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Engineering Com
putations

INVERSE HOMOGENIZATION USING THE TOPOLOGICAL

DERIVATIVE

Abstract. Purpose: Solve the inverse homogenization problem, or so-called

material design problem, using the topological derivative concept.
Methodology: The optimal topology is obtained through a relaxed formula-

tion of the problem by replacing the characteristic function with a continuous

design variable, so-called density variable. The constitutive tensor is then
parametrized with the density variable through an analytical interpolation

scheme that is based on the topological derivative concept. The intermediate

values that may appear in the optimal topologies are removed by penalizing
the Perimeter functional.

Findings: The proposed methodology allow us to use the topological deriva-

tive concept for solving the inverse homogenization problem and to fulfil the
optimality conditions of the problem with the use of classical optimization

algorithms. We solved several material design examples through a projected

gradient algorithm to show the advantages of the proposed method.
Originality: The material design problem based on the topological deriva-

tive concept is solved in a continuous optimization framework. The optimiza-
tion process benefits from the intermediate values that provide the proposed

method reaching solutions that the topological derivative had not been able

to find before. In addition, the presented theory opens the path to propose
a new framework of research where the topological derivative uses classical

optimization algorithms.

1. Introduction

The aim of this work is to solve the inverse homogenization problem, hereinafter
also called material design problem, which consists in finding the optimal topology
of a microstructure whose effective constitutive response, so-called Ch, is identical
to a pre-established behavior C?.

The concept of inverse homogenization was first presented in [Sigmund, 1994,
Sigmund, 1995] by Sigmund and their co-workers in the ’90s. The authors pro-
posed to use as design variables the distribution of the density of a reference struc-
tural material in the base cell and consider classical optimization algorithms. The
constitutive tensor is then parametrized with the the density variable through an
auto-penalized analytical interpolation (SIMP method). The optimality conditions
for this approach are the classical ones for a continuous-parametric problem. See,
for instance, the book of [Bendsøe and Sigmund, 2003] and the bibliography cited
therein related to this topic.

Another approach to solve this problem is based on the concept of topological
derivatives [Novotny and Soko lowski, 2013]. Typically, this approach considers a
level-set function for the geometrical description of the material distribution and
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proposes a fixed-point algorithm for reaching the optimality condition of considering
topological changes, see for example [Amstutz et al., 2010, Giusti and Novotny, 2016].
The optimality condition could be hard to accomplish depending on the shape func-
tional and the numerical discretization that is considered, specially on the inter-
face. Different works to improve the discretization on the interface may be found
in [Ferrer, 2017, Amstutz et al., 2018] and more recently in [Vermaak et al., 2019].

Recently, in [Ferrer, 2019], the topological derivative has succeeded to solve
topology optimization problems through a relaxed formulation. This approach
proposed on an isotropic interpolation, such as SIMP methodologies, such that the
derivative in the void and material part of the domain coincides with the topolog-
ical derivative. This interpolation function is called SIMP-ALL. In addition, the
SIMP-ALL interpolation has been proved in [Ferrer, 2019] to remain in between
the HS bounds ensuring that the intermediate values that may appear can always
be interpreted as the homogenization of some micro-structures. The main property
of the approach is that the sensitivity of the shape-function when a topological
change is considered now becomes a continuous change and therefore continuous
optimization algorithms become available.

To avoid the problem of the possible existence of intermediate values for the
material properties in this relaxed formulation, a perimeter functional is also added
to the optimization procedure. The perimeter functional is usually added in topol-
ogy optimization for ensuring existence of optimal topologies [Allaire, 2012]. Al-
though different methods exists for computing the perimeter, we follow in this
work the approach proposed in [Amstutz and Van Goethem, 2012]. The perimeter
functional will remedy the main disadvantage of the relaxed formulation (interme-
diate values in the optimal topology) and will ensure the manufacturability of the
optimal topologies. In addition, in this work, we opt for square microstructure do-
mains for simplicity. However, the shape of the microstructure boundary can also
be used as a design variable of the problem (rectangle, hexagon, etc). See work
[Podestá et al., 2019] for further details.

This paper is organized as follows. In Section 2, the material design problem is
briefly introduced together with the topological derivative of the elastic constitutive
tensor. Section 3 explains the main concepts on the use of the topological derivative
of the constitutive tensor in the material design framework. Two kinds of methods
are presented here. The capabilities of each one to solve the inverse homogenization
problem are discussed. The notions of perimeter functional and the closed-form for
the computation of the gradient are introduced in Section 4. The material design
problem is reformulated here to consider the minimization of the perimeter and
manufacturability conditions. Its advantages and disadvantages are also discussed.
Finally, several numerical examples are carried out in Section 5 while the main
conclusions of this work are provided in Section 6.

