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ABSTRACT

Modeling the filtration of incompressible fluids through porous media requires dealing
with different types of partial differential equations in the fluid and porous subregions of
the computational domain. Such equations must be coupled through physically significant
continuity conditions at the interface separating the two subdomains. To avoid the
difficulties of this heterogeneous approach, a widely used strategy is to consider the
Navier-Stokes equations in the whole domain and to correct them introducing suitable
terms that mimic the presence of the porous medium. In this paper we discuss these two
different methodologies and we compare them numerically on a sample test case after
proposing an iterative algorithm to solve a Navier-Stokes/Forchheimer problem. Finally, we
apply these strategies to a problem of internal ventilation of motorbike helmets.

1. Introduction

In this paper we consider the modeling and numerical simulation of incompressible fluid flows in regions partially occu-
pied by porous media. The driving motivation of this work comes from a specific industrial problem of internal ventilation
for motorcycle helmets. However, problems associated with filtration of fluids in porous media have many other applications
from geophysics to engineering and also physiology. Consider for example the percolation of water in hydrological basins
through rocks or sand, the filtration of biofluids through living tissues, as well as industrial processes involving fluids going
through filters and foams.

The problem of industrial interest discussed in this work, which will be precisely described in Section 5, consists in
modeling and simulating the internal air flow of a motorcycle helmet. A series of intakes and outtakes connected by chan-
nels dug into the protection layer let the fresh air enter the helmet and filtrate through the comfort tissue and the hair of
the rider. An appropriate ventilation capable of effectively removing the heat and moisture produced by the head must be
guaranteed in order to preserve the safety of the rider even in very hot and humid climates.

This work, which focuses only on the fluid-dynamics aspects of the air flow, aims at investigating the possible modeling
approaches for the physical description of the system, and it represents a preliminary step towards a more complex model
taking into account heat and sweat-related phenomena too (see [11]). In spite of the specific application, most of the
considerations associated with both modeling and numerical simulation that will be discussed throughout the paper are
valid in the more general framework of flow over saturated porous media.
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Fig. 1. Subdivision of the computational domain 2 in a fluid region £2; and a porous domain £2).

Due to the physical heterogeneity of the domain, a correct physical modeling of filtration processes would require to
introduce different systems of partial differential equations in the free fluid domain and in the porous medium region,
giving rise to a heterogeneous differential system.

While for the vast majority of applications the Navier-Stokes equations represent the model to describe incompressible
flows in the free-fluid region, the modeling of flows through a saturated porous medium may require different models
depending on the characteristics of the porous medium itself. A classical model is given by the Darcy law [18], the simplest
linear relation between the velocity and the pressure. However, in case of high permeabilities the non-linear Forchheimer
equation [25] is usually adopted.

A crucial issue in the definition of these heterogeneous models is the choice of suitable coupling conditions to describe
the fluid flow across the surface of the porous medium through which the filtration occurs.

Those coupled problems have received an increasing attention during the last years from both the mathematical and
the numerical point of view. Starting from the original experimental works of Beavers and Joseph on the coupling condi-
tions between a fluid and a porous medium, mathematical investigations have been carried out in [22,36-38,41,42]. Under
those conditions, the analysis of a coupled Stokes/Darcy problem has been studied in [10,17,19,20,28,29,26,27,30,40,48] in
the steady case, and in [12,53] in the time-dependent case. Moreover, the case of the Navier-Stokes equations has been
considered in [3,14,19,31].

However, because of the difficulties associated to the set-up and implementation of those models, a different approach
is widely used in many practical applications and it is implemented in most commercial softwares. This method, often
called penalization approach (see, e.g., [9,34,35,39]), consists in considering in the whole computational domain a modified
formulation of the Navier-Stokes equations which reduce to their classical form in the fluid region while they include
additional resistance terms in the porous region. This approach is similar to the so-called fictitious domain method [1,39].

In this paper we compare these two different techniques studying their mathematical formulation and their finite ele-
ment approximation. In particular, the paper is organized as follows. In Section 2, we present the differential models for the
fluid flow as well as for the saturated porous media flow, we discuss the coupling conditions for the heterogeneous case and
we introduce suitable adimensional formulations. In Section 3, we consider the numerical approximation and we introduce
possible solution strategies for the space-time discretization of these problems. Numerical results for the heterogeneous
Navier-Stokes/Forchheimer model are presented in Section 4, which includes also a comparison of the simulation results
obtained by the other modeling approaches. Finally, in Section 5 we show an example of application of the penalization
method to the problem of internal ventilation of a helmet.

2. Mathematical models for the flow over a porous medium

We consider a bounded domain £2 c R? (d = 2, 3) partitioned into two non-overlapping regions: 2 = §f u S_2p, £2¢N
2, =0, where Qf is the fluid domain (for example occupied by air or water) and §2, the saturated porous medium
domain. We indicate by I' = £ N S_2p the interface between the two domains (see Fig. 1). From the physical point of view,
I’ represents the contact surface between the porous medium and the free fluid.

2.1. Fluid domain: the Navier-Stokes equations

In the fluid region £25, we consider a confined incompressible viscous fluid modeled by the Navier-Stokes equations: for
all t > 0,

ou .
p(a—tf—i—(uf 'V)uf> —uAuf+Vpr=0 in2y,

V.ur=0 in 2,

(1)

where uy and py denote respectively the velocity and the pressure of the fluid, p and w are respectively the density and
dynamic viscosity of the fluid and we assume that no external body forces are applied.
We have denoted by V, V- and A, respectively, the gradient, the divergence and the Laplace operators with respect to the

space coordinates. Moreover, we recall that (v-V)w = Zf’_] vi% for all vector functions v= (v1,...,vg), W= (W1, ..., Wyq).
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The Navier-Stokes equations are well-suited to numerically simulate laminar flows for which the Reynolds number
Ref = —— (2)

is not too high, U and L being a characteristic velocity and a characteristic length scale of the problem, respectively. For
high Reynolds numbers turbulence effects become important and the Navier-Stokes equations need to be augmented with
turbulence models, such as the RANS (Reynolds Averaged Navier-Stokes) ones. In our applications we will always place
ourselves in the laminar case.

2.2. Filtration through the porous domain

Filtration through a saturated porous domain can be modeled by the Darcy law, which introduces an average fluid
velocity on sample volumes of the porous medium sufficiently large with respect to the pore size.

