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Abstract
A generalization of both the hierarchical product and the Cartesian product of

graphs is introduced and some of its properties are studied. We call it the generalized
hierarchical product. In fact, the obtained graphs turn out to be subgraphs of the
Cartesian product of the corresponding factors. Thus, some well-known properties
of this product, such as a good connectivity, reduced mean distance, radius and
diameter, simple routing algorithms and some optimal communication protocols, are
inherited by the generalized hierarchical product. Besides some of these properties, in
this paper we study the spectrum, the existence of Hamiltonian cycles, the chromatic
number and index, and the connectivity of the generalized hierarchical product.

Keywords: Graph, Cartesian product, Hierarchical product, Diameter, Spectrum, Hamil-
tonian cycle, Coloring, Connectivity.
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1 Introduction

Some classical graphs, modeling real-life complex networks [14], present a modular or
hierarchical structure [15]. This is the case, for instance, of networks with nodes having
high degree, which are known as hubs [1]. These nodes usually play a critical role in the
information flow of the system because many of the other nodes send and receive infor-
mation through them. In [2] the authors introduced the hierarchical product of graphs
which produces graphs with a strong (connectedness) hierarchy in their vertices. In fact,
the obtained graphs turn out to be subgraphs of the Cartesian product of the correspond-
ing factors. In particular, when each factor is the complete graph on two vertices, the
resulting graph is a spanning tree of the hypercube, the so-called binomial tree, which is
a data structure very useful in the context of algorithm analysis and design [7]. As it was
shown in [3], an appealing property of this structure is that all its eigenvalues are distinct,
a fact that has some structural consequences, such as the Abelianity of its automorphism
group [13].

In this work we propose a new product of graphs, which in the extreme cases gives the
hierarchical product and the Cartesian product. We call it the generalized hierarchical
product. As before, the obtained graphs are again subgraphs of the Cartesian product.
Hence, some well-known properties of the Cartesian product, such as a high connectiv-
ity, reduced mean distance and diameter, simple routing algorithms and some optimal
communication protocols [10] are shared by the generalized hierarchical product.
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Figure 1: Two views of a generalized hierarchical product K3
3 with U1 = U2 = {0, 1}.

Here we study some of this properties and also the following: the spectrum (through
the characteristic polynomial), sufficient conditions for the existence of Hamiltonian cy-
cles, the chromatic number and index, and, finally, the connectivity of the generalized
hierarchical product.

In our study we use techniques from graph theory. For the basic concepts, notation
and results about graphs, see for instance [5, 6].

2 The generalized hierarchical product

A natural generalization of the hierarchical product, proposed in [2], is as follows: Given
N graphs Gi = (Vi, Ei) and (non-empty) vertex subsets Ui ⊆ Vi, i = 1, 2, . . . , N − 1, the
generalized hierarchical product H = GNu· · ·uG2(U2)uG1(U1) is the graph with vertex set
VN × · · · × V2 × V1 and adjacencies:

xN . . . x3x2x1 ∼





xN . . . x3x2y1 if y1 ∼ x1 in G1,
xN . . . x3y2x1 if y2 ∼ x2 in G2 and x1 ∈ U1,
xN . . . y3x2x1 if y3 ∼ x3 in G3 and xi ∈ Ui, i = 1, 2,

...
...

yN . . . x3x2x1 if yN ∼ xN in GN and xi ∈ Ui, i = 1, 2, . . . , N − 1.

As an example, Fig. 1 shows two drawings of the generalized hierarchical product K3
3 =

K3 uK3(U2) uK3(U1), where V (K3) = {0, 1, 2} and U1 = U2 = {0, 1}.
In particular, the two “extreme” cases are the following:

• If all the subsets Ui are singletons (that is, the trivial graph with only one vertex),
then the resulting graph is the (standard) hierarchical product [2].

• If Ui = Vi for all 1 ≤ i ≤ N − 1, then the graph obtained is the Cartesian product
of the graphs Gi.

2.1 Basic properties

Let us first list some basic properties on the degrees of the vertices in the generalized
hierarchical product. The proofs are direct consequences of the definition.
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• The degree of a vertex v = xNxN−1 . . . x2x1 in the generalized hierarchical product
H = GN u · · · uG2(U2) uG1(U1) is

∂H(v) = ∂G1(x1) + χU1(x1)∂G2(x2) + · · ·+ [χU1(x1) · · ·χUN−1
(xN−1)]∂GN

(xN ),

where ∂ and χUi denotes, respectively, the degree and the characteristic function of
the set Ui.

