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Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipolar stripes

Raúl Bombín ,* Ferran Mazzanti,† and Jordi Boronat‡

Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, E-08034 Barcelona, Spain

(Received 24 July 2019; revised manuscript received 12 November 2019; published 5 December 2019)

A two-dimensional quantum system of dipoles, with a polarization angle not perpendicular to the plane, shows
a transition from a gas to a stripe phase. We have studied the thermal properties of these two phases using the
path-integral Monte Carlo (PIMC) method. By simulating the thermal density matrix, PIMC provides exact
results for magnitudes of interest such as the superfluid fraction and the one-body density matrix. As it is well
known, in two dimensions the superfluid-to-normal phase transition follows the Berezinskii-Kosterlitz-Thouless
(BKT) scenario. Our results show that both the anisotropic gas and the stripe phases follow the BKT scaling
laws. At fixed density and increasing the tilting angle, the transition temperature decreases in going from the gas
to the stripe phase. Superfluidity in the perpendicular direction to the stripes is rather small close to the critical
temperature but it becomes larger at lower temperatures, mainly close to the transition to the gas. Our results
are in qualitative agreement with the supersolidity observed recently in a quasi-one-dimensional array of dipolar
droplets.
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I. INTRODUCTION

The achievement of supersolidity as a new state of matter
has been a longstanding topic since it was theoretically pre-
dicted in the 1960s of the past century [1]. A supersolid state is
produced when two U(1) symmetries are simultaneously bro-
ken: the first one related to the presence of spatial long-range
order and the second one to the emergence of a global phase
giving rise to a superfluid state. The most natural candidate
to be a supersolid is solid 4He, due to its extreme quantum
character. However, and after a big excitement produced some
years ago, the most accurate data available to date seem to
exclude this possibility [2].

The difficulties in finding a stable condensed-matter su-
persolid state has moved its research to metastable systems
which can exhibit the same properties. In recent years, the
most fruitful tool to this end has been the versatile setup of
ultracold quantum gases in the quantum degenerate regime.
Although conventional dilute Bose Einstein condensate gases
(BECs) do not break translational symmetry and thus are
not good candidates for supersolid phases, some progress
has been recently achieved by taking advantage of more
exotic interactions. The first evidence of supersolidity came in
2017 almost simultaneously from two different experiments
in reduced geometries. In the first one, a spin-orbit coupled
system was shown to break translational symmetry in a two-
dimensional configuration [3] whereas, in the second one, this
effect was achieved by coupling a Bose-Einstein condensate
to the modes of two optical cavities [4]. Still in the context of
ultracold gases, dipolar systems have been postulated as good
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candidates to the supersolid state. In fact, supersolid signa-
tures have been observed by several groups [5–7], following
previous theoretical work [8]. Recently, the gapless Gold-
stone excitation has also been measured for the same system
[9–11].

In a previous work [12], the superfluid properties of the
different phases of a dipolar system in two dimensions were
studied at zero temperature. The stripe phase, that appears
for certain densities and tilting angles, was shown to exhibit
the characteristics which define a supersolid state. Recently,
similar results have been reported for the equivalent system in
the lattice [13]. At finite temperature, there is not condensate
but quasicondensate reflected in an algebraic decay of the one-
body density matrix. The transition between the superfluid
(with quasi-off-diagonal long-range order) and normal phases
follows the Berezinskii, Kosterlitz, and Thouless (BKT) the-
ory [14,15]. This transition has been studied in many different
systems such as helium films [16–18], Coulomb layers [19],
and ultracold gases in pancake geometries [20–22]. It has also
been shown that the BKT scenario stands even when disorder
is introduced in the system [23,24].

