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Abstract11

In this paper, we present a novel multi-level procedure for finding and tracking leaves of

a rosette plant, in our case up to 3 weeks old tobacco plants, during early growth from

infrared-image sequences. This allows measuring important plant parameters, e.g. leaf

growth rates, in an automatic and non-invasive manner. The procedure consists of three

main stages: preprocessing, leaf segmentation, and leaf tracking. Leaf-shape models are

applied to improve leaf segmentation, and further used for measuring leaf sizes and han-

dling occlusions. Leaves typically grow radially away from the stem, a property that is

exploited in our method, reducing the dimensionality of the tracking task. We success-

fully tested the method on infrared image sequences showing the growth of tobacco-plant

seedlings up to an age of about 30 days, which allows measuring relevant plant growth

parameters such as leaf growth rate. By robustly fitting a suitably modified autocatalytic

growth model to all growth curves from plants under the same treatment, average plant
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growth models could be derived. Future applications of the method include plant-growth

monitoring for optimizing plant production in green houses or plant phenotyping for plant

research.

Keywords: leaf segmentation, leaf tracking, leaf modeling, plant growth, phenotyping12

1. Introduction13

With increasing requirements for food due to a growing world population, optimizing14

plant production is becoming an important factor for the agricultural industry. Plant per-15

formance and productivity results from a complex interaction between its genotype and16

environment, resulting in its expressed properties, i.e. its phenotype. Thus, if one seeks17

to understand these interdependencies, e.g. to achieve larger yields, plant phenotypes in18

terms of expressed plant structure and function need to be analyzed quantitatively. For19

this task automatic, non-invasive methods are highly desirable, but problems arise from20

the complex and varying appearance of plants, making it difficult to detect and recognize21

relevant plant organs and growth patterns.22

Previously both color and stereo vision have been used to obtain some relevant plant23

features, mainly for recognition and classification purposes (Loch et al., 2005; Moeslund24

et al., 2005; Quan et al., 2006; Biskup et al., 2007; Song et al., 2007; Jin and Tang, 2009;25

Alenyà et al., 2011a; Teng et al., 2011; Silva et al., 2013; Wang et al., 2013), but those26

procedures are error prone, or require the concourse of a user to correctly segment and27

characterize individual leaves. For instance, Quan et al. (2006) modeled plants directly28

from a set of images for a better supervised leaf segmentation. Jin and Tang (2009) de-29

tected corn plants by only using depth images without dealing with the tracking issue. Leaf30

tracking has, to our knowledge, so far only been performed with unambiguously identified31
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leaves. For example, Biskup et al. (2007) tracked the leaf orientation angles, and Polder32

et al. (2007) used penalized likelihood warping and robust point matching of leaf contours33

in order to detect emerging damages caused by disease. Alenyà et al. (2011b) showed how34

a robot arm can track a manually selected single leaf using some geometrical characteris-35

tics and color information. The problem of tracking multiple leaves was not addressed by36

these works. The work in (De Vylder et al., 2013) uses active contours to track multiple37

leaves, but they process time lapse plant images in batch once the complete sequence is38

acquired. Their proposed segmentation approach is triggered with the last frame of the39

sequence in a semi-supervised manner and the detection phase can omit new leaves since40

it goes to the first frame starting from the last one. De Vylder et al. (2011) combined41

active contours with a Bayesian framework to eliminate parameter tuning steps in the seg-42

mentation and tracking phases. However, they need manually segmented images to have43

a good estimate of the probability distribution functions for the calculation of internal and44

external probabilities. Both approaches (De Vylder et al., 2013, 2011) have also not been45

tested on plant sequences that last longer than 3 days.46

Along this line, the European project GARNICS (Gardening with a Cognitive System)1
47

aimed at 3D sensing of plant growth and building perceptual representations for learning48

the links to actions of a robot gardener (see Figure 1). The project encompassed both49

the long-term learning of treatments to achieve specific goals (maximum leaf growth, ho-50

mogeneous plant growth) as well as the short-term robot interaction with plants (for leaf51

surface measurement, disocclusion, probing), and this study has been conducted in this52

context.53

1http://www.garnics.eu

3
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Figure 1: Robot gardener used in the European project GARNICS. A black-and-white 5 MP camera with
infrared filter and required illumination devices were mounted on a lightweight KUKA LBR4 robot arm.
For each tobacco plant the robot arm captured a stereo image pair from a top view at every hour.

