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Abstract 

In view of rhe subsranrial number of exisling feature se- 
lecrion algorithms, rhe need arises to counr on criteria thar 
enables ro adequately decide which algorithm to use in cer- 
rain situarions. This work assesses the performance of seve- 
ralfundnmental algorirhms found in the lireralurr in a con- 
rmlled scenario. A scoring measure ranks the algorithms 
by raking info accounr the amounr of rplevance, irrelevance 
and redundance on sample data sers. This measure com- 
pura rhe degree of marching between rhe ourpur given by 
rhe algorithm and rhe known oprimal solurion. Sample size 
effects are also studied. 

1 Introduction 

The feature selection problem in terms of supervised in- 
ductive learning is: given a set of candidate features select 
a subset defined by one of three approaches: a) the subset 
with a specified size that optimizes an evaluation measure, 
b) the subset of smaller size that satisfies a certain restric- 
tion on the evaluation measure and c) the subset with the 
hest commitment among its size and the value of its evalua- 
tion measure (general case). The generic purpose pursued is 
the improvement of the inductive learner, either in terms of 
learning speed, generalization capacity or simplicity of the 
representation. It is then possible to understand better the 
results obtained by the inducer, diminish its volume of stor- 
age, reduce the noise generated by irrelevant or redundant 
features and eliminate useless knowledge. 

A feature selection algorithm (FSA) is a computational 
solution that is motivated by a certain definition of rele- 
vance. However, the relevance of a feature -as seen from 
the inductive learning perspective- may have several defi- 
nitions depending on the objective that is looked for. An 
irrelevant feature is not useful for induction, but not all re- 
levant features are necessarily useful for induction[5]. 

In this research. several fundamental algorithms found 
in the literature are studied to assess their performance in 
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a controlled scenario. To this end, a measure to evaluate 
FSAs is proposed that takes into account the particularities 
of relevance, irrelevance and redundance on the sample data 
set. This measure computes the degree of matching between 
the output given by a FSA and the known optimal solution. 
Sample size effects are also studied. The results illustrate 
the strong dependence on the particular conditions of the 
FSA used and on the amount of irrelevance and redundance 
in the data set description, relative to the total number of 
features. This should prevent the use of a single algorithm 
specially when there is poor knowledge available about the 
structure of the solution. 

2 Algorithms for Feature Selection 

A FSA should he seen as a computational approach to a 
definition of relevance, although in many cases these defini- 
tions are followed in a somewhat loose sense. For a review 
of such definitions, see [161. 

2.1 Feature Selection Definition 
Let X he the original set of features, with cardinality 

1x1 = n. The conrinuous feature selection problem refers 
to the assignment of weights wi to each feature zi E X in 
such a way that the order corresponding to its theoretical 
relevance is preserved. The binary feature selection prob- 
lem refers to the assignment of binary weights. This can 
be carried out directly (like many FSAs in machine leam- 
ing [4,9]), orfilrering the output of the continuous problem 
solution (see $4.1). These are quite different problems re- 
flecting different design objectives. In the continuous case, 
one is interested in keeping all the features hut in using them 
differentially in the learning process. On the contrary, in the 
binary case one is interested in keeping just a subset of the 
features and using them equally in the learning process. 

The feature selection problem can be seen as a search in 
a hypothesis space (set of possible solutions). In the case 
of the binary problem, the number of potential subsets to 
evaluate is 2". In this case, a general definition is [131: 



Definition 1 (Feature Selection) Let J ( X ' )  be an evalua- 
tion measure to be optimized (say to maximize) defined as 
J : X'  E X + !R The selection of a fearure subset can be 
seen under three considerations: 

e Set IX'I = m < n. Find X '  C X ,  such that J ( X ' )  is 
maximum. 
Set a value J,,, this is, the minimum J that is going to 
be tolerated. Find the X'  2 X with smaller IX'I, such 
that J ( X ' )  2 J,. 
Find a compmmise among minimizing IX'I and mi- 
miring J ( X ' )  (general case). 

Notice that, with these definitions, an optimal subset of 
features is not necessarily unique. 

