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Real-time Data Center’s Telemetry Reduction and
Reconstruction Using Markov Chain Models
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Abstract—Large-scale data centers are composed of thousands
of servers organized in interconnected racks to offer services to
users. These data centers continuously generate large amounts of
telemetry data streams (e.g., hardware utilization metrics) used
for multiple purposes including resource management, workload
characterization, resource utilization prediction, capacity plan-
ning, and real-time analytics. These telemetry streams require
costly bandwidth utilization and storage space particularly at
medium-long term for large data centers. This paper addresses
this problem by proposing and evaluating a system to efficiently
reduce bandwidth and storage for telemetry data through real-
time modeling using Markov chain-based methods. Our pro-
posed solution was evaluated using real telemetry data sets and
compared with Polynomial regression methods for reducing and
reconstructing data. Experimental results show that data can
be lossy compressed up to 75% for bandwidth utilization and
95.33% for storage space, with reconstruction accuracy close to
92%.

Index Terms—Data Reduction, Data Reconstruction, Polyno-
mial Regression, Markov Chain Models, Telemetry, Data Center
Monitoring, Real-Time

I. INTRODUCTION

NOWADAYS petabytes of digital data are produced mainly
by the readily available network-enabled electronic de-

vices, social networks, electronic health-care gadgets, and data
centers [1]. This increasing growth of digital data poses special
challenges to process, store and analyze the collected data [2].
Therefore, we required new algorithms, tools and systems to
manage the dramatically growing data.

Cloud computing enables users to host their data and
applications in remote data centers mainly due to pay-as-you-
go and dynamic scalability features [3]. These large-scale data
centers consist of thousands of servers, organized in racks and
interconnected to offer services to a large set of users. Such
data centers generate large and continuous streams of teleme-
try data that are logged and analyzed for multiple purposes
including resource management, workload characterization,
resource utilization prediction, capacity planning and real-time
analytics [4]–[7].

Typical telemetry streams contain time series data about
hardware utilization metrics including CPU, memory, I/O,
bandwidth, context switches, interrupts, cache misses and
cycles per instruction. These telemetry metrics are used in
various applications. For example, CPU, memory, network
bandwidth, instructions per cycle (IPC), cache miss rates,
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branch predictor statistics, and power consumption utilization
data is used to forecast energy consumption and reduction
[8], [9]. CPU, memory, disk, and network consumption are
used for data center management and resource prediction [10]–
[13]. This generation of continuous telemetry streams from
all computing and storage nodes poses a significant challenge
within the data center in terms of bandwidth consumption and
storage requirements. As an example, considering telemetry
collection on a data center consisting of 10, 000 computing
nodes and collecting 12 different measured metrics every
second while dedicating 4 bytes per metric, would require
nearly 40GB storage per day, this is more than 1TB of
storage per month, plus the meta-data overheads for time-
series traceability.

Traditional data compression solutions to reduce the data
increase the time to collect telemetry data from the computing
nodes. Increased interval time does not allow capturing fine-
grained resource consumption and may not precisely reflect
the resources usage. Also, using compression techniques on
floating point values cannot reduce the size significantly and
preserve the full precision [14]–[16]. Unfortunately, telemetry
streams in many data centers show low or no smoothness
and high variation in data. In such cases, even state-of-the-art
floating-point compression algorithms are still not sufficient to
compress the data [17].

On large-scale data centers with millions of hosted appli-
cations, the usefulness of telemetry and profiling comes from
knowing the behavior patterns more than the exact metrics.
The precision is reduced when data is aggregated in bigger
time periods. Hence, telemetry time-series data reduction
methods need to preserve statistical properties capturing hard-
ware utilization behaviors specifically burstiness, rapid growth
of utilization, and abnormal hardware utilization patterns.

In this paper we address the collection and compression
of large-scale data centers telemetry data. Our proposed so-
lution consists of reducing the telemetry measurements of
the data center in real time through online modeling using
Markov Chains [18]. Then, such models are transmitted to
the corresponding logging repositories and stored to enable
data reconstruction for posterior use with minimum data loss
to preserve the hardware utilization behaviors. The method
works on rack level to collect all measurements from the nodes
deployed on the rack and then applies Markov Chain Model
to efficiently reduce the data in real-time. The reduced data is
logged to allow telemetry data analytics. We also propose an
efficient method to combine reduced data with compression to
minimize the overall storage requirement for storing telemetry
data for a long duration. Thus it minimizes both the storage
space and the bandwidth utilization for collecting data center
telemetry measurements.
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The proposed method has been evaluated using real teleme-
try data sets and compared with state of the art methods such
as the Polynomial Regression method [19] and the dictionary
based compression (ZIP). Several comparison metrics were
used such as computing the amount of data saved in each
scenario and the data reconstruction accuracy in case of lossy
compression. We evaluate the effectiveness of the methods
on telemetry time-series data by calculating and comparing
the storage requirements for each method. The reconstruction
accuracy is evaluated by comparing data before compression
and after reconstruction. First, we compare the statistical
similarity between the reconstructed data and the original data
using a two-sample Kolmogorov-Smirnov (KS) hypothesis
tests [20]. KS test is used to identify whether two given
one-dimensional sequences belong to the same probability
distribution or not. It does not quantify the similarity of the
reconstructed data but indicate whether the reconstruction has
statistical resemblance. Then we complement the evaluation by
quantifying this similarity using the Dynamic Time Wrapping
(DTW) metric [21], [22]. The DTW is a well-known method
used to measure the similarity between two given sequences
which may vary in speed [22]–[26].

The paper main contributions are summarized as follows:
• Design a system for real-time telemetry data reduction

and reconstruction for data centers.
• Develop and evaluate telemetry data reduction and recon-

struction approach using Markov Chain models.
• Compare the proposed data reduction and reconstruction

with state-of-the-art Polynomial Regression based meth-
ods and ZIP compression.

• Experimental evaluation to study the storage and band-
width minimization using the proposed solution for
telemetry data for different data center sizes.

