The Generalized Hierarchical Product of Graphs

L. Barrière ${ }^{\dagger}$, C. Dalfót ${ }^{\dagger}$, M.A. Fiol ${ }^{\dagger}$, M. Mitjana ${ }^{\ddagger}$
${ }^{\dagger}$ Departament de Matemàtica Aplicada IV
${ }^{\ddagger}$ Departament de Matemàtica Aplicada I
Universitat Politècnica de Catalunya
\{lali, cdalfo,fiol\}@ma4.upc.edu
margarida.mitjana@upc.edu

March 27, 2008

Abstract

A generalization of both the hierarchical product and the Cartesian product of graphs is introduced and some of its properties are studied. We call it the generalized hierarchical product. In fact, the obtained graphs turn out to be subgraphs of the Cartesian product of the corresponding factors. Thus, some well-known properties of this product, such as a good connectivity, reduced mean distance, radius and diameter, simple routing algorithms and some optimal communication protocols, are inherited by the generalized hierarchical product. Besides some of these properties, in this paper we study the spectrum, the existence of Hamiltonian cycles, the chromatic number and index, and the connectivity of the generalized hierarchical product.

Keywords: Graph, Cartesian product, Hierarchical product, Diameter, Spectrum, Hamiltonian cycle, Coloring, Connectivity.

AMS classification: $05 \mathrm{C} 50,05 \mathrm{C} 05$.

1 Introduction

Some classical graphs, modeling real-life complex networks [14], present a modular or hierarchical structure [15]. This is the case, for instance, of networks with nodes having high degree, which are known as hubs [1]. These nodes usually play a critical role in the information flow of the system because many of the other nodes send and receive information through them. In [2] the authors introduced the hierarchical product of graphs which produces graphs with a strong (connectedness) hierarchy in their vertices. In fact, the obtained graphs turn out to be subgraphs of the Cartesian product of the corresponding factors. In particular, when each factor is the complete graph on two vertices, the resulting graph is a spanning tree of the hypercube, the so-called binomial tree, which is a data structure very useful in the context of algorithm analysis and design [7]. As it was shown in [3], an appealing property of this structure is that all its eigenvalues are distinct, a fact that has some structural consequences, such as the Abelianity of its automorphism group [13].

In this work we propose a new product of graphs, which in the extreme cases gives the hierarchical product and the Cartesian product. We call it the generalized hierarchical product. As before, the obtained graphs are again subgraphs of the Cartesian product. Hence, some well-known properties of the Cartesian product, such as a high connectivity, reduced mean distance and diameter, simple routing algorithms and some optimal communication protocols [10] are shared by the generalized hierarchical product.

Figure 1: Two views of a generalized hierarchical product K_{3}^{3} with $U_{1}=U_{2}=\{0,1\}$.

Here we study some of this properties and also the following: the spectrum (through the characteristic polynomial), sufficient conditions for the existence of Hamiltonian cycles, the chromatic number and index, and, finally, the connectivity of the generalized hierarchical product.

In our study we use techniques from graph theory. For the basic concepts, notation and results about graphs, see for instance [5, 6].

2 The generalized hierarchical product

A natural generalization of the hierarchical product, proposed in [2], is as follows: Given N graphs $G_{i}=\left(V_{i}, E_{i}\right)$ and (non-empty) vertex subsets $U_{i} \subseteq V_{i}, i=1,2, \ldots, N-1$, the generalized hierarchical product $H=G_{N} \sqcap \cdots \sqcap G_{2}\left(U_{2}\right) \sqcap G_{1}\left(U_{1}\right)$ is the graph with vertex set $V_{N} \times \cdots \times V_{2} \times V_{1}$ and adjacencies:
$x_{N} \ldots x_{3} x_{2} x_{1} \sim\left\{\begin{array}{ccc}x_{N} \ldots x_{3} x_{2} y_{1} & \text { if } y_{1} \sim x_{1} \text { in } G_{1}, \\ x_{N} \ldots x_{3} y_{2} x_{1} & \text { if } y_{2} \sim x_{2} \text { in } G_{2} \text { and } x_{1} \in U_{1}, \\ x_{N} \ldots y_{3} x_{2} x_{1} & \text { if } y_{3} \sim x_{3} \text { in } G_{3} \text { and } x_{i} \in U_{i}, i=1,2, \\ \vdots & \vdots & \\ y_{N} \ldots x_{3} x_{2} x_{1} & \text { if } \quad y_{N} \sim x_{N} \text { in } G_{N} \text { and } x_{i} \in U_{i}, i=1,2, \ldots, N-1 .\end{array}\right.$
As an example, Fig. 1 shows two drawings of the generalized hierarchical product $K_{3}^{3}=$ $K_{3} \sqcap K_{3}\left(U_{2}\right) \sqcap K_{3}\left(U_{1}\right)$, where $V\left(K_{3}\right)=\{0,1,2\}$ and $U_{1}=U_{2}=\{0,1\}$.

In particular, the two "extreme" cases are the following:

- If all the subsets U_{i} are singletons (that is, the trivial graph with only one vertex), then the resulting graph is the (standard) hierarchical product [2].
- If $U_{i}=V_{i}$ for all $1 \leq i \leq N-1$, then the graph obtained is the Cartesian product of the graphs G_{i}.

2.1 Basic properties

Let us first list some basic properties on the degrees of the vertices in the generalized hierarchical product. The proofs are direct consequences of the definition.

- The degree of a vertex $v=x_{N} x_{N-1} \ldots x_{2} x_{1}$ in the generalized hierarchical product $H=G_{N} \sqcap \cdots \sqcap G_{2}\left(U_{2}\right) \sqcap G_{1}\left(U_{1}\right)$ is

$$
\partial_{H}(v)=\partial_{G_{1}}\left(x_{1}\right)+\chi_{U_{1}}\left(x_{1}\right) \partial_{G_{2}}\left(x_{2}\right)+\cdots+\left[\chi_{U_{1}}\left(x_{1}\right) \cdots \chi_{U_{N-1}}\left(x_{N-1}\right)\right] \partial_{G_{N}}\left(x_{N}\right),
$$

where ∂ and $\chi_{U_{i}}$ denotes, respectively, the degree and the characteristic function of the set U_{i}.

- The minimum and maximum degree of H are

$$
\begin{aligned}
\delta_{H} & =\min \left\{\delta_{G_{1}\left(\bar{U}_{1}\right)}, \delta_{G_{1}\left(U_{1}\right)}+\delta_{G_{2}\left(\bar{U}_{2}\right)}, \ldots, \delta_{G_{1}\left(U_{1}\right)}+\cdots+\delta_{G_{N-1}\left(U_{N-1}\right)}+\delta_{G_{N}}\right\} \\
\Delta_{H} & =\max \left\{\Delta_{G_{1}\left(\bar{U}_{1}\right)}, \Delta_{G_{1}\left(U_{1}\right)}+\Delta_{G_{2}\left(\bar{U}_{2}\right)}, \ldots, \Delta_{G_{1}\left(U_{1}\right)}+\cdots+\Delta_{G_{N-1}\left(U_{N-1}\right)}+\Delta_{G_{N}}\right\},
\end{aligned}
$$

where, for $i=1,2, \ldots, N-1, \delta_{G_{i}\left(\bar{U}_{i}\right)}=\min _{x_{i} \notin U_{i}} \partial_{G_{i}}\left(x_{i}\right), \delta_{G_{i}\left(U_{i}\right)}=\min _{x_{i} \in U_{i}} \partial_{G_{i}}\left(x_{i}\right)$, and, similarly, $\Delta_{G_{i}\left(\bar{U}_{i}\right)}=\max _{x_{i} \notin U_{i}} \partial_{G_{i}}\left(x_{i}\right), \Delta_{G_{i}\left(U_{i}\right)}=\max _{x_{i} \in U_{i}} \partial_{G_{i}}\left(x_{i}\right)$, while $\delta_{G_{N}}$ and $\Delta_{G_{N}}$ are, respectively, the minimum and the maximum degrees of G_{N}.