• The minimum and maximum degree of H are

δH = min{δG1(U1), δG1(U1) + δG2(U2), . . . , δG1(U1) + · · ·+ δGN−1(UN−1) + δGN
},

∆H = max{∆G1(U1), ∆G1(U1) + ∆G2(U2), . . . ,∆G1(U1) + · · ·+ ∆GN−1(UN−1) + ∆GN
},

where, for i = 1, 2, . . . , N−1, δGi(U i)
= minxi 6∈Ui ∂Gi(xi), δGi(Ui) = minxi∈Ui ∂Gi(xi),

and, similarly, ∆Gi(U i)
= maxxi 6∈Ui

∂Gi(xi), ∆Gi(Ui) = maxxi∈Ui ∂Gi(xi), while δGN

and ∆GN
are, respectively, the minimum and the maximum degrees of GN .

• If, for every i = 1, 2, . . . , N , the graph Gi is ∂i-regular, then the product graph
H = GN u · · · uG2(U2) uG1(U1) contains exactly

• nN (nN−1 − |UN−1|) vertices of degree ∂N ;
• nN |UN−1|(nN−2 − |UN−2|) vertices of degree ∂N + ∂N−1;

...
• nN |UN−1||UN−2| · · · |U2|(n1 − |U1|) vertices of degree ∂N + ∂N−1 + · · ·+ ∂2;
• nN |UN−1||UN−2| · · · |U1| vertices of degree ∂N + ∂N−1 + · · ·+ ∂1.

In the following proposition we show that, as in the case of the hierarchical prod-
uct [2], the generalized hierarchical product is associative provided that the subsets Ui

are appropriately chosen.

Proposition 2.1 For i = 1, 2, 3, let Gi be a graph and, for i = 1, 2, Ui ⊆ Vi. The
generalized hierarchical product satisfies

G3 uG2(U2) uG1(U1) = G3 u
(
G2 uG1(U1)

)
(U2 × U1) =

(
G3 uG2(U2)

) uG1(U1).

Proof. To prove the first equality, we only need to show that in the generalized
hierarchical product G3u

(
G2uG1(U1)

)
(U2×U1) vertex x3(x2x1) has the same adjacencies

as vertex x3x2x1 in G3 uG2(U2) uG1(U1). Indeed,

x3(x2x1) ∼





x3(y2y1) if (y2y1) ∼ (x2x1) in G2 uG1(U1); that is,

if
{

y1 ∼ x1 in G1 and y2 = x2, or
y2 ∼ x2 in G2 and y1 = x1 ∈ U1,

y3(x2x1) if y3 ∼ x3 in G3 and (x2, x1) ∈ U2 × U1.

This is equivalent to

x3(x2x1) ∼




x3(x2y1) if y1 ∼ x1 in G1;
x3(y2x1) if y2 ∼ x2 in G2 and x1 ∈ U1;
y3(x2x1) if y3 ∼ x3 in G3, x2 ∈ U2 and x1 ∈ U1.

Thus, the required isomorphism is simply x3(x2x1) 7→ x3x2x1.
Analogously, we can prove the second equality by showing that in the generalized

hierarchical product (G3 uG2(U2))uG1(U1) vertex (x3x2)x1 has the same adjacencies as
vertex x3x2x1 in G3 uG2(U2) uG1(U1). This completes the proof. 2
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Corollary 2.2 For i = 1, 2, . . . , N , let Gi be a graph and, for i = 1, 2, . . . , N−1, Ui ⊆ Vi.
The generalized hierarchical product satisfies

GN u · · · uG1(U1) =
(
GN u · · · uG2(U2)

) uG1(U1)
= GN u (

GN−1 u · · · uG2(U2) uG1(U1)
)
(UN−1 × · · · × U1).

We have seen that the generalized hierarchical product is associative. Thus, for some
of its properties, it suffices to study the case of two factors. With this aim, let Gi = (Vi, Ei)
be two graphs with vertex sets Vi, i = 1, 2, and consider a fixed (or root) subset U1 ⊂ V1.
Then, the generalized hierarchical product G2 u G1(U1) is the graph with vertices x2x1,
xi ∈ Vi, and edges {x2x1, y2y1} where either y2 = x2 and y1 ∼ x1 in G1, or y1 = x1 ∈ U1

and y2 ∼ x2 in G2.
Thus, G2 u G1(U1) has |V2||V1| vertices and |U1||E2| + |V2||E1| edges. Also, notice

that G2 uG1(U1) is a (spanning) subgraph of the Cartesian (or direct) product G2 2 G1.
As a consequence, since clearly K1 uG(U) = G uK1(u) = G, the set of graphs with the
binary operation u is a semigroup with identity element K1 (that is, a monoid). A simple
consequence of the above is the following result, which generalizes a result given in [2].