The rest of the paper is organized as follows. Related work
is presented in Section II. Our proposed data reduction and
reconstruction system is explained in Section III. Experimental
setup details are given in Section IV. The evaluation results are
presented in Section V. The benefits in bandwidth and storage
reduction for different sizes of data centers using the proposed
solution are discussed in Section VI. Finally, conclusion and
future work are discussed in Section VII.

II. RELATED WORK

There have been several efforts to reduce exponentially
growing digital data for efficient management [27]–[34]. Dif-
ferent methods were proposed including dimensionality reduc-
tion, forecasting models, and compression methods. For exam-
ple, Bhuiyan et al. [35] proposed an IoT framework for event
detection and data reduction at data collection time which
helps to minimize data transmission across the network and
also reduces energy consumption. The proposed framework
detects fire events using sensors and rule-based methods. Wu
et al. [36] developed a dictionary-based compression technique
to split the incoming numeric data stream into fixed size
blocks and compares them with the already stored blocks
using Kolmogorov-Smirnov (K-S) statistical test to measure
the similarity. When they identified any existing block similar

to the incoming new block, they discarded the incoming block
and keep a reference of the old block to be able to regenerate
the data, thus helping to significantly reduce the required
storage. Another work by Egri et al. [37] use dimensionality
reduction of multidimensional time series data. Their approach
introduces graph-based clustering using the cross-correlation
between the time series data. The authors focus on identifying
connections among various performance metrics in order to
reduce the number of performance metrics to track.

A recent work [38] uses a correlation-based method to
reduce data center’s monitoring data. The authors identify
the correlation between different measurement metrics using
Bayesian Network models learned from historical data and
proposed to use linear regression between correlated metrics.
Bayesian Network models are directed acyclic graphs (DAG)
showing the relation between metrics in the form of dependant
and independent metrics. In this method, the authors reduce
the sampling rate of dependent metrics and predict them using
linear regression for a given duration which helps to reduce
the data at the data collection stage. Another recent work by
Yu et al. [39] proposed a method to reduce data sent by
edge nodes of IoT devices to the cloud for reducing data
transmission time. The method modeled the incoming data
as multivariant normal distribution and used Kalman filter to
predict mean vector and covariance matrix of the distribution.
Both the edge nodes and cloud predict the same values using
identical Kalman filters. If the predicted data at both ends do
not meet the confidence interval then data is uploaded from
fog to cloud layer otherwise predicted values are used which
helps to reduce the data movement from fog to cloud layer.

A most recent work [40] in data reduction addresses the
problem of transmitting data in smart energy metering infras-
tructure. The authors proposed a framework to monitor data of
energy consumption using smart meters and then aggregate the
data for a fixed batch intervals. Then use an already learned
forecasting method to compare the new data. If the new data
is comparable with the forecasting model then the new data
is not sent to the cloud. However, if the forecasting model
and the new data are different then they send the data to the
cloud and also update the forecasting method. The proposed
system is adaptive according to incoming data as it does not
rely on single forecasting method rather it changes its method
to suite the current data. However, this work does not address
the data storage requirement optimization and only focuses on
one dimensional energy consumption data.

Most of the existing works are based on either dimension-
ality reduction, forecasting models, or compression methods
to reduce data. Our work proposes a novel Markov chain-
based telemetry data reduction and reconstruction system to
efficiently reduce network bandwidth utilization and storage
space. The data reduction is performed in real-time without
reducing the dimensions of input telemetry streams and with-
out using forecasting models that need to update or change
whenever input streams are changed. The proposed Markov
Chain Models reduce the input data significantly without
updating the model. Moreover, our purposed system perform
more reduction compared to dictionary based ZIP compression
methods. To the best of our knowledge, the current state of
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Fig. 1: Schema of the proposed data reduction framework for
data centers. Each rack in the data center hosts a Telemetry
Reductor (T-R) component which continuously collects the
telemetry data from each computing node, then performs
data reduction before transmitting it to storage and real-time
analytic systems.
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Fig. 2: Telemetry Reductor process the incoming telemetry
streams from computing nodes using Kafka and data reduction
method. The output of the Telemetry Reductor can be used to
store or provide input to other real-time analytics systems.

the art methods does not perform reduction in real-time for
data centers telemetry streams using Markov Chain Models.
We investigate the use of Markov Chain Models and compare
it with Polynomial Regression and ZIP compression with dif-
ferent settings to reduce the data significantly and reconstruct
the data with high accuracy for data centers telemetry streams.

III. DATA REDUCTION FRAMEWORK

Our proposed system to reduce telemetry data provides two-
fold benefits: first, it reduces the storage space significantly,
and second, it minimizes the bandwidth utilization required by
telemetry data collection within the data center.

Figure 1 shows the architecture of the proposed real-time
telemetry data reduction system for data centers. Each rack in
the data center hosts a Telemetry Reductor component which
continuously collects the telemetry data from each computing
node and performs data reduction method before transmitting
it to storage and real-time analytic systems. This reduces the
data at the rack level and does not transmit the entire data

but only the reduced data within the data center. A telemetry
stream data can consist of utilization of CPU, memory, disk,
network, memory bandwidth and other useful metrics.

Figure 2 shows the Telemetry Reductor process. We used
Apache Kafka [41], [42] as a message broker to receive
telemetry stream data from the computing nodes. Every com-
puting node publishes telemetry data with the timestamp to
Kafka topic which is consumed by the Telemetry Reductor.
Each consumer obtains data from Kafka topics. The consumer
reads the incoming streams and splits the data into a predefined
batch size and uses a data reduction method to minimize the
data. Then the reduced data is compressed and stored in a
data center storage facility. The reduced data is also feed to
analytics engines. The telemetry data can be used for real-time
monitoring, workload characterization, and anomaly detection
purposes. The reduced data sent to other components need
to be reconstructed before usage. The above architecture is
based on out-of-band monitoring where data is coming from
devices such as sensors or logging applications. In case of
the regular host where in-band monitoring is possible then
Telemetry Reductor component could be executed on the host
machine without Kafka to reduce the extra overhead of a
dedicated machine.