2.2 Characterization of FSAs 
There exist in the literature several considerations to 

characterize feature selection algorithms [3,8, 141. In view 
of them it is possible to describe this characterization as a 
search problem in the hypothesis space as follows: 

Search Organization. General strategy with which 
the space of hypothesis is explored. This strategy is 
in relation to the portion of hypothesis explored with 
respect to their total number. 
Generation of Successors. Mechanism by which pos- 
sible variants (successor candidates) of the current hy- 
pothesis are proposed. 
Evaluation Measure. Function by which successor 
candidates are evaluated, allowing to compare differ- 
ent hypothesis to guide the search process. 

2.2.1 Search Organization 
A search algorithm is responsible for driving the feature se- 
lection process using a specific strategy. Each state in the 
search space specifies a weighting w1,. . . , w, of the pos- 
sible features of X ,  with 1x1 = n. In the binary case, 
wi E {O, 1). whereas in the continuous case wi E [O,l ] .  
Notice we are stating that relevance should be upper and 
lower bounded. Also in the binary case a partial order < 
exists in the search space, with SI < Sz if SI C Sz. 
whereas in the continuous case SI < Sz if, for all i, 
wi(S1) 5 w,(Sz) holds. BeingLa(lahe1ed)listofweighed 
subsets of features (i.e. states), L maintains the (ordered) 
current list of solutions. The labels indicate the value of 
the evaluation measure. We consider three types of search: 
exponential, sequential and random. Most sequential algo- 
rithms are characterized by ILI = 1, whereas exponential 
and random ones typically use ILI 2 1. 
Exponential Sear& It corresponds to algorithms that 
carry out searches whose cost is O(2"). The exhaustive 
search is an optimal search, in the sense that the best so- 
lution is guaranteed. An optimal search need not be ex- 
haustive; for example, if an evaluation measure is mono- 
tonic a BRANCH AND BouND[l7] algorithm is optimal. A 

measure J is monotonic if for any two subsets SI, Sz and 
SI C_ Sz, then J(Sl) 2 J (Sz ) .  Another example would be 
an A' search with an admissible heuristic[l8]. 

Sequential Search This sort of search selects one among 
all the successors to the current state. This is done in an 
iterative manner and once the state is selected it is not pos- 
sible to go back. Although there is no explicit backtracking 
the number of such steps must be limited by O(n) in order 
to qualify as a sequential search. The complexity is deter- 
mined taking into account the number k of evaluated sub- 
sets in each state change. The cost of this search is therefore 
polynomial O(nk+'). Consequently, these methods do not 
guarantee an optimal result, since the optimal solution could 
be in a region of the search space that is not visited. 

Random Search: The idea underlying this type of search 
is to use its randomness to avoid the algorithm to stay 
on a local minimum and to allow temporarily moving 
to other states with worse solutions. These are anytime 
algorithms[l4] and can give several optimal subsets as so- 
lution. 

222 Generation of Successors 
All of the operators act by modifying in some way the 
weights wi of the features 2,. with w, E P (in the case 
of the weighting operator), or wi E {0,1} (for the rest). 

F o r w a r d  Add features to the current solution X I ,  among 
those that have not been selected yet. In each step. the fea- 
ture that makes J be greater is added to the solution. Start- 
ing with X' = 0, thefonvard step consists of: 

X ' : = X ' u { z i  ~X\X'IJ(X'U{zi})isbigger} ( I )  
The stopping criterion can be: IX'I = n' (if n' has been 

fixed in advance), the value of J has not increased in the 
last j steps, or it surpasses a prefixed value Jo. The cost 
of the operator is O(n). The main disadvantage is that it is 
not possible to have in consideration certain basic interac- 
tions among features. For example, if q , z2  are such that 
J ( { z l , z z } )  >> J({zl}) ,  J ( { Z Z ) ) .  neither21 and22 could 
be selected, in spite of k i n g  very useful. 
Backward Remove features from the current solution X ' ,  
among those that have not been removed yet. In each step, 
the feature that makes J be greater is removed from the 
solution. Starting with X' = X ,  the backward step is: 

X' := X' \ {zi E X'  I J ( X '  \ {z,}) is bigger} (2 )  
The stopping criterion can be. IX'( = n', the value of 

J has not increased in the last j steps, or it falls below a 
prefixed value Jo. This operator remedies some problems 
although there still will be many hidden interactions (in the 
sense of being unobtainable). The cost is O(n), although in 
practice it demands more computation than forward [I 21. 

