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[11 Most field campaigns aim at helping in specified scientific or practical tasks, such

as modeling, prediction, optimization, or management. Often these tasks involve binary
decisions or seek answers to yes/no questions under uncertainty, e.g., Is a model adequate ?
Will contamination exceed a critical level ? In this context, the information needs of
hydro(geo)logical modeling should be satisfied with efficient and rational field campaigns,
e.g., because budgets are limited. We propose a new framework to optimize field campaigns
that defines the quest for defensible decisions as the ultimate goal. The key steps are to
formulate yes/no questions under uncertainty as Bayesian hypothesis tests, and then use the
expected failure probability of hypothesis testing as objective function. Our formalism is
unique in that it optimizes field campaigns for maximum confidence in decisions on model
choice, binary engineering or management decisions, or questions concerning compliance
with environmental performance metrics. It is goal oriented, recognizing that different
models, questions, or metrics deserve different treatment. We use a formal Bayesian scheme
called PreDIA, which is free of linearization, and can handle arbitrary data types, scientific
tasks, and sources of uncertainty (e.g., conceptual, physical, (geo)statistical, measurement
errors). This reduces the bias due to possibly subjective assumptions prior to data collection

and improves the chances of successful field campaigns even under conditions of model
uncertainty. We illustrate our approach on two instructive examples from stochastic

hydrogeology with increasing complexity.

Citation: Nowak, W., Y. Rubin, and F. P. J. de Barros (2012), A hypothesis-driven approach to optimize field campaigns, Water

Resour. Res., 48, W06509, doi:10.1029/2011WR011016.

1. Introduction

[2] Uncertainty quantification and reduction are funda-
mental challenges in the environmental and hydrological
sciences. Uncertainties arise due to data scarcity, limited
observability, and our incapacity to fully resolve spatial var-
iability and dynamics, or to define correctly all the physical,
chemical, and biological processes involved with their
boundary and initial conditions and forcing terms [e.g.,
Christakos, 1992 ; Rubin, 2003 ; Oreskes et al., 1994]. As an
outcome, full validation of model concepts and perfect
model calibration is an almost impossible task [Oreskes
et al., 1994].

[3] In the hydro(geo)logical sciences, we often use mod-
els to predict and address scientific hypotheses or chal-
lenges in engineering and management under uncertainty :
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[4] Should we shut down a drinking water well before
contamination arrives [e.g., Frind et al., 2006; Enzenhdfer
etal.,2012]?

[s] How large is the risk emanating from a contaminated
site [e.g., Troldborg et al., 2010]?

[6] Is natural attenuation occurring [e.g., Schwede and
Cirpka, 2010; Cvetkovic, 2011]?

[7] Is a proposed remediation design safe [e.g., Cirpka
et al., 2004 ; Bolster et al., 2009]?

[8] Is a high-level radioactive waste site safe [e.g.,
Andricevic and Cvetkovic, 1996]?

[o] Is a CO, injection site safe [e.g., Oladyshkin et al.,
2011a,2011b]?

[10] Is human health risk above a critical value or not
[e.g., de Barros and Rubin, 2008; de Barros et al., 2009,
201177

[11] Is a proposed model adequate to answer these ques-
tions [e.g., Neuman, 2003 ; Refsgaard et al., 2006]?

[12] All of the above examples include scientific hypoth-
eses, binary decisions, or binary questions of compliance
with environmental performance metrics such as human
health risk or maximum contaminant levels [see de Barros
et al., 2012]. Pappenberger and Beven [2006] provide a list
of more studies where binary decisions were taken under
uncertainty. They also report the fact that practitioners of-
ten complain about the discrepancy between soft uncer-
tainty bounds and the binary character of decisions.

[13] One way of dealing with binary questions in the
face of uncertainty is to formalize them as hypothesis tests.
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This makes it possible to systematically and rigorously test
assumptions, models, predictions, or decisions. Beven
[2002] summarizes strong arguments that models and theo-
ries in the environmental sciences are nothing else but
hypotheses. A prominent example is the work by Luis and
McLaughlin [1992], who indeed approach model validation
via formal statistical hypothesis testing. Consequently,
modelers and scientists should admit the hypothesis-like
character of models and their underlying theories, concep-
tualizations, assumptions, parameterizations, and parameter
values. We propose that the same approach should be taken
to support any type of decisions that modelers, engineers,
scientists, and managers need to take under uncertainty.
One should treat model predictions and derived conclusions
and decisions as hypotheses, and one should continuously
try to assess and test their validity.

[14] The credibility of and confidence in any answer or
decision under uncertainty increases with well-selected
additional data that help to better test, support, and cali-
brate the involved assumptions, models, and parameters.
However, data must be collected in a rational and goal-
oriented manner because field campaigns and laboratory
analysis are expensive while budgets are limited [e.g.,
James and Gorelick, 1994].

[15] This is where optimal design and geostatistical opti-
mal design [e.g., Pukelsheim, 2006; Ucinski, 2005; Chris-
takos, 1992] come into play. Optimal design (OD) gets the
maximum gain of information from limited sampling, field
campaigns, or experimentation. It optimizes the projected
trade-offs between the costs spent on additional data versus
the higher level of information. It can be used to optimize
(1) what types of data (e.g., material parameters, state vari-
ables) to collect, (2) where to sample (e.g., the spatial lay-
out and time schedule of observation networks), and (3)
how to best excite the system to observe an informative
response (e.g., designing tracer injections or hydraulic
tests). Many applications in groundwater hydrology can be
found in the literature [e.g., James and Gorelick, 1994,
Reed et al., 2000a; Herrera and Pinder, 2005; Nowak
etal.,2010; Leube et al., 2012].

[16] Classical OD theory is based on utility theory [e.g.,
Fishburn, 1970]. It optimizes the utility of sampling [e.g.,
Pukelsheim, 2006], which is traditionally defined as increased
information [Bernardo, 1979] or reduced uncertainty (meas-
ured by variances, covariances, or entropies [e.g., Pukelsheim,
2006; Nowak, 2010; Abellan and Noetinger, 2010]). Unfortu-
nately, these are only surrogate (approximate) measures for
the actual utility, rather than ultimate measures [e.g., Loaiciga
et al., 1992]. The use of surrogates may corrupt the optimality
of designs for the originally intended purpose.

[17] Goal-oriented approaches define the utility of sam-
pling via ultimate measures, i.e., measures defined in the con-
text of a given management application [e.g., Ben-Zvi et al.,
1988; James and Gorelick, 1994 ; Feyen and Gorelick, 2005;
Bhattacharjya et al., 2010; Li, 2010]. Thus, optimal sampling
and field campaign strategies can adapt to the interplay
between the actual information needs of the goal at hand, the
available measurement and investigation techniques, and the
specific composition of uncertainty [e.g., Maxwell et al.,
1999; de Barros et al., 2009; Nowak et al., 2010]. For
instance, de Barros et al. [2012] showed how the utility of
data depends on the considered environmental performance
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metric (e.g., maximum concentration levels, travel times, or
human health risk).

[18] Our work focuses, for now, on situations where the
objective for field campaigns or experimentation is to sup-
port binary decision problems with maximum confidence
in a one-time field effort. By proper formulation of corre-
sponding hypothesis tests, we cast the binary decision prob-
lem into the context of Bayesian decision theory [e.g.,
Berger, 1985] and Bayesian hypothesis testing [e.g., Press,
2003]. The latter differs from classical testing in two
respects: (1) it can absorb prior knowledge on the likeli-
hood of hypotheses, and (2) it can assess the probabilities
of all possible decision errors. Then, we optimize field
campaigns in a goal-oriented manner such that the total
probability of decision error is minimized. The outcome of
our approach are data collected rationally toward the spe-
cific hypothesis, question, or decision at hand, providing
the desired confidence at minimal costs.

