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Abstract —While deep learning has helped improve the performance of classification, object detection, and 1 
segmentation in recycling, its potential for mass prediction has not yet been explored. Therefore, this study proposes 2 
a system for mass prediction with and without feature extraction and selection, including principal component 3 
analysis (PCA). These feature extraction methods are evaluated on a combined Cast (C), Wrought (W) and 4 
Stainless Steel (SS) image dataset using state-of-the-art machine learning and deep learning algorithms for mass 5 
prediction. After that, the best mass prediction framework is combined with a DenseNet classifier, resulting in 6 
multiple outputs that perform both object classification and object mass prediction. The proposed architecture 7 
consists of a DenseNet neural network for classification and a backpropagation neural network (BPNN) for mass 8 
prediction, which uses up to 24 features extracted from depth images. The proposed method obtained 0.82 R2, 0.2 9 
RMSE, and 0.28 MAE for the regression for mass prediction with a classification performance of 95% for the 10 
C&W test dataset using the DenseNet+BPNN+PCA model. The DenseNet+BPNN+None model without the selected 11 
feature (None) used for the CW&SS test data had a lower performance for both classification of 80% and the 12 
regression (0.71 R2, 0.31 RMSE, and 0.32 MAE). The presented method has the potential to improve the monitoring 13 
of the mass composition of waste streams and to optimize robotic and pneumatic sorting systems by providing a 14 
better understanding of the physical properties of the objects being sorted. 15 
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1. Introduction 16 

Aluminum (Al) alloys are of great interest for various sustainable technologies due to their light-weight and 17 
mechanical properties, which explains its constantly increasing demand (Cullen and Allwood, 2013). Along with the 18 
production volumes, also the amount of collected scrap metal is increasing every year. Today, the majority of this 19 
scrap is used as a secondary feed for producing Al Cast (C) alloys, which are mainly used for the production of 20 
combustion engine motor blocks (Johnson et al., 2013). However, as a consequence of the electrification of the 21 
automotive sector, the demand for cast alloys is expected to stagnate and possibly even decline in the coming decade 22 
(Modaresi and Müller, 2012). As a result, alternative destinations will have to be searched to avoid the generation of 23 
an aluminium scrap surplus. One of the solutions to prevent the emergence of a scrap surplus is to design recycling-24 
friendly alloys that can function as alternative sinks for aluminum scrap due to less stringent tolerances on the 25 
concentrations of alloying elements in the alloy (Modaresi, 2015). Another possibility, which is complementary with 26 
the development of recycling-friendly alloys, is the development of more advanced recycling technologies that allow 27 
sorting different qualities, e.g. to sort between C and different Wrought (W) Al alloy groups, as well as sorting Al 28 
from other metals, such as Stainless Steel (SS). Today, aluminum recycling is typically carried out by adopting 29 
magnetic (over belt) separators to distinguish between ferrous and non-ferrous metals and eddy current separators to 30 
differentiate plastics from non-ferrous metals (Nijhof, 1994). 31 

Further, Al can be separated from most other non-ferrous metals by adopting sink-float techniques due to the 32 
relatively low density of Al. However, those techniques cannot be adapted to separate C from W alloys (Eggers et al., 33 
2019). In addition, sink-float separators will likely never result in a perfect separation due to the surfing of mainly flat 34 
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objects, the floating of pieces due to the inclusion of air or attachment of other lighter materials and the inclusion of 35 
suspension material in hollow parts.  36 

In this regard, X-Ray Fluorescence (XRF) or Laser-Induced Breakdown Spectrometry (LIBS), and/or machine 37 
vision technologies, using X-Ray Transmission, and/or Color and Depth cameras are considered to encompass 38 
substantial potential to sort Al based on the alloying elements, e.g. C from W alloys, and to obtain higher purity output 39 
fractions (Díaz-Romero et al., 2021). Combining these technologies with a pneumatic valve block and/or a robotic 40 
gripping system opens the possibility of developing robust and cost-efficient systems for sorting scrap Al. However, 41 
in order to successfully plan and execute the physical sorting tasks, such as robotic picking or pneumatic object 42 
ejection, an optimally functioning sorting system requires a multimodal understanding of the objects to be sorted. This 43 
includes their semantic, geometric, and physical properties, preferably before any decision or contact with the object 44 
is made (Standley et al., 2017). One of the most critical physical properties that influence both optimal grasping 45 
strategies and optimal control of a pneumatic ejection system is the object's mass (Correll et al., 2016). 46 

Object mass estimation is not only relevant for optimizing the actual sorting processes but also for reporting 47 
purposes as recycling rates are commonly quantified by a weight-based target (Nelen et al., 2014), which may result 48 
in undesired behaviours, such as prioritizing the collection and sorting of the heaviest materials instead of the most 49 
environmentally relevant light-weight material. Therefore, object mass estimation technologies are also valuable when 50 
combined with object classification to monitor and report on the actual mass composition of waste streams in a more 51 
continuous and standardized manner (Hotta et al., 2016). The object mass can be estimated by combining 3D 52 
information with the average material density of the waste stream. In contrast, such an approach is prone to significant 53 
errors when objects are of different materials, and/or irregular-shaped (hollow), and/or not making full contact with 54 
the surface on which they are positioned during analysis. Various applications of computer vision and convolutional 55 
neural networks (CNNs), which use imagery to gain a higher level of understanding of objects or classes, have been 56 
demonstrated in waste management applications (He et al., 2016; Shao et al., 2017; Chu et al., 2018; Sterkens et al., 57 
2021; Zhang et al., 2021). 58 

1.1. Deep Learning in Recycling 59 

The increasing use of automated sorting systems based on image recognition could help to reduce repetitive manual 60 
sorting tasks in the recycling field. Sterkens et al. investigated the use of the Yolo v2 Deep Learning network for 61 
object detection using X-Ray images of the internal structure of Waste Electric and Electronic Equipment (WEEE). 62 
The researchers collected a dataset of 532 X-Ray transmission images with two different X-Ray source configurations, 63 
obtaining a 91% true-positive rate and only a 6% false-positive rate for classifying battery-containing devices. 64 
(Sterkens et al., 2021). Mao et al. proposed to use DenseNet121 optimized by a genetic algorithm (GA) to enhance 65 
the classification accuracy on the TrashNet dataset, which has 2525 images grouped into six different object classes 66 
(glass, paper, cardboard, plastic, metal and trash), reaching up to 99.40 % of accuracy. Additionally, they proposed 67 
the gradient-weighted class activation mapping to help to highlight the waste image's rough features and validate the 68 
proposed method (Mao et al., 2021). 69 

 Zhang et al. used computer vision to classify household waste. They proposed a recognition-retrieval model to 70 
classify waste into four categories: Recyclable Waste, Residual Waste, Household Food Waste, and Hazardous waste. 71 
As a benchmark, a one-stage waste classification model was trained. Both systems were implemented in an automatic 72 
sorting machine, showing a sorting performance average accuracy of up to 94.71% ± 1.69 (Zhang et al., 2021). In an 73 
earlier study, the presented research built on the classification of C&W Al by evaluating five CNN Deep Learning 74 
models and two transfer learning methods (Díaz-Romero et al., 2021). This study showed that the fusion of RGB and 75 
3D images at the last layer of the DenseNet network improves the classification of the evaluated dataset. Furthermore, 76 
it was concluded that DenseNet could classify C&W Al with up to 98% accuracy.   77 
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1.2. Related Work for Mass Estimation 78 

