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Abstract

Enhancing the sensitivity to faults with respect to disturbances, rather than optimizing the precision of the state estima-
tion using Kalman Filters (KF) is the subject of this paper. The stochastic paradigm (KF) is based on minimizing the
trace of the state estimation error covariance. In the context of the bounded-error paradigm using Zonotopic Kalman
Filters (ZKF), this is analog to minimize the covariation trace. From this analogy and keeping a similar observer-
based structure as in ZKF, a criterion jointly inspired by set-membership approaches and approximate decoupling
techniques coming from parity-space residual generation is proposed. Its on-line maximization provides an optimal
time-varying observer gain leading to the so-called FD-ZKF filter that allows enhancing the fault detection properties.
The characterization of minimum detectable fault magnitude is done based on a sensitivity analysis. The effect of the
uncertainty is addressed using a set-membership approach and a zonotopic representation reducing set operations to
simple matrix calculations. A case study based on a quadruple-tank system is used both to illustrate and compare the
effectiveness of the results obtained from the FD-ZKF approach compared to a pure ZKF approach.

Keywords: Uncertain systems, observers, fault detection, bounded uncertainties, zonotopes, sensitivity analysis,
minimum detectable fault.

1. Introduction

Fault Detection (FD) is a key feature to increase safety and reliability of complex automatic control systems
[1]. Model-based FD relies on the use of a model describing the system behavior in order to check the consistency
with the observations obtained from some sensors. Therefore, the performance of FD depends on the quality of
the mathematical model [1, 2]. The mismatch between the modeled and real behaviors of the system is often non-
negligible when modeling dynamic systems [3]. Relevant description of the uncertainties has been thought of as a key
factor in modeling the system dynamic. Consequently, there is a large volume of published studies dealing with the
design techniques to explicitly represent such uncertainties in the models [4, 5, 6, 7] and also exploring the influence
of the uncertainties in control area [8, 9]. There are two main paradigms in order to represent the uncertainties: the
stochastic approaches consider that the uncertainties can be represented using a random variable [10, 11] and the
so-called deterministic approaches consider that the uncertainties are unknown but bounded [12, 13].

Generally speaking, model-based FD can be categorized considering how residuals are generated: observers (as
e.g. Kalman filter or unknown input observers), parity equations and parameter estimation [2, 14]. Mainly, the state
estimation in observer-based approaches is based on the measurements using either stochastic (e.g., Kalman filters)
or deterministic approaches (e.g., Luenberger observers) to characterize the propagation of uncertainties. Then, the
decision of the FD module can be made based on evaluating the residual generated by using the output estimation
error [2, 15]. In particular, in the Kalman filter-based approach, the innovation is considered as a residual to detect the
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fault (i.e., in the presence of faults, the prediction error is not null). In this framework, Kalman filter, extended Kalman
filter and unscented Kalman filter are different techniques for state estimation of linear/nonlinear systems where the
uncertainties are taken into account stochastically [10, 16]. In the set-membership approach, the uncertainties are
assumed unknown but bounded [4, 17, 18, 19]. In the case of the set-membership-based state estimation [5, 20, 21],
the estimation characterizes a set of possible states. In literature, several families of geometrical structures have been
used as e.g. interval boxes, polyhedrons/polytopes, ellipsoids and zonotopes [5, 22, 23, 24].

As in the observer-based approaches, FD using parity equations is based on checking possible inconsistencies of
the measured outputs with suitable analytical redundancy relations derived from the system model [25, 26, 27]. On
the other hand, it is possible to detect the fault based on the parameter estimation where the plant is firstly identified
in fault-free scenario (called reference model). Then, the existence of the fault is proved by checking the reference
model with the parameters that are repeatedly re-identified on-line [28, 29, 30].

Some works have explored the relation between different approaches regarding FD performance [14, 31, 32]: for
example, if the residual generators have been designed for the same specification, parity relation and observer-based
approaches can produce identical residuals.

A large and growing amount of literature has also reported several approaches to improve the FD methods such
that the residual is obtained to be insensitive to the uncertainty, while at the same time sensitive to the faults [2, 27,
33]. This is the case of FD filters that are designed by considering the robustness against disturbance, noise or any
uncertainties using, e.g., H∞ optimization, Linear Matrix Inequalities (LMI)s or µ design techniques [33, 34]. But,
recent results show that the filter design technique considering only the rejection of the effect of uncertainties has not
been successful since the sensitivity to the fault needs to be considered in FD filter design [35]. This is the case of
[36] where the multi-objective FD design based on H−/H∞ techniques is considered. Indeed, the worst case of the
fault sensitivity is taken into account by the smallest not null singular value of the transfer function matrix from fault
to residual at either ω = 0 or over a given frequency range [37, 38]. Then, a significant amount of literature has been
published discussing this multi-objective design task formulated as an optimization problem, e.g., H∞/H∞, H2/H∞ or
H2/H2 problems [35, 39, 40, 41].

