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SUMMARY

A stabilized finite element formulation for incompressible viscous flows
is derived. The starting point are the modified Navier-Stokes equations
incorporating naturally the necessary stabilization terms via a finite increment
calculus (FIC) procedure. Application of the standard finite element Galerkin
method to the modified differential equations leads to a stabilized discrete
system of equations overcoming the numerical instabilities emanating from
the advective terms and those due to the lack of compatibility between
approximate velocity and pressure fields. The FIC method also provides a
natural explanation for the stabilization terms appearing in all equations for
both the Navier-Stokes and the simpler Stokes equations. Transient solution
schemes with enhanced stabilization properties are also proposed. Finally a
procedure for computing the stabilization parameters is presented.

1. INTRODUCTION

Finite element solution of the incompressible Navier-Stokes equations with
the classical Galerkin method may suffer from numerical instabilities from
two main sources. The first is due to the advective-diffusive character of the
equations which induces oscillations for high values of the velocity. The second
source has to do with the mixed character of the equations which limits the
choice of finite element interpolations for the velocity and pressure fields [1].

Solutions of these two problems have been extensively sought in the
last years. Compatible velocity-pressure interpolations satisfying the inf-sup
condition emanating from the second problem above mentioned have been
used [1,2]. In addition, the advective operator has been modified to include
some “upwinding” effects [3-8]. Recent procedures based on Galerkin Least
Square techniques [9,7] allow equal order interpolation for velocity and pressure
by introducing a Laplacian of pressure term in the mass balance equation,
while preserving the upwinding stabilization of the momentum equations.
Similar effects can be obtained using Characteristic Galerkin methods [10,11],
Variational Multiscale models [12,13] and analogous Residual-Free Bubbles
techniques [14-16]. Most of these methods lack enough stability in the presence



of sharp layers transversal to the velocity. This defficiency is usually corrected
by adding new “shock capturing” stabilization terms to the already stabilized
equations [17-20]. The computation of the stabilization parameters in all these
methods is mostly based in “ad hoc” generalizations of the 1D linear advective-
diffusive problem. Despite several recent attempts there still lacks a general
methodology for evaluating the stabilization parameters for fluid flow problems
in an objective and accurate manner.

This paper presents a different point view for deriving stabilized finite
element methods for incompressible flow problems. The starting point are
the stabilized form of the governing differential equations derived via a finite
increment calculus (FIC) procedure. This technique presented in [21-25] is
based on writting the momentum and mass balance equations over a domain
of finite size and retaining higher order terms. These terms incorporate the
ingredients for the necessary stabilization of any numerical solution already
at the differential equations level.  Application of the standard Galerkin
formulation to the consistently modified differential equations leads to a
stabilized system of discretized equations which overcomes the two problems
above mentioned (i.e. the advective type instability and that due to lack
of compatibility between the velocity and pressure fields). In addition, the
modified differential equations can be used to derive a numerical scheme for
iteratively computing the stabilization parameters in a sort of model adaptivity
procedure [22-25].

The paper is structured as follows. In next section the derivation of the
stabilized modified differential equations for incompressible Navier-Stokes flows
using the FIC method is presented. Details of the stabilized finite element
formulation are then given. The case of simpler Stokes flows is considered next.
Indeed the stabilized formulation obtained in this case should also be useful
for solving the analogous incompressible elasticity problem. Two and three
steps time marching solution schemes with enhanced stabilization properties
are derived starting from the stabilization differential equations for the transient
case. In the last part of the paper a procedure for computing the stabilization
parameters is proposed.

2. STABILIZED GOVERNING EQUATIONS FOR INCOMPRES-
SIBLE FLOWS

The stabilized governing equations for incompressible viscous flows are
obtained by applying the standard conservation laws expressing balance of
momentum and mass over a control domain. Assuming that the control domain
has finite dimensions and representing the variation of mass and momentum over
the domain using Taylor series expansions of one order higher than those used
in the standard infinitesimal theory, the following expressions are found [21,22]:
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where for the steady state case
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with 7,7 = 1,2 for a two dimensional flow.