2. Setting of material design problem

2.1. Formulation of the problem. Consider the unit cube Y = (0, 1)N , with
N = 2, then the cell problem or microstructure problem can be written as solving
for the indices 1 < i, j < N the following equation:{

−div (C : (eij + ε(wij))) = 0 in Y ,
y 7→ wij(y) Y − periodic ,

(1)
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where the tensor eij = 1
2 (ei ⊗ ej + ej ⊗ ei) is one element of the canonical basis

of symmetric matrices, ε(·) is the symmetric part of the gradient of (·) and C is
the fourth-order elasticity tensor. The solution wij is called the corrector function
or fluctuation field. In practice, this problem have to be solved three times (for
N = 2): e11 = e1 ⊗ e1, e2 ⊗ e2 and e12 = 1

2 (e1 ⊗ e2 + e1 ⊗ e2).
To give a mathematically precise meaning to (1), let us introduce the subspace

V = H1
#

(
Y ;RN

)
of all functions u ∈ H1(Y ;RN ) which are periodic, i.e., with

traces equal on opposite sides of the unit cell Y . The cell problem admits the
following weak form: for given indices 1 < i, j < N find wij ∈ V such that∫

Y

ε(wij) : C : ε(φ) +

∫
Y

eij : C : ε(φ) = 0 ∀φ ∈ V, (2)

which admits a unique solution up to a rigid body motion. By introducing the dual
paring notation (e1,C : e2) = 1

|Y |
∫
Y
e1 : C : e2 and dividing by |Y | equation (2),

we can write the cell problem as find for the indices 1 < i, j < N the correctors wij
solution of

(ε(φ),C : ε(wij)) + (ε(φ),C : eij) = 0 ∀φ ∈ V. (3)

Following this notation, the correctors yield an explicit formula for the homogenized
constitutive tensor which reads as

Chijkl = (eij ,C : ekl) + (eij ,C : ε(wkl)), (4)

or equivalently, using the weak form (3),

Chijkl = (eij + ε(wij),C : (ekl + ε(wkl))). (5)

2.2. Topological derivative of the elastic constitutive tensor. For the sensi-
tivity of the elastic constitutive tensor, we consider two materials: the base material
C1 and the weak material (or void material) C0. Both tensors can be written as:

C0 = 2µ0I + (κ0 − µ0) (I ⊗ I),
C1 = 2µ1I + (κ1 − µ1) (I ⊗ I),

(6)

being µi and κi (for i = 0, 1) the Lamé coefficients for both material phases. Let
us consider the fixed cell domain Y that is split in Y0 and Y1. For the indices
1 < i, j, k, l < N , the topological gradient TDCh evaluated at each point ŷ ∈ Y are
given by:

(TDCh)ijkl =

{
(TDCh0 )ijkl = [eij + e (wij)] : dC0 : [ekl + e (wkl)] ∀ŷ ∈ Y0,

(TDCh1 )ijkl = [eij + e (wij)] : dC1 : [ekl + e (wkl)] ∀ŷ ∈ Y1,
(7)

where wij are the correctors functions solution of problem (3). The polarization
tensors dC0 and dC1 are:

dC0 = 2µ0 (µ1 − µ0) qµ0
I + [κ0 (κ1 − κ0) qκ0 − µ0 (µ1 − µ0) qµ0

] (I ⊗ I),
dC1 = 2µ1 (µ0 − µ1) qµ1

I + [κ1 (κ0 − κ1) qκ1 − µ1 (µ0 − µ1) qµ1
] (I ⊗ I),

(8)

with

qµ1
= q (µ1, µ0, ηµ1

) , qκ1
= q (κ1, κ0, ηκ1

) , ηµ1
= κ1µ1

2µ1+κ1
and ηκ1 = µ1;

qµ0 = q (µ0, µ1, ηµ0) , qκ0 = q (κ0, κ1, ηκ0) , ηµ0 = κ0µ0

2µ0+κ0
, and ηκ0 = µ0

(9)

where q (t1, t2, t3) = (t1+t3)
t1(t2+t3) . The proof of the previously presented results can be

found in [Amstutz et al., 2010, Ferrer, 2019].
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3. Use of topological derivative in material design

3.1. Using topological derivative within level-set formulation. The topo-
logical derivative has been commonly used in topology optimization in combination
with a level-set description of the domain. The first successful algorithm was pro-
posed in [Amstutz and Andrä, 2006] and used for material design in [Amstutz et al., 2010].
We briefly recall this approach in this work. By defining a characteristic function
χ ∈ L∞# (Y, {0, 1}) in the space of L∞(Y, {0, 1}) functions with periodic conditions
such that

χ(y) =

{
0 if y ∈ Y0

1 if y ∈ Y1
, (10)

the elasticity tensor C(χ), to be used in cell problem (2), can be constructed as:

C(χ) = (1− χ)C0 + χC1. (11)

The two parts of the domain are described by the positive or negative part of
the level-set function Ψ ∈ L2(Y ). This is

Y0 = {y ∈ Y,Ψ(y) < 0} , and Y1 = {y ∈ Y,Ψ(y) > 0} . (12)

Now, let us consider the topological derivative TDFχ of a general functional Fχ.
According to [Amstutz and Andrä, 2006], a sufficient condition of local optimality of
minimization problems for the class of perturbations consisting of circular inclusions
is

TDFχ(y) > 0 ∀y ∈ Y . (13)

To devise a level-set-based algorithm whose aim is to produce a topology that
satisfies (13), it is convenient to define the function

g(y) =

{
−TDFχ(y) if y ∈ Y0

TDFχ(y) if y ∈ Y1
. (14)

With the above definition, it can be easily established that the sufficient condition
(13) is satisfied if the following equivalence relation between the functions g and
the level-set Ψ holds

∃ τ > 0 s.t g = τ Ψ , (15)

or, equivalently,

θ := arccos

[ 〈g,Ψ〉L2(Y )

‖g‖L2(Y ) ‖Ψ‖L2(Y )

]
= 0 , (16)

where θ is the angle between the vectors g and Ψ in L2(Y ). Therefore, the above
condition indicates that at the optimum the functions g and Ψ must be parallel in
the functional space.