Both operators (forward and backward) can be general- 
ized selecting, at each step, subsets of k elements X" and 
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selecting the one making J ( X ' u X " )  or J(X'\X") bigger, 
respectively. The cost of the operator is then O(n*). 
Compound Apply f consecutive forward steps and b con- 
secutive backward ones. If f > b the result is a forward 
operator, otherwise it is a backward one. An interesting 
approach is to perform the forward or the backward steps, 
depending on the respective values of J .  This allows to 
discover new interactions among features. An interesting 
"backtracking mechanism" is obtained, although other stop- 
ping conditions should be established i f f  = b. For exam- 
ple, for f = b = 1, if z; is added and zi is removed, this 
could be undone in the following steps. A possible stop- 
ping criterion is zi = z j .  In sequential FSA, f # b assures 
a maximum of n steps, with a cost O(nf'"1). 
Weighting: In the weighting operators, the search space is 
continuous, and all of the features are present in the solu- 
tion to a certain degree. A successor state is a state with 
a different weighting. This is typically done by iteratively 
sampling the available set of instances. 
Random: This group includes those operators that can po- 
tentially generate any orher state in a single step. The rest 
of operators can also have random components, but they are 
restricted to some criterion of "advance" in the number of 
features or in improving the measure J at each step. 

2.2.3 Evaluation Measures 
Probability of error: Provided the ultimate goal is to build 
a classifier able of correctly labelling instances generated by 
the same probability distribution, minimizing the (bayesian) 
probability of error P. of the classifier seems to be the most 
natural choice. Therefore, it is also a clear choice for J .  

Let z' E R" represent the unlabeled instances, and R = 
{wl,. . . , wm} a set of labels (classes), so that c : R" + R. 
Such probability is efined as [71: 

P, = r .  11 - mpP(wiJz71p(i)di (3) 
where p(5) = C ~ l p ( f l w ; ) P ( w i )  is the (unconditional) 
probability distribution of the instances. and P(wil?) is the 
a posteriori probability of wi being the class of 2'. 

Since the class-conditional densities are usually un- 
known, they can either be explicitly modeled (using para- 
metric or non-parametric methods) or implicitly via the de- 
sign of a classifier that builds the respective decision bound- 
aries between the classes [71. Some of these classifiers, like 
the one-nearest-neighbor rule. have a direct relation to the 
probability of error. This may require the use of more elabo- 
rate methods than a simple holdout procedure (cross valida- 
tion, bootstrapping) in order to yield a more reliable value. 
Divergence: These measures compute a probabilistic dis- 
tance or divergence among the class-conditional probability 
densitiesp(z'1w;). using the general formula: 

J = f[p(z'lwi),p(~lwz)]di (4) I 

To qualify as a valid measure. the function f must be 
such that the value of J satisfies the following conditions: 
(a) J 2 0, (b) J = 0 only when the p(qw,) are equal 
and (c) J is maximum when they are non-overlapping. If 
the features used in a solution X' C X are good ones, the 
divergence among the conditional probabilities will be sig- 
nificant. Poor features will result in very similar probabili- 
ties. Some classical choices are: Chemoff, Bhattacharyya, 
Kullback-Liebler, Kolmogorov and Matusita [7]. 