Computer-aided mass estimation of irregularly-shaped metal waste is beneficial for developing recycling 79 
technologies. This is the first study investigating simultaneous classification and mass estimation of metal scrap to the 80 
authors' best knowledge. However, research has been performed on mass estimation in several domains such as 81 
medicine, agriculture and robotics. In 2017, Santley et al. proposed using colour images to predict the mass of various 82 
objects (image2mass). The study developed a dataset of web products on Amazon containing information on the 83 
image, object size, and mass. Then, using 14 features and 2 Xception networks, the authors predicted the object's 84 
mass. A human operator was asked to perform the same mass estimation to compare. Results showed that the system 85 
could predict mass with a coefficient of determination (𝑅𝑅2) of 0.691 and the minimum ratio error of 0.675 (Standley 86 
et al., 2017).  87 

In 2019, Utai et al. investigated the input of feature extraction from the image into an artificial neural network 88 
(ANN) for the mass estimation of irregularly-shaped fruits, showing the highest success rates of 97% and 99% for 𝑅𝑅2 89 
using ANN input with area and thickness or length, width, and thickness parameters, respectively (Utai et al., 2019). 90 
Konovalov et al. used two instances of the LinkNet-34 segmentation CNN to segment the images and estimate the 91 
mass of harvested fish by using the weight-from-area model, which resulted in a mean absolute percentage error of 92 
4.36% (Konovalov et al., 2019). However, both approaches cannot be used for irregularly-shaped objects because the 93 
area is calculated based on the homogeneous mask of the object.  94 

In 2020, Zhang et al. proposed a more robust method for fish mass prediction using image analysis and neural 95 
networks. The authors proposed to calculate nine features extracted from the image; then, they evaluated a PCA to 96 
select the best features and, finally, they trained the BPNN network to predict their mass. Their results showed a mean 97 
absolute error (MAE) of 0.0104, a 𝑅𝑅2 of 0.92, and a root means square error (RMSE) of 0.0134, demonstrating that 98 
the proposed method accurately estimates the mass (L. Zhang et al., 2020). An overview of related work and obtained 99 
performances are provided in Table I.  100 

 
The classification method used in prior research could be used to define the average density of an object class but 101 

would not allow overcoming the difficulties of obtaining reasonable volumetric estimations for irregular shapes, which 102 
are typical for scrap metals. Therefore, this paper presents a novel approach to simultaneously estimate the mass of 103 
unknown metal scrap objects and the material class to which they belong. By combining two feature selection methods 104 
and seven machine learning models, the combination of a CNN and a backpropagation neural network (BPNN) was 105 
evaluated to outperform all other combinations. Therefore, the performance of the combined DenseNet+BPNN 106 
network is presented for the mass estimation and object classification for the combined datasets of Cast & Wrought 107 
(C&W) and Cast, Wrought and Stainless Steel (CW&SS).  108 

The novel contributions of this paper are:  109 

• Implementation of a multi-out network for simultaneous classification of non-homogeneous shaped metal 110 
scraps (C, W and SS) and prediction of their mass. To the best of our knowledge, this paper is the first to 111 
benchmark the performance of Deep Learning methods to classify scrap metals such as C, W, and SS and 112 
simultaneously predict their masses. 113 

• The application and evaluation of handcrafted features for the mass estimation in recycling datasets using 114 
various machine-learning methods, which open the possibility of creating an online system for monitoring 115 
the material in the early or late stages of sorting. 116 

• The use of the backpropagation neural network (BPNN) algorithm to obtain a more accurate mass 117 
estimation model for scrap metal compared to traditional machine learning methods.  118 

 

The paper is organized as follows. Section 2 outlines the material and data pre-processing. Section 3 presents feature 119 
extraction methods and two types of feature selection algorithms. Section 4 describes the applied machine and Deep 120 
Learning methodology for metal classification and mass prediction using 3D images and evaluation metrics. Section 121 
5 presents the results and discussions. Finally, Section 6 concludes the paper and discusses future work. 122 
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2. Material 124 

A dataset of 120 C, 428 W Al scrap samples and 134 SS samples of different shapes (e.g., compact, bar, sheet, 125 
pipe, and irregular) with a mass distribution between 5 to 200 grams (g) was collected from a Belgian recycling 126 
facility. The Wrought and Cast pieces were used in a previous study to classify Al scraps (Díaz-Romero et al., 2021). 127 
The 548 Al samples (C&W) were collected randomly from the Twitch fraction. The 134 SS pieces were extracted 128 
from the Zorba fraction, consisting of shredded non-ferrous metals. The ferrous metals and non-metals were separated 129 
from this non-ferrous fraction in earlier sorting steps.  130 

The regression's ground truth was defined by weighing the metal pieces with a 1g resolution Sartorius Bp34 High-131 
Capacity Basic Plus Balance and error of ±0.5 g. The classification's ground truth was defined by combining captured 132 
images on a conveyor belt using a Niton™ XL2 XRF analyzer, suitable for cross-analyzing all the metal scrap samples 133 
by linking each image with its mass and chemical composition.  134 

TABLE I 
PERFORMANCES ACHIEVED IN PRIOR RESEARCH FOR DEEP LEARNING CLASSIFICATION IN RECYCLING APPLICATIONS AND FOR MASS 

ESTIMATION  

 Author(s) 
Year Objective Algorithm Type of Dataset Result 

D
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Sterkens et al. 
2021 

The detection of 
batteries in waste 

electrical and electronic 
equipment (WEEE) 

Yolo V2 
532 X-ray transmission 
images for classifying 

battery-containing device 

a 91% true-
positive and a 

6% false-
positive rate 

Mao et al. 
2021 

The use of deep 
learning to optimize 

waste stream detection 
accuracy 

DenseNet121 + 
a genetic 

algorithm (GA) 

TrashNet: 2525 images 
grouped into six different 

object classes 

an average 
accuracy of up 

to 99.40 % 

Zhang et al. 
2021 

The use of a recognition-
retrieval model for the 
classification of waste 

ResNet18 with a 
self-monitoring 
module (SMM) 