Lemma 2.3 Let H = GN u · · · u G2(U2) u G1(U1). For a fixed string z of appropri-
ate length (for instance z = 0 = 00 . . . 0), let H〈zxk . . . x1〉 denote the subgraph of H
induced by the vertex set {zxk . . . x1 |xi ∈ Vi, 1 ≤ i ≤ k}. Let H〈xN . . . xkz〉 be defined
analogously. Then,

(a) H〈zxk . . . x1〉 = Gk uGk−1(Uk−1) u · · · uG1(U1) for any fixed z;

(b) H〈xN . . . xkz〉 = GN uGN−1(UN−1) u · · · uGk(Uk), for z ∈ Uk−1 × · · · × U1;

(c) H〈xN . . . xkz〉 = mK1 (that is, a set of m = nN · · ·nk singletons) where ni = |Vi|,
k ≤ i ≤ N , for z /∈ Uk−1 × · · · × U1.

Proof. We only need to notice that, for a fixed z of appropriate length,

• zxk . . . x1 ∼ zyk . . . y1 in H〈xN . . . xkz〉 if and only if
xk . . . x1 ∼ yk . . . y1 in Gk uGk−1(Uk−1) u · · · uG1(U1); and

• xN . . . xkz ∼ yN . . . ykz in H〈xN . . . xkz〉 if and only if
xN . . . xk ∼ yN . . . yk in GN uGN−1(UN−1)u · · · uGk(Uk) and z ∈ Uk−1 × · · · ×U1.

This implies that the mapping zxk . . . x1 7→ xk . . . x1 is an isomorphism between
H〈zxk . . . x1〉 and GkuGk−1(Uk−1)u· · ·uG1(U1), and the mapping xN . . . xkz 7→ xN . . . xk

is an isomorphism between H〈xN . . . xkz〉 and GN u GN−1(UN−1) u · · · u Gk(Uk) if z ∈
Uk−1×· · ·×U1. Moreover, if z /∈ Uk−1×· · ·×U1, H〈xN . . . xkz〉 consists of m independent
vertices. 2

3 Metric parameters

In this section we study some of the most relevant metric parameters of the generalized
hierarchical product. Because of the associative property (Prop. 2.1), it is enough to
study the product of two factors H = G2 uG1(U1).

We begin defining the distance through a vertex subset and some related concepts.
Given a graph G = (V, E) and a (non-empty) vertex subset U ⊂ V , a path between
vertices x and y through U , denoted by pG(U)(x, y), is simply a x-y path of G containing
some vertex z ∈ U (vertex z could be the vertex x or y). Then, the distance through
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U distG(U)(x, y) between x and y is the length of the shortest path pG(U)(x, y). Observe
that, in general, this distance is not a metric in the usual sense because, for instance,
distG(U)(x, x) is not necessarily 0. From this concept, we can define the metric parameters
mean distance dG(U), eccentricity eccG(U)(x) of vertex x, radius rG(U) and diameter DG(U)

all of them through U in the following way:

dG(U) =
1
n2

∑

x,y∈V

dG(U)(x, y),

eccG(U)(x) = max
y∈V

distG(U)(x, y),

rG(U) = min
x∈V

eccG(U)(x),

DG(U) = max
x∈V

eccG(U)(x).

Observe that the metric parameters through U coincide with the standard metric param-
eters if U = V : dG(U) ≡ dG, eccG(U)(x) ≡ eccG(x), etc.

Let us consider two generic vertices x = (x2, x1) and y = (y2, y1) in the generalized
hierarchical product H = G2 uG1(U1). Then,

distH(x, y) = distG2(x2, y2) + distG1(U1)(x1, y1).

Indeed, if a shortest x1-y1 path through U1 in G1 is

x1, v1, . . . , vi, . . . , vr−1, y1, (1)

where, say, vi ∈ U1 and a shortest x2-y2 path in G2 is

x2, w1, . . . , ws−1, y2, (2)

then a shortest x-y path in H is

(x2, x1), (x2, v1), . . . , (x2, vi), (w1, vi), . . . , (y2, vi), (y2, vi+1), . . . , (y2, y1). (3)

Theorem 3.1 Let H = (V,E) = G2 u G1(U1) be the generalized hierarchical product of
the graphs G1 = (V1, E1), with vertex subset U1 ⊂ V1, and G2 = (V2, E2), n2 = |V2|, and
metric parameters denoted as above. Then, the mean distance, eccentricity of a vertex
x = (x2, x1) ∈ V , radius and diameter of H are the following:

(a) Mean distance:

dH = dG2 +
1
n2

(
dG1 + (n2 − 1)dG1(U1)

)
.

(b) Eccentricity:
eccH(x) = eccG2(x2) + eccG1(U1)(x1).

(c) Radius:
rH = rG2 + rG1(U1).