The Darcy law is the simplest (linear) relation between the seepage velocity u, and the pressure p, in the porous
medium, and it states that

K .
up:—;Vpp in £2p, 3)

where (v is the dynamic viscosity coefficient already defined in (1), while K is the permeability coefficient. This law was
originally obtained by Darcy with a famous experiment [18], and later rigorously derived from the Navier-Stokes equations
by mathematical homogenization on structured porous grids (see, e.g., [50]). The permeability coefficient K can assume
values ranging from K = 10> m? for very porous artificial materials to K = 10729 m? for particular kinds of soils or rocks.
In case of a non-isotropic medium the scalar coefficient K is substituted by a permeability tensor K.

As the seepage velocity increases, the transition towards a non-linear drag is quite smooth. In order to characterize the
importance of the inertial effects, similarly to the Navier-Stokes equations, it is possible to define the Reynolds number
associated to the pores

Rep = —, (4)

where § is the characteristic pore size.
The Darcy law is reliable for values of Re, <1 (see, e.g., [4]), otherwise it is necessary to consider a more general model
which can account also for the inertial effects, like the non-linear Forchheimer equation [25]:

M PCF -
VPPZ—EUP— Whlphlp m Qp, (5)

where Cr is the inertial resistance coefficient (or tensor in the non-isotropic case). The transition between the Darcy and the
Forchheimer regimes occurs in the range 1 < Re, < 10. More in general, non-linear correction terms of the form |u,|*u,
with 1 <o <2 can be considered for Darcy’s law. Detailed discussions about their physical interpretation can be found in
[23,43]. As the Darcy law, the Forchheimer equation can be derived by homogenization from the Navier-Stokes equations
(see [15]).

The filtration model is fully determined considering the continuity equation:

V-u,=0 ing,. (6)
The latter, combined with the Darcy equation (3), leads to the following elliptic equation involving only the pressure:
K .
-V —=Vpp | =0 ing2. (7)
o
If only (7) is solved in $§2p, then the velocity can be recovered using the Darcy law (3).
2.3. Coupling conditions across the interface
To represent the filtration of the free fluid through the porous medium, we have to introduce suitable coupling condi-
tions between the Navier-Stokes and Darcy (or Forchheimer) equations across their common interface I". In particular, we
consider the following three conditions.

1. Continuity of the normal component of the velocity:

uf-ng=-up,-n, onrl, (8)



where ny and n, are the unit normal vectors external to 352y and 352, respectively (see Fig. 1). Notice that ny = —n,,
on I". Using Darcy law (3), Eq. (8) can be rewritten as

__Kopp
 panp

This condition is a consequence of the incompressibility of the fluid.
2. Continuity of the normal stresses across I" (see, e.g., [36]):

dug
Pf—Ma—'anPp onTl. (10)
ny

Uy -ny nl. (9)

Remark that pressures may be discontinuous across the interface.

3. Finally, in order to have a completely determined flow in the free-fluid region, we have to specify a further condition
on the tangential component of the fluid velocity at the interface.
Beavers and Joseph [5] proposed an experimental condition stating that the difference between the slip velocity and
the tangential seepage velocity at the interface is proportional to the shear rate therein:

allf) opy
——) =—=@f—uy). onl. 11
<8Tlf . \/E f D/t ( )

By (v); we indicate the tangential component to the interface of the vector v:

(W);=v—v-n onTl. (12)

The constant ap; usually assumes values between 0.8 and 1.2 (see [5]).
Since the seepage velocity u, is far smaller than the fluid slip velocity uf at the interface, Saffman proposed to use the
following simplified condition (the so-called Beavers-Joseph-Saffman condition) [49]:

(%) _ o
<8nf),_ﬁ(uf)’ onl. (13)

This condition was later derived mathematically by homogenization by Jager and Mikeli¢ [36-38].

The three coupling conditions described in this section have been extensively studied and analyzed also in [20,21,40,45,
48,51].

Remark 2.1. Notice that we have written the Navier-Stokes equations in time-dependent form, while we consider steady
models for the flow in the porous medium. This can be justified by the fact that the velocity in the fluid domain is generally
much higher than the seepage velocity, so that the latter can be treated as steady at least during small time intervals. If
this assumption was not satisfied, it would be possible to consider an unsteady model also in §2,, as studied for example
in [12].

2.4. Penalization method

The coupled model discussed in the above sections is quite complex to solve, mainly because of the intrinsic difference
in nature between the equations in the subdomains £2y and §2,. For this reason, the so-called penalization approach has
been introduced to model the flow over porous media (see, e.g., [9,34,35]). This method consists in considering a modified
set of Navier-Stokes equations in the whole domain including two penalization terms associated to the resistance induced
by the porous medium in the subregion §2,. These terms are related to the linear Darcy and the non-linear Forchheimer
equations (3) and (5).

More precisely, we consider the momentum equation:

au+(u V)u Au+ Vp + ”u+pCF|u|u =0 in® (14)
1Y ot 1% p K JK X2p = )

where the physical constants are the same already introduced in (1) and (5), while xe, =1 in ) and xg, =0 elsewhere,
so that the last two terms vanish in the fluid domain. The variable u corresponds to the real velocity in £ and to the
seepage velocity in £2;.

Remark 2.2. Notice that this method can be enhanced to deal with inner solid regions too, following the so-called “fictitious
domain” approach proposed in [39]: the modified Navier-Stokes equations are solved in the whole domain, with very strong
variations of the permeability coefficient. Indeed, it can be rigorously shown via homogenization techniques (see [1]) that
the proposed approach is consistent with the modeling of both solid (K — 0) and fluid (K — +00) regions.
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Concerning the physical meaning of (14), the diffusive contribution —@Au has been shown to be consistent with the
modeling of highly porous materials, such as, for example, synthetic foams with porosity greater than 0.6, and sometimes
it is referred to as Brinkman [8], or Brinkman-Forchheimer equation [52], possibly with (& # w. On the other hand, the
non-linear convective term (u- V)u has been criticized as an unsatisfactory way to include non-linear inertial effects, since,
for example, it vanishes even for a steady incompressible unidirectional flow, regardless of the magnitude of the velocity u.

However, since the penalization method is much easier to implement than the coupled approach of Sections 2.1-2.3, it
is widely used in commercial softwares. Indeed, most of the commercial packages capable of simulating flows in domains
partially occupied by porous media are based on this approach (see, e.g., [13,2,24]). In these codes, the porous medium is
usually characterized by two constants P, and P; called, respectively, viscous and inertial resistance which are different from
zero only in the porous domain §2,. Then, the following penalized Navier-Stokes equations are solved:

Jau
p<— +(u-V)u> — uwAu+Vp+ Pyu+ Pijluju=0 in £2,

at (15)
V.-u=0 in $2,
where
P, — {O in £2¢ and Py— {O ?n.Qf (16)
w/K in 2, pCr/vK in£2p.

