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1.1 Introduction

Shapley, in his seminal article [48], introduced a value for cooperative
games which is uniquely characterized by some natural axioms, since then,
the value has had a great impact both theoretical and practical. As conspicu-
ous examples of theoretical works we mention [24, 27, 42], and [26, 43] which
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2 A value for j-cooperative games: some theoretical aspects and applications

contain compilations of practical results in the cooperative and voting con-
texts.

The restriction of the Shapley value to simple games is known as the
Shapley-Shubik power index [49]. As pointed out by Felsenthal and Ma-
chover [30] the index can be interpreted as measure of power as a payoff
(e.g., when dividing a cake or a unit of a divisible object among players). The
index as a measure of influence is more questionable because the axiom of
efficiency has no interest, a remarkable characterization of the index without
using efficiency can be found in [25]. In addition the valuable probabilistic
model considered for the Shapley value in cooperative games loses its interest
for simple games in which the players do not necessarily wish to vote in favor
of the proposal in their turn of vote. As observed in [7] and in [28] an alter-
native model based on roll-calls also extends to the cooperative framework
and it is the key for finding, as done in this paper, an explicit formula for a
value on the class of multi-choice games (here denoted j-cooperative games
for coherence) that respects the original model by Shapley. We do not call it
‘Shapley value’ because as explained below there are already many different
values with such denomination, which can cause confusion. The idea of this
value is based on the player gain capacity and on the blocking capacity in her
turn to vote.

In the context of cooperative games players decide whether or not to coop-
erate and this is their only possible action. Several more general models have
been considered with more than two actions for players. Just to recall some
of them Bolger [13, 14, 15, 16] considered games with n players and r alterna-
tives, not necessarily ordered or comparable among them, Amer et. al. [4, 5]
considered games with multiple alternatives and called them r-games, closely
related with Bolger’s model. Bolger defines and axiomatically characterizes an
extension of the Shapley value to games with alternatives, whereas the index
due to Penrose [45], Banzhaf [6], Coleman [21] is extended by Amer et al. [4].
Nevertheless, all these values refer to the value of a player for a particular
alternative.

Bicooperative games are introduced in [9]. In these games ordered pairs of
disjoint coalitions of players are considered. Each such pair yields a partition
of the set of all players in three groups. Players in the first coalition are in
favor of the proposal, and players in the second coalition object to it. The
remaining players are not convinced of its benefits, but they have no intention
of objecting to it. The characteristic function can be interpreted as a positive
maximal gain or as a negative minimal loss. A value of zero is assigned to
the tripartition in which everybody is indifferent. Thus, the value zero plays
a central position in the characteristic function of a bicooperative game and
the game can be regarded as a balance between two opposite forces. A notion
of the Shapley value in this context is provided in [11, 12].

Multi-choice games are considered by Hsiao and Raghavan [39, 40]. These
authors consider games in which the actions of the players are ordered in the
sense that, for every pair of different actions one action carries more weight
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than the other action. In their model they reserve an action for those who are
not active at any level. Hsiao and Raghavan also define a (matricial) notion
of the Shapley value in multi-choice games that depends on actions. Some
variants of their value are proposed in [38, 47].

Extensions of simple games are mainly proposed in [29], for voting games
including abstention as an intermediate input level, and in [33] where (j, k)-
simple games are considered a class of games in which voters may choose
any of j ordered levels of approval and k stands for the number of aggregated
ordered results. The last work provides a notion of weighted game endorsed by
characterizations of the property of trade-robustness. Other important notions
as those of the desirability relation, transitivity, acyclicity, and hierarchies, are
extended in this broader context in [35, 36, 44, 46, 51].

In this paper we propose a value that has nothing to do with those cited
above, with all the ingredients for both j-cooperative games (a trivial more
convenient adaptation of multi-choice games) and j-simple games (i.e., (j, 2)-
simple games as defined in [33]). As shown below, the proposed value is con-
sistent in both frameworks and it gives a numerical evaluation for each player
independently of the input alternatives for players. The probabilistic model
used to create this value is that of roll-calls, which shows to be the correct
one for both j-cooperative games and j-simple games. This feature is opposed
to the original probabilistic model used by Shapley [48, 50] and Shapley-
Shubik [49] and which has been rightly criticized by several authors as highly
artificial (see, for instance, [17] or [41]) when refering to simple games.

The rest of the chapter is organized as follows. In Section 14.2 some mo-
tivating examples are presented. Section 14.3 introduces some preliminaries
and the contexts of j-cooperative games and j-simple games. A value with
its explicit formula is proposed for the class of j-cooperative games in Sec-
tion 14.4. Section 14.5 provides a probabilistic model as a justification of the
value. Section 14.6 proves that the value for two input alternatives coincides,
as expected, with the Shapley value. An alternative formula to compute the
proposed value is given in Section 14.7. Section 14.8 proposes an axiomatic
characterization following the seminal ideas of Shapley’s axiomatization for
his value; the main contribution lies on the introduction of a fifth axiom
for unanimity games. After defining the meaning of constant sum game for
j-cooperative games we compute their proposed value in Section 14.9. The
method of generating functions for computing the value for weighted 3-simple
games is shown in Section 14.10 and used to compute the value for the vot-
ing system of the United Nations Security Council and for a variant of it that
avoids the veto-right of permanent nations. The examples are revisited in Sec-
tion 14.11 and the value is computed for them. A brief Conclusion ends the
paper in Section 14.12.
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1.2 Some motivating examples

In this section, we present some examples to illustrate the versatility of the
kind of games we consider. We start with a very simple example of a ternary
voting game already considered by Felsenthal and Machover [30]. Then we
continue with an example of economic nature, another of academic activities,
the description of the United Nations Security Council voting system and
also a new modified version for it that avoids the veto-right of the permanent
members without harming these five nations too much. In describing these
examples, we use some intuitive terminology which is concisely defined in
next section. A value that captures the idea of Shapley’s value for cooperative
games is proposed in Section 14.4 for a more general context. Such value will
be computed in Section 14.11 for all the examples described in the rest of this
section.

Example 1.1 (A ternary voting game) Consider Example 8.3.7, page
288 in [30]. The set of voters is N = {a, b, c} and the bill is passed if voter a
votes for it and at least one of the other two does not oppose it. From the 27
possible ways to vote for members in N , there are only 8 that pass the bill.

Example 1.2 (A team of workers) A team of three workers have to per-
form a task. All three can carry out their task at three different levels: full
involvement, medium involvement and lack of involvement. Only one of them,
called a, is qualified to operate a machine that is essential to achieve a satis-
factory execution of the work to be done. The other two workers, called b and
c, play a symmetrical role and also turn out to be indispensable together and
a lack of involvement on the part of the two would be fatal for the execution
of the task. Other combinations for these two workers with at least a medium
involvement by worker a lead to more or less satisfactory results depending
on the degree of involvement for these two workers. Full involvement by the
three suppose a win of 4 thousand euros. The following characteristic function
specifies the gain for all combinations

v(S) =


4− |S2| − 2|S3| if a ∈ S1

max {0, |S1| − |S3|} if a ∈ S2

0 if a ∈ S3

where S = (S1, S2, S3) and S1 contains the workers with full involvement, S2

contains the workers with an intermediate involvement, and S3 contains the
rest of the workers with the lowest level of involvement.