(d) Diameter:
DH = DG2 + DG1(U1).
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Proof. To prove (a) it is useful to consider the random variable X corresponding to the
distance in H between the ordered pair of (not necessarily different) vertices (x, y) chosen
with uniform distribution. Let A be the event “the vertices (x, y) belong to the same
copy of G1”, with probability P(A) = 1

n2
. Now, dH is simply the expected value of X,

E(X), which can be computed using the law of total expectation:

dH = E(X) = E(X|A) P(A) + E(X|A) P(A)

= dG1

1
n2

+
(

dG1(U1) + dG2

n2
2

n2(n2 − 1)

) (
1− 1

n2

)

=
1
n2

(
dG1 + (n2 − 1)dG1(U1)

)
+ dG2 ,

where E(X|A) has been computed by considering that the generic shortest path (3) is
constructed from the shortest paths (1) in G1 and (2) in G2, with average values dG1(U1)

and d′G2
= dG2

n2
2

n2(n2−1) , respectively. Note that d′G2
corresponds to the average distance

between two different vertices x2, y2 in G2 (since vertices x, y are in different copies of
G1

∼= H〈zx1〉, see Lemma 2.3).
Regarding the eccentricity, we have

eccH = max
y∈V

distH(x, y) = max
y2∈V2

distG2(x2, y2) + max
y1∈V1

distG1(x1, y1).

Finally, the formulas (c) and (d) for the radius and the diameter are obtained from (b).
2

With respect to the mean distance, notice that when U1 = V1, we have the Cartesian
product H = G22G1, then dG1(U1) = dG1 and (a) becomes dH = dG2 + dG1 , as expected.
Similar results hold for the eccentricity, radius and diameter.

4 Algebraic properties

The adjacency matrix of the generalized hierarchical product H = G2 u G1(U1) can be
written in terms of the adjacency matrices Ai of the factors Gi, i = 1, 2. To this end, first
recall that the Kronecker product of two matrices A = (aij) and B, usually denoted by
A ⊗B, is the matrix obtained by replacing each entry aij by the matrix aijB for every
i and j. Then, if V (G1) = {0, 1, . . . , n1 − 1} and assuming that U1 = {0, 1, . . . , r − 1},
1 ≤ r ≤ n1, the adjacency matrix of the generalized hierarchical product H = G2uG1(U1)
is (under the natural indexing of the rows and columns of the adjacency matrices):

AH = A2 ⊗D1 + I2 ⊗A1
∼= D1 ⊗A2 + A1 ⊗ I2, (4)

where D1 = diag(1, r. . ., 1, 0, . . . , 0) and I2 (the identity matrix) have size n1 × n1 and
n2×n2, respectively. See [2] for the case r = 1, corresponding to the hierarchical product.
In the other extreme case, when r = n1, then D1 = I1 and AH is the adjacency matrix
of the Cartesian product H = G22G1.

For instance, when G1 = G2 = K3 and U1 = {0, 1}, as in the construction of Fig. 1,
the adjacency matrix AH of the generalized hierarchical product H = K3 uK3(U1) turns
out to be

AH = D1 ⊗A2 + A1 ⊗ I2 =




A2 I2 I2

I2 A2 I2

I2 I2 O


 ,
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where

D1 =




1 0 0
0 1 0
0 0 0


 , A1 = A2 =




0 1 1
1 0 1
1 1 0


 , I2 =




1 0 0
0 1 0
0 0 1


 ,

so that AH is a 3× 3 matrix of 3× 3 blocks.
The next results provide a way to compute the spectrum of H = G2 uG1(U1). With

this aim and for every eigenvalue λ of A2, we consider the n1×n1 matrix A(λ) = λD1+A1.
Note that this ‘condensed’ matrix is obtained from AH by replacing every block O by 0,
every block I2 by 1 and every block A2 by λ. Namely, every block is replaced for one of
its eigenvalues.

Theorem 4.1 Let λ be an eigenvalue of A2 with eigenvector u, and let λ0, λ1, . . . , λn1−1

be the eigenvalues of A(λ)=λD1+A1, with corresponding eigenvectors w0, w1, . . . , wn1−1.
Then, the generalized hierarchical product H = G2 u G1(U1) has the same eigenvalues
λ0, λ1, . . . , λn1−1, with corresponding eigenvectors w0 ⊗ u,w1 ⊗ u, . . . , wn1−1 ⊗ u.

Proof. Using (4) giving AH , and with the fact that the Kronecker product satisfies
(A⊗B)(u⊗ v) = Au⊗Bv (see, for instance, [11]), we get

AH(wi ⊗ u) = (D1 ⊗A2 + A1 ⊗ I2)(wi ⊗ u)
= (D1 ⊗A2)(wi ⊗ u) + (A1 ⊗ I2)(wi ⊗ u)
= D1wi ⊗A2u + A1wi ⊗ u

= (λD1 + A1) wi ⊗ u

= λi(wi ⊗ u),

so that λi is an eigenvalue of AH with eigenvector wi ⊗u for every 0 ≤ i ≤ n1 − 1. Note
that the eigenvectors w0 ⊗u, w1 ⊗u, . . . , wn1−1 ⊗u are linearly independent because so
are the eigenvectors w0, w1, . . . , wn1−1. 2

Moreover, from the above result, we can give a formula for the characteristic poly-
nomial of H = G2 u G1(U1) in terms of the eigenvalues of G2 and the characteristic
polynomials of some of the induced subgraphs of G1. First, we introduce the following
notation: Given a vertex subset I ⊂ U1 = {0, 1, . . . , r − 1}, let GI

1 = G1 − I be the
graph obtained from G1 by removing the vertices in I, and let φI

1(x) be its characteristic
polynomial. By convention, if I = ∅ we take φI

1(x) = φ1(x), and if I = U1 = V1 then
φI

1(x) = 1.