In this paper, we study the superfluid-to-normal phase
transition in a system of two-dimensional bosonic dipoles
performing first principles path-integral Monte Carlo (PIMC)
simulations. The particular case in which all the dipoles are
polarized along the direction perpendicular to the plane, which
constitutes the isotropic case, was already studied by Filinov
et al. [25]. Here, we focus on the more general case in
which dipoles are polarized in an arbitrary direction, within
the stability limit, and show that the BKT scaling stands
despite the anisotropy induced by the dipolar interaction. We
determine the critical temperature TBKT in both the gas and
stripe phases. As schematically illustrated in Fig. 1, TBKT for
the stripe phase is smaller than TBKT for the gas, at the same
density. Increasing further the temperature, we observe that
the normal stripes melt towards an anisotropic gas.
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FIG. 1. Phase transitions in dipolar stripes compared with the
dipolar gas. N and S labels stand for normal and superfluid phases,
respectively.

II. METHOD

The system under study is composed of N identical dipolar
bosons of mass m moving on the XY plane. An external field
(electric or magnetic) in the XZ plane polarizes all the dipoles
along the same direction in space, forming an angle α with
respect to the Z axis. The model Hamiltonian describing the
system reads

H = − h̄2

2m

N∑
j=1

∇2
j + Cdd

4π

N∑
i< j

[
1 − 3λ2 cos2 θi j

r3
i j

]
, (1)

with λ = sin α and (ri j, θi j ) the polar coordinates of ri j .
The strength of the dipolar interaction is encoded in the
constant Cdd and is proportional to the square of the (electric
or magnetic) dipole moment of each particle. Similar to
previous works, we employ dipolar units [12,26], with the
characteristic dipolar length r0 = mCdd/(4π h̄2) and dipolar
energy ε0 = h̄2/(mr2

0 ) that allows for writing the Hamiltonian
in dimensionless units. In the following, temperatures will be
expressed also in units of ε0. The system is stable towards
collapse as long as the tilting angle α is smaller than the
critical value αc � 0.61. Our simulations are carried out in
a rectangular box, with periodic boundary conditions (PBC),
to correctly commensurate the stripes [12], similar to what is
made in the simulation of crystals.

For a given Hamiltonian, the PIMC method provides exact
results (within some statistical noise) for the energy, structure,
and superfluidity of a Bose fluid or solid. It has been widely
used in the past to study the BKT transition, for instance,
in two-dimensional liquid 4He [17,27] and in dipoles with
dipolar moments perpendicular to the plane [25]. Going down
in temperature, and mainly close to the critical temperature,
the PIMC simulation requires a good action to reduce the
number of imaginary-time steps (beads) representing each
atom (polymer) to a manageable level. To this end, we use the
fourth-order Chin’s action [28–31], that can be made to work
effectively up to sixth order for the energy estimation by opti-
mizing its control parameters [32]. Efficiency in the sampling
of permutations is also fundamental to obtain accurate results
for the one-body density matrix and superfluid densities. To
get it right we use the worm algorithm, that has proven its
accuracy in different systems [33].

At odds with what happens in three-dimensional systems,
the superfluid fraction performs an abrupt universal jump

[34] at the critical temperature Tc. Near Tc, the BKT theory
predicts that the correlation length has an essential singularity
ξ (T ) ∼ ea/t1/2

, with t = (T/Tc − 1) and a being a nonuniver-
sal parameter depending on density and on the microscopic
properties of the particular system under study [35]. Due to
the use of a finite number of particles N , within a finite-size
box with PBC, we do not have direct access to the critical
temperature in the thermodynamic limit [Tc(∞)] but rather to
an estimation Tc(L), with L = √

N/n. As usual in finite-size
scaling analysis of simulations close to the critical point, one
identifies Tc(L) with the temperature that makes ξ (Tc(L)) =
L. Therefore, the scaling law of the critical temperature with
the size of the box can be written as [25]

Tc(L) = Tc(∞) + b

ln2(L
√

n)
, (2)

with b a nonuniversal constant. On the other hand, the jump
that the superfluid density performs at the critical temperature
Tc follows the universal relation [34]

ns(Tc, L)

n
= 2mkB

π h̄2

Tc

n
, (3)

with kB the Boltzmann constant.