More precisely, we address the problem of sensing and controlling plant growth pa-54

rameters by ways of leaf tracking and model fitting, using a stereo infrared camera set-up,55

monitoring tobacco seedlings during their first three weeks of growth. A major difficulty56

hereby arises from the complex appearance of plants in the image. Leaves are weakly57

textured, often overlapping, thus occluding each other, and their form may be distorted in58

the 2D projection due to steep leaf angles with respect to the camera view. Under these59

conditions, the automated image segmentation of individual leaves is highly challenging,60

and cannot be guaranteed. In this work, we first over-segment the infrared images and then61

employ a merging procedure using a 2D leaf-shape model, but also incorporating 3D in-62

formation from stereo matching. The main growth curves of the plant leaves are extracted63

and used to analyze plant development over time. Segmentation failures appear as noise64

in the system, and can be handled at least to some degree. Once the main growth curves65
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corresponding to the individual leaves of the plant are found, erroneous segments can be66

removed, and by using a leaf-shape model, the growth rates for each identified leaf can be67

computed.68

Rosette plants are commonly used in plant research facilities, and the automatic growth69

analysis of seedlings would come in handy for many laboratories. Furthermore, growth70

monitoring of seedlings can be used in plant production to optimize plant treatments, e.g.71

with respect to the provision of water and nutrients or light requirements. Size and color72

distribution of plant leaves over time are important cues to monitor the lack of such re-73

quirements, avoiding plant stress situations.74

Note that this study has also been described as a part of a patent (Wörgötter et al.,75

2013).76

2. Plant Material77

Six tobacco plants (Nicotiana tobacum cv. Samsun) were grown under constant light78

conditions ( 500µE m−2s−1) with a 16h/8h day/night rhythm. Three of them (Plant IDs79

79329, 79335, and 79338) received 1.8ml of water every other hour (“Treatment 1”), the80

others (Plant IDs 79330, 79336, and 79339) received 0.9ml of water and 0.5ml of nutrient81

solution with 1% Hakaphos green every other hour (“Treatment 2”). Water and nutrient82

solution were applied by the GARNICS robot system, positioning small tubes, one for wa-83

ter and one for nutrient solution, at predefined locations and pumping using an automated84

flexible-tube pump.85

In the GARNICS project, treatments were selected to produce training data for a cog-86

nitive system. The actual amounts of water and nutrient solution are therefore well adapted87
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to the soil substrate such that the sets of plants show distinguishable performance of gen-88

erally well growing plants. Finding an optimal treatment was left for the system. The soil89

used for the experiment (“Kakteenerde”) has low nutrient content and dries relatively fast90

with an approximately exponential behavior A = A0 exp(−t/τ), where τ ≈ .7days.91

We applied the proposed leaf tracking and modeling algorithm to tobacco-plant se-92

quences showing the growth from germination well into the leaf development stage, i.e.93

we started our observations at growth stage 09 and typically stopped at stage 1006 (accord-94

ing to the extended BBCH-scale presented in CORESTA (2009)), due to size restrictions.95

3. Method96

3.1. Overview97

Our framework for continuous measurement of plant growth parameters consists of98

three main parts: data acquisition and preprocessing, segmentation of all frames from a99

plant video sequence, and consistent leaf tracking and modeling of the segmented leaves.100

A schematic showing all steps of the procedure and labeled by numbers is presented in101

Figure 2.102

As input data we use gray-scale stereo images acquired with an infrared camera at-103

tached on a robot arm. We compared different illumination options and found that plant104

structures and boundaries between tobacco leaves could be detected more easily for in-105

frared light than for visible light. In addition, plants do not react to the applied 880nm106

IR light, e.g. by photosynthetic activity. Consequently, illumination and acquiring images107

at night is possible without influencing plant growth, in contrast to visible light. A pair108

of images (left and right) is captured at each time step by moving the robot head with the109
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Figure 2: Schematic of the multi-level procedure for segmenting and tracking leaves. Numbers mark the
different computational steps of the procedure. (A) Acquired left frame. (B) Acquired right frame. (C)
Disparity map estimated using block matching. (D) Left frame after background removal. (E) Image seg-
mentation results using the method of superparamagnetic clustering of data (here and further scaled up for
a better visibility). (F) Segments after segment merging, and (G) after relabeling. (H) Angle distribution of
corrected segments for 100 frames. (I) Angle histogram derived from the angular distribution. (J) Tracked
segments with reassigned unique labels. (K) Ellipse models fitted to the tracked segments. (L) Plant growth
curves estimated from ellipse models.
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infrared camera and light source, providing a stereo baseline (see Figure 2(A) and (B)).110

In step 1 of the procedure, we compute a depth (disparity) map from the stereo pair using111

a block-matching algorithm from the OpenCV library Bradski (2000) (see Figure 2(C)).112

This method gave preferable results compared to other methods. We further removed the113

background from the scene to simplify the following computations (see Figure 2(D)).114

Next, in step 2, each preprocessed infrared image of the sequence is segmented in-115

dependently. Afterwards, each leaf is represented by one or more segments as shown in116

Figure 2(E). In step 3, we employ a merging procedure to group the segments into leaf117

shapes (Figure 2(F)) by finding the partition that minimizes the overlap between the con-118

vex hulls of the segments. This is a good enough working assumption as long as the119

leaves have convex shapes. This merging stage is a necessary improvement, but it still120

does not guarantee success. Sometimes there are over-segmentations which remain unre-121

solved, as shown in Figure 2(F). Note that after merging, the segments are relabeled (see122