- If, for every $i=1,2, \ldots, N$, the graph G_{i} is ∂_{i}-regular, then the product graph $H=G_{N} \sqcap \cdots \sqcap G_{2}\left(U_{2}\right) \sqcap G_{1}\left(U_{1}\right)$ contains exactly
- $n_{N}\left(n_{N-1}-\left|U_{N-1}\right|\right)$ vertices of degree ∂_{N};
- $n_{N}\left|U_{N-1}\right|\left(n_{N-2}-\left|U_{N-2}\right|\right)$ vertices of degree $\partial_{N}+\partial_{N-1}$;
- $n_{N}\left|U_{N-1}\right|\left|U_{N-2}\right| \cdots\left|U_{2}\right|\left(n_{1}-\left|U_{1}\right|\right)$ vertices of degree $\partial_{N}+\partial_{N-1}+\cdots+\partial_{2}$;
- $n_{N}\left|U_{N-1}\right|\left|U_{N-2}\right| \cdots\left|U_{1}\right|$ vertices of degree $\partial_{N}+\partial_{N-1}+\cdots+\partial_{1}$.

In the following proposition we show that, as in the case of the hierarchical product [2], the generalized hierarchical product is associative provided that the subsets U_{i} are appropriately chosen.

Proposition 2.1 For $i=1,2,3$, let G_{i} be a graph and, for $i=1,2, U_{i} \subseteq V_{i}$. The generalized hierarchical product satisfies

$$
G_{3} \sqcap G_{2}\left(U_{2}\right) \sqcap G_{1}\left(U_{1}\right)=G_{3} \sqcap\left(G_{2} \sqcap G_{1}\left(U_{1}\right)\right)\left(U_{2} \times U_{1}\right)=\left(G_{3} \sqcap G_{2}\left(U_{2}\right)\right) \sqcap G_{1}\left(U_{1}\right) .
$$

Proof. To prove the first equality, we only need to show that in the generalized hierarchical product $G_{3} \sqcap\left(G_{2} \sqcap G_{1}\left(U_{1}\right)\right)\left(U_{2} \times U_{1}\right)$ vertex $x_{3}\left(x_{2} x_{1}\right)$ has the same adjacencies as vertex $x_{3} x_{2} x_{1}$ in $G_{3} \sqcap G_{2}\left(U_{2}\right) \sqcap G_{1}\left(U_{1}\right)$. Indeed,

$$
x_{3}\left(x_{2} x_{1}\right) \sim \begin{cases}x_{3}\left(y_{2} y_{1}\right) & \text { if } \quad\left(y_{2} y_{1}\right) \sim\left(x_{2} x_{1}\right) \text { in } G_{2} \sqcap G_{1}\left(U_{1}\right) ; \text { that is, } \\
& \text { if }\left\{\begin{array}{l}
y_{1} \sim x_{1} \text { in } G_{1} \text { and } y_{2}=x_{2}, \text { or } \\
y_{2} \sim x_{2} \text { in } G_{2} \text { and } y_{1}=x_{1} \in U_{1},
\end{array}\right. \\
y_{3}\left(x_{2} x_{1}\right) & \text { if } y_{3} \sim x_{3} \text { in } G_{3} \text { and }\left(x_{2}, x_{1}\right) \in U_{2} \times U_{1} .\end{cases}
$$

This is equivalent to

$$
x_{3}\left(x_{2} x_{1}\right) \sim\left\{\begin{array}{lll}
x_{3}\left(x_{2} y_{1}\right) & \text { if } & y_{1} \sim x_{1} \text { in } G_{1} ; \\
x_{3}\left(y_{2} x_{1}\right) & \text { if } & y_{2} \sim x_{2} \text { in } G_{2} \text { and } x_{1} \in U_{1} ; \\
y_{3}\left(x_{2} x_{1}\right) & \text { if } & y_{3} \sim x_{3} \text { in } G_{3}, x_{2} \in U_{2} \text { and } x_{1} \in U_{1} .
\end{array}\right.
$$

Thus, the required isomorphism is simply $x_{3}\left(x_{2} x_{1}\right) \mapsto x_{3} x_{2} x_{1}$.
Analogously, we can prove the second equality by showing that in the generalized hierarchical product $\left(G_{3} \sqcap G_{2}\left(U_{2}\right)\right) \sqcap G_{1}\left(U_{1}\right)$ vertex $\left(x_{3} x_{2}\right) x_{1}$ has the same adjacencies as vertex $x_{3} x_{2} x_{1}$ in $G_{3} \sqcap G_{2}\left(U_{2}\right) \sqcap G_{1}\left(U_{1}\right)$. This completes the proof.

Corollary 2.2 For $i=1,2, \ldots, N$, let G_{i} be a graph and, for $i=1,2, \ldots, N-1, U_{i} \subseteq V_{i}$. The generalized hierarchical product satisfies

$$
\begin{aligned}
G_{N} \sqcap \cdots \sqcap G_{1}\left(U_{1}\right) & =\left(G_{N} \sqcap \cdots \sqcap G_{2}\left(U_{2}\right)\right) \sqcap G_{1}\left(U_{1}\right) \\
& =G_{N} \sqcap\left(G_{N-1} \sqcap \cdots \sqcap G_{2}\left(U_{2}\right) \sqcap G_{1}\left(U_{1}\right)\right)\left(U_{N-1} \times \cdots \times U_{1}\right) .
\end{aligned}
$$

We have seen that the generalized hierarchical product is associative. Thus, for some of its properties, it suffices to study the case of two factors. With this aim, let $G_{i}=\left(V_{i}, E_{i}\right)$ be two graphs with vertex sets $V_{i}, i=1,2$, and consider a fixed (or root) subset $U_{1} \subset V_{1}$. Then, the generalized hierarchical product $G_{2} \sqcap G_{1}\left(U_{1}\right)$ is the graph with vertices $x_{2} x_{1}$, $x_{i} \in V_{i}$, and edges $\left\{x_{2} x_{1}, y_{2} y_{1}\right\}$ where either $y_{2}=x_{2}$ and $y_{1} \sim x_{1}$ in G_{1}, or $y_{1}=x_{1} \in U_{1}$ and $y_{2} \sim x_{2}$ in G_{2}.

Thus, $G_{2} \sqcap G_{1}\left(U_{1}\right)$ has $\left|V_{2}\right|\left|V_{1}\right|$ vertices and $\left|U_{1}\right|\left|E_{2}\right|+\left|V_{2}\right|\left|E_{1}\right|$ edges. Also, notice that $G_{2} \sqcap G_{1}\left(U_{1}\right)$ is a (spanning) subgraph of the Cartesian (or direct) product $G_{2} \square G_{1}$. As a consequence, since clearly $K_{1} \sqcap G(U)=G \sqcap K_{1}(u)=G$, the set of graphs with the binary operation Π is a semigroup with identity element K_{1} (that is, a monoid). A simple consequence of the above is the following result, which generalizes a result given in [2].

Lemma 2.3 Let $H=G_{N} \sqcap \cdots \sqcap G_{2}\left(U_{2}\right) \sqcap G_{1}\left(U_{1}\right)$. For a fixed string \boldsymbol{z} of appropriate length (for instance $\boldsymbol{z}=\mathbf{0}=00 \ldots 0$), let $H\left\langle\boldsymbol{z} x_{k} \ldots x_{1}\right\rangle$ denote the subgraph of H induced by the vertex set $\left\{\boldsymbol{z} x_{k} \ldots x_{1} \mid x_{i} \in V_{i}, 1 \leq i \leq k\right\}$. Let $H\left\langle x_{N} \ldots x_{k} \boldsymbol{z}\right\rangle$ be defined analogously. Then,
(a) $H\left\langle\boldsymbol{z} x_{k} \ldots x_{1}\right\rangle=G_{k} \sqcap G_{k-1}\left(U_{k-1}\right) \sqcap \cdots \sqcap G_{1}\left(U_{1}\right)$ for any fixed \boldsymbol{z};
(b) $H\left\langle x_{N} \cdots x_{k} \boldsymbol{z}\right\rangle=G_{N} \sqcap G_{N-1}\left(U_{N-1}\right) \sqcap \cdots \sqcap G_{k}\left(U_{k}\right)$, for $\boldsymbol{z} \in U_{k-1} \times \cdots \times U_{1}$;
(c) $H\left\langle x_{N} \ldots x_{k} \boldsymbol{z}\right\rangle=m K_{1}$ (that is, a set of $m=n_{N} \cdots n_{k}$ singletons) where $n_{i}=\left|V_{i}\right|$, $k \leq i \leq N$, for $\boldsymbol{z} \notin U_{k-1} \times \cdots \times U_{1}$.

