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Abstract 

ZrO2 and TiO2 modified lead-free (K0.5Na0.5)NbO3 (KNN) piezoelectric ceramics are prepared by 

conventional solid-state reaction. The effect of acceptor doping on structural and functional properties 

are investigated. A decrease in the Curie temperature and an increase in the dielectric constant values 

are observed when doping. More interestingly, an increase in the coercive field Ec and remanent 

polarization Pr is observed. The piezoelectric properties are greatly increased when doping with small 

concentrations dopants. ZrO2 doped ceramic exhibits good piezoelectric properties with piezoelectric 

coefficient d33=134 pC/N and electromechanical coupling factor kp=35%. It is verified that 

nonlinearity is significantly reduced. Thus, the creation of complex defects capable of pinning the 

domain wall motion is enhanced with doping, probably due to by the formation of oxygen vacancies. 

These results strongly suggest that compositional engineering using low concentrations of acceptor 

doping is a good means of improving the functional properties of KNN lead-free piezoceramic 

system. 
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1. Introduction 

The most widely used piezoelectric ceramics are Pb(Ti,Zr)O3 (PZT)-based materials, on account of 

their high piezoelectric response, large-scale production capability and the tailoring of their properties 

through composition. Due to the high toxicity of lead, a wide range of strict regulations concerning 

environmental preservation are increasingly being introduced worldwide. Many governments have 

therefore established legislation regarding waste electric equipment (WEEE), restrictions on 

hazardous substances (RoHS), and end-of-life vehicles (ELV) to introduce directives regarding 

environmental pollutants[1]. The search for alternative lead-free piezoelectric materials is currently 

focused on modified bismuth titanates, alkaline niobates (KNN) and other systems in which a 

morphotropic phase boundary (MPB) occurs[2–4].  

Among the available lead-free piezoelectric materials under study, much attention has been paid over 

the last few years to K0.5Na0.5NbO3 (KNN)-based ceramics as a result of the breakthrough made by 

Saito et al.,[5] who obtained high d33 (~400pC/N) in the Li-Ta-Sb modified KNN. However, the 

major drawback of KNN ceramics is the need for special handling of the starting powders, sensitivity 

of properties to nonstoichiometry, and especially a complex densification process[6]. As regards PZT, 

sintering aids such CuO, SnO2, ZnO or MnO2 may improve sinterability and modify the dielectric and 

piezoelectric behaviour of the KNN materials[7–11].   

Compositional modification by doping is a very active research line for obtaining piezoceramics with 

enhanced properties. The (K,Na)NbO3-LiTaO3-LiSbO3, particularly the composition   

(K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3, is probably the most workable lead-free piezoelectric system 

known to date. However, its properties are not suitable for all end use, e.g. for power devices where 

piezoceramics with low losses and stable properties are required. In this perspective, good results are 

expected by means of hardener substitutions, such as those that occur in other perovskites[12], 

although some structural and electrical aspects remain controversial as regards the role of dopants in 

the KNN system. It has recently been shown that Cu-doped KNN-modified compounds may exhibit 

typical characteristics of hard behaviour[13–16]. Hardener ions in a perovskite compound (e.g. Cu2+ 
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ions replace Nb5+ ions in Cu-doped KNN) are most often acceptors, the introduction of which leads  

to the creation of oxygen vacancies, thereby forming the so-called complex defects[17]. These defects 

operate as pinning centres by hampering the motion of the domain walls. This domain wall pinning 

effect is responsible for the reduction in dielectric losses and stabilization of properties in 

ferroelectrics[18]. The goal of this study is thus to test the influence of Zr4+ and Ti4+ acceptor-doping 

in (K0.5Na0.5)NbO3 on the structural, dielectric, piezoelectric and nonlinear properties. The addition of 

ZrO2 and TiO2 is expected to improve functional properties of KNN ceramics for power application, 

i.e. reduce the losses and increase the properties stability. 