Figure 2(G)).123

In step 5 of the procedure, the position of the centroid of each segment is computed124

with respect to the plant stem position in polar coordinates. The plant stem can be found125

with sufficient accuracy by computing the centroid of the foreground (containing only the126

plant) at an early growth stage. By presenting each segment as a data point in an angle-127

time plot, growth tracks can be made visible because the tobacco-plant leaves do hardly128

change their azimuthal angle (Figure 2(H)). Leaves that are growing in the same direction129

can be distinguished based on their depth values. Hence, when computing the angular130

histogram of the centroids over a larger time interval (step 6 of the procedure), the data131

points of the growth tracks accumulate at the angular positions of the corresponding leaves132
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(see Figure 2(I)). By first detecting the peaks in the histogram using a threshold, we can133

cluster the segments belonging to the different tracks and assign them unique, temporally134

consistent labels in step 4 (see Figure 2(J)). In the final step (9), tracked segments, corre-135

sponding to leaves, are used for fitting appropriate ellipse models (see Figure 2(K)) and136

estimating growth curves for individual leaves as shown in Figure 2(L).137

3.2. Image Acquisition138

For image acquisition a black-and-white 5 MP camera with infrared pass filter has139

been used. Images have been taken at regular, hourly time intervals for each plant over a140

time period of 30 days. The camera was mounted on a lightweight KUKA LBR4 robot141

arm (see Figure 1). For each plant the robot arm captured a stereo image pair from a top142

view every hour by moving a certain distance (app. 5 mm) along the baseline.143

3.3. Preprocessing144

Before segmenting the images, we remove the background as shown in the second145

row of Figure 3. The table, the plant pot, and the soil visible in the near infrared (NIR)146

images can be easily eliminated by applying a threshold. Furthermore, a disparity map is147

computed with a standard block-matching technique from the stereo infrared images.148

3.4. Leaf Segmentation149

For segmenting the images, we use the method of superparamagnetic clustering of data150

which runs in real-time on a Graphics Processing Unit (GPU). The method of superpara-151

magnetic clustering is inspired by systems of interacting ferromagnets or spins. These152

systems are characterized by three phases. At low temperatures, spins are fully aligned153

with one another, while at intermediate temperatures, groups of aligned spins coexists. At154
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higher temperatures, the order breaks down into a disordered state. When representing155

pixels by spins and defining spin-spin interactions dependent on the similarity of adja-156

cent pixels, a natural partition of the image can be found in the superparamagnetic regime157

simulating the stochastic dynamics of the system with a Metropolis algorithm.158

The method of superparamagnetic clustering has been described in detail elsewhere159

Abramov et al. (2012). Superparmagnetic clustering has been used previously to segment160

leaves based on color and depth acquired with a Kinect camera (Wallenberg et al. (2011)).161

However, in this case, plants were fully grown and leaves considerably larger. In our162

experimental set-up, leaves are smaller, and the task of obtaining sufficiently accurate163

depth information for depth-based segmentation would be far more challenging. Typical164

segmentation results obtained by this technique are shown in the last row of Figure 3.165

Due to varying light conditions and very low intensity differences at the leaf borders,166

Figure 3: Segmentation of near infrared (NIR) images using the method of superparamagnetic clustering.
First row shows left input frames captured with an infrared camera, middle row indicates frames after the
background removal, and the last row shows initial segmentation results (after step 2 of the procedure).
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leaves may be wrongly merged by the method. To avoid this, the segmentation runs in the167

over-segmentation mode (see Figure 3). This strategy ensures that segments adhere better168

to leaf borders. Leaves represented by more than one segment can be recovered later on169

(see Section 3.5), while recovery of two (or more) leaves from one big wrongly merged170

segment (under-segmentation) is more difficult.171

3.5. Segment merging172

The output given by the image segmentation module many times splits one leaf into173

more than one segment and may contain noisy regions, such as a part of the pot or some174

areas of high intensity compared to the background. Therefore, additional procedures are175

required in order to obtain a better segmentation. The first major improvement is achieved176

by correcting the initial segments with a leaf-shape descriptor. For this purpose tobacco177

plant leaves can be described by their convex hulls with sufficient accuracy.178

The segment-merging procedure works as follows. First of all, segments with cen-179

troids located far from the plant stem are eliminated (see the first row in Figure 4). Noisy180

speckles are removed as well (see the second row in Figure 4). Then a graph is built where181

the centroids of the segments represent the graph nodes. Edges are drawn between two182

nodes if the segments are smaller than a threshold apart both in (x, y) distance and depth.183

Each edge represents a possible merge. Hence, for a total number of s edges, there are184

