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h i g h l i g h t s

� Ethanol steam reforming has been modelled with a 3D non-isothermal model.

� EtOH decomposition, water gas shift and CH4 steam reforming have been considered.

� Honeycombs loaded with Rh-Pd/CeO2 catalyst have been modelled at S/C ¼ 3.

� A maximum H2 yield of 80% is achieved at 1150 K and 4 bar.
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a b s t r a c t

Existing literature data have been used to model the steam reforming of ethanol on cat-

alytic honeycombs coated with Rh-Pd/CeO2, which have shown an excellent performance

and robustness for the production of hydrogen under realistic conditions. In this article, a

fully 3D non-isothermal model is presented, where the reactions of ethanol decomposition,

water gas shift, and methane steam reforming have been modelled under different oper-

ational pressures (1e10 bar) and temperatures (500e1200 K) at a steam to carbon ratio of S/

C ¼ 3 and a space time of W/F between 2$10�3 and 3 kg h Lliq
�1. According to the modelling

results, a maximum hydrogen yield of 80% is achieved at a working temperature of 1150 K

and a pressure of 4 bar at S/C ¼ 3.

© 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

The demand for clean and renewable energy is increasing

because of stringent environmental and political constraints.

In this context, hydrogen is emerging as a natural choice

because it is an excellent energy carrier and represents the

final objective of a decarbonized society. In addition, fuel cells

can be used to produce electricity and heat from hydrogen

with remarkable efficiency and flexibility. As a renewable

substance, hydrogen cannot only be used as a clean fuel but
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also as a feedstock for important chemical production, such as

ammonia and methanol. The production of hydrogen from

natural gas and naphtha by catalytic reforming is a well-

established commercial process, but hydrogen can be also

produced catalytically from a variety of other sources,

including other hydrocarbons, various types of alcohols and

bio-alcohols, ammonia, etc. as well as photocatalytically from

water and organic compounds [1,2]. Advances in catalytic

reactor technologies are essential for process intensification

in the production of hydrogen, particularly for on-site and/or

on-board applications intended to feed fuel cells [3]. Catalytic

wall reactors, where a thin layer of catalyst is deposited on the

walls of a regular substrate, is one of the most used methods

to immobilize a catalyst and to improve mass and heat

transfer with low pressure drop for practical application.

In this work, we focus on the modelling of catalytic hon-

eycombs for the steam reforming of ethanol (ESR). Ethanol is a

renewable fuel that is widely produced by biomass fermen-

tation and its use to produce hydrogen has been widely re-

ported and reviewed [4e7]. Given the worldwide availability of

bioethanol, high hydrogen content, safe transport and

manipulation and low cost, considerable effort has been

devoted to obtain highly active and robust catalysts for oper-

ating in real environments. In that sense, we have reported

previously the excellent performance of the bimetallic Rh-Pd

system supported on cerium dioxide and studied in detail its

performance in the ESR reaction, both in powder form [8e12]

as well as the active phase in catalytic wall reactors [13,14],

catalytic membrane reactors equipped with highly selective

metallic membranes [15,16] and microreactors [17]. Here we

extend these studies by developing a CFDmodel for cordierite

honeycombs coated with Rh-Pd/CeO2 in the ESR reaction

based on our previous experimental data to better understand

their behaviour and to simulate and optimize operation

parameters.

Methods

Reformer configuration

A fully detailed description of the catalyst preparation, char-

acterization, reaction tests and the experimental set-up can

be found in Ref. [13]. Briefly, a conventional 400 cpsi (cells per

square inch) cordierite honeycomb (Corning Inc.) with 1.8 cm

diameter and length was coated with cerium dioxide by the

washcoating method. Then, the noble metals (0.5 wt%Rh e

0.5 wt% Pd) were added by incipient wetness impregnation.

The total mass of the Rh-Pd/CeO2 catalyst deposited on the

honeycomb was 250 mg and the catalyst layer thickness was

about 5e6 mm. The catalytic honeycomb was implemented in

a tubular stainless-steel reactor, whichwas disposed inside an

electric furnace with a PID electronic controller. The liquid

feed mixture of ethanol and water (steam to carbon ratio of 3)

was injected into the reactor with an HPLC pump (no carrier

gas was used). A back-pressure regulator was implemented

after the reactor outlet. Finally, a condenser was added to

collect the condensable components from the reactor, the gas

flow stream was measured with a bubble soap meter, and a

micro GC (Agilent 3000 A) was used to measure online the

concentration of the different gas species.