Proof. We only need to notice that, for a fixed \boldsymbol{z} of appropriate length,

- $\boldsymbol{z} x_{k} \ldots x_{1} \sim \boldsymbol{z} y_{k} \ldots y_{1}$ in $H\left\langle x_{N} \ldots x_{k} \boldsymbol{z}\right\rangle$ if and only if $x_{k} \ldots x_{1} \sim y_{k} \ldots y_{1}$ in $G_{k} \sqcap G_{k-1}\left(U_{k-1}\right) \sqcap \cdots \sqcap G_{1}\left(U_{1}\right)$; and
- $x_{N} \ldots x_{k} \boldsymbol{z} \sim y_{N} \ldots y_{k} \boldsymbol{z}$ in $H\left\langle x_{N} \ldots x_{k} \boldsymbol{z}\right\rangle$ if and only if $x_{N} \ldots x_{k} \sim y_{N} \ldots y_{k}$ in $G_{N} \sqcap G_{N-1}\left(U_{N-1}\right) \sqcap \cdots \sqcap G_{k}\left(U_{k}\right)$ and $\boldsymbol{z} \in U_{k-1} \times \cdots \times U_{1}$.
This implies that the mapping $\boldsymbol{z} x_{k} \ldots x_{1} \mapsto x_{k} \ldots x_{1}$ is an isomorphism between $H\left\langle\boldsymbol{z} x_{k} \ldots x_{1}\right\rangle$ and $G_{k} \sqcap G_{k-1}\left(U_{k-1}\right) \sqcap \cdots \sqcap G_{1}\left(U_{1}\right)$, and the mapping $x_{N} \ldots x_{k} \boldsymbol{z} \mapsto x_{N} \ldots x_{k}$ is an isomorphism between $H\left\langle x_{N} \ldots x_{k} \boldsymbol{z}\right\rangle$ and $G_{N} \sqcap G_{N-1}\left(U_{N-1}\right) \sqcap \cdots \sqcap G_{k}\left(U_{k}\right)$ if $\boldsymbol{z} \in$ $U_{k-1} \times \cdots \times U_{1}$. Moreover, if $\boldsymbol{z} \notin U_{k-1} \times \cdots \times U_{1}, H\left\langle x_{N} \ldots x_{k} \boldsymbol{z}\right\rangle$ consists of m independent vertices.

3 Metric parameters

In this section we study some of the most relevant metric parameters of the generalized hierarchical product. Because of the associative property (Prop. 2.1), it is enough to study the product of two factors $H=G_{2} \sqcap G_{1}\left(U_{1}\right)$.

We begin defining the distance through a vertex subset and some related concepts. Given a graph $G=(V, E)$ and a (non-empty) vertex subset $U \subset V$, a path between vertices x and y through U, denoted by $p_{G(U)}(x, y)$, is simply a $x-y$ path of G containing some vertex $z \in U$ (vertex z could be the vertex x or y). Then, the distance through
$U \operatorname{dist}_{G(U)}(x, y)$ between x and y is the length of the shortest path $p_{G(U)}(x, y)$. Observe that, in general, this distance is not a metric in the usual sense because, for instance, $\operatorname{dist}_{G(U)}(x, x)$ is not necessarily 0 . From this concept, we can define the metric parameters mean distance $d_{G(U)}$, eccentricity $\operatorname{ecc}_{G(U)}(x)$ of vertex x, radius $r_{G(U)}$ and diameter $D_{G(U)}$ all of them through U in the following way:

$$
\begin{aligned}
d_{G(U)} & =\frac{1}{n^{2}} \sum_{x, y \in V} d_{G(U)}(x, y) \\
\operatorname{ecc}_{G(U)}(x) & =\max _{y \in V} \operatorname{dist}_{G(U)}(x, y) \\
r_{G(U)} & =\min _{x \in V} \operatorname{ecc}_{G(U)}(x) \\
D_{G(U)} & =\max _{x \in V} \operatorname{ecc}_{G(U)}(x)
\end{aligned}
$$

Observe that the metric parameters through U coincide with the standard metric parameters if $U=V: d_{G(U)} \equiv d_{G}, \operatorname{ecc}_{G(U)}(x) \equiv \operatorname{ecc}_{G}(x)$, etc.

Let us consider two generic vertices $\boldsymbol{x}=\left(x_{2}, x_{1}\right)$ and $\boldsymbol{y}=\left(y_{2}, y_{1}\right)$ in the generalized hierarchical product $H=G_{2} \sqcap G_{1}\left(U_{1}\right)$. Then,

$$
\operatorname{dist}_{H}(\boldsymbol{x}, \boldsymbol{y})=\operatorname{dist}_{G_{2}}\left(x_{2}, y_{2}\right)+\operatorname{dist}_{G_{1}\left(U_{1}\right)}\left(x_{1}, y_{1}\right)
$$

Indeed, if a shortest $x_{1}-y_{1}$ path through U_{1} in G_{1} is

$$
\begin{equation*}
x_{1}, v_{1}, \ldots, v_{i}, \ldots, v_{r-1}, y_{1} \tag{1}
\end{equation*}
$$

where, say, $v_{i} \in U_{1}$ and a shortest $x_{2}-y_{2}$ path in G_{2} is

$$
\begin{equation*}
x_{2}, w_{1}, \ldots, w_{s-1}, y_{2} \tag{2}
\end{equation*}
$$

then a shortest $\boldsymbol{x}-\boldsymbol{y}$ path in H is

$$
\begin{equation*}
\left(x_{2}, x_{1}\right),\left(x_{2}, v_{1}\right), \ldots,\left(x_{2}, v_{i}\right),\left(w_{1}, v_{i}\right), \ldots,\left(y_{2}, v_{i}\right),\left(y_{2}, v_{i+1}\right), \ldots,\left(y_{2}, y_{1}\right) \tag{3}
\end{equation*}
$$

Theorem 3.1 Let $H=(V, E)=G_{2} \sqcap G_{1}\left(U_{1}\right)$ be the generalized hierarchical product of the graphs $G_{1}=\left(V_{1}, E_{1}\right)$, with vertex subset $U_{1} \subset V_{1}$, and $G_{2}=\left(V_{2}, E_{2}\right)$, $n_{2}=\left|V_{2}\right|$, and metric parameters denoted as above. Then, the mean distance, eccentricity of a vertex $\boldsymbol{x}=\left(x_{2}, x_{1}\right) \in V$, radius and diameter of H are the following:
(a) Mean distance:

$$
d_{H}=d_{G_{2}}+\frac{1}{n_{2}}\left(d_{G_{1}}+\left(n_{2}-1\right) d_{G_{1}\left(U_{1}\right)}\right)
$$

(b) Eccentricity:

$$
\operatorname{ecc}_{H}(\boldsymbol{x})=\operatorname{ecc}_{G_{2}}\left(x_{2}\right)+\operatorname{ecc}_{G_{1}\left(U_{1}\right)}\left(x_{1}\right)
$$

(c) Radius:

$$
r_{H}=r_{G_{2}}+r_{G_{1}\left(U_{1}\right)}
$$

(d) Diameter:

$$
D_{H}=D_{G_{2}}+D_{G_{1}\left(U_{1}\right)}
$$

Proof. To prove (a) it is useful to consider the random variable X corresponding to the distance in H between the ordered pair of (not necessarily different) vertices ($\boldsymbol{x}, \boldsymbol{y}$) chosen with uniform distribution. Let A be the event "the vertices $(\boldsymbol{x}, \boldsymbol{y})$ belong to the same copy of $G_{1} "$, with probability $\mathrm{P}(A)=\frac{1}{n_{2}}$. Now, d_{H} is simply the expected value of X, $E(X)$, which can be computed using the law of total expectation:

$$
\begin{aligned}
d_{H} & =E(X)=E(X \mid A) \mathrm{P}(A)+E(X \mid \bar{A}) \mathrm{P}(\bar{A}) \\
& =d_{G_{1}} \frac{1}{n_{2}}+\left(d_{G_{1}\left(U_{1}\right)}+d_{G_{2}} \frac{n_{2}^{2}}{n_{2}\left(n_{2}-1\right)}\right)\left(1-\frac{1}{n_{2}}\right) \\
& =\frac{1}{n_{2}}\left(d_{G_{1}}+\left(n_{2}-1\right) d_{G_{1}\left(U_{1}\right)}\right)+d_{G_{2}}
\end{aligned}
$$

where $E(X \mid \bar{A})$ has been computed by considering that the generic shortest path (3) is constructed from the shortest paths (1) in G_{1} and (2) in G_{2}, with average values $d_{G_{1}\left(U_{1}\right)}$ and $d_{G_{2}}^{\prime}=d_{G_{2}} \frac{n_{2}^{2}}{n_{2}\left(n_{2}-1\right)}$, respectively. Note that $d_{G_{2}}^{\prime}$ corresponds to the average distance between two different vertices x_{2}, y_{2} in G_{2} (since vertices $\boldsymbol{x}, \boldsymbol{y}$ are in different copies of $G_{1} \cong H\left\langle\boldsymbol{z} x_{1}\right\rangle$, see Lemma 2.3).