3.1.1. General optimization procedure. Starting from a given level-set function Ψ0 ∈
L2(Y ) which defines the chosen initial guess for the optimum topology, the al-
gorithm proposed by [Amstutz and Andrä, 2006] produces a sequence (Ψi)i∈N of
level-set functions that provides successive approximations to the sufficient condi-
tion for optimality (15). The sequence satisfies

Ψ0 ∈ L2(Y ) ,
Ψi+1 ∈ co(Ψi, gi) ∀i ∈ N ,

(17)
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where co(Ψi, gi) is the convex hull of {Ψi, gi}. In the current procedure the initial
guess Ψ0 is normalized. With S denoting the unit sphere in L2(Y ), the algorithm
is explicitly given by

Ψ0 ∈ S ,

Ψi+1 =
1

sin θi

[
sin((1− ki)θi)Ψi + sin(kiθi)

gi
‖gi‖L2(Y )

]
,

(18)

where ki ∈ [0, 1] is a step size determined by a line-search in order to decrease the
value of the cost functional Fχ. The iterative process is stopped when for some
iteration the obtained decrease in Fχ is smaller than a given numerical tolerance. If,
at this stage, the optimality condition (15,16) is not satisfied to the desired degree
of accuracy, i.e. if θi+1 > εθ, where εθ is a pre-specified convergence tolerance,
then a uniform mesh refinement of the structure is carried out and the procedure
is continued. For more details see [Amstutz and Andrä, 2006].

3.1.2. Optimization problem. The material design problem can be formulated as

min
χ∈L∞

# (Y )
Fχ = ||Ch(χ)− C∗||2 , (19)

where Ch corresponds to the homogenized constitutive tensor introduced in (5) and
C∗ is a target constitutive tensor representing a desired behaviour of the cell Y at
macroscopic level. In the above problem the design variable is the characteristic
function χ, whose relation with the level-set function Ψ is given by expressions (10)
and (12). According to [Giusti et al., 2010] and by a simple chain rule procedure,
the associated topological derivative of the above functional is given by,

TDFχ = F−1
χ (Ch(χ)− C∗) · TDCh (20)

where TDCh is defined in (7). Preliminary result of this class of functional together
with the topological derivative (20) was presented in [Giusti et al., 2010], and for
a further and detailed analysis and applications of the technique can be found in
[Méndez et al., 2017, Podestá et al., 2019, R.Yera et al., 2020, Rossi et al., 2021].

Note that the problem stated in (19) has a global solution (global minimum)
when Ch(χ) reaches C∗. Therefore, in this topological configuration, the topolog-
ical derivative (20) vanishes. At this point, the local optimality condition (13) of
the optimization procedure based on level-set geometrical description, fails. Equiv-
alently, the parallelism of any vector Ψ with zero is not possible to measure, see
(15). From a numerical point of view, this kind of procedure tends to provide very
oscillatory level-set function since at the same time is trying to fulfill the unitary
norm condition and the parallelism condition with zero. Thus, a different method
should be proposed to remedy this major inconvenient.

3.2. Using topological derivative with in a relaxed formulation. An al-
ternative to level-set methods is considering a relaxed formulation of the problem
where the topology χ ∈ L∞(Y, {0, 1}) is replaced in this case by a density function
ρ ∈ R = L∞# (Y, [0, 1]). The main advantage is that the problem becomes differ-
entiable and thus classical continuous optimization algorithms are available. The
main disadvantage is that the value of the elastic properties in gray areas should
be provided.
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Regarding this relation, one possibility is to use the homogenization theory for
a family of parametrized microstructures. The inconvenience is that this pro-
cess is computationally expensive since the cell problem should be solved for as
many microstructures to characterize the parametric domain. See for example
[Ferrer et al., 2021].

Another option is to use an analytic isotropic relation. One well-known example
is the SIMP method, where the homogenized constitutive tensor is heuristically
proposed as follows C(ρ) = (1− ρp)C0 + ρpC1 where C0 and C1 stands for the void
and material constitutive tensors. The advantage of this approach is that the rela-
tion C(ρ) is analytic and no homogenization process is needed. However, the first
disadvantage is that the value p is not clear and depends on the problem to solve.
Taking p = 3 is usually an appropriate choice. However, in complex examples, the
exponent p should be increased in order to obtain clear interfaces of the domain. In
addition, high values of p significantly deteriorate the condition of the optimization
problem. Even more worrisome, if intermediate values remain in the final topol-
ogy, there is no guarantee that they can be understood as a homogenization of a
microstructure. The connection of SIMP-like methods and topological derivative is
analyzed and analytically determined in [Amstutz, 2011b].

As an alternative, we can use the SIMP-ALL interpolation [Ferrer, 2019] method
which is also an isotropic interpolation. The advantages are that no exponent
parameter p is required in the interpolation and addittionally, the interpolation lies
in between the HS bounds regardless of the material is considered. In other words,
it ensures that the intermediate values that may appear can always be interpreted as
the homogenization of some micro-structure. More importantly, the interpolation
is based on the topological derivative concept. In fact, when a small perturbation
of the density is considered either on the material (ρ = 1) or the void (ρ = 0), we
recover the topological derivative change of the topology, this is adding an infinite
circular insertion of the other material.