III. RESULTS

A. Superfluid fraction

In order to determine the critical temperature at which
the superfluid-to-normal phase transition occurs, we need to
evaluate the superfluid density. In the PIMC method, this is
done through the well-known winding number estimator [36],

ns

n
= mkBT

Nh̄2 〈W2〉, (4)

where W is the winding number.

1. BKT scaling of the gas phase

Using the superfluid densities, calculated with the esti-
mator (4) at different temperatures and system sizes, and
taking advantage of the universal relations of Eqs. (2) and (3),
one can obtain the superfluid-to-normal critical temperature.
We start studying the transition in the gas phase at different
densities and tilting angles. In Fig. 2, we show our PIMC
results for the superfluid fraction ns/n at a density nr2

0 = 25.
In the left panel of this figure, we show our results for a
tilting angle α = 0.6, close to the border of stability of the
gas at zero temperature [37]. The critical temperature for a
given system size Tc(L) is determined as the crossing point
between the universal BKT jump of Eq. (3) and the superfluid
density for that system size. On the right panel of the same
figure, we show how the scaling (2) is used to obtain the
critical temperature in the thermodynamic limit. The analysis
for different values of the tilting angle α = 0, 0.2, 0.4, and
0.6 reveals that the BKT scaling stands when anisotropy is
present in the system. Our results for α = 0, corresponding
to the isotropic gas, reproduce the PIMC estimations obtained
by Filinov et al. [25]. In that work, a nonmonotonic behavior
of the critical temperature as a function of the density [25] was
found. The critical temperature, in units of density Tc/nr2

0 ,
increases at low densities and, above a characteristic value
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FIG. 2. Left panel: superfluid fraction as a function of temper-
ature for different system sizes at density nr2

0 = 25 and tilt angle
α = 0.6. Points are MC results, dashed lines are linear fits to PIMC
data, and the solid line is the universal jump of Eq. (3). The crossing
points between the lines and the universal jump give the critical
temperatures TC (L). Right panel: scaling of the critical temperature
Tc(L) with the system size, as given by Eq. (2), at the same density
and for different polarization angles. Points are PIMC data and solid
lines are linear fits.

(1 < nr2
0 < 4), the behavior is the opposite. Filinov et al.

[25] attribute this change to the appearance of the roton
in the quasiparticle spectrum, which is observed to emerge
around nr2

0 = 1 [25,26,38]. We have studied how the tilting
angle (α > 0) influences this behavior by calculating Tc at
low (nr2

0 = 0.01) and high (nr2
0 = 25) densities, as shown

in Table I. The behavior of Tc/nr2
0 with the tilting angle is

the opposite for densities 0.01 and 25: increasing α reduces
(increases) the critical temperature at low (high) density. In
both cases, though, the growth of α translates into an effective
reduction of the interaction strength since the s-wave scatter-
ing length for a given tilting angle is well approximated by
[39]

as(λ) � e2γ

(
1 − 3λ2

2

)
, (5)

with gamma the Euler’s Gamma constant. According to
Eq. (5), the scattering length for dipolar interaction decreases
when α increases. In agreement with the isotropic case [25],
the effective reduction of the interaction strength lowers Tc at
low densities, where the excitation spectrum is phononic, but
increases it at high densities, when rotons dominate.
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FIG. 3. Left panel: superfluid fraction as a function of the tem-
perature for different system sizes, at density nr2

0 = 256 and tilting
angle α = 0.6, corresponding to the stripe phase. Points are PIMC
results, dashed lines are guides to the eye, and the solid line is the
universal jump (3). Right panel: scaling of the critical temperature
Tc(L) with the system size, as given by Eq. (2), at the same density
and for two tilting angles: α = 0.4 (gas) and 0.6 (stripe). Points are
PIMC data and solid lines are linear fits.