Theorem 4.2 Given the graph G1 with vertex subset U1 ⊂ V1, and the graph G2 with
eigenvalues ev G2, the characteristic polynomial of their generalized hierarchical product
H = G2 uG1(U1) is

φH(x) =
∏

λ∈ev G2

φλ(x), (5)

where φλ(x) is the characteristic polynomial of A(λ) given by

φλ(x) =
∑

I⊂U1

(−λ)|I|φI
1(x). (6)

Proof. For every eigenvalue λ of G2, the eigenvalues of H given by Theorem 4.1 are
the roots of the characteristic polynomials φλ(x). Therefore, (5) holds since all its corre-
sponding eigenvectors wi⊗u of H, when varying the pair (λ,u), are linearly independent.
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The proof of Equation (6) is by induction on r. Let us consider the following matrix
with rows and columns indexed by the elements of V1 = {0, 1, . . . , n1 − 1}:

M = xI1 −A(λ) = xI1 − λD1 −A1 =




x− λ
. . .

x− λ
x

. . .
x




,

where, for simplicity, we have only written the diagonal entries omitting the elements of
−A1. Given i ∈ U1, let M{i} be the matrix obtained from M by removing the row and
column i and let M [i] be the matrix obtained from M by changing the diagonal element
with index i from x− λ to x.

For r = 1, and expanding by the first row, we get

φλ(x) = det M = det




x
x

. . .
x


− λdet




x
. . .

x




= detM [0] − λdet M{0} = φ1(x)− λφ
{0}
1 (x),

and (6) holds.
Now, by the induction hypothesis, assume that the result holds for some r > 1. Then,

if |U1| = r + 1, we expand by the row r and we get

φλ(x) = detM = det M [r] − λdet M{r}

=
∑

I⊂U1\{r}
(−λ)|I|φI(x)− λ

∑

I⊂U1\{r}
(−λ)|I|φI∪{r}(x)

=
∑

I⊂U1; r 6∈I

(−λ)|I|φI(x) +
∑

I⊂U1; r∈I

(−λ)|I|φI(x) =
∑

I⊂U1

(−λ)|I|φI(x).

This completes the proof. 2

In particular, let us notice that, when the generalized hierarchical product coincides
with the Cartesian product, namely when U1 = V1, the characteristic polynomial of
A(λ) = λI1 + A1 is

φλ(x) = det
(
(x− λ)I1 −A1

)
= φ1(x− λ), (7)

for every eigenvalue λ of G2. Thus, as it is well known (see, for instance, [8]), the
eigenvalues of H = G22G1 are λ + µ, for each λ ∈ ev G2, µ ∈ ev G1.

Moreover, as a by-product, for a generic graph G1 = G with vertex set V , |V | = n,
and characteristic polynomial φ(x), we obtain

φ(x− λ) =
∑

|I|≤n

(−λ)|I|φI(x)

= φ(x)−
(
φ{0}(x) + · · ·+ φ{n−1}(x)

)
λ

+
(
φ{0,1}(x) + · · ·+ φ{n−2,n−1}(x)

)
λ2 + · · ·+ (−1)nλn,

8



which, actually, is the Mac-Laurin decomposition of the polynomial ψ(λ) ≡ φ(x − λ).
Therefore, the coefficient of λ is ψ′(0) = −φ′(x) giving the known formula φ′(x) =∑

u∈V φ{u}(x) (see, for instance, [9]).
Going back to our study, the above reasonings can be used to derive an alternative

expression for the characteristic polynomial of the generalized hierarchical product.

Theorem 4.3 The characteristic polynomial of the generalized hierarchical product H =
G2 uG1(U1) is:

φH(x) = det


 ∑

I⊂U1

(−A2)|I|φ1
I(x)


 . (8)

Proof. Working with the adjacency matrix of H, we have

φH(x) = det(xI −AH) = det




xI2 −A2

. . .
xI2 −A2

xI2

. . .
xI2




.