2s possible merging configurations Mi. Neglecting occlusions, the desired segmentation185

should more or less preserve the shape of the leaves, i.e., using the segment’s convex hull186

as leaf-shape model, the total overlap of the convex hulls of all segments should be smallest187

for this configuration. Let now be Cj the convex hull of segment j, then we compute the188

overlap of a particular merging configuration Mi as Oi =
∑

elm∈Mi
Cl∩Cm+

∑
k Ck∩B,189

11



Figure 4: Segment correction performed by the convex hull approximation with depth information. Top
row shows initial segments. Second row indicates clean input segments without noise and borders. Third
row represents disparity maps estimated by the block matching technique for a pair of NIR images. Final
segments after segment merging are shown in the last row (after step 3 of the procedure).

where B is the background region. We select the merging configuration with the smallest190

overlap. For a small number of edges, we can simply evaluate all possible configurations.191

This is the case in our scenario. For large number of edges, approximate methods would192

have to be employed to find the minimum.193

The depth data (see the third row in Figure 4) is used to remove edges between neigh-194

boring segments that have a large difference in disparity. This also helps to keep s reason-195

ably small. Typical results of the segment-merging procedure segmentation are shown in196

the last row of Figure 4.197

Merging segments that represent a leaf based on shape features is a difficult problem198

for the following reasons: Only a small part of the boundary of a leaf segment corresponds199
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to the actual leaf boundary (the other ones are inner boundaries, i.e, non-leaf boundaries).200

Pairwise merging, as employed in standard split-and-merge approaches, will thus only be201

successful for simple cases because the shape of the whole leaf will only become apparent202

when all the segments have been merged correctly and all inner boundaries have been203

removed through the merging process. This is a typical chicken-egg problem. Occlusion204

adds further difficulties by altering the visible shape of the leaves. For this reason, given205

the small number of segments, we opted for the described merging technique which avoids206

having to apply a standard pairwise merging procedure (Horowitz and Pavlidis (1974);207

AlenyÃ et al. (2013)) and instead tests for all possible combinatorial solutions.208

3.6. Tracking209

Usually leaves grow at an almost constant azimuth angle with respect to the plant stem210

during their development, and even if two leaves have the same angle, their depth values211

typically are different. Therefore, we can make use of the natural growth pattern of plant212

leaves for solving the tracking issue.213

For each frame, we first calculate coordinates of the plant stem p = {px, py} as214

px =
1

N

N∑
i=1

sxi , py =
1

N

N∑
i=1

syi , (1)

where N is the total number of existing segments, whose centers are given by {sx, sy}.215

Each segment center is then represented by r and θ defining the radius and angle in216

polar coordinates as217

r =
√

(sx − px)2 + (sy − py)2 , θ = arctan 2(
sy − py
sx − px

) . (2)
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At each acquired frame, all extracted N segment angles are combined into a histogram218

H representing the distribution of angles over previous T frames as219

H = {hi : i ∈ [1, 2, · · · , 360

k
]} ,

hi =
N∑
n=1

T∑
t=1

δn,t , (3)

δn,t =

 1 if i− 1 < θn,t

k
< i

0 else
, (4)

where k is the bin size. In our experiments k and T values are chosen as 10 and 100220

unless otherwise stated. Fig. 5 (top row) shows four plant images. The corresponding221

segments from the merging procedure are shown in the second row. The respective angular222

distributions of their centroid positions over 100 frames are plotted in the third row of223

Fig. 5. The resulting histogram representation for each plant image is depicted in the224

fourth row in Fig. 5.225

We further continue with calculating local maxima (i.e. peaks) in each histogram and226

use them to cluster the data. Let mi and mj be the angle positions of two local maxima227

derived from a given angle distribution. The maximum at mj is basically ignored if mi −228

mj < τd, where τd is a threshold. In our experiments, we use τd = 40°. The extracted local229

maxima (i.e. all mi) are shown as red circles in Fig. 5. All other local maxima (i.e. all mj)230

14



Figure 5: Tracking plant leaves with segment angles. Top row shows sample original plant images with
corresponding corrected segments depicted in the second row. Segments are here scaled up for a better
visibility. Respective angular distribution of segments over 100 previous frames are illustrated in the third
row. Histogram representation of each distribution is depicted in the fourth row. Circles in red indicate
calculated final local maxima with assigned unique labels. Dashed lines show the threshold values for local
maxima. Last row indicates the final tracked leaf segment labels with their unique labels.
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are ignored since their distances to their nearest neighbors are below threshold. We also231

ignore those maxima which are smaller than the average histogram value232

τm =
k

360

360
k∑
i=1

hi . (5)

The threshold value τm for each histogram is shown as dashed lines in the fourth row of233