The proposed framework targets two main goals: i) it mini-
mize the storage demand for storing telemetry measurment by
reducing and compressing the telemetry data. ii) It minimize
the bandwidth utilization by transmitting solely reduced data
over the data center network. To achieve such goals, we
propose two different methods namely Polynomial Regression
and Markov Chain models to be used for telemetry data
reduction and reconstruction in real-time. We explain both of
the methods in the following subsections.

A. Reduction through Polynomial Regression (PR) methods

First, we propose to use Polynomial Regression (PR) meth-
ods to fit the curve of a given telemetry data-stream into a
polynomial curve. Then we only need to store the coefficients
of the equation fitting the curve. This method is inspired by
similar work [19] that uses linear regression method for data
reduction. The PR method is used as a baseline to compare
our proposed Markov Chain model-based approach.

To understand the effect of using PRs for data reduction,
if we plan to fit a data-stream function into a 4-degree
polynomial curve then we will only store 4 coefficients plus
the intercept. Assuming that the data-stream contains 128 data
points, we will be reducing the data from 128 values to only
6 values.

If we train a PR model for each telemetry measurement,
given a n-degree polynomial regression, and k observations of
a specific telemetry dimension a, the coefficients are computed
using pseudo-inverse solution to minimize the sum of least
squares:


αo

α1

...
αn

 =
[
R>R

]−1
R>


rt
rt−1

...
rt−k

 (1)
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where the matrix R is defined as

R =


1 at a2t . . . ant
1 at−1 a2t−1 . . . ant−1
...

...
1 at−k a2t−k . . . ant−k

 . (2)

Using the values of α0, α1, · · · , αn coefficients and poly-
nomial degree n we can load the polynomial curve and
reconstruct the k data points easily. Therefore, we propose
to only store coefficients and polynomial degree information
instead of the actual data. Here we monitor and collect the
data for a given batch interval and then fit a PR model
with a specific degree. After fitting the model, we extract the
coefficients from the fitted equation and store these instead of
the actual data. Whenever we have to reconstruct a batch of
data, we load the coefficient values for that batch and build
its corresponding PR model, then we use it to reconstruct the
data points for the batch.

B. Reduction through Markov Chain Models (MM)

Secondly, we propose to use Markov Chain Mod-
els (MM) [18] for telemetry data reduction and reconstruction.
Markov Chains are stochastic models describing a sequence
of events in which the probability of each event depends
only on the previous state of the event. Specifically, we use
time-homogeneous discrete time Markov Chains (DTMC) [43]
because telemetry data is monitored at discrete time intervals
and the state transition probabilities are independent of time.
Moreover, the DTMC used with the telemetry data is irre-
ducible ergodic as the proposed system can transit from every
state to every other state with positive probability. Figure. 3
shows the irreducible ergodic 2 state Markov Chain.

Fig. 3: 2 states Markov Chain Model showing states and
transition probabilities. For transition probabilities, l represents
low state and h represents high state.

The idea of using MMs is to explore that if we can deal
with burstiness behaviors among others for data reduction
and reconstruction. The burstiness behavior represents sudden
spikes and peaks in the telemetry data. In general, it is
challenging to reconstruct the burstiness behavior, and we
address it by using Markov Chain Models.

Let X1, X2, X3, · · · are independent and identically dis-
tributed random variables representing telemetry data. We
model these random variables as a discrete time Markov Chain
Model defining the probability of moving from the current
state to the next state as:

Pr(Xt+1 = sj |Xt = si, ..., X2 = s2, X1 = s1) =

Pr(Xt+1 = sj |Xt = si), (3)

Telemetry data of batch size 16

2 31 61
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Fig. 4: Telemetry data reduction using 2 state Markov Chain
Model and batch size 16.

where function Pr(Xt+1 = sj |Xt = si) is independent of t
and denotes the probability of moving from state si at time t
to state sj at time t+1, symbol “ | ” represents the conditional
probability, and s ∈ state space (S).

Let P v
ij , v > 1 where P v

ij = P (Xu+v = j|Xu = i) denotes
the probability that after v time units the chain will transit to
state j given that the current state is i at time u. The probability
of reaching j from i in n-steps is the sum of all probabilities
going from i to j through an intermediate point k. We use
Chapman-Kolmogorov equation [44] to compute it as follows:

Pu+v
ij =

∑
k∈S

Pu
ikP

v
kj ; m and v ≥ 1, i and j ∈ S. (4)

Let Pv = (P v
ij) be a matrix then Chapman-Kolomogorov

equation can be expressed as Pu+v = PuPv . This allows
calculating the transition probability matrix P which reflects
the relative frequencies of transitions from one state to another
state. The matrix P for n total number of states is represented
as follows:

P =


p11 p12 · · · p1n
p21 p22 · · · p2n

...
...

. . .
...

pn1 pn2 · · · pnn

 . (5)

In our solution, the chain can transit from every state to
every other state and considered as irreducible ergodic Markov
chain. For an irreducible ergodic Markov chain, the transition
matrix elements must be non-negative, pij ≥ 0 and the sum
of each row must be equal to 1, therefore,

∑n
j=1 pij = 1.

To reduce a given telemetry data, first we convert it into
state interval matrix I = [...](n+1)×1 and then compute state
transition frequency matrix F = [...]n×n, where n is the
total number of states. The state interval matrix contains the
threshold values to partition the given data into n states. The
state transition frequency matrix contains the transition fre-
quencies which are computed by simply counting the number
of transitions from one state to another.



5

Figure 4 shows the process to compute the frequency matrix
for reducing telemetry data using a 2 states MM with batch
size 16. First, we calculate the state interval matrix I which
stores the partition boundaries. For 2 states MM, the state
interval matrix will be of size 3 × 1 to store the boundaries
of the states. Second, we convert each data point into cor-
responding states using the state interval matrix. Finally, we
compute the state transition frequencies matrix F . We only
store F and I for each given batch of data to reduce the
telemetry data. During data reduction, we do not compute
and save transition probability matrix P because it is required
during the reconstruction and can be easily calculated using
F . Moreover, P consists of floating point data which also
introduces storage overhead.