2.5. Dimensionless formulations

To better compare the models that we have considered, we introduce their dimensionless forms. We define the following
dimensionless variables:

_X u uy o zﬁ pf / Pp

X=- t'=—t, up=—, ) =, =—>, 17
L L =1 pTu PrTour PrT e (17)
where L and U are respectively a characteristic length and velocity for the problem (we use the same for both the fluid and
the porous medium).

By substituting (17) in (1) we obtain the dimensionless formulation of the Navier-Stokes equations:

% + (- V)u; — LAu’ +Vpe=0 inf
at’ T T Rep T f r (18)
V. ll/f =0 in .Qf,
where Rey is the Reynolds number defined in (2).
The dimensionless form of the Darcy law (3) becomes
u, =—Gr, Vp), in 2, (19)
where the dimensionless group Gry, is defined as
KU
Gry =22 (20)
nL
On the other hand, the dimensionless form of the Forchheimer equation (5) reads:
), + Gry|uy|u, = —Gr, Vp, in ), (21)
having denoted by Gry the dimensionless group
CrUVK
Gry = M (22)
w
The three coupling conditions (9), (10), (13) at the interface are made dimensionless too, obtaining
ap)
u/f'nf:Grn%, (23)
1 8u/f
! o _ / , 24
P~ Re;om, ™ = Pp (24)
au/f ,
_(Bn/ ) = Grc(uf) , (25)
7z



where Gr is defined by

(XB]L

Gre = —.
c ﬁ

Finally, the dimensionless form of the penalized Navier-Stokes equations (15) becomes

ou’ 1
FTa + (W V)u' - EAu’ +Vp' +Gryu +Griju'|u'=0 ing,
with dimensionless groups
LU PyL P;L
Re:p_7 V=L’ Gri=L.
12 pU

In the following we will refer to the dimensionless formulations omitting the apices for simplicity of notation.
For the sake of clarity, let us summarize the models that we will consider in the next sections.

e Navier-Stokes/Darcy (NSD) model:

aﬂ-ﬁ-(UJﬁV)uf—LAUf-l-fo:O
ot Rey
V.ur=0
-~V - (Gr, Vpp) =0
ap

us -ny =Gry 3n§

IR TR

Rey ong [=Frr

ou
—(—f) = Gre (up),
ang /.

o Navier-Stokes/Forchheimer (NSF) model:

aﬂ—i—(uﬁV)uf—iAuf—kfo:O
at Ref
V.ur=0
up +Gryluplup =—Gr, Vpp =0
V.up, =0
Up-Ny=—uUp-Mp
1 ou
_@fﬁ f=Pp

e Penalization (PE) model:

ou
ot
V.-u=0

All the physical variables are dimensionless. Suitable boundary conditions will be introduced in Section 2.6.

2.6. Boundary conditions

in £2¢,

iI'l.Qf,

in £2p,

on [,
on I,

onl.

il‘l.Qf,

in £2¢,
in £2p,
in £,

onl,

onl,

onl.

1
+ - Vu— %Au+Vp+Grvu+Gri [uju=0 ing2,

(26)

(27)

We set now the boundary conditions referring, for simplicity to a specific 2D problem, but what we present can be

extended to more general settings.

We consider the setting in Fig. 2, in which a horizontal fluid flows upon a saturated porous medium. The flow enters
from the fluid inlet ); and exits at both the fluid and porous outlets )3 and §3. All the other boundaries are impermeable,
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Fig. 2. Scheme of the bidimensional sample problem.

with no-slip condition on y» and with a slip condition on §; and §,. As reference dimensionless parameters we consider L
as the height of the fluid channel and U as the maximal velocity at the inlet.
More precisely, the boundary conditions that we use for the NSD model (29) read:

Uy = Upois onyy,
ur=0 on ys,
n 1 duy =0 on
Prny REf 311f - V3, (32)
0
P _g on 8 Uy,
onp
pp=0 on 43.

The function up,;s is a given Pouiseuille velocity profile on ). The same boundary conditions apply for the NSF problem
(30) with (32)4 replaced by

llp-l‘lp:O onédq Udy.

For the PE problem (31), we have to impose a slightly different set of boundary conditions:

U = Uypopjs onyi,
u=20 on yy,
pn—ia—uzo on y3,
Re an
u-n=0 on &1 Udy, (33)
(&)
— ] =0 on &1 Udy,
on /.
p —i—zo on d3
Re d

Notice that condition (32)s has been replaced by (33)s since in the latter case the stress on J3 is not given by the sole
pressure, but by the whole Cauchy stress tensor. Moreover, condition (32)4 has been changed into (33)4 and (33)s. Indeed,
thanks to Darcy’s law, (32)4 corresponds to the null normal velocity condition (33)4, while (33)5 has been introduced to
ensure the well-posedness of the problem.

As initial condition for all models we assume the velocity in the fluid region £25 to be equal to the Poiseuille flow profile
at the initial time, i.e., us(t =0) =upg;s in £25. On the other hand, we assume that at the initial time there is no flow in
the porous medium, and that at the beginning of the simulation a rigid impermeable device separating the two domains is
suddenly removed, allowing the penetration of the fluid in the porous bed.

3. Numerical approximation and solution algorithms

In this section we address the finite element approximation of the coupled problems considered in Sections 2.5-2.6 and
we propose an iterative solution method based on a domain decomposition approach.
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Fig. 3. Example of regular compatible computational mesh.
3.1. Space discretization

We consider a regular triangulation 7, of the domain §f u §p, depending on a positive parameter h > 0, made up of
triangles T. We assume that the triangulations 7g and 7, induced on the subdomains £2; and §2, are compatible on I,
that is they share the same edges therein. Finally, we suppose the triangulation induced on I" to be quasi-uniform (see, e.g.,
[46]). An example of regular compatible triangulation is shown in Fig. 3.

Several choices of finite element spaces can be made. If we indicate by Wj, and Qj the finite element spaces which
approximate the velocity and pressure fields, respectively, for the Navier-Stokes problem or for the penalization model,
there must exist a positive constant 8* > 0, independent of h, such that the classical inf-sup condition is satisfied, i.e.,
Yqn € Qp, Ivy € Wy, vy, #£0, such that

f GV Vi > B IVl oy 2
D

where D = £y for (29) and (30) and D = £2 for (31).

Several families of finite element spaces satisfying the inf-sup condition are provided in [7]. In the following, for the
sake of exposition, we will make the special choice of piecewise quadratic elements for the velocity and piecewise linear
for the pressure.