Again, for simplicity, we have only written the diagonal entries. Thus, the n2
1 blocks are

of the types: xI2 −A2, xI2, −I2 or O. Since every block commutates with each other,
the result of Silvester [17] holds, and we can obtain φH(x) by computing the determinant
in Rn2×n2 , as in the previous theorem

(
compare Eqs. (8) and (6)

)
. 2

According to the cardinality r of the subset U1, we next discuss some cases of the
above result:

• r = 1: This corresponds to the hierarchical product H = G2 u G1. Thus, φI
1(x) is

either φ∅1(x) = φ1(x) or φ
{0}
1 (x) ≡ φ∗1(x), the characteristic polynomial of G1 − {0}.

Therefore,

φH(x) = det
(
φ1(x)I2 − φ∗1(x)A2

)
= det

(
φ∗1(x)

[
φ1(x)
φ∗1(x)

I2 −A2

])

=
(
φ∗1(x)

)n2φ2

(
φ1(x)
φ∗1(x)

)
,

as obtained in [2].

• r = 2: In this case, Eq. (8) becomes

φH(x) = det
(
φ1(x)I2 −

(
φ
{0}
1 (x) + φ

{1}
1 (x)

)
A2 + φ

{0,1}
1 (x) A2

2

)

= det
(
φ
{0,1}
1 (x)

(
µ+(x)I2 −A2

) (
µ−(x)I2 −A2

))

=
(
φ
{0,1}
1 (x)

)n2 φ2

(
µ+(x)

)
φ2

(
µ−(x)

)
,

where

µ±(x) =
φ
{0}
1 (x)+φ

{1}
1 (x)±

√(
φ
{0}
1 (x)+φ

{1}
1 (x)

)2
−4 φ1(x) φ

{0,1}
1 (x)

2 φ
{0,1}
1 (x)

.

9



• r = n1: In this case, the generalized hierarchical product becomes the Cartesian
product, H = G2 uG1(V1) = G22G1, and Eq. (8) gives

φH(x) = det
∑

|I|≤n1

(−A2)|I|φ1
I(x)

= det
(
φ1(x)I2 −

(
φ
{0}
1 (x) + · · ·+ φ

{n1−1}
1 (x)

)
A2 + · · ·

+(−1)n1−1n1xAn1−1
2 + (−1)n1An1

2

)
.

Moreover, in the last case, using the same reasoning that allowed us to get Eq. (7),
we obtain an expression for the characteristic polynomial of the Cartesian product of two
graphs.

Lemma 4.4 Given two graphs G1, G2, with respective adjacency matrices A1, A2, the
characteristic polynomial of their Cartesian product G22G1 is

φH(x) = det
(
φ1(xI2 −A2)

)
= det

(
φ2(xI1 −A1)

)
.

To illustrate the application of both Theorem 4.2 and Theorem 4.3, we now compute
the characteristic polynomial of the hierarchical product of H = C4 uK5(U1), the 4-cycle
G2 = C4 and the complete graph G1 = K5 with U1 = {0, 1, 2}. Recall that the spectrum
of the former is sp(C4) = {2, 02,−2}, where the superscript stands for the eigenvalue
multiplicity.

Using mathematical software, we get

φH(x) = (x− 3) (x + 2) (x2 − 5x− 2) (x− 1)2 (x + 3)2 (x− 4)2 (x + 1)10.

Now, in this case, the ‘condensed matrix’ is

A(λ) =




λ 1 1 1 1
1 λ 1 1 1
1 1 λ 1 1
1 1 1 0 1
1 1 1 1 0




.

For each λ ∈ ev C4, the characteristic polynomial of A(λ) is

φ2(x) = (x + 1) (x2 − 5x− 2) (x− 1)2,
φ0(x) = (x− 4) (x + 1)4, (9)

φ−2(x) = (x− 3) (x + 2) (x + 1) (x + 3)2,

and φH(x) = φ2(x) φ0(x)2 φ−2(x).
Taking into account that the characteristic polynomial of the complete graph Kn is

φ(x) = (x − n + 1)(x + 1)n−1 and the fact that removing any vertex of Kn gives Kn−1,
Theorem 4.2 yields

φλ(x) = (x− 4) (x + 1)4 − 3 (x− 3) (x + 1)3 λ + 3 (x− 2) (x + 1)2 λ2 − (x + 1)(x− 1)λ3,

and for λ = 2, 0,−2 we have (9), as expected.
Let C be the adjacency matrix of the 4-cycle. If we work with the block matrices as

in Theorem 4.3, the characteristic polynomial is

φH(x)=det
(
(x− 4)(x + 1)4I4−x− 3)(x + 1)3C+3(x− 2)(x + 1)2C2−(x + 1)(x− 1)C3

)

10



Then, computing the determinant, we get

φH(x) = (x− 3)(x + 2)(x2 − 5x− 2)(x− 1)2(x + 3)2(x− 4)2(x + 1)10,

as claimed. Note that, in this example, we have been able to simplify the expressions (6)
and (8) because of the property mentioned above of the complete graph.