If we do not have any information about workers’ attitude and the workers,
how should the total gain be distributed among them? The value we propose
in this paper assigns to them: (2, 1, 1) where the payment 2 is for the qualified
worker a.
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Example 1.3 (A two-part test) A test has two parts, a and b, which con-
sist of ten questions each. Each question is binary scored by: 1 if it is correct
and 0 otherwise. Thus the result for each part is the number of corrected an-
swers which is a number from 0 to 10. The aggregated result for the test is
a weighted mean of the well-answered questions. Part a is weighted as a 60%
and part b is weighted as a 40%.

Let N = {a, b} be the set of parts of the test. Let S = (S1, S2, . . . , S10, S11)
be a 11-partition of N in which Si contains the parts of the test with a score
of 11 − i for i = 1, 2, . . . , 10, 11. If a ∈ Sh and b ∈ Si, then the aggregated
score is given by V (S) = 6(11− h) + 4(11− i) = 110− 6h− 4i, which scales
the student’s test mark between 0 and 100.

If we do not have any information about possible differences, if they would
exist, between both tests, which is the importance of each test for the exam?
The value we propose in this paper assigns the intuitive answer: (60, 40) which
preserves the relative importance between the two parts.

Example 1.4 (The UNSC voting system) As noted by [30], the United
Nations Security Council (UNSC) can be modeled as a 3-simple game: a res-
olution is approved if there are at least nine members in favor and permanent
members are not against it. This means that also if some of the permanent
members abstain, without explicitly imposing the veto, a resolution can be
carried on. The resulting game v has 15 players, with the subset P of the
five permanent members, and a tripartition S = (S1, S2, S3) is winning (i.e.,
v(S) = 1) if and only if

|S1| ≥ 9 and S3 ∩ P = ∅.

where S1 contains the members in favor of the resolution, S3 the members
against it, and S2 the abstainers. For further discussion on this significant
system, see for example [22].

Example 1.5 (A modified voting system for the UNSC) The UNSC
is critical to global peace and security, yet more than twenty years of ne-
gotiations over its reform have proved fruitless; see in [37] a survey on several
proposed reforms that have not been implemented.

A simple modified version of the UNSC voting game is proposed here that
does not involve changes in the world countries forming it, would consist in just
modifying the possibility of approval of a resolution if one permanent member
is against it but all the other members are in favor of it. This means that for
any permanent member p ∈ P , the five losing tripartitions (N \ {p}, ∅, {p})
of the current system convert into winning tripartitions, and this is the only
difference between the current and the proposed UNSC voting system. The
inclusion of these five tripartitions in the set of winning tripartitions prevents
the permanent members to have veto-right, but this situation only occurs when
the other fourteen countries agree to vote in favor of the resolution at hand.

The next section is devoted to formally introduce the class of games we
deal with in this chapter.
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1.3 Preliminaries: j-cooperative games

Let N be a finite set of players. A j-partition of N is a collection of j
mutually disjoint subsets of N , S1, . . . , Sj such that

⋃j
k=1 Sk = N . Note that

any Si may be empty. Any subset S of N is called a coalition and we denote
its cardinality by s.

A j-partition describes a division of players among j alternatives or j
levels of voting approval or j possible actions or choices players can realize or
choose. We assume that these j different alternatives are ordered and convey
that level 1 corresponds to the highest level of performance, while the last,
level j, corresponds to the lowest level. Thus, players in S1 are those who
work at the highest level, while those in Sj work at the lowest level of activity.
In a voting context, voters in S1 are those who vote for the highest level
of approval, whereas those in Sj are those who vote for the lowest level of
approval. Thus, the convention chosen is ordinal rather than numerical.

From now on we denote with JN the set of all j-partitions on N endowed
with an (strict) order from the first (highest) order of performance or activity
to the last (lowest) one. Although we assume an order of the levels of activity,
we do not do any assumption over the quantification of these levels. Thus,
acting at the second level just means that such level of activity is lower than
in level 1 but greater than in level 3.

A partial order ⊆j on the set JN is considered. If S, T ∈ JN , then S ⊆j T
means Sk ⊆j

⋃k
i=1 Ti for any k = 1, . . . , j − 1. In words, S is contained in T

if players in T are working or voting in the same or in a higher level than in
S. We use S ⊂j T if S ⊆j T and S 6= T . The j-partitions N = (∅, . . . , ∅, N)
and M = (N, ∅, . . . , ∅) are respectively the minimum and maximum for the
order ⊆j .

A binary voting situation in which voters (we use the term voters instead
of the term players in the voting context) can vote among several ordered
alternatives can be formalized by a (j, 2)-simple game, i.e., voters can vote in
j different ordered ways to approve or reject a resolution and the aggregate
output is binary. As previously said, we refer to (j, 2)-simple game as j-simple
games throughout this article.

Definition 1.1 [[33]] Let N be a finite set and JN be the set of all totally
ordered j-partitions on N . A j-simple game is a function v : JN → {0, 1}
such that: (i) it is monotonic: if S ⊂j T , then v(S) ≤ v(T ); (ii) v(N ) = 0
and v(M) = 1.

We denote with SJN the space of all j-simple games on the finite set
N . Note that (2, 2)-simple games are simple games since for any bipartition
S = (S1, S2) the first component S1 is identified with the set of ‘yes’-voters
and S2 = N \ S1 with the set of ‘no’-voters. Thus, any bipartition is in one-
to-one correspondence with coalition S1. Note also that (3, 2)-simple games
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can be interpreted as ternary voting games, as considered by [29], if the first
level of approval corresponds to voting ‘yes’, the second level to abstain and
the third level to voting ‘no’.

In any j-simple game, the aggregated output set is binary and represented
by {0, 1}, where these two numbers have the respective meaning that the
submitted proposal is either defeated or passed.

Definition 1.2 Let N be a finite set and JN be the set of all totally ordered
j-partitions on N . A j-cooperative game is a function v : JN → R such that
v(N ) = 0.

We denote by JN the space of j-cooperative games on the finite set N .
Note that a 2-cooperative game corresponds to a cooperative game in which
the bipartition S = (S1, N \ S1) is identified with the coalition S1 formed by
players who decide to cooperate.

The previous definition is almost equivalent to that of a multi-choice game
as defined in [39, 40]. A distinction is that in the multi-choice setting an
input level is distinguished from the others and reserved for lack of activity.
In our context the last input level does not necessarily mean a total lack of
activity and this becomes clear in the voting context, for j-simple games. For
instance, for ternary voting games (j = 3 with three input choices: voting
‘yes’, ‘abstain’ or voting ‘no’) the last input level means voting against the
submitted proposal, which would not be coherent with the multi-choice model
and the same happens for other choices of j. Moreover, the restriction from
j-cooperative games to j-simple games becomes natural.