CFD model

A 3D non-isothermal model was developed using CFD

methods to simulate the catalytic honeycomb for hydrogen

production described above. Taking advantage of the sym-

metry of the honeycomb, only 1/8 part of it was modelled

(Fig. 1). The commercial CFD software COMSOL Multiphysics

5.4 was used with the finite-element method for solving the

governing equations. In order to obtain the best convergence

and reliable results, a fully coupled solution approach (a single

large system of equations that solves every physics coupling

within a single iteration) was carried out with the direct solver

PARDISO. The hardware configuration was an 8 core CPU at

4.7 GHz (Intel i9 9900k) with 32 GB RAM memory at 3000 MHz.

The following assumptions for the CFD model were consid-

ered [18e30]: (i) ideal gas behaviour and Newtonian flow, (ii)

steady state conditions, (iii) steam acts like a solvent for

diffusion transport calculations, (iv) inertial term on the

Navier Stokes equation is neglected, (v) thermal viscous

dissipation of the fluid flow is neglected, (vi) reactions take

place only at the surface of the catalyst, and (vii) conductive

heat transfer within the catalyst layer is similar to that of the

cordierite support. The temperature of the external wall of the

monolith was fixed as a boundary condition to simulate

Fig. 1 e Geometry of the model.
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experiments, whichwere carried outwith the catalytic reactor

inside an electrical furnace, as explained in Reformer

configuration.

Governing equations

The governing equations of the model are: (i) continuity

equation (Eq. (1)), (ii) momentum balance (Navier-Stokes, Eq.

2), (iii) energy balance equation (Eq. (3)), and (iv) conservation

equation (Eq. (4)).

V
�
rf $u

� ¼ 0 (1)

0 ¼ �Vp þ V$ðmðVuþ ðVuÞTÞ � 2
3
mðV $uÞIÞ þ F (2)

rf Cpu $VT þ V$ð� kconVTÞ ¼ Q þ Qr (3)

V $ ð�DiVci þuciÞ ¼ Ri (4)

According to the literature [8,13,17], ethanol is first

decomposed into hydrogen, methane and carbon monox-

ide on the Rh-Pd/CeO2 catalysts at low temperature (Eq.

(5)), followed by the water gas shift reaction (WGS, Eq. (6))

[8,31] and methane reforming at high temperature (MSR,

Eq. (7)) [32].

C2H5OHðgÞ / CH4ðgÞ þ COðgÞ
þ H2ðgÞ

�
DH298 K ¼ 49:0 kJ mol�1

�
(5)

COðgÞ þ H2OðgÞ% CO2ðgÞ þ H2ðgÞ
�
DH298 K ¼ � 41:2 kJ mol�1

�

(6)

CH4ðgÞ þ 2H2OðgÞ % CO2ðgÞ
þ 4H2ðgÞ

�
DH298 K ¼ 165:1 kJ mol�1

�
(7)

As reported in Refs. [23,24], due to the involved significant

computational efforts to build a CFD model, the reactions

rates (Eqs. (8)e(10)) weremodelled in a simplified way in order

to keep the equations numerically tractable:

r5 ¼ k5$CC2H5OH (8)

r6 ¼ k6$CCO$CH2O � k6$CCO2
$CH2

K6
(9)

r7 ¼ k7$CCH4
$C2

H2O
� k7$CCO2

$C4
H2

K7
(10)

kj ¼k∞;j$e
�Eaj
R$T (11)

where r5, r6 and r7 correspond to the reactions rates (in mol

m�2 s�1) of ethanol decomposition, water gas shift and

methane reforming, respectively. CC2H5OH, CCO, CCO2
, CH2O, CH2

and CCH4
are themolar concentrations of each species. k5, k6, k7

are the rate constants calculated fromArrhenius equation (Eq.

(11)).

The equilibrium constants (Kj) were calculated from the

Gibbs free energy of the reaction (Eq. (12)).