[19] There is a substantial body of work in the literature
that optimizes field campaigns via Bayesian decision theory,
maximizing the expected data worth [e.g., Massmann and
Freeze, 1987; James and Gorelick, 1994]. The data worth
concept follows classical ideas from utility theory and deci-
sion theory [e.g., Fishburn, 1970; Ben-Zvi et al., 1988;
Raiffa et al., 1995]. It assigns monetary units for utility, and
then weighs up expected benefits against the costs of field
campaigns. The practical difference between our suggested
approach and classical data worth studies is twofold. First,
our approach encompasses arbitrary hypothesis tests or bi-
nary questions, whereas data worth studies are restricted to
management tasks that provide a context for monetizing
data utility. Second, we do not maximize the monetary worth
of data collection but use the error probability of binary deci-
sions or conclusions derived from the data as objective func-
tion to minimize. In contrast to classical data worth analysis,
this avoids commensuration, i.e., does not require to have a
common (monetary) scale for different values such as sam-
pling costs versus improved scientific confidence or reduced
health risk.

[20] An alternative approach to avoid commensuration is
multiobjective optimization (MOO) [e.g., Sawaragi et al.,
1985; Marler and Arora, 2004]. MOO provides a suite of
Pareto-optimal candidate solutions, i.e., solutions that can-
not improve in any aspect without degrading in at least one
other aspect. The final decision is found by inspecting and
discussing the trade-offs in the different aspects between
the suggested Pareto optima [e.g., Reed and Minsker,
2004 ; Kollat and Reed, 2007]. Thus, the problem of com-
mensuration or preference articulation is postponed to after
the optimization, where more information on the trade-offs
and their consequences are available. A second reason to
use MOO is that there may be a multitude of competing or
(seemingly) incompatible objectives by different stakehold-
ers. Such objectives may as well evolve and change over
time, especially in the design of long-term groundwater
monitoring networks [e.g., Loaiciga et al., 1992 ; Reed and
Kollat, 2012].

[21] Looking at binary decisions leads to classical single-
objective optimization, just like most of optimal design
theory or data worth concepts. We restrict our current work
to the single-objective context, for now looking at the case
where a planned field campaign should chiefly support a
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single decision problem in a one-time field effort. Still,
nothing restricts our approach from integration into MOO
approaches in future work, e.g., if other objectives coexist,
or for a detailed trade-off analysis between improved deci-
sion confidence and costs of the field campaign.

[22] The hypotheses or decision problems that can be
supported with our approach include, e.g., model validity,
model choice for geostatistical, physical, chemical, or biolog-
ical model assumptions, parameterization forms or closure
assumptions, compliance with environmental performance
metrics or other model predictions that are related to binary
decisions, and reliability questions in optimization and man-
agement. In a synthetic test case for the sake of illustration,
we feature the prediction of compliance with maximum con-
taminant levels as an environmental performance metric,
looking at contaminant transport to an ecologically sensitive
location through a two-dimensional heterogeneous aquifer
with uncertain covariance function and uncertain boundary
conditions.

2. General Approach and Mathematical
Formulation

[23] Assume that either a modeler, scientist, or a man-
ager is asked to provide a yes/no decision on a proposed
statement. Due to the inherent uncertainty of the problem-
at-hand, the answer can only be found at a limited confi-
dence level. The outline of our approach for such situations
is as follows:

[24] 1. To cast the corresponding yes/no question or bi-
nary decision into a hypothesis test (section 2.1).

[25] 2. To insert the hypothesis test into the Bayesian
framework, which yields the probability of making a false
decision (section 2.2).

[26] 3. To analyze the expected reduction of error proba-
bility through planned field campaigns as criterion for opti-
mal design (section 2.3).

[27] 4. To minimize the error criterion by optimizing the
field campaign (section 2.3 and section A3).

[28] The obtained sampling schemes allow the proposed
hypotheses (and the final decision) to be affirmed or refuted
at the desired confidence and at minimum costs for the field
campaign. In the following we use a most generic formula-
tion. We will illustrate our methodology based on one sce-
nario with two different levels of complexity in sections 3,
4, and 5.

2.1.

[20] This section summarizes the key steps of classical
hypothesis testing and introduces the notation, before we
move on to Bayesian hypothesis testing and optimal design.
The well-known individual steps of hypothesis testing are
[e.g., Stone, 1996; Casella and Berger, 2002]:

[30] 1. Identify the null hypothesis H, and the alternative
hypothesis H;.

[31] Null hypothesis Hy: A fallback assumption H, on
some target variable ¢ holds.

[32] Alternative hypothesis H;: A (desirable) assumption
H, on g is true.

[33] Hy is the hypothesis that is accepted for the time
being, while the burden of proof is on H;, which is the hy-
pothesis one desires to prove [e.g., Shi and Tao, 2008]. Per

Classical Hypothesis Testing
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definition, falsely accepting H, is the more critical type of
error. This calls for sufficient evidence (i.e., statistically
significant data) before accepting H; over H,, and coin-
cides well with the precautionary principle in policy, envi-
ronmental sciences, and the public health sector [e.g.,
Kriebel et al., 2001].

[34] 2. Choose a level of significance « € [0%, 100%).
Typically, « should be small (e.g., o < 10%). It is the
probability of falsely accepting H; although H, is in fact
true, and so controls the worse type of test failure. The
quantity 8 = 1 — « is often called the power of the test.

[35] 3. Decide what type of data are appropriate to judge
H, and H;, and define the relevant test statistic 7 that can
be computed from the data.

[36] 4. Derive the distribution p(7) of the test statistic,
while considering all statistical assumptions (independence,
distribution, etc.) of the data. More accurately, p(T) should
be denoted as p(T|Hp) because it is the distribution of T
that can be observed if Hy was in fact true. Since T is a
sample statistic, p(T|Hy) will depend, among other things,
on the sample size N.

[37] 5. The significance level « and the character of the
test (one-sided, two-sided) partitions the distribution
p(T|Hp) into the critical or rejection region (reject Hy), and
the acceptance region (accept H, due to lacking statistical
evidence against it).

[38] 6. Evaluate the observed value T, of the test statis-
tic from the data.

[39] 7. Depending on the value of T, decide on the two
hypotheses:

[40] Decision Dy: Accept Hy if Ty is outside the critical
region of p(T'|Hy).

[41] Decision D;: Else, reject Hy in favor of H;.

[42] Either of the decisions D, and D; could be false,
leading to the corresponding error events:

[43] « error E,: Decision D, was taken (H; accepted)
although hypothesis H is in fact true (called false positive
Ole).

[44] [ error Ejz: Decision D, was taken (H, accepted)
although hypothesis H, is in fact true (called false negative
Ole).

[45] Within classical hypothesis tests, these errors can
only be quantified via their conditional probabilities :

Pr[Dl |H0] = Pa,

(1
P}”[D0|H1] = Pg .

The significance level « is the maximum acceptable condi-
tional probability P, for the « error. A total (unconditional)
error probability cannot be specified for two reasons. First,
Pj can only be assessed if the alternative hypothesis H, is
sufficient to infer a sampling distribution p(T|H;). For
example, using an inequality in H; would be insufficient.
Second, one would need prior probabilities Pr[H,] and
Pr[H;] of Hy or H; being true to remove the conditions on
Hy and H, in equation (1).

2.2. Bayesian Hypothesis Testing

[46] With Bayesian hypothesis testing [e.g., Press,
2003], one can assess, for all possible hypotheses and the
resulting decisions, the probability of being false both
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before and after considering the data. If desired, one could
even test more than two competing hypotheses at once.

[47] Given the prior probabilities Pr[Hp] and Pr[H,] of
H, or H, being true, respectively, and a formulation of the
hypotheses that defines the sampling distribution of any
data vector y under each hypothesis, Bayes rule yields for
the conditional probabilities of the hypotheses:

Pi = PriHi|y] = p(y|H;) - PriH]/p(y), i={0,1}. (2)

[48] Then, one can use a Bayesian decision rule [e.g.,
Berger, 1985] and infer the total probability of committing
any of the two errors:

[49] Decision Dy: Accept Hy if Pr[Hply] > a.

[s0] Decision Dy: Else, reject H, in favor of H;.