Regarding the eccentricity, we have

$$
\operatorname{ecc}_{H}=\max _{y \in V} \operatorname{dist}_{H}(x, y)=\max _{y_{2} \in V_{2}} \operatorname{dist}_{G_{2}}\left(x_{2}, y_{2}\right)+\max _{y_{1} \in V_{1}} \operatorname{dist}_{G_{1}}\left(x_{1}, y_{1}\right)
$$

Finally, the formulas (c) and (d) for the radius and the diameter are obtained from (b).
With respect to the mean distance, notice that when $U_{1}=V_{1}$, we have the Cartesian product $H=G_{2} \square G_{1}$, then $d_{G_{1}\left(U_{1}\right)}=d_{G_{1}}$ and (a) becomes $d_{H}=d_{G_{2}}+d_{G_{1}}$, as expected. Similar results hold for the eccentricity, radius and diameter.

4 Algebraic properties

The adjacency matrix of the generalized hierarchical product $H=G_{2} \sqcap G_{1}\left(U_{1}\right)$ can be written in terms of the adjacency matrices \boldsymbol{A}_{i} of the factors $G_{i}, i=1,2$. To this end, first recall that the Kronecker product of two matrices $\boldsymbol{A}=\left(a_{i j}\right)$ and \boldsymbol{B}, usually denoted by $\boldsymbol{A} \otimes \boldsymbol{B}$, is the matrix obtained by replacing each entry $a_{i j}$ by the matrix $a_{i j} \boldsymbol{B}$ for every i and j. Then, if $V\left(G_{1}\right)=\left\{0,1, \ldots, n_{1}-1\right\}$ and assuming that $U_{1}=\{0,1, \ldots, r-1\}$, $1 \leq r \leq n_{1}$, the adjacency matrix of the generalized hierarchical product $H=G_{2} \sqcap G_{1}\left(U_{1}\right)$ is (under the natural indexing of the rows and columns of the adjacency matrices):

$$
\begin{equation*}
\boldsymbol{A}_{H}=\boldsymbol{A}_{2} \otimes \boldsymbol{D}_{1}+\boldsymbol{I}_{2} \otimes \boldsymbol{A}_{1} \cong \boldsymbol{D}_{1} \otimes \boldsymbol{A}_{2}+\boldsymbol{A}_{1} \otimes \boldsymbol{I}_{2} \tag{4}
\end{equation*}
$$

where $\boldsymbol{D}_{1}=\operatorname{diag}(1, . r ., 1,0, \ldots, 0)$ and \boldsymbol{I}_{2} (the identity matrix) have size $n_{1} \times n_{1}$ and $n_{2} \times n_{2}$, respectively. See [2] for the case $r=1$, corresponding to the hierarchical product. In the other extreme case, when $r=n_{1}$, then $\boldsymbol{D}_{1}=\boldsymbol{I}_{1}$ and \boldsymbol{A}_{H} is the adjacency matrix of the Cartesian product $H=G_{2} \square G_{1}$.

For instance, when $G_{1}=G_{2}=K_{3}$ and $U_{1}=\{0,1\}$, as in the construction of Fig. 1, the adjacency matrix \boldsymbol{A}_{H} of the generalized hierarchical product $H=K_{3} \sqcap K_{3}\left(U_{1}\right)$ turns out to be

$$
\boldsymbol{A}_{H}=\boldsymbol{D}_{1} \otimes \boldsymbol{A}_{2}+\boldsymbol{A}_{1} \otimes \boldsymbol{I}_{2}=\left(\begin{array}{ccc}
\boldsymbol{A}_{2} & \boldsymbol{I}_{2} & \boldsymbol{I}_{2} \\
\boldsymbol{I}_{2} & \boldsymbol{A}_{2} & \boldsymbol{I}_{2} \\
\boldsymbol{I}_{2} & \boldsymbol{I}_{2} & \boldsymbol{O}
\end{array}\right)
$$

where

$$
\boldsymbol{D}_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \boldsymbol{A}_{1}=\boldsymbol{A}_{2}=\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right), \quad \boldsymbol{I}_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),
$$

so that \boldsymbol{A}_{H} is a 3×3 matrix of 3×3 blocks.
The next results provide a way to compute the spectrum of $H=G_{2} \sqcap G_{1}\left(U_{1}\right)$. With this aim and for every eigenvalue λ of \boldsymbol{A}_{2}, we consider the $n_{1} \times n_{1}$ matrix $\boldsymbol{A}(\lambda)=\lambda \boldsymbol{D}_{1}+\boldsymbol{A}_{1}$. Note that this 'condensed' matrix is obtained from \boldsymbol{A}_{H} by replacing every block \boldsymbol{O} by 0 , every block \boldsymbol{I}_{2} by 1 and every block \boldsymbol{A}_{2} by λ. Namely, every block is replaced for one of its eigenvalues.

Theorem 4.1 Let λ be an eigenvalue of \boldsymbol{A}_{2} with eigenvector \boldsymbol{u}, and let $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n_{1}-1}$ be the eigenvalues of $\boldsymbol{A}(\lambda)=\lambda \boldsymbol{D}_{1}+\boldsymbol{A}_{1}$, with corresponding eigenvectors $\boldsymbol{w}_{0}, \boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n_{1}-1}$. Then, the generalized hierarchical product $H=G_{2} \sqcap G_{1}\left(U_{1}\right)$ has the same eigenvalues $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n_{1}-1}$, with corresponding eigenvectors $\boldsymbol{w}_{0} \otimes \boldsymbol{u}, \boldsymbol{w}_{1} \otimes \boldsymbol{u}, \ldots, \boldsymbol{w}_{n_{1}-1} \otimes \boldsymbol{u}$.

Proof. Using (4) giving \boldsymbol{A}_{H}, and with the fact that the Kronecker product satisfies $(\boldsymbol{A} \otimes \boldsymbol{B})(\boldsymbol{u} \otimes \boldsymbol{v})=\boldsymbol{A u} \otimes \boldsymbol{B} \boldsymbol{v}$ (see, for instance, [11]), we get

$$
\begin{aligned}
\boldsymbol{A}_{H}\left(\boldsymbol{w}_{i} \otimes \boldsymbol{u}\right) & =\left(\boldsymbol{D}_{1} \otimes \boldsymbol{A}_{2}+\boldsymbol{A}_{1} \otimes \boldsymbol{I}_{2}\right)\left(\boldsymbol{w}_{i} \otimes \boldsymbol{u}\right) \\
& =\left(\boldsymbol{D}_{1} \otimes \boldsymbol{A}_{2}\right)\left(\boldsymbol{w}_{i} \otimes \boldsymbol{u}\right)+\left(\boldsymbol{A}_{1} \otimes \boldsymbol{I}_{2}\right)\left(\boldsymbol{w}_{i} \otimes \boldsymbol{u}\right) \\
& =\boldsymbol{D}_{1} \boldsymbol{w}_{i} \otimes \boldsymbol{A}_{2} \boldsymbol{u}+\boldsymbol{A}_{1} \boldsymbol{w}_{i} \otimes \boldsymbol{u} \\
& =\left(\lambda \boldsymbol{D}_{1}+\boldsymbol{A}_{1}\right) \boldsymbol{w}_{i} \otimes \boldsymbol{u} \\
& =\lambda_{i}\left(\boldsymbol{w}_{i} \otimes \boldsymbol{u}\right),
\end{aligned}
$$

so that λ_{i} is an eigenvalue of \boldsymbol{A}_{H} with eigenvector $\boldsymbol{w}_{i} \otimes \boldsymbol{u}$ for every $0 \leq i \leq n_{1}-1$. Note that the eigenvectors $\boldsymbol{w}_{0} \otimes \boldsymbol{u}, \boldsymbol{w}_{1} \otimes \boldsymbol{u}, \ldots, \boldsymbol{w}_{n_{1}-1} \otimes \boldsymbol{u}$ are linearly independent because so are the eigenvectors $\boldsymbol{w}_{0}, \boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n_{1}-1}$.