Kj ¼ e
�DGºr
RT

Y
species

�
Ctotal$p+

p

�gspecies i

(12)

Where DG
�
r is the Gibbs free energy of the reaction (including

formation terms). In order to obtain the best accuracy, the

enthalpy and entropy of the reactionwere calculated from the

standard enthalpy formation and absolute entropy of each

species referred to a given temperature. Polynomial approxi-

mations of thermodynamic and transport properties were

modelled for each species (NASA coefficients) [33].

Boundary conditions and post-processing definitions

The following boundary conditions were taken into account:

- Inlet of the reformer: n$ðJi þ uciÞ ¼ n$ðuc0;iÞ, T ¼ Tin, �R
vU rðu $nÞ dS ¼ m .

- Catalytic walls: � n$Ji ¼ Ri, � n$ð � kconVTÞ ¼ Q, u ¼ 0.

- External wall: � n$Ji ¼ 0, T ¼ T0, u ¼ 0.

- Symmetry: � n$Ji ¼ 0, � n$q ¼ 0, u$n ¼ 0; ðmðVu þ
ðVuÞTÞnÞ � ððmðVu þ ðVuÞTÞnÞ $nÞn ¼ 0.

- Outlet of the reformer: n$DiVci ¼ 0, � n$q ¼ 0, ½ � p I þ
ðmðVu þ ðVuÞTÞnÞ�n ¼ 0.

The following definitions were used on the post-

processing:

- Ethanol conversion:

Fig. 2 e Effect of mesh element number in CFD simulation

on ethanol conversion (6 bar, 700 K, S/C ¼ 3, 55 mLliq/min).

Table 1 e Estimated parameters for reaction rates.

Reaction j k∞, j Ea, j

Ethanol Decomposition

Eq. (8)

4.3864 m

mg�1
cat s

�1

87 kJ mol�1

Water Gas Shift (WGS)

Eq. (9)

0.0248 m4

mg�1
cat s

�1 mol�1

86 kJ mol�1

Methane Steam

Reforming (MSR) Eq. (10)

0.0128 m7

mg�1
cat s

�1 mol�2

145 kJ mol�1
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XEtOH ¼ FC2H5OH;in � FC2H5OH;out

FC2H5OH;in
(13)

where FC2H5OH;in and FC2H5OH;out are the inlet and outlet ethanol

molar fluxes, respectively.

- Hydrogen yield (%):

h¼ FH2

6$FC2H5OH;in
100 (14)

where FH2
is the outlet hydrogen molar flux.

Mesh

A mesh independency study was carried out to determine the

optimalmesh numberwith theminimumcomputational cost.

The simulations conditions were 6 bar, 700 K, S/C ¼ 3, and a

liquid load of 55 mLliq/min. The results obtained of the ethanol

conversion versus the number ofmesh elements are shown in

Fig. 2. By increasing from 12,611 elements to 14,144, the

Table 2 e Activation energy for reactions involved in ESR.

Reference Catalyst Ea (kJ mol�1) Ethanol
decomposition Eq. (5)

Ea (kJ mol�1) Water gas
shift Eq. (6)

Ea (kJ mol�1) Methane steam
reforming Eq. (7)

This work Rh-Pd/CeO2 87 86 145

[13] Rh-Pd/CeO2 87 70 156

[18] Co3O4/ZnO 130 70 e

[31] Rh/MgAl2O4/Al2O3 86 151 107b

[34] Rh/MgAl2O4/Al2O3 303 56 188b

[35] Pt-Co/CeO2-SiO2 28 60 232b

[35] Ni-Co/CeO2-SiO2 24 35 77b

[36] Pd/Al2O3 148a 60 107b

a C2H5OHðgÞ þ H2OðgÞ/ CH4ðgÞ þ CO2ðgÞ þ 2H2ðgÞ.
b CH4ðgÞ þ H2OðgÞ/ COðgÞ þ 3H2ðgÞ.

Fig. 3 e Exit molar fluxes for different operational

temperatures of H2, CH4, CO and CO2. P ¼ 3 bar, S/C¼ 3, W/

F ¼ 7.58 10¡2 kg h Lliq
¡1.

Fig. 4 e Exit molar fluxes for different operational

temperatures of H2, CH4, CO and CO2. P ¼ 4.5 bar, S/C ¼ 3,

W/F ¼ 7.58 10¡2 kg h Lliq
¡1.