To reconstruct the data for a given batch interval, we first
convert the state transition frequency matrix F into state
transition probability matrix P using the equation 6.

pij =

{
fij∑x

r=1 fir
, if

∑x
r=1 fir 6= 0

0, otherwise.
(6)

During the reconstruction of a batch data, we assume that
the current/initial state is known and we need to predict all data
points of the given batch size. To explain the reconstruction
strategy, let us consider a 2 states MM as shown in Figure
3. The transition probabilities P can be easily computed from
the corresponding transition frequency matrix F which was
stored during the data reduction phase. Let us assume that the
current state is high, the transition probability from high to
low (phl) is 0.3 and the transition probability of high to high
(phh) is 0.7. We generate a random number between 0 and 1.
If the generated number is greater than 0.3 then we predict
high otherwise low as the next state. Once we identify the
next state, then we look up the lower and boundary values of
the predicted state from the state interval matrix I . Finally, we
generate another random number within the range of the state
boundary and considered it as the reconstructed data point.
We repeat this process to identify all data points for the given
batch interval.

IV. EXPERIMENTAL SETUP

A. Description of the Data-set

We used IBM POWER8 telemetry logs data set [45] to
evaluate our proposed method for telemetry reduction and
reconstruction. These logs contain telemetry data generated
by executing three representative Spark workloads from the
Spark-Bench [46] developed by the IBM and widely tested
using POWER8 systems. The data set logs are collected
from executions of the workloads “Support Vector Machines
(SVM)”, “PageRank” and “Spark SQL”. These workloads are
well known in the literature and combine different charac-
teristics to cover a large range of different resource usage
behaviors. The data set contains metrics related to CPU,
memory, context switches, memory bandwidth, L2 and L3
cache misses, interrupts, and cycles per instruction (CPI) as a
time series data.

B. Experiment Details

As explained previously, we propose and evaluate two dif-
ferent techniques, namely Polynomial Regression and Markov
Chain Models, to reduce and regenerate telemetry data through
modeling. To evaluate the proposed methods, we performed
two major experiments, briefly explained in the following
subsections.

1) Experiment 1: Data Reduction and Reconstruction using
Polynomial Regression: In this experiment, we study the effect
of different polynomial degrees and batch sizes on PR models.
The polynomial degree defines the shape of the curve. Where a
higher degree can be used to fit a complex curve and a lower
degree can be used a simple curve. The batch size defines
the number of data points used to fit the curve. We consider
polynomial degrees 2, 4, 6, 8, and 10 with batch sizes varying
from 2, 4, 8, 16, 32, 64, and 128 to fit polynomial curves
for data reduction and reconstruction. Many other settings can
also be studied, however, the selected settings are sufficient
to establish the motivation for using PR for telemetry data
reduction and reconstruction because with higher degrees, we
get less reduction and with higher batch sizes, we loose the
accuracy of the reconstructed data. Once we train a PR model
using a specific polynomial degree and a batch size then we
only store the coefficients of polynomial equation learned to
fit on the given data points. This helps to reduce the data
size significantly as we do not store all data point but only
few coefficient values. Later, these coefficients can be used
to regenerate the data points easily. However, an efficient
polynomial degree and batch size values should be used to
achieve a good data reconstruction accuracy: the higher the
degree, the more over-fitting will be achieved, but more data
(coefficients) will be transmitted.

2) Experiment 2: Data Reduction and Reconstruction using
Markov Models: In this experiment, we study the effect of
different MM models with varying the number of states and
batch sizes. We consider 2, 3, and 4 state Markov Models
on batch sizes varying from 2, 4, 8, 16, 32, 64, and 128 to
study the effects on data reduction and reconstruction. Higher
batch sizes reduces accuracy as the reconstruction does not
retain the information which is present in the original data
set. On the other hand, higher MM model states yields less
reduction. Figure 3 shows a 2 state Markov model in which we
divided the input data into two regions namely low and high
and learn a state transition matrix for telemetry observations
using a specific batch size. The state transition matrix contains
the probabilities of moving from one state to other using the
given input data points of the telemetry metrics. We also create
a state interval matrix which defines the low and high region
ranges. These two matrices are learned and stored instead of
the complete data which reduces the data size significantly.
Similarly, for 3 and 4 state Markov Models, we increase
the number of states to 3 and 4 respectively and learn state
transition metrics and state interval matrix accordingly.

C. Evaluation Criteria

We evaluate both of the proposed methods in terms data
reduction effectiveness and reconstruction accuracy. For eval-
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uating the effectiveness of data reduction, we calculate the data
reduction percentage after applying the proposed methods.
For reconstruction accuracy, first, we perform two-sample
Kolmogorov-Smirnov (K-S) test to decide whether to accept or
reject the produced reconstruction of data after compressing,
storing and reconstructing it. This first evaluation is used to
initially discard configurations (PR degrees and MM discrete
states) that produce low quality reconstructions. Second, we
compute Dynamic Time Warping (DTW) distance between
reconstructed data and actual data to quantify the reconstruc-
tion error. We explain all these evaluation measures in the
following subsections.

1) Data Reduction Percentage: We compute the data reduc-
tion percentage by measuring the data stored after applying the
reduction method against the original data. A positive value
shows a reduction in data size while a negative value indicates
a growth in data size. Therefore, a higher data reduction
percentage is better and desirable.

D. Two-sample Kolmogorov-Smirnov (K-S) Test

We use two-sample Kolmogorov-Smirnov (K-S) test [20]
to compare the statistical similarity of the actual data with
the reconstructed data. The K-S test is used to determine
whether two given one-dimensional sequences belong to the
same probability distribution or not. The output of the K-
S test is a p-value. A p-value lower than or equal to 0.025
indicates that the given two sequences are not drawn from the
same probability distribution. However, a p-value higher than
0.025 indicates that the given two sequences are statistically
similar [47], [48]. Therefore, in our evaluation we divided the
p-value into two regions namely Accepted (A) when the p-
value is greater than 0.025 and Not Accepted (NA) when the
the p-value is less than or equal to 0.025.