In eq.(3) p is the fluid density (here assumed to be constant), u; is the
velocity component in the i-th direction, p the pressure, b; the body forces and
7;; the viscous stress components related to the velocity gradients through the
fluid viscosity u by
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Einstein summation convention for repeated indexes in products and
o = . . .(97‘ _ .87*
derivatives is used, i.e. hdja;‘]i. = ?hd]%;ff,

Eqgs.(1) and (2) are the stabilized forms of the governing differential
equations for an incompressible flow. The terms underlined in (1) and (2)
introduce naturally the necessary stabilization at the discretization level. The so
called characteristic length vectors hy, and h,; are defined as (for 2D problems)

e (i) e (2] 0

hm2 h’dz

where hp, and hp, are the dimensions of the finite control domain where
balance of momentum is enforced. Similarly hy and hg, represent the
dimensions of the domain where mass conservation is expressed.  The
components of vectors hy, and h, introduce the necessary stabilization along
the streamline and transverse directions to the flow in the discrete problem.

The method to derive the modified differential equations (1) and (2)
incorporating the stabilization terms was termed in [22] finite increment calculus
as a reference to the standard infinitesimal calculus techniques where the size
of the domain where balance of mass and momentum is enforced is assumed to
be negligible. Note that for h;; = h; — 0 the standard infinitesimal form of
the momentum and mass balance equations is recovered [21,22].

Egs.(1) and (2) are complemented by the following boundary conditions
[21,22].



Balance of momentum at the boundary 'y
1
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where n; is the ith component of the unit normal vector to the boundary and
t; are the prescribed tractions at the Neumann boundary I'; of the analysis
domain (2.

Prescribed velocity at the boundaries

up = u{) on I'y, (8)
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In eq.(8) u and uf denote the tangential velocity to the boundary and its
prescribed value, respectively.

Eq.(9) expresses the balance of mass on an arbitrary domain next to the
boundary. In eq.(9) u, and ul, denote the velocity normal to the boundary and
its prescribed value, respectively. The value of u} is zero on solid walls and
stationary free surfaces.

Also in eqs.(8) and (9) I'y, and Iy, are the parts of the boundary I' of
2 where the tangential and normal velocities are prescribed, respectively. The
Dirichlet boundary is defined as I'y = I'y, UT,,.

The underlined terms in egs.(7) and (9) introduce the necessary
stabilization at the boundaries in a form consistent with that of egs.(1) and
(2). These terms are obtained by invoking balance of momentum and mass at a
domain of finite size next to the boundary. Details of the derivation of eqgs.(1-8)
can be found in [21,22] whereas the derivation of eq.(9) is shown in Appendix A.

Alternative form of stabilized governing equations
Let us express the components of the characteristic vector h, for the mass
balance equation as

hq, = —2p74,u4 (10)

where the 74 parameters are termed “intrinsic times” per unit mass. The
negative sign in eq.(10) is necessary to introduce a positive stabilization in the
mass balance equation at the discrete level as it will be shown later.

From simple differentiation rules we can write
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Substituting eq.(10) into (2) and making use of egs.(11), (1) and (3) we
can rewrite the mass balance equation (neglecting higher order terms) as

Td — Tdi 89:" =0 (12a)
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where
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Following a similar process, equation (9) expressing balance of mass at the
boundary can be rewritten using eqgs.(1) and (10) as

Un — TgNiTm; = ub on T (13)

We summarize next for the sake of clarity the set of governing equations
to be solved.

Momentum
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Mass balance
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Boundary conditions
1
n;joi; —t; + §hm]-nj7‘mi =0 on IY% (16)
u—ul =0  on Ty, (17)
Un — Tg,NiTm; — ub =0 on Iy, (18)

where rp,; and 7p,; are defined in eqgs.(3) and (12b), respectively.

A similar form of the modified differential equations for momentum and
mass balance (egs.(14) and (15)) has been recently proposed by Ilinca et al. [26].
They express the exact solution as sum of the numerical approximation and a
perturbation. The modified equations are derived by expanding the original
differential equations for momentum and mass balance in Taylor series and
elliminating the perturbation terms. However, the boundary conditions remain
unchanged and thus the stabilizing terms in egs.(16) and (18) are omitted in [26].
This leads to the appearance of additional boundary integrals in the Galerkin
formulation. These terms vanish naturally if the full stabilized expressions (14)-
(18) emanating from the FIC method are used as shown in next section.