[51] Individual risks: The overall risks R, and Rg to
commit an « or (3 error (E,, Eg) are

R, = Pr[E,|y] = Pr[Di|Hy, y|Pr[Holy] = Paly - Poly,

Ry = Pr(Egly] = Pr{Do|H,, y|PriH\|y] = Pgly - P1ly.

[s2] Total risk R: the total risk R of committing any of
the errors (sometimes called the Bayes risk) is

R =R, +Rs=P,Py+ PsP,
4)
R(y) = Ra(y) + Rs(y) = Puly - Poly + Psly - P1ly,

where the first and second lines are the prior and conditional
versions, respectively. A weighted version is given by

R = WaRa + WﬂRﬁ ) (5)

where the weights w, and wg reflect the severeness of the
« error versus the 3 error. The link to utility theory [e.g.,
Fishburn, 1970] would be to assign weights that quantify
the respective losses, e.g., in monetary units. The limiting
cases for different weighting are R =R, and R = Rg,
reflecting the preference to never falsely assume safety, or
to never sound a wrong alarm.

. Reality
Prior : :
H, is true H, is true
<
&
8
= R
=
-2
(>
D
A =
2
8
S
S
Figure 1.
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[s3] In Bayesian hypothesis testing, the significance
level « is derived from different considerations than in
classical tests. Typically, Bayesian decision rules [e.g.,
Berger, 1985] find a significance level « such that, for the
given weighting or loss functions in equation (5), the total
Bayes risk according to equation (5) is minimal. This deci-
sion rule is called the Bayes decision criterion by Jaynes
[2003]. In the simple case that no weighting is applied, a
significance level of a = 50% is optimal. Thus, in absence
of recommendations through regulations or legislation,
a = 50% is the value we recommend, because it encodes
an unbiased search for “the truth,” without articulating any
specific preferences between the alpha or beta error.

2.3. Hypothesis-Driven Optimal Design

[54] We will now derive the framework that optimizes
field campaigns to support Bayesian decision (hypothesis
testing) problems with data for maximum confidence. To
this end we minimize the total risk R of false decision (see
equation (5)). We assume that the decision rule (here the
value of «) is fixed a priori. Therefore we consider the
impact of additional planned data on the total risk R by tak-
ing the difference between the first and the second line of
equation (4).

[s5] Assume that the initial Bayesian risk R, of false de-
cision (prior to additional sampling) is too large for the task
or purpose of the modeler, scientist, or manager. The maxi-
mum acceptable risk shall be R,,x. In such cases it is only
natural to try and improve one’s knowledge by collecting
data. Additional data will have the power to narrow down
all relevant distributions of parameters, predictions, and of
the relevant sampling distributions upon which the decision
between H, and H, is based. This can make the final deci-
sion between H, and H; more defensible, as illustrated
schematically in Figure 1, up to the point where R < Ryax.

[s6] In classical univariate hypothesis testing, the sam-
pling distribution p(T'|Hy) of the test statistic 7 depends on
sample size. In the (geo)statistical inverse context, distribu-
tions and distribution shapes also depend on many other
factors [e.g., Rubin, 2003]. These include sampling loca-
tions, data types, the nonlinearity of governing equations

Reality
H, is true H, is true

Poste-
rior

>~ <

Decision
D, taken

D, taken

The objective of hypothesis-driven field campaigns.
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and of the inversion, and the circumstances of data collec-
tion, e.g., the design of tracer chemistry and injection setup,
or the strength and type of any other system excitation ver-
sus passive system observation.

[57] The entire strategy, layout, and schedule of the field
campaign is typically termed an experimental design. All
corresponding design parameters are lumped together in a
formal vector d. This vector contains, e.g., a list of sam-
pling locations and data types to be collected, as well as pa-
rameters that control the circumstances of data acquisition.

[s58] When collecting data according to some design d,
one obtains a data vector y3. The planning phase prior to
sampling is often called the preposterior stage [e.g., Ben-
Zvi et al., 1988; James and Gorelick, 1994 ; Raiffa et al.,
1995]. During that phase the yet unmeasured data values
are conceptualized as random values drawn from a distribu-
tion p(y4). Knowing p(y4) requires an underlying model
with statistical prediction capability for potential data, e.g.,
based solely on prior statistics, or on conditional statistics
that honor all data already available.

[59] Given a specific data vector yj, one could condition
all involved distributions on y : the distribution p(g) for
the target quantity could be updated to p(qlyj), and the
probabilities Py and P; (of Hy and H, being true, respec-
tively) would also change. Thus, following equations (3)
and (4), the total risk R becomes a function of yj:

R(yy) = Palyg - Polyg + Pslya - P1lya (6)

where P(,|yg is the conditional version of probability P.).
Following decision-theoretic ideas, we define the decision
utility ¢* of the data set yj as the reduction of total risk:

¢"(ya) = Ro — Rlyg, @)

where R is the initial decision risk in absence of additional
data evaluated according to the first line of equation (4).
The data set yj is informative if the conditional risk is
smaller than the initial risk Ry, and it is sufficient if
R|y:§ S Rmax~

[60] Unfortunately, for nonlinear statistical inference, the
shape of conditional distributions (including their critical
tails) depends on the actual values of data, which are yet
unknown at the stage of planning the design. For each pos-
sible data set y;j from p(y4) for a given design d, a different
risk reduction ¢*(yj) may result, yielding an entire distri-
bution p(¢|d) for the design’s utility. We therefore invoke
the concept of expected utility [Schoemaker, 1982 ; Raiffa
et al., 1995] by marginalizing equation (7) over all possible
data values y4 ~ p(yq4), and obtain

#(d) = / " (ya)P(Ya) d¥as ®)

where ¢(d) is the expected utility of the design. The condi-
tional expected risk is then

E[R|d] = Ry — $(d). ©

Evaluating equation (9) requires estimation of the possible
conditional distributions of the target quantity g for all
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possible data sets yq, and evaluation of the decision risk in
each case. This task calls for nonlinear Bayesian inference
schemes such as PreDIA [Leube et al., 2012] (see also sec-
tions 4.3 and Ax).

[61] When using equation (8) as objective function for
optimizing the design d, the resulting design will be opti-
mal (in the expected value sense) in supporting a most con-
fident decision on the proposed hypotheses. The reliability
of a design to actually deliver the promised (expected) util-
ity and related possible modifications of equation (8) for
improved robustness as well as the relation between o and
the possible posterior risk values are discussed in section 5.3.

[62] Optimal design theory and its geostatistical branch
know an entire list of optimality criteria that mostly work on
the conditional covariance matrix of model parameters [e.g.,
Pukelsheim, 2006 ; Miiller, 2007 ; Nowak, 2010], often called
the optimality alphabet [e.g., Box, 1982]. To distinguish our
criterion from the existing ones, we call it the R criterion.
We denote the extreme end-members that consider only R,
or Rj (see equation (5)) as R,, optimality and Rg optimality,
and the case without weighting as R, 3 optimality.

[63] The formal optimization task is

dﬁﬁ} = argmax ¢(d),
deQq

(10)
with the space of allowable designs 4. The superscript (R)
in the expression above can be either R,, R, or R, 3. For
any fixed cost of the design, the choice of data types and con-
figurations can be optimized. Alternatively, for fixed R,
the cheapest sufficient design can be found. Several possible
optimization algorithms are provided in section A3.

[64] In the presence of an already existing data set y,, all
prior probabilities are simply exchanged for probabilities
conditional on y,, without otherwise changing our pro-
posed framework.

2.4. Bayesian (Geo)statistics and Model Averaging

[65] The resulting design will be optimal, conditional on
all prior probabilities and assumptions that enter equations
(3)—(5). The challenge is to provide a sufficient envelope
for the uncertainties and errors that plague real field cam-
paigns and hydro(geo)logical modeling efforts. This is a
substantial challenge, especially if complex statistical
assumptions in combination with hydro(geo)logical simula-
tion models serve to provide the priors. In such situations it
is advisable to explicitly account for uncertainties in model
choice and parameters since this will provide designs that
are robust to variations in the prior assumptions. This calls
for approaches such as Bayesian model averaging [e.g.,
Hoeting et al., 1999 ; Neuman, 2003] or Bayesian geostatis-
tics [e.g., Kitanidis, 1986].