Moreover, from the above result, we can give a formula for the characteristic polynomial of $H=G_{2} \sqcap G_{1}\left(U_{1}\right)$ in terms of the eigenvalues of G_{2} and the characteristic polynomials of some of the induced subgraphs of G_{1}. First, we introduce the following notation: Given a vertex subset $I \subset U_{1}=\{0,1, \ldots, r-1\}$, let $G_{1}^{I}=G_{1}-I$ be the graph obtained from G_{1} by removing the vertices in I, and let $\phi_{1}^{I}(x)$ be its characteristic polynomial. By convention, if $I=\emptyset$ we take $\phi_{1}^{I}(x)=\phi_{1}(x)$, and if $I=U_{1}=V_{1}$ then $\phi_{1}^{I}(x)=1$.

Theorem 4.2 Given the graph G_{1} with vertex subset $U_{1} \subset V_{1}$, and the graph G_{2} with eigenvalues ev G_{2}, the characteristic polynomial of their generalized hierarchical product $H=G_{2} \sqcap G_{1}\left(U_{1}\right)$ is

$$
\begin{equation*}
\phi_{H}(x)=\prod_{\lambda \in \mathrm{ev} G_{2}} \phi_{\lambda}(x), \tag{5}
\end{equation*}
$$

where $\phi_{\lambda}(x)$ is the characteristic polynomial of $\boldsymbol{A}(\lambda)$ given by

$$
\begin{equation*}
\phi_{\lambda}(x)=\sum_{I \subset U_{1}}(-\lambda)^{|I|} \phi_{1}^{I}(x) . \tag{6}
\end{equation*}
$$

Proof. For every eigenvalue λ of G_{2}, the eigenvalues of H given by Theorem 4.1 are the roots of the characteristic polynomials $\phi_{\lambda}(x)$. Therefore, (5) holds since all its corresponding eigenvectors $\boldsymbol{w}_{i} \otimes \boldsymbol{u}$ of H, when varying the pair $(\lambda, \boldsymbol{u})$, are linearly independent.

The proof of Equation (6) is by induction on r. Let us consider the following matrix with rows and columns indexed by the elements of $V_{1}=\left\{0,1, \ldots, n_{1}-1\right\}$:

$$
\boldsymbol{M}=x \boldsymbol{I}_{1}-\boldsymbol{A}(\lambda)=x \boldsymbol{I}_{1}-\lambda \boldsymbol{D}_{1}-\boldsymbol{A}_{1}=\left(\begin{array}{cccccc}
x-\lambda & & & & & \\
& \ddots & & & & \\
& & x-\lambda & & & \\
& & & x & & \\
& & & & \ddots & \\
& & & & & x
\end{array}\right)
$$

where, for simplicity, we have only written the diagonal entries omitting the elements of $-\boldsymbol{A}_{1}$. Given $i \in U_{1}$, let $\boldsymbol{M}^{\{i\}}$ be the matrix obtained from \boldsymbol{M} by removing the row and column i and let $\boldsymbol{M}_{[i]}$ be the matrix obtained from \boldsymbol{M} by changing the diagonal element with index i from $x-\lambda$ to x.

For $r=1$, and expanding by the first row, we get

$$
\begin{aligned}
\phi_{\lambda}(x) & =\operatorname{det} \boldsymbol{M}=\operatorname{det}\left(\begin{array}{llll}
x & & & \\
& x & & \\
& & \ddots & \\
& & & x
\end{array}\right)-\lambda \operatorname{det}\left(\begin{array}{lll}
x & & \\
& \ddots & \\
& & x
\end{array}\right) \\
& =\operatorname{det} \boldsymbol{M}_{[0]}-\lambda \operatorname{det} \boldsymbol{M}^{\{0\}}=\phi_{1}(x)-\lambda \phi_{1}^{\{0\}}(x),
\end{aligned}
$$

and (6) holds.
Now, by the induction hypothesis, assume that the result holds for some $r>1$. Then, if $\left|U_{1}\right|=r+1$, we expand by the row r and we get

$$
\begin{aligned}
\phi_{\lambda}(x) & =\operatorname{det} \boldsymbol{M}=\operatorname{det} \boldsymbol{M}_{[r]}-\lambda \operatorname{det} \boldsymbol{M}^{\{r\}} \\
& =\sum_{I \subset U_{1} \backslash\{r\}}(-\lambda)^{|I|} \phi^{I}(x)-\lambda \sum_{I \subset U_{1} \backslash\{r\}}(-\lambda)^{|I|} \phi^{I \cup\{r\}}(x) \\
& =\sum_{I \subset U_{1} ; r \notin I}(-\lambda)^{|I|} \phi^{I}(x)+\sum_{I \subset U_{1} ; r \in I}(-\lambda)^{|I|} \phi^{I}(x)=\sum_{I \subset U_{1}}(-\lambda)^{|I|} \phi^{I}(x) .
\end{aligned}
$$

This completes the proof.
In particular, let us notice that, when the generalized hierarchical product coincides with the Cartesian product, namely when $U_{1}=V_{1}$, the characteristic polynomial of $\boldsymbol{A}(\lambda)=\lambda \boldsymbol{I}_{1}+\boldsymbol{A}_{1}$ is

$$
\begin{equation*}
\phi_{\lambda}(x)=\operatorname{det}\left((x-\lambda) \boldsymbol{I}_{1}-\boldsymbol{A}_{1}\right)=\phi_{1}(x-\lambda), \tag{7}
\end{equation*}
$$

for every eigenvalue λ of G_{2}. Thus, as it is well known (see, for instance, [8]), the eigenvalues of $H=G_{2} \square G_{1}$ are $\lambda+\mu$, for each $\lambda \in \operatorname{ev} G_{2}, \mu \in \operatorname{ev} G_{1}$.

Moreover, as a by-product, for a generic graph $G_{1}=G$ with vertex set $V,|V|=n$, and characteristic polynomial $\phi(x)$, we obtain

$$
\begin{aligned}
\phi(x-\lambda) & =\sum_{|I| \leq n}(-\lambda)^{|I|} \phi^{I}(x) \\
& =\phi(x)-\left(\phi^{\{0\}}(x)+\cdots+\phi^{\{n-1\}}(x)\right) \lambda \\
& +\left(\phi^{\{0,1\}}(x)+\cdots+\phi^{\{n-2, n-1\}}(x)\right) \lambda^{2}+\cdots+(-1)^{n} \lambda^{n}
\end{aligned}
$$

which, actually, is the Mac-Laurin decomposition of the polynomial $\psi(\lambda) \equiv \phi(x-\lambda)$. Therefore, the coefficient of λ is $\psi^{\prime}(0)=-\phi^{\prime}(x)$ giving the known formula $\phi^{\prime}(x)=$ $\sum_{u \in V} \phi^{\{u\}}(x)$ (see, for instance, [9]).

Going back to our study, the above reasonings can be used to derive an alternative expression for the characteristic polynomial of the generalized hierarchical product.

Theorem 4.3 The characteristic polynomial of the generalized hierarchical product $H=$ $G_{2} \sqcap G_{1}\left(U_{1}\right)$ is:

$$
\begin{equation*}
\phi_{H}(x)=\operatorname{det}\left(\sum_{I \subset U_{1}}\left(-\boldsymbol{A}_{2}\right)^{|I|} \phi_{1}^{I}(x)\right) . \tag{8}
\end{equation*}
$$

Proof. Working with the adjacency matrix of H, we have

$$
\phi_{H}(x)=\operatorname{det}\left(x \boldsymbol{I}-\boldsymbol{A}_{H}\right)=\operatorname{det}\left(\begin{array}{lllll}
x \boldsymbol{I}_{2}-\boldsymbol{A}_{2} & & & & \\
& \ddots & & & \\
& & x \boldsymbol{I}_{2}-\boldsymbol{A}_{2} & & \\
& & & x \boldsymbol{I}_{2} & \\
\\
& & & & \ddots
\end{array}\right)
$$

Again, for simplicity, we have only written the diagonal entries. Thus, the n_{1}^{2} blocks are of the types: $x \boldsymbol{I}_{2}-\boldsymbol{A}_{2}, x \boldsymbol{I}_{2},-\boldsymbol{I}_{2}$ or \boldsymbol{O}. Since every block commutates with each other, the result of Silvester [17] holds, and we can obtain $\phi_{H}(x)$ by computing the determinant in $\mathbb{R}^{n_{2} \times n_{2}}$, as in the previous theorem (compare Eqs. (8) and (6)).