E. Dynamic Time Warping (DTW)

The K-S test can be used to see whether the generated
sequence is statistically comparable to the original one, but
it does not quantify the sequential similarity of the recon-
structed data. Therefore, to quantify the error against the
actual data, we used the Dynamic Time Wrapping (DTW)
distance metric [21], [22]. This is a well-known method
used to measure the similarity between two given sequences
which may vary in speed [22]–[26]. For instance, a dramatic
increase of CPU usage of two different observations could be
identified as similar even both observations speed is different
for reaching an abnormal usage. A small value of the DTW test
is considered good as it shows that the given two sequences
are close to each other. However, a large value of the DTW test
is considered bad as it indicates that the two given sequences
are not close to each other. Therefore, a lower value of DTW
is desirable to consider the reconstructed data similar to the
actual data.

V. EXPERIMENTAL RESULTS

In order to study and validate the presented methods, we
compare both techniques (PRs and MMs), using the described

TABLE I: Average p-values of two-sample K-S test using PR
with different degrees and batch sizes for user cpu, memory
free, context switches, and memory bandwidth hardware met-
rics in Experiment 1. The Not Accepted values are denoted
by red line.

user cpu context switches
BS PR2 PR4 PR6 Pr8 PR10 BS PR2 PR4 PR6 Pr8 PR10
2 0.945 0.945 0.945 0.945 0.945 2 1 1 1 1 1
4 0.917 0.943 0.943 0.943 0.943 4 0.934 1 1 1 1
8 0.645 0.769 0.821 0.758 0.758 8 0.679 0.864 0.953 0.999 0.999
16 0.397 0.550 0.640 0.686 0.718 16 0.309 0.507 0.646 0.750 0.836
32 0.125 0.212 0.268 0.298 0.324 32 0.075 0.147 0.204 0.241 0.269
64 0.043 0.080 0.102 0.134 0.168 64 0.011 0.027 0.045 0.067 0.096
128 0.005 0.013 0.024 0.033 0.042 128 0.004 0.007 0.016 0.010 0.010
memory free memory bandwidth
BS PR2 PR4 PR6 Pr8 PR10 BS PR2 PR4 PR6 Pr8 PR10
2 1 1 1 1 1 2 1 1 1 1 1
4 1 1 1 1 1 4 0.989 1 1 1 1
8 0.991 0.998 0.999 1 1 8 0.826 0.914 0.974 0.988 0.988
16 0.924 0.952 0.967 0.974 0.976 16 0.500 0.684 0.831 0.873 0.901
32 0.725 0.814 0.849 0.857 0.870 32 0.210 0.389 0.473 0.515 0.544
64 0.468 0.555 0.637 0.695 0.725 64 0.063 0.132 0.215 0.297 0.371
128 0.217 0.293 0.363 0.404 0.429 128 0.012 0.022 0.047 0.075 0.103

data sets, by evaluating the aforementioned metrics (K-S,
DTW and reduction improvement). Also we compared our
approach against directly applying classical data compression
mechanisms.

A. Experiment 1: Data Reduction and Reconstruction Using
Polynomial Regression (PR)

In this first experiment, we calculated the data reduction
obtained from using PR models with different data batch sizes
and different polynomial degrees. We then evaluated the results
using a two-sample K-S test to discard inappropriate solutions.
Finally we computed the DTW distance to quantify the quality
of the solution. This evaluation is presented in the following
subsections.

1) Two-sample K-S Test: Table I shows the results of a
two-sample K-S test. First, we reconstructed the data using
the corresponding coefficients, intercept, polynomial degree,
and batch sizes for each PR model stored during the data
reduction phase. Then, we apply the two-sample K-S test to
compute the average p-value for each telemetry measure. A p-
value lower than 0.025 is considered bad and does not reflect
appropriate similarity with the actual data. However, a p-
value higher than 0.025 is considered acceptable and reflecting
the statistical feasibility of reconstructed data belonging to
the same distribution as the actual data [47], [48]. The Not
Accepted (NA) values are denoted by red line in the table.

Most of the polynomial regression models reconstructed the
data within an acceptable range. For example, for user CPU
metric, only polynomial degree 2, 4, and 6 using batch size
128 reconstructed the data with not acceptable range, while
all other PR models yielded an acceptable range. In the case
of context switch metric, all PR models with batch size 128
reconstructed the data within not acceptable range, the same
was for PR2 with batch size 64. While all remaining PR
models reconstructed data within an acceptable range.

2) Data Reduction Percentage: Table II shows the data
reduction percentage using PR models learned for different
polynomial degrees and batch sizes for Experiment 1. The
negative values in the table show a growth in data size instead
of reduction. The negative values are observed due to two
reasons. First, whenever the batch size (i.e., the number of
data points) is smaller or equal to the polynomial degree used
to fit the curve, it results in learning more coefficients than the
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TABLE II: Data reduction percentage using PR with different
polynomial degrees and batch sizes for Experiment 1. The red
line values are Not Accepted and taken from table I. The grey
shaded negative values represent data growth.

Batch Size PR2 PR4 PR6 PR8 PR10
2 -42.86 -60.36 -77.66 -94.96 -129.43
4 -3.58 -43.35 -51.82 -60.51 -77.89
8 39.21 -3.15 -47.72 -69.19 -78.22
16 68.06 46.78 25.54 4.39 -18.92
32 82.95 75.64 69.69 65.95 60.43
64 90.08 84.90 78.62 74.28 67.39
128 93.08 91.80 90.11 87.18 86.26
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Fig. 5: Normalized average DTW distance for telemetry mea-
sures using PR models trained on different batch sizes and
polynomial degrees for Experiment 1. (NR = Not Reduced,
NA = Not Accepted)

actual data points. Hence, the data size grows compared to the
original data. Second, sometimes the PR models coefficients
consist of high precision decimal values which required more
spaces compared to the actual data points. A higher polyno-
mial degree model is very sensitive to the coefficient values
and rounding the coefficient values significantly changes the
shape of the curve.

To understand the growth of data using PR models, consider
PR6 with batch size 2 which increases the data by 77.66%.
This is mainly due to the fact that for every batch interval
we need to store six coefficients and one intercept (seven data
points in total) while the actual data consists of only two data
points. Therefore, we should avoid fitting a curve on a batch
size smaller than the polynomial degree used to fit the data.
Another case is to consider PR6 with batch size 8 in which
data size increase by 47.74% mainly due to the high precision
of the coefficients.