For macroscopic problems, a similar interpolation was firstly studied in [Amstutz, 2011b]
and generalized for any Poisson ratio and proved to be in between the HS bound in
[Ferrer, 2019]. For all these reasons, we use the SIMP-ALL interpolation method
in this work, which is briefly presented in the following.

3.2.1. SIMP-ALL interpolation. In plane stress, the SIMP-ALL consitutive tensor
is written in terms of the density variable as

C(ρ) = 2µSA(ρ)I + [κSA(ρ)− µSA(ρ)] I ⊗ I (21)

where the shear µSA(ρ) and bulk κSA(ρ) parameters are defined by the following
rational functions:

µSA(ρ) =
(µ1 − µ0) (ηµ0

− ηµ1
) (1− ρ)ρ+ µ0 (µ1 + ηµ0

) (1− ρ) + µ1 (µ0 + ηµ1
) ρ

(µ1 + ηµ0) (1− ρ) + (µ0 + ηµ1) ρ
,

κSA(ρ) =
(κ1 − κ0) (ηκ0

− ηκ1
) (1− ρ)ρ+ κ0 (κ1 + ηκ0

) (1− ρ) + κ1 (κ0 + ηκ1
) ρ

(κ1 + ηκ0) (1− ρ) + (κ0 + ηκ1) ρ
.

with ηµ0
= κ0µ0

2µ0+κ0
, ηµ1

= κ1µ1

2µ1+κ1
, ηκ0

= µ0, and and ηκ1
= µ1. The parameters

µ1, κ1 and µ0, κ0 stands for the shear and bulk modulus of the material and the
void. We recall that the Young and Poisson ratio are related with the shear and
bulk modulus in plane stress through E = 4κµ

κ+µ and ν = κ−µ
κ+µ .

3.2.2. SIMP-ALL relation with topological derivative. By construction, the SIMP-
ALL interpolation coincides in the limits ρ = 0 and ρ = 1 with the constitutive
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tensor C0 and C1 and its derivative with the topological derivative dC0 and −dC1.
More specifically,

C(0) = C0

C(1) = C1
and

C′(0) = dC0

C′(1) = −dC1.
(22)

Thus, the SIMP-ALL interpolation ensures that a small perturbation of the density
in one of the two phases (ρ = 0 or ρ = 1) is equivalent to consider a material that
its properties are obtained by computing the homogenization tensor of a micro-
structure made by one of these phases with circular insertions of the other phase.

3.2.3. SIMP-ALL interpolation interpreted as homogenized micro-structure. As de-
scribed in [Hashin and Shtrikman, 1963], any isotropic constitutive tensor should
fulfill the Hashin-Shtrikman (HS) bounds. Here, we recall the upper and lower HS
bounds for the shear µLB(ρ), µLB(ρ) and bulk κLB(ρ), κUB(ρ) modulus

µLB(ρ) = µ0(1− ρ) + µ1ρ−
(1− ρ)ρ (µ1 − µ0)

2

µ0ρ+ µ1(1− ρ) + κ0µ0

2µ0+κ0

,

µUB(ρ) = µ0(1− ρ) + µ1ρ−
(1− ρ)ρ (µ1 − µ0)

2

µ0ρ+ µ1(1− ρ) + κ1µ1

2µ1+κ1

,

κLB(ρ) = κ0(1− ρ) + κ1ρ−
(1− ρ)ρ (κ1 − κ0)

2

κ0ρ+ κ1(1− ρ) + µ0
,

κUB(ρ) = κ0(1− ρ) + κ1ρ−
(1− ρ)ρ (κ1 − κ0)

2

κ0ρ+ κ1(1− ρ) + µ1
.

We recall that in work [Ferrer, 2019], the proposed SIMP-ALL interpolation for
the shear and the bulk modulus were proved to remain in between the HS bounds
for any pair of materials at any value of the density. This is

µUB(ρ) ≥ µSA(ρ) ≥ µLB(ρ) and κUB(ρ) ≥ κSA(ρ) ≥ κLB(ρ) ∀ρ ∈ [0, 1]. (23)

Thus, this important property implies that the gray regions 0 < ρ < 1 that
appear in the topologies during the optimization process when using the SIMP-ALL
interpolation can always be understood as homogenized isotropic microstructure
and not as a fictitious material.

3.2.4. Optimization problem. Let us now rewrite problem (19). Relaxing the char-
acteristic function χ by its continuous counterpart ρ, the objective is:

min
ρ∈R,wij∈V

||Ch(ρ,wij)− C∗||2

s.t. (ε(φ),C(ρ) : ε(wij)) + (ε(φ),C(ρ) : eij) = 0 ∀φ ∈ V,∀i, j ∈ [1, N ]

(24)
where C(ρ) corresponds to the SIMP-ALL constitutive tensor defined in (21). Note
that here, we explicitly consider the cell problem as an equality constraint. The
material design problem (24) is commonly called inverse homogenization problem
[Nika and Constantinescu, 2019] and its relaxed version suffers from existence of
minimizers [Allaire et al., 2002, Cherkaev, 2001]. A common solution in topology
optimization problems is to add appropriate filters to the density [Bourdin, 2001]
or to add a Perimeter functional. In this work, we use the second option.