2. BKT scaling of the stripe phase

The stripe phase is of particular relevance in our study
since it has been reported to be superfluid in the zero-
temperature limit [12]. The simultaneous existence of spatial
long-range order (in all but one direction of the space) and
off-diagonal long-range order makes this phase close to the
pursued supersolid state of matter. A relevant issue in this
discussion is whether the BKT scaling, that we have shown to
hold for the anisotropic gas, stands also for the stripe phase. In
Fig. 3, we show PIMC results for the superfluid fraction at a
density nr2

0 = 256 and tilting angle α = 0.6, where the stripe
phase is stable [12]. In the left panel, we show the behavior
of the superfluid fraction as a function of temperature and for
different number of particles in the simulation box. As in the
gas phase, the crossing of this line with the universal jump
law of Eq. (3) allows us to extract the critical temperature
for a given system size Tc(L). In the right panel, we compare
the scaling of these critical temperatures for the stripe phase
with the ones obtained for the same density but at a smaller
tilting angle α = 0.4, where the gas phase is the stable one.
As one can see, the BKT scaling holds in both cases, and
thus one can apply it to estimate the critical temperature in
the thermodynamic limit.

TABLE I. BKT critical temperatures (in dipolar units) for different values of the density nr2
0 and tilting angle α, in both the gas and stripe

phases. The superfluid fraction at the critical temperature is evaluated through Eq. (3). Figures in parentheses are the estimated errors.

Gas phase

nr2
0 α Tc/nr2

0 (units of ε0) ns/n(Tc ) nr2
0 α Tc/nr2

0 (units of ε0) ns/n(Tc )

0.01 0.0 1.316(6) 0.838(4) 25 0.0 1.282(8) 0.816(6)
0.01 0.2 1.317(3) 0.838(6) 25 0.2 1.292(5) 0.823(4)
0.01 0.4 1.29(11) 0.821(6) 25 0.4 1.322(1) 0.842(3)
0.01 0.6 1.263(13) 0.804(8) 25 0.6 1.347(3) 0.858(2)
128 0.4 1.04(4) 0.66(3) 256 0.4 0.82(3) 0.52(2)

Stripe phase
128 0.6 0.60(7) 0.38(4) 256 0.6 0.49(4) 0.31(3)
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One could think that the stripe phase is composed of quasi-
one-dimensional channels, which dominate the superfluid sig-
nal, in such a way that the superfluidity in stripes follow
the one-dimensional scaling law instead of the BKT one. In
the next section we show that this is not the case, and thus
only the BKT scenario is plausible with our results (see
Sec. III A 3).

For temperatures lower than Tc, the superfluid fraction
shows a plateau around a value which is in agreement with the
zero-temperature result derived previously using the diffusion

Monte Carlo method [12], [ ns
n ]nr2

0 =256
α=0.6 = 0.54(5).

In Table I, we report the results for the critical temperature
and superfluid fraction at Tc of the stripe phase with α = 0.6
and densities nr2

0 = 128 and 256. By increasing the density,
the critical temperature in the stripe phase decreases in a
similar form to what has been previously obtained for the gas
at high density. However, if the tilting angle increases, at fixed
density, and crosses from the gas to the stripe phase both the
superfluid fraction and the critical temperature decrease (see,
for instance, data at nr2

0 = 128 in Table I). In other words,
superfluidity in stripes is thermally more fragile than in the
gas phase. The winding number estimator for superfluidity
(4) can be split into the X and Y directions corresponding to
the stripe orientation and its perpendicular one, respectively.
At Tc, the superfluid fraction in the Y direction for a finite N
value is <5% and decreases with T faster than the one along
the stripe direction. As it was observed previously [12], the
superfluidity across the stripes depends strongly on the tilting
angle, keeping the density fixed, reaching values ∼100% close
to the gas-stripe phase transition line but decreasing fast when
entering the deep stripe region.