There are many interesting subclasses of cooperative games that can easily
be extended to j-cooperative games for j > 2. Here we just refer to mono-
tonicity.

A j-cooperative game is monotonic, if for any pair of j-partitions S and
T , such that S ⊂j T then v(S) ≤ v(T ).

Clearly, JN is a vectorial space of dimension jn− 1 and a basis formed by
monotonic j-cooperative games is the one of unanimity games defined as:

uS(T ) =

{
1, if S ⊆j T
0, otherwise,

for all j-partition S 6= N .

1.4 A value for j-cooperative games

Let us introduce the following notation. From a given j-partition S, we
define the j-partition Sa↑k in which player a has moved from the lowest level
j to the superior level k (k < j), and the j-partition Sa↓k in which player a
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has moved from the highest level of activity 1 to the inferior level k (k > 1).
If a ∈ Sj :

Sa↑k = (S1, . . . , Sk ∪ {a}, . . . , Sj r {a})
for any k = 1, · · · , j − 1; and if a ∈ S1:

Sa↓k = (S1 r {a}, . . . , Sk ∪ {a}, . . . , Sj)

for any k = 2, · · · , j.
The idea we pursue with these two definitions is to consider two special

types of marginal contributions for j-partitions in a given game v:

mk(v, S, a) = v(Sa↑k)− v(S) if a ∈ Sj
mk(v, S, a) = v(S)− v(Sa↓k) if a ∈ S1

In the next definition, we propose a value for j-cooperative games inspired with
the ideas of the Shapley value, [48], for cooperative games. The explicit formula
for the proposed value depends on the marginal contributions mk(v, S, a) and
mk(v, S, a). Before showing its explicit formulation, we give an intuitive idea
that later will be justified.

In her turn, player a can achieve in choosing the input k an additional gain
of mk(v, S, a) with respect to the gain obtained from her predecessors with
the choice of the input each made. But, with the choice of input k, player a
also prevents her predecessors from obtaining the extra gain of mk(v, S, a).
Thus in some sense, player a has a double capacity: that of direct gain and
that of blocking extra gain.

Definition 1.3 (A value for j-cooperative games) For any v ∈ JN and
any player a ∈ N , the F-value is defined as

Fa(v) =
1

jnn!

 ∑
S∈JN :
a∈Sj

j−1∑
k=1

γnj (sj − 1)mk(v, S, a) +
∑

S∈JN :
a∈S1

j∑
k=2

γnj (s1 − 1)mk(v, S, a)

 (1.1)

where

γnj (t) = t!jt
t∑
i=0

(n− t− 1 + i)!

jii!
, (1.2)

for t = 0, 1, . . . , n− 1.

We show the coefficients in (1.2) in the next three tables for small values of
n, n ≤ 6 and for: j = 2 (Table 1.1), j = 3 (Table 1.2), and j = 4 (Table 1.3).

1.5 Probabilistic justification of the F-value

In the following we mainly use the notation from [31] and also refer to [28,
29, 30] for precise definitions when the number of input alternatives is 3. We
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n ↓ | t→ 0 1 2 3 4 5
1 1
2 1 3
3 2 4 14
4 6 10 22 90
5 24 36 64 156 744
6 120 168 264 504 1368 7560

TABLE 1.1: Numerical coefficients γn2 (t) for 2-cooperative games up to 6
players.

n ↓ | t→ 0 1 2 3 4 5
1 1
2 1 4
3 2 5 26
4 6 12 36 240
5 24 42 96 348 2904
6 120 192 372 984 4296 43680

TABLE 1.2: Numerical coefficients γn3 (t) for 3-cooperative games up to 6
players.

n ↓ | t→ 0 1 2 3 4 5
1 1
2 1 5
3 2 6 42
4 6 14 54 510
5 24 48 136 672 8184
6 120 216 504 1752 10872 163800

TABLE 1.3: Numerical coefficients γn4 (t) for 2-cooperative games up to 6
players.



10 A value for j-cooperative games: some theoretical aspects and applications

consider a probabilistic model in which two relevant data for each player a ∈ N
are taken: the ordering in the queue for a and the input alternative chosen for
a in her turn. A roll-call specifies these two data for each player, so that the
number of roll-calls is n!jn. Let RNj be the set of all roll-calls and R ∈ Rnj .

When we are restricted to j-simple games the notion of pivotal voter is
crucial and extendable to j-cooperative games.

Voter a is pivotal in the j-simple game if she is the only one who decides
the (binary) outcome after her election of the input, no matter how the others
following her in the queue will vote. The idea of a value that has all the
ingredients of the Shapley-Shubik power index for j-simple games is based on
the definition given in [31].

For any v ∈ JN and any player a ∈ N , the f -power index

fa(v) =
|{R ∈ Rnj : a = piv(R, v)}|

jnn!
.

This formula measures the probability of being a pivotal voter in the space
of all roll-calls with the uniform distribution. It has the disadvantage that does
not depend on the characteristic function v.

Although there is a single pivotal player in a roll-call, we can distinguish
between two types of being a pivotal player in a j-simple game. A player a is
positively pivotal if after voting for the k-input the j-partition of those who
voted before her with the rest of the players voting for the lowest level j is
winning. Instead, a player a is negatively pivotal if after voting for the k-input
the j-partition of those who voted before her with the rest of players voting
for the first level of approval is losing, i.e., although all voters following a in
the queue were to vote for the first level of approval, the result of the vote
would still be ‘losing’.

This idea of pivotal player and its two versions for a roll-call is easily
extendible to j-cooperative games. Apart of doing such extension, we also
wish to express the proposed value for a j-cooperative game in terms of the
marginal contributions mk(v, S, a) and mk(v, S, a) that involve j-partitions
rather than roll-calls. Thus, the idea is to associate a set of roll-calls with
each j-partition with the idea described above when adapting from a positively
pivotal player (for j-simple games) to the marginal contribution mk(v, S, a)
(for j-cooperative games). Similarly, a set of roll-calls is associated with each j-
partition when adapting from a negatively pivotal player (for j-simple games)
to the marginal contribution mk(v, S, a) (for j-cooperative games). This is
collected by the coefficient γnj (t) given in Equation (1.2).

Given a subset T of N with cardinality t and a player a /∈ T , the coefficient
γnj (t) counts the number of roll-calls such that:

• all players in N \(T ∪ {a}) precede a in the queue and thus, have already
chosen the input level;

• players in T either precede or follow a in the queue:
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– if they precede a in the queue, they have already chosen the input
level, while,

– if they follow a in the queue, they have not yet chosen the input
level and thus all j input alternatives are counted.

Let us call this set the T -free set of roll-calls for a, since no matter if players
in T precede or not a in the queue. Players preceding a are the only ones who
have already chosen their input alternative.