Page 7 of 22

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Engineering Com
putations

8 INVERSE HOMOGENIZATION USING THE TOPOLOGICAL DERIVATIVE

4. Use of Perimeter functional in material design

The main disadvantage of using the relaxed approach, in comparison with the
level-set method, is that the final optimal topology may exhibit intermediate val-
ues and therefore no manufacturability of the topology is guaranteed. The more
natural solution is to add a perimeter functional to the cost function that, apart
from providing existence to the problem, penalizes the intermediate values of the
density. Following work, [Amstutz and Van Goethem, 2012] and the recent work
[Amstutz et al., 2021], we extend in this work the use of the perimeter functional
to the material design problem.

4.1. Perimeter functional definition. The relative perimeter functional of a
domain Ω ⊂ Y is defined as

Per(Ω) =

∫
∂Ω\(∂Y ∩∂Ω)

dx.

In general, this functional is not Fréchet differentiable and thus gradient-based op-
timizers cannot be used. However, due to the Γ-convergence theory, the functional
may be approximated by a sequence of differentiable functional Perε(ρ). The most
renowned approximation is the Modica-Mortola [Modica and Mortola, 1977] type
of functional, however in this work, we prefer to use the type of functional presented
in [Amstutz and Van Goethem, 2012] and [Amstutz et al., 2021] since the periodic
condition of the micro-structure can be easily tackled. To this aim, we define the
approximated periodic perimeter as

Perε(ρ) =
1

ε

∫
D

(1− Lε(ρ)) ρ dx (25)

where the linear operator Lε : L∞# (Y, [0, 1]) → L2
#(Y, [0, 1]) is the solution of the

following problem {
−ε2∆ρε + ρε = ρ in Y

y 7→ ρε(y) Y − periodic.
(26)

By imposing periodicity to ρε = Lε(ρ), the periodic perimeter (25) extends the re-
sults of the relative perimeter [Amstutz and Van Goethem, 2012] and total perime-
ter [Amstutz et al., 2021] where Neumann and Robin conditions were imposed in
the elliptic problem (26).

4.2. Manufacturable material design problem. The use of the periodic Perime-
ter in the material design problem will force a final periodic topology with a clear
interface and therefore manufacturable. For this reason, we will call the manufac-
turable material design problem to the following optimization problem

min
ρ∈R,wij∈V

||Ch(ρ,wij)− C∗||p + αPerε(ρ)

s.t. (ε(φ),C(ρ) : ε(wij)) + (ε(φ),C(ρ) : eij) = 0 ∀φ ∈ V,∀i, j ∈ [1, N ]

(27)
where the homogenized constitutive tensor, already defined in (5), can be written
as

Chijkl = (eij + ε(wij),C(ρ) : (ekl + ε(wkl))). (28)

Note that the parameter α plays will be selected depending on the optimization
problem. The manufacturable material design problem will be solved by a sequence
of optimization problems with decreasing ε values. The optimal topology of each

Page 8 of 22

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Engineering Com
putations

INVERSE HOMOGENIZATION USING THE TOPOLOGICAL DERIVATIVE 9

optimization problem will be used as an initial guess for the upcoming one. Note
also that the Perimeter functional value increase as ε decreases, thus the influence of
the perimeter functional will be more remarkable in the last optimization problems.
We will start with a large value of ε (of order |Y |) and will be decreased up to the
size of the mesh h. This choice of the ε sequence leads to an optimization strategy
that focuses on minimizing the distance term in the first optimization problems
and decreasing the perimeter in the last optimization problems. Thus, finding first
a topology similar to the target one and then making it manufacturable. Starting
already from small values of ε would constraint unnecessarily the optimization prob-
lem and favor topologies that are very close to the initial guess. Note that other
constraints, like minimum length or volume constraints, can be added to problem
(27) and handled with an augmented Lagrangian scheme [Amstutz, 2011a] or a
null-space optimization algorithm [Feppon et al., 2020].

4.2.1. Reduced formulation. Since problem (27) corresponds to a PDE-constrained
optimization problem, we will use in this work its reduced formulation [Tröltzsch, 2010].
This is,

min
ρ∈R

||Ch(ρ,wi(ρ))− C∗||p + αPerε(ρ), (29)

where Ch(ρ,wi(ρ)) is defined in (28) with wi(ρ) the solutions of the equilibrium
(ε(φ),C : ε(wj)) + (ε(φ),C : ej) = 0. Note that the reduced formulation considers
wi not as a design variable but as a function depending implicitly of ρ through
the equilibrium equation. This is possible due to the unique solution of the cell
problem. Thus, the problem will be written as

min
ρ∈R

J(ρ,wi(ρ)) = F (ρ,wi(ρ)) + αPerε(ρ), (30)

where the distance functional is defined as

F (ρ,wi(ρ)) = ||Ch(ρ,wi(ρ))− C∗||2 =
(∑

ij(Chij(ρ,wi)− C∗ij)2
)1/2

.

4.2.2. Computation of the gradient in L2. Since the problem is now Fréchet dif-
ferentiable, the directional derivative of the distance functional F at ρ ∈ R in the
direction ρ̃ ∈ R can be obtained as

DF (ρ,wi(ρ))ρ̃ = 1/2
(∑

ij(Chij(ρ,wi)− C∗ij)2
)−1/2

2(
∑
ij

Chij(ρ,wi)− C∗ij)DChij(ρ,wi(ρ))ρ̃

= F (ρ,wi(ρ))−1
∑
ij

(Chij(ρ,wi)− C∗ij)DChij(ρ,wi(ρ))ρ̃.

