t will be in

general non-linear, and thus t 6= Ku with K a constant matrix. Problem (18) can be solved

by linearising it and resorting to the Newton-Raphson process, which at iteration (k), leads to

the following iterative scheme:

K(k)∆u = f (k) − t(k). (19)

Vector ∆u(k+1) are the set of nodal iterative displacements, and matrix K is the Jacobian

of t, i.e. Dt[∆u] = K∆u.

4.2. Hyperelastic incompressible material

For an incompressible material, the following additional point-wise constraint must be satisfied:
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J(X) = detF = 1, ∀X ∈ Ω0. (20)

Furthermore, in incompressible deformations, the right Cauchy-Green tensor C must also

satisfy a kinematic condition [10], namely to be expressible as Ĉ = J−2/3C. The modelling of

incompressible hyperelastic materials requires thus to consider a version of the strain energy

function Ψ̂ which depends on the modified invariants I bC , II bC and III bC = 1, and additionally

impose explicitly condition (20). We will next show that the structure of this constrained

problem shares many similarities with the linear case.

We first note that due to the kinematic constraints, the Cauchy stress has a deviatoric

component stemming from the modified strain energy function, according to (16), plus a

hydrostatic part stemming from the kinematic constraint [10]:

σ = 2J−1F
∂Ψ̂

∂C
FT − pI, (21)

where the additional variable p is the hydrostatic pressure. Consequently, for the present

incompressible case, the form ā in (17b) can be rewritten as,

ā(u, p, v) :=

∫

Ω

2J−1F
∂Ψ̂

∂C
FT : ∇xv dΩ

︸ ︷︷ ︸
ba(u,v)

−
∫

Ω

p∇xv : I dΩ

︸ ︷︷ ︸
bb(p,v)

(22)

Second, we will relax the point-wise constraint (20), and use its weak form, which reads:

w(q, u) :=

∫

Ω0

q(J − 1)dΩ = 0, ∀ q ∈ Q, (23)



MASTER-SLAVE INCOMPRESSIBILITY 19

where as before, q ∈ Q can be regarded as a field of Lagrange multipliers. Combining

equations (17), (22) and (23), we can formulate the constraint continuous problem of an

hyperelastic material as: Find (u, p) ∈ U ×Q such that,

â(u, v) − b̂(p, v) − (g, v) = 0, ∀v ∈ V (24a)

w(q, u) = 0, ∀ q ∈ Q. (24b)

The equations above have a similar structure as their linear counterparts (3) in Section 3.

However, two main differences can be observed: (i) the gradient operator in â(, ) and b̂(, ) are

performed with respect to the spatial variables x, and thus equation (24a) is non-linear, and

(ii) equation (24b) is a non-linear constraint. We will deal with this non-linearities in the next

section.

It can be verified that the weak form (24) are the KKT conditions of the minimisation of

the total energy
∫
Ω Ψ̂ dΩ− (g, u), subjected to the incompressibility constraint w(q, u) = 0 (in

contrast to linear case, the total elastic energy can not be written as 1
2 â(u, u)). The existence

and requirements on V, U and F for the existence of a solution to problem (24) have been

analysed for instance in [35].

4.3. Mixed finite element discretisation

For reasons that will be clear below, we will not impose (23) directly, but its linearised form

Dvw(q, v)[δu], which after using relation D J [δu] = J∇xδu : I yields:

b̂(q, δu) = 0 ∀ q ∈ Q. (25)

with b̂(, ) defined in (22).
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After discretising the fields u, δu, v, p and q with the usual standard Lagrangian functions,

the continuous weak form in (24) leads to the following non-linear equations:

t̂ − BTp− f = 0 (26a)

B∆u = 0, (26b)

where we have replaced the variation δu by the iterative displacement ∆u, i.e. its algorithmic

counterpart. The global vector p contains all the nodal values of the hydrostatic pressures, i.e.

p = {p1 . . . pnp
}T, and the block ij of the gradient operator matrix B associated to pressure

dof i and node j is now given by

Bij =






∫
Ω hi∇xIj dΩ , pressure dof i and node j are in the same element

0 , otherwise.