[66] The importance of considering parametric uncer-
tainty and uncertain model choice in the context of geostat-
istical optimal design has recently been pointed out by
Nowak et al. [2010] for geostatistical inverse problems,
while Diggle and Lophaven [2006] and Neuman et al.
[2012] performed similar studies restricted to the kriging-
like context. If desired, our hypothesis-driven framework
can also help selecting between different mathematical or
conceptual model structures. This can be achieved by for-
mulating the model choice in terms of hypotheses.
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3. Simplistic Illustration: Contaminant Arrival
Times

[67] In the following we will first illustrate our concept
of R-optimal designs on a simplistic version of a synthetic
case in order to discuss the principles without complication.
A more complex version of this test case will follow in sec-
tions 4 and 5.

3.1.

[68] Consider a contaminant source within a 2-D homo-
geneous aquifer. We assume that the effective porosity 7,
and the regional hydraulic gradient J are known and uni-
form, whereas the spatially constant value of log-transmis-
sivity ¥ = logK is unknown. Authorities are concerned
that the contaminant arrives at some sensitive location at a
distance L downstream within the aquifer faster than a
specified arrival time 7y, and demand 95% confidence for
rejecting their concern. Under the given circumstances, the
arrival time 7 is a so-called environmental performance
metric (see section 3.2 of de Barros et al. [2012]) of inter-
est and is given by

Simplistic Setup

_ Ln,

=27 (11)

T

where K = exp (Y) [e.g., Rubin, 2003]. We can rearrange
this for the limiting value Y = ¥, which leads to 7 = 7.
Using the data shown in Table 1, we obtain Yy = 0.9 (with
K in units of m d™1).

[69] Next, a site investigator is entrusted with the task to
provide a suitable data acquisition strategy, such that one
can determine with sufficient confidence (here 95%),
whether or not the arrival time is smaller than 7. For sim-
plicity we limit this example to collecting aquifer cores,
assuming that they can provide conductivity data with
uncorrelated Gaussian measurement error of variance o?2.

3.2. Application of Hypothesis-Driven Design

[70] First, we set up a hypothesis test and perform all
steps as outlined in sections 2.1 and 2.2: Null hypothesis
Hy: Y > Yy: unsafe situation with 7 < 7. Alternative hy-
pothesis Hy: Y < Yy: safe situation with 7 > 7.

[71] Since human health is at risk, the challenge is to
prove the safe situation (H;), whereas the null hypothesis
H, represents the more conservative choice. In accordance
with the requested confidence of 95% typical for regula-
tions by the US EPA [e.g., USEPA4, 1989, 1991, 2001], we
choose a significance level of a = 5%.

[72] When taking n, samples of ¥ = logK we can use
the sample mean my as an estimate of Y and as the test
statistic 7. Because we face independent and normally
distributed samples with known variance o2, the distribu-
tion p(T|Hy) of the test statistic 7 = my under H, is normal
with mean Y, and sample variance ns‘lag [e.g., Stone,

Table 1. Data Used for Hypothesis Testing Example in Section 3
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1996]. Under these conditions we can simplify the proce-
dure outlined in section A2 by analytical means.

[73] In order to drive the hypothesis test in a Bayesian
manner, we need prior probabilities for Hy and H;. This can
be achieved by assuming a distribution for ¥, for example
from world-wide data bases, expert elicitation or minimum
relative entropy considerations [e.g., Woodbury and Ulrych,
1993; Woodbury and Rubin, 2000; Hou and Rubin, 2005].
Here we assume that p(Y) is Gaussian with prior mean iy
and variance 0. In our case, 0% denotes uncertainty in the
constant mean value of ¥ = log K, not spatial variability. The
data to be collected will have independent zero-mean Gaus-
sian measurement errors £ ~ N(0,02). The values for iy,
0%, and o2 and several scenario variations for discussion are
provided in Table 2. The data from Tables 1 and 2 yield prior
probabilities of Pr[Hy] = Pr[Y > Y] = 34% and Pr[H,| =
PrY < Y] = 66%. For the base case with o = 5%, we
decide a priori in favor of Hy, because Pr[Hp) > 5%. This im-
mediately yields that the initial risk of wrong decision accord-
ing to equations (3) and (4) is Ry = Pg = 66%.

[74] Under the conditions adopted for this example, opti-
mal design amounts to finding the minimal number ng of
core samples that need to be collected in order to achieve
the requested confidence. Thus, the design vector d simpli-
fies to d = [ng] [e.g., Raiffa et al., 1995; Rasch et al.,
2011]. Next, we will use the algorithm explained in section
A2 with different sample sizes (n, = 1, ..., 50) to assess the
dependence of R on ny, and perform this for all scenario varia-
tions listed in Table 2. Results are provided in section 3.3.

3.3. Results

[75] Figure 2 looks at the resulting expected reduction ¢
of total risk R = R, + Rp as a function of sample size n;.
It indicates what n; is necessary such that we can expect to
support or refute the hypotheses with an error probability
of R < Rinax, €.8., 1y = 10 for Rinax = 5% when o2 = 1/16,
0% =1, py = 0.5, and o = 5% (see darkest line in Figure
2(a)). Seen from the viewpoint of multiobjective optimiza-
tion, all plots in Figure 2 resemble Pareto fronts. They visu-
alize the trade-off between the costs and benefits of
sampling, i.e., between n, and the reduced risk Ry — R(ny).

[76] In general, the initial risk Ry and R(n,) depend non-
linearly on the distance between the sampling statistic 7
and its critical value T;. This distance results from the
relations between prior mean, prior variance, measurement
precision, limiting value Y, and significance level «, as dis-
cussed in the following.

[77] 1. Measurement error: Figure 2(a) shows that, quite
intuitively, more precise measurements satisfy the informa-
tion needs faster. For accurate samples, a smaller number
suffices to acquire the desired confidence.

Table 2. Scenario Variations for the Simplistic Example Used in
Section 3*

Name Symbol Value Units Name Symbol Values Units
Gradient J 0.04 - Prior mean of ¥ Ly -0.5,0,0.5,1,1.5 -
Porosity e 0.2 - Prior variance of Y o 1/4,1/2,1,2,4 —
Error o? 1/4 - Measurement error o? 1/16, 1/8,1/4,1/2, 1 -
Travel distance L 500 m Significance level « 1,5, 50, 95,99 %
Critical arrival time To 1000 day

“Bold numbers refer to the base case scenario.
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Figure 2. Probability R of wrong decision (both o and
error, equation (4)) versus the number 7n; of measurements
for the scenario defined in section 3.2 with data from
Tables 1 and 2. Plot (a) represents different measurement
precision; plot (b) describes the dependency on different
prior variances; plot (c) illustrates the behavior for differ-
ent prior mean values, and (d) shows variations with the
significance level a.

[78] 2. Prior uncertainty: Figure 2(b) may be surprising
at first sight. A smaller prior variance oy leads to an
increased risk of wrong decision for any given n,. The
reason is that py lies within the region of H;. Thus,
decreasing o3 increases the prior probability of H; as we
concentrate p(Y) more and more within the region of H.
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Since H, is initially being rejected over the entire explored
range of scenario conditions in Figure 2(b), this leads to an
increase of decision risk.

[79] 3. Prior mean: Figure 2(c) shows that the initial risk
Ry is larger for smaller py. This is because smaller values
of 11y move p(Y) more into the region of H;, with the same
arguments following as above. For increasing n, and differ-
ent values of py in Figure 2(c), the different curves for
R(ny) cross each other. The reason can be seen from Figure
3, which shows the dependence of decision risk on a stand-
ardized normal test statistic z: at the transition from some
acceptance region of Hy (z < zqit) to some rejection region
(z > zuit), the decision risk jumps from R=1—«a to
R = q, i.e., from 95% to 5% in the shown example. The
closer the limiting value z is to z.;; (but still below), the
easier it is for additional data to move the observed value
of z into the rejection region with R < 5%. Thus, R
decreases faster with n, when the prior expected value py
is just below the limiting value Y. This behavior is a direct
outcome of the binary character of decisions in conjunction
with the strong jump of error risk at the critical value
z = zgit. The jump that causes this effect disappears when
choosing a = 50%, i.e., when the hypothesis test setup
does not put the burden of proof on either H, or H;.