Dependence: These measures quantify how strongly two 
features are associated with one another, in the sense that 
knowing the value of one it is possible to predict the value 
of the other. In the context of feature selection, a feature is 
better evaluated the better it predicts the class. 
Interclass distance: These measures are based on the as- 
sumption that instances of a different class are distant in the 
instance space. It is enough then to define a metric between 
classes and use it as measure: 

m m 

J =  z P ( w i )  P(wj)D(wi,wj) (6)  

being z(;,j) the instance j of class wi, and Ni the number of 
instances of the class wi. The most usual distances d belong 
to the Euclidean family. These measures do not require the 
modeling of any density function, but their relation to the 
probability of error can be very loose. 
Information or Uncertainty: Similarly to the probabilistic 
dependence, we may observe i and compute the a posteri- 
ori probabilities P(w;lZ) to determine how much informa- 
tion on the class of 2' has been gained, with respect to its 
prior probability. If all the classes become roughly equally 
probable, then the information gain is minimal and the un- 
certainty (entropy) is maximum. 
Consistency: An inconsistency in X' and S is defined as 
two instances in S that are equal when considering only the 
features in X'  and that belong to different classes. The aim 
is thus to find the minimum subset of features leading to zero 
inconsistencies [I]. The inconsistency count of an instance 
A E S is defined as [14]: 

where X ' ( A )  is the number of instances in S equal to A 
using only the features in X' and X ; ( A )  is the number of 
instances in S of class k equal to A using only the features 
in XI.  The inconsisrency rare of a feature subset in a sample 
S is then: 

is1 j=;+1 

l C x 8 ( A )  = X ' ( A )  -rn*pX;(A) (7) 

(8) 
Cats I C X ~  ( A )  

IS1 
l R ( X ' )  = 

This is a monotonic measure, in the sense 
XI C X z  IR(X1)  2 IR(X2). 
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2.3 General Schemes for Feature Selection 

The relationship between a FSA and the inducer chosen 
to evaluate the usefulness of the feature selection process 
can take three main forms: embedded,filter and wrapper. 

Embedded Scheme: The inducer has its own FSA (ei- 
ther explicit or implicit). The methods to induce logical 
conjunctions[20] provide an example of this embedding. 
Other traditional machine Ieaming tools like decision trees 
or artificial neural networks are included in this scheme[lS]. 

Filter Scheme: If the feature selection process takes place 
before the induction step, the former can be seen as a filter 
of non-useful features prior to induction. In a general sense 
it can be seen as a particular case of the embedded scheme 
in which feature selection is used as a pre-processing. The 
filter schemes are independent of the induction algorithm. 

Wrapper  Scheme: In this scheme the relationship is taken 
the other way around: it is the FSA that uses the learning 
algorithm as a subroutine11 11. The general argument in fa- 
vor of this scheme is to equal the bias of both the FSA and 
the learning algorithm that will be used later on to assess 
the goodness of the solution. The main disadvantage is the 
computational burden that comes from calling the induction 
algorithm to evaluate each subset of considered features. 

2.4 General Algorithm for Feature Selection 

An abstract algorithm that unifies the behavior of any 
FSA is depicted in Fig. 1. In particular, being L a  (weighed) 
list of weighed subsets of features (i.e. states), L keeps 
the ordered set of solutions in course. Exponential algo- 
rithms are typically characterized by ILI > 1 (examples are 
BRANCH AND BOUND 1171 or A' 1181). The presence in 
the list is a function of the evaluation measure and defines 
the expansion order. Heuristic search algorithms also keep 
this list (of open nodes), and the weighting is the value of 
the heuristic. Random search methods as Evolutionary Al- 
gorithms [2] are characterized by ILI 2 l (the list is the pop- 
ulation and the weighting is the fitness value of the individ- 
uals). Sequential algorithms maintain ILI = 1. though there 
are exceptions (e.g., a bidirectional algorithm [SI would use 
ILI = 2). The second weighting (on the features of each 
solution subset) allows to include the two types of FSA ac- 
cording to their outcome (see 62.1). 

The initial list L is in general built out of the original 
set of features and the algorithm maintains the best solu- 
tion at all times (Solution). At each step, a FSA with a 
given search organization manipulates the list in a specific 
way and calls its mechanism for the generation of succes- 
sors which in turn uses J .  The result is an updated list and 
the eventual update of the best solution found so far. Notice 
that the data sample S is considered global to the algorithm. 