On the other hand, a considerable amount of literature has been reported on different state-bounding algorithms
based on stochastic and deterministic approaches. A recent study, proposed by [42], deals with the standard Kalman
filtering together with the zonotopic state estimation. This work establishes an explicit bridge between stochas-
tic/Gaussian and set-based/zonotopic frameworks relying on the analogy between covariances and covariation. Then,
in [43] and [44], both deterministic (bounded) and stochastic (Gaussian) disturbances have been taken into account
in order to propose the extended version of Zonotopic and Gaussian Kalman Filter (ZGKF) with the aim of merging
Gaussian Kalman filtering and zonotopic state bounding to achieve robust FD. Furthermore, there is a large volume
of reported studies about fault detectability, in particular [45], where the main objective is to compute the minimum
magnitude of the fault that can be detected when an interval observer is used.

The main contribution of this paper is to make use of a similar observer-based structure as in ZKF in order to
propose an approach enhancing the sensitivity to faults with respect to disturbances, rather than only optimizing the
precision of the state estimation as is usually considered in Kalman Filters. As for ZKF, a generic discrete-time
linear time-varying (LTV) dynamic model of the system is considered. Contrary to most existing multi-objective FD
design techniques, the sensitivity to both faults and disturbances is evaluated using a set-based approach enclosing all
the possible temporal scenarios of faults and disturbances within specified ranges. Moreover, the proposed criterion
combining the sensitivity to both faults and disturbances makes it possible to efficiently obtain on-line time-varying
optimal FD observer gains, without any requirement on the considered frequency ranges. The combination of these
features makes the approach original compared to most multi-objective optimization-based FD techniques. Finally,
the effectiveness of the proposed approach is illustrated using a case study based on quadruple-tank system.

Regarding the structure of the paper, some preliminaries are introduced in Section 2. The problem formulation is
addressed in Section 3. The observer structure and the FD algorithm are discussed in Section 4. The computation of
a time-varying observer gain optimizing a set-based criterion modeling the trade-off between the sensitivity to faults
and the robustness to disturbances is proposed in Section 5. The discussion of the comparative assessment and the
characterization of the minimum detectable fault for the FD-ZKF and ZKF approaches are presented in Section 6.
The application to a quadruple-tank system is used in order to illustrate the effectiveness of the proposed approach in
Section 7. Finally, conclusions are drawn in Section 8.
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2. Preliminaries

2.1. Notation
Throughout this paper, Rn denotes the set of n-dimensional real numbers, ⊕ denotes the Minkowski sum, ⊗

indicates the Kronecker product. The matrices are written using capital letter, e.g., A, the calligraphic notation is used
for denoting sets, e.g., X, the transfer functions are highlighted using script font e.g., H , ‖.‖s denotes the s-norm and
[x, x] is an interval with lower bound x and upper bound x.

2.2. Zonotope and set operation
Definition 1. (Zonotope) A zonotope

〈
c, R

〉
⊂ Rn with the center c ∈ Rn and the generator matrix R ∈ Rn×p is a

polytopic set defined as a linear image of the unit hypercube [−1, 1]p:〈
c, R

〉
=

{
c + Rs, ‖s‖∞ ≤ 1

}
. (1)

Moreover, a centered zonotope is denoted by
〈
R
〉

=
〈
0, R

〉
. Any permutation of the columns of R leaves it invariant.

For example, Figure 1 illustrates the sixth-order zonotope in R3 with c =

000
 and R =

1 1 1 −1 0 0
1 −1 0 0 1 −1
0 0 −1 −1 1 1

.

Figure 1: Zonotope in R3

�

Definition 2. (Minkowski sum) Considering two sets A and B, their Minkowski sum is a set defined as A ⊕ B ={
a + b| a ∈ A, b ∈ B

}
. Thus, the Minkowski sum of the zonotopes Z1 =

〈
c1,R1

〉
and Z2 =

〈
c2,R2

〉
is Z1 ⊕ Z2 =〈

c1 + c2,
[
R1, R2

] 〉
. �

Definition 3. (F-radius) The F-radius of a zonotopeZ =
〈
c, R

〉
is the Frobenius norm of its shape matrix, i.e., ‖R‖F .