Fig. 5.234

The tracking phase is concluded by reassigning a new unique label li for each maxima235

mf
i at frame number f . The label li is transfered to another local maximum mf+1

j in the236

next frame f + 1, if those maxima are neighbors within a certain threshold τd such that237

|mf
i − mf+1

j | < τd. In this way, the final label-maxima correspondence map is updated238

at each frame to track segments continuously. In Fig. 5 (fourth row) the assigned labels239

corresponding to the extracted local maxima (indicated by red circles) are displayed. The240

first image shows the plant with three leaves, i.e. the cotyledons and first true leaf, then241

three more leaves appear one after the other.242

During the tracking phase, the disparity values of corrected segments are used to dis-243

tinguish leaves overlapping one another as shown in the last column of Fig. 5. Here, a244

new leaf, assigned with label 6, is appearing and occluding the leaf with number 1. In this245

case, these two leaves have almost the same angle, however, due to the differences in their246

disparity values, a new label can be assigned to the leaf. The final segmentation result is247

shown in the last row of Fig. 5.248
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3.7. Leaf modeling and extracting leaf-growth curves249

Since leaves can occlude each other, the size of the tracked segments extracted using250

the methods described in the previous section cannot be used directly to estimate plant251

growth parameters. To address weak to medium occlusions we fit an ellipse model defined252

as ξ = {C,Θ,H,W}, where C, Θ, H, andW represent ellipse center position, tilt angle,253

and the lengths of the major and minor semiaxes (height and width), respectively, to each254

tracked segment.255

In order to calculate these ellipse parameters, we first determine each leaf tip position256

T , i.e., a segment point with the maximum distance to the plant stem, from N segment257

edge points (ex, ey) as258

T = {Tx, Ty} = arg max
i

(di) ,

di =
√

(exi − px)2 + (eyi − py)2 , i ∈ [1, · · · , N ] , (6)

where px and py are the plant stem coordinates given in Eq. (1). We can now calculate259

the ellipse centroid coordinates C = {Cx, Cy} as,260

Cx =
Tx + px

2
, Cy =

Ty + py
2

. (7)
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Next, Θ,H, andW parameters can be approximated as261

Θ = arctan 2(
Ty − py
Tx − px

) ,H =

√
(Tx − px)2 + (Ty − py)2

2
,W =

1

N

N∑
i=1

di , (8)

where d is the distance of N segment edge points to the plant stem and is given in Eq. (6).262

Leaf area is then computed from the respective ellipse size depending onH andW values.263

Fig. 6 shows an example how segments are corrected, labels tracked, and ellipses264

fitted. In the top row, individual segmentations after segment merging (step 3) of the265

method are presented. The second row shows segments with reassigned labels after the266

tracking process has been completed (steps 5-7). The last row shows the ellipse mod-267

els fitted to each segment. A movie with derived segments and ellipse models can be268

found at www.dpi.physik.uni-goettingen.de/˜eaksoye/GARNICS. Fig-269

Figure 6: Leaf modeling with ellipses. Top row shows sample frames with corrected segments. Second row
depicts corresponding tracked segments with reassigned unique labels. Here, each segment color represents
one unique label. Last row is with final ellipse models estimated for each tracked leaf.
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ure 7 shows ellipse tracking results for all six plants.270

Our leaf modeling approach is a searching-based method and there exist similar works271

in the literature (Song and Wang, 2007; Kaewapichai and Kaewtrakulpong, 2008). Chien272

et al. (2011) proposed an alternative ellipse detection framework which applies elliptical273

Hough transform to different levels in the image pyramid. Although this approach is robust274

Figure 7: Tracking results and estimated ellipse models for six different tobacco plants.
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to noise during the extraction of multiple ellipses, it cannot be applied to our plant image275

sequences since small leaf segments, observed in the first weeks of the seedling, can vanish276

in the coarsest resolution in the image pyramid. Thus, detection of leaves can be delayed277

in the temporal scale.278

3.8. Resolving total occlusion279

In some cases, we observed that disparity and angle cues from Section 3.6 are not280

enough to distinguish between leaves. When a leaf is completely occluded by a subse-281

quently appearing leaf, the first leaf’s growth curve is sometimes continued by the second282

leaf. See e.g. Figure 7 Plant ID: 79330: Cotyledons (segments 1 and 2 in red and green,283

respectively) grow to a small size as expected, but in the 5th and following depicted time284

instances seem to grow strongly. Same is true e.g. for Plant ID 79336. Fortunately this can285

be easily detected and corrected when plotting growth curves in terms of ellipse sizes as a286

function of time (cmp. log-plots of the growth curves in Figure 8).287

The raw data (Figure 8 top left) is median filtered with a filter length of 24h in order288

to suppress diurnal variations. Subsequently it is smoothed and small gaps interpolated by289

normalized convolution Knutsson and Westin (1993) using a Gaussian kernel with stan-290

dard deviation 9h, length 27h (Figure 8 top right). The resulting smooth curves are filtered291

to be monotonically increasing by processing them in positive time direction, keeping a292

vale if its is the current maximum, else replacing the current value by the so far seen max-293

imum (Figure 8 bottom left). This enforces the assumption that leaves are not shrinking.294