3. Non-Luttinger liquid behavior of the stripe phase

One may wonder if the stripe phase at finite temperature
might be considered as an ensemble of one-dimensional sys-
tems. If this were the case, our data should accommodate
the predictions of the Luttinger liquid (LL) theory. Although
one-dimensional systems do not show superfluidity in the
thermodynamic limit, one can still see a nonzero superfluid
fraction in a finite system of length L. For a one-dimensional
liquid, described by Luttinger theory, the superfluid fraction
for a Galilean invariant system is predicted to scale with the
system size as [40]

ns

n
= γ

4

|	′′
3 (0, e−γ /2)|

	3(0, e−γ /2)
, (6)

where 	3(z, q) is the Theta function, 	′′
3 (z, q) =

d2	3(z, q)/dz2, and γ = mkBT L
h̄2nl

with nl the linear density.

In Fig. 4, we show that the data for the stripe phase (nr2
0 =

128 and α = 0.6) do not collapse to a single line when doing
the scaling with γ , with a lineal density nl = 14.6(3) obtained
from nl = N/(LNs) with Ns the number of stripes in the
simulation box containing N particles. In the same figure we
show the prediction of the Luttinger liquid theory (black line),
whose comparison with our results hints that the superfluid
signal in the stripes is more robust against system size and
temperature (encoded in the parameter γ ) than what the Lut-
tinger theory predicts for a 1D system. Therefore, we conclude
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FIG. 4. Superfluid fraction of the stripe phase for different num-
ber of particles as a function of the scaling parameter of Luttinger
theory γ for density nr2

0 = 128 and tilting angle α = 0.6. Solid black
line corresponds to the Luttinger liquid prediction of Eq. (6). As it
can be seen, there is no collapse of the data to a single line.

that the stripe phase of a two-dimensional dipolar system
cannot be considered as an ensemble of one-dimensional
Luttinger liquids. This result is in agreement with the analysis
of simulation data of the one-body density matrix of the stripe
phase at zero temperature [12].

B. One-body density matrix

To get a deeper insight in the supersolid properties of the
stripe phase, we have calculated the one-body density matrix
(OBDM),

n1(r′
1, r1) = V

Z

∫
dr2 . . . rN ρ(R′, R), (7)

with R = {r1, r2, . . . , rN }, R′ = {r′
1, r2, . . . , rN }, ρ(R′, R)

the thermal density matrix, and Z the partition function. As it
is well known, in 2D systems there is a condensate fraction
only in the T = 0 limit. This condensate fraction, which
means that the system has off-diagonal long-range order, is
obtained from the asymptotic constant value of n1(r′

1, r1) at
large distances. For T � Tc, n1(r′

1, r1) decays with a power
law instead, pointing to what is generally termed as quasi-
condensate. In contrast, for T > Tc the decay turns out to be
exponential, as it corresponds to a normal phase.

In Fig. 5, we show PIMC results for the OBDM in the stripe
phase (nr2

0 = 128, α = 0.6) at different temperatures. Below
the BKT transition temperature, the long-range behavior of
the OBDM is well captured with a fit of the form n1(r) ∼ r−η.
The value of the exponent η is given by the BKT theory,

η = (mkBT )/(2π h̄ns), (8)

becoming maximal at the critical point, ηc = 1/4. As we can
see in Fig. 5, the algebraic decay of the PIMC results below
Tc reproduces the BKT prediction. When the stripes become
normal, the OBDM changes dramatically and we clearly see
an exponential decay.

C. Stripe melting

When temperature is increased beyond Tc, the stripe phase
still persists as the ground state of the system, but as a
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FIG. 5. One-body density matrix of the stripe phase (nr2
0 = 128

and α = 0.6) at different temperatures, above and below the transi-
tion temperature Tc. The y axis is in log scale and the straight lines
correspond to the asymptotic behavior when r → ∞.

normal phase (nonsuperfluid). Under these conditions, the
static structure factor still shows a clear Bragg peak in the
transverse direction (Y ) pointing to the stability of the stripes
[41]. Thus this is an interesting quantity if one wants to
estimate the critical temperature at which the stripe phase
melts towards the gas one. To study this, we evaluate the
static structure factor for wave vectors perpendicular (Y ) to
the stripe direction (X ),