�

Definition 4. (Covariation) The covariation of the zonotopeZ =
〈
c, R

〉
is cov

(〈
c, R

〉)
= RRT [42, 43]. �

Property 1. (Linear image) The linear image of a zonotope Z =
〈
c,R

〉
by a matrix L with a compatible size is

L �
〈
c,R

〉
=

〈
Lc, LR

〉
. �

Property 2. (Reduction operator) A reduction operator denoted ↓q permits to reduce the number of generators of a
zonotope

〈
c, R

〉
to a fixed number q while preserving the inclusion property

〈
c, R

〉
⊂

〈
c, ↓q R

〉
. A simple yet efficient

solution to compute ↓q R is given in [24, 42]. It consists in sorting the columns of R on decreasing Euclidean norm
and enclosing the influence of the smaller columns only into an easily computable interval hull, so that the resulting
matrix ↓q R has no more than q columns. �
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3. Problem Formulation

This paper addresses the problem of FD in dynamical systems modeled as an uncertain time-varying state-space
representation in discrete-time as

xk+1 = Ak xk + Bu,kuk + Ekυk, (2a)
yk = Ck xk + Du,kuk + Fkυk, (2b)

where k ∈ N indicates the discrete time. Furthermore, x ∈ Rnx is the state vector, u ∈ Rnu and y ∈ Rny denote
the known input and the known output (measurement) vectors, respectively. The system matrices of appropriate
dimensions are A ∈ Rnx×nx , Bu ∈ Rnx×nu , C ∈ Rny×nx and Du ∈ Rnx×nu . Moreover, the random vector υ ∈ Rnυ denotes
an additive uncertainty that is bounded by a unit hypercube expressed as a centered zonotope, i.e., ∀k ≥ 0, υk ∈[
−1, 1

]nυ
=

〈
0, Inυ

〉
, where Inυ ∈ Rnυ×nυ denotes the identity matrix. Furthermore, E and F are non-empty matrices

with appropriate dimensions.
Moreover, the bounded uncertainty vector υk is considered as the combination of the disturbance and the fault.

Therefore, the decomposed form of υk is written as

υk =

[
dk

fk

]
,

where d ∈ [−1, 1]nd =
〈
0, Ind

〉
and f ∈ [−1, 1]n f =

〈
0, In f

〉
, respectively, modeling the disturbances and faults that

possibly influence the system. Consequently, Ek and Fk can be decomposed as

Ek =
[
Bd,k B f ,k

]
,

Fk =
[
Dd,k D f ,k

]
,

where Bd, B f , Dd and D f denote non-empty matrices with suitable dimensions.
Henceforth, the index k + 1 will be replaced by + and k will be omitted for the sake of simplified notations. Then,

the dynamical model (2) is simply rewritten while remaining fully LTV1 as

x+ = Ax + Buu + Eυ, (3a)
y = Cx + Duu + Fυ. (3b)

The initial state x0 belongs to the zonotopic set X0 =
〈
c0, R0

〉
, where c0 ∈ Rnx denotes the center and R0 ∈ Rnx×rR0

is a non-empty matrix containing the generators matrix R0 of the initial zonotope X0. The pair (A,C) is assumed to be
detectable. Moreover, monitoring the system with the dynamical model (3) considering the influence of disturbances
and the possible effect of the fault (when it exists) can be done deriving a set-membership observer from the expression

x+ = Ax + Buu + Eυ + G(y −Cx − Duu − Fυ), (4)

where G is the observer gain that provides degrees of freedom to tune the system monitoring with respect to its aim,
i.e., with the goal of optimizing the detection of faults according to some given criterion.

In order to highlight the link with an observer that will be formalized in Section 4.1, it can be noticed that replacing
the variables in the right-hand side of (4) by the zonotope they belong to, the terms corresponding to centers will result
in a classical Luenberger observer with observer gain G (5a), while the generator/shape matrix terms will provide an
explicit way to parameterize with G the zonotopic enclosures of the classical observation error (5b).

An optimal tuning of the time-varying observer gain matrix G based on a set-based optimization criterion express-
ing the desired FD performance (rather than the only state estimation) is addressed in the following of the paper.

1LTV : Linear Time-Varying
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4. Structure of the observer-based FD tests

4.1. General observer structure
In this paper, the observer-based FD is performed by means of a Kalman filter using zonotopic sets instead of

Gaussian probability density functions (PDF), known as Zonotopic Kalman Filter (ZKF). Considering the one-step
ahead predictor form, also called delayed form of the Kalman filter, the underlying observer structure is determined
using the ZKF approach proposed in [42], which can be further tuned with respect to the FD purpose to increase the
FD performance. Therefore, the following Proposition 4.1 is obtained based on (4).

Proposition 4.1. (Observer structure) Considering the dynamical model (3), the center c and the shape matrix R of
the zonotopic observer can be recursively defined as

c+ = (A −GC)c + (Bu −GDu)u + Gy, (5a)

R+ =
[
(A −GC)R̄, (E −GF)

]
, (5b)

where R̄ =↓q R. Furthermore, the state inclusion property x ∈
〈
c,R

〉
holds for all k ≥ 0.