More precisely, we start by defining the following discrete spaces for the NSD problem:

X = {vh € C°(2f): vy € [Pa(D)]? VT € Thl,

Vg ={vp € Xpm: vp =00n y1 U ys},

Qm = {an €C°(2p): amr € P1(T) VT € Tp},

Won = {qn € C°(2p): g € Po(T) ¥T € Tpn, gn =0 on 83}.

Then, the Galerkin approximation of the coupled NSD problem (29) reads: find ug(t) € Xm, pm(t) € Qm, Ppn € Wpn such
that

Ju 1
/a—gh'th+/((uﬂ1-V)“fh)'th+/@vuﬂl.vvﬂ'_[pfhv'vﬂﬁ/pphvfh'nf
2f Q5 25 e r

Gr,
+/—C(“ﬂ1)r'(vﬂ1)r =0 Vg €Vp,
Rey
r

(34)
/qﬂ,v-uj«hzo Vqm € Qpm,
2y
/Grn VPph - Vdpn —/uﬂ, ‘Nedpp =0 VYqpp € W,
2p r
with ug(t) = ugm.s on 1, ug(t) =0 on y, and uy(0) = “Zois in ;. The discrete velocity ugois is a suitable approximation

of wy;s in the finite element space Xgp,. (The mathematical analysis of the time-dependent NSD problem has been recently
carried out in [14].)

In the case of the NSF problem (30), we cannot eliminate the unknown velocity u, in £2;, as done for the Darcy equation.
Thus, to write the Galerkin approximation of (30) we should consider a suitable family of inf-sup stable finite element
spaces also in the porous domain. Moreover, we should introduce Lagrange multipliers to impose the continuity condition
(30)s, following the approach used in [40] to deal with the velocity-pressure formulation of the Darcy problem. However,
in our applications we will not use such mixed formulation for the Forchheimer equation, but we will solve only for p, in
£2), as explained in Section 3.3. Thus, we do not discuss here the mixed finite element formulation and we refer the reader
to [28,32,44].

In analogous way, we can define the following finite element spaces for the PE approach:

Xy = {vh € CO(2): vy € [Po(D)]? VT € Th},



={vpeXp: vy =00ny; Uy andv,-n=00nd; U},
Qn = {an € C%(2): qur €P1(T) ¥T € Ty }.

The Galerkin approximation of (31) reads: find u(t) € Xy, pn € Qp such that

8llh 1
— - Vp+ ((uh . V)l.lh) “Vp + R—eVuh -Vvy— | ppV vy
2

2

+/.GI'V up - Vy +/GI',' lugluy -vyp =0 Vv, €V, (35)
2 2

[th-un=0 Vqn € Qp,
2

with u,(t) = ugois on y1, wy(t) =0 on y;, up(0) = ugois in 25 and u,(0) =0 in £2,. The discrete velocity upms is a suitable
approximation of up,;s in the finite element space Xj.

3.2. Time discretization

To carry out the time discretization we keep in mind our main application: the simulation of the stationary air flow over
the porous comfort layer inside a motorbike helmet. Then, since we are interested in the steady state solution, we adopt
a first-order implicit Euler scheme with a semi-implicit treatment of the non-linear convective term of the Navier-Stokes
equations.

We subdivide the time interval considering a fixed time step At: 0 =t9 <t! < ... <" < (™1 < ... (1 1 = Ag,
vn >0, and we denote by the upper index n a quantity computed at the time step t".

Thus, the discretization in time and space of the coupled NSD problem (34) becomes: for n > 0, find uﬂ! € Xm, pﬂ1
Qfh, Pph € Wpp such that

1 1
A—t/uj’}h“ ~vfh+/((u}’h-v)u}’h”)-vﬂ1+/EVu}”’h“ -Vvﬂ,—/p;h+1V~vfh+/pphvﬂ,~nf

2 2 2 25 r
Gr 1
+/. Re;( ?h-H) (th)f /lljh Vi Vth Eth,
r Qf (36)
/qﬂﬁ,V~u]'3h+l =0 Vgme Qp,
825

/Grn VPph - Vph —/ufh“ “Nyqpr =0 Vqpn € Wpp,
2p r

with uj?}.,:ugmS in £2¢ and ufh _u’; on y1, J,h:O on y, foralln>0

On the other hand, for the PE model (35) we consider also a semi-implicit treatment of the non-linear Forchheimer
correction. Thus, its space-time discretization becomes: find u”+1 € X, p"“ € Qp, such that

1

1
~ ul vh—i—/((u V) ”“)~vh—|—/R—eVuﬁ+1 -Vvh—/pZ“Vvh

2 2 2 2

fGrV u't! vh—i—/Gr, ol juf ! vy =
At
2 2 2

/qhv ut' =0 Vgn e Qp,
2

u,1 vy Vv eV, (37)

. 0_,h 0_qn:; n__ .h
with wy =, in 2, wy =01in 2, wpy =up ;0

ois on y1, uy =0o0n y; foralln>0
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3.3. An iterative algorithm

To solve the coupled problem (36) we would like to set up an iterative method requiring the alternate solution of the
Navier-Stokes equations in £2y and of the Darcy equation in £2,. To this aim, we consider a domain decomposition approach
similar to those studied in [19,21].

Since for our applications we are interested in computing the steady state solution, after discretizing in time we do not
perform sub-iterations at each time step, but we adopt the following scheme.

Let (p,? and 1//{3 be suitable approximations at the initial time of the pressure pgh and of the normal velocity u}’h Ny
on I', respectively. Moreover, let 0 < v, 8 < 1 be two relaxation parameters. Then, for n > 0

1. find u}’th] € Xp, p?h“ € Qg such that

1 1
~ ujt! -vjh+/((u}1h~v)u}1h+1)-v,«h+/ EVu}’h“ ~va—/p}‘h+lv-vfh+/go,'}vfh-nf
2 2 2 2 r
Gre n+1 1 n
+/E(uﬂ1 ), (V) = ¢ | Wnovm o Ym €V,
r 2
/qfhv upt =0 Vg € Q- (38)
25
2. Update the normal velocity of the fluid across I':
Yyt =1 - Py + ,su}lh“ ‘n; onT. (39)
3. Find pgﬁl € Wy, such that
/Grn Vpg;;rl - Vqph — / W;:Jrl‘Iph =0 Vqun € Wpy. (40)
2 r
4. Compute the new pressure across I:
ot =1 - g +ozpzh“ onTr. (41)

5. Increment n and go back to step 1.

This algorithm requires at each step to solve separately and in a sequential fashion the Navier-Stokes equations in £2¢
and the Darcy equations in £2,. Its structure resembles the classical Dirichlet-Neumann method in domain decomposition
(see, e.g., [47]). However, notice that here, due to the characteristics of the problems at hand, the conditions imposed on
the interface are of Neumann type for both sub-problems.