Sy(k) = 1

NZ
〈ρ̂−ky ρ̂ky〉, (9)

with ρ̂ky = ∑N
i=1 eiky·ri the density-fluctuation operator. In

Fig. 6, we show results of Sy(k), for a characteristic point of
the phase diagram where the system is in the stripe phase, as
a function of the temperature. The Bragg peak that appears
at a characteristic ky signals the periodic pattern of the stripes
in their transverse direction. This large peak, which increases
with the number of particles N [38,41], is the best signature of
the stripe order. When the temperature increases, the strength
of the peak decreases due to the increase of the thermal
motion. At the largest temperature reported in Fig. 6, the
Bragg peak has disappeared pointing to its melting to a gas.
Notice that no equivalent peak appears at any T in the X
direction.

However, the localization decreases progressively with T
until we observe their melting at a temperature T � 10TBKT.

The evolution of the stripe structure can also be qual-
itatively analyzed by looking at the spatial distribution of
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FIG. 6. Evolution with the temperature of the static structure
factor Sy(k) in the stripe phase at nr2

0 = 128 and α = 0.6.

FIG. 7. Snapshots of the PIMC simulations of the stripe phase for
increasing temperatures at nr2

0 = 128 and α = 0.6. The temperature
T increases from (a) to (d) panels. The values of T are the same as
in Fig. 6.

particles in the PIMC simulation. In Fig. 7, we show snap-
shots to show this evolution with increasing T . In the PIMC
framework, each particle is represented by a polymer with
an averaged size proportional to its quantum delocalization.
At temperatures below Tc, one can see from the snapshots
that there are paths connecting the different linear structures
(stripes); when these crossing paths are of the length of the
simulation box there is a nonzero winding number in that
direction and the superfluid fraction is finite. In the second
frame of Fig. 7, these transverse paths have nearly disappeared
and also in the X direction the interconnections are not very
abundant. In the third frame, we still observe the characteristic
order of stripes but dislocations between the different lines
start to be apparent. This effect has been deeply studied in
Refs. [42,43] and now our microscopic simulations confirm
these predictions. Finally, the last frame corresponds to a
temperature where the stripe structure is no longer present
because it has melted to a (normal) gas.

IV. CONCLUSIONS

In conclusion, we have carried out a complete study of the
BKT transition in anisotropic 2D systems of quantum dipoles.
Using the BKT theory we have estimated the superfluid-to-
normal phase transition critical temperature at different den-
sities and tilting angles. At fixed density, and increasing the
tilting angle, we observe the transition from a gas to a stripe
phase with a decrease on the critical temperature in the stripe
case. In spite of this reduction, which makes the supersolid
phase of stripes less stable against thermal fluctuations than
the gas, the superfluid signal is clear below Tc. The long-range
behavior of the OBDM is also consistent with the BKT predic-
tion. Interestingly, our PIMC results on the superfluid fraction
show that its value in the transverse direction is still finite
but small (<5%) close to Tc and that at lower temperatures,
and mainly close to the transition line to the gas, its value is
much larger, almost 100%. This result is qualitatively similar
to recent experiments in which a dipolar droplet system, ar-
ranged in a quasi-one-dimensional array, has shown superfluid
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signatures across the drops [5–7]. Regarding two-dimensional
dipolar systems, similar predictions about the existence of a
superfluid stripe phase have been recently reported for the
equivalent system in the lattice [13]. Therefore, the quantum
dipolar phases seem now the best suited candidates for the
realization of the pursued supersolid state of matter. Finally,
it is also worth mentioning that a superfluid stripe phase has
been studied in the Hubbard model with an isotropic long-
range interaction [44]. In this case, the rotational symmetry is
broken spontaneously by the interplay between the long-range

character of the interparticle interaction considered with the
lattice that forces the atoms to occupy certain lattice positions
in order to minimize the energy.
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