Proof. Assuming x ∈
〈
c, R

〉
and υ ∈

〈
0, Inυ

〉
for all k ≥ 0 where the inclusion property is preserved, (4) can be

written using the reduction operator as

x+ ∈
〈
c+, R+

〉
=

〈
(A −GC)c, (A −GC)R̄

〉
⊕

〈
(Bu −GDu)u, 0

〉
⊕

〈
0, (E −GF)

〉
⊕

〈
Gy, 0

〉
. (6)

Thus, based on Definition 2 and Property 1, the center c+ and the shape matrix R+ in (6) can be expressed as in (5),
where the center c can be interpreted as a classical punctual state estimate of the unknown state x and the shape matrix
R characterizes a zonotopic enclosure of the classical observation error e = x − c.

�

4.2. FD based on the innovation term
The standard form of FD test is based on checking the consistency of the measurements with a fault-free model.

In this work, the fault-free model is obtained by setting f = 0 in (2). Then, υ =

[
d
0

]
.

The innovation is usually defined as the difference between the measured value of a variable at time k and the
optimal forecast of that value based on the information available prior to time k. In this work, the measured value
of the output is y, and c, which will result from iterations based on (5a) with some optimal G, stands for the above
mentioned optimal forecast in the considered one-step ahead predictor form (or delayed form) of KF. The reader
interested in additional material about formal/detailed links between the set-membership and stochastic paradigms
and their joint use for the design of some innovation-based FD tests is referred to [42] and [43, 44], respectively.
In particular, explicit links with the computation and evaluation forms of prediction error/residuals are formalized in
[43, 44].

Proposition 4.2. (FD test design) Considering a faultless scenario ( f = 0), the center cε and the shape matrix Rε of
a zonotope containing the origin 0, i.e., satisfying 0 ∈

〈
cε ,Rε

〉
at time k is

cε = y − (Cc + Duu) , (7a)

Rε =
[
−CR, −F

]
. (7b)

Proof. The output equation (3b) can be rewritten as follows:

0 = y −Cx − Duu − Fυ. (8)

Substituting x ∈
〈
c, R

〉
for x in (8) and υ ∈

〈
0, Inυ

〉
yields

0 ∈
〈
y, 0

〉
⊕

〈
−Cc,−CR

〉
⊕

〈
− Duu, 0

〉
⊕

〈
0, −F

〉
, (9)
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which completes the proof by applying Definition 2 and Property 1. �
It is worth noting that the time-varying center cε can be equivalently identified/interpreted at time k as:

i) a prediction error which is homogeneous to the system output in terms of physical units,
ii) a residual r whose computation form corresponds to the right term of (7a), and
iii) an innovation term ε, as explained in the text introducing the Proposition 4.2.

Since
〈
0,Rε

〉
=

〈
Rε

〉
is a centered zonotope and, as such, a centrally symmetric domain, and since ε = r = cε, it

can be noticed that 0 ∈
〈
cε,Rε

〉
as stated in Proposition 4.2 equivalently can be rewritten as ε ∈

〈
Rε

〉
and/or r ∈

〈
Rε

〉
.

As a result, the zonotope shape matrix Rε (7b) gives explicit information for the evaluation of the residual r.
Therefore, the FD test is done by computing (7) and the fault is detected when 0 <

〈
cε, Rε

〉
. A computationally

efficient way to implement the detection test without increasing the false alarm rate consists in testing whether 0
belongs or not to an aligned box enclosing the zonotope

〈
cε,Rε

〉
0 <

〈
cε, b(Rε)

〉
, (10)

where
〈
cε, b(Rε)

〉
is enclosed by an align box characterized by b(Rε) = diag(|Rε| 1). Considering that |.| is the element-

by-element absolute value operator, 1 is a column vector of ones and diag(.) returns a diagonal matrix from a vector
of diagonal elements.

Algorithm 1 summarizes the FD test in Proposition 4.2.

Algorithm 1 FD test based on the innovation term

1: k ←− 0
2:

〈
c,R

〉
=

〈
c0,R0

〉
3: for k = 0 : (kmax − 1) do
4: (y, u) = GetMeasurementAndControlInput

5: G = OptObsGain(c,R)
6:

〈
c+, R+

〉
using (5)

7:
〈
cε, Rε

〉
using (7)

8: if 0 <
〈
cε, b(Rε)

〉
then

9: Fault ← true
10: else
11: Fault ← f alse
12: end if
13: end for

Note that the first step of Algorithm 1 is related to initialization. Then, the explicit value of the optimal observer
gain should be computed using either an observation-based or an FD-based criterion. Moreover, a function G =

OptObsGain(c,R) implementing such computations will be presented later in the paper. Then, the one step ahead
state prediction

〈
c+,R+

〉
as well as the value of the residual vector r = cε and its adaptive threshold b(Rε) can be

computed based on u, y and G. So, the FD test is based on computing the next-step bounding set with the computed
optimal gain and Proposition 4.1. Finally, the residual is generated using Proposition 4.2 and the fault is detected
when 0 <

〈
cε, b(Rε)

〉
.