This approach allows us to easily replace the Darcy model by the Forchheimer equation solving the latter only for pyp
at each iteration. Indeed, adopting a semi-implicit treatment of the non-linear term of the Forchheimer equation, instead of
(40) we consider the problem: find thH € Wpp such that

Grp

vp'tl. vy _f g =0 Yqpn € Wy 42

/1+crf|u2h| Pon Vo = | Vi ph ph € Woh (42)
r

QIJ
The velocity in £2,, at time t"™+1 can then be recovered by:

Gr;
Wtl=——— "1 yptl jh 0. 43
p 1+ Gryuj| P p (43)

4. Numerical comparison between the different models in a 2D test case

In this section we present some numerical results on a 2D test case using the three models studied in the previous
sections.

We consider a 2D computational domain as shown in Fig. 2 to represent an air flow in a channel over a slightly porous
tissue. We set p = 1.184 kg/m3, p = 1.855- 107> Pas, K =3.71- 1077 m?, ag = 1.0, C = 0.5. Referring to Fig. 2, our
domain has length of 50 mm in the x-direction, height of 4 mm in the fluid domain and of 3 mm in the porous region.
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Fig. 5. NSF model: normal velocity through the interface computed with respect to the y-direction (a) and velocity profile at the outlet (b) (i.e., at 50 length
units in the x-direction).

As reference characteristic quantities we consider L =103 m and U = 10! m/s. Thus, the dimensionless parameters
characterizing the models NSD, NSF and PE are: Ref =6.38, Gry, = 2.37, Gry = 1.94, Gr, = 1.64, Gry, =0.42 and Gr; =0.82.
(The dimensionless domain has dimension of 50 unit lengths in the x-direction and height of 4 and 3 unit lengths in the
fluid and in the porous medium regions, respectively.) Notice that in our case it is difficult to quantify Re, in (4) as the
pore size § is unknown. Boundary conditions are specified as in Section 2.6 and the Poiseuille velocity profile on the inlet
boundary y; is Wyeis = (y(4 —y), 0).

The numerical implementation is carried out in the finite element package freeFEM++ [33], using the multi-frontal algo-
rithms of UMFPACK for solving the local linear systems. The computational grids are uniform, unstructured, conforming on
I' and they are characterized by the adimensional grid parameter h = 1/N, N being the number of partitions of each unit
length. P, — P; finite elements have been used for the spatial discretization.

We consider at first the NSF model with the iterative algorithm of Section 3.3. The NSF model permits to characterize
explicitly I" and to deal with larger Reynolds numbers Rep, in the porous media domain than if the Darcy model is adopted
(see [4,42]).

In Fig. 4 we show the finite element solution of the NSF problem at the steady state on a computational mesh with
N =3 corresponding to h = 1/3 and to about 6500 elements. We can see that the flow suddenly enters the porous medium
creating a little recirculation region and then it stabilizes in an almost horizontal flow.

The normal component of the velocity through the interface is plotted in Fig. 5(a), which clearly highlights that the
major filtration occurs during the first 15-20 length units. The velocity profile at the outlet (i.e., at 50 length units in the
x-direction) represented in Fig. 5(b) shows that the fluid velocity close to the interface is higher than the seepage velocity
in the porous medium.

The flow is conserved in the computational domain. Indeed, if we compute the flux on the boundaries:

Fy = / u-n,

y1Uys3Uds3

with obvious choice of notation we have F,, = —10.667, F,, =9.285, F35, = Fr = 1.382, so that F, =0.

The velocity profile at the outlet can be also evaluated analytically for the NSF coupled problem under the assumption
of a fully horizontal flow, that is placing oneself at infinite distance from the inlet. The velocity field in £2f becomes
uy = (u(y),0) where u(y) is the solution of the boundary value problem:

11
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Fig. 6. Comparison between the analytical solution (solid line) and the numerical results obtained with the NSF model on different sections along the
x-direction (dots), for the x component of the velocity.

1 d?u
kg7 =0 0y (44)

with the Dirichlet boundary condition on the top boundary:

u(4) =0, (45)
and with the Robin boundary condition at the contact interface with the porous medium:

u'(0) = Gre u(0). (46)

Here, §p represents the constant value of the pressure drop along the x-direction.
On the other hand, the (constant) horizontal seepage velocity in the porous medium becomes u, = (0, v) where v is the
solution of the Forchheimer equation for the limit horizontal flow:

v+Grfv2+Grn8p:0. (47)
Moreover, we have to impose the flow conservation between the inlet and outlet boundaries:
4 4 0
/upois(J/) dy = / u(y)dy + / vdy, (48)
0 0 -3

Upois being the x-component of ;.
The solution of (44)-(48) is

D1 Rey
) (y—4)(y+4+4Gr.y). 49
2197255 Gr; =D c¥) (49)

1 (]| DiGr
v= T+ ——"_1), 50
zcrf< + o, ) (50)

where A; =14 Gr¢, Ay =1+4Gr,, A3 =94 64Gry, B =64A1A2A3Ref, By = 81A§ Gry, B3 = A% Re%, C1 = A2(2B1 Gry +
B Grp +212B3)1/2, Dy = —9C; + B1 + B.
In the case that we are considering, we have

uy) =

u(y) = 1.38426 +2.27264y — 0.654677y> and v =0.304974.

The computed and the analytical profiles are compared in Fig. 6: as soon as the flow becomes parallel, which occurs near
the outlet of the domain (i.e., at 50 length units in the x-direction), the analytical solution coincides with the numerical
one. The numerical solution has been computed setting N = 3.

The effect of the Forchheimer coefficient Cr on the flow is illustrated in Fig. 7, where we can see that the behavior of
the flow in the recirculation zone near the inlet is modified as well as the velocity profile at outlet. Moreover, from the
physical viewpoint, we remark that as the Forchheimer coefficient raises from 0.0 to 0.5 (its range of variability) the flux
filtrating into the porous medium decreases (see Fig. 7(c)).

Let us consider now the NSD model. With the same settings used for the NSF model, we compute the solution of the
NSD problem for different values of the permeability K.

12
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Fig. 7. NSF model: (a) normal component of the velocity across the interface and (b) velocity profile at outlet for values of Cr of 0.0 (solid line), 0.2 (dashed
line) and 0.5 (dotted line). (c) Flux entering the porous domain as a function of Cr.