TrashNet: 2525 images 
grouped into four different 

an average 
accuracy of up 
to 94.71% ± 

1.69 

Díaz-Romero 
et al. 2021 

The fusion of RGB and 
3D images for the 
classification of 

aluminum 

DenseNet with 
early or late fusion 

548 images of scrap 
aluminum scraps 

an average 
accuracy of up 

to 98% 

M
as

s E
st

im
at

io
n 

Santley et al. 
2017 

The use of the geometry 
module and the volume 

tower to predict the mass 
of the object 

14 features + 2x 
Xception network 

Amazon test set of 147k 
images 

The household test set of 
479 images 

𝑅𝑅2 of 0.691 
and the RMSE 

of 0.675 

Utai et al. 
2019 

The use of feature 
extraction from the 

image to estimate the 
mass 

Four features + 
ANN 

Images of irregularly-shaped 
fruits 

The highest 
success for 𝑅𝑅2 
with 97% and 

99% 

Konovalov et 
al. 2019 

The use of instance 
segmentation from 

image to estimate the 
mass 

LinkNet-34 + 
weight-from-area 

model 

1400 images of harvested 
fish and 300 segmented fish 

masks 

MAE of 
4.36% 

Zhang et al. 
2020 

The use of PCA and a 
calibration factor CF for 

mass estimation 

Nine features 
+PCA+BPNN 

455 images of the Crucian 
carp fish 

𝑅𝑅2 of 0.92, 
MAE of 

0.0104 and 
RMSE of 

0.0134 
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The analysis of the collected 3D images, the detection of the Region of Interest (ROI), the extraction of 24 features 135 
from the ROI 3D images, the statistical analysis, and the implementation of machine-learning algorithms were carried 136 
out in Python. The images were captured on a conveyor belt with two LMI GOCATOR 2340 3D laser line profile 137 
sensors with a scan rate of 5 kHz synchronized by an LMI GOCATOR MASTER 810 with a resolution of 0.15 (mm) 138 
on the x and y axes and 0.0001 (mm) on the z-axis (Díaz-Romero et al., 2021). 139 

For the experiments, the 682 scrap metal objects are randomly divided into 70% training, 10 % validation, and 20% 140 
testing for all the experiments. All the experiments were computed on a single GPU: NVIDIA RTX3070 8 GB. A 141 
CPU: Intel® i7 with 3.20 GHz with 32 GB DDR4 RDIMM memory was used for the training and testing.  142 
 

2.1. Data Pre-processing 143 

The 3D camera has a resolution of 16 bits and requires a pre-processing step to transform the images into 8 bits. 144 
Hence, the first step to detect the ROI is to calculate the Mean and the Standard Deviation (Std) of the image and then 145 
clip the images before using a scale factor, as seen in equations (1-3).  146 

 X ={𝑥𝑥𝑖𝑖𝑖𝑖}𝑖𝑖, 𝑖𝑖  represents a point cloud matrix used to calculate the mean (Imgmean) and standard deviation (ImgStd) of 147 
the 3D image using the number of rows n (equation 1). 𝑣𝑣max  and 𝑣𝑣min  represent the maximum and minimum 148 
intensities plus or minus three times Std, and are calculated to clip the image resolution (equation 2). The clip function 149 
(clip(x,𝑣𝑣max ,𝑣𝑣min )) limits the x array values that lie outside the specified interval at the edges of the interval. Finally, 150 
the scale# factor is used to get a better object mask (Imgmask) (equation 3); the scaling factor is directly proportional 151 
to the pixel size.  152 

 153 
 

Imgmean= 
∑ x
n

        Imgstd= 
∑ (x - Imgmean)2

n - 1
 

 

 
(1) 

 vmax= Imgmean+ �3⋅ Imgstd�       vmin= Imgmean- (3⋅ Imgstd) 

 
(2) 

 
         Imgmask= 

clip(x,vmax,vmin)
scale#

 (3) 

 
Once the image mask is defined, the OpenCV library is used to identify the ROI, as shown in Fig. 1. The first step 154 

to detecting the ROI is applying the function cv2.threshold to transform the images from grayscale into a binary image 155 
(Mordvintsev and Abid, 2014). The following parameters were used for this step: THRESH_BINARY_INV as 156 
thresholding type, a threshold value (thresh) of 181, and a maximum value (maxval) of 150. 157 
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The last step in detecting the ROI requires applying the function findContour, using the mode RETR_EXTERNAL 158 
and the method CHAIN_APPROX_SIMPLE, as shown in Fig. 1b. The method returns the object contours used for 159 
cropping the object from the gathered image, as shown in Fig.1(b-c) (Mordvintsev and Abid, 2014; Suzuki, 1985).  160 

 161 

Fig. 1, (a) shows an illustrative example of a 3D image with multiple objects. ROI in Fig. 1b is calculated for scrap metal surrounded by a green 162 
bounding box (BBox), as shown in the middle image. Once the object is selected and cropped, seven features are shown in Fig. 1c image. 163 

3. Methods 164 

The aim is to calculate how accurately the mass of C, W, and SS can be estimated. The first step is to calculate 3D 165 
image features to estimate the mass of scrap parts. Second, feature selection methods are presented to identify the 166 
most relevant features for C, W, and SS. Third, machine learning and the BPNN method are presented to evaluate the 167 
feature selection-based mass estimation. Finally, CNN and the best mass estimation method are combined to 168 
simultaneously classify and predict the object's mass and investigate the performance. 169 

 

Fig.2 shows the proposed approach for mass prediction (Block 2) and classification (Block 1). Once a scrap piece of interest is cropped, it is fed 170 
into our pipe plan for classifying and predicting its mass. 171 

Fig. 2 depicts the flowchart of the proposed combined architecture. It has two main building blocks: (1) the 172 
traditional DenseNet neural network for classification and (2) the BPNN for mass prediction powered with up to 24 173 
extracted features. Combining both architectures is expected to positively impact metal scrap sorting by determining 174 
the average density of an object class and providing reasonable volumetric estimates for irregular shapes. 175 

The mass estimation is correlated to the density and volume of the object, which strongly depends on the object 176 
class. Therefore, a better understanding of each objects' physical properties is achieved, and, thus, a robotic and/or 177 
pneumatic ejection system can effectively and accurately sort the metal scrap. Furthermore, the Pytorch library and 178 
Scikit-learn are used to modify the network architectures, train models, and evaluate the results. 179 
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3.1. Feature Extraction 180 

Previous studies in the mass prediction's field for food processing (salmon, beef, pork, fruits) and household objects 181 
have used handcrafted features to determine an object's 3D properties and analyze its density and volume to aid in the 182 
understanding of the object's mass (Standley et al., 2017; Konovalov et al., 2019; L. Zhang et al., 2020; B. Zhang et 183 
al., 2020). The feature extraction is based on the bounding boxes (Bbox) extracted for all 3D images of the scrap metal 184 
objects, as depicted in Fig. 1c. We calculated the length (L), width (W) and center of the BBox, the maximum and 185 
minimum of the average image mask, and the object thickness's height correction (Hc). Then, we calculated the highest 186 
image mask point of the object to create a 3D BBox based on the L x W x Hc. The area features are calculated based 187 
on the 2D BBox defined by L x W, as shown in the right image in Fig. 1 based on the description in Table II. Finally, 188 
the mean, Std, and root in volumetric and area features were calculated. In total, we obtained 23 features from the 189 
cropped 3D image. Table I summarizes these features and states how they are derived. The 24th feature is the material 190 
type (class), which is only applied in the combined datasets to predict their mass and class simultaneously. 191 

192 

TABLE II 
LIST OF EXTRACTED FEATURES AND EQUATIONS FROM 3D IMAGES  

  
Extracted 
Features Feature Description Symbols and formulas 

CenterX & CenterY X, Y location of 2D BBox Center Center(BBox) 
CenterZ height of the object in the 2D BBox Center Ct = BBox[CenterX, CenterY] 

Length & Width ROI distances in the X & Y axes L & W 
HeightCorr 
(AvgHeight, 

MaxHeight and 
MinHeight) 

Height correction is a subtraction between maximum 
and minimum height in the object mask (ImgMask) 