2. Experimental 

The (K0.5Na0.5)(Nb1-xMx)O3- compositions with x = 0.0 and 0.005 being M=Zr or Ti, hereafter 

abbreviated as KNN-M, were synthesized by conventional solid-state reaction. The raw materials of 

analytical grade used in this study were K2CO3 (99%), Na2CO3 (99.5%), Nb2O5 (99.9%), ZrO2 (99%) 

and TiO2 (99%). After separate milling, the powders were weighed and mixed  by ball milling using 

ZrO2 balls in absolute ethanol medium for 3 h, then dried and calcined twice at 700 ºC for 2 h. The 

calcined powders were then milled again and cold-isostatically pressed at 750 MPa into 7 mm 

diameter pellets and sintered in air, without a binder, at 1125 ºC for 2 h. Care was taken to ensure that 

a high alkaline element pressure is maintained during the process by surrounding the pellets with 

powder of the same composition, and the pellets were deposited on Pt foils to avoid reaction with 

alumina boats. All as-sintered ceramics showed relative densities over 95% measured by Archimedes’ 

method.  

X-ray diffractograms were recorded at room temperature (RT) on a Bruker D2 PHASER equipped 

with a XFlash detector. A two-axis diffractometer in Bragg-Brentano geometry with Cu Kα1,2 

radiation was used for the in situ XRD characterization. The control of temperature was provided by a 

furnace from 30 ºC to 500 ºC. The cell parameters and their evolution with temperature were refined 

by a LeBail fitting procedure as implemented in the Fullprof suite[19]. The Raman scattering spectra 

were obtained on a Labram (Horiba) spectrometer with a He-Ne excitation wavelength of 632.8 nm, 
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coupled to a Linkam sample holder, with variable temperature from 30 ºC to 500 ºC. DSC 

measurements were performed on a Seiko apparatus covering the 100 - 1000 K temperature range. 

Microstructure was evaluated on polished and thermally etched samples (1000 ºC for 5 min for pure 

KNN and 980 ºC for 5 min for doped KNN) using a Field Emission Scanning Electroc Microscope, 

FE-SEM (JEOL JSM-7001F). The micrographs were performed on the polished and thermally etched 

surfaces of the samples coated with graphite. The voltage conditions were set at 20 kV and the work 

distance was established at 12 mm. In order to analyze the composition of the material, an energy 

dispersive spectroscopy (EDS) analysis was performed using an OXFORD X-MaxN EDS detector 

provided with INCA Energy software. A pure Co sample was used as a reference material. The 

average grain size was determined from the SEM images using an image processing and analysis 

software (ImageJ). The grain size was expressed as Feret’s diameter using more than 400 grains in 

each measurement.  Electrical characterization was carried out on ceramic discs with sputtered gold-

chromium electrodes on both parallel surfaces. The temperature dependence of the dielectric 

permittivity was measured on unpoled samples using an impedance analyzer (HP 4192A) in a 

frequency range of 100 Hz to 1 MHz and the temperature range of 30 ºC to 600 ºC. The 

measurements were done during the heating ramp at a rate of 2 ºC/min. The permittivity dependence 

with a sub-switching ac electric field was measured at 1 kHz and at RT, by means of a capacitance. 

The hysteresis cycles were recorded using a modified Sawyer-Tower circuit, at 1Hz and at RT. The 

samples were poled in silicon oil at 80 ºC for 30 minutes under a 30 kV/cm DC electric field. 

Subsequently, the longitudinal piezoelectric coefficient was measured using a piezo-d33 meter 

(YE2730A, APC International) at RT. The piezoelectric constant d31 and the electromechanical 

coupling factor kp were determined at RT by the resonance/antiresonance method on the basis of the 

IEEE standards. 

3. Results and discussion 

Figure 1(a) shows the XRD patterns of the pure KNN and KNN-M ceramics measured at RT. For all 

ceramics, a pure perovskite phase indexed in the Amm2 orthorhombic space group is observed. In 

contrast to the results obtained by Ramajo et al. [20], no parasitic phases are observed at low 
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concentration of dopant. Our results suggest that taking special care of the reagents and of the 

synthesis method plays an important role to avoid the formation of parasitic phases. The cell 

parameters vary by less than 0.5 %, indicating that the structure does not change significantly upon 

doping with ZrO2 or TiO2. Since the Ti4+ and Zr4+ ionic radii, 0.61 Å and 0.72 Å, respectively, in a 

six-fold environment[21], are close to that of  Nb5+ ion  (0.64 Å), dopant atoms should essentially 

locate on the B-site, which by charge compensation gives rise to the creation of oxygen vacancies. 