5. Optimal zonotopic observer gain

5.1. Observer structure

The observer gain has important implications in the behavior of the state bounding observer resulting from Propo-
sition 4.1. Contrary to a first intuition, it is not clear that those computed observer gains that are suitable for the
observation purpose are also suitable for the purpose of FD. In this regard, using the same observer structure, the
focus of this section will be placed on first giving a brief overview of computing the observer gain with only state
observation purposes. Then, computing the optimal observer gain regarding FD will be considered by using a distur-
bance/fault reach set-based criterion.
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In order to characterize them as functions of the tuning matrix G, the reach sets describing the influence of the
disturbances and the effect of a fault on the estimated state sets, the observer structure in Proposition 4.1 can be
decomposed and rewritten as shown in Proposition 5.1.

Proposition 5.1. (Superposed form of the observer structure) Considering the dynamical model (3), the decomposi-
tion of the center c and the shape matrix R of the state bounding observer into the effects of the disturbance and fault
can be recursively defined as

x+ ∈
〈
cd+
, Rd+

〉
⊕

〈
c f+ , R f+

〉
, (11)

with

cd+
= (A −GC)cd + (Bu −GDu)u + Gy, (12a)

Rd+
=

[
(A −GC)R̄d, (Bd −GDd)

]
, (12b)

c f+ = (A −GC)c f , (12c)

R f+ =
[
(A −GC)R̄ f , (B f −GD f )

]
, (12d)

where R̄d =↓q Rd and R̄ f =↓q R f . Additionally, the inclusion property is preserved for all k ≥ 0, i.e., x ∈
〈
cd, Rd

〉
⊕〈

c f , R f
〉
.

Proof. Assuming x ∈
〈
cd, Rd

〉
⊕

〈
c f , R f

〉
at time instant k, d ∈

〈
0, Ind

〉
and f ∈

〈
0, In f

〉
, it is possible to write the

zonotopic form of the observer in (4) as

x+ ∈
〈
(A −GC)cd, (A −GC)Rd

〉
⊕

〈
(A −GC)c f , (A −GC)R f

〉
⊕

〈
(Bu −GDu)u, 0

〉
⊕

〈
Gy, 0

〉
⊕

〈
0, (Bd −GDd)

〉
⊕

〈
0, (B f −GD f )

〉
. (13)

Furthermore, consider that the superposition principle can be explicitly invoked in the linear setting. Therefore, using
Definition 2, the center and the generator matrix in (13) can be reorganized as in (12). Thus, x+ ∈

〈
cd+, Rd+

〉
⊕〈

c f +, R f +

〉
. This gives the proof by induction. �

Since x ∈
〈
cd, Rd

〉
⊕

〈
c f , R f

〉
is independent from the observer gain at time instant k, the effect of the disturbance

and the fault at time instant k can be reformulated as a one-step prediction from time instant k − 1 in order to parame-
terize the effect of the observer gain. Thus, the effect of the disturbance and fault at time instant k in Proposition 5.1
can be formulated as

cd = (A− −G−C−)cd− + (Bu− −G−Du− )u− + G−y−, (14a)

Rd =
[
(A− −G−C−)Rd− , (Bd− −G−Dd− )

]
, (14b)

c f = (A− −G−C−)c f− , (14c)

R f =
[
(A− −G−C−)R f− , (B f− −G−D f− )

]
, (14d)

where the subscript − is a short notation of k − 1. Therefore, the state-bounding zonotope becomes an affine function
of the (previous) observer gain x ∈

〈
cd(G−), Rd(G−)

〉
⊕

〈
c f (G−), R f (G−)

〉
.

The use of Proposition 5.1 instead of Proposition 4.1 allows the separation of the effects of the disturbances and
the faults. Therefore, computing the observer gain for observation purposes is done considering (12a) and (12b) while
tuning the observer gain for FD purposes is done considering (12a) to (12d). Then, the expected strength of the
proposed FD scheme lies in the fact that not only the influence of disturbances is used, but also the relative influence
of disturbances and faults can be used to set up an optimization criterion quantifying the satisfaction level of an FD
goal.