These smooth monotonic curves are then cut into separate curves at gaps (cmp. Figure 8295

bottom left, black lines, with the corresponding lines in Figure 8 bottom right), or when296

an almost non-growing part is followed by a strongly growing one (cmp. Figure 8 bottom297

20



0 200 400 600 800
10

1

10
2

10
3

10
4

10
5

0 200 400 600 800
10

1

10
2

10
3

10
4

10
5

0 200 400 600 800
10

1

10
2

10
3

10
4

10
5

0 200 400 600 800

10
−2

10
−1

10
0

10
1

Figure 8: Measured leaf size versus time for Plant ID 79336. Top left: raw data. Different colors indicate
different growth curves. Same is true for the next 2 plots. Top right: smoothed by median filter and gaps
closed by normalized convolution. Bottom left: filtered to ensure monotonic increase. Bottom right: Growth
curves split into curves belonging to a single leaf, horizontal beginnings and ends removed. Blue indicates
the first section of a growth curve, green the second and red the third section stemming from one initial
growth curve. The vertical and horizontal axes represent leaf size (cm2) and time (hours).

left, e.g. red and green lines, with the corresponding lines in Figure 8 bottom right). At298

each curve, initial or trailing horizontal parts are removed, as they do not reliably reflect299

measurements, but extrapolations, only.300

Due to the curve cutting process, the natural emergence order, i.e. that growth curve n301

belongs to leaf n, is no longer given. Ideally curves should be sorted by the times when302

leaves have a certain, predefined size. This is not possible here, as some curves start at303
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Figure 9: Mean growth curves for the treatment with more nutrients and less water (treatment 2): Single leaf
growth curves of all 3 plants sorted by time of emergence, i.e. leaf number. Thick curves are the measured
data, fine curve is the autocatalytic model with constant y-offset robustly fitted to all curves simultaneously.
Left to right and top to bottom: cotyledons (i.e. leaf 1 and 2, being 6 curves for 3 plants), leaf 3 to 7.
Cotyledons are temporally aligned such that size 0.04cm2 corresponds to time 0h. The vertical and horizontal
axes represent leaf size (cm2) and time (hours).

quite large leaf sizes. As sorting by emergence time of the curves would lead to wrong304

ordering, we compensate the later emergence of a growth curve by fitting a tangent in log-305

scale (i.e. a purely exponential growth curve) to each curve and order by their time offsets.306

We use a high growth rate of 10%/h for the tangent, being adequate due to a measurement307

offset (cmp. Section 3.9). The resulting growth curves sorted per leaf number of plants308

from the treatment with more nutrients and less water are depicted in Figure 9. There309

curves are temporally aligned such that the time point when the first Cotyledon reaches310

size 0.04cm2 corresponds to time 0h.311
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3.9. Leaf growth modeling312

To each of the leaf-number-wise sorted growth curve groups (cmp. Figure 9) a growth313

model is fitted in a robust way (thin lines in the plots). We use the well known autocatalytic314

growth model (see e.g. Richards (1959)) with a slight modification315

A(t) = A∞(1 + exp(−gr(t− τ)))−1 − Aoffset , (9)

where A(t) is the leaf size at time t, A∞ is the final leaf size, gr is the growth rate, τ is316

a time offset. Aoffset is an offset compensating an apparent slight underestimation of the317

true leaf size.318

This model is fitted to the data using a robust error norm able to ignore outliers at319

a constant high cost. We use a variant of the truncated quadratic (Blake and Zisserman320

(1987)) where the constant cost after truncation is 10 times higher than the cost at the321

truncation limit. By this we ensure to have a maximum amount of inliers as e.g. required322

as optimality condition in random sample consensus (RANSAC, see Fischler and Bolles323

(1981)).324

The time offset τ models the leveling off of the growth curve and is not suitable to325

estimate leaf emergence. Following Tsai et al. (1997) we use the time point tc when a leaf326

reaches a small given size A(tc) = c. For our autocatalytic model we derive327

tc = τ − 1

gr
log

(
A∞

c+ Aoffset
− 1

)
. (10)

328
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4. Results329

4.1. Fitted leaf growth models330

As we are here dealing with a system to measure early plant growth, we have investi-331

gated and modeled only the first few leaves (counting cotyledons as leaves 1 and 2). When332

plants are getting bigger, we observe large and rapid variations in the size estimates for333

some leaves. This is because wrong segment and depth estimations occur more often dur-334

ing this phase. Thus measurements become less reliable making leaf sorting ambiguous.335

In Figure 10 we therefore show results for the first 7 leaves, only. Looking at fitted final336

leaf size A∞ for the averaged plant models we observe, that plants under Treatment 1 (see337

Section 2) grow much larger leaves than under Treatment 2. However, not only growth338

rates gr are higher, but also the time span τ − tc between leaf “emergence” tc and leveling339

off time τ . For Treatment 1 the average growth duration is 114h, for Treatment 2 it is 99h.340