Hc = Max(ImgMask)-Min(ImgMask) 
Havg = Avg(ImgMask) 

Angle The rotation angle of the bounding box A 

EstimatedArea 
FilledArea 
RootArea 

Area estimation (L, W) is created based on the 2D BB 
The filled area is the correlation between the object’s 

area and the empty space in the 2D BB 
Square root of the estimated area 

EstArea = prod(L,W) 
FilledArea =sum(mask)/ EstArea 

rootEstArea = root(EstArea) 

ImgIntensity 
ZeroIntensity 
NonZeroMask 

Image intensity counts equal to 1 in ImgMask 
Zero intensity is the difference between image intensity 

and minimum height 
Image intensity counts equal to 0 in ImgMask 

ImgInt = Img[ImgMask==1] 
ZeroInt = ImgInt - Min(ImgMask) 

NonZero = sum(Img[ImgMask==0]) 

EstimatedVolume 
ObjVolume 

RootVolumen 

Volume (L,W,Hc) is calculated based on the 3D BBox 
Object volume is the sum of ZeroInt or all the values in 

the thickness 
Square root of the volume estimation 

EstVol = prod(L,W,Hc)) 
ObjVol = sum(ImgInt)/ EstArea 

rootEstVol = root(EstVol) 

FilledVolume, 
EmptyVolume 

 

Filled proportion is the correlation between the object’s 
volume and the empty space in the 3D BB 

Empty space is the difference between the 3D BB 
minus the estimated volume. 

FiPro = ObjVol /EstVol 
EmpVol = EstVol - ObjVol 

SortedB/sortedM 
SortedB/sortedS 

SortedB*sortedM 
SortedM*sortedS 

 

The sorted equations are proportional metrics to 
calculate the correction between L, W, Hc. 

The values are sorted between the bigger (B), middle 
(M), and smaller (S). The correlations between the sizes 

are calculated by dividing or multiplying them. 

sB/sM = sortedB/sortedM 
sB/sS = sortedB/sortedS 

sB⋅sM = sortedB/sortedM 
sB⋅sS = sortedB/sortedS 
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3.2. Feature Selection 193 

Feature selection is applied as a natural method to avoid redundant features and improve machine-learning model 194 
performance (Gharsalli et al., 2015). The first step consists of finding the correlation between the 24 features for the 195 
CW&SS datasets. For that, two different methods were used: (1) we compute the Pearson correlation coefficient (PCC) 196 
for each pair of features and, with them, the Pearson matrix (Sedgwick, 2012), as depicted in Fig. 3 and (2) we use the 197 
principal component analysis (PCA), as shown in Table III. 198 

Fig. 3: Correlation heatmap based on Pearson's correlation coefficient between the 24 extracted features. The highlighted blue features are the 199 
only ones selected since they correlate greater than 0.5 regarding the object mass (weight). In contrast, the highlighted red feature (class) is 200 
selected as a substantial negative since its correlation value is smaller than -0.2. Finally, the highlighted green is the weight (mass) of the 201 

evaluation class. 202 
 203 
The Pearson's correlation coefficient measures the linear association between the different features (seen as 204 

independent input variables) and the mass (weight) that acts as the output variable. The output coefficient ranges 205 
between -1, representing a stronger negative correlation, and 1, representing a stronger positive correlation (Sedgwick, 206 
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2012). Six features, namely, AvgHeight, MaxHeight, MinHeight, EstimatedVolume, ObjVolume and SortedM/sortedS, 207 
correlate higher than 0.5 concerning the weight, as a result, were selected. Additionally, features such as 208 
SortedM*sortedS, Angle, and FilledVolume do not affect the model's performance since their correlations with respect 209 
to the mass are close to zero. 210 
 

Previous research demonstrated that using PCA as a feature selection method in the context of mass estimation can 211 
improve the performance of the regression model and the BPNN algorithms (L. Zhang et al., 2020). PCA is a 212 
multivariate statistical method for dataset dimension reduction that highlights those components with the most 213 
significant variance within the dataset (Wold et al., 1987). PCA identifies the relationships between characteristics 214 
and expresses them as a covariance matrix. Then, the existing data is converted into principal components using the 215 
eigenvalues of the covariance matrix. The most important features are selected, and the least relevant are eliminated 216 
(Wold et al., 1987). However, the data must be normalized before PCA is applied with a zero mean and variance equal 217 
to one. 218 

The PCA method was adopted five times to calculate the feature selection, one per class – C, W, and SS – and two 219 
for their combinations – C&W and CW&SS (see Table II). The features depicted in each column of Table III 220 
correspond to those with a more significant influence on the components and the largest eigenvalues. The seven 221 
features highlighted in blue describe the common features between the five datasets used. Analogously, the feature 222 
highlighted in red (class) is relevant for the combined datasets C&W and CW&SS. The 12 features obtained have 223 
been used as input parameters for the metal scrap multi-output model. In particular, it is observed that both the PCA 224 
and PCC point out that the relevant features are class, EstimatedVolume, and ObjVolume. This is expected since the 225 
mass of an object can be defined as the multiplication of volume and density, where the volume is determined by the 226 
object's 3D geometry, while the density is determined by the object's material or class (Standley et al., 2017). 227 

3.3. Mass Estimation Based on Machine learning 228 

Linear Regression (LR) (Pedregosa et al., 2011), Support Vector Regression (SVR) (Platt, 1999), K-Neighbors 229 
Regression (KNR) (Cover and Hart, 1967), Decision Trees Regression (DTR) (Quinlan, 1986), and Random Forests 230 
Regression (RFR) (Breiman, 2001) are the selected machine learning algorithms used to address how accurately the 231 
C, W, and SS mass can be estimated, based on their proven effectiveness (B. Zhang et al., 2020; L. Zhang et al., 2020).  232 

The library Scikit-learn 0.24 in Python was used to train and tune the model. The parameters adopted for the LR 233 
are the default parameters, while for SVR, they are kernel: 'RBF,' C: 300, gamma: 0.001 and degree: 3. For the KNR, 234 
the parameters are n_neighbors = 8, weights = uniform and algorithm ‘auto,’ while for the DTR, they are criteria: mse, 235 
min_samples_leaf = 2, and max_features = 4. The parameters adopted for the RFR are the number of trees in the 236 
forest: 192, criteria: mse, min_sample_split: 2, bootstrap: True, and oob_score: True. All the optimal parameters were 237 
found using Grid Search on the validation set, and the parameters not mentioned are set to their default values. Then, 238 

TABLE III 
FEATURE EXTRACTION PER MATERIAL AND THEIR COMBINATIONS AND FEATURES SELECTED FOR MASS PREDICTION BASED ON 

PRINCIPAL COMPONENT ANALYSIS (PCA).  
(THE STANDARD FEATURES BETWEEN METAL SCRAPS ARE HIGHLIGHTING IN BLUE AND RED FOR MULTICLASS REGRESSION) 