3 Empirical Evaluation of FSAs 
The first question arising in relation to a feature selection 

experimental design is: what are the aspects that we would 
like to evaluate of a FSA solution in a given data set? In 
this study we decided to evaluate FSA performance with re- 
spect to four particularities: relevance, irrelevance, redun- 
dance and sample size. To this end, several fundamental 
FSAs are studied to assess their performance on synthetic 
data sets with known relevant features. Then sample data 
sets of different sizes are cormpted with irrelevant andor  
redundant features. The experiments are designed to test 
the endurance of different FSAs (e.g., behaviour against the 
ratio number-of-irrelevant vs. number-of-relevant features). 

3.1 Particularities to be evaluated 
Relevance: Different families of problems are generated by 
varying the number of relevant features NR. These are fea- 
tures that, by construction, have an influence on the output 
and whose role can not be assumed by the rest (i.e., there is 
no redundance) 
Irrelevance: Irrelevant features are defined as those featu- 
res not having any influence on the output, and whose values 
are generated at random for each example. For a problem 
with NR relevant features, different numbers of irrelevant 
features NI are added to the corresponding data sets (thus 
providing with several subproblems for each choice of NR).  
Redundance: In these experiments, a redundance exists 
whenever a feature can take the role of another (perhaps 
the simplest way to model redundance). This is obtained 
by choosing a relevant feature randomly and replicating it 
in the data set. For a problem with NR relevant features, 
different numbers of redundant features N R ~  are added in a 
way analogous to the generation of irrelevant features. 

I n p u t :  
S - data  sample with f e a t u r e s  X , I X J = n  
J - evalua t ion  measure to be maximized 
GS - successor  genera t ion  opera tor  

Solution - (weighed)  f e a t u r e  subse t  
o u t p u t :  

L:= S t a r t _ P o i n t ( X ) :  
Solution:= 1 best  of L according to J ) ;  
r e p e a t  

L := Search-Strategy ( L , G S ( J ) , X ) ;  
X':= { b e s t  of L accord ing  to 51; 
i f  J(X' )  2 J(Soiution) or ( J ( X ' )  = J(So1ution) 

then Solution := X' ; 
and IX'J < ISoiutionl) 

u n t i l  S tor , ( J .L)  

Fig. 1. General Feature Selection Algorithm. 
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Sample Size: It refers to the number of instances IS1 of 
a data sample S. In these experiments, IS/ is defined as 
1.9 = akNTc, where a is a constant. k is a multiplying 
factor, NT is the total number of features ( N R  +NI + N R ~ )  
and c is the number of classes. Note this means that the 
sample size will depend linearly on the number of features. 

3.2 Evaluation of Performance 
The score criterion expresses the degree to which a solu- 

tion obtained by a FSA matches the correct solution. This 
criterion behaves as a similarity s(z, y) : X x X + [0,1] 
in the classical sense [6] ,  satisfying: 

1. s ( z , y ) = l ~ z = y  
2. S(Z>Y) = S(Y>Z) 

where s(z,y) > s(z,z) indicates that y is more similar 
to z than z. Let us denote by X the total set of features, 
partitioned in X = X R  U XJ U XR,, being XR, XI, X R ~  
the subsets of relevant, irrelevant and redundant features of 
X, respectively and call X' 2 X the ideal solution. Let us 
denote by d the feature subset selected by a FSA. The idea 
is to check how much d and X' have in common. Let us 
definedR = X R n d ,  A r  = Xr n d  anddR,  = XR, n d .  
In general, we have AT = XT n d  (hereafter T stands for a 
subindex in {R, I, R')), Since necessarily A g X, we have 
A = d R  U A r  U d R f .  The score Sx (d) : P(X) + [0,1] 
will fulfill the following conditions: 

S x ( d ) = O * d = X r  
S x ( A ) = l * d = X *  
S x ( d )  > Sx(d') indicates that A is more similar to 

The score is defined in terms of the similarity in that for 
all A & X , S x ( d )  = s(A,X'). This scoring measure 
will also be parameterized, so that it can ponder each type 
of divergence (in relevance. irrelevance and redundance) to 
the optimal solution. The set of parameters is expressed as 
a = { a n , c r r , a ~ , } w i t h C I T ~ O a n d C c r ~ = l .  