Lemma 1.1 The cardinality of the T -free set of roll-calls for a given player
a /∈ T is γnj (t).

Proof. Consider the T -free set of roll-calls for a given player a /∈ T . Let i be
the number of players in T preceding a, thus i can be any number between 0
and t.

The number of players preceding a in the queue are n − t − 1 + i since
a ∈ N \ T . As all orderings for these players are allowed, we have for them
(n − t − 1 + i)! possible orderings. Any subset of i players in T may precede
a, thus

(
t
i

)
is the number of elections for them.

The number of players following a in the queue are then t − i, again as
all orderings for these players are allowed we have for them (t − i)! possible
orderings. Moreover, these players can choose any input alternative, so that
we have for them jt−i choices.

By applying the multiplication principle, it follows that the T -free set of
roll-calls for a given player not belonging to T is:

t∑
i=0

(n− t− 1 + i)!

(
t

i

)
(t− i)!jt−i

and after taking out common factors

γnj (t) = t!jt
t∑
i=0

(n− t− 1 + i)!

jii!

as stated.

Theorem 1.1 The value based on marginal contributions under the uniform
probability scheme for roll-calls is the F-value.

Proof. The marginal contribution mk(v, S, a) for player a ∈ Sj is the gain
that player a can assure to j-partition S when the player in her turn chooses
the k-level of activity instead of the lowest level j, i.e., it is the gain capacity
for a in her turn. Such gain capacity after choosing the k-level is quantified
as v(Sa↑k)− v(S) with a ∈ Sj .

The multiplication factor of mk(v, S, a) only depends on the number of
players in Sj \ {a}, sj − 1, and counts all (Sj −{a})-free roll-calls that can be
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formed according to Lemma 1.1, i.e., the number of roll-calls for which a adds
the value mk(v, S, a). As k is any number in between 1 and j − 1 and a ∈ Sj
is the only requirement for S, we consider the two former addends in the first
part of Equation (1.1). After dividing by the total number of roll-calls jnn!
we obtain the total gain capacity for a.

Similarly, the marginal contribution mk(v, S, a) for player a ∈ S1 is the lost
gain that player a causes to j-partition S when the player in her turn chooses
the k-level of activity instead of the highest level of activity 1, i.e., it is the
blocking capacity for a in her turn. Such blocking capacity after choosing the
k-level is quantified as v(S)− v(Sa↓k) with a ∈ S1.

The multiplication factor of mk(v, S, a) only depends on the number of
players in S1 \ {a}, s1− 1, and counts all (S1−{a})-free roll-calls that can be
formed according to Lemma 1.1, i.e., the number of roll-calls for which player
a causes a loss of mk(v, S, a). As k is any number in between 2 and j and
a ∈ S1 is the only requirement for S, we consider the two last addends in the
second part of Equation (1.1). After dividing by the total number of roll-calls
jnn! we obtain the total blocking capacity for a.

1.6 The F-value restricted to cooperative games is the
Shapley value

The purpose of this section is to prove that the F-value for 2-cooperative
games is the Shapley value for cooperative games. Cooperative games are 2-
cooperative games in our context and therefore the value of coalition S ⊆ N
in a cooperative game is the value of the bipartition (S,N \ S). Thus, we can
indistinctly write v(S) or v(S,N \ S).

Thus, to prove our claim, we need to demonstrate the coincidence of the
value in (1.1) with the Shapley value.

The well-known formula of the Shapley value in terms of the marginal
contributions of the characteristic function is given by:

φa(v) =
∑

S⊆Nr{a}

ρn(s)[v(S ∪ {a})− v(S)], (1.3)

where s = |S| and

ρn(s) =
s!(n− s− 1)!

n!
.

Less known is the equivalent expression for the Shapley value [7]. For any
a ∈ N :

φa(v) =
∑

S⊆Nr{a}

Γn(s)[v(S ∪ {a})− v(S)], (1.4)
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where s = |S| and for any s = 0, . . . , n− 1:

Γn(s) =
1

2nn!

[
s!

s∑
k=0

(n− k − 1)!

(s− k)!
2k + (n− s− 1)!

n−s−1∑
k=0

(n− k − 1)!

(n− s− 1− k)!
2k

]
(1.5)

By using the coefficients: λn(s) = s!
∑s
k=0

(n−k−1)!
(s−k)! 2k for s = 0, 1, . . . , n − 1

then equation (1.5) can be expressed as:

Γn(s) =
1

2nn!
[λn(s) + λn(n− s− 1)]

Theorem 1.2 The F-value for 2-cooperative games coincides with the Shap-
ley value.

Proof. We need to prove the equivalence of formulas (1.1) and (1.3). For-
mula (1.1) for j = 2 becomes

Φa(v) =
1

2nn!

 ∑
S∈2N :
a∈S2

γn2 (s2 − 1)m1(v, S, a) +
∑
S∈2N :
a∈S1

γn2 (s1 − 1)m2(v, S, a)


which is equivalent to

Φa(v) =
1

2nn!

 ∑
S1⊆N\{a}

(γn2 (n− s1 − 1) + γn2 (s1 − 1))(v(S1 ∪ {a})− v(S1))


where in the last expression the characteristic function v is applied to coalition
S1 instead of the 2-partition (S1, N \ S1).

By rearranging properly the subscripts, we obtain the two next equalities:

λn(n− s1 − 1) = γn2 (n− s1 − 1) and λn(s1) = γn2 (s1)

This shows the equivalence of the F-value with the value in (1.4). The proof
of Corollary 3 in [7] shows the equality of the coefficients ρn(s) and Γn(s)
for every 0 ≤ s ≤ n − 1 and therefore the equivalence of the F-value for
2-cooperative games with the Shapley value for cooperative games.

1.7 Another formulation for the F-value

The value F for j-cooperative games proposed in the previous section is
given in terms of some marginal contributions as shown in (1.1), but it also can
be expressed as a linear combination of the different values of the characteristic
function on each j-partition.
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Indeed, the next proposition is directly obtained from (1.1) by conveniently
grouping the coefficients of v(S) for each j-partition S 6= N . Therefore, we
omit its simple proof.

Proposition 1.1 For any v ∈ JN and any player a ∈ N , the F-value admits
the expression

Fa(v) =
∑
S∈JN

bnj (s1, sj)v(S) (1.6)

where

b(s1, sj) =



γnj (sj) + (j − 1)γnj (s1 − 1)

jnn!
, if a ∈ S1

γnj (sj)− γnj (s1)

jnn!
, if a ∈ Si, 1 < i < j

−
γnj (s1) + (j − 1)γnj (sj − 1)

jnn!
, if a ∈ Sj

(1.7)

and s1 ≥ 0, n > sj ≥ 0 and s1 + sj ≤ n.

Note that b(s1, sj) = 0 for every S with s1 = sj (with a ∈ Si for some
1 < i < j).

The next equation shows Formula (1.6) for j = 3 and player set N = {a, b}.