2. FINITE ELEMENT FORMULATION

Let us now introduce a standard finite element, interpolation of the velocity
and pressure fields written as

(19a)
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where N and sz are the shape functions interpolating the velocity u; and the
pressure p within each element and () ; denotes nodal values [1]. The numerical
solution residuals are now defined as

Tm; =Tm; (ﬂiaﬁ) (20a)
%mi :f‘mi(ﬂi,ﬁ) (20b)
rd =7q(;) (20c)

Let us next apply the standard weighted residual method to the discretized
stabilized governing equations (14)—(18). This gives

Momentum
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In above vy, 95, ¢ and § are appropriate weighting functions and (_)
denote approximate values. Note that in above equations exact satisfaction
of the boundary condition on the tangential displacements (eq.(17)) has been
assumed. On the other hand, the condition on the normal displacement at the
boundary (eq.(18)) is imposed in a weak form via the second integral of eq.(22).

The integrals in egs.(21) and (22) involve derivatives of the discretized
residuals. These residuals are usually discontinuous across the element faces
and hence the residual derivatives are not defined on element boundaries.
This problem can be simply overcome by computing these derivatives in a
distributional sense if the weighting functions and the stabilization parameters
are assumed to be continuous as

6fmi a(hmjvk) - —
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In above the sums extend over the element interiors Q€. A proof of above
equalities is given in Appendix B and also in [26].

Substituting egs.(23) and (24) into (21) and (22) respectively and choosing
U, = vt with vy =0 on I'y and § = —¢ with ¢ = 0 on T'; gives
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Note that the boundary I';, does not appear in eq.(26) as the Dirichlet
boundary for the mass balance equation coincides with I'y,. Also, the last
integral in eq.(26) imposes the equality between the normal velocity at the
boundary and its prescribed value in a weak form. This is consistent with the
original stabilized equations (9) or (18) derived from balance of mass at the
boundary I'y, (see Appendix A).

The integrals in the first term of eq.(25) involving the derivatives of the
pressure and the viscous stresses are treated in a distributional sense. This
allows to use discontinuous pressure and stress fields across element interfaces.
These integrals are computed as follows

0 o735 v ovy, _ _ _
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(27)
Substituting eq.(27) into (25) noting that 0jj = Tij — pd;j and imposing
v = 0 on I'y gives after simplification the stabilized integral form of the

momentum equations as
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A more convenient form of the mass balance equation is obtained
integrating by parts the first integral of eq.(26). This gives

aq_

A 2/[

Note that the last integral of eq.(28b) vanishes in rigid body and stationary
free surface boundaries.

J P dSL+ /F quldl =0 (28b)



Egs.(28a and b) include all the terms emanating from the original
stabilized differential equations. It is interesting to note that all boundary
integrals involving stabilization terms have vanished.  This is a direct
consequence from using a consistent form of the stabilized differential equations
for momentum and mass balance and the boundary conditions.

Eqgs.(28) can be simplified by neglecting the change of the stabilization
parameters hp; and 74, within an element. This approximation, typically used
in standard stabilized finite element methods [1-11], gives after rearranging
some terms

Momentum
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Eqs.(28) or (29) lead to the set of stabilized discretized equations for the
velocity and pressure variables. Indeed for v, = Ny and ¢ = N P the stabilized
discrete Galerkin variational form is recovered.

Eqgs.(29) incorporate terms traditionally encountered in standard
stabilized formulations using the FEM. Thus, if vector h;, is assumed to be
aligned with the velocity, i.e. if hmj = 27puj, where 7, is an intrinsic
time parameter, we find that the fourth integral in eq.(29a) is identical to
that usually introduced in Streamline Upwind Petrov Galerkin (SUPG) [3-
8] and Characteristic Galerkin (CG) [10,11] methods in order to remedy the
instabilities due to the advection operator. The expression given by eq.(29a) is
more general and it allows to define vector hy, in a more appropiate manner to
account for both streamline and transverse stabilization effects. Also by using
the more general form of egs.(28) a non uniform (continuous) distribution of
vector h;, can be taken into account in a consistent manner.

The third integral in eq.(29a) has a form very similar to that found in the
Galerkin Least Square (GLS) method [9,7].

Note also that the divergence of the velocity term has been kept within the
first integral of the momentum equation (29a). This term is usually neglected



in standard SUPG and GLS approaches. In this case the presence of this term
ensures consistency of the derivation. The computational relevance of this term
should be verified in numerical tests.