[80] 4. Significance level: Figure 2(d) shows how R(n;)
changes with the significance level «. The levels of
a = 1%, 5%, 50% yield a common initial risk of
Ry = 46.67% for the given example. For all three cases, R,
is comprised solely from Rg. The prior decision is Dy (that
H, should be true), and Ry = 46.67% is the probability P,
that, in reality, H, is true. For a = 95% and a = 99%, the
decision in absence of data flips to D; (that H; should be
true), and the common value Ry = 53.33% is the probabil-
ity Py = 1 — Py that H, is the actual truth. After several
samples collected (in fact, already after the first), the risks
in the different scenarios change their rank: the values
R(ng > 1) for a = 1% and o = 99% are now the largest
ones, the values for o = 50% are the lowest, and the values
for « = 5% and o = 95% fall in between. The reason is
that & = 1% and o = 99% represent the most demanding
decision rules, requiring very strong statistical evidence for
H, or Hy, respectively. Contrary to that, the other values of
« require only weaker statistical evidence. Therefore, the

Figure 3. The initial decision risk R depends very nonli-
nearly on z (a generic standardized normal test statistic).
Red shaded area: rejection region of H, for o« = 5%. Green
shaded area: acceptance region of H,,.
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decision rule behind a = 50% triggers information needs
that are easiest to satisfy.

[81] Altogether, this example demonstrates that hypothe-
sis-driven design can optimize field campaigns (here: sim-
ply find the number of samples to collect) to maximize the
probability of finding the correct answer for a specified hy-
pothesis. It does so by combining all aspects of proper hy-
pothesis testing with Bayesian updating and Bayesian
decision theory.

4. Test Case

[s2] Now we illustrate the methodology on a more com-
plex version of the example, featuring a significant amount
of uncertain parameters. Again, the goal is to support pre-
dictions of arrival time 7 with data in order to come below
a maximum allowable risk of wrong decision. For the cur-
rent scenario we use numerical simulations of contaminant
arrival time (details given in section 4.1) within a Monte
Carlo framework, and consider an extensive list of sources
for uncertainty (details again in section 4.1), in accordance
with the discussion in section 2.4. In section 4.2 we will
describe how we applied our hypothesis-driven framework
to this situation. We present and discuss the results in
section 5.

4.1.

[83] Consider a steady state, 2-D depth-averaged flow in
a hetero§eneous aquifer with locally isotropic transmissiv-
ity K [L°/t]. We assume a scenario free of sinks and sour-
ces. Under these conditions, the flow equation is given by

Physical Formulation and Setup

V- [K(x)VA(x)] =0, (12)
with & [L] denoting hydraulic head and x = (x1,x;). The
domain is rectangular with L; X L =200m x 200 m.
Boundary conditions for flow will be discussed below. We
wish to predict the bulk arrival time (7 = #5) from a con-
tinuous-release line source along the upstream domain
boundary (x; =0) to a sensitive location at xg = (L,
100 m). Top this end, we use the groundwater age equation
described by Goode [1996]:

v-Vr=V-[D,V7]+1,
(13)
V:q/n€7

subject to 7 = 0 on the upstream boundary and zero-gradient
boundaries everywhere else. Here 7(x)[#] is the arrival time
at any point x within the domain, v [L/f] is the effective
transport velocity, q [L/f] is the specific discharge given by
Darcy’s law, n,[] is the effective porosity, and D, [L*/1] is
the local porescale dispersion tensor [Scheidegger, 1954].
[s4] Following our arguments from section 2.4, we
choose the Matérn covariance function [Matérn, 1986;
Handcock and Stein, 1993] with uncertain covariance pa-
rameters to model the heterogeneity of log-transmissivity
Y = InK. The advantage of the Matérn covariance is that it
encompasses a family of covariance functions within a
single expression that depends on its shape parameter «. For
specific values of k, the Matérn function recovers the expo-
nential, Whittle, and Gaussian covariance as special cases
[e.g., Handcock and Stein, 1993]. This maps structural
model uncertainty onto a set of uncertain parameters, which
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is called continuous Bayesian model averaging [Nowak
etal., 2010].

[85] We superimpose a trend model with uncertain linear
trend components along the directions of the x; and x,
coordinates. We also admit uncertainty in flow boundary
conditions via a regional gradient with uncertain slope J
and rotation angle o, relative to the x; axis, and assign cor-
responding fixed-head conditions to all four boundaries.
All relevant parameter values and their uncertainty are
listed in Table 3.

4.2. Hypothesis-Driven Design

[s6] Following the approach described in section 2 and
illustrated in section 3, we will now formulate the hypothe-
ses directly in terms of the target quantity ¢ for decision,
i.e., in terms of arrival time 7 = ¢:

[87] Null hypothesis Hy: 7 < 7.

[88] Alternative hypothesis Hy: 7 > 7.

[89] In the current example arrival time is our test statis-
tic T = 7. In the previous case (see section 3.2), we fea-
tured a globally constant value of ¥ = InK as test statistic
and as the only unknown and observable quantity. All data
were repeated measurements of the very same quantity,
and the test statistic was a simple arithmetic average of the
collected data. In the current example we consider hydrau-
lic heads %(x) and log-transmissivities Y (x) = InK(x) as
possible data types. Arrival time and our two data types are
three different physical quantities, and the latter vary in
space due to heterogeneity and boundary conditions.

[90] Now, the distribution p(7) and the related sampling
distributions p(7|Hp) and p(7|H;) have to be constructed
from prior assumptions and auxiliary models. The condi-
tional distributions p(7]y) for possible data values y reflect
the entire uncertainty involved in inferring the #rue value of
7 from prior assumptions and from scarce, erroneous addi-
tional data. In section 3.2 the main uncertainty originated
from measurement errors. In the current example we addi-
tionally feature overall system uncertainty and a target

Table 3. Parameter Values Used for the Synthetic Test Case®

Numerical Domain
Domain size [Ly, Lo] m
Grid spacing A, Ay] m

200, 200]
(0.4, 0.8]

Transport Parameters

Head gradient J - 4(0.005,0.015)
Head angle ay % N(0,5)
Effective porosity ne - 0.35
Local dispersivities lag, o) m (1, 0.1]
Diffusion coefficient D, m2s! 107°
Geostatistical Model Parameters
Global mean py =InK, In(m*s™") N(=7.2,1)
Trend in x, 5, In(m?s™) N(0,0.5)
Trend in x, B> In(m* s~ 1) N(0,0.5)
Variance o In*(m?s™") N(2,0.5)
Integral scales A1, A m NV(20,5),N(20,5)]
Matérn’s shape parameter K - N(3,0.75)
Measurement Error Standard Deviations
InT Onr - 0.5
Head ¢ Org m 0.05

U is uniform distribution with lower and upper bound provided. A is
normal distribution with mean and SD provided, truncated at zero for
0%, A1, A2, and k (according to minimum relative entropy considerations).
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quantity that is not observable, but needs to be inferred via
Bayesian updating.

[o1] H; will be rejected in favor of H if the critical value
70 = 50 d lies outside the acceptance region of p(7) (or of
p(7ly), if additional data are available). The acceptance
region for H; is again defined by the significance level «
(taken again as o = 5%). The possible decision errors in
the current situation are:

[92] « error E,: Accepting that 7 > 7y according to
H,, although 7 < 7 (falsely assuming a safe situation).

[93] B error Ez: Accepting that 7 < 7¢ according to
H,, although 7 > 7 (falsely issuing an alert).