Fig. 8 shows the computed normal velocities and outflow profiles for increasing values of K. As expected, as K grows,
more and more flow enters the porous medium (see Fig. 8(c)).

Moreover, for both the NSD and the NSF models, notice that for high values of the permeability the gap between the
tangential component of the velocity of the fluid and the seepage velocity across the interface I reduces. Thus, Saffman’s
assumption u, < uy on the interface is no more satisfied, and for large K the original Beavers and Joseph condition (11)
cannot be replaced by (13). The difference between the two conditions can be directly seen on the computed velocity profile
at the outlet (see Fig. 9).

The values of K used for the simulations reported in Figs. 7(a)-(b) and 8(a)-(b) are chosen to represent a porous medium
with high permeability. In correspondence to such values, which are of interest for our target application (see Section 5),
we can appreciate the difference between the results computed with two models NSD and NSF.

If the value of the permeability becomes smaller, the results computed with those two models cannot be distinguished
as we can see in Fig. 10, where we compare the velocities and fluxes obtained for values of K from 10~ to 10~ m2. In
such cases, it seems not worth using the non-linear Forchheimer model instead of the Darcy one.

We compare now NSD, NSF and PE. As expected, the PE model shows a very smooth transition of the velocity field from
£y to the porous medium, in contrast to the jump that characterizes NSD and NSF (see Fig. 11). Looking at the velocity
profile obtained by PE, it would be impossible to find out where the porous medium is placed. Thus, this model does not
represent correctly the macroscopic physical behavior in the contact area with the porous medium.

However, outside the transition zone, the PE model compares quite well with the others. Indeed, at the outlet of the
fluid domain, although the peak velocity is different (since the total flow must be constant), the velocity near the interface
is very close to the one given by NSF or NSD. We can then conclude that the velocity profile is quite similar, except in the
very first layer of the porous medium.

Observing the normal velocity in Fig. 12, we can see that much more flow enters the porous medium in the case of the
PE solver, since the inertial effects are taken in account not only by the Forchheimer term, but also by the inertial term of
the Navier-Stokes equations.

Finally, we study the flux Fr (or equivalently Fj,), analyzing its behavior with respect to the permeability K and the
Forchheimer coefficient Cr (in the latter case, we set the permeability to its original value K =3.71-10~7 m?). Fig. 13 gives
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Fig. 8. NSD model: (a) normal component of the velocity across the interface and (b) velocity profile at outlet for values of K equal to 10~7 (solid line),
2-1077 (dashed line), 4-10~7 (dot-dashed line) and 8- 10~ (dotted line). (c) Flux entering the porous domain as a function of K.
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Fig. 9. NSF model (Cr = 0.5): comparison between the velocity profile at outlet obtained using the Beavers-Joseph interface condition (solid line) and
Beavers—Joseph-Saffman one (dashed line), for a small value of the permeability K =10~7 m? (a) and a high one K =105 m? (b).

a comparison of its trend for the NSF and PE models. Although the values do not match, we can observe that all the curves
display the same trends.

Concerning the computational costs, despite its easiness of implementation if compared to NSD and NSF, the PE method
is more expensive than the other two. Indeed, PE requires to solve the full Navier-Stokes equations both in £2¢ and £, while
NSD and NSF replace them, respectively, by the simpler Darcy or Forchheimer equations in the porous media domain 2.
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Fig. 10. Comparison between the normal component of the velocity across the interface (top), the velocity profile at outlet (mid) and the flux entering the
porous domain (bottom) computed using either the NSD or the NSF model with K equal to 10~7 (solid line), 10~8 (dashed line), 10~ (dot-dashed line)
and 10710 (dotted line).

5. Application to a 3D configuration of internal ventilation of a helmet

In this section we apply the PE approach to study a 3D configuration representing a schematic test case for the real
helmet ventilation problem that motivated this work.

The problem of internal ventilation of a motorcycle helmet is associated with the thermal comfort of the rider: a suffi-
cient airflow must be guaranteed to ensure the use of the helmet even in very hot and humid external conditions. For these
reasons each helmet has to be equipped with an efficient ventilation system capable of removing as much heat and sweat
as possible from the head of the rider. At the moment there is a total lack of fluid-dynamic guidelines for the design of
such ventilation systems, which are drawn only according to intuition and experience.

Fig. 14 shows a sample geometry of one of such ventilation systems: a channel dug into the protection layer lets the
external air enter inside the helmet, leading it directly above the head. The model includes two porous layers (with different
permeabilities) in order to represent the comfort tissue attached to the interior of the helmet and the hair of the rider. The
airflow is actually induced by the pressure gap between the inlet and the outlet, which is associated with the external shape
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Fig. 13. Trend of the flux across the interface for the NSF model (dashed line) and the PE one (solid line), with respect to the permeability K (a) and the
Forchheimer coefficient Cg (b).
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Fig. 15. Velocity field across some vertical and horizontal sections of the domain.

of the helmet as well as with the velocity of the wind. In a real case, such pressure gradient could be obtained either by
direct measurements or by external aerodynamics simulation of the cap alone.

Disregarding in a first step the thermal analysis and all the sweat-related issues (we refer the reader to [11]), it is
possible to assess the quality of the ventilation system by studying how the airflow is influenced by the geometry of the
channels and by the thickness and the physical properties of the porous tissue.

For our simulation, the inlet and outlet channels have a square section of edge 6 mm and their height is 23 mm. The
distance between the channels is 50 mm, while the extension of the porous layers in the transversal direction is 40 mm.
The porous domain is made of a 2 mm thick comfort tissue with permeability K, =5- 108 m? and Forchheimer coefficient
Cr,p = 0.34, and of the hair layer supposed of 3 mm thickness, with permeability K, =7.5 - 10~7 m? and Forchheimer
coefficient Cr , = 0.5. (The data used in this simulation have been obtained within a collaboration with an industrial partner.
For more details we refer to [16].) An unstructured tetrahedral mesh of about 32000 elements has been generated using
freeFEM++.

We impose a pressure drop of 0.1 Pa between inlet and outlet. We refer to [6,16] on how to include this boundary
condition in the weak formulation. On the remaining boundaries we impose a zero airflow condition.

Figs. 15, 16 and 17 show the behavior of the airflow inside the computational domain. In particular, focusing on the
medial section, it is possible to see that the seepage velocity is higher on the hair than on the comfort tissue (which has a
lower permeability), meaning that the air moves across the latter one and circulates beneath where it encounters a lower
resistance.