Intuitive Description The criterion SX (A)  penalizes three 
situations: 

I .  There are relevant features lacking i n  A (the solution 

2. There are more than enough relevant features in A (the 

3. There are some irrelevant features in A (the solution is 

An order of importance and a weight will be assigned 

X' than A'. 

is incomplete). 

solution is redundant). 

incorrect). 

(via the a~ parameters). to each of these situations. 
Formal Description 

The precedent point (3.) is simple to model: if suffices to 
check whether > 0, being A the solution of the FSA. 
Relevance and redundance are strongly related given that, 
in this context, a feature is redundant or not depending on 
what other relevant features are present in d .  

Notice then that the optimal solution X' is not unique, 
though all them should be equally valid for the score. 
To this end, the features are broken down in equivalence 
classes, where elements of the same class are redundant to 
each other (i.e., any optimal solution must comprise only 
one feature of each equivalence class). 

Being A a feature set, we define a binary relation be- 
tween two features zi,zj E d as: z; - zj - z; and 
zj represent the same information. Clearly - is an equiv- 
alence relation. Let A" be the quotient set of A under -, 
A" = {[z] I z E A}, any optimal solution A' will satisfy: 

I .  IA'I = IXRI 
2. V[zi] E A" : 3zj  E [zi] : zj E A' 

We denote by A' any of these solutions. 
Construction of the score 

In the present case, the set to be split in equivalence 
classes is formed by all the relevant features (redundant or 
not) chosen by a FSA. We define then: 

A: = ( d R  U d R , ) "  

(equivalence classes in which the relevant features chosen by ~1 

FSA ore split) 
x; = (X, U xR<)-  

(equivalence classes in which the original feature1 ore split) 
Letdj;WX; = {[zi] E X; I 3[q] E A: : [zj] 2 [z;]} 

and define, for Q quotient set: 

F(Q)  = (121 - 1) 
I d G Q  

The idea is to express the quotient between the number 
of redundant features chosen by the FSA and the number it 
could have chosen, given the relevant features present in its 
solution. In the precedent notation, this is written (provided 
the denominator is not null): 

F ( 4 i )  
F(A; w x;) 

Let us finally build the score, formed by three terms: re- 
levance, irrelevance and redundance. Defining: 

0 if F ( d g  W X;) = 0 
otherwise. '' = [ & (1 - m) F ( A - )  

the score is S x ( d )  = ~ R R  + a ~ t R '  + arI ,A  E X. 
Restrictions on the a= 

We can establish now the desired restrictions on the be- 
havior of the score. From the more to the less severe: there 
are relevant fearures lacking, there are irrelevant features, 
and there is redundancy in the solution. This is reflected in 
the following conditions on the aT: 

1 .  Choosing an irrelevant feature is better than missing a 

relevant one: fi'fi 
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2. Choosing a redundant feature is better than choosing 

We also define a~ = 0 if IXT~ = 0. Notice that the 
denominators are important for, as an example, expressing 
the fact that it is not the same choosing an irrelevant feature 
when there were only two that when there were three (in 
the latter case, there is an irrelevant feature that could have 
been chosen when it was not). 

4 Experimental Evaluation 

an irrelevant one: fi > fi 

In this section we detail the experimental methodology 
and quantify the various parameters of the experiments. 
The basic idea consists on generating sample data sets with 
known particularities (synthetic functions f )  and hand them 
over to the different FSAs to obtained a hypothesis H. The 
divergence between the defined function and the obtained 
hypothesis will be evaluated by the score criterion. This 
experimental design is illustrated in Fig. 2. 

Figure 2. FlowChart of Experimental Design. 

4.1 Description of the FSAs used 

Table 1. FSAs used in the experiments. 