(31)
As presented in Appendix A, the directional derivative of the homogenized consti-
tutive tensor reads as

DChij(ρ,wi(ρ))ρ̃ =

∫
Y

(eij + ε(wij)) : C′(ρ) : (ekl + ε(wkl)) ρ̃dy, (32)

and therefore from the definition in L2(Y ) of the gradient DChij(ρ,wi(ρ))ρ̃ =
∫
D
gρ̃,

we obtain the gradient of the distance term gF as

gF (ρ) = F (ρ,wi(ρ))−1(Chij(ρ,wi)− C∗ij) [(ε(wi) + ei) : C′h(ρ) : (ε(wi) + ei)] .
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Regarding the Perimeter term, the gradient can be directly computed from (25)
by

DPer(ρ)ρ̃ =
1

ε

∫
Y

−Lε(ρ̃)ρ+ [1− Lε(ρ)]ρ̃ =
1

ε

∫
Y

−L∗ε (ρ)ρ̃+ [1− Lε(ρ)]ρ̃ dx

=
1

ε

∫
Y

[1− 2Lε(ρ)]ρ̃ dx,

(33)

where we have used the self-adjoint property of the Lε operator (Lε = L∗ε ). By
imposing the gradient definition in L2(Y ) as DPer(ρ)ρ̃ =

∫
D
gP ρ̃ dx we have

gP (ρ) =
1

ε
(1− 2Lε(ρ)) .

Thus, the whole gradient is finally obtained as

g(ρ) = gF (ρ) + αgP (ρ). (34)

4.2.3. Computation of the gradient in H1. Since the gradient can be defined with
other scalar product, we choose in this work the H1 scalar product which allow
us to select the amount of regularity of the gradient. Thus, the gradient g is the
solution of

ε2
∫
D

∇φ∇g +

∫
D

φg = DChij(ρ,wi(ρ))ρ̃+ αDPer(ρ)ρ̃, (35)

with DChij(ρ,wi(ρ))ρ̃ and DPer(ρ)ρ̃ defined in (32) and (33). Note that this choice
of scalar product acts a filtering technique.

5. Numerical results

Let’s now solve the manufacturable material design problem. Our experience is
that in general the problem may present many local minima and therefore there is
a strong influence on the initial guess. Another key factor for finding a convenient
solution is the choice of the norm in (29). For simplicity, we have chosen an L2

norm for measuring the error. However, more sophisticated norms could be chosen.
For example larger Lp norms or a weighted norm through a positive definite matrix.
Of course, the proper choice for each application is left to the material designer.

5.1. Optimization algorithm. As mentioned above, problem (29) is now differ-
entiable and thus gradient-based algorithms may be used. In this work, we use a
simple but effective projected gradient method to deal with the box constraints for
a fixed ε value. To ensure that the projected gradient direction is descending the
cost, we use an adaptive line search method, see Algorithm 1. More specifically,
in this work we have taken η = 3 and β = 0.05 in order to have a fast conver-
gence but controlling at the same time the change of the topology at each iteration.
Regarding the Lε of the perimeter functional, in practice, we compute a Cholesky
decomposition when starting the ε loop to efficiently solve the discretization of the
weak version of (26). In all the examples, we use an structured mesh in the domain
Y = {(y1, y2)| 0 < y1, y2 < 1} of 40x40 quadrilaters subdivided in 4 triangles lead-
ing to a total of 6400 P1 elements. We take for the Young modulus and Poisson
ratio of the material E1 = 1, ν1 = 1/3 and the void E0 = 10−3, ν0 = 1/3. We recall
that the bulk and shear parameters in plane stress are obtained as µ = E

2(1+ν) and

κ = E
2(1−ν)
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Algorithm 1 Projected gradient algorithm

1: Choose ρ0 and compute J0 = J(ρ0) and g0 = g(ρ0) from (30) and (34)
2: Take ε = |Y | and τ = ||ρ0||2/||g0||2
3: while ε > h do
4: while ||ρk+1 − ρk||2 > TOL do
5: while |Jk+1 − Jk| > 0 and ||ρk+1 − ρk||2 > β||ρk||2 do
6: ρk+1 = max(0,min(1, ρk − τg(ρk))
7: Compute Jk+1 = J(ρk+1) and gk+1 = g(ρk+1) from (30) and (34)
8: τ ← τ/2
9: end while

10: Take τ ← ητ and k ← k + 1
11: end while
12: ε← ε/2
13: end while

5.2. Example 1. Rank-1 laminate. The first example to solve is the rank-1
laminate case. The target C∗ is computed from the homogenized constitutive tensor
Ch of a microstructure full of material with a centered horizontal rectangular void
of 0.4 width. The initial guess is a full material cell with a centered circle void
of radius r = 0.8. Since no intermediate materials tend to appear in the final
topology, we take in this case α = 0 and thus the Perimeter term and ε loop is not
considered. In Figure 1, we show the evolution of the cost (in blue and logarithmic
scale) and the volume Vol(ρ) =

∫
D
ρ dx (in red) during the iterations. We also

show the constitutive tensor for the target and the optimal designs. We observe
the monotone decrease of the difference between the constitutive tensors during
the iterations and the proximity of the optimal C(ρ∗) with the target constitutive
tensor C∗. In the last row of Figure 1, we also show the design variable during
the iterations and we observe that although no gray areas appear in the initial and
final topologies, the optimization path is taking profit, in contrast with level-set
methods, of intermediate values.