Fa(v) =
1

2
v({a, b}, ∅, ∅) +

1

6
v({a}, {b}, ∅) +

1

3
v({a}, ∅, {b})− 1

6
v({b}, {a}, ∅)

+
1

6
v(∅, {a}, {b})− 1

3
v({b}, ∅, {a})− 1

6
v(∅, {b}, {a}).

As a simple illustration on the different types of computing the value pro-
posed, we revisit the first example described in Section 14.2.

The voting system in Example 1.1 is a 3-simple game and it can be de-
scribed by the set of minimal winning tripartitions (i.e., minimal winning
tripartitions with respect to the inclusion ⊆3) trivially defined from the char-
acteristic function v:

Wm(v) = {({a}, {b}, {c}) , ({a}, {c}, {b})}

by monotonicity it is easy to generate the six remaining winning tripartitions.
We start with this example by showing three ways to compute the f-power

index. We will see that these three successive methods are becoming simpler
since the first involves all roll-calls, the second all tripartitions, whereas the
third only winning tripartitions. Thus, the gain in each step is significant.
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The first procedure described in [30] involves all roll-calls and is based on
the definition of pivotal player

fa(v) =
|{R ∈ Rnj : a = piv(R, v)}|

jnn!
, (1.8)

for j = 3. Following [30] to compute (1.8), it follows that:

1. a votes first and does not vote ‘yes’. This probability is 2
9 .

2. a votes second, the first voter voted ‘no’ and a does not vote ‘yes’. This
has probability 2

27 .

3. a votes second and the first voter did not vote ‘no’. The probability is
6
27 .

4. a votes last, and the other two did not vote ‘no’. This has probability
8
27 .

Thus, fa(v) = 22
27 ; and by anonymity and efficiency fb(v) = fc(v) = 5

54 .

The second procedure uses (1.1) directly for n = j = 3 so that the coeffi-
cients are: γ33(0) = 2, γ33(1) = 5, γ33(2) = 26 (see the third row in Table 1.2)
which need to be accounted only for the marginal contributions being equal
to 1 and for tripartitions S with either a ∈ S1 or a ∈ S3:

1. 2 of these marginal contributions for a have coefficient 26,

2. 12 of these marginal contributions for a have coefficient 5, and

3. 12 of these marginal contributions for a have coefficient 2.

Thus we obtain, as expected, the same result. As shown in this example, in
general it becomes simpler to deal with j-partitions, with a total number of
jn elements, than roll-calls that count n!jn elements.

The third procedure involves only winning tripartitions since we apply
Equation (1.6) and its coefficients in (1.7). As the number of winning tripar-
titions in this example is 8, the expression in (1.6) is just the sum of the
coefficients in (1.7) corresponding to winning tripartitions. All these coeffi-
cients have as a denominator the number of roll-calls: 3!33 = 162. Thus we
just need to compute the numerators in (1.7) for the winning tripartitions (we
ignore the superscript and subscript since for this game n = j = 3). These
numerators, b′(s1, sj) = 162 · b(s1, sj), are shown in Table 1.4. The sum of
these coefficients is, as expected, 132 so that fa(v) = 22

27 .
It is important to note that some existing values that are called ‘Shapley

value’ for some extensions of cooperative games do not coincide with the F-
value. For instance, we have checked for this simple example the values given
by Hsiao and Raghavan for multi-choice games [40], by Bolger [13, 14, 16] for
games with r-alternatives or by Bilbao et al. [11] for bicooperative games. We
have obtained different results. Note that the F-value coincides with the power
index f when we are restricted to the ternary case (j = 3 with abstention as
intermediate input).
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winning tripartitions b′(s1, sj)

({a, b, c}, ∅, ∅) b′(3, 0) = 54

({a, b}, {c}, ∅) b′(2, 0) = 12

({a, c}, {b}, ∅) b′(2, 0) = 12

({a, b}, ∅, {c}) b′(2, 1) = 15

({a, c}, ∅, {b}) b′(2, 1) = 15

({a}, {b, c}, ∅) b′(1, 0) = 6

({a}, {b}, {c}) b′(1, 1) = 9

({a}, {c}, {b}) b′(1, 1) = 9

TABLE 1.4: Numerators of the coefficients b(s1, sj) in (1.7) for this game.

1.8 Axiomatization

The first idea that comes to mind is whether Shapley’s classic axioms or
their adaptation to j-cooperative games serves to characterize the considered
value.

It is considerably simple to verify that these axioms are met for the con-
sidered value (see the list in next subsection) and it is also quite simple to
verify that these are not enough to uniquely characterize it. In cooperative
games the axioms of efficiency, anonymity and that of null player determine
the Shapley value of the unanimity games, which by induction and the axiom
of additivity (or transfer for simple games) uniquely extend the value to the
rest of the games.

Thus, if we search for an axiomatic set including these axioms, it seems rea-
sonable to add a conclusive property for determining the value on unanimity
games.

1.8.1 Classical axioms for j-cooperative games

In the following, ψ : JN → Rn is a value for j-cooperative games.

Anonymity (briefly denoted by An) The value ψ satisfies anonymity if for
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all game v ∈ JN , any permutation π of N and any a ∈ N

ψa(v) = ψπ(a)(πv)

where (πv)(S) = v(π(S)).

Null Player (N) The value ψ satisfies the null player axiom if given a null
player1 a in the game v, then

ψa(v) = 0.

Efficiency (E) The index ψ satisfies efficiency if for any v ∈ JN∑
a∈N

ψa(v) = v(N).

Additivity (Ad) The value ψ satisfies additivity if for any v, w ∈ JN

ψ(v + w) = ψ(v) + ψ(w).

Transfer (T) The index ψ satisfies transfer if for any v, w ∈ SJN

ψ(v) + ψ(w) = ψ(v ∧ w) + ψ(v ∨ w),

where (v∧w)(S) = min{v(S), w(S)} and (v∨w)(S) = max{v(S), w(S)}
for all S ∈ JN .

We remark that in the characterization we provide in Theorem 1.3, the
weaker condition that can replace anonymity is symmetry. Two players a and
b are equivalent if for every S such that {a, b} ⊆ Sj it holds mk(v, S, a) =
mk(v, S, b) for all k = 1, . . . , j − 1. The value ψ satisfies symmetry if for any
a, b ∈ N and game v ∈ JN it holds: ψa(v) = ψb(v) if a and b are equivalent.

A particular case, for 3-simple games, has been proven in detail in [8] and
its extension to arbitrary j-cooperative games does not represent any difficulty
so that the tedious but simple proof is omitted. The following trivial result is
left for the reader.

Lemma 1.2 (i) The f-power index for j-simple games satisfies the axioms
of: anonymity, transfer, efficiency and null player.

(ii) The F-value for j-cooperative games satisfies the axioms of: anonymity,
additivity, efficiency and null player.