The second and third integrals in eq.(29b) are typically found when using
GLS methods [9,7]. Note the appearance of a Laplacian of pressure term in the
second integral of eq.(29b) of the type

dq 0p
———dN
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This term has the well known property of introducing the necessary
stabilization in the incompressibility equation ensuring a correct solution in
the incompressible limit, while allowing the use of equal order approximations
for velocity and pressure [1,6,7,9].

In summary, the original stabilized differential equations for a viscous
fluid are the basis for deriving, using a standard Galerkin approach, a general
stabilized discrete system of equations which incorporates the best features
of the best known stabilized methods for simultaneously correcting both
the possible oscillations induced by high convection effects and incompatible
velocity-pressure fields.

3. STOKES FLOW

The stabilized formulation previously presented is applicable to the whole
range of viscous flows. In particular, it can be used for non viscous Euler type
flows and for highly viscous flows where convective effects are negligible (Stokes
flow). Indeed the situations of zero viscosity and zero convection effects are
clearly non physical and they represent two limit cases of some particular fluids
found in nature. It is interesting however to study the particular case of a pure
viscous incompressible flow where the effect of convection is simply neglected
in the momentum equations. This assumption is typically used for modelling
the deformation of metals and plastics during forming situations and also in the
study of some creep problems [1,27]. The additional interest of this type of flow
model is the analogy of the governing equations with those of incompressible
elasticity [1,27]. Indeed, the stabilized formulation for the Aow problem will be
directly applicable to the analogous elastic problem.

The stabilized form of the momentum equations for a pure Stokes flow are
simply obtained by neglecting the convective terms in egs. (1) and (3). The
resulting equations can be written as

@_5sz_bi—im-i[@—%—bz}:0 (31)
Oz; Oz 2 "V0z; |0z; Oz

The next step is to express the volumetric strain rate in terms of the
pressure from the momentum equations. As the convective terms are now zero
the volumetric strain rate is introduced into eq.(31) by means of the constitutive
equation. Thus, substituting eq.(5) into (31) gives
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Let us assume now the viscosity x to be constant. Eq.(32) allows to obtain
the derivatives of the volumetric strain rate as
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Eq.(33) can be written in a more compact form as
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Substituting eq.(34) into the stabilized form of the mass balance equation
given by eq.(2) yields
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The weak form of the momentum and mass balance equations is obtained
following a similar procedure as for the Navier-Stokes case explained in previous
section. This gives, after finite element discretization, the following system of
equations:

Momentum
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Mass balance
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where as usual (-) denotes approximate finite element values. Note that in
the derivation of eqs.(38) and (39) a uniform distribution of the stabilization
parameters within each element has been assumed. In addition, the residual #;
has been assumed to vanish on the Dirichlet boundary.

For the sake of clarity eq.(39) is written in the following expanded form

dq dq 3h’d.ihmj dq 3h’d hmJ
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Eqs.(38) and (40) provide the set of stabilized algebraic equations for
computing the velocity and pressure fields after substitution of the viscous
stresses and the pressure in terms of the nodal displacements and nodal
pressures using eqgs.(5) and (19b). Indeed the pressure term in the mass balance
equation allows to use equal order interpolations for velocities and pressure.

It is interesting to point out again that the stabilized discrete form
provided by eqs.(38) and (40) for the Stokes flow problem is also directly
applicable to the analogous incompressible elasticity problem using equal order
interpolations for displacements and pressure.

FidS) + / quPdl = 0 (40)

REMARK 1

The standard Laplacian of pressure form is recovered in eq.(40) if hg, hum, +
hg,hm; = 0 (for 2D problems). Otherwise, the term involving the cross
derivatives of the pressure remains within the second integral of eq.(40). The
effect of this term should be validated in numerical tests.

REMARK 2

The form of the stabilization parameter in the Laplacian of pressure term
3hg.h
given by —dslls very similar, if not identical, to that proposed in [6], where the

12
value 0‘2_ is heuristically suggested, h being a characteristic element dimension.
This coincidence is another proof of the usefulness of the FIC procedure to
explain the origins of many well known stabilized finite element methods.