5.3. Example 2. Circular hole. In this second example, the C∗ is obtained by
computing the homogenized constitutive tensor Ch of a square full microstructure
with a centered circular void inclusion of radius r = 0.4. Both the topology and the
constitutive target tensor C∗ are shown in Figure 2. We consider the same topology
of the last example as an initial guess, this is a square full microstructure with a
centered circular void inclusion of radius r = 0.8. This problem in the shape opti-
mization context would be easily solved by decreasing the radius of the inclusion.
However, it is not straightforward when considering the relaxation of the problem.
In fact, when α = 0 we observe that the constitutive tensor significantly decreases
during iterations, see the red line in the upper-left image of Figure 2. However, the
local minimum obtained exhibits large regions of gray areas. The optimization pro-
cess had tried to fill the circular hole with intermediate values. See the increase of
volume during the iterations in the lower-left image of Figure 2 (red line). Although
the optimal constitutive tensor is close to the target one and the optimal micro-
structure may be physically understood (due to the SIMP-ALL interpolation), the
optimal micro-structure is not manufacturable. Thus we also compute the example
with α = 0.1 and we observe in Figure 2 that although the optimization process is
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iter 4 iter 8 iter 14 iter 17 iter 24 iter 27iter 1

Constitutive tensor target 

Initial constitutive tensor 

Optimal constitutive tensor 

Figure 1. The topological derivative is used in a relaxed approach to find an
optimal topology that has a homogenized constitutive tensor Ch close to the target
one C∗. In contrast with level-set methods, the optimization process take profit of
the intermediate values of the design variable.

similar at the first iterations, in this second case the optimal topology exhibits a
clear interface. In general, when the Perimeter term starts being relevant (ε small),
there is no guarantee that the difference of the constitutive tensor with the target
one decreases. However, for this case, the difference between constitutive tensor
also decrease (not monotonically) when the Perimeter term starts being relevant.

In contrast to the α = 0 case, we observe in the upper-right image of Figure 2 how
the approximated perimeter decreases for small values of ε when α = 0.1. The final
topology for α = 0.1 is now manufacturable due to the Perimeter term. We also
observe the proximity of the optimal constitutive tensor with the target constitutive
tensor. In the last row, we show the iterations of the topology during the iterations.
We observe similar optimization paths of both cases until the perimeter terms
become relevant and remove the gray areas in the α = 0.1 case. We have also
plotted the volume and the variation of ε/h to better describe the optimization
process.

Note that using the Perimeter will not necessarily decrease the distance potential,
its intent is to provide manufacturable topologies. Of course, if the target topology
has been obtained as the homogenization of some manufacturable topology (as we
do in this work), then the perimeter may help in removing the local minimum that
presents gray areas.

5.4. Example 3. Negative Poisson ratio. We end this work with a more chal-
lenging example. The objective is to find a material that presents a fictitious
negative Poisson ratio (not necessarily isotropic). To do so, we first follow the work
of [Amstutz et al., 2010] where the objective is to minimize

J(χ) =
ψa : (Ch(χ))−1 : ψb
ψa : (Ch(χ))−1 : ψa

+
ψb : (Ch(χ))−1 : ψa
ψb : (Ch(χ))−1 : ψb

(36)
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iter 1 iter 6 iter 10 iter 15 iter 20 iter 25 iter 29 iter 34 iter 39 iter 43 iter 48 iter 53 iter 58 iter 62 iter 67

iter 1 iter 12 iter 23 iter 34 iter 45 iter 56 iter 67 iter 78 iter 88 iter 99 iter 110 iter 121 iter 132 iter 143 iter 154

Constitutive tensor target 

Optimal constitutive tensor for

Initial constitutive tensor 

Optimal constitutive tensor for

Figure 2. Using the topological derivative in a relaxed formulation may lead to
topologies with large gray areas (α = 0). Adding the Perimeter term Perε(ρ) (α =
0.1) enables to obtain manufacturable (clear interface) and satisfactory designs in
terms of ||C(ρ∗)− C∗||.

with ψa = [1 0 0] and ψb = [0 1 0] by the methodology proposed in [Amstutz et al., 2010]
(level-set and fix-point algorithm) as explained in Section 3.1 and we obtain the
target constitutive tensor as homogenized constitutive tensor Ch of the optimal
topology obtained when solving problem (36) with the level-set method. We show
both the target constitutive tensor and its corresponding topology in Figure 3.
Once we have obtained C∗ we solve the problem directly with α = 0 since in this
case, the optimal topology presents no intermediate values.

We show the constitutive tensor difference during the iterations and the change
of volume. In this case, we consider a full square domain with 24 homogeneously
distributed small holes of radius r = 1/12. We show the topology (repeated 4
times) and its constitutive homogenized tensor in Figure 3. We also show the
optimal constitutive tensor and its corresponding topology.

We observe a large decrease in the cost function even if the initial guess was far
from the target. Although it is not explicitly required in optimization problem, we
also see that the optimal topology is very similar. In the last row of Figure 3, we
show the optimization path and how the proposed regularized methodology takes
profit of using intermediate values. This type of optimization path could not be
obtained through the topological derivative (or shape derivative) in the level-set
function approach described in Section 3.1. Finally, our experience is that this
last example is complex and challenging, and a satisfactory minimum may only be
obtained if proper and specific initial guesses are considered.
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iter 19 iter 37 iter 55 iter 73 iter 90 iter 108iter 1 iter 144 iter 162iter 126

Constitutive tensor target 

Initial constitutive tensor 

Optimal constitutive tensor 

Figure 3. The challenging problem of finding a negative Poisson ratio is solved
with the use of the topological derivative in a relaxed formulation. The problem
directly find manufacturable solution so no Perimeter term is added (α = 0).
In this case, the solution is not only close to the target topology in terms of the
constitutive tensor but also in terms of topology.