According to the cardinality r of the subset U_{1}, we next discuss some cases of the above result:

- $r=1$: This corresponds to the hierarchical product $H=G_{2} \sqcap G_{1}$. Thus, $\phi_{1}^{I}(x)$ is either $\phi_{1}^{\emptyset}(x)=\phi_{1}(x)$ or $\phi_{1}^{\{0\}}(x) \equiv \phi_{1}^{*}(x)$, the characteristic polynomial of $G_{1}-\{0\}$. Therefore,

$$
\begin{aligned}
\phi_{H}(x) & =\operatorname{det}\left(\phi_{1}(x) \boldsymbol{I}_{2}-\phi_{1}^{*}(x) \boldsymbol{A}_{2}\right)=\operatorname{det}\left(\phi_{1}^{*}(x)\left[\frac{\phi_{1}(x)}{\phi_{1}^{*}(x)} \boldsymbol{I}_{2}-\boldsymbol{A}_{2}\right]\right) \\
& =\left(\phi_{1}^{*}(x)\right)^{n_{2}} \phi_{2}\left(\frac{\phi_{1}(x)}{\phi_{1}^{*}(x)}\right)
\end{aligned}
$$

as obtained in [2].

- $r=2$: In this case, Eq. (8) becomes

$$
\begin{aligned}
\phi_{H}(x) & =\operatorname{det}\left(\phi_{1}(x) \boldsymbol{I}_{2}-\left(\phi_{1}^{\{0\}}(x)+\phi_{1}^{\{1\}}(x)\right) \boldsymbol{A}_{2}+\phi_{1}^{\{0,1\}}(x) \boldsymbol{A}_{2}^{2}\right) \\
& =\operatorname{det}\left(\phi_{1}^{\{0,1\}}(x)\left(\mu_{+}(x) \boldsymbol{I}_{2}-\boldsymbol{A}_{2}\right)\left(\mu_{-}(x) \boldsymbol{I}_{2}-\boldsymbol{A}_{2}\right)\right) \\
& =\left(\phi_{1}^{\{0,1\}}(x)\right)^{n_{2}} \phi_{2}\left(\mu_{+}(x)\right) \phi_{2}\left(\mu_{-}(x)\right)
\end{aligned}
$$

where

$$
\mu_{ \pm}(x)=\frac{\phi_{1}^{\{0\}}(x)+\phi_{1}^{\{1\}}(x) \pm \sqrt{\left(\phi_{1}^{\{0\}}(x)+\phi_{1}^{\{1\}}(x)\right)^{2}-4 \phi_{1}(x) \phi_{1}^{\{0,1\}}(x)}}{2 \phi_{1}^{\{0,1\}}(x)}
$$

- $r=n_{1}$: In this case, the generalized hierarchical product becomes the Cartesian product, $H=G_{2} \sqcap G_{1}\left(V_{1}\right)=G_{2} \square G_{1}$, and Eq. (8) gives

$$
\begin{aligned}
\phi_{H}(x)= & \operatorname{det} \sum_{|I| \leq n_{1}}\left(-\boldsymbol{A}_{2}\right)^{|I|} \phi_{1}^{I}(x) \\
= & \operatorname{det}\left(\phi_{1}(x) \boldsymbol{I}_{2}-\left(\phi_{1}^{\{0\}}(x)+\cdots+\phi_{1}^{\left\{n_{1}-1\right\}}(x)\right) \boldsymbol{A}_{2}+\cdots\right. \\
& \left.+(-1)^{n_{1}-1} n_{1} x \boldsymbol{A}_{2}^{n_{1}-1}+(-1)^{n_{1}} \boldsymbol{A}_{2}^{n_{1}}\right)
\end{aligned}
$$

Moreover, in the last case, using the same reasoning that allowed us to get Eq. (7), we obtain an expression for the characteristic polynomial of the Cartesian product of two graphs.

Lemma 4.4 Given two graphs G_{1}, G_{2}, with respective adjacency matrices $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}$, the characteristic polynomial of their Cartesian product $G_{2} \square G_{1}$ is

$$
\phi_{H}(x)=\operatorname{det}\left(\phi_{1}\left(x \boldsymbol{I}_{2}-\boldsymbol{A}_{2}\right)\right)=\operatorname{det}\left(\phi_{2}\left(x \boldsymbol{I}_{1}-\boldsymbol{A}_{1}\right)\right) .
$$

To illustrate the application of both Theorem 4.2 and Theorem 4.3, we now compute the characteristic polynomial of the hierarchical product of $H=C_{4} \sqcap K_{5}\left(U_{1}\right)$, the 4-cycle $G_{2}=C_{4}$ and the complete graph $G_{1}=K_{5}$ with $U_{1}=\{0,1,2\}$. Recall that the spectrum of the former is $\operatorname{sp}\left(C_{4}\right)=\left\{2,0^{2},-2\right\}$, where the superscript stands for the eigenvalue multiplicity.

Using mathematical software, we get

$$
\phi_{H}(x)=(x-3)(x+2)\left(x^{2}-5 x-2\right)(x-1)^{2}(x+3)^{2}(x-4)^{2}(x+1)^{10} .
$$

Now, in this case, the 'condensed matrix' is

$$
\boldsymbol{A}(\lambda)=\left(\begin{array}{ccccc}
\lambda & 1 & 1 & 1 & 1 \\
1 & \lambda & 1 & 1 & 1 \\
1 & 1 & \lambda & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

For each $\lambda \in \operatorname{ev} C_{4}$, the characteristic polynomial of $\boldsymbol{A}(\lambda)$ is

$$
\begin{align*}
\phi_{2}(x) & =(x+1)\left(x^{2}-5 x-2\right)(x-1)^{2} \\
\phi_{0}(x) & =(x-4)(x+1)^{4} \tag{9}\\
\phi_{-2}(x) & =(x-3)(x+2)(x+1)(x+3)^{2}
\end{align*}
$$

and $\phi_{H}(x)=\phi_{2}(x) \phi_{0}(x)^{2} \phi_{-2}(x)$.
Taking into account that the characteristic polynomial of the complete graph K_{n} is $\phi(x)=(x-n+1)(x+1)^{n-1}$ and the fact that removing any vertex of K_{n} gives K_{n-1}, Theorem 4.2 yields

$$
\phi_{\lambda}(x)=(x-4)(x+1)^{4}-3(x-3)(x+1)^{3} \lambda+3(x-2)(x+1)^{2} \lambda^{2}-(x+1)(x-1) \lambda^{3},
$$ and for $\lambda=2,0,-2$ we have (9), as expected.

Let \boldsymbol{C} be the adjacency matrix of the 4 -cycle. If we work with the block matrices as in Theorem 4.3, the characteristic polynomial is

$$
\left.\phi_{H}(x)=\operatorname{det}\left((x-4)(x+1)^{4} \boldsymbol{I}_{4}-x-3\right)(x+1)^{3} \boldsymbol{C}+3(x-2)(x+1)^{2} \boldsymbol{C}^{2}-(x+1)(x-1) \boldsymbol{C}^{3}\right)
$$

$$
=\left\lvert\, \begin{array}{cccc|}
\left(x^{3}-2 x^{2}-x-16\right)(x+1)^{2} & -(x+1)\left(3 x^{3}-3 x^{2}-11 x-13\right) & 6(x-2)(x+1)^{2} & -(x+1)\left(3 x^{3}-3 x^{2}-11 x-13\right) \\
-(x+1)\left(3 x^{3}-3 x^{2}-11 x-13\right) & \left(x^{3}-2 x^{2}-x-16\right)(x+1)^{2} & -(x+1)\left(3 x^{3}-3 x^{2}-11 x-13\right) & 6(x-2)(x+1)^{2} \\
6(x-2)(x+1)^{2} & -(x+1)\left(3 x^{3}-3 x^{2}-11 x-13\right) & \left(x^{3}-2 x^{2}-x-16\right)(x+1)^{2} & -(x+1)\left(3 x^{3}-3 x^{2}-11 x-13\right) \\
-(x+1)\left(3 x^{3}-3 x^{2}-11 x-13\right) & 6(x-2)(x+1)^{2} & -(x+1)\left(3 x^{3}-3 x^{2}-11 x-13\right) & \left(x^{3}-2 x^{2}-x-16\right)(x+1)^{2}
\end{array} .\right.
$$

Then, computing the determinant, we get

$$
\phi_{H}(x)=(x-3)(x+2)\left(x^{2}-5 x-2\right)(x-1)^{2}(x+3)^{2}(x-4)^{2}(x+1)^{10}
$$

as claimed. Note that, in this example, we have been able to simplify the expressions (6) and (8) because of the property mentioned above of the complete graph.