The basic idea of the classical proof for the Shapley value for cooperative
games or the Shapley-Shubik power index for simple games is that the axioms
of anonymity, null player and efficiency uniquely characterize the value or

1Player a is null in the j-cooperative game v ∈ JN if m1(v, S, a) = 0 for all a ∈ Sj .
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index on unanimity games, and as these games form a basis or a lattice of the
set of games the value or index uniquely extends to the rest of the games by
additivity for cooperative games and transfer for both types of games.

If we intend to follow the same thread as in the original respective proofs by
Shapley [48] and Dubey [23], we must ascertain how the F-value works on una-
nimity games. The following lemma establishes the case for which anonymity,
null-player and efficiency axioms are sufficient to determine a value on una-
nimity games.

Lemma 1.3 Let uS be the unanimity j-simple game. A value on uS is
uniquely determined by the axioms of anonymity, efficiency and null player if
and only if there is a unique i < j such that Si 6= ∅.

Proof. (⇐) It is clear that all players in Sj are nulls in uS , while all players
in Si are anonymous in uS and as Si ∪ Sj = N by efficiency follows that all
players in Si receive 1/si, while the players in Sj receive 0 for the value.

(⇒) We proceed by the way of contradiction. Assume that for at least
two indices i < i′ < j we have Si 6= ∅ and Si′ 6= ∅ in the unanimity game
uS . Consider the value ψ which assigns 1/si to all players in Si and zero to
the others. Consider the value ψ′ which assigns 1/si′ to all players in Si′ and
zero to the others. These two different values satisfy anonymity, efficiency and
null-player axioms, a contradiction with the uniqueness assumption.

The need of a new axiom to uniquely characterize the value on unanimity
games is now clear. Indeed, according to Lemma 1.3 only if j = 2 (i.e., for co-
operative games) the three axioms uniquely determine the value on unanimity
games.

We propose a new axiom on unanimity games that together with the other
four uniquely characterize the F-value and the f-power index for j-cooperative
games and j-simple games, respectively.

1.8.2 An axiom on unanimity games

Assume now j ≥ 3. Let S be any j-partition with a ∈ S1. When player
a shifts her vote to the lower input level i (i = 2, . . . , j − 1), we have the
following expression:

Fa(uS)− ga(uS) =
j − 1

j − i
(Fa(uS)− ga(uS)) (1.9)

where ga(us) is the value derived by F in uS when a ∈ S1 is the last non-null
player in the queue of the roll-calls. Thus, it just lacks to find the value of
ga(uS) which is the proportion of roll-calls in which a is pivotal for uS and
occupies the last position among the non-null players in uS . Thus ga(uS) is
the product of the following three numbers:
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1. The proportion of roll-calls for which a is the last non-null player in the
queue. This number is

(s1 + s2 + · · ·+ sj−1 − 1)!

(s1 + s2 + · · ·+ sj−1)!
=

1

(s1 + s2 + · · ·+ sj−1)
=

1

n− sj
.

2. The proportion of roll-calls in which a is pivotal in the last non-null
player position in the queue. To be pivotal in the last position, it is
necessary that the rest of non-null players, who all precede her in the
queue, have chosen the same or a better input level than in S. Thus, in
her turn, player a can decide either to make a partition T winning by
choosing level 1 or losing by choosing levels 2, . . . , j. Thus, in order for
a to be pivotal, any j-partition T in which the non-null players in uS
different from a have already chosen the input level, with S ⊆j T must
be pivotal. In fact, T is winning in uS but it could be losing if a changes
her mind to vote for an inferior input level. Consider

|W (uS)|
jn

= δ(uS).

in which δ(v) is the structural decisiveness index of the game v which
gives the proportion of winning j-partitions in the game, this extension
to j-simple games leads to the structural decisiveness index. The struc-
tural decisiveness index for simple games was introduced by Coleman
[21] and studied in depth in Carreras [19, 20].

3. The number of input levels for which player a is pivotal when she is the
last non-null player in the queue is

j.

The product of these three numbers defines the unknown ga(uS) which is

ga(uS) = jδ(uS)
1

n− sj
=
jδ(uS)

n− sj
(1.10)

Thus, we can formulate the last axiom for an arbitrary value from (1.9)
and the last expression. Note that from (1.10) the expression ga(uS) can be
interpreted as the decisiveness per capita with respect to non-null players of
game uS multiplied by the number of available inputs for each player.

Axiom of level change effect on unanimity games for j ≥ 3 (U) Let uS
be a unanimity game and a ∈ S1. Then

ψa(uSa↓i) =
1

j − 1
[(j − i)ψa(uS) + (i− 1)ga(uS)] (1.11)

The next result gives sense what we intend to.
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Lemma 1.4 A value ψ for j-cooperative games that satisfies anonymity, null-
player, efficiency and level change effect on unanimity games is uniquely de-
termined on the set of unanimity games.

Proof. By the Axioms of (An) and (N), the value of ψ in any uS , where S
is a j-partition, depends only on the numbers si for all i = 1, . . . , j − 1 since
ψa(uS) = 0 if a ∈ Sj and ψa(uS) = ψb(uS) if a, b ∈ Si for some i. Thus,
form now on the vector s := (s1, s2, . . . , sj−1, sj) represents all j-partitions
S with these respective cardinalities. In particular, the vector (n, 0, . . . , 0)
represents the j-partition M which assigns a value of 1/n to each player
according to Lemma 1.3 which only assumes (An), (N) and (E). Now we
consider all vectors lexicographically ordered so that (n, 0, . . . , 0) is the first
in the ranking. The value ψ is then uniquely determined by (An), (N), (E)
and (U) on the unanimity games corresponding to the subsequent vectors in
the ordering: (n− 1, 1, 0, . . . , 0),...,(n− 1, 0, . . . , 0, 1). From the value of ψ on
all these unanimity games we can obtain the value of ψ for all the unanimity
games whose vectors verify that s1 = n−2 by applying by (An), (N), (E) and
(U). If m is the number of non-null components of s in between 2 and j − 1,
both included, then the Axiom (U) is applied m times so that m unanimity
games with known ψ with n−1 as a vectorial first component intervene. By the
finiteness of the number of vectors, the process stops with the determination
of ψ for all the unanimity games.

To clarify the preceding proof note that the value of ψ on uS with
s := (s1, s2, . . . , sj−1, sj) (s1 < n) is determined from the values of ψ on
unanimity games preceding s in lexicographic ordering and with a vecto-
rial first component of s1 + 1. Assume for example that j = 6, n = 8 and
s := (3, 0, 1, 2, 1, 0). By Axiom (U), which is given by the recurrence relation
in (1.11), ψ is determined in uS for the player in the third level from the value
of ψ in uT of a player in the first level of t := (4, 0, 0, 2, 1, 0). Analogously,
by Axiom (U) ψ is determined in uS for a player in the fourth level from the
value of ψ in uR of a player in the first level of r := (4, 0, 1, 1, 1, 0); and by
Axiom (U) ψ is determined in uS for the player in the fifth level from the
value of ψ in uX of a player in the first level of x := (4, 0, 1, 2, 0, 0). Finally,
the value of ψ for the three players in the first level of s are determined by
(E) and (An). Thus, ψ is determined on uS .