The 11 Remaining Principal Features After the Dimension Reduction 

No Cast (C) Wrought (W) Stainless Steel 
(SS) C&W CW&SS 

1 EmptyVolume EstimatedVolume EstimatedVolume EstimatedVolume EstimatedVolume 
2 SortedM*sortedS RootVolume RootVolume RootVolume AvgHeight 
3 FilledArea MinHeight SortedM*sortedS SortedM*sortedS SortedM*sortedS 
4 Angle Width Angle MinHeight Angle 
5 SortedB*sortedM SortedB*sortedM  SortedB*sortedM SortedB*sortedM SortedB*sortedM 
6 MinHeight FilledArea MinHeight MinHeight MinHeight 
7 CenterX CenterY RootArea Class Class 
8 CenterY Angle CenterY CenterY CenterY 
9 CenterZ CenterZ CenterZ CenterZ CenterZ 
10 NonZeroMask NonZeroMask NonZeroMask NonZeroMask NonZeroMask 
11 ObjVolume CenterX ObjVolume ObjVolume CenterX 
12 SortedB/sortedM ObjVolume SortedB/sortedS SortedM*sortedS ObjVolume 
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we compare the algorithm's performance for the machine-learning algorithms listed before and the BPNN for each 239 
metal scrap with and without feature selection.  240 

 

4. Deep Learning Methodology and Evaluation Metrics 241 

4.1. Mass Estimation Based on The BPNN 242 

The BPNN was developed with the aim of solving the problems of training multi-layer perceptron, i.e., the 243 
problems derived from the use of hard-limit transfer functions, by adjusting each node of the network depending on 244 
the error rate obtained in the previous epoch (Rumelhart et al., 1986). The BPNN consists of one input, one hidden 245 
layer, and one output layer with activation functions after each layer. In addition, it has nonlinear noise assignment 246 
capabilities, and it exhibits excellent performance in various prediction domains (Utai et al., 2019; Liu et al., 2020; L. 247 
Zhang et al., 2020). As seen in the above-reviewed contributions, the BPNN is one of the most accurate and efficient 248 
ways of estimating the mass. Therefore, it has been selected as one of the building blocks for the mass estimation 249 
method proposed in this work. The designed BPNN (depicted in Fig. 4) has three layers: an input layer (with between 250 
14 to 512 nodes), a hidden layer (with 45 to 150 nodes) with the rectified linear unit (ReLu) as an activation function 251 
(Glorot et al., 2011) and output layer (with one node) without a linear activation function.  252 

Moreover, the number of nodes on the input and hidden layers can differ depending on the feature selection method 253 
applied in each experiment. Finally, the number of nodes was determined based on Kolmogorov's theorem, where the 254 
number of nodes in the hidden layer is determined by twice the number of nodes in the input layer plus one (i.e., 𝑠𝑠 =255 
2𝑛𝑛 + 1, where 𝑠𝑠 is the number of nodes in the hidden layer and 𝑛𝑛 is the number of inputs) (Hecht-Nielsen, 1987).  256 

Fig. 4 The mass estimation pipeline consists of several machine learning algorithms and the BPNN. The general structure of the latter is further 257 
detailed in the green block. 258 
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4.2. Multi-output DenseNet 259 

Deep Learning was inspired by the visual cortex system (Hubel and Wiesel, 1968), which provides a natural way 260 
for humans to communicate with digital devices (Sejnowski, 2020). One of the leading Deep Learning architectures 261 
for analyzing visual imagery is the convolutional neural network (CNN) (Valueva et al., 2020). With sufficient 262 
training, CNNs can determine a map of spatial and temporal dependencies, emphasizing the presence of a given 263 
characteristic in the image, such as the class, volume, colour, and/or shape information. 264 

CNNs are typically constructed by combining convolutional, pooling and fully connected layers. Convolutional 265 
layers facilitate the extraction of different image characteristics by applying several filters and kernels. Pooling layers 266 
are used to select the most significant values in the feature maps and use them as input for subsequent layers. Finally, 267 
two or three fully connected layers are positioned at the end of the CNN to perform the classification, i.e., to estimate 268 
the probability of being in a given class. 269 

 Furthermore, a multi-output CNN can be built by adding layers to the end of its backbone. Typically, a CNN 270 
model, such as the Faster-RCNN, has two outputs for object detection: the bounding box (defined by a point, width 271 
and height), which is calculated with regression, and the object class, which is calculated in the classification layer. 272 
The multi-outputs added at the end of the network have a unique common loss function, formed by the weighted sum 273 
of the classification and regression loss functions (Ren et al., 2015). DenseNet was adapted to have multi-outputs to 274 
facilitate mass estimation and classification of scrap metals as part of this research. 275 

DenseNet is a CNN architecture designed to mitigate the vanishing-gradient problem, reinforce feature propagation, 276 
reassure feature reuse, and substantially decrease the number of parameters (Huang et al., 2017). In conventional feed-277 
forward neural networks, the layer's output constitutes the input of the subsequent layer after applying a function 278 
composition. In the case of DenseNet, each layer has direct access to the gradients from the loss function. 279 

Whereas previously, only the feature map from the previous layer is fed to the next, the DenseBlocks strategy is 280 
implemented instead: the feature maps from all previous layers are concatenated and passed to all the subsequent 281 
layers, resulting in deep supervision as depicted in Fig. 2 block one and Fig. 5. The structure of DenseNet121 consists 282 
of four DenseBlocks, three transition layers, and an average pooling connected to a fully connected layer with a 283 
softmax activation. A DenseBlock comprises two separate convolutions of kernel sizes 1x1 and 3x3; the convolution 284 
operation is split into a depth, and channel-wise operation, respectively, which drastically speeds up the operation. 285 
Each transition layer halves the number of existing channels by using a 1x1-convolution layer and a 2x2 pooling layer 286 
between two consecutive DenseBlocks. Finally, a fully connected layer helps learn nonlinear combinations of the 287 
feature space for classification (Huang et al., 2017).  288 

In general, the traditional DenseNet structure is used for scrap metal classification, which is simultaneously 289 
combined with a BPNN for mass prediction. This paper replaced the last layer of DenseNet121 with a linear regression 290 
output (DNR), which allows performing mass estimation without using additional features, as shown in Fig. 5. The 291 
DNR structure has the advantage that the extracted features of the CNN can be used to detect the mass estimation 292 
without handcrafted features. It also allowed a comparison between the extracted features in Table I and the features 293 
extracted from the network. Finally, two experiments were performed to evaluate the combination of the 294 
DenseNet+BPNN+PCA and DenseNet+BPNN+None. 295 
 296 

Fig. 5 shows the proposed approach for predicting the mass by replacing the last layer of DenseNet 121. 297 



 
 

12 
 

4.3. Training Parameters and Loss Function  298 

Due to the absence of a large dataset, a fine-tuning transfer learning method was required for the training. For the 299 
fine-tuning, the model starts from a set of pre-trained parameters updated for the new task (to perform either regression 300 
or classification) by retraining the entire model.  301 

In the performed experiment, we used a pre-trained DenseNet in Pytorch on the 100-class ImageNet dataset for 302 
fine-tuning, which has been successfully used in previous research (He et al., 2016; Schwarz et al., 2015). During the 303 
retraining, Vertical and Horizontal Random Rotation and Color Jitter are applied as data augmentation methods to 304 
enhance the image classification and the regression model (Perez and Wang, 2017; Wong et al., 2016). 305 