5.2. Optimal observer gain for observation purposes

When designing the gain for state-observation purposes, the main goal will be only reducing the effect of state
estimation uncertainty. The computation of the optimal observer gain for an observation purpose is investigated in [42]
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which shows that there is a strong analogy between the Kalman filter and zonotopic Kalman filter (ZKF) where the
usually Gaussian probability density functions (PDF) are replaced by zonotopic sets. Therefore, the optimal observer
gain G∗ can be obtained by minimizing the F-radius2 of the zonotope

〈
c+, R+

〉
in (5). According to [42], minimizing

the F-radius of a zonotope is equivalent to minimizing the trace of its covariation. Therefore, considering Definition 4,
an accuracy criterion related to the size of the next state-bounding zonotope can be written as

J = tr(R+RT
+) = ‖R+‖

2
F . (15)

Then, considering the fault-free model ( f = 0) which is the standard approach for a general purpose state obser-
vation, J may be expressed as

J = tr(Rd+
RT

d+
) =

∥∥∥Rd+

∥∥∥2
F . (16)

Moreover, given the state-bounding zonotope at time instant k as x ∈
〈
c, R

〉
, G∗ can be computed explicitly using

Theorem 5.1 in order to minimize the effect of uncertainty over the next state-bounding zonotope x+ ∈
〈
c+, R+

〉
.

Theorem 5.1. Considering x ∈
〈
c, R

〉
at time k, the optimal observer gain G∗ minimizing the F-radius of the state-

bounding zonotope at time instant k + 1, or precisely, minimizing the criterion J = tr(R+RT
+) obtained in (16), is

computed as
G∗ = AK∗, (17)

with
K∗ = LS −1, L = P̄CT , S = CP̄CT + Qω,

where the covariation matrices are introduced as Qω = DdDT
d , Qυ = BdBT

d and P̄ = R̄dR̄T
d .

Proof. The proof follows from the results presented in [42].
�

5.3. Optimal observer gain for FD purposes
Now, this section will concentrate on the design of the observer gain for FD purposes. Such a gain is computed to

maximize the effect of faults with respect to disturbances. In this regard, an optimal tuning based on an FD criterion
(FD-ZKF) rather than an observation criterion (ZKF) is used in order to enhance the FD properties of the observer.
By analogy with the Kalman filter, minimizing the F-radius of a zonotope is equivalent to minimizing the trace of
its covariation. Therefore, the following accuracy criterion can be written to maximize the influence of faults while
minimizing that of disturbances:

J (G−) =
tr

(
cov

(
R f (G−)

))
tr (cov (Rd(G−)))

. (18)

Remark 5.1. The criterion proposed in (18) follows a general idea that was inspired by optimal approximate decou-
pling techniques coming from parity-space residual generation as presented in [27]. Note that the notion of worst-case
highly depends on a related evaluation criterion. An intuitive interpretation motivating the use of the original opti-
mization criterion (18) is that it makes it possible to obtain an optimal time-varying observer gain maximizing the size
(covariation) of a reachable set describing the influence of all the specified faults while minimizing the size (covari-
ation) of a reachable set describing the influence of all the specified disturbances. This is in contrast with methods
maximizing the influence of extreme faults (e.g. those involving the lowest sensitivity in terms of H−) while mini-
mizing the influence to extreme disturbances (e.g. those involving the maximal sensitivity expressed in terms of H∞).
Moreover, the proposed time-varying optimal observer gain can be expressed in a mathematically tractable way and
the complexity of its computation remains compatible with online implementations.

Once the optimization criterion based on a matrix parameter is chosen as (18), Proposition 5.2 can be used in order
to parameterize the optimization criterion based on a vector ω rather than a matrix parameter like G−.

2Further information about Frobenius norm can be found in [42].
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Proposition 5.2. Considering the definition of matrix trace and introducing ω = col (G−), where col(.) denotes the
vertical concatenation of the matrix columns, the FD optimization criterion (18) can be parameterized with a param-
eter vector as

J (G−) =
ωT

(
MT

f M f

)
ω + 2NT

f M fω +
(
NT

f N f

)
ωT

(
MT

d Md

)
ω + 2NT

d Mdω +
(
NT

d Nd

) , (19)

with

M f =

−
((

C−R f−

)T
⊗ I

)
−

(
DT

f

)
⊗ I

 , N f =

col
(
A−R f−

)
col

(
B f−

)  , (20a)

Md =

−
((

C−Rd−
)T
⊗ I

)
−

(
DT

d

)
⊗ I

 , Nd =

[
col

(
A−Rd−

)
col

(
Bd−

) ]
. (20b)

Proof. Taking into account the Definition 4, the covariation of the matrices R f and Rd can be written as

cov
(
R f (G−)

)
=

(
R f (G−)

) (
R f (G−)

)T
, (21a)

cov (Rd(G−)) = (Rd(G−)) (Rd(G−))T , (21b)

where both are quadratic functions of the elements of G−. Then, considering the definition of the matrix trace, the
trace of both cov