5 Hamiltonian cycles

It is well known that the Cartesian product $G=G_{1} \square G_{2}$ of the Hamiltonian graphs G_{1}, G_{2} is also Hamiltonian; see, for instance, [4]. As commented above, such a product corresponds to our hierarchical product $G_{2} \sqcap G_{1}\left(U_{1}\right)$ when $U_{1}=V_{1}$. Here we show that the existence of a Hamiltonian cycle is also granted under a much less restricted condition on the subset U_{1}.

Proposition 5.1 If the graphs $G_{i}=\left(V_{i}, E_{i}\right), i=1,2$, are Hamiltonian and the graph induced by the vertices in $U_{1} \subset V_{1}$ has a path P_{3} contained in the Hamiltonian cycle of G_{1}, then the generalized hierarchical product $H=G_{2} \sqcap G_{1}\left(U_{1}\right)$ is Hamiltonian.

Proof. The Hamiltonian cycle of H is constructed by appropriately joining n_{2} Hamiltonian quasi-cycles of subgraphs isomorphic to G_{1} and three Hamiltonian quasi-cycles of subgraphs isomorphic to G_{2} (a quasi-cycle is a cycle with some edges removed), as it is shown in Fig. 2.

Figure 2: A Hamiltonian cycle in $G_{2} \sqcap G_{1}\left(U_{1}\right)$ going through three copies of G_{2} and n_{2} copies of G_{1}.

In fact, if n_{2} is even we also have the following result whose proof is based on the construction depicted in Fig. 3.

Proposition 5.2 If the graphs $G_{i}=\left(V_{i}, E_{i}\right), i=1,2$, are Hamiltonian, $n_{2}=\left|V_{2}\right|$ is even and the graph induced by the vertices in $U_{1} \subset V_{1}$ has an edge in the Hamiltonian cycle of G_{1}, then the generalized hierarchical product $H=G_{2} \sqcap G_{1}\left(U_{1}\right)$ is Hamiltonian.

Figure 3: A Hamiltonian cycle in $G_{2} \sqcap G_{1}\left(U_{1}\right)$ going through two copies of G_{2} and n_{2} copies of G_{1} when n_{2} is even.

6 Vertex- and edge-coloring

This section deals with vertex- and edge-coloring of the hierarchical product and the generalized hierarchical product of graphs.

As usual, we denote by $\chi(G)$ and $\chi^{\prime}(G)$ the chromatic number and the chromatic index, respectively, of a graph G. For the Cartesian product, Sabidussi [16] proved that

$$
\chi\left(G_{2} \square G_{1}\right)=\max \left\{\chi\left(G_{2}\right), \chi\left(G_{1}\right)\right\} .
$$

As it is shown in the following result, this is also the case for the chromatic number of the generalized hierarchical product $G_{2} \sqcap G_{1}\left(U_{1}\right)$, for every $U_{1} \subset V_{1}$, and, in particular, for the hierarchical product $G_{2} \sqcap G_{1}$ (where $U_{1}=\{0\}$).

Proposition 6.1 Given two graphs G_{1} and G_{2} and a subset $U_{1} \subset V_{1}$, the chromatic number of its generalized hierarchical product is

$$
\chi\left(G_{2} \sqcap G_{1}\left(U_{1}\right)\right)=\max \left\{\chi\left(G_{2}\right), \chi\left(G_{1}\right)\right\} .
$$

Proof. We already know that $G_{2} \sqcap G_{1}\left(U_{1}\right)$ contains a subgraph isomorphic to G_{2} and a subgraph isomorphic to G_{1}. Moreover, $G_{2} \sqcap G_{1}\left(U_{1}\right)$ is a subgraph of $G_{2} \square G_{1}$. This implies that

$$
\max \left\{\chi\left(G_{2}\right), \chi\left(G_{1}\right)\right\} \leq \chi\left(G_{2} \sqcap G_{1}\left(U_{1}\right)\right) \leq \chi\left(G_{2} \square G_{1}\right)=\max \left\{\chi\left(G_{2}\right), \chi\left(G_{1}\right)\right\} .
$$

According to Vizing's theorem [19], the chromatic index of a graph G satisfies

$$
\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1,
$$

where $\Delta(G)$ is the maximum degree of G. A graph G is said to be of class 1 if its chromatic index equals its maximum degree, and of class 2 in the other case.

Mahmoodian [12] showed that, if one of the two factors is of class 1, then their Cartesian product also is. Namely,

$$
\chi^{\prime}\left(G_{1}\right)=\Delta\left(G_{1}\right) \text { or } \chi^{\prime}\left(G_{2}\right)=\Delta\left(G_{2}\right) \Rightarrow \chi^{\prime}\left(G_{2} \square G_{1}\right)=\Delta\left(G_{2} \square G_{1}\right)=\Delta\left(G_{2}\right)+\Delta\left(G_{1}\right) .
$$

In the next two results we use the following notation for the subgraphs isomorphic to G_{1} and G_{2} in $H=G_{2} \sqcap G_{1}\left(U_{1}\right)$. The n_{2} copies of G_{1} in H are denoted by $G_{1 i}=H\langle i x\rangle$, $i=0,1, \ldots, n_{2}-1$, and the $\left|U_{1}\right|$ copies of G_{2} in H are denoted by $G_{2 i}=H\langle x i\rangle, i=$ $0,1, \ldots, r-1$ (see Lemma 2.3).

For the particular case of the hierarchical product, we have the following result.

Proposition 6.2 The chromatic index of the hierarchical product of the graphs G_{1} and G_{2} satisfies

$$
\chi^{\prime}\left(G_{2} \sqcap G_{1}\right)=\max \left\{\Delta\left(G_{2}\right)+d_{0}, \chi^{\prime}\left(G_{1}\right)\right\},
$$

where $d_{0}=\partial_{G_{1}}(0)$ denotes the degree of the root vertex of G_{1}.
Proof. First, notice that

$$
m=\max \left\{\Delta\left(G_{2}\right)+d_{0}, \chi^{\prime}\left(G_{1}\right)\right\} \leq \chi^{\prime}\left(G_{2} \sqcap G_{1}\right) .
$$

To show the reverse inequality, we need to give a proper edge-coloring of $G_{2} \sqcap G_{1}$ with m colors.

Note first that for every $m \geq \chi^{\prime}\left(G_{1}\right)$, there exists a proper m-edge-coloring of G_{1} with the $d_{0}(\geq 1)$ edges incident to vertex 0 having some prescribed colors.

Since, by Vizing's theorem, $\chi^{\prime}\left(G_{2}\right)-1 \leq \Delta\left(G_{2}\right)$, we have

$$
m \geq \Delta\left(G_{2}\right)+d_{0} \geq \chi^{\prime}\left(G_{2}\right)-1+d_{0} \geq \chi^{\prime}\left(G_{2}\right)
$$

Therefore, we can have a proper edge-coloring of the subgraph G_{20} using m colors.
With respect to each subgraph $G_{1 i}$, as $m \geq \chi^{\prime}\left(G_{1}\right)$, we can also have a proper edgecoloring of $G_{1 i}$ with m colors. However, to avoid conflicts with the colors of the edges of G_{20} incident to vertex $i 0$, we cannot use $\partial_{G_{2}}(i) \leq \Delta\left(G_{2}\right)$ of the m available colors and this gives the following number of available colors:

$$
m-\partial_{G_{2}}(i) \geq m-\Delta\left(G_{2}\right) \geq d_{0},
$$

which are enough to color the edges of $G_{1 i}$ incident to $i 0$.
For the generalized hierarchical product of graphs, we can give the following bounds.
Proposition 6.3 The chromatic index of $H=G_{2} \sqcap G_{1}\left(U_{1}\right)$ satisfies

$$
\max \left\{\Delta\left(G_{2}\right)+\Delta_{U_{1}}\left(G_{1}\right), \chi^{\prime}\left(G_{1}\right)\right\} \leq \chi^{\prime}(H) \leq \max \left\{\chi^{\prime}\left(G_{2}\right)+\Delta_{G_{1}\left(U_{1}\right)}, \chi^{\prime}\left(G_{1}\right)\right\},
$$

where $\Delta_{U_{1}}\left(G_{1}\right) \equiv \Delta_{G_{1}\left(U_{1}\right)}$ and $\Delta_{V_{1}}\left(G_{1}\right) \equiv \Delta_{G_{1}}$.
Proof. To properly color the edges of $H=G_{2} \sqcap G_{1}\left(U_{1}\right)$ we have to color the n_{2} copies of G_{1}. Thus, we need at least $\chi^{\prime}\left(G_{1}\right)$ colors. Moreover, in H there is at least one vertex of degree $\Delta\left(G_{2}\right)+\Delta_{U_{1}}\left(G_{1}\right)$. This implies the lower bound,

$$
\max \left\{\Delta\left(G_{2}\right)+\Delta_{U_{1}}\left(G_{1}\right), \chi^{\prime}\left(G_{1}\right)\right\} \leq \chi^{\prime}(H) .
$$