The learning rate for the mass estimation and object classification is set to 0.01, while in the case of mass estimation 306 
with the BPNN, the learning rate is set to 0.001. In both cases, the stochastic gradient descent (SGD) (Sutskever et al., 307 
2013) is used as an optimization method with a momentum of 0.92 and 0.95, respectively. In both experiments, 30 308 
batches and over 120 epochs were trained. Moreover, the proposed architecture for metal scrap classification and mass 309 
estimation only needs a single input (as shown in Fig. 2).  310 

DenseNet architectures use the Cross-Entropy loss function, which combines LogSoftmax and Negative Log-311 
likelihood Loss (NLLloss) in one single function to improve the training of unbalanced datasets (Paszke et al., 2019). 312 
For the BPNN architecture, two different loss functions have been evaluated: the Mean squared error (MSELoss or 313 
L2-Squared norm) and the Mean Absolute Error (MAE or L1Loss). The addition of the cross-entropy loss function 314 
with one of the loss functions evaluated for the BPNN defines the loss function used in our proposed architecture. 315 

4.4. Evaluation Metrics 316 

The regression machine learning and Deep Learning algorithms were trained to find the best regression model. The 317 
performance of the regression was evaluated using three different metrics, namely R Square (𝑅𝑅2), Root Mean Square 318 
Error (RMSE), and Mean Absolute Error (MAE). They are defined in equations (4-6), where 𝑦𝑦𝑖𝑖  represents the ground 319 
truth, 𝑦𝑦�𝑖𝑖 is the mass predicted value, 𝑦𝑦�𝑖𝑖 is known as vector 𝑓𝑓𝑖𝑖 and 𝑁𝑁 the number of elements. 320 
𝑅𝑅2  is used to determine how well the model fits the dependent variables; RMSE measures how the residuals are 321 

distributed, showing how much the predicted mass deviates from the actual mass. Finally, MAE measures the average 322 
magnitude of the error in a prediction set without considering its direction. 323 

  324 
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The DenseNet+BPNN was trained only for the best models found in previous experiments, with and without feature 326 
selection for the C&W and CW&SS datasets. The performance of the classifiers was assessed using three quality 327 
indexes, namely Precision, Recall, and F1-score: 328 
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 Precision = 
TP

TP + FP
 

(7) 

 Recall = 
TP

TP + FN
 

(8) 

 
F1-score = 2⋅

Precision ⋅ Recall
Precision + Recall

 
(9) 

Where TP is the number of true-positives, i.e., when the predicted class is "Cast" and the data is also labelled as 329 
"Cast," FP is the number of false-positives, i.e. when the data is labelled as "Wrought," but the predicted class is 330 
"Cast," and FN is the number of false-negatives, i.e. when the data is labelled as "Cast" but the predicted class is 331 
"Wrought" (Díaz-Romero et al., 2021). The F1-score is the harmonic mean of the Precision and Recall indices and is 332 
also used to evaluate the classification. It gives a better measure to evaluate the number of misclassifications in 333 
unbalanced datasets. Additionally, the area under the receiver operating characteristic curve (ROC) is used to evaluate 334 
several thresholds between Recall and the false-positive rate (FPR), defined as FP/ (FP+TN). The accuracy of the 335 
detection results (F1-score) is assessed using the Precision vs Recall curve, which focuses on evaluating the 336 
performance of a classifier for different probability thresholds on the minority class (He and Ma, 2013). 337 

5. Results and Discussion 338 

Section 5.1 examines how accurately the C, W, and SS mass is estimated. Furthermore, in Section 5.2, based on the 339 
obtained results, we investigate how accurately the C&W and the CW&SS are classified, and Deep Learning estimates 340 
their mass.  341 

5.1. Mass estimation Based on Machine Learning and Deep learning 342 

Table IV compares the test set's LR, SVR, KNR, DTR, RFR and BPNN repressors. Results show that the BPNN 343 
without feature selection generally performs best from the seven methods tested. For the proposed BPNN architecture, 344 
the C&W with PCA has an R2 of 0.83, an RMSE of 0.17 and an MAE of 0.14. CW&SS without feature selection 345 
shows an R2 of 0.76, an RMSE of 0.32 and an MAE of 0.24. Furthermore, in the C&W mass prediction cases, the 346 
BPNN with PCA enhances the regression by reducing the error by 0.11 and 0.04 for RMSE and MAE, respectively, 347 
while the R2 score increased by 0.03. In general, the machine learning models across the entire test set perform with 348 
R2 scores ranging between 47% and 77% for C, W and SS, concluding that RFR has the best and DRT has the worst 349 
performance.  350 



 
 

14 
 

Overall, the mass can be predicted based on 3D images through the features extracted from the images. 351 
Furthermore, the results show that feature selection does not provide a significant improvement. Since there is no 352 
standard established protocol for such studies, a direct comparison of the results is not possible. However, looking at 353 
the most closely related studies, we can see that our results are competitive (Konovalov et al., 2019; Agarwal et al., 354 
2020; Liu et al., 2020; B. Zhang et al., 2020). 355 

Standley et al. used RGB images to estimate the object's mass (Standley et al., 2017). In particular, they proposed 356 
using two Xception networks and 14 features to calculate the object's density and volume and then estimate its mass. 357 
The first Xception network was used to compute the bounding box and, thus, the 3D volume of the object. Then, the 358 
results obtained were fused to the second Xception network to estimate the object's density. In order to evaluate the 359 
system, two datasets were used: the household test set (56 items, 423 images) and the amazon test set (924 items). 360 
Overall, the household test set performed at 0.69 R2, 0.67 RMSE and 0.68 MAE, while the Amazon test set performed 361 
at 0.77 R2, 0.67 RMSE and 0.61 MAE. In addition, the study showed the mass prediction performance of 4 participants 362 
in the household dataset, achieving an R2 score between 0.49 and 0.68 for the mass estimation. 363 

Zhang et al. designed a dataset for fish mass estimation (455 images) using image analysis and neural networks 364 
(Zhang et al., 2020). The adopted approach aimed to use image segmentation, enhancement and pre-processing. A 365 
total of 14 features were extracted, filtering the best of them by using PCA. Finally, the fish mass was estimated by 366 
using the BPNN architecture. Overall, their system showed a performance of 0.90 R2, 0.01 RMSE and 0.01 MAE; 367 
Although a direct comparison with previously performed mass-estimation research is not possible, the error obtained 368 
in our proposed method might be more significant since we are not using homogenous objects such as fish or fruits 369 
(Konovalov et al., 2019; Utai et al., 2019).  370 

Before combining the BPNN with DenseNet121, the DenseNet-Regression (DNR) algorithm shown in Fig. 5 was 371 
evaluated, as shown in Table V. The results show the performance of the two-loss functions L1 and L2 for the mass 372 
prediction of scrap metals on the test set. Overall, the best performance was achieved with the DNR and L2. However, 373 
the RMSE error is 0.02 lower for the W mass prediction using L1. A DNR network without any additional features 374 
could predict the mass of metals scrap objects based on a 3D image and a pre-trained network, obtaining an R2 score 375 

TABLE IV 
COMPARISON OF REGRESSION PERFORMANCE OF THE TEST DATA SET FOR LINEAR REGRESSION (LR), SUPPORT VECTOR REGRESSION (SVR), K-
NEIGHBORS REGRESSOR (KNR), DECISION TREE REGRESSION (DTR), RANDOM FOREST REGRESSION (RFR) AND BACKPROPAGATION NEURAL 