[04] Following our hypothesis-driven framework, the
objective function for optimizing the design is the total risk
R = R, + Rp of committing any of the two decision errors
(see equation (10)), again using a maximum acceptable risk
of decision error R,x = 5%. For the sake of later discus-
sion, we produce R-optimal sampling patterns for different
travel distances L = 100, 120, 140, and 160 m between the
upstream boundary and the sensitive location xg =
(L, 100m), and for different maximum numbers of samples
(ns =2, 4, 6, 8,9, 10) that may be placed within the aquifer.

4.3.

[o5] The flow and travel time equations from section 4.1
are solved numerically using the code described by Nowak
et al. [2008] and Nowak et al. [2010]. We obtain the prior
arrival time probability distribution p(7) via Monte Carlo
simulation with n, = 40,000 realizations, based on the pa-
rameter values listed in Table 3. To evaluate all the possi-
ble conditional distributions of travel time p(r|y) for any
possible data set y, the required test statistics and the objec-
tive function (equation (10)) according to the scheme out-
lined in sections A2 and A1, we use the PreDIA framework
by Leube et al. [2012].

[96] For optimizing the design we chose a simulated
annealing (SA) algorithm [e.g., Laarhoven and Aarts,
1992] from the possible algorithms listed in section A3.
The design parameters to be optimized were the number of
samples, their data types, and their spatial coordinates.
Because the optimization carried out here mainly serves to
illustrate our hypothesis-driven approach with results, we
leave out all further details on setup and implementation.

Implementation

5. Results and Discussion
5.1.

[97] Now we will discuss what design patterns are opti-
mal to feed the information needs of the hypothesis test by
relating the resulting patterns to the underlying flow and
transport statistics. Figure 4 shows the resulting sampling
pattern for the sensitive location placed at xg = (140m,
100 m) and with ny; = 10 and R = 5.00%.

[98] For this scenario variant, ny = 10 is merely suffi-
cient to achieve the desired maximum probability of wrong
decision Ry.x = 5%. This can be seen in Figure 5, and will
be discussed in more detail in section 5.2. When gradually
stepping up from n; =1 to n, = 10 samples, our frame-
work first places six transmissivity samples, and then four
head measurements. How these 10 measurements helped to
reduce parametric uncertainty (for parameter definitions,
see Table 3) is shown in Figure 6. Here uncertainty

Optimal Measurement Locations
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reduction is expressed as expected entropy of parameter
groups relative to their prior entropy [cf. Nowak et al.,
2010], see also the information yield curves by de Barros
and Rubin [2008] and de Barros et al. [2009].

[99] The six transmissivity samples are located between
the upstream boundary and the sensitive location, helping
to condition the transmissivity field locally. They are trans-
versely more scattered near the upstream boundary,
because the origin of solutes arriving at the sensitive loca-
tion is uncertain. Both heterogeneity and the uncertain
angle «y, of the regional gradient contribute to this effect.
These six samples also help to identify the structural pa-
rameters of log-transmissivity (the mean iy, the trend pa-
rameters 3; and (3,, and the covariance parameters ozy, Al
A2, and k, see Table 3). Due to their wide spacing, at typi-
cal lag distances of more than 30 m, they are practically
uncorrelated. This is powerful for inferring the mean and
the trend coefficients, as can be seen in Figure 6. They are
also somewhat useful to infer the variance o%. Due to the
large lags, this design will not be very helpful to reliably
infer values of the integral scales \; and A, but it will help
to detect whether there is long-distance correlation or not.
Certainly the design shown here does not support inference
of the covariance shape parameter . This is consistent
with the fact that p1, and o3 are the dominant parameters in
arrival time uncertainty [Rubin and Dagan, 1992a). As a
result, one can see in Figure 6 that the covariance parame-
ter group is addressed less by this design.

[100] A total of four out of the ten locations are desig-
nated for measurements of hydraulic heads. These locations
mainly address the uncertainty caused by the regional head
gradient J. They are placed at maximum mutual distance in
the respective corners of the domain, for two reasons: First,
this arrangement forms a duplicated measurement of a lon-
gitudinal head gradient. Duplication helps to suppress mea-
surement error. Second, their wide spacing protects the
inference of the global head gradient J from the impact of
mesoscale head fluctuations caused by heterogeneity in
Y =1InK. By matter of chance, this arrangement is also
helpful to infer the angle «;, of the head gradient, although
ay, has almost no impact on arrival times in our scenario.
Overall, this leads to the quick reduction of uncertainty in
the boundary condition (BC) parameter group visible in
Figure 6 for the last samples placed.

5.2

[101] Figure 7 shows how the unconditional PDF (proba-
bility density function) of arrival time changes with dis-
tance to the inflow boundary. This PDF has been evaluated
numerically from a Monte Carlo analysis using equations
(12) and (13) with n, = 40,000 realizations and the param-
eter values provided in Table 3. Our numerical results
shown in Figure 7 indicate a PDF very close to a lognormal
one. This is in agreement with results from the literature
[e.g., Rubin, 2003 ; Gotovac et al., 2010], although we con-
sider an extended list of parametric uncertainty in boundary
conditions and within the geostatistical model.

[102] Two properties of our test case setup modify the
magnitude and character of information needs with travel
distance to a sensitive location:

[103] 1. The variance of the arrival time PDF depends on
travel distance [cf. Rubin and Dagan, 1992b; Rubin, 2003].

Information Needs Change With Distance
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Figure 4. Statistics and sampling patterns for the scenario described in section 4 with the sensitive

location at x; = 140 m. Parameter values are provided in Table 3. Circles: measurement locations of hy-
draulic heads; diamonds: measurement locations of ¥ = InT'; square: sensitive location. Background
maps show standard deviations of ¥ = In 7', heads / and arrival time 7 at the prior (left) and preposterior
(right) stage. Bottom row shows reduction of decision risk R for each possible sampling location within
the domain, as calculated for the final placement of the last measurement.

10 of 16

W06509



W06509

50 S L=100m | 1
_ Tt ~O -+ L=120m
2 o Coo% L=140m | ]
o 400"""0,'; L=160m
$aof X G
3 20 Vi 1
(6] ‘e,
5 ¢R =5% s
S 10 max M.
)
0
0 2 4 6 8 10
number ng of samples
Figure 5. How the expected risk of wrong decision R

decreases with number n; of optimally placed samples for
different travel distances L.

Specifically, the contribution of heterogeneity to arrival
time variance fades with distance, in relative terms, against
the contribution of parametric uncertainty (in the mean log
conductivity gy, the field variance 0%, the integral scales
A1, the regional gradient J, and effective porosity #,).
Uncertainty in py, J, and n, cause the arrival time variance
to grow quadratically with travel distance (please be aware
of the logarithmic scale in Figure 7), whereas the disper-
sion-related contribution of heterogeneity leads, asymptoti-
cally, only to a linear increase. The contribution of
heterogeneity would even vanish in absolute terms, if we
looked at averages of arrival time over large cross-sectional
areas. Therefore, when predicting for distant and/or large
sensitive locations, the reduction of parametric uncertainty
by large-scale sampling patterns would be dominant,
whereas local sampling for identification of heterogeneous
patterns will dominate for close locations.

[104] 2. For sufficiently distant sensitive locations, late
arrival (H;) is almost sure. For very short travel distances,
quick arrival (Hy) is almost sure. In both cases, only a few
well-placed samples will suffice to achieve the desired
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Figure 6. Reduction of parametric uncertainty during se-
quential placement of samples, expressed as relative en-
tropy. Cov: covariance parameters o%, A1, A2, and k;
trend: py, 81, and 3,; BC: head gradient J and angle ay;
All: all nine parameters.
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Figure 7. Prior probability distribution (PDF) of log-arrival
time (log 197) as function of x; along the centerline of the do-
main. Thick black line: critical value log 107 = log 10(50d).
Red: rejection region of H;. At the prior stage, H; is rejected
everywhere within the domain, because the critical value of 7
lies within the rejection region of H.

confidence. The largest information needs will occur in
tight cases, i.e., when the travel time distribution is concen-
trated tightly around the critical value (compare discussion
in section 3.3).