We observed that PR models with a large batch size and
small polynomial degrees help in reducing the telemetry data
significantly. For example, batch size 64 with PR4 reduces
data to 84.90%. However, such PR models may not regenerate
the data with good accuracy specifically for bursty and noisy
telemetry observations. Therefore, we need to identify an ap-
propriate combination of batch size and polynomial degree to
reduce the data size with higher data reconstruction accuracy.

3) DTW Distance: Figure 5 shows the normalized average
DTW distance for PR models learned using different degrees
and batch sizes for Experiment 1. The batch sizes without
reduction are denoted by NR and batch sizes which are in not
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Fig. 6: Reconstruction of PageRank workload telemetry data
using polynomial degree 2 with batch size 8 (PR2-BS8) and
polynomial degree 10 with batch size 64 (PR10-BS64).

acceptable regions are denoted by NA. We observed that on
large batch sizes the DTW distance increases and it decreases
by increasing the PR degree. We observed that on batch size 8,
only degree 2 (PR2) is reducing the data with 98% accuracy.
The accuracy of reconstructed data at batch size 16 varies from
95% to 98% where it reduces to 70 to 80% at batch size 64.

Figure 6 shows the reconstruction of first 300 data points of
PageRank workload of our data set using different regression
models trained on degree 2 with a lower batch size (BS 8) and
on degree 10 with a higher batch size (BS 64). We observed
that BS 8 with degree 2 yields better reconstruction even for
spikes and burstiness comparing to BS 64 but it only achieved
39.21% data reduction. However, BS 64 with degree 10 yields
67.39% data reduction, the K-S test is also acceptable but the
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DTW distance for BS 64 model is higher than BS 8 model for
all telemetry metrics. This confirms that PR with higher degree
and higher batch size yields less accuracy in reconstructed
data.

B. Experiment 2: Data Reduction and Reconstruction Using
Markov Model (MM)

In this second experiment we calculated the data reduction
obtained from using Markov Models with different data batch
sizes and different number of Markov states. We then evaluated
the results using a two-sample K-S test to discard inappropriate
solutions. Finally we computed the DTW distance to quantify
the quality of the solution. The following subsections present
the evaluation results.

1) Two-sample K-S Test: Table III shows the results of
the two-sample K-S test. Most of the Markov Models recon-
structed data are within the acceptable range except few such
the reconstructed user CPU metrics using the 2-state MM with
a batch size of 128 are not within the acceptable range. The
reconstructed memory free metrics using MM models with
batch size 128 are not within the acceptable range. The results
conclude the fact that all reconstructed telemetry metrics are
within the acceptable range when using Markov Model with
2, 3 and 4 states and up to 64 batch size.

2) Data Reduction Percentage: Table IV shows the data
reduction percentage for different batch sizes with 2, 3 and
4 state MM. The negative values in the table show a data
growth instead of reduction. The negative values are observed
whenever the number of data points learned as part of MM
model turns higher than actual data points.

We observed that large batch sizes and small state value
yield higher data reduction. For example, batch size 64 with 2
states yields 92.81% data reduction. For 2 and 3 states MM, we
start observing data reduction after batch size greater than 2.
However, for 4 state MM, we observe data reduction for batch
sizes greater than 4. Hence, the data reduction depends on the
size of the transition probability matrix and the state interval
matrix. For example, we need 2 times 2 matrix to store state
transition probabilities and 3 data points to represent the state
interval matrix. Therefore, for 2 state MM, we need at least 7

TABLE III: Average p-values of two-sample K-S test using
Markov Models (MM) with different states and batch sizes
for user CPU, memory free, context switches, and memory
bandwidth hardware metrics in Experiment 2. The Not Ac-
cepted (NA) values are denoted by red line.

user cpu context switches
BS 2MM 3MM 4MM BS 2MM 3MM 4MM
2 0.999 0.999 0.999 2 0.996 0.996 0.996
4 0.663 0.674 0.663 4 0.745 0.766 0.775
8 0.403 0.401 0.408 8 0.579 0.622 0.656
16 0.281 0.285 0.294 16 0.408 0.485 0.543
32 0.181 0.203 0.215 32 0.237 0.331 0.396
64 0.076 0.113 0.126 64 0.107 0.189 0.246
128 0.023 0.037 0.060 128 0.013 0.053 0.092
memory free memory bandwidth
BS 2MM 3MM 4MM BS 2MM 3MM 4MM
2 1 1 1 2 1 1 1
4 1 1 1 4 0.800 0.843 0.892
8 0.998 0.998 0.998 8 0.271 0.328 0.354
16 0.937 0.927 0.906 16 0.115 0.139 0.129
32 0.658 0.580 0.545 32 0.082 0.068 0.072
64 0.124 0.088 0.063 64 0.057 0.053 0.051
128 0.002 0.003 0.004 128 0.026 0.028 0.034

TABLE IV: Data reduction percentage using Markov Models
(MM) with different states and batch sizes. The red line values
are Not Accepted and taken from table III. The grey shaded
negative values represent data growth.

Batch Size 2MM 3MM 4MM
2 -30.15 -106.06 -198.15
4 39.00 2.38 -42.06
8 70.05 53.08 31.50
16 83.09 75.13 63.77
32 90.28 84.64 79.38
64 92.81 91.30 87.30
128 93.95 93.16 92.16
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Fig. 7: Normalized average DTW distance for MM trained on
different batch sizes and states for telemetry measures. (NR =
Not Reduced, NA = Not Accepted)

data points to represent a given batch. We observed 39% data
reduction on batch size 4 when the original data points are
4 and MM data points are 7. The reason of this reduction is
that some of the telemetry metrics have at maximum 9 digits
in their actual data e.g context switches, interrupts whereas
state transition probability matrix contains only counts of
moving from one state to another. Thus it requires less storage
even if MM data points are higher than the original batch
size. This count is later converted into probabilities whenever
reconstruction is required.