6. Final Remarks

In this work, we proposed a new methodology for solving the inverse homoge-
nization problem with the use of topological derivative.

The proposed relaxation approach in conjunction with the SIMP-ALL interpo-
lation have show to be effective for solving the inverse homogenization approach.
On the one hand, we were able to use classical optimization algorithms like the
projected gradient method. On the other side, the optimization procedure ends
successfully by reaching the target constitutive behavior C?. Additionally, we have
seen that the perimeter functional remove intermediate values and provide manu-
facturable topologies (with clear interfaces). We also observed that the combination
of first minimizing the distance functional and then the perimeter term is a conve-
nient strategy to obtain satisfying solutions. Regarding the optimization side, the
success of using a projected gradient for solving this problem opens the possibility
of using many other optimizers and optimization packages. In addition, we have
shown that the path to obtain optimal topologies is very different to the level-set
approach. Through intermediate gray topologies, this approach provides a new
way to obtain optimal topologies when using the topological derivative. Finally,
we may also conclude that the inverse homogenization problem is hard to solve
and the solution is full of local minima. We experienced the importance of the ini-
tial guess in the final solution. The high number of local minima that could appear
when solving the problem is not due to the topological derivative aspects but to the
proposed relaxed formulation, which explores not only classical topologies but also
homogenized structures. The disadvantage is that many local minima may appear,
the advantage is that with a proper initial guess, satisfactory solutions might often
be obtained. We left the optimization of the microstructures boundary shapes and
3D examples for future work.
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Appendix A. Directional derivative of the homogenized constitutive
tensor

In this appendix, we compute the directional derivative of the homogenized consti-
tutive tensor

Chijkl(ρ,w(ρ)) = (eij ,C(ρ) : ekl) + (eij ,C(ρ) : ε(wkl)). (37)

The directional derivative of the homogenized constitutive tensor at ρ ∈ R in the
direction ρ̃ ∈ R reads as

DChijkl(ρ,w(ρ))ρ̃ = DρChijklρ̃+ (DwChijkl)(Dρw(ρ̃))

The first term can be directly computed by deriving (37) as

DρChijklρ̃ = (eij , dC : ekl) + (eij , dC : ε(wkl))

where dC = C′(ρ)ρ̃. For the second term, defining w̃kl = Dρw(ρ̃) we have

(DwChijkl)(Dρw(ρ̃)) = DwChijklw̃kl = (eij ,C(ρ) : ε(w̃kl)).

Now, taking derivative in the equilibrium equations of the cell problem (3), we have

(ε(φ), dC : ε(wij)) + (ε(φ),C : ε(w̃ij)) + (ε(φ), dC : eij) = 0 ∀φ ∈ V.
Defining the adjoint field p as the solution of

(ε(w̃kl),C(ρ) : ε(p)) = −DwChijklw̃kl = −(eij ,C(ρ) : ε(w̃kl))

we observe from the equilibrium equation that the adjoint and state fields are
equivalent p = wij . Using the self-adjoint property of the scalar product in L2, we
have then

DwChijklw̃kl = −(ε(w̃kl),C : ε(p)) = (ε(p), dC : ε(wij)) + (ε(p), dC : eij)

= (ε(wij), dC : ε(wkl)) + (ε(wij), dC : ekl)
(38)

Thus,

DChijkl(ρ,w(ρ))ρ̃ = (eij , dC : ekl) + (eij , dC : ε(wkl)) + (ε(wij), dC : ε(wkl)) + (ε(wij), dC : ekl)

= (ε(wij) + eij , dC : (ε(wkl) + ekl))

(39)
and therefore

DChijkl(ρ,w(ρ))ρ̃ =

∫
Y

(eij + ε(wij)) : C′(ρ) : (ekl + ε(wkl)) ρ̃dy . (40)
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Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain.
[Ferrer, 2019] Ferrer, A. (2019). Simp-all: A generalized simp method based on the topological

derivative concept. International Journal for Numerical Methods in Engineering, 120(3):361–

381.
[Ferrer et al., 2021] Ferrer, A., Geoffroy-Donders, P., and Allaire, G. (2021). Stress minimization

for lattice structures. part i: Micro-structure design. Philosophical Transactions of the Royal

Society A, 379(2201):20200109.
[Giusti and Novotny, 2016] Giusti, S. M. and Novotny, A. A. (2016). Multi-objective Topology

Optimization Design of Micro-structures, volume 49 of Computational Modeling, Optimization
and Manufacturing Simulation of Advanced Engineering Materials, pages 21–47. Springer.

[Giusti et al., 2010] Giusti, S. M., Novotny, A. A., and de Souza Neto, E. A. (2010). Sensitivity

of the macroscopic response of elastic microstructures to the insertion of inclusions. Proceeding
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466:1703–1723.

[Hashin and Shtrikman, 1963] Hashin, Z. and Shtrikman, S. (1963). A variational approach to the

theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics
of Solids, 11(2):127–140.
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