[105] As a consequence of these two mechanisms, the de-
pendence of R(ns) on n, changes with distance. This is
shown in Figure 5. The CDF value (cumulative distribution
value) of the critical value of 7 in the distribution p(7) is
the relevant quantity in the current hypothesis test, and
determines the risk of wrong decision. Because this CDF
value changes with different travel distances L, the initial
risk R, (before adding a single measurement) changes with
L (property 2 explained above). Then, with an increasing
number 7, of samples placed, it is easier to satisfy the infor-
mation needs for predicting the travel time to a sensitive
location with less travel distance (according to property 1
explained above). That is why the curves R(n,) for smaller
L decay faster than those for larger L. By pure chance, both
effects cancel out at about n; = 10, which is the end point
of our scenario analysis because R(n; = 10) &= 5% = Rpax
for all analyzed values of L.

5.3. Preposterior Stage and Reliability of a Design

[106] In order to evaluate a given design candidate accord-
ing to equation (10), hypothesis-driven design requires to
assess the expected value of decision risk, i.e., to average
over all possible data sets. The stage where data values are
unknown and only random potential data values can be used
is called the preposterior stage [e.g., Ben-Zvi et al., 1988;
James and Gorelick, 1994; Raiffa et al., 1995; Trainor-
Guitton et al., 2011].

[107] Figure 8 shows potential cumulative distribution
functions (CDFs) of arrival time at the preposterior stage
for ny =2, 4 and 8 samples. One can clearly see how the
CDFs become steeper with the increasing number of sam-
ples, reflecting higher levels of information. Still, the aver-
age over all possible conditional distributions will always
yield the prior distribution:

Elp(rlya)] = p(7), (14)
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Figure 8. How hypothesis-driven design analyses poten-
tial data at the preposterior stage: Possible conditional dis-
tributions of arrival time given ny, = 2, 4, 8 samples at
fixed (optimized) locations. Line color represents respec-
tive decision risk (red: 95%, green: 0%). Black dashed
line: prior CDF. Inset histograms: statistics of decision risk
for all the possible and yet unknown data values.

which means that the prior distribution is being conserved
in the expected sense. The individual preposterior CDFs
can become steeper only because their positions relative to
each other become more and more spread. This is in direct
correspondence to the well-known law of total variance:

(15)

which states that the prior variance is being conserved in
the expected sense. Therefore, it is crucial that we first
compute the individual decision risk values R(yq4), and then
average over all possible data sets yq ~ p(yq). If we eval-
uated the decision risk from the average of all preposterior
CDFs (i.e., from the prior CDF), we would always obtain
the prior value R.

o’ =E[o?

‘r\y] + Var[ule] 3
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[108] The color coding of the preposterior CDFs in Fig-
ure 8 illustrates the values R; that would result from each
CDF, if the respective random data values yq,; were the
actual ones to be measured in future. The values R; result
directly from the cumulative probability values where each
CDF crosses the 7 = 7 line and from the respective deci-
sion taken by comparison with the significance level «a,
compare Figure 3. If a CDF crosses the 7 = 7 line at cu-
mulative probabilities Pr[Hy : T < 7¢] > «, then R; = 1—
Pr[t < 79]. Conversely, if Pr[Hy:7 < 79] <, then
R; = Pr[t < 79]. Therefore, the largest possible risk value
of R; = 1 — « occurs, if the CDF value at 7 is just below
a. Hence, o bounds the maximum possible posterior risk to
R; =1 — «, as desired by the design of the hypothesis test.

[109] The perfect situations that lead to expected risk val-
ues of R = 0 require that all CDFs are either zero or one at
T = 79. How fast they rise from zero to one elsewhere in
the 7 domain does not matter. That means, the actual infor-
mation needs only require to know the statistics of the indi-
cator quantity

1if 7>71,
1= s
0if 7<7g

and not to know the entire CDF of 7. These actual informa-
tion needs would be represented only inaccurately by surro-
gate criteria such as the variance of 7. for example, Leube
et al. [2012] demonstrate in a synthetic case study that opti-
mal designs are significantly different when optimized to
minimize the prediction variance of contaminant concen-
trations or to minimize the prediction variance of a corre-
sponding indicator variable [ : ¢ > cy.

[110] The inset histograms in Figure 8 illustrate the pre-
posterior distribution p?;?(yd)> of decision risk. These dis-
tributions can be used to assess$ the reliability of a proposed
design, i.e., how reliable a design is to deliver the expected
data utility [cf., e.g., Trainor-Guitton et al., 2011]. Looking
at these histograms, one can see that the more expensive
design with n; = 8 samples does not guarantee smaller risk
values than the cheaper designs with ny = 2 and ny = 4. In
that sense, field campaigns are a risky investment. How-
ever, the probability (reliability) of achieving smaller risk
values does improve. This is not a property specific for hy-
pothesis-driven optimal design, but is a general property of
all preposterior analyses, i.e., a consequence of having to
work with yet unknown data values in nonlinear optimal
design.

[111] We could react to this insight by modifying the
objective function of design: In future work it will be
worth looking at designs that minimize some other statistic
of risk than its expected value, such as its 90th or 95th per-
centile. This would lead to designs that guarantee to
decrease the decision risk below a desired value, at a speci-
fied confidence level. Also, the expected risk and percen-
tiles of risk could be combined in multiobjective
optimization, in order to visualize the trade-offs between
optimal expected performance and robustness. Such an
analysis, however, is beyond the scope of the current study.
Note that minimizing the maximum possible risk is not an
option, because the maximum possible risk will always
remainatR; = 1 — a.
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6. Summary and Conclusions

[112] In this work, we developed a new framework to
optimize field campaigns based on Bayesian hypothesis
testing principles. The goal of our methodology is to sup-
port models, predictions, and derived conclusions or deci-
sions with optimally collected data in order to achieve
defensible, confident decisions. To this end, it optimizes
field campaigns such that the probability of deriving false
conclusions or decisions from the field campaign data is mini-
mized, i.e., confidence is maximized. Specifically, our frame-
work allows one to systematically test assumptions (e.g.,
related to conceptual models, parameter values, etc.), to test
research hypotheses, or to test the compliance with environ-
mental performance metrics. We have illustrated the applic-
ability of our concept and methodology on two problems
from stochastic hydrogeology with increasing complexity.

[113] Our approach consists mainly of three steps: (1)
Formulating scientific tasks in terms of Bayesian hypothe-
sis tests, (2) embedding the hypothesis tests into optimal
design theory, and (3) using the expected probability of
making wrong decisions in the hypothesis test as objective
function to optimize field campaigns.

[114] The key feature that separates our approach from
previous ones is the hypothesis-driven context. The hypoth-
esis-driven context offers the following advantages (and
features) over previous approaches:

[115] 1. Our framework assigns a confidence level for de-
cision to the projected outcome of field campaigns, and
then maximizes the decision confidence by finding the
most informative field campaign or experimentation strat-
egy. This supports taking maximum-confidence decisions
in science, engineering, or management.

[116] 2. We are working with goal-oriented statistics that
are directly related to the hypothesis, question, or environ-
mental performance metric under concern [see de Barros
et al., 2012] and to the decision that needs to be made. We
do not rely on generic statistical information measures (sur-
rogate measures such as parameter variances or entropies)
that could blur the character or extent of the true task-
related information needs. Instead, we directly translate the
risk of drawing wrong conclusions into an objective func-
tion for optimal design. This directly leads to a clear-cut
and task-driven definition of information needs for the
underlying hypothesis test, i.e., to a so-called ultimate mea-
sure of information.

[117] 3. The approach is flexible and can be applied to a
variety of problems. This includes model choice, decision
making in management, operation and maintenance, or ro-
bust engineering design, to name just a few. Examples
include all the questions and studies enumerated at the be-
ginning of section 1. As a specific example, when formulat-
ing competing models as hypotheses, the resulting designs
deliver optimal data in the context of model identification
and discrimination [e.g., Luis and McLaughlin, 1992 ; Neu-
man and Ye, 2009]. In applications to robust engineering
design under uncertainty, one can formulate the compliance
of the design with its specifications (i.e., remediation suc-
cess in terms of percent removed mass or percent captured
mass flux) as hypothesis test [e.g., Cirpka et al., 2004].