5 Hamiltonian cycles

It is well known that the Cartesian product G = G12G2 of the Hamiltonian graphs
G1, G2 is also Hamiltonian; see, for instance, [4]. As commented above, such a product
corresponds to our hierarchical product G2 u G1(U1) when U1 = V1. Here we show that
the existence of a Hamiltonian cycle is also granted under a much less restricted condition
on the subset U1.

Proposition 5.1 If the graphs Gi = (Vi, Ei), i = 1, 2, are Hamiltonian and the graph
induced by the vertices in U1 ⊂ V1 has a path P3 contained in the Hamiltonian cycle of
G1, then the generalized hierarchical product H = G2 uG1(U1) is Hamiltonian.

Proof. The Hamiltonian cycle of H is constructed by appropriately joining n2 Hamil-
tonian quasi-cycles of subgraphs isomorphic to G1 and three Hamiltonian quasi-cycles of
subgraphs isomorphic to G2 (a quasi-cycle is a cycle with some edges removed), as it is
shown in Fig. 2. 2

G
1

G
1

G
1

G
1

G
1

G
1

G
2

G
2

G
2

n
2

Figure 2: A Hamiltonian cycle in G2 u G1(U1) going through three copies of G2 and n2

copies of G1.

In fact, if n2 is even we also have the following result whose proof is based on the
construction depicted in Fig. 3.

Proposition 5.2 If the graphs Gi = (Vi, Ei), i = 1, 2, are Hamiltonian, n2 = |V2| is even
and the graph induced by the vertices in U1 ⊂ V1 has an edge in the Hamiltonian cycle of
G1, then the generalized hierarchical product H = G2 uG1(U1) is Hamiltonian.
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G
1
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1
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1

G
1

G
1

G
1

G
2

G
2

n
2

Figure 3: A Hamiltonian cycle in G2 u G1(U1) going through two copies of G2 and n2

copies of G1 when n2 is even.

6 Vertex- and edge-coloring

This section deals with vertex- and edge-coloring of the hierarchical product and the
generalized hierarchical product of graphs.

As usual, we denote by χ(G) and χ′(G) the chromatic number and the chromatic
index, respectively, of a graph G. For the Cartesian product, Sabidussi [16] proved that

χ(G2 2G1) = max{χ(G2), χ(G1)}.
As it is shown in the following result, this is also the case for the chromatic number of
the generalized hierarchical product G2 u G1(U1), for every U1 ⊂ V1, and, in particular,
for the hierarchical product G2 uG1 (where U1 = {0}).

Proposition 6.1 Given two graphs G1 and G2 and a subset U1 ⊂ V1, the chromatic
number of its generalized hierarchical product is

χ
(
G2 uG1(U1)

)
= max{χ(G2), χ(G1)}.

Proof. We already know that G2 u G1(U1) contains a subgraph isomorphic to G2

and a subgraph isomorphic to G1. Moreover, G2uG1(U1) is a subgraph of G2 2 G1. This
implies that

max{χ(G2), χ(G1)} ≤ χ
(
G2 uG1(U1)

) ≤ χ(G2 2 G1) = max{χ(G2), χ(G1)}.
2

According to Vizing’s theorem [19], the chromatic index of a graph G satisfies

∆(G) ≤ χ′(G) ≤ ∆(G) + 1,

where ∆(G) is the maximum degree of G. A graph G is said to be of class 1 if its
chromatic index equals its maximum degree, and of class 2 in the other case.

Mahmoodian [12] showed that, if one of the two factors is of class 1, then their Carte-
sian product also is. Namely,

χ′(G1) = ∆(G1) or χ′(G2) = ∆(G2) ⇒ χ′(G2 2 G1) = ∆(G2 2 G1) = ∆(G2) + ∆(G1).

In the next two results we use the following notation for the subgraphs isomorphic to
G1 and G2 in H = G2 uG1(U1). The n2 copies of G1 in H are denoted by G1i = H〈ix〉,
i = 0, 1, . . . , n2 − 1, and the |U1| copies of G2 in H are denoted by G2i = H〈xi〉, i =
0, 1, . . . , r − 1 (see Lemma 2.3).

For the particular case of the hierarchical product, we have the following result.

12



Proposition 6.2 The chromatic index of the hierarchical product of the graphs G1 and
G2 satisfies

χ′(G2 uG1) = max{∆(G2) + d0, χ
′(G1)},

where d0 = ∂G1(0) denotes the degree of the root vertex of G1.

Proof. First, notice that

m = max{∆(G2) + d0, χ
′(G1)} ≤ χ′(G2 uG1).

To show the reverse inequality, we need to give a proper edge-coloring of G2 uG1 with m
colors.

Note first that for every m ≥ χ′(G1), there exists a proper m-edge-coloring of G1 with
the d0(≥ 1) edges incident to vertex 0 having some prescribed colors.