The Raman spectra of the sintered samples (Figure 1(b)) present the typical vibrations corresponding 

to a perovskite phase, associated with the BO6 octahedra[22]. No extra signals are detected; thus, no 

parasitic phases are observed, as confirmed by XRD. The vibrations of the BO6, A1g (ν1) and F2g (ν5) 

are relatively strong scatterings in systems similar to KNN, because of a near-perfect equilateral 

octahedral symmetry. Furthermore, the stretching modes (ν1, ν5) shift to lower frequencies. This effect 

may be attributed to a weakening of the bond strength, probably caused by the oxygen vacancies. 

 

Figure 1: XRD patterns (a) and Raman spectra (b) of the pure KNN and KNN-M ceramics measured 
at room temperature. 

 

The transition temperatures from orthorhombic to tetragonal phase and from tetragonal to cubic phase 

are observed at around 200 and 420 ºC, respectively, in pure KNN ceramics [23]. These transitions 

are confirmed here by different techniques. The analysis of temperature-dependent Raman spectra, 

XRD patterns and DSC data allows the two transitions for KNN and KNN-M ceramics to be 
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identified without ambiguity, as shown in Figure 2. All techniques show practically the same 

transitions temperatures, although the DSC data show lower transition temperatures due to the 

dynamic acquisition process. When adding 0.5 % of Ti4+ and Zr4+-ions on KNN B-site, we observe a 

decrease of the cubic-to-tetragonal transition temperature of 45 and 25 K, respectively, which is 

similar to what was previously found in acceptor-doped KNN [24–26]. The tetragonal to 

orthorhombic temperature transitions decrease only slightly, this effect being higher when doping 

with TiO2. 

 

Figure 2: Temperature-composition evolution of the pure KNN and  KNN-M ceramics, based on DSC, 
Raman spectroscopy and XRD measured from 30ºC to 500ºC. 

 

The variation of the microstructures and the grain size distributions of the KNN and KNN-M ceramics 

is shown in Figure 3 (a)-(f). All the samples exhibit the typical morphology of the alkaline niobate 

ceramics. Although the pure KNN ceramic micrograph is over-etched, the surface reveals a bimodal 

microstructure with cube-shape grains ranging from about 500 nm to a few micrometers, with an 

average grain size of ~3.9 ± 2.3 μm (Figure 3(a,d)). The micrograph and the grain size distributions of 

the pure KNN also show the presence of some large abnormal grains. When doping with Zr4+ or Ti4+ 

ceramics show a decrease of the grain size and an increase of the grain size distribution uniformity, 

Figures 3(b,e) and (c,f). The average grain size of the KNN-Zr ceramics is ~2.1 ± 1.2 μm, and for the 

KNN-Ti ceramics is slightly lower ~1.7 ± 1.1 μm. As can be observed in Figures 3(d,e,f) the grain 

size distributions shifts toward smaller grain sizes when doping and causes the grain size distribution 
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to become much narrower. Therefore, the addition of acceptor dopants inhibits both the grain growth 

and the formation of abnormally grown grains, as already observed  [20,27]. The limited grain growth 

observed when doping could be related with a non-uniform distribution of the Zr4+ or Ti4+ dopants 

between the grain and the grain boundary. Higher concentration of the dopant in the grain boundary 

region could hinder the grain growth, as observed for doped BaTiO3 ceramics [28,29]. The TEM 

studies presented by Malic et al. confirmed the presence of ZrO2 inclusions boundary region [30] that 

could avoid the grain growth. In our case, there is also a decrease in the grain growth when doping, 

although the presence of ZrO2 inclusions could not be observed in our case. Probably, it can be 

attributed to the different synthesis method used by Malic et al. were the dopants are added in the 

powder mixture after the solid state synthesis, thus, in our case the dopants are incorporated in the 

lattice instead of forming inclusions in the boundary region. 