Finally, we can estimate the mass flow rate of this simple ventilation system by computing the surface integral of the
vertical component of the velocity on the inlet (or on the outlet), which turns out to be 2.44 - 10~3 m3/s. The mass flow
rate could be considered as objective function in an optimization framework aiming at optimizing the physical properties of
the porous layer or the shape of the air channels.
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6. Conclusions

We have presented different approaches for modeling incompressible flows in a domain partially occupied by a porous
medium. In particular, we have considered models with different equations in the two subregions of the domain coupled
via interface conditions (NSD and NSF), and a unified approach (PE) where the presence of the porous region is described
by suitable coefficients of the same equation. We have proposed an iterative algorithm to compute the stationary solution
of the NSD and NSF models and discussed its implementation. Finally, we have shown an application of the PE method to
the computation of the air flow for the internal ventilation of a motorcycle helmet.

We can conclude that, on the one hand, the NSF model allows to represent carefully the physics of the problem since it
permits to precisely locate the interface and it features ad-hoc models for each subregion. However, its implementation is
rather complex and its solution requires ad-hoc algorithms whose convergence properties may vary sensibly depending on
the considered problem.

On the other hand, the penalized model can be straightforwardly implemented in a code already developed for the
solution of the Navier-Stokes equations, but it cannot represent correctly the physical behavior of the fluid, especially in the
first layers of the porous domain.

From the macroscopic viewpoint the results obtained with these models are not dramatically different. In many engineer-
ing applications where a careful description of the flow at the interface between fluid and porous medium is not required,
like in the example of internal ventilation of Section 5, the penalization approach can thus provide results similar to those
obtained by the coupled methods with less programming effort.

18



Acknowledgements

The second author acknowledges the partial support of the Marie Curie Career Integration Grant 2011-294229 within
the 7th European Community Framework Programme.

References

[1] P. Angot, Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows, Math. Methods Appl. Sci. 22 (1999)
1395-1412.

[2] Ansys CFX, CFX-Solver: Theory, 2005.

[3] L. Badea, M. Discacciati, A. Quarteroni, Numerical analysis of the Navier-Stokes/Darcy coupling, Numer. Math. 115 (2010) 195-227.

[4] J. Bear, Hydraulics of Groundwater, McGraw-Hill, New York, 1979.

[5] G. Beavers, D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech. 30 (1967) 197-207.

[6] C. Bégue, C. Conca, F. Murat, O. Pironneau, Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, in: Nonlinear
Partial Differential Equations and Their Applications. Collége de France Seminar, vol. IX, Paris, 1985-1986, in: Pitman Res. Notes Math. Ser., vol. 181,
Longman Sci. Tech., Harlow, 1988, pp. 179-264.

[7] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Method, Springer, New York, 1991.

[8] H. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res. 1 (1949) 27-34.

[9] C. Bruneau, I. Mortazavi, Numerical modelling and passive flow control using porous media, Comput. Fluids 37 (2008) 488-498.

[10] E. Burman, P. Hansbo, A unified stabilized method for Stokes’ and Darcy’s equations, J. Comput. Appl. Math. 198 (2007) 35-51.

[11] C. Canuto, F. Cimolin, A sweating model for the internal ventilation of a motorcycle helmet, Comput. Fluids 1 (2011) 29-37.

[12] Y. Cao, M. Gunzburger, F. Hua, X. Wang, Coupled Stokes-Darcy model with Beavers-Joseph interface boundary conditions, Commun. Math. Sci. 8 (2010)
1-25.

[13] CD-Adapco, Star-CCM+ User Guide, 2007.

[14] A. Cesmelioglu, V. Girault, B. Riviére, Time-dependent coupling of Navier-Stokes and Darcy flows, Math. Model. Numer. Anal. (2012), in press.

[15] Z. Chen, S. Lyons, G. Qin, Derivation of the Forchheimer law via homogenization, Transp. Porous Media 44 (2001) 325-335.

[16] F. Cimolin, Analysis of the internal ventilation for a motorcycle helmet, Ph.D. thesis, Politecnico di Torino, 2010.

[17] C. D’Angelo, P. Zunino, A finite element method based on weighted interior penalties for heterogeneous incompressible flows, SIAM ]. Numer. Anal. 47
(2009) 3990-4020.

[18] H. Darcy, Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris, 1856.

[19] M. Discacciati, Domain decomposition methods for the coupling of surface and groundwater flows, Ph.D. thesis, Ecole Polytechnique Fédérale de
Lausanne, Switzerland, 2004.

[20] M. Discacciati, E. Miglio, A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math. 43 (2002)
57-74.

[21] M. Discacciati, A. Quarteroni, Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation, Rev. Mat. Complut. 22 (2009) 315-426.

[22] H. Ene, E. Sanchez-Palencia, Equations et phénomeneés de surface pour I'écoulement dans un modéle de milieu poreux, J. Mécanique 14 (1975) 73-108.

[23] M. Firdaouss, ].L.. Guermond, P. Le Quéré, Nonlinear corrections to Darcy’s law at low Reynolds numbers, ]. Fluid Mech. 343 (1997) 331-350.

[24] Fluent Inc., Fluent User’s Guide, 2005.

[25] P. Forchheimer, Wasserbewegung durch Boden, Z. Ver. Deutsch. Ing. 45 (1901) 1782-1788.

[26] J. Galvis, M. Sarkis, Inf-sup for coupling Stokes-Darcy, in: XXV Iberian Latin American Congress in Computational Methods in Engineering, 2005,
Recife. Proceedings of the XXV Iberian Latin American Congress in Computational Methods in Engineering, Recife, Brazil, 2004, Universidade Federal
de Pernambuco, 2004.

[27] J. Galvis, M. Sarkis, Balancing domain decomposition methods for mortar coupling Stokes-Darcy systems, in: Domain Decomposition Methods in
Science and Engineering XVI, in: Lect. Notes Comput. Sci. Eng., vol. 55, Springer, Berlin, 2007, pp. 373-380.

[28] J. Galvis, M. Sarkis, BDD and FETI methods for mortar coupling of Stokes-Darcy, Technical Report Serie A 563, Instituto Nacional de Matemdtica Pura e
Aplicada, Brazil, 2007.

[29] J. Galvis, M. Sarkis, Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations, Electon. Trans. Numer. Anal. 26 (2007)
350-384.

[30] G. Gatica, R. Oyarzta, FJ. Sayas, Convergence of a family of Galerkin discretizations for the Stokes-Darcy coupled problem, Technical Report 08-11,
Departamento de Ingegneria Matematica, Universidad de Conceptién, 2008.