1.8.3 An axiomatization for the F-value

The last step for uniquely characterizing the value F-value and the f-power
index on j-cooperative and j-simple games respectively is the extension to
all games, but this follows the same guidelines as in the seminal papers by
Shapley [48] and Dubey [23], respectively. In our framework the unanimity
games also form a basis of the set of j-cooperative games and by additivity
(and transfer for j-simple games) the value ψ uniquely extends to the rest
of games. We also refer to [8] for the proof for 3-simple games and whose
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extension to the broader case of multiple input alternatives becomes tedious
but simple. The following just states the result.

Theorem 1.3 (i) A value ψ on j-cooperative games satisfies anonymity,
null player, efficiency, level change effect on unanimity games and ad-
ditivity if and only if ψ = F .

(ii) A value ψ on j-simple games satisfies anonymity, null player, efficiency,
level change effect on unanimity games and transfer if and only if ψ = f.

We conclude by pointing out that these five axioms are independent as
shown in [8] for 3-simple games. The examples used there easily extend to
greater values for j.

1.9 The F-value on constant-sum j-cooperative games

Given a j-cooperative game (N, v), we consider

a(k) := v(∅, . . . , ∅, {a}︸︷︷︸
k

, ∅, . . . , ∅, N \ {a})

which is the value that player a can obtain by choosing input level k and
without any degree of collaboration by the others. As v is requested to be
monotonic, it holds a(1) ≥ a(2) ≥ · · · ≥ a(j − 1) ≥ a(j) = 0. Thus, the maxi-
mum achievement player a can obtain by herself without the collaboration of
the others is a(1).

A j-cooperative game (N, v) is of constant-sum if

v(S) :=

j∑
i=1

∑
a∈Si

a(i)

for all S ∈ JN .
The players do not take advantage of cooperation in this type of games,

cooperation does not provide any surplus to them. The following result is
quite intuitive and any reasonable value for j-cooperative games should give
the same assignment.

Theorem 1.4 Let (N, v) be a constant-sum j-cooperative game. Then,
Fa(v) = a(1) for all a ∈ N .

Proof. Observe that in a constant-sum game mk(v, S) = a(k), while



22 A value for j-cooperative games: some theoretical aspects and applications

mk(v, S) = a(1)− a(k). Then Equation (1.1) becomes

Fa(v) =
1

jnn!

 ∑
S∈JN :
a∈Sj

j−1∑
k=1

γnj (sj − 1)a(k) +
∑
S∈JN :
a∈S1

j∑
k=2

γnj (s1 − 1)(a(1)− a(k))


As in the first addend there is one term with a(1) and a(j) = 0 it follows:

Fa(v) =
1

jnn!

 ∑
S∈JN :
a∈Sj

γnj (sj − 1)a(1) +
∑

S∈JN :
a∈S1

j∑
k=2

γnj (s1 − 1)a(1)

+

 ∑
S∈JN :
a∈Sj

j−1∑
k=2

γnj (sj − 1)−
∑

S∈JN :
a∈S1

j−1∑
k=2

γnj (s1 − 1)

 a(k)


(1.12)

As there is a bijection between the j-partitions in which a ∈ S1 and those
in which a ∈ Sj we can group the terms in the first row of (1.12) and also
deduce that the addends in the second row of (1.12) cancel. Thus, the previous
expression is simplified to

Fa(v) =
a(1)

jnn!

 ∑
S∈JN :
a∈S1

j∑
k=1

γnj (s1 − 1)

 =
a(1)

jnn!

 j∑
k=1

∑
S∈JN :
a∈S1

γnj (s1 − 1)


=
a(1)

jnn!

j
 ∑
S∈JN :
a∈S1

γnj (s1 − 1)




(1.13)

As the last addend in (1.13) counts the total number of roll-calls such that
a ∈ S1 which is jn−1n!, we have: Fa(v) = a(1).

1.10 Generating functions for computing the F-value for
weighted j-simple games

In this section we show the method of generating functions to compute
the value proposed in this paper. Although everything we do is extendible to
j-simple games for any j ≥ 2, we just consider, for avoiding more notation
complications, the case j = 3 which includes ternary voting systems. We focus
on this case because we are interested in computing the value for the UNSC
voting system and a natural variation of it.
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Formula (1.1) for ternary cooperative game reduces to

Fa(v) = 1
3nn!

[ ∑
S:a∈S1

(γn3 (s3) + γn3 (s1 − 1)) [v(S)− v(Sa↓3)]

]

+ 1
3nn!

[ ∑
S:a∈S1

γn3 (s1 − 1) [v(S)− v(Sa↓2)]

]

+ 1
3nn!

[ ∑
S:a∈S2

γn3 (s3) [v(S)− v(Sa↓3)]

]
.

(1.14)

As in j-simple games, all marginal contributions are either 1 or 0, it is conve-
nient to use the two sets:

CY Aa (v) = {S ∈ 3N : a ∈ S1, S ∈W,Sa↓2 /∈W}
CANa (v) = {S ∈ 3N : a ∈ S1, Sa↓2 ∈W,Sa↓3 /∈W }

and then compute the power index as

Fa(v) = 1
3nn!

[ ∑
S∈CY A

a (v)

(γn3 (s3) + 2γn3 (s1 − 1))

+ 1
3nn!

∑
S∈CAN

a (v)

(2γn3 (s3) + γn3 (s1 − 1))

]
.

(1.15)

The delay in the development of a convincing theory for simple games
with ordered alternatives is possibly due to the lack of a consistent notion
of weighted game in this context. This important issue was solved with the
concept of weighted j-simple game provided in [33]. A characterization for it
in terms of trade robustness was provided there, since then several alternative
works deal with the notion of weighted j-simple game, among others [34, 35,
36].

Such definition for binary voting systems reduces to the existence of j
ordered weights, that respect monotonicity, for each voter and a quota such
that a j-partition S is winning if the sum of the weights of voters at the
level of approval they choose is greater or equal than the quota. As observed
in [33], one of these j weights can be normalized at zero. In the context of
ternary voting games where the options for voters are: voting ‘yes’, ‘abstaining’
or voting ‘no’, it seems natural normalizing at the level of abstention and
thus, every voter has a non-negative weight for voting yes and a non-positive
weight for voting no. Thus we can associate to each voter a ∈ N the triple
(wyesa , wabsa , wnoa ) with wyesa ≥ wabsa ≥ wnoa , and after normalization at the
intermediate level, we have: wyesa ≥ 0, wabsa = 0 and wnoa ≤ 0.

Let us consider that a representation for the weighted game is:

v ≡ [q; (wyes1 , wno1 ), · · · , (wyesn , wnon )]
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where q is the quota. Thus,

v(S) = 1 if and only if w(S) :=
∑
i∈S1

wyesi +
∑
i∈S3

wnoi ≥ q

Since we have the explicit formula (1.15), in case of a weighted game
we can compute the power index by using generating functions. Generating
functions for computing power indices have been used in many works among
others [1, 2, 3, 10, 18]. Generating functions for 3-simple games have been used
in [32] for computing the Banzhaf power index and some other power indices.
We now introduce generating functions for computing the power index f for
the UNSC voting system with abstention.