(26c)

The component corresponding to node i of the elastic and external load vectors t̂ and f have

the following expressions:

t̂i =

∫

Ω

2J−1F
∂Φ̂

∂C
FT∇xIi dΩ, (26d)

f i =

∫

Ω

Iif dΩ. (26e)

Equation (26) has a similar structure to equation (7), although for the current case B is

non-linear and relates (infinitesimal) iterative displacements ∆u.
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4.4. Master-slave approach

Applying again the steps of the master-slave approach, we will split the vector ∆u into a set of

iterative slave displacements ∆us and master iterative displacements ∆um. Partitioning the

columns of B accordingly, i.e. B = [Bs Bm], we can construct a master-slave transformation

matrix N such that:

∆u = N∆um, (27)

with

N =




−B−1

s Bm

I



 .

Like in the previous section, we can project the non-linear equation (26a) onto kerB, which

gives rise to the following non-linear equation:

NT(t̂ − f) = 0. (28)

It is shown in the Appendix that the Jacobian of NTt̂ may be written as NT (KE − KN)N,

where KE is the standard Jacobian of the elastic load vector t̂, and matrix KN arises due

to the linearisation of N. Therefore, after using the iterative master-slave relation in (27), we

obtain the following modified version of the Newton-Raphson process:

(NT (KE − KN )N)
(k)

∆um = −
(
NT

(
t̂ − f

))(k)

. (29)
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This system of equations has the minimal degrees of freedom and can be solved as an

unconstrained problem with on the master iterative displacements ∆um.

The elemental pressures can be computed by using the first nel equations in (26a), whence:

p = BT

s (t̂ − f)s.

We note that this step does not require any iterative process, but just the converged values

of t̂.

If we restrict our space Q
h to the set of piecewise constant functions, we are actually

imposing a element-wise constraint, namely vol(Ωe) = vol(Ωe
0), i.e.

∫

Ωe
0

∇xu : IdΩ = 0, e = 1, . . . , Ne.

We point out, that by imposing in (26b) the variation of the kinematic constraint, and not

the constraint itself w(q, u) = 0 ∀q ∈ Q, a potential drift may exist after successive update

of the iterative displacements as ∆u = N∆um, leading to a slight violation of the constraint.

In order to avoid this effect, during the update process, we have projected the solution onto

the discretised version of the weak form of the constraint: w(hj ,u) = 0, j = 1, . . . , np. This

projection, necessary due to the non-linearity of the kinematic constraint J − 1 = 0, required

in fact one or maximum two iterations during the update process, and did not affect the

quadratic convergence of the Newton-Raphson solution process. More precisely, the satisfaction

of w(q, u) = 0 ∀q ∈ Q in (24b) is equivalent to the following discretised non-linear equations:

w(u) = 0, (30)
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with w(u)T = {w1, . . . , wnp} and wj = w(hj ,u), as defined in (23). After solving the linear

system of equations in (29) at iteration (k + 1), the following iterative process is performed in

order to satisfy (30):

w(u(ℓ)) + B(ℓ)
s ∆us = 0.

Note that during these last iterations, um are kept fixed (i.e. u
(ℓ)
m = u

(k+1)
m ), and only the

slave variables us are updated according to u
(ℓ+1)
s = u

(ℓ)
s + ∆us. Alternatively, as suggested

by a reviewer, the equilibirum and projection iterations can be embedded in a single solution

procedure by solving simultaneously (28) and (30):






NT(t̂ − f)

w(u)





= 0.

Indeed, the application of the Newton-Raphson solution process to this whole system of

ndof non-linear equations yields the following expression:




0 NT(KE − KN )N

Bs Bm





(k)



∆us

∆um





= −






NT(t̂ − f)

w(u)






(k)

.

The upper block of equations is exactly (29), while the second block, is an alternative update

of ∆us.

Like in the linear case, we have computed matrix N using a Gaussian decomposition method,

and we have numerically checked that the choice of the slave dof has no effects in the resulting

displacements.
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In our numerical examples, we have used a Neo-Hookean material, which has the following

strain energy function [10]:

Ψ =
µ

2
(trace(C) − 3) − µ lnJ +

λ

2
(lnJ)2.

After inserting the kinematic constraint detF = detC = 1 in the previous function, the

modified version of Ψ, which only takes into account the deviatoric deformations, reads:

Ψ̂ =
µ

2
(trace(Ĉ) − 3).