(
R f (G−)

)
and cov (Rd(G−)) can be expressed based on column vectors as

tr
(
cov

(
R f (G−)

))
= col

(
R f (G−)

)T
col

(
R f (G−)

)
, (22a)

tr (cov (Rd(G−))) = col (Rd(G−))T col (Rd(G−)) . (22b)

Additionally, using Kronecker product to introduce matrices M and N in (20), which are independent matrices with
respect to G− (for both disturbance and fault cases), the column form of Rd and R f can be written as

col
(
R f (G−)

)
= M f ω + N f , (23a)

col (Rd(G−)) = Md ω + Nd, (23b)

where the column vector ω = col (G−) is obtained by reshaping the observer gain matrix G− through a vertical
concatenation of its column vectors. Then, the substitution of (23) into (22) yields

tr
(
cov

(
R f (G−)

))
=

(
ωT MT

f + NT
f

) (
M fω + N f

)
=ωT

(
MT

f M f

)
ω + 2NT

f M fω +
(
NT

f N f

)
, (24a)

tr (cov (Rd(G−))) =
(
ωT MT

d + NT
d

)
(Mdω + Nd)

=ωT
(
MT

d Md

)
ω + 2NT

d Mdω +
(
NT

d Nd

)
. (24b)

Therefore, after the substitution of (24) in (18), the parameterized optimization criterion with FD purposes can be
obtained as (19).

�
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Before continuing the analysis, some covariation matrices are first introduced

Q̃ f =

[
Q f LT

f
L f 0

]
, Q̃d =

[
Qd LT

d
Ld 0

]
, (25a)

Q f = MT
f M f , Qd = MT

d Md, (25b)

L f = NT
f M f , Ld = NT

d Md, (25c)

c̃ f = NT
f N f , c̃d = NT

d Nd. (25d)

It can be seen from (25) that those matrices with subscript f are related to the effect of the fault while those
matrices with subscript d are related to the influence of the disturbance. Then, the FD optimization criterion (19)
given in Proposition 5.2, which is obtained to describe the maximization of the effect of the faults (numerator) with
respect to the effect of the disturbances (denominator), can be rewritten (simplified) using (25) as

J(ω̃) =
ω̃T Q̃ f ω̃ + c̃ f

ω̃T Q̃dω̃ + c̃d
, (26)

where ω̃ =

[
ω
1

]
. The criterion (26) is a ratio of two quadratic functions. Apart from the constant terms in (26), the

strong formal analogy with the design of parity space residuals using approximate decoupling techniques [46] can be
observed. Though similar mathematical techniques can be used to solve the related optimization as detailed hereafter
in Theorem 5.2, the purpose followed in this work is significantly different since it consists in obtaining a time-varying
update of the gain of a state-bounding observer with a Kalman-like structure.

Theorem 5.2. (Optimal observer gain with FD purposes) Maximizing the criterion (18) and, equivalently, (26) means
finding ω̃∗ such that J(ω̃∗) = max

ω̃
J(ω̃). The solution satisfies ω̃∗ ∈ ker

(
Q̃ f − J∗Q̃d

)
and the optimal observer gain G∗

is determined by reshaping the solution of the generalized eigenvectors related to the greatest generalized eigenvalue
of the pair

(
Q̃ f , Q̃d

)
.

Proof. Consider Proposition 5.2 and select ω̃∗ to be the optimal value of ω̃ :
∂J(ω̃)
∂ω̃

= 0. Hence, taking the derivative
of (26) with respect to ω̃ and setting it to zero successively yields

ω̃T Q̃ f ω̃ + c̃ f − Jω̃T Q̃dω̃ − Jc̃d = 0,

2ω̃T Q̃ f − J2ω̃T Q̃d = 0,(
Q̃ f − J∗Q̃d

)
ω̃∗ = 0, (27)

where the symmetric nature of Q̃ f and Q̃d is taken into account. Therefore, a non-null solution satisfies

ω̃∗ ∈ ker
(
Q̃ f − J∗Q̃d

)
. (28)

Thus, finding ω̃∗ that maximizes J can be achieved by computing the generalized eigenvalues and the related eigen-
vectors of the pair

(
Q̃ f , Q̃d

)
. More precisely, the maximal value J∗ of J for which a non-null solution exists is the

greatest generalized eigenvalue of (Q̃ f , Q̃d) since the solutions J to det(Q̃ f − JQ̃d) = 0 ensure a non-zero kernel
ker(Q̃ f − JQ̃d). Then, the generalized eigenvector related to J∗ gives ω̃∗. Finally, the optimal observer gain matrix is
calculated by reshaping ω∗ into a matrix as G∗ = col−1(ω∗).