4.2 Implementations of Data Families 
A total of twelve families of data sets were generated 

studying three different problems and four instances of 
each, by varying the number of relevant features NR.  Let 
zl,. . . , xn be the relevant features of a problem f. 
Panty: This is the classic binary problem of parity n, where 
the output is f (q,. . . , xn) = 1 if the number of z; = 1 is 
oddand f ( z l , . . .  ,zn) =Outherwise. 
Disjunction: A disjunctive task, with f (21,' . ' ,z,) = 1 
if (21 A ... Ax,,) V A .  .. Az,), withn' = ndiw2 
if n is even and n' = ( n d i u 2 )  + 1 if n is odd. 
GMonks: This problem is a generalization of the classic 
monk problems [19]. In its original version, three indepen- 
dent problems were applied on sets of n = 6 features that 
take values of a discrete, finite and unordered set (nominal 
features). Here we have grouped the three problems in a 
sinele one comouted on each seement of 6 features. Let n 

The ten FSAs used in the experiments were : E-SFG. 
QBB, LVF, LVI, C-SBG, RELIEF, SFBG, smc, W-SBG. and 

versions of SFG using entropy and the accuracy of a C4.5 
inducer, respectively. The algorithms C-SBG, W-SBG are 

be &iple of k, k = ,,div6 .&j b = 6(kt - 1) + 1, for 
1 5 k' 5 k. Letusdenotefor"l"thefirstvalueofafeature, 

zb+4 = 

W-SFG (see Table 1). The algorithms E-SFG. W-SFG are for ~~~ the second, etc. ne problems are the following: 
p1 : (za = za+l) 

2~ p 2  ! n~ 2; = , in  2L,, , zLli. 
I -"_" -. . - . .. ...... _. ~ ~~~ - 

versions of SBG using consistency and the accuracy of a 
C4.5 inducer, respectively. During the course of the experi- 
ments the algorithms FOCUS, B&B, ABB and LVW were put 
aside due to their unaffordable consumption of resources. 
For a review of all these algorithms, see [161. 

Since RELIEF and E-SFG give as output an ordered list 

3, p 3  : (zb+4 = 3AJb+3 = 1)V(zs+4 + 3Azs+l + 2) 
For each segment, the boolean condition p2  A 7(p1 ~ 

P3) is checked. If this condition is satisfied for s or more 
segments with s = n. diw 2 (being n, the number of seg- 
ments) the function GMonks is 1; otherwise, it is 0. 

of features zi according to their weight w;. a filtering cri- 
terion is necessary to transform this solution to a subset of 
features. The procedure used here is simple: since the in- 
terest is in determining a g w d  cut point, first those w; fur- 
ther than two variances from the mean are discarded (that 
is to say, with very high or very low weights). Then define 
si = wi + and aj = E:=, si. The objective is to 
search for the feature zj such that: 

is maximum. 

4.3 Experimental Setup 
The fint 

group refers to the relationship between irrelevance vs. rel- 
evance. The second refers to the relationship between re- 
dundance vs. relevance. The last group refers to sample 
size. Each group uses three families of problems (Parity, 
Disjunction and GMonks) with four different instances for 
each problem, varying the number of relevant features N R .  
Relevance: The different numbers N R  vary for each prob- 
lem, as follows: (4 ,8 ,  16, 32) (for Parity), ( 5 ,  10, 15, 20) 
(for Disjunction) and (6,12, 18,24) (for GMonkr). 

The experiments were divided in three 

a . n - 3  1 - 1- 
an n 

The cut point is then set between zj and zj+l. 
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Irrelevance: In these experiments, we have NI running 
from 0 to 2 times the value of NR, in intervals of 0.2 (that 
is, eleven different experiments of irrelevance for each NR). 
Redundance: Similarly to the generation of irrelevant fea- 
tures, we have Nn, running from 0 to 2 times the value of 
NR. in intervals of 0.2. 

Sample Size: Given the formula JSI = akNTc (see 53.1). 
different problems were generated considering k E t0.25, 
0.5, 0.75, 1.0, 1.25, 1.75, 2.0). NT = NR + NI + NR*. 
C =  2, O( = 20andN1 = NR, = N ~ d i v 2 .  