5. NUMERICAL EXAMPLES

In this section we describe the results obtained with the master-slave approach in linear

(example 5.1) and non-linear analysis (examples 5.2-5.4). We have tested the interpolations

Q1P0 (quadrilateral with 4 velocity nodes and one internal pressure node) and Q2P1

(quadrilaterals with 9 velocity nodes and three internal pressure nodes in 2D, or hexahedra

with 27 velocity nodes and 4 internal pressure nodes in 3D).

5.1. Linear elastic problem with analytical solution

We reproduce here some well known stability results of mixed elements using the master-slave

approach. Consider the squared domain (x, y) ∈ [0, 1]2 with the displacements fully prescribed

at the whole boundary with u0 = 0. After defining the function χ(ξ) = ξ4 − 2ξ3 + ξ2, the

following body load is applied:
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g(x, y) = µ






χ(x)χ′′′(y) + χ′′(x)χ′(y)

−χ′′′(x)χ(y) − χ′(x)χ′′(y)





+






3(x − 0.5)2

0





.

The material is incompressible with a Lamé constant µ = 100. It can be verified that the

problem has the following analytical solution:

u(x, y) =






χ(x)χ′(y)

−χ′(x)χ(y)





, p(x, y) = (x − 0.5)3.

We have modelled this example with the master-slave approach and using two mixed

finite element quadrilaterals: non LBB-compliant Q1P0 element (bilinear displacements

and discontinuous constant pressures) and LBB-compliant Q2P1 element (biquadratic

displacements and discontinuous linear pressures). The first element has been employed in

a regular mesh and in a distorted one, shown in Figure 1a and 1b, respectively.

(a) (b) (c)

Figure 1. Regular mesh (a), distorted mesh (b), and displacements on the regular mesh using 400

Q1P0 elements in the linear problem.

While the element Q2P1, and the element Q1P0 in the distorted mesh gives only the
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(physically consistent) constant pressure mode, the Q1P0 in the regular mesh yields 2 popular

spurious chess-board modes [7, 23], as shown in Figure 2b.

Figure 3 shows that all the elements have an order of convergence k+1 in the displacements

for the L2-norm, as expected [24]. However, regarding the pressure dof, while the Q2P1 element

exhibits optimal convergence, the Q1P0 element yields a suboptimal convergence, regardless

of the mesh employed.

(a) Q1P0, hydrostatic

pressure, regular mesh

(b) Q1P0, spurious pres-

sure mode, regular mesh

(c) Q1P0, hydrostatic

pressure, distorted mesh

(d) Q2P1, hydrostatic

pressure, regular mesh

Figure 2. Contour plots of the hydrostatic pressures (a,c,d) and one of the two spurious pressure modes

for the Q1P0 element on the regular mesh (b).The four plots use 400 elements.

5.2. Non-linear elastic square with fully Dirichlet boundary conditions

A model with the same geometry as in the previous example has been used. However, the

material is now considered hyperelastic, and the boundary of the domain is subjected to a

constant horizontal prescribed displacement u0 (see Figure 4). The solution is the displacement

u0 throughout the domain, with a zero hydrostatic pressure and deviatoric stress, and a

constant hydrostatic pressure mode. The aim of the example is to analyse the behaviour of

the same elements studied before in a non-linear context.
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the mesh becomes more and more regular. The Gauss decomposition then detects an additional

nearly zero pivot, and thus the presence of the chess-board spurious modes, which form part

of the final converged solution when using the Q1P0 element.

Both elements, Q1P0 and Q2P1 lead to the correct solution: zero hydrostatic pressure and

deviatoric stress, and constant nodal displacements u0. In all cases, the Newton-Raphson

process was stopped when the residual norm was smaller than 10−10, which results in an

error in pressures and displacements smaller than 10−12 for the L2-norm. However, as Table

I shows, the mentioned mesh dependent response of the Q1P0 element introduced difficulties

in the convergence. Nonetheless, and in spite of the resulting chess-board modes, the correct

solution of the displacements was obtained.

The same test was also performed in 3D using three-dimensional mesh of 4 × 4 × 4 regular

hexahedra, and resorting to Q1P0 and Q2P1 mixed finite elements. As expected, the former

interpolation lead to 11 spurious pressure modes, with similar chess-board patterns [12],

whereas the latter yield only the constant pressure mode.