 

Figure 3: Microstructure and grain size distributions of polished and thermally etched surfaces of 
pure KNN (a,d), KNN-Zr (b,e) and KNN-Ti (c,f). 
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No evidence of secondary phases was observed by BSE or EDS analysis, as confirmed by XRD and 

Raman spectroscopy. The EDS analysis of the matrix reveals that the atomic percentages of elements 

do not differ significantly from the nominal composition, as reported in Table I. It should be noted 

that Zr and Ti elements could not be detected due to the low content of dopants. Finally, the matrix 

grains present a Na/K ratio around 1, which is close to the nominal composition, confirming that the 

low synthesis temperature and the special care taken when sintering avoid the evaporation of Na or K 

elements. 

 

Figure 4: Temperature dependence of the real (a) and imaginary (b) parts of the relative permittivity 
of pure KNN and KNN-M ceramics sintered at 1125 ºC for 2 h (at 10 kHz). 

 

Table I: Elemental composition of KNN and KNN-M ceramics determined by EDS analysis. This table 
represents the atomic percentages of elements. 

 Na K Nb M Na/K 
KNN 10.18±0.32 10.24±0.41 20.44±0.27 - 0.99 
KNN-Ti 10.04±0.18 9.98±0.34 20.12±0.16 - 1.01 
KNN-Zr 10.09±0.34 10.18±0.27 20.34±0.21 - 0.99 
KNNNominal Composition 10 10 20 - 1 
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Figure 4 shows the temperature dependence of the real and imaginary parts of the relative permittivity 

of pure KNN and KNN-M ceramics, measured at 10 kHz from RT to 450 ºC.  Permittivity versus 

temperature shows two anomalies, one at around 200 ºC associated with the orthorhombic to 

tetragonal phase transition, and the other at higher temperatures, at which a clear maximum of the 

permittivity is shown for all ceramics and is associated with the tetragonal ferroelectric to cubic 

paraelectric phase transition. In doped samples, the orthorhombic-to-tetragonal (O-T) phase transition 

shifts slightly toward lower temperatures, while the decrease in temperature of the tetragonal-to-cubic 

(T-C) phase transition is much more significant. The temperature change of O-T and T-C phase 

transitions for TiO2 or ZrO2 doped samples may also be attributed to the acceptor doping effect 

[24,30].  

As already shown in Figure 4, for pure KNN a typical normal ferroelectric to paraelectric phase 

transitions is observed showing a narrow phase transition. Meanwhile, the ferroelectric to paraelectric 

phase transitions broadens on doping, suggesting the appearance of diffuse phase transition. This 

behaviour may be induced in many ways, such as by microscopic compositional fluctuation, by the 

merging of micro-domains into macro-domains, or via a coupling of the order parameter and local 

disorder mode through local strain [31]. The diffuse phase transition is observed for both TiO2 and 

ZrO2 doped KNN ceramics. Thus, one probable cause of this behaviour is local fluctuations induced 

by the incorporation of Ti4+ or Zr4+ ions, whose valence is different from the Nb5+ one, into the 

crystalline lattice of the perovskite. 

 
Figure 5: P-E hysteresis loops of the pure KNN and KNN-M ceramics measured at room temperature 

and at 1 Hz. 
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Table II: Properties of pure KNN and KNN-M ceramics at room temperature. 

 ρrelative 
(%) 

ε’ 

(10 kHz) 
tanδ 

(10 kHz) 
(-)d31 

(pC/N) 
kp 

(%) 
d33 

(pC/N) 
α  

(10-3 mV-1) 
KNN 95.1±0.4 338 0.061 19 28 96 0.452 
KNN-Ti 97.4±0.2 510 0.032 35 33 124 0.385 
KNN-Zr 98.2±0.2 402 0.036 37 35 134 0.323 
 

Polarization versus electric field, (P-E) hysteresis loops for pure and doped KNN ceramics measured 

at 1Hz and at RT are shown in Figure 5. Only KNN ceramic possesses well-saturated P-E loop under 

an electric field of 30 kV/cm. A higher electric field must therefore be applied to doped KNN 

ceramics to obtain a well-saturated hysteresis loop. The coercive field Ec and the remanent 

polarization Pr of pure KNN are 8.5 kV/cm and 11.4 µC/cm2 , respectively. These two values increase 

with doping. The increase in Ec means that the material becomes harder, which is consistent with the 

assumption that oxygen vacancies are formed, and the so-called complex defects are produced by 

these acceptors additives. However, Pr shows an increase when doping with ZrO2 up to 19.8 µC/cm2 