Since, by Vizing’s theorem, χ′(G2)− 1 ≤ ∆(G2), we have

m ≥ ∆(G2) + d0 ≥ χ′(G2)− 1 + d0 ≥ χ′(G2).

Therefore, we can have a proper edge-coloring of the subgraph G20 using m colors.
With respect to each subgraph G1i, as m ≥ χ′(G1), we can also have a proper edge-

coloring of G1i with m colors. However, to avoid conflicts with the colors of the edges of
G20 incident to vertex i0, we cannot use ∂G2(i) ≤ ∆(G2) of the m available colors and
this gives the following number of available colors:

m− ∂G2(i) ≥ m−∆(G2) ≥ d0,

which are enough to color the edges of G1i incident to i0. 2

For the generalized hierarchical product of graphs, we can give the following bounds.

Proposition 6.3 The chromatic index of H = G2 uG1(U1) satisfies

max{∆(G2) + ∆U1(G1), χ′(G1)} ≤ χ′(H) ≤ max{χ′(G2) + ∆G1(U1), χ
′(G1)},

where ∆U1(G1) ≡ ∆G1(U1) and ∆V1(G1) ≡ ∆G1.

Proof. To properly color the edges of H = G2 u G1(U1) we have to color the n2

copies of G1. Thus, we need at least χ′(G1) colors. Moreover, in H there is at least one
vertex of degree ∆(G2) + ∆U1(G1). This implies the lower bound,

max{∆(G2) + ∆U1(G1), χ′(G1)} ≤ χ′(H).

To show that the upper bound also holds, we color the edges of H in the following way.
We fix the same edge-coloring for all the copies of G1. Some of the χ′(G1) colors already
used can also be employed to color the copies of G2. In fact, for a fixed i ∈ U1, all the
vertices of G2i have the same set of forbidden colors, i.e., the colors used in G1j to color
the edges incident to vertex ji, which are independent of j. Thus, to color G2i, we have
χ′(G1)− ∂G1(i) available colors. If χ′(G1) ≥ χ′(G2) + ∂G1(i), we are done. Otherwise, we
need to add to our set of colors

χ′(G2)−
(
χ′(G1)− ∂G1(i)

)
= χ′(G2) + ∂G1(i)− χ′(G1)

new colors. That is, we will use in total the number of colors

χ′(G2) + ∂G1(i)− χ′(G1) + χ′(G1) = χ′(G2) + ∂G1(i).

Taking the maximum over all the vertices in U1, we get

χ′(H) ≤ max{χ′(G2) + ∆U1(G1), χ′(G1)}.
2
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Corollary 6.4 If either G1 is of class 1 and U1 contains a vertex of degree ∆(G1), or
G2 is of class 1, then the chromatic index of H = G2 uG1(U1) satisfies

χ′(H) = max{∆(G2) + ∆U1(G1), χ′(G1)}.

7 Connectivity

In the current section we give some results on the vertex-connectivity of the generalized
hierarchical product H = G2 u G1(U1). Observe that, as in the case of the Cartesian
product G22G1, H is connected if and only if G2 and G1 are. In fact, for such an
extreme case (where U1 = V1), only recently an exact value of its connectivity has been
given [18]. Namely,

κ(G22G1) = min{κ1|V2|, κ2|V1|, δ1 + δ2},
where κi and δi denote, respectively, the connectivity and minimum degree of Gi, i = 1, 2.

To study the general case, where U1  V1, we need to introduce the following new
connectivity parameter: For a graph G = (V,E) and a vertex subset U  V , let κ(U |U)
be the minimum cardinality of a vertex subset S such that in G−S there exist some vertex
u ∈ U and there is no path from u to any vertex of U . In particular, taking S = U 6= V ,
we get κ(U |U) ≤ |U |.

Proposition 7.1 Using the above notation, the connectivity κH of the generalized hier-
archical product H = G2 uG1(U1), U1  V1, satisfies

κH ≤ min{κ1|V2|, κ(U1|U1), δH},

where δH = min{δG1(U1), δG1(U1) + δG2}.

Proof. The fact that κH ≤ δH for any H is trivial. Moreover, κH ≤ κ1|V2|, because
H = G2 u G1(U1) is a subgraph of G22G1(U1) with the same vertex set. Finally, we
have seen in the section on the metric parameters that any path between vertices (x2, y2)
and (y2, y1), with x2 6= y2 and x1 6∈ U1, requires the presence of a x1-y1 path through U1

in G1, which does not exist if κ(U1|U1) vertices have been removed from the copy G1x2 .
Therefore, we also have κH ≤ κ(U1|U1), and this complete the proof. 2

Acknowledgments Research supported by the Education and Science Ministry (Spain)
and the European Regional Development Fund under projects MTM2005-08990-C02-01
and TEC2005-03575; and by the Catalan Research Council under project 2005SGR00256.

References

[1] R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Rev. Modern
Phys. 74 (2002) 47–97.
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