5.3. Inflation of thick-walled cylinder

We model the inflation of a thick-walled cylinder with initial internal and external radius

R1 = 1.0 and R2 = 1.25 (see Figure 5), and Lamé constant µ = 1. Their deformed counterparts

are denoted by r1 and r2. The analytical solution [19, 33] can be obtained from the symmetry

condition, which leads to the following relation:

r =
√

r2
1 + R2 − R2

1,

where R and r are the undeformed and deformed radius of any point R0 ≤ R ≤ R1. Also,
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Iter. Q1P0, Res.Norm Q1P0, # Pres. modes Q2P1, Res.Norm Q2P1, # Pres. modes

1 1.214E+01 1 4.249E+00 1

2 1.764E+01 1 5.634E+00 1

3 1.001E-03 1 4.306E+00 1

4 7.210E+00 1 1.317E-04 1

5 3.934E-04 1 1.682E-08 1

6 8.904E+00 1 4.216E-15 1

7 3.299E-05 2 - -

8 4.146E-07 2 - -

9 6.711E-12 2 - -

Table I. Residual Norm of the Newton-Raphson iterative process when using Q1P0 and Q2P1 elements

in the non-linear elastic square problem

from the condition detF = 1, we have that the only non-zero components of the deformation

gradient F and the left Cauchy-Green strain tensor b = FFT are brr = (Frr)
2 =

(
R
r

)2
,

bθθ = (Fθθ)
2 = 1/brr, bzz = Fzz = 1. The resulting Cauchy stresses can be obtained by solving

the first component of the equilibrium equation divσ = 0, which in cylindrical coordinates

and in the present case reads:

∂

∂r
σrr =

1

r
(σθθ − σrr).

From the expression σ = µ(b − 1
3I) − pI, this equation can be integrated, leading to:

σrr(R) = µ log

(
R

r

)
+

µ

2

(
R

r

)2

+ k,

where from the boundary condition σrr(R2) = 0, we deduce k = −µ log(R2/r2) −

0.5µ (R2/r2)
2
.
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[4], where robust results where obtained for this element.

5.4. Inflation of thick-walled sphere

The inflation of a thick walled sphere is a well studied problem, experimentally and analytically

[33, 21]. Although it is conceptually similar to the previous example, the solution leads

to qualitatively different results. The dimensions of the inner and outer radius R1 and R2

are the same to those indicated in Figure 5, and µ = 1 will be also used. The relation

between the deformed and undeformed radius, taking into account the spherical symmetry

and incompressibility condition is now given by,

r =
(
r3
1 + R3 − R3

1

)1/3
.

The non-zero elements of the deformation gradient F and the left Cauchy-Green strain

tensor b are brr = (Frr)
2 = R2

r2 , bθθ = (Fθθ)
2 = 1/

√
brr, bφφ = (Fφφ)2 = bθθ. The solution

of this problem is obtained in the same manner as in the previous case. However, the first

component of the equilibrium equation divσ = 0 in spherical coordinates reads:

∂

∂r
σrr = µ

2

r
(σθθ − σrr).

which can be integrated, leading to the following inflation radial stress σrr:

σrr(R) =

(
2

(
R

r

)
+ 0.5

(
R

r

)4
)

+ k,

The constant k is obtained from the boundary condition σrr(R2) = 0, which yields

k = −µ
(
2R2/r2 + 0.5 (R2/r2)

4
)
.
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Figure 9 shows the initial mesh and the deformed sphere. In contrast to the previous example,

the inflation pressure pI = −σrr(R1) has a maximum, in the present case near the value

r1 = 1.4922. This is a popular effect experienced when inflating a balloon, which the numerical

results in Figure 10 also capture. We note that more accurate and sophisticated models, such

as the Ogden or Mooney-Rivlin [33, 21], can capture a more realistic behaviour, which is the

increase of the internal pressure after the mentioned maximum. We have instead used the

simple Neo-Hookean material model, which despite being physically inaccurate, it is sufficient

to describe and study the computational problems encountered in incompressibility.