Definition 1.4 Let v ≡ [q; (wyes1 , wno1 ), · · · , (wyesn , wnon )] be a representation
of a weighted game with abstention. For any a ∈ N , the generating function
is defined as

Fa(x) =
∏

p∈N,p6=a

(
yxw

yes
p + 1 + txw

no
p
)

(1.16)

Observe that the role of the variables y and t are the counting of the number
of ‘yes’-voters and ‘no’-voters, respectively. Then, there is no need to count
the number of abstainers since it can be deduced since the number of voters
is known. Note also that the power of the variable x is the weight, which in
the case of an abstainer is zero, which explains the 1 in the middle position.

The function Fa(x) can also be written as

Fa(x) =

w∑
k=w

n−1∑
i=0

n−i−1∑
j=0

bk,i,jy
itjxk

where w =
∑
i∈N w

no
i and w =

∑
i∈N w

yes
i .

In the previous formula, the coefficient bk,i,j counts the number of tripar-
titions S of total weight k such that there are i players in S1 and h players in
S3. Using these coefficients, Equation (1.15) becomes

Fa(v)=
1

3nn!

 q−1∑
k=q−w

yes
a

bk,i,h(2γn
j (i) + γn

j (h))+

q−wno
a −1∑

k=q

bk,i,h(γn
j (i) + 2γn

j (h))

 (1.17)

for any player a such that CY Aa (v) 6= ∅ and CANa (v) 6= ∅. If voter a is null,
then the F-value is zero. If voter a is null in the Y A-level (which implies
CY Aa (v) = ∅) but not in the AN -level (which implies CANa (v) 6= ∅), then the
first addend in (1.17) must be replaced by 0; and conversely, if voter a is
not null in the Y A-level (which implies CY Aa (v) 6= ∅) but it is in the AN -
level (which implies CANa (v) = ∅), then the second addend in (1.17) must be
replaced by 0.
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1.11 Examples revisited

Example 1.6 (Example 1.2 revisited) As n = j = 3, the coefficients
in (1.2) are: γ33(0) = 2, γ33(1) = 5 and γ33(2) = 26; we then obtain
F(v) = (2, 1, 1) after the substitution in (1.1) where the payment 2 is for
the qualified worker a and 1 is the payment for each of the other two.

Example 1.7 (Example 1.3 revisited) Each test plays the role of a
player. As we did in the previous example, we could use (1.1) with its co-
efficients γ211(0) = 1 and γ211(1) = 12 to obtain F(v) = (60, 40). However, the
result directly follows from Theorem 1.4 since v is a constant-sum game. Thus,
the importance of each test for the exam is given by the intuitive assignment
(60, 40) that preserves the relative importance between the two parts.

Example 1.8 (Example 1.4 revisited) Recall that for the UNSC voting
system, the winning tripartitions S satisfy

|S1| ≥ 9 and S3 ∩ P = ∅.

We compute the value by using the method of generating functions. A weighted
representation for this voting system, see [33], is given by a threshold of 9 a
weight of (1, 0,−6) for each permanent member and a weight of (1, 0, 0) for a
non-permanent member.

We now compute the power index by using its expression in Equa-
tion (1.15). It is then clear that for a permanent member p it holds:

CY Ap (v) = {S : p ∈ S1, |S1| = 9, and |S3 ∩ P | = ∅}

and
CANp (v) = {S : p ∈ S1, |S1| > 9 and |S3 ∩ P | = ∅}.

So,

fp(v) =

6∑
s3=0

[2γ
15
3 (8) + γ

15
3 (s3)]

4∑
j=max{0,s3−2}

(4
j

)( 10

8− j

)(j + 2

s3

)+

15∑
s1=10

15−s1∑
s3=0

[γ
15
3 (s1 − 1) + 2γ

15
3 (s3)]

4∑
j=max{0,s1+s3−11}

(4
j

)( 10

s1 − 1− j

)(11− s1 + j

s3

) .

On the other hand, for a non-permanent r we have

CY Ar (v) = {S : r ∈ S1, |S1| = 9, and |S3 ∩ P | = ∅}

and CANr (v) = ∅. Thus,

fr(v) =

6∑
s3=0

[2γ153 (8) + γ153 (s3)]

5∑
j=max{0,s3−1}

(
5

j

)(
9

8− j

)(
j + 1

s3

) .
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Using these formulas we obtain

fp(v) = 0.16338987329859317, fr(v) = 0.01830506335070341.

fp(v) ≈ 0.16339, fr(v) ≈ 0.018305.

It is a close result to the one computed in [30] by using (1.8), although it
differs a bit from it. Likely the difference lies in a rounding problem. Observe
that the relative importance according to this index for the two types of voters
is given by

fp(v)

fr(v)
≈ 8.93,

which is still too big in favor of the permanent nations.

Example 1.9 (Example 1.5 revisited) Recall that the modification of the
UNSC we have proposed converts the five losing tripartitions (N \ {p}, ∅, {p})
for all p ∈ P into winning. The remaining tripartitions do not change its
status.

This new 3-simple game can still be represented as a weighted game with
quota q = 9 and vector of weights for the permanent members (1, 0,−5) and
(1, 0, 0) for non-permanent members.

Using again the generating function method, the values we obtain for a
permanent member p and for a non-permanent member r are:

fp(v) = 0.013958034451108942, fq(v) = 0.030209827744455294.

fp(v) ≈ 0.013958, fq(v) ≈ 0.03021.

Observe that the relative importance according to this index for the two types
of voters is in this slightly modified example:

fp(v)

fr(v)
≈ 4.62.

i.e., the relative importance has been reduced to almost half with respect to the
standard model.

The United Nations Security Council is critical to global peace and secu-
rity, yet more than twenty years of negotiations over its reform have proved
fruitless. The change proposal we do for the UNSC voting system only alters
five tripartitions over more than 14.3 million. As shown, this has two effects.
On the one hand, it reduces the relative power to the half between the two types
of voters and, on the other hand, it avoids veto power by permanent members
in an acceptable way:

‘if everyone thinks differently, it is that I must be wrong’.
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1.12 Conclusion

The value proposed in this paper for j-cooperative games or multi-choice
games has ingredients to be a generalization of the Shapley value and it can
make stake out which is the most reasonable extension for the well-known
value to the broader context considered. Among the arguments supporting
the value proposed here, we can find the following: it is totally consistent in
its particularization from j-cooperative games to j-simple games; it admits
an explicit formula in terms of the characteristic function; it is supported
by a probabilistic model; it is supported by an axiomatic characterization; it
assigns to each player a single numerical value that does not depend on input
alternatives.

The capacity of theoretical studies and applications of the value on the
contexts described are enormous and future research is encouraged.
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