[118] Hypothesis-driven optimal design requires to aver-
age the projected utility of a field campaign over a predicted
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distribution of possible (yet unmeasured) data values. In
many cases, this requires brute-force Monte Carlo analysis
of test statistics conditioned on random possible data. While
this leads to high computer requirements for statistical analy-
sis, the Monte Carlo approach has two highly welcome side
effects:

[119] 1. Monte Carlo analyses are highly flexible and can
account for arbitrary sources of uncertainty, such as model
conceptual uncertainty, uncertainties in (geo)statistical
model descriptions, uncertain boundary/initial conditions
or forcing terms, and so forth.

[120] 2. The entire spectrum of possible outcomes, data
utilities, and decision risk values for the yet unknown data
values becomes available. This allows the reliability of
designs to deliver the (average) promised utility to be
assessed. In future work, the Bayesian decision-theoretic and
hypothesis testing background could be extended, such that
designs can guarantee (not only in the expected sense but on
a higher reliability level) a desired level of performance.

[121] As a final remark for this paper, we were interested
in minimizing the error probabilities of the decision being
made. To do so, we invoked a single-objective formulation
of the optimization problem, which arises from posing an
individual “yes/no” type of question (see section 1). Multi-
objective optimization (MOO) would be a valuable exten-
sion to our method since one could investigate trade-offs
with competing criteria in situations where other objectives
are also relevant [Kollat et al., 2011]. The extension is
straightforward since we provide a clear-cut objective func-
tion that can be plugged in as one of the competing criteria.
MOQO can also be valuable if the acceptable maximum risk
of wrong decision for which the field campaign is being
planned can only be found after analyzing the trade-offs
with the costs of the planned field campaign.

Appendix A: Suggested Methods and Algorithms
Al. Conditional Simulation and Bayesian
Inference

[122] Within the hypothesis-driven context, all employed
tools must be able to adequately capture the magnitudes
and shapes of extreme value tails for all involved probabil-
ity distributions. This holds, in particular, for all condi-
tional distributions (via Bayesian updating [e.g., Smith and
Gelfand, 1992]) of parameters and model predictions that
arise when conditioning on hypothetical data from pro-
posed designs, often calling for (geo)statistical inversion
tools. For mildly nonlinear cases, we recommend the quasi-
linear geostatistical approach [Kitanidis, 1995] and its
upgrades [e.g., Nowak and Cirpka, 2004], ensemble Kal-
man filters [Zhang et al., 2005; Nowak, 2009], and bias-
aware modifications of it [e.g., Drécourt et al., 2006; Kol-
lat et al., 2011], or other conditional Monte Carlo methods
based on successive linearization compared in Franssen
et al. [2009]. In some situations, analytical solutions and
linearized approaches are inappropriate. For such reasons
we recommend fully nonlinear and fully Bayesian evalua-
tion schemes based on well-designed Monte Carlo analysis,
such as the PreDIA framework [e.g., Leube et al., 2012]
based on bootstrap or particle filtering [e.g., Efron, 1982;
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Gordon et al., 1993] or the method of anchored distribu-
tions [e.g., Rubin et al., 2010].

[123] Unconditional and conditional Monte Carlo meth-
ods often pose high computational demands, but they can
assess the sampling distributions of arbitrary test statistics
whenever their (un)conditional distribution shapes are
unknown, or when analytical solutions for the required
sampling distributions are unavailable [ Wilks, 1995]. A sec-
ond advantage is that, this way, one can achieve full free-
dom in the data types (direct, indirect, linear, nonlinear)
considered for conditioning and design optimization. One
can also accommodate arbitrary prediction models (linear,
nonlinear) and account for all relevant sources of uncer-
tainty (heterogeneity, model structure, presence of physical
processes, boundary/initial conditions, etc.), in accordance
with the discussion in section 2.4. The PreDIA framework
offers all of these capabilities, and is outlined in more detail
in section A2.

A2. Evaluating The Expected Decision Risk

[124] The procedure to evaluate the decision utility ¢(d)
of some design d according to equation (8) is:

[125] 1. Generate many realizations r;, i = 1, ..., n, from
the joint prior distribution of all model choices, parameters,
and hypotheses. Each realization represents a physically
and statistically plausible reality.

[126] 2. Based on adequate simulation models, generate
synthetic data sets yg; j=1,...,n, from p(yq), which
include 1ndependent reahzatlons of measurement error e;.
Each data set y, ; represents a physically plausible outcome
of a sampling campaign.

[127] 3. For each data set yj compute the conditional
probabilities Pr{Hy|yg ;] and Pr[/Hl lyil ;1 by applying any of
the conditioning methods listed in section Al to the realiza-
tions r;.

[128] 4. Evaluate the decisions Dy ; and D; ; for each case
by comparing the conditional probabilities Pr[Ho|yg;] to
the selected significance level a.

[120] 5. Assess for each possible data set and the derived
decisions the probability that the decision was wrong, using
Rlyg; = Do Pritilyg,] + D1 ,;Pr[Holyg ]

[130] 6. Obtain the expected probabﬂ]lty of decision error
by averaging all j values of R|yd

[131] 7. Obtain the expected ut111ty R(d) (equation (8)) of
the design by comparing with the initial risk obtained with-
out additional data.

[132] When using the PreDIA framework [Leube et al.,
2012] to assess the expected utility, the core of the above
procedure can be perceived as a large n, x n, matrix of
likelihoods p(yg ,|r;). The column headings are what if we
observed the data set Ya,; from realization r; ...”, and the
row headings are ° "and how would that data set act on
realization r;”? After normalizing each column to sum up
to unity, the elements reflect proper weights. This reflects
steps one and two in the above enumeration.

[133] For step three, resort all rows and columns accord-
ing to whether Hy or H; is true in the underlying realiza-
tions, so that all truthfully allotted weights for Hy form the
upper left block, all truthfully allotted weights for H; form
the lower right block, and all falsely allotted weights form
the off-diagonal blocks. Within each block, the column
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sums are the conditional probabilities of the two hypothe-
ses. The two upper blocks (where H, generated the syn-
thetic data sets) resemble the sampling statistic p(yq|Ho),
and the two lower blocks resemble p(yq|H;). Any good
data set will deliver significant statistical evidence toward
the hypothesis under which it was generated. Therefore, if
the design is informative on the competing hypotheses, the
diagonal bocks will contain large weights and the off-diag-
onal blocks will contain small weights.

[134] The remaining steps mean to take the decision Dy ; or
D, j, followed by deleting all weights that do not correspond
to the respective decision, summing up the remaining values
columnwise (reflecting the conditional probabilities of wrong
decision), and then averaging the remaining probabilities
along the rows (yielding the expected decision risk).

[135] The appealing advantage of the PreDIA framework is
that it draws the necessary realizations r; and yg ; for steps
one and two from an overall pool of reahzatlons which
avoids the appearance of two nested Monte Carlo loops.
Also, it performs an analytical marginalization over the pos-
sible values of synthetic measurement errors ¢;. Together,
this leads to substantial computational speedups and faster
convergence of the Monte Carlo analysis.

A3. Optimization Algorithms

[136] Once the data utility can be assessed for arbitrary
proposed designs, high-dimensional nonlinear optimization
algorithms are employed to find the optimal design accord-
ing to equation (10).

[137] Typical options are simplistic but efficient choices
such as greedy search or sequential exchange [e.g., Christakos,
1992], classical stochastic search algorithms such as genetic
algorithms [e.g., Reed et al, 2000a, 2000b], or simulated
annealing [e.g., Laarhoven and Aarts, 1992], or more modern
versions such as the CMA-ES evolutionary search [Hansen
et al., 2003]. A promising recent alternative is to combine dif-
ferent global and local search strategies, such as in the AMAL-
GAM general-purpose optimization algorithm by Vrugt et al.
[2009].

[138] When moving toward multiobjective optimization,
we refer to the discussions and algorithms reviewed and
developed by Kollat et al. [2008] and Shah and Reed
[2011].
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