Fig. 5 e Exit molar fluxes for different operational

temperatures of H2, CH4, CO and CO2. P ¼ 6 bar, S/C ¼ 3, W/

F ¼ 7.58 10¡2 kg h Lliq
¡1.
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ethanol conversion difference was only 0.02%. Therefore,

increasing the mesh elements had a negligible difference.

Accordingly, this solution (12,611 elements) becomes inde-

pendent from the mesh number and it was used for all sub-

sequent computational studies.

Results and discussion

Table 1 shows the parameters for each reaction that have

been estimated in order to obtain the best fitting values with

the least squares method. These values compare well with

those reported in the literature, as shown in Table 2, where

the activation energy values reported for the three reactions

involved in the ESR are compiled. The estimated activation

energy values of this work are within the range of those re-

ported experimentally.

To validate and evaluate the reliability of the model, the

computational results were contrasted with experimental

data in terms of molar fluxes of H2, CO, CO2 and CH4 as well as

ethanol conversion values [13]. As seen in Figs. 3e5, there is a

good agreement between the computed results and experi-

mental outlet molar fluxes, not only in the values but also in

the trends. In addition, ethanol conversion (Eq. (13)) fits well

with the experimental data at different pressures and tem-

peratures (Fig. 6). A parity plot of experimental vs. calculated

molar flux values is shown in Fig. 7 (R2 ¼ 0.977). However,

model validation is only guaranteed in the range of 500e950 K,

3e6 bar and S/C¼ 3; simulations performed outside this range

are not contrasted with experimental data.

Concerning the temperature distribution of the catalytic

honeycomb under ESR conditions, Fig. 8 shows a 3D view at

two different temperatures, 750 and 950 K, at 3 bar. As ex-

pected, there is a decrease of temperature at the entrance of

the honeycomb. This is ascribed to the endothermic character

of the first step of the ESR process, which is the decomposition

of ethanol (Eq. (5)). The decrease of temperature is more

evident at the central part of the honeycomb due to the well-

known heat transfer limitations of cordierite. A similar trend

is obtained at 4.5 and 6 bar (not shown).

The simulated profile distribution of species along a single

channel at the centre of the catalytic honeycomb at 950 K and

3 bar is shown in Fig. 9. Ethanol is completely transformed at

the very beginning of the honeycomb (first 2 mm, approxi-

mately). However, the distribution of products does not

correspond to the stoichiometry of the decomposition of

ethanol (Eq. (5)), which nominally yields equal molar

Fig. 6 e Ethanol conversion for different pressure and

temperature conditions. S/C ¼ 3, W/F ¼ 7.58 10¡2 kg h

Lliq
¡1.

Fig. 7 e Parity plot for calculated vs. experimental exit

molar flowrates for different pressure and temperature

conditions. S/C ¼ 3, W/F ¼ 7.58 10¡2 kg h Lliq
¡1.

Fig. 8 e Temperature field (K) at P ¼ 3 bar and external temperature of 950 K (a) and 750 K (b).
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concentrations between H2, CO and CH4. The presence of CO2

and a high molar concentration of H2 are indicative that the

second step of the reaction, the water gas shift equilibrium

(Eq. (6)), operates efficiently on the Rh-Pd/CeO2 catalyst. As

deduced from Fig. 9, this step is dominant shortly after the

first millimetres of the honeycomb. The last stage of the ESR

process, the steam reforming of methane (Eq. (7)), originated

mostly from the initial decomposition of ethanol but also from

methanation of carbon oxides with H2, dominates most of the

channel length. This is the reason why the molar concentra-

tion of both CO and CO2 increase along the channel. Themolar

concentrations at the end of the channel approach those

predicted by the thermodynamic equilibrium and larger

lengths do not result in any additional advantage for the

production of H2 under these operation conditions.

Fig. 10 shows the ethanol conversion and hydrogen yield

simulated for different space time values and temperatures.

As expected, the ethanol conversion decreases progressively

when the residence time decreases, being the decrease in

ethanol conversion strongly related to the reaction tempera-

ture; the lower the temperature the stronger the ethanol

conversion decay. The hydrogen yield follows the same

trends, but given the different influence of space time and

temperature on each reaction (ethanol decomposition, WGS

and methane reforming), the trends exhibit different profiles

and simulation appears as a valuable tool for predicting the

hydrogen production.