3) DTW Distance: Figure 7 shows the normalized average
DTW distance for Markov Models learned using different
degrees and batch sizes for Experiment 2. The batch sizes
without reduction are denoted by NR and batch sizes which
are in not acceptable regions are denoted by NA. We observed
that on large batch sizes the DTW distance increases. We
also observed that on batch size 4, only 2-state MM model
(2MM) is reducing the data with 99% accuracy. The accuracy
of reconstructed data at batch size 8 varies from 97 to 98%
and at batch size 16, it is 92% where it reduces to 53 to 54%
at batch size 64. The MM models do not show any effect on
telemetry measurements which do not contain spikes, bursts,
or noise. For example, free memory (MEM free) telemetry
measurement of our data set does not have any effect on DTW
using different MM models trained on different MM states and
batch sizes. Therefore, such type of telemetry measurement
can be reconstructed using a small number of MM states.

Figure 8 shows the reconstruction of first 300 data points
of PageRank workload of our data set using different Markov
Models trained using 2 states and a batch size of 8 (2MM-
BS8) and 4 states and a batch size of 64 (4MM-BS64). We
observed that BS 8 with 2 state MM reconstructed the data
appropriately. However, with 4 states model with batch size 64
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Fig. 8: Reconstruction of PageRank workload telemetry data
using 2 state Markov model with batch size 8 (2MM-BS8)
and 4 state Markov Model with batch size 64 (4MM-BS64).

does not show good reconstruction. The data reduction using
2MM-BS8 model only reduces 70.05% data while 4MM-BS64
reduces 87.30% of the data. The K-S test is also acceptable for
both of these models while the DTW distance for the BS64
model is higher than the BS8 for all telemetry metrics.

Using a small batch size (BS8) helps to capture the data
patterns well including spikes and burstiness compared to a
large batch size (BS64). It shows that spikes and noise in the
original data cannot be well captured using larger batch sizes.
For example, system CPU had few spikes around 270 seconds
in the actual data. These spikes are well captured using batch
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Fig. 9: Comparison of average data reduction percentage
using Polynomial Regression (PR) and Markov Models (MM)
methods for telemetry data reduction.

size 8, however batch size 64 does not capture these spikes
well. The reason for this behavior is mainly due to the fact that
MM depends on the state transition matrix which contains the
probabilities of moving from one state to another. Therefore,
if there is burstiness in a specific batch then the probability of
having burstiness remains for the whole batch interval. Thus
the performance of the MM method in data reconstruction is
not always robust using large batch size. We conclude that, if
data contains spikes and burstiness then we should use smaller
batch sizes with MM method. However, if we can detect that
data does not contain spikes and burstiness then we can use
higher batch sizes with MM method. This behavior is well
observed in memory free and memory cache telemetry metrics
presented in Figure 8.

C. PR and MM Comparison

To compare the PR and MM methods, we compute the
average percentage data reduction and the average DTW
distance for all settings (polynomial degrees and states) of
these methods on different batch sizes. In this section, we show
the comparison of PR and MM methods for data reduction and
reconstruction.

Figure 9 shows the average data reduction on different batch
sizes for all settings using PR and MM methods. In average,
the batch sizes less than 8 do not yield any data reduction but
instead they cause data growth. However, a significant gain
of 51.54% is observed using MM method on batch size 8
compared to 31.81% for the PR method. For batch sizes higher
than 8, MM always outperforms PR in data reduction.

Figure 10 shows the average normalized DTW distance for
PR and MM method on different batch sizes. In average, the
batch sizes less than 16 yields very low DTW distance, less
than 0.2, for both PR and MM methods which reflects a good
similarity of the reconstructed data with the actual data. For
large batch sizes e.g., 32 and 64 the PR method outperforms
MM in data reconstruction.

Large batch sizes reduce data significantly, however, they
perform poorly in data reconstruction similarity. Therefore,
from Figures 10 and 9, we conclude that batch size 16 is
appropriate to use with both PR and MM methods because
we obtain 25.17% and 74% average data reduction for both
PR and MM respectively with DTW distance below 0.2 for
both methods. However, we prefer to use MM model mainly
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Fig. 10: Comparison of normalized DTW distance for data
reconstruction using Polynomial Regression (PR) and Markov
Models (MM) methods.

due to higher data reduction on batch size 16 although PR
method has slightly better DTW.

D. Data Reduction Using ZIP Compression
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Fig. 11: Comparison of MM Reduced data with MM Reduced
and Compressed data. The MM Reduced is the data obtained
by applying MM method and MM Reduced and Compressed
is the data obtained after applying ZIP compression on the
reduced data obtained from MM reduction method.

After comparing the two proposed methods, we evaluate
them against the usage of classic lossless compression methods
such as ZIP algorithms. We compared the ZIP algorithm on
raw data with applying the ZIP algorithm on the reduced data
to see the improvement or overheads.

Figure 11 shows the comparison of data reduced using MM
(MM Reduced) and with the data obtained after applying
ZIP compression on the reduced data (MM Reduced and
Compressed) for different batch sizes. We observed the most
significant data reduction due to ZIP compression in lower
batch sizes particularly 2, 4, and 8. This is because, the reduced
data contains the count of transition in the transition matrix
which is either 0 or 1 in case of 2 states, 0, 1 or 2 in case of
4 states and 0 to 7 in case of 8 states. However, most of the
values in these matrices consist of 0 due to no transition from
one state to other, hence the zip compression further reduces
the data. After batch size 32, we observed that the difference
between MM Reduced and MM Reduced Compressed data is
less than 8% on average. The maximum data reduction with
zip compression is observed with 2 state MM model which

TABLE V: Percentage bandwidth reduction within data center
using MM method.

Batch Size 2MM 3MM 4MM
2 -100 -212.50 -350
4 0 -56.25 -125
8 50 21.88 -12.50
16 75 60.94 43.75
32 87.50 80.47 71.88
64 93.75 90.23 85.94

is 98.24% on batch size 64. The ZIP compression helps to
further reduce the data but for large batch sizes the effect of
ZIP compression is not significant.
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Fig. 12: Comparison of ZIP compression on raw data and ZIP
compression on data reduced using MM method.