(a) (b)

Figure 9. Initial mesh (a) and deformed configuration (b) of the sphere inflation problem

Like in the previous example, we have plotted the error in the radial stresses and the

hydrostatic pressure (see Figures 11a and 11b). The error in the radial stress σrr is for the

master-slave approach higher than its two-dimensional counterpart. This anomaly is currently

being investigated and could not be explained yet, although it is apparently not directly related

to the incompressibility constraint. Nonetheless, the error in the hydrostatic pressure follows
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By extending the master-slave approach to non-linear problems such as the modelling of

hyperelastic materials, the incompressibility constraint is also satisfied in a weak sense. In

the examples presented here, the satisfaction of this constraint appears also to determine the

accuracy of the hydrostatic pressures.

We note that other basis of kerB have been suggested in the literature, some of them with

a physical representation (see for instance [20]). Here, we have introduced a general algebraic

method to solve fully incompressible problems for arbitrary domains. The resulting formulation

is based on a (weakly) divergence-free displacement field. However, the finite elements used

are subjected to the same stability conditions as in other mixed formulations, namely the

satisfaction of the LBB condition.

The projection of the equilibrium equations has a non-negligible computational cost: the

inversion of a matrix, and two products of global matrices. This cost is however alleviated by

the reduction in the number of variables in the final system of equations, and the fact that

both operations can be easily parallelised, as we have done during our implementation. In

addition, the use of LBB-compliant mixed element has been proved to lead accurate results in

non-linear analysis.

With the present work, we have widen the applicability of the master-slave approach

to other kind of constraints than those encountered in mechanisms and general contact

mechanics. Although no reference to dynamic analyses has been made, we mention that the

elimination of the Lagrange multipliers corresponding to the kinematic constraints is very

advantageous in dynamics. Indeed, it has been shown that in linear dynamic analysis, infinite

eigenvalues are associated to the Lagrange multipliers [15], and thus, by circumventing them, no

differential-algebraic equation need to be solved. The application of the master-slave approach
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in incompressibility to non-linear dynamics remains yet unexplored.
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APPENDIX

LINEARISATION OF NON-LINEAR EQUATIONS

The set of non-linear equations is expressible as:

N
Tbt =

ˆ
−B

T

mB
−T

s I
˜

8
><
>:

bts

btm

9
>=
>;

.

The linear part can be written as the addition of two terms as follows:

∆(NTbt) = N
T
KEN∆xm + (∆N

T)bt,

where KE is the standard Jacobian of the unconstrained element, and use of the relation

∆u = N∆um has been done in the first term of the identity. By resorting to the relation

∆B−T = −B−T(∆BT)B−T, the second term turns into,

(∆N
T)bt = −∆(BT

m)B−T

s
bts + B

T

mB
−T

s (∆B
T

s )B−T

s
bts = −N

T

2
64

∆BT

s

∆BT

m

3
75 B

−T

s
bts. (31)

We note here that the components of the product B−T

s
bts are in fact the elemental pressures p. In

addition, from the definitions of matrices Bs and Bm in (26c), it can be verified that the product

[Bs Bm]Tp in the last term in (31) may be written as the assembling of elemental contributions, each

one of which, denoted by ne, e = 1, . . . , nel, is expressible as,
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n
e = pk

Z

Ωe

h
k
J∇xI

i
dΩ,

where summation on repeated index k is understood ( k is the number of pressure dof per element).

The elemental vector ne has nsd × nen dimensions, as the standard elemental displacement residual,

where nen is the number of nodes per element. The second term in (31) can be now written as,

(∆N
T)bt = −N

T

nel

A
e=1

∆n
e
˛̨
p=cnst

,

where A denotes the standard assembling process. The linearisation of the elemental vectors

ne can be derived using the following formulae:

∆J = J(∇xIb · ∆ub)

∆(∇xIa) = (∆F−T)∇XIa = −F−T∆FTF−T∇XIa = −F−T(∇XIb ⊗ ∆xb)∇xIa

= −(∇xIb ⊗∇xIa)∆ub.

It follows then that defining the following elemental stiffness matrix:

ke
ab = pk

∫

Ωe

hk(∇xIa ⊗∇xIb −∇xIb ⊗∇xIa)JdΩe, (32)

and using again the relationship ∆u = N∆um, the linearisation of NTt̂ results in

∆(NTt̂) = NT(KE − KN )N∆um,

with KN the assembling of the elemental matrices ke
ab in (32).
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