REMARK 3

Eqgs.(29b) and (40) differ essentially in the method chosen to substitute
the term involving the derivative of the divergence of the velocity field in the

11



stabilized mass balance equations (see eq.(2)). Thus, eq.(29b) was derived
making use of the convective operator and the momentum equations through the
identity expressed by eq.(11). Conversely, in the derivation of eq.(40) use has
been made of the constitutive equation to express the derivatives of the velocity
divergence field in terms of rest of terms from the momentum equations (see

eq.(33)).

THE TRANSIENT CASE

The stabilization formulation above presented is naturally extended to
the transient case. The stabilized form of the momentum and mass balance
equations are writen now as [22,25]

Momentum
hm; Orm. 00 hm; Orm,.
_ MY imy VY M PIm )
(Tmi 2 ax]-> 201 (Tml 2 aa;j> ’ (4)
Mass balance
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In above ¢ is a time stabilization parameter. Transient effects are also
included in the term 7y, given by

S <8ui N a(uiuj)> N op Omj

ot oz Oz; O
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Egs. (41) and (42) are obtained by expressing the balance of momentum
and mass in space-time domains of finite dimensions [hy, x J] and [hy X 4],
respectively. Details of the derivation can be found in [25].

Egs.(41) and (42) can be used to derive a number of stabilized numerical
schemes for the transient solution of the Navier-Stokes equations.

Three steps splitting scheme

It is interesting to derive a splitting algorithm starting with the new
stabilized equations. For the sake of clarity the time stabilization terms
involving 6 will be neglected in egs.(41) and (42). Also the stabilized mass
balance equation will be written in the more convenient form given by eq.(15).

A time marching solution scheme for eq.(41) can be written as (for § = 0)

s 1 n n

aptt —p - B[ D)t 00 O (B )] gy
: 0z ozx; oz 2 Oz

The analogy of eq.(44) with that found using the so called characteristic

integration schemes [10,11] is clear if vector h,, is chosen aligned with the
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velocity field, i.e. hy, = 7u where 7 is an intrinsic time parameter. Indeed the
arbitrary form of vector hy, in eq.(44) provides a more general procedure where
the components of vector hy, can be freely chosen.

A semi-implicit time splitting or “fractional step” [10,11] algorithm can
now be obtained as follows. Eq.(44) is split as

* n At a(uiu]') _ (9’/“2‘3' b @57“77% "
! ' p P Oz dzg 2 Oz;

(45)

il . At (9p"+1

u2 ¥ P 8:132'
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Note that the sum of egs. (45) and (46) gives the original form of eq.(44).
Substituting eq.(45) into (15) gives
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ou¥
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The solution steps are the following:

Step 1

Solve explicitely for the so called “fractional” velocities u; [10,11] using
eq.(45).
Step 2

Compute the pressure field p+t! by solving the equation for the Laplacian
of pressure derived from eq.(47). Note that this equation has the following form

2, n+1 2, n+1 . ) OT: - n
A 0“p 0“p N 0 [,0 ((9uZ 8uz) _ITj bz':l (50)

t . =Tr; — — _|_ :
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Clearly for T4, = T above equation simplifies to
(At +7)Ap™HT = 72 (51)

where A is the Laplacian operator and
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Step 3

Compute the velocities u?’“ by using eq.(46).

Eq.(51) differs slighty from the form typically used in fractional step
schemes where the term involving 7 does not appear [10,11]. This term, however,
is essential to preserve the stability of the mixed formulation for problems where
very small time increments At are needed due to the stability requirements of
the time integration algorithm chosen.

Obviously, other forms of above three steps transient solution scheme
involving the implicit computation of u%”"l are also possible.

Extension of this transient solution method to the simpler Stokes pro-
blem are straightforward. The same scheme can be applied to derive enhanced
algorithms for transient non linear structural dynamic problems allowing equal

order interpolations for velocities and pressure as described in [28].

4. COMPUTATION OF THE STABILIZATION PARAMETERS

Accurate evaluation of the stabilization parameters is one of the crucial
issues in stabilized methods. Most of existing methods use expressions which
are direct extensions of the values obtained for the simplest 1D case. It is also
usual to accept the so called SUPG assumption, i.e. to admit that vector h,,
has the direction of the velocity field. This restriction leads to instabilities when
sharp layers transversal to the velocity direction are present. This additional
defficiency is then corrected by adding a “shock capturing” (SC) stabilization
term [17-20].