Then, using a standard lossless ZIP compression algorithm
as a baseline, Figure 12 shows the comparison of ZIP compres-
sion on the raw data with the reduced and compressed data
(MM Reduced Compressed) using MM method on varying
batch sizes. By just applying ZIP compression on the row
data, we achieved 1.88% to 75.02% data reduction for batch
size 2 to 64, However our proposed solution yields reduction
from 76.95% to 96.48% with 2 and 4 state MM model from
batch size 2 to 64 respectively.

E. Bandwidth Reduction using MM

Table V shows the bandwidth utilization reduction percent-
age using the proposed solution with 2, 3 and 4 state MM for
telemetry data collection within the data center. We consider
4 bytes float data type to represent the value of actual data
and state interval matrix. We observed that for the highest
acceptable batch (batch size 64), the state transition matrix
can have a maximum value of 63 as it contains the count of
transition from one state to other. This type of data can be sent
using one byte over the network which reduces the bandwidth
utilization significantly. Moreover, higher batch sizes provide
a notable reduction in bandwidth utilization within the data
center. For example, batch size 32 and 64 yields significant
bandwidth reduction varying from 71.88% to 93.75% for
different number of MM states.

VI. BENEFITS OF THE PROPOSED SOLUTION IN
DIFFERENT DATA CENTERS

Typical telemetry metrics consist of hardware performance
counters up to a hundred events [49] related to CPU, memory,
network, disk, temperature, etc. In this section, we study the
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TABLE VI: Comparison of Raw and Reduced Storage (GB) for 30 days and Bandwidth (Kbps) using 2-State MM with batch
size 16.

Data Center
Type Total Racks

Nodes
per

Rack

Total
Telemetry
Sources

30 days Storage (GB) Bandwidth (Kbps)

Raw
Uncompressed Compressed Reduced

Compressed

Raw
Uncompressed

at Rack

Reduced
at Rack

Raw
Uncompressed
at Datcenter

Reduced at
Data Center

small 100 30 300,000 5,793.57 1,158.71 270.56 187.50 46.88 18,750 4,687.50
medium 250 40 1,000,000 19,311.90 3,862.38 901.87 250 62.50 62,500 15,625
large 500 60 3,000,000 57,935.71 11,587.14 2,705.60 375 93.75 187,500 46,875

effect on bandwidth utilization and storage space using the
proposed solution to monitor and collect the telemetry data
in the different sizes of data centers. We considered three
different data centers namely small, medium, and large in
which we assume that 100 different telemetry metrics are
collected from each computing node after a discrete time
intervals. A typical telemetry metric takes 8 Bytes to store the
information including the timestamp. We selected 2 state MM
model with batch size 16 as our purposed solution because
we achieve 95.33% of reduction in storage, 75% of reduction
in bandwidth with 92% of accuracy and Figure 13 shows
the comparison of percentage storage space required for raw
uncompressed, compressed and reduced compressed data and
it also shows the percentage bandwidth utilization for raw
uncompressed and reduced data for the purposed solution.
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Fig. 13: Comparison of storage usage percentage for raw un-
compressed, compressed and reduced compressed (left side).
Comparison of bandwidth utilization percentage for raw un-
compressed and reduced data (right side).

Table VI shows the storage and bandwidth reduction for
all three type of data centers and highlights the merits of the
proposed solution. A small data center with 3000 computing
nodes which are deployed on 100 racks. Where each rack
hosts 30 computing nodes. To store one day of telemetry data
we require 193.11 GB storage, and in a month that storage
requirements increase to 5.65 TB. To store one day of teleme-
try data on a medium sized data center, e.g. counting with
10K computing nodes, deployed on 250 racks (considering 40
nodes per rack), we require 643.73 GB storage, and in a month
the storage requirements increase to 18.85 TB. Similarly, for
a large data center, e.g. with 30K computing nodes deployed
on 500 racks, we will require 1931.19 GB storage space for
one day, and in a month the storage requirements increase to
56.57 TB.

The proposed method of 2-state Markov Model with a batch
size of 16 reduced the storage requirement to 0.26, 0.88,
and 2.64 TB for small, medium and large-scale data centers
respectively with a 92% reconstruction accuracy. The actual

rack level bandwidth utilization for small, medium and large
data centers are 187.50, 250, and 375 Kbps respectively which
are significantly reduced to 46.88, 62.50, and 93.75 Kbps.
Similarly, the actual data center level bandwidth utilization
for small, medium and large sizes are 18750, 62500 and
187500 Kbps respectively. Our purposed system reduces this
bandwidth utilization to 4687.50, 15625, and 46875 Kbps for
small, medium and large-scale data centers respectively.

VII. CONCLUSION AND FUTURE WORK

Data centers generate a lot of telemetry data which is
used for many purposes including resources management,
analytics and optimization. However, the size of telemetry
data grows dramatically and considerably increases the storage
space and bandwidth utilization within the data center. In
this paper, we proposed a Markov chain-based method to
reduce telemetry data to minimize bandwidth utilization and
storage space required to store it within the data center. Our
solution outperforms the baseline method based on Polynomial
Regression method to reduce and regenerate the telemetry
data. We extensively evaluated the effect of batch sizes,
number of states in MM and polynomial degrees in PR.
We observed that a larger batch size effectively reduces
data but the reconstruction accuracy is lower. Therefore, we
identified a batch size between 16 to 64 is appropriate to use
for data reduction with better reconstruction accuracy. Our
experimental evaluation shows that Polynomial Regression-
based method required more storage space as compared to
Markov Chain Model-based method due to the high precision
of coefficients. We also observed that 95.33% storage space
and 75% bandwidth utilization can be reduced with 92%
accuracy using the proposed solution.

For future work, we are focusing on adaptively identifying
the batch size and the number of states in MM to further
reduce space and increase the reconstruction accuracy. We also
plan to use one Markov Model per metric at the data center
level for recurring workloads having similar resource usage
requirements. Moreover, we intend to investigate mixture
models for telemetry data reduction and reconstruction.
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