NETWORK (BPNN) WITH L2 LOSS FUNCTION 
 

  RMSE (↓) MAE (↓) R2 (↑) 
 Features C W SS CW All C W SS CW All C W SS CW All 

LR
 None 0.60 0.60 0.85 0.49 0.56 0.40 0.41 0.70 0.36 0.44 0.68 0.65 0.43 0.77 0.74 

PCC 0.55 0.60 0.95 0.56 0.61 0.44 0.43 0.74 0.38 0.45 0.74 0.63 0.28 0.68 0.69 

PCA 0.58 0.60 0.76 0.50 0.56 0.42 0.41 0.67 0.36 0.44 0.70 0.65 0.55 0.76 0.73 

SV
R

 None 0.71 0.70 0.75 0.65 0.63 0.53 0.49 0.63 0.42 0.43 0.55 0.52 0.56 0.60 0.66 

PCC 0.51 0.59 0.68 0.62 0.65 0.38 0.38 0.54 0.39 0.44 0.77 0.65 0.62 0.62 0.65 

PCA 0.73 0.71 0.75 0.64 0.63 0.56 0.49 0.63 0.42 0.43 0.52 0.51 0.56 0.60 0.67 

K
N

R
 None 0.82 0.56 0.82 0.59 0.63 0.60 0.38 0.74 0.38 0.44 0.40 0.69 0.46 0.66 0.67 

PCC 0.67 0.65 0.74 0.64 0.62 0.51 0.43 0.67 0.39 0.44 0.60 0.58 0.56 0.60 0.68 

PCA 0.82 0.56 0.83 0.59 0.62 0.60 0.38 0.75 0.38 0.43 0.39 0.69 0.46 0.67 0.68 

D
TR

 None 0.77 0.72 1.04 0.61 0.69 0.56 0.44 0.82 0.43 0.48 0.47 0.49 0.14 0.64 0.59 

PCC 0.84 0.75 0.92 0.73 0.75 0.63 0.48 0.66 0.50 0.51 0.37 0.44 0.31 0.47 0.53 

PCA 0.97 0.79 1.04 0.80 0.72 0.72 0.49 0.83 0.54 0.52 0.15 0.39 0.14 0.39 0.56 

R
FR

 None 0.53 0.60 0.88 0.49 0.53 0.41 0.41 0.70 0.33 0.39 0.75 0.64 0.39 0.77 0.76 

PCC 0.57 0.67 0.85 0.64 0.64 0.43 0.46 0.64 0.41 0.46 0.71 0.55 0.42 0.60 0.66 

PCA 0.64 0.61 0.84 0.57 0.60 0.49 0.43 0.74 0.40 0.44 0.63 0.63 0.44 0.69 0.69 

B
PN

N
 None 0.46 0.54 0.67 0.28 0.32 0.34 0.37 0.48 0.18 0.24 0.78 0.82 0.71 0.82 0.76 

PCC 0.51 0.73 0.73 0.75 0.44 0.35 0.52 0.52 0.48 0.24 0.72 0.78 0.53 0.81 0.74 

PCA 0.50 0.55 0.70 0.17 0.61 0.37 0.36 0.51 0.14 0.38 0.75 0.72 0.62 0.83 0.75 
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between 0.61 and 0.77. DNR models generally have a lower RMSE and MAE due to the gradient descent optimization 376 
applied during training and their multiplex iterations. 377 

Nonetheless, the performance of the DNR is not better than the BPNN because of insufficient data and because the 378 
retraining of the networks was done with unbalanced classes. The authors believe DNR could outperform BPNN with 379 
a more comprehensive and balanced training set for each class. The study of Konovalov et al. for mass estimation in 380 
the research field of agriculture showed that by using the CNN, the mass of an object could be predicted with a high 381 
R2 score and low error (Konovalov et al., 2019). In the presented case, the use of additional features improved the 382 
robustness of the model for unknown new metal scrap, resulting in a better overall performance. Although the mass 383 
prediction by computer vision is not as accurate as measuring mass with a scale, it still provides an essential 384 
approximation allowing monitoring of waste composition in an early stage. 385 

5.2. Mass Estimation And Classification of Metal Scrap based on Deep Learning 386 

The best regression performances were obtained for the BPNN+PCA and the BPNN+None without feature selection 387 
for C&W and CW&SS, respectively, as shown in Table IV.  388 

The DenseNet+BPNN+PCA model results for the C&W test dataset are shown in Fig. 6, containing four subplots. 389 
Fig. 6a shows the classification results, indicating that C&W can be classified with a weighted average F1-score and 390 
Precision of 95%. However, the proposed classification is solely based on 3D images, leading to a slightly lower 391 
classification score than using fused RGB and 3D images, and the Recall for the C is around 76% due to the training 392 
with an imbalanced dataset. A marginally lower recall could produce a lower recovery volume, reducing the marginal 393 
benefit of scrap metals, resulting in moderately increased scrap metal recycling action costs. Fig. 6b depicts the 394 
regression results, performing at 0.82 for R2, 0.2 for RMSE, and 0.28 for MAE for the DenseNet+BPNN+PCA model. 395 
The resulting regression lines with a 95% confidence interval for each regression are intended to show only the data 396 
trend, presenting a slightly higher slope for the Cast class. In general, the performance of DenseNet+BPNN+PCA 397 
(output: regression + classification) vs BPNN+PCA (output: regression) is not significantly divergent with a score 398 
difference of 0.06 for R2, 0.02 for RMSE, and 0.14 for MAE. However, it should be noted that DenseNet+BPNN+PCA 399 
has the advantage of a multi-output pipeline compared to a single-output as in the case of BPNN+PCA, due to the 400 
possibility of classifying and estimating the mass of scrap metal pieces. Fig. 6c represents the Precision-Recall curve; 401 
the best result obtained on the test data was a Recall of 0.96 with a Precision of 0.94. The classification performance 402 
model at all classification thresholds is shown in Fig. 6d, where an area value of 0.81 and 0.94 have been achieved for 403 
C and W, respectively. The evaluation of the ROC curve is used to determine the most favourable operating point 404 
depending on the application function. A 0.82 TP at 0.18 FP rate is obtained in the presented results. The relatively 405 
high rate of FPs is expected to be a result of the absence of a color camera. Specifically, the red channel of the color 406 
image is relevant for differentiating materials with similar shapes and degrees of light absorption/reflection, such as 407 
C and W Al (Díaz-Romero et al., 2021). 408 

TABLE V 
COMPARISON OF REGRESSION PERFORMANCE OF TEST DATA SET FOR DENSENET REGRESSION (DNR) BY JUST USING DEEP 

LEARNING WITHOUT FEATURE EXTRACTION 

  RMSE (↓) MAE (↓) R2 (↑) 
 Loss C W SS CW All C W SS CW All C W SS CW All 

D
N

R
 

 L1 0.61 0.16 0.82 0.42 0.56 0.62 0.14 0.61 0.32 0.36 0.59 0.65 0.40 0.68 0.64 

L2 0.54 0.18 0.68 0.27 0.28 0.35 0.14 0.50 0.23 0.20 0.70 0.61 0.59 0.77 0.72 
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 409 
Fig. 6: Results of the C&W Al classification and mass estimation: (a) Classification results including the following evaluation metrics: weighted 410 
average, F1-Score, Recall, and Precision; (b) Regression results using the DenseNet+BPNN+PCA architecture and including the 𝑅𝑅2, RMSE and 411 
MAE metrics, as well as the resulting regression lines with a 95% confidence interval for each regression (intended to show only the data trend); 412 