4.4 Results 
Due to space reasons, only a sample of the results are 

presented, in Figs. 3(a) and (b). Each p i n t  is the average 
of 10 independent runs with different random data samples. 
The horizontal axis represents the ratios between these par- 
ticularities as explained above. The vertical axis represents 
the average results given by the score criterion. 

In Fig. 3(a) the C-SBG algorithm shows at first a good 
performance but clearly as the irrelevance ratio increases, 
it falls dramatically (below the 0.5 level from NI = NR 
on). Note that for NR = 4 performance is always perfect 
(the plot is on top of the graphic). The plots in Fig. 3(b) 
show additional interesting results because we can appreci- 
ate the curse of dimensionality effect [IO]. In this figure, 
W-SBG present an increasingly poor performance (see the 
figure from top to bottom) with the number of features pro- 
vided the number of examples is increasing in a linear way. 
However, in general, as long as more examples are added 
performance is better (see the figure from left to right). 

A summary of the resulls is displayed in Fig. 4 for the ten 
algorithms, allowing for a comparison across all the sample 
data sets with respect to each studied particularity. Specifi- 
cally. Figs. 4(a). (b) and (c) show the average score of each 
algorithm for irrelevance, redundance and sample size, re- 
spectively. In each graphic there are two keys: the key to 
the left shows the algorithms ordered by ioial average per- 
formance, from top to bottom. The key to the right shows 
the algorithms ordered by average performance on the lusi 
abscissa value, also from top to bottom. In other words, 
the left list is topped by the algorithm that wins on average, 
while the right list is topped by the algorithm that ends on 
the lead. This is also useful to help reading the graphics. 

Fig. 4(a) shows that RELIEF ends up on the lead of the 
irrelevance vs. relevance problems, while SFFG shows the 
best average performance. The algorithm W-SFG is also 
wellpositioned. Fig.4@) showsthatthealgorithms ~ v ~ a n d  
LVI together with C-sBG are the overall best. In fact, there 
is a bunch of algorithms that also includes the twoflooring 
and QBB showing a close performance. Note how RELIEF 
and the wrcrppers are very poor performers. Fig. 4(c) shows 
that the wrapper algorithms seem to be able to extract the 
most of the data when there is a shortage of it. Surprisingly, 

:I , , , , , , , , , 
(a) Irrelevance YS. Relevance - Parity - C-SBG. 

s .a a. U. .1 II I. I '  /. I S  1 
-,I_ 

Figure 3. Some results to irrelevance, rele 
vance and sample size. 

the backward wrapper is just fairly positioned on average. 
The SWG is again quite good on average, together with C- 
SBG. However, all of the algorithms are quite close and 
show the same kind of dependency to the data. Note the 
general poor performance of E-SFC, provided it is the only 
algorithm that computes its evaluation measure (entropy in 
this case) independently for each feature. 

5 Conclusions 
The task of a feature selection algorithm (FSA) is to pro- 

vide with a computational solution to the feature selection 
problem motivated by a certain definition of relevance. This 
algorithm should be reliable and efficient. The many FSAs 
proposed in the literature are based on quite different princi- 
ples (as the evaluation measure used, the precise way to ex- 
plore the search space, etc) and loosely follow different def- 
initions of relevance. In this work a way to evaluate FSAs 
was proposed in order to understand their general behaviour 
on the particularities of relevance, irrelevance, redundancy 
and sample size of synthetic data sets. To achieve this goal, 
a set of controlled experiments using artificially generated 
data sets were designed and carried out. The set of opti- 
mal solutions is then compared with the output given by the 
FSAs (the obtained hypotheses). To this end, a scoring mea- 
sure was defined to express the degree of approximation of 
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,Redundance 

Figure 4. Results ordered by total average 
performance on the data sets (left inset) and 
by end performance (right inset). 

the FSA solution to the real solution. The final outcome of 
the experiments can be seen as an illustrative step towards 
gaining useful knowledge that enables to decide which algo- 
rithm to use in certain situations. The behaviour of the a l p  
rithms to different data particularities is shown and thus the 
danger in relying in a single algorithm. This points in the 
direction of using new hybrid algorithms or combinations 
thereof for a more reliable assessment of feature relevance. 
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