Let us first assume for simplicity that the stabilization parameters for the
mass balance equations are the same than those for the momentum equations.
This implies

s = ha, (53)

The problem remains now finding the value of the characteristic length
vectors hp,;. Indeed, the components of h,, can introduce the necessary
stabilization along the streamline and transversal directions to the flow.

Excellent results have been obtained in [29] using linear triangles and
tetrahedra with the following value for hy,

u V|u|
hi = hs— + he—e-
& MR

Tu o

where hs and he, are the “streamline” and “shock capturing” contributions
given by

hs =max(1] u)/|ul

A | (55)
he =max(] V]al)/IV]al| , j=1,m,
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where 1; are the vectors defining the element sides (ng = 3 for triangles and
ns = 6 for tetrahedra).

An alternative method for computing vector h,, in a more consistent
manner is explained next.

Computation of the stabilization parameters via a diminishing
residual procedure

The idea of this technique first presented in [21,22] and tested in [23-25]
for advective-diffusive problems is the following. Let us assume that a finite
element solution for the velocity and pressure fields has been found for a given
mesh. The residual of the momentum equation corresponding to this particular

solution is
1 Bfmi

The average residual over an element can be defined as
1(e) _ 1 / 1.
T, = o Joie) Tm,; dS2 (57)

Let us assume now that an enhanced numerical solution has been found
for the same mesh and the same approximation (i.e. neither the number of
elements nor the element type have been changed). This enhanced solution
could be based, for instance, in a superconvergent recovery of derivatives [30,31].

()

The element residual for the enhanced solution is denoted 27’,%. As the element
residuals must tend to zero, the following condition must be satisfied

17",(53. 2 7‘*7(53 >0 (58)

Above equation applies for 177,(7;‘2 > 0. Clearly for IF#;)- < 0 the inequality
in eq.(58) should be changed to < 0.

Eq.(58) provides a system of equations which unkowns are the
characteristic length parameters. Substituting eq.(56) into (58) and appling
the identity condition in eq.(58) gives

he = A-lf (59)
with
2078)  1ore)
Aij :2|: 8:17]' a aibj (60)
fi =2l 1) (61)

The following “adaptive” algorithm can be proposed for obtaining a
stabilized solution:
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1) Solve for numerical values of velocities and pressure for an initial value
hg,i) — h(()e). Compute 1F§,§3.
2) Evaluate the enhanced velocity and pressure fields. Compute 27‘7(52.

3) Compute the updated value of hS,‘i) using eq.(59).
4) Repeat (1)—(3) until a stable solution is found.

Above strategy can be naturally incorporated into a transient solution

scheme where the value of h%) 1s updated after the solution for each time step
has been found.

The assumption hy = hy, can be relaxed and an independent value of
the characteristic length vector h, for the mass balance equation can be found
following a similar approach as described for computing h;,. Further details
can be found in [24,25] where this technique has been successfully tested for
steady state and transient advective-diffusive problems.

CONCLUDING REMARKS

The objective of the paper was to derive a stabilized formulation for
finite element analysis of incompressible viscous flow problems. It has been
shown that the stabilized governing equations obtained via the so called “finite
increment calculus” (FIC) procedure presented in [21,22] are the basis for
deriving stabilized finite element schemes for both steady state and transient
situations. Moreover, the final stabilized forms obtained in all cases remedy
the two main problems associated with the numerical solution of viscous flows,
Le. the lack of stability induced by high convective terms and the oscillations
caused by the choice of incompatible velocity-pressure fields.

The FIC method provides a natural explanation for the stabilization terms
appearing in all equations, many of which have been heuristically proposed by
different authors. It is interesting to note that the method extends naturally
to Stokes flow problems and it also allows to derive time marching solution
schemes with enhanced stabilization properties.

Extension of the FIC procedure to derive stabilized finite schemes for
compressible flow problems are possible following the lines presented in [21,22].

Future work remains to verify the efficiency of the “adaptive type” method
proposed to compute the stabilization parameters. It is also envisaged that
the FIC method could serve for deriving numerical schemes for stabilized
solution of high Reynolds flows where the characteristic length parameters could
naturally incorporate the stabilization properties credited to the eddy viscosity
in turbulent flow models.
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APPENDIX A

Balance of mass next to a boundary segment

Let us consider the balance of mass in the triangular domain of Figure
A.1 next to a boundary segment I". From simple observation we can write

pluchy +vphs] = plul (4.1)

where uc and vp are the horizontal and vertical velocities at the mid points
of the triangle sides and u}, is the normal velocity at the boundary. Obviously
uh, = 0 at a solid boundary or a stationary free surface.