(c) The Precision-Recall curve, showing the balance between Precision and Recall for different thresholds and (d) The ROC curve, which 413 
represents the performance of the proposed classification model at all classification thresholds. 414 

Overall, these experiments demonstrate that using DenseNet with the BPNN is a novel and promising alternative for 415 
mass estimation and C&W classification with high performance. The proposed method could be adapted to different 416 
materials and used as a first-step monitoring system to assess performance during (pre-) sorting. Furthermore, the 417 
system can be used at the end of the recycling line to enhance the understanding of the objects' physical characteristics, 418 
which, in turn, could enhance the control of a robotic and/or pneumatic sorting system. 419 
    The results for the CW&SS test dataset using the DenseNet+BPNN+None model are shown in Fig. 6. Compared to 420 
the C&W dataset, there is a significant reduction in the classification and regression performance because the 421 
characteristics of the SS class, such as shape and size, are similar to those of the W class, resulting in higher 422 
misclassification between the W and SS classes. However, this problem could be solved by using an RGB camera, 423 
which has a clear difference between the material colour and reflectance properties for the human eye.  424 
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 425 
Fig. 7: Results of the CW&SS classification and mass estimation are shown. 426 

The model's performance is evaluated using the Precision-Recall and ROC curves (Fig. 7c and d), achieving, in 427 
general, a micro-average area of 0.71 and 0.85 for the testing data, respectively. The best performance was obtained 428 
for a recall of 0.81 and a precision of 0.80 (see Fig. 7c). The best performance for the ROC curve can be seen in Fig. 429 
7d at a 0.81 TRP with a 0.19 FPR.  430 
    Fig. 7a shows that stainless steel classification has a higher performance than the other two classes with an F1-431 
score, Precision and Recall of 84%. In general, the classification has a weighted average performance of 80% for all 432 
the classification metrics, showing the possibility to use the intensity and 3D images for multi-object detection. The 433 
regression results are shown in Fig. 7b, representing the resulting regression lines for mass prediction and performance 434 
of the DenseNet+BPNN+None model with 0.71 for R2, 0.31 for RMSE, and 0.32 for MAE. The trend of the SS class 435 
lines differs from that of the C&W class due to the density differences between SS and Al, which range from 436 
7,500kg/m3 to 8,000kg/m3 and 2,640kg/m3 to 2,810kg/m3, respectively. 437 
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6. Envisaged Industrial Application  438 

The first envisaged industrial application is the use of the developed method for assessing the composition and 439 
purity of mixed plastic and metal waste streams. To trade most of these waste fractions, minimal weight-based purity 440 
targets need to be reached, where higher purities typically result in a higher market value. The waste streams' 441 
composition, shape, and mass distribution can vary significantly depending on the process input mix. Therefore, a 442 
simple count of the detected objects per class does not accurately estimate a weight-based material composition. The 443 
classification and mass estimation techniques presented in this work offer opportunities to provide better insight into 444 
the actual purity achieved thresholds. 445 

In addition, compositional information can be used for improved recycling process control. Al remelters producing 446 
secondary wrought Al alloys only buy scrap that meets the specific compositional constraints (Dispinar and Campbell, 447 
2004). Therefore, recycling companies that operate a sorting process desire to maximize the amount of material that 448 
can be commercialized as a wrought fraction, which can be marketed at a higher value while still meeting the remelter's 449 
composition requirements. Since it is inherent of a sorting process that a trade-off needs to be made between a higher 450 
purity and a higher yield, the proposed method can provide helpful information on the actual weight composition 451 
achieved of the sorted fraction by considering the weight of all sorted objects. Therefore, in future research, the 452 
benefits of using the developed method to optimize the output purity of a sorting system with a laser-induced 453 
breakdown spectrometer, which can provide information on the alloy composition of every object, will be investigated. 454 

Another envisaged application is using the proposed method to enhance the control of a pneumatic valve block 455 
and/or a robotic gripping system. Nowadays, the duration of the valve opening or the gripper to be used and the robot 456 
path are either fixed or solely based on the geometrical information extracted from (depth) images. Hence, integrating 457 
the developed class and weight prediction methods enable enhanced control of these sorting mechanisms. It allows 458 
the use of the semantic, geometric and physical properties calculated for every object. 459 

 460 
7. Conclusion and Future Work 461 

 The presented results demonstrate the potential of state-of-the-art machine learning techniques and Deep Learning 462 
for simultaneous mass estimation and classification of scrap metal objects to enhance the control of either or both 463 
robotic and pneumatic sorting systems.  464 

The study investigates the benefits and limitations of machine learning, BPNN and DenseNet for mass estimation. 465 
Furthermore, it identifies the best feature selection methods and the most suitable algorithms to work only with the 466 
data extracted from a 3D camera. The results obtained with the CNN DenseNet and the BPNN show that the developed 467 
method could monitor the proportion of metal classes based on their mass estimation. The best results for mass 468 
prediction were obtained with BPNN+PCA and BPNN+None, attaining an R2 of 0.83, an RMSE of 0.17 and an MAE 469 
of 0.14, and an R2 of 0.76, an RMSE of 0.32 and an MAE of 0.24, respectively. Therefore, the mass prediction method 470 
can be considered a follow-up or supplementary system in sorting C&W and CW&SS. In addition, it has a significant 471 
potential to develop a better understanding of the physical properties of an object which, in turn, will be helpful for its 472 
manipulation in automated systems. 473 

Additionally, the experiments presented demonstrate that DenseNet+BPNN+PCA and DenseNet+BPNN+None 474 
can classify and predict the object's mass without losing performance in its classification. The results of the 475 
DenseNet+BPNN+PCA model for the C&W test data are 0.82 for the R2, 0.20 for the RMSE, 0.28 for the MAE. The 476 
classification performance is 95%, computed as the weighted average of the F1-score, Recall and Precision indexes. 477 
The DenseNet+BPNN+None applied to the CW&SS test data has a weighted average performance of 80% for all the 478 
ranking metrics and 0.71 R2, 0.31 RMSE, and 0.32 MAE for the regression metrics. 479 

The data sets will be scaled up and balanced to reduce bias and increase the network's performance in future 480 
experiments. In addition, the dataset will be extended for light and heavy metals to explore whether density detection 481 
can improve the class detection of different metals. We will further develop an early end-to-end Deep Learning system 482 
to monitor the mass and classes of impurities and recycled materials and integrate our approach into the CNN mask. . 483 
Furthermore, the researchers will evaluate whether the combination of the regression and classification could enhance 484 
or help improve the classification prediction from different materials based on their density deviations. Finally, the 485 
system will be integrated into a real-time system for sorting aluminum  486 

alloys, helping to reduce the threat of scrap surplus, and perhaps, more value could be recovered from post-487 
consumer aluminum scrap. 488 

 489 
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