[31] V. Girault, B. Riviére, DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition, SIAM ]. Numer.
Anal. 47 (2009) 2052-2089.

[32] V. Girault, M. Wheeler, Numerical discretization of a Darcy-Forchheimer model, Numer. Math. 110 (2008) 161-198.

[33] F. Hecht, O. Pironneau, A. Le Hyaric, K. Ohtsuka, Freefem++ Manual, second ed., 2008.

[34] O. Iliev, V. Laptev, On numerical simulation of flow through oil filters, Comput. Visual. Sci. 6 (2004) 139-146.

[35] O. Iliev, D. Vasileva, On a local refinement solver for coupled flow in plain and porous media, in: Numerical Methods and Applications - 6th Interna-
tional Conference, NMA 2006, Borovets, Bulgaria, August 20-24, 2006, in: Lecture Notes in Computer Science, Springer, Berlin and Heidelberg, 2007,
pp. 590-598.

[36] W. Jager, A. Mikeli¢, On the boundary conditions at the contact interface between a porous medium and a free fluid, Ann. Scuola Norm. Sup. Pisa Cl.
Sci. 23 (1996) 403-465.

[37] W. Jager, A. Mikeli¢, On the interface boundary condition of Beavers, Joseph and Saffman, SIAM J. Appl. Math. 60 (2000) 1111-1127.

[38] W. Jdger, A. Mikeli¢, N. Neuss, Asymptotic analysis of the laminar viscous flow over a porous bed, SIAM J. Sci. Comput. 22 (2001) 2006-2028.

[39] K. Khadra, P. Angot, S. Parneix, ]. Caltagirone, Fictitious domain approach for numerical modelling of Navier-Stokes equations, Int. J. Numer. Meth.
Fluids 34 (2000) 651-684.

[40] W. Layton, F. Schieweck, 1. Yotov, Coupling fluid flow with porous media flow, SIAM ]. Numer. Anal. 40 (2003) 2195-2218.

[41] T. Levy, E. Sanchez-Palencia, On the boundary conditions for fluid flow in porous media, Int. J. Engng. Sci. 13 (1975) 923-940.

[42] E. Marusic¢-Paloka, A. Mikeli¢, The derivation of a nonlinear filtration law including the inertia effects via homogenization, Nonlinear Anal. 42 (2000)
97-137.

[43] M.C. Néel, Convection forcée en milieu poreux: écarts a la loi de Darcy, C. R. Acad. Sci. Paris, Série IIb 326 (1998) 615-620.

[44] EJ. Park, Mixed finite element methods for generalized Forchheimer flow in porous media, Numer. Methods Partial Differential Equations 21 (2005)
213-228.

[45] L. Payne, B. Straughan, Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling
questions, ]. Math. Pures Appl. 77 (1998) 317-354.

19


http://refhub.elsevier.com/S0168-9274(13)00091-3/bib416E6731393939s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib416E6731393939s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib43554732303035s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib42616465613A323030383A4E414Es1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib426561723A313937393A484F47s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib424A31393637s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib42434D5031393838s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib42434D5031393838s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib42434D5031393838s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4272657A7A6931393931s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib42726931393439s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib424D32303038s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4275726D616E3A323030373A55534Ds1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib434332303131s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4347485732303038s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4347485732303038s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib53554732303037s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4365736D656C696F676C753A323031323A544443s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib434C5132303031s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib43696D32303130s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib44616E67656C6F3A323030383A46454Ds1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib44616E67656C6F3A323030383A46454Ds1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib44617231383536s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib44697332303034s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib44697332303034s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib44697363616363696174693A323030323A4D4E4Ds1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib44697363616363696174693A323030323A4D4E4Ds1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib44697363616363696174693A323030393A4E5344s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib456E653A313937353A455053s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib46474C31393937s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib46554732303035s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib466F7231393031s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib47616C7669733A323030343A495343s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib47616C7669733A323030343A495343s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib47616C7669733A323030343A495343s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib47616C7669733A323030363A424444s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib47616C7669733A323030363A424444s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib47616C7669733A323030373A464250s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib47616C7669733A323030373A464250s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib47616C7669733A323030373A4E4D4Ds1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib47616C7669733A323030373A4E4D4Ds1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4761746963613A323030383A434647s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4761746963613A323030383A434647s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib47697261756C743A323030373A444741s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib47697261756C743A323030373A444741s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib47697261756C743A323030383A4E4444s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib494C32303034s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib495632303037s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib495632303037s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib495632303037s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4A4D31393936s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4A4D31393936s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4A4D3139393662s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4A4D4E32303030s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4B41504332303030s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4B41504332303030s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4C535932303033s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4C6576793A313937353A4F4243s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4D6172757369633A323030303A444E46s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4D6172757369633A323030303A444E46s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib4E656531393938s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib5061726B32303035s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib5061726B32303035s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib505331393938s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib505331393938s1

[46] A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equations, Springer, Berlin, 1994.

[47] A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford University Press, New York, 1999.

[48] B. Riviére, 1. Yotov, Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal. 42 (2005) 1959-1977.

[49] P. Saffman, On the boundary condition at the interface of a porous medium, Stud. Appl. Math. 1 (1971) 93-101.

[50] L. Tartar, Incompressible fluid flow in a porous medium: convergence of the homogenization process, in: E. Sinchez-Palencia, Non-Homogeneous Media
and Vibration Theory, in: Lecture Notes in Physics, vol. 127, Springer, Berlin, 1980, pp. 368-377.

[51] J. Urquiza, D. N'Dri, A. Garon, M. Delfour, Coupling Stokes and Darcy equations, Appl. Numer. Math. 58 (2008) 525-538.

[52] K. Vafai, S. Kim, On the limitations of the Brinkman-Forchheimer-extended Darcy equation, Int. ]J. Heat Fluid Flow 16 (1995) 11-15.

[53] P. Zunino, Mathematical and numerical modeling of mass transfer in the vascular system, Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne,
Switzerland, 2002.

20


http://refhub.elsevier.com/S0168-9274(13)00091-3/bib515631393934s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib515631393939s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib525932303034s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib53616631393731s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib5461727461723A313938303A494646s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib5461727461723A313938303A494646s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib554E474432303038s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib564B31393935s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib5A756E696E6F3A323030323A504844s1
http://refhub.elsevier.com/S0168-9274(13)00091-3/bib5A756E696E6F3A323030323A504844s1