To show that the upper bound also holds, we color the edges of H in the following way. We fix the same edge-coloring for all the copies of G_{1}. Some of the $\chi^{\prime}\left(G_{1}\right)$ colors already used can also be employed to color the copies of G_{2}. In fact, for a fixed $i \in U_{1}$, all the vertices of $G_{2 i}$ have the same set of forbidden colors, i.e., the colors used in $G_{1 j}$ to color the edges incident to vertex $j i$, which are independent of j. Thus, to color $G_{2 i}$, we have $\chi^{\prime}\left(G_{1}\right)-\partial_{G_{1}}(i)$ available colors. If $\chi^{\prime}\left(G_{1}\right) \geq \chi^{\prime}\left(G_{2}\right)+\partial_{G_{1}}(i)$, we are done. Otherwise, we need to add to our set of colors

$$
\chi^{\prime}\left(G_{2}\right)-\left(\chi^{\prime}\left(G_{1}\right)-\partial_{G_{1}}(i)\right)=\chi^{\prime}\left(G_{2}\right)+\partial_{G_{1}}(i)-\chi^{\prime}\left(G_{1}\right)
$$

new colors. That is, we will use in total the number of colors

$$
\chi^{\prime}\left(G_{2}\right)+\partial_{G_{1}}(i)-\chi^{\prime}\left(G_{1}\right)+\chi^{\prime}\left(G_{1}\right)=\chi^{\prime}\left(G_{2}\right)+\partial_{G_{1}}(i)
$$

Taking the maximum over all the vertices in U_{1}, we get

$$
\chi^{\prime}(H) \leq \max \left\{\chi^{\prime}\left(G_{2}\right)+\Delta_{U_{1}}\left(G_{1}\right), \chi^{\prime}\left(G_{1}\right)\right\} .
$$

Corollary 6.4 If either G_{1} is of class 1 and U_{1} contains a vertex of degree $\Delta\left(G_{1}\right)$, or G_{2} is of class 1 , then the chromatic index of $H=G_{2} \sqcap G_{1}\left(U_{1}\right)$ satisfies

$$
\chi^{\prime}(H)=\max \left\{\Delta\left(G_{2}\right)+\Delta_{U_{1}}\left(G_{1}\right), \chi^{\prime}\left(G_{1}\right)\right\}
$$

7 Connectivity

In the current section we give some results on the vertex-connectivity of the generalized hierarchical product $H=G_{2} \sqcap G_{1}\left(U_{1}\right)$. Observe that, as in the case of the Cartesian product $G_{2} \square G_{1}, H$ is connected if and only if G_{2} and G_{1} are. In fact, for such an extreme case (where $U_{1}=V_{1}$), only recently an exact value of its connectivity has been given [18]. Namely,

$$
\kappa\left(G_{2} \square G_{1}\right)=\min \left\{\kappa_{1}\left|V_{2}\right|, \kappa_{2}\left|V_{1}\right|, \delta_{1}+\delta_{2}\right\}
$$

where κ_{i} and δ_{i} denote, respectively, the connectivity and minimum degree of $G_{i}, i=1,2$.
To study the general case, where $U_{1} \nsubseteq V_{1}$, we need to introduce the following new connectivity parameter: For a graph $G=(V, E)$ and a vertex subset $U \nsubseteq V$, let $\kappa(U \mid \bar{U})$ be the minimum cardinality of a vertex subset S such that in $G-S$ there exist some vertex $u \in \bar{U}$ and there is no path from u to any vertex of U. In particular, taking $S=U \neq V$, we get $\kappa(U \mid \bar{U}) \leq|U|$.

Proposition 7.1 Using the above notation, the connectivity κ_{H} of the generalized hierarchical product $H=G_{2} \sqcap G_{1}\left(U_{1}\right), U_{1} \nsubseteq V_{1}$, satisfies

$$
\kappa_{H} \leq \min \left\{\kappa_{1}\left|V_{2}\right|, \kappa\left(U_{1} \mid \bar{U}_{1}\right), \delta_{H}\right\}
$$

where $\delta_{H}=\min \left\{\delta_{G_{1}\left(\bar{U}_{1}\right)}, \delta_{G_{1}\left(U_{1}\right)}+\delta_{G_{2}}\right\}$.
Proof. The fact that $\kappa_{H} \leq \delta_{H}$ for any H is trivial. Moreover, $\kappa_{H} \leq \kappa_{1}\left|V_{2}\right|$, because $H=G_{2} \sqcap G_{1}\left(U_{1}\right)$ is a subgraph of $G_{2} \square G_{1}\left(U_{1}\right)$ with the same vertex set. Finally, we have seen in the section on the metric parameters that any path between vertices $\left(x_{2}, y_{2}\right)$ and $\left(y_{2}, y_{1}\right)$, with $x_{2} \neq y_{2}$ and $x_{1} \notin U_{1}$, requires the presence of a $x_{1}-y_{1}$ path through U_{1} in G_{1}, which does not exist if $\kappa\left(U_{1} \mid \bar{U}_{1}\right)$ vertices have been removed from the copy $G_{1 x_{2}}$. Therefore, we also have $\kappa_{H} \leq \kappa\left(U_{1} \mid \bar{U}_{1}\right)$, and this complete the proof.

Acknowledgments Research supported by the Education and Science Ministry (Spain) and the European Regional Development Fund under projects MTM2005-08990-C02-01 and TEC2005-03575; and by the Catalan Research Council under project 2005SGR00256.

References

[1] R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Rev. Modern Phys. 74 (2002) 47-97.
[2] L. Barrière, F. Comellas, C. Dalfó and M.A. Fiol, The hierarchical product of graphs, Discrete Appl. Math., submitted, http://hdl.handle.net/2117/672.
[3] L. Barrière, F. Comellas, C. Dalfó and M.A. Fiol, On the spectra of hypertrees, Linear Algebra Appl. 428(7) (2008) 1499-1510.
[4] J.-C. Bermond, Hamiltonian graphs, in Selected Topics in Graph Theory, Academic Press, London, 1978, pp. 127-167.
[5] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1974; second edition: 1993.
[6] G. Chartrand and L. Lesniak, Graphs \& Digraphs, third edition, Chapman and Hall, London, 1996.
[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, MIT Press, Cambridge, Massachussets, 1990, second edition, 2001.
[8] D.M. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs. Theory and applications, Johann Ambrosius Barth, Heildelberg, 3rd edition, 1995.
[9] C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
[10] S.M. Hedetniemi, S.T. Hedetniemi and A. Liestman, A survey of gossiping and broadcasting in communication networks, Networks 18 (1988) 319-349.
[11] P. Lancaster and M. Tismenetsky, The Theory of Matrices. Academic Press, San Diego, 1985.
[12] E. S. Mahmoodian, On edge-colorability of Cartesian products of graphs, Canad. Math. Bull. 24 (1981) 107-108.
[13] A. Mowshowitz, The group of a graph whose adjacency matrix has all distinct eigenvalues, in F. Harary ed., Proof Techniques in Graph Theory, Academic Press, New York, 1969, pp. 109-110.
[14] M.E.J. Newman, The structure and function of complex networks, SIAM Rev. 45 (2003) 167-256.
[15] E. Ravasz and A.-L. Barabási, Hierarchical organization in complex networks, Phys. Rev. E 67 (2003) 026112.
[16] G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canad. J. Math. 9 (1957) 515-525.
[17] J. R. Silvester, Determinants of block matrices. Maths Gazette 84 (2000), 460-467.
[18] S. Špacapan, Connectivity of Cartesian products of graphs, Appl. Math. Lett. (2007), doi:10.1016/j.aml.2007.06.010.
[19] V. G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz $\mathbf{3}$ (1964) 25-30.