Finally, the model has been used to explore the best oper-

ational conditions for producing hydrogen at S/C ¼ 3 with the

Fig. 9 eMolar concentration of different species vs. channel length. T¼ 950 K, P¼ 3 bar, S/C¼ 3, W/F¼ 7.58 10¡2 kg h Lliq
¡1.

Fig. 10 e Ethanol conversion and hydrogen yield for

different space time values and temperatures. P ¼ 3 bar, S/

C ¼ 3.

Fig. 11 e Hydrogen yield for different pressures and

temperatures. S/C ¼ 3, W/F ¼ 7.58 10¡2 kg h Lliq¡1.
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catalytic honeycomb at a fixed space time. Fig. 11 shows the

calculated H2 yield, as defined in Eq. (14)., obtained at

500e1200 K and 1e10 bar. It is important to recall that the gas

density and residence time of the reacting mixture increase

with pressure, which has an influence on the hydrogen yield.

This is particularly important at low pressure values (below

ca. 2 bar). As anticipated, temperature has a positive effect on

the ESR due to thermodynamics. However, the production of

hydrogen at intermediate temperature (700e750 K) is hin-

dered due to methanation, which is a reaction that consumes

high amounts of H2. This effect is more severe at high pres-

sure, as expected from the stoichiometry of the reaction. At

high temperature (ca. above 800 K), the production of

hydrogen increases sharply and the maximum yield of

hydrogen is obtained following the steam reforming of

methane, which is favoured at low pressure values. A

maximum yield of hydrogen around 80% is expected at a

working temperature of about 1150 K and a pressure of about

4 bar.

Conclusions

A catalytic honeycomb consisting of a commercial cordierite

400 cpsi structure coated with Rh-Pd/CeO2 has been modelled

for the steam reforming of ethanol aimed to produce

hydrogen at a steam to carbon ratio of S/C ¼ 3. The model has

been constructed and validated from experimental data

available in the literature (ethanol conversion values and

molar flow rates of products) recorded at different tempera-

ture and pressure. Three reactions have been considered in

the model (ethanol decomposition, water gas shift and

methane steam reforming). The kinetic parameters and acti-

vation energy values obtained from the model are within

those reported in the literature. The model has been used to

analyse in detail the heat transfer and the extent of the re-

actions that take place inside the catalytic honeycomb during

the steam reforming of ethanol, where it is not feasible to

acquire data. The optimal operation conditions (temperature

and pressure) for the catalytic honeycomb have been deter-

mined at 1150 K and 4 bar, with a maximum hydrogen yield of

80%.
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Nomenclature

ESR ethanol steam reforming

WGS water gas shift

MSR methane steam reforming

S/C steam to carbon

W/F weight to flow (kg h Lliq
�1)

u velocity vector, m s�1

p pressure, Pa

I identity matrix

n normal vector

F external forces applied to the fluid, N m�3

Cp heat capacity at constant pressure, J kg�1 K�1

T temperature, K

kcon thermal conductivity W m�1 K�1

Q external heat source, W m�2

Qr reaction heat source, W m�2

Di diffusion coefficient, m2 s�1

ci concentration, mol m�3

Ri species surface rate, mol m�2 s�1

R reaction rate, mol m�2 s�1

k reaction rate constant, Eq. (5) m mg�1
cat s

�1; Eq. (6)

m4 mg�1
cat s

�1 mol�1; Eq. (7) m7 mg�1
cat s

�1 mol�2

k∞ pre-exponential factor, Eq. (5) m mg�1
cat s

�1; Eq. (6)

m4 mg�1
cat s

�1 mol�1; Eq. (7) m7 mg�1
cat s

�1 mol�2

K equilibrium constant

Ea activation energy, kJ mol�1

R universal gas constant, J mol�1 K�1

DGº
r Gibbs free energy of reaction (including formation

terms), J mol�1

J diffusive flux, mol m�2 s�1

F molar flow rate, mol min�1 or mmol min�1

XEtOH ethanol conversion

mgcat catalyst mass, mg

Greek letters

rf density, kg m�3

m dynamic viscosity, Pa s

Ctotal sum of all concentration species, mol m�3

Н hydrogen yield

Superscripts

g stoichiometric coefficient

º standard condition

Subscripts

i species i

j reaction j

C2H5OH ethanol

CO carbon monoxide

CO2 carbon dioxide

H2O water

H2 hydrogen

CH4 methane

0 inlet
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