The estimated phyllochron, i.e. the time between leaf “emergence” time points tc,341

varies also slightly, average 65h for Treatment 1 and 61h for Treatment 2. Leaf 3, the342

first leaf after the cotyledons, emerges after 2 to 3 days after these. Leaf 4 then emerges343

quicker (1.5 to 2 days) and leaf 5 then takes 5 to 6 more days to emerge. Leaves 6 and 7344

then again emerge quicker after 2 to 3 days. Thus for our small dataset we observe that345

there is no constant time interval between emergence of leaves, but leaf 5 emerges with a346

considerable delay for both treatments.347

4.2. Benchmarking the method348

The functioning of the framework presented in this paper strongly depends on the349

segmentation process (step 2 of the procedure). The correct perception of plant leaves350
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size gr τ Aoffset c = 0.1cm2 τ − tc
A∞ [cm2] [%/h] [h] [cm2] [h] [h] [h]
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ea
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en

t1

1&2 0.8 1.0 66 0.17 12 0 54
3 2.0 2.3 205 0.01 80 68 125
4 5.7 2.3 267 0.10 126 46 141
5 14.5 2.2 356 0.90 240 114 116
6 14.8 3.5 417 0.08 292 52 125
7 17.7 3.6 458 0.12 335 43 123

Tr
ea

tm
en

t2

1&2 0.3 1.1 62 0.08 72 0 -10
3 1.0 2.1 195 0.08 123 51 72
4 2.8 1.3 294 0.32 155 32 139
5 3.9 2.1 352 0.37 258 103 94
6 6.4 2.5 446 0.08 304 46 142
7 8.7 2.9 533 0.00 377 72 156

Figure 10: Fitted growth curves and parameters of autocatalytic model with constant offset Aoffset for all
leaves. Left plot: Treatment 1. Right plot: Treatment 2. The vertical and horizontal axes represent leaf size
(cm2) and time (hours).

represents the most critical component of the procedure. In our framework, the superpara-351

magnetic clustering of data has been chosen for the over-segmentation of leaves due to352

the following two reasons. First, this method accelerated on the GPU has a very high time353

performance and processes about 10 frames per second for image sizes of 640×512 pixels.354
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Second, segments can be better merged by this algorithm using the convex hull approxi-355

mation as compared to segments produced by conventional segmentation techniques such356

as the graph-based or mean shift technique from Felzenszwalb and Huttenlocher (2004);357

Comaniciu et al. (2002). This is because both of the latter techniques are dense, i.e, seg-358

ments are forced to grow until all segments are larger than a minimum segment size. As a359

consequence, segments often grow into the small cavities that exist in the space between360

other segments, distorting the actual shape of segment, or can get more easily merged with361

other segments, as can be seen in the comparative Figure 11, where corrected segments362

for plant number 79339 using the graph-based segmentation (both middle columns) and363

superparamagnetic clustering of data (right column) within our framework are shown for364

selected frames.365

In the graph-based approach the number of output segments is controlled by the thresh-366

old k which should be lower than the recommended value (k = 500) to achieve the367

over-segmentation mode. We determined experimentally that k = 150 guarantees over-368

segmentation for the majority of input frames (see the middle left column), while larger k369

values can produce dramatic merges (see the middle right column). Overall, we obtained370

better results with the superparamagnetic clustering as compared to the graph-based tech-371

nique.372

We further analyzed how much the estimated number of leaves deviate from the ground373

truth provided, and compare the performance of the superparamagnetic clustering method374

with the one of the graph-based method Felzenszwalb and Huttenlocher (2004) when used375

inside our framework.376

Figure 12 shows the comparison of the estimated number of leaves for three different377
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Figure 11: Leaf segmentation results obtained using the graph-based approach and the superparamagnetic
clustering of data. Left column shows input near infrared (NIR) images for plant number 79339. Middle
left and right columns show final segments for the graph-based method with threshold values k = 150 and
k = 200, respectively. Segments from the superparamagnetic clustering are shown in the right column. Note
that segments are here scaled up for a better visibility.

tobacco plants in the case of using the superparamagnetic clustering of data and the graph-378

based technique with the ground-truth data. The ground-truth data is obtained through379

human visual inspection, counting the number of leaves, including partially occluded ones.380

Both ground truth and the automatically computed number of leaves using our framework381

are shown for both segmentation approaches as a function of days. We can see that the382

number of leaves estimated with the superparamagnetic clustering agrees better with the383

ground truth than the graph-based method. However, both methods cannot handle the384

plant number 79336 after 25 days (see the high deviation between the estimated and actual385
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Figure 12: Comparison of the estimated number of leaves obtained for plant numbers 79335 (top row), 79336
(middle row), and 79339 (last row) using the graph-based approach and the superparamagnetic clustering
of data for over-segmentation. The manually measured observable and actual existing number of leaves are
used here as ground-truth data.