The velocities at points B and C' are expressed in terms of those at point

A using a Taylor series approximation as

hay Ou
UC =ug — §%|A

hy 8v (A.2)
UB =V4 — 7a—y‘|A

Substituting eqs.(A.2) into (A.1) and denoting generically u4 = u and
v4 = U gives

ou 81}) . (A.3)

1

In the derivation of eq.(A.3) use of the indentities ng, = %l and ny = %1
has been made where ng,ny are the components of the unit normal vector n
(see Figure A.1).

Figure A.1. Balance domain next to a boundary segment.
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Eq.(A.3) can be further simplified to the form of eq.(9)
1
Up — §h£nrd = (A.4)
with
Up =UgNg + UyNy

L _ou o
L dy

(A.5)

APPENDIX B

Computation of integrals in a distributional sense

The following proof is based on the ideas presented in [26]. Consider for
instance the computation of

or
/ij%jdn (B.1)

where wj is a continuous function and r is assumed to be a function defined
at element level and which is discontinuous across the element faces. Therefore
the derivatives BazL are not defined along element sides.

j

Integral (B.1) can be computed in a distributional sense as
/w-ardQ—Z/ w'ﬁdﬂ+2/ w;[r]n,;dT (B.2)
Q 78::;]- B e JSle ](91‘]' 7 rF e 4 .

The first term on the righthand side represents the sum of integrals
over the element interiors. The second term accounts for the jump of the
discontinuous function r across element faces. This term contains the sum
of integrals computed on all faces shared by two elements. Counters e and f
run respectively on the number of elements and faces in the mesh.

Figure B.1 illustrates the case of two triangular elements A and B sharing
a common side I'. For each element we consider the outward normal vector to
any given side I'. Since the jump of the discontinuous functions is computed in
the normal directions, the sign of the normal makes no difference in the result
of (B.2) and the jump for the case illustrated here is

[Fl=(r)B—(r)a (B.3)

where (7)p and (7) 4 are the values of 7 on ' obtained from elements B and A,
respectively. If the sign of the normal vector changes, the sign of the jump will
also change so that the sign of the product [7]n; will remain unchanged.

The integral of the jump along I' can be obtained form the contributions
of each element sharing the side I"

/ij[[r]]nde = /FB ’u}]’TandF— /FA wjrAnde (B.4)
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/

A

Figure B.1. Interface for computing the jump between two elements.

Here I'g denotes I in element A, while I' 4 represents the same face viewed
from element B. From Figure B.1 we see that n4 = n and ng = —n. Therefore

(B.4)
/ij [rInjdl’ = — /FB wjrpnp;dl - /PA wjrAny,dT (B.5)

Consequently the integral of the jump on I' can be decomposed into two
integrals, each one involving values from only one of the two adjacent elements.
The sum of such integrals for all element faces can be expressed in terms of
integrals over the element boundaries as

Ef:/l“f wj[r]n;dl’ = —XQ:/Fe wjrnde+ijrnde (B.6)

where I'¢ represents the three sides of element e, while I' represents the set of
element sides lying on the boundary of {2. The second integral on the righthand
side of (B.6) appears because the jump terms are computed only between two
elements and not on the boundary I'. This term will cancel out contributions
from boundary edges in the first term of the righthand side.

Substituting (B.6) into (B.2) yields

/ijaaa; [/ wj@m] dQ — / wjrn]dI‘] /wjrn]df‘ (B.7)

The last step consists in integrating by parts the integrals over the element
interiors, i.e.

or ow;
——d() = —/ ——IrdQ / TN .
/Qe W, aa:jd Qe Ba; rd§2 + e wjrn;dl (B.8)

Substituting (B.8) into (B.7) gives finally

/wj—dQ ;/ 6w]7‘dQ+/ wjrndl’

8x] 856]

This coincides with eqs.(23) and (24) for wj = vghm; and r = Ty, in
eq.(23) and w; = q7q; and r = Tm; in eq.(24).
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