and an increase to 12.4 µC/cm2 when adding TiO2. This fact can be explained taking into account that 

the density of the material is enhanced by doping, as is reported in Table II. The piezoelectric 

properties are also improved, as shown in Table II. The d33 value for the undoped KNN is 96 pC/N, 

which is close to that reported by Guo et al. [32]. The d33 and kp are significantly enhanced when 

doping with TiO2 and ZrO2, reaching higher values of the two coefficients reported by other authors 

when doping with a higher concentration of acceptor dopants [33]. KNN-M ceramics also show an 

improvement in dielectric properties at RT. Results point out that low amounts of acceptor dopants 

promote the densification; thus, enhanced remanent polarization, piezoelectric coefficient and 

dielectric constant are obtained in KNN-M ceramics. The lower values of relative permittivity and the 

higher dielectric losses observed for the pure KNN ceramic could be related with its lower density, 

but a slight deficiency of alkaline metals could not be discarded since the functional properties of the 

ceramics strongly depends on the stoichiometry [34]. Although in our case, as observed by EDS 

analysis, the ratio Na/K is close to 1. Moreover, as observed in BaTiO3-based ceramics [35], the 

relative permittivity increases when the grain size decreases, reaching a maximum of permittivity at ~ 
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1 μm. Therefore, in our case, the increase of the relative permittivity can be attributed not only to the 

slight increase of the relative density, but also to the decrease of the grain size when doping. 

 

Figure 6: Dielectric constant as a function of the electric field amplitude of the pure KNN and KNN-
M ceramics, measured at 1 kHz and at room temperature. 

 

The dielectric and piezoelectric responses of piezoelectric materials are nonlinear under a high electric 

field. This nonlinear behaviour is satisfactorily described by the Rayleigh model on PZT [36,37] and 

KNN-based [38–40] ceramics. The nonlinear dielectric and piezoelectric behaviour is principally 

caused by the irreversible movement of the ferroelectric domain walls. The Rayleigh relation ε’(E0)= 

ε’(0)+αE0 is typically used in order to analyse the nonlinear dielectric response, E0 being the 

amplitude of the electric field, α the Rayleigh coefficient, ε’(0) the relative permittivity at very low E0, 

and ε’(E0) the measured relative permittivity as a function of the electric field amplitude E0. The slope 

α of the Δε’ (Δε’=ε’(E0)-ε’(0)) versus E0 plot is used to evaluate the nonlinearity numerically; 

therefore, the higher the Rayleigh coefficient the higher the instability of the dielectric response. 

Figure 6 shows ε’ versus E0 plot for pure KNN and KNN-M ceramics. A linear relation is verified for 

all samples, as predicted by the Rayleigh model. Rayleigh coefficients are calculated and reported in 

Table II. As one may observe, KNN-M ceramics show better stability than pure KNN. Consequently, 

acceptor dopants may lead to the formation of oxygen vacancies, and thereby facilitate the creation of 

the complex defects that may act by hampering the domain wall motion. 
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4. Conclusions 

Oxygen vacancies are induced by introducing Ti4+ or Zr4+ ions into the B-site of the KNN perovskite, 

which is prepared by conventional solid-state reaction. The addition of TiO2 or ZrO2 shifts the phase 

transitions toward lower temperatures, as confirmed by different techniques, this effect being higher 

when doping with TiO2. The addition of low amounts of acceptor dopants promotes the densification, 

improving functional properties of KNN ceramics. The piezoelectric properties of the ceramics are 

greatly enhanced when doping with small concentrations of TiO2 or ZrO2. The coercive field 

increases and the dielectric losses decrease when KNN is doped, which is consistent with the 

hypothesis that oxygen vacancies are formed by acceptor doping. Acceptor-doped KNN 

piezoceramics exhibit an increase in the stability of the properties (nonlinear behaviour reduction) 

probably as a consequence of the domain wall pinning effect. Therefore, doping with low amounts of 

acceptor dopants should be taken into consideration in order to improve the functional properties of 

KNN-based piezoceramics, i.e. an increase of the dielectric constant, the piezoelectric coefficients, 

and the coupling factor as well as a decrease of the losses and the instability of the properties. 
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