Plant number Graph-based (k = 150) Graph-based (k = 200) Superparamagnetic

79335 1.2230 1.3519 1.0021
79336 2.0962 2.2180 1.4913
79339 0.9883 0.9022 1.0268

Table 1: The root-mean-square (RMS) error between the estimated and actual observed number of leaves
for three different plants for the graph-based approach and the superparamagnetic clustering of data when
used in our framework.
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observed number of leaves in Figure 12 (middle row). A quantitative evaluation of both386

methods with respect to the observable number of leaves based on the root-mean-square387

error is presented in Table 1.388

5. Discussion389

The found average growth models are well in accordance with established literature.390

Average per leaf growth rates of 2.5% (Treatment 1) or 2.0% (Treatment 2) are in the391

same range as the growth rates found in Walter and Schurr (1999). There, in Figure 1D,392

total leaf growth rates RGR between 12 and 18%/d, i.e. 0.5 and 0.75%/h, are reported393

together with the observation, that the biggest leaf contributes approx. 35% of the overall394

size and about 30 to 40% of the growth (Fig. 4B). As non-growing leaves are also taken395

into account for total leaf growth, growth rates for growing leaves need to be significantly396

higher than the averaging total, well in accordance with our findings.397

Systematic increase of final leaf size A∞ of the first few leaves, as found for both398

treatments, are also reported in (Tsai et al., 1997, Figure 1). Absolute sizes are obviously399

treatment dependent, see Walter and Schurr (1999).400

Phyllochron values reported in (Tsai et al., 1997, Figure 5, page 911) show a similar401

behavior as our findings. Leaf 4 emerges earlier than expected and leaf 5 somewhat later.402

The absolute duration between leaf emergence of the first 6 leaves lies however higher403

than under our treatments, i.e. between 72h and 144h with an average of approx. 110h404

for a treatment with 300µE m−2s−1 photons and daily watering. Our treatments feature405

much higher light intensities and different watering strategies. Phyllochrons found here406

lie between 32h and 114h with averages of approx. 61h or 65h, respectively. According407
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to Munns (2002) leaf emergence rate is reduced under drought stress, thus clearly reacts408

to environmental conditions and thus differences found may be related to treatment differ-409

ences.410

The framework has been successfully applied inside a robot perception-action loop411

during experiments that were performed in the context of the EU project GARNICS. In412

these experiments, the robot had to make decisions about plant treatment based on sen-413

sory input, which was being processed with our multi-level pipeline, and water the plants414

accordingly. In the final experiments of the project the robot succeeded in taking care of415

the plants over a period of about three weeks, where the treatment found by the system416

resulted in a generally higher growth rate than in any of the training data.417

6. Conclusion418

We presented a novel multi-level procedure for finding and tracking of leaves of grow-419

ing tobacco plants which allowed us to measure automatically important plant parameters,420

i.e., number of leaves and leaf size, as a function of time. The main challenge originates421

from the complex appearance of plants, making it difficult to segment plant organs. We422

used leaf-shape models to improve leaf segmentation and could successfully segment and423

track tobacco-plant leaves to up to an age of about 25 days. Beyond this growth stage, leaf424

segmentation turned out to be increasingly hard. As leaves grew older, we often observed425

under-segmentation errors. Fig. 13 shows examples where such under-segmentation ef-426

fects have been observed. These problems can only be resolved by further improving the427

segmentation procedure.428

The convex-hull approximation works well for tobacco plants but might have to be429
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augmented using more sophisticated leaf models when dealing with other types of plants.430

The border detection as well as the depth reasoning could be improved in the future using431

e.g. a structured-light imaging system (Geng (2011)). The accuracy of the plant models432

estimated in Section 4.1 can further be improved by simply increasing the number of433

observed plants. Ellipses are used to estimate the size of the leaves from the segment434

boundaries in the last step of the algorithm. For tobacco plants, the ellipse model is an435

appropriate choice. For other plants, another leaf-shape model could be used instead of436

the ellipse. Assumptions about the leaf shape are also being made during the merging step437

(see Section 3.5). It is assumed that leaves have a convex shape. In some approximation,438

this holds for many types of plants, but it is not generally true. For non-convex leaf-shapes,439

the merging algorithm would have to be modified, and a specific leaf model could be fitted440

to the boundary of the object instead of finding its convex hull. Furthermore, we are441

currently analyzing plant vein structures which can then be used to correct segments and442

fit more accurate ellipses. Initial steps given in Johansson (2010) show promising results443

along this line.444

Figure 13: Under-segmentation errors observed once leaves are getting bigger. Merged segments have the
same color.
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Guillem AlenyÃ , Babette Dellen, Sergi Foix, and Carme Torras. Robotized plant probing:456

Leaf segmentation utilizing time-of-flight data. IEEE Robot. Automat. Mag., 20(3):50–457

59, 2013.458
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