�
The statement and proof of Theorem 5.2 provide the core results of this paper leading to Algorithm 2 which

implements the computation of the optimal observer gain for the proposed FD-ZKF FD filter.
A graphical representation of the proposed methodology using an observer gain G (based on the ZKF approach)

and the optimal observer gain G∗ (using the proposed FD-ZKF approach) for designing the state-bounding observer
is presented in Figure 2: The image of unit hypercubes modeling the range of the possible disturbances and faults
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Algorithm 2 Steps to compute the optimal observer gain based on the FD-ZKF approach

1: function G = OptObsGain(Q̃ f , Q̃d),
2: [V,D] = eig(Q̃ f , Q̃d) (to compute the generalized eigenvalue/vector decomposition),
3: D = diag(D),
4: I = find(D == max(D)),
5: J = D(I(1)),
6: ω = V (:, I(1)),
7: ω =

ω

ω(end)
,

8: col(G) = ω(1, (end − 1)),
9: G = reshape(col(G), [nx, ny]).

10: end

are illustrated by gray and empty zonotopes, respectively. Then, considering the same magnitude and direction of the
fault f in both cases, the detection of the fault cannot be guaranteed with the gain G (see Figure 2a). Indeed, Figure 2a
illustrates a limit case between detection and non-detection: the influence of the fault exactly compensates that of the
worst case disturbance, i.e., the red point is on the border of Rd. However, in Figure 2b, the influence of the fault
is far outside from the influence of disturbances. Therefore, the detection of the fault with the same fault magnitude
(and even smaller ones) can be guaranteed only with G∗, i.e., when the observer gain results from the optimization
of an FD criterion. The richer underlying set-based representation compared to a basic vector-norm approach gives
additional degrees of freedom to deal with relative directions and bounds in the space characterizing the influence of
the possible disturbance and fault signals.

b) The case of using G∗a) The case of using G

Fault magnitude

Fault direction

Rd

Fault direction

Fault magnitude

Rf

Rf

Rd

Figure 2: Intuitive graphical representation of the proposed method by means of plane zonotopes.

6. Comparative assessment

In this section, a comparative assessment of ZKF which optimizes the state observation criterion (16) and FD-ZKF
which optimizes the FD criterion (18) is presented. To that purpose, the Minimum Detectable Fault (MDF) will be
characterized based on a classical sensitivity analysis in order to show the effect of the observer gain over the MDF.
Then, it is possible to compare the approaches using the mathematical expression of the MDF based on the model of
a numerical example (which will be discussed in Section 7).

Directly evaluating the MDF through simulations is an alternative way to show the improvement given by FD-ZKF
compared to ZKF. A model-based analysis/characterization of the sensitivity to the faults is proposed in the following
of this section. Here, the MDF is the minimum abrupt (step) fault that can be surely detected in steady state. For the
sake of comparison only, it is assumed that the system is Linear Time-Invariant (LTI), whereas the general problem
formulation of ZKF and FD-ZKF is still valid for LTV systems.
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In order to characterize the minimum magnitude of the fault that can be detected, the input-output form of the
discrete-time dynamical model (3) is expressed as

y(z) = Tu(z)u(z) + Td(z) d(z) + T f (z) f (z), (29)

where the transfer function T (z) can be computed as

T (z) = C(zI − A)−1B + D. (30)

Notice that the related input, disturbance and fault are denoted by the subscripts of T (z), B and D as u, d and f ,
respectively. The subscripts u, d and f are eliminated in (30) for the sake of simplified notations. Alternatively,
considering (4) rather than (3), the measurement equation can also be expressed as

y(z) = Hu(z)u(z) + Hd(z)d(z) + H f (z) f (z) + Hy(z)y(z), (31)

with

H•(z) =C
(
zI − (A −GC)

)−1 (B• −GD•) + D•, (32a)

Hy(z) =C
(
zI − (A −GC)

)−1G, (32b)

where subscript • can be assigned by u, d and f depending on the kind of input considered. Furthermore, the equation
(31) can be written as

(I −Hy(z))y(z) = Hu(z)u(z) + Hd(z)d(z) + H f (z) f (z). (33)

Therefore, the input-output form of the residual/innovation term can be written using (33) as

ε(z) = r(z) =(I −Hy(z))y(z) −Hu(z)u(z)
= Hd(z)d(z)︸      ︷︷      ︸

εd(z)

+ H f (z) f (z)︸      ︷︷      ︸
ε f (z)

, (34)

where εd(z) and ε f (z) refer to the (observer gain dependent) effect of the disturbance and the fault on the residual term.
Thus, Hd(z) and H f (z) can be interpreted as the sensitivity of the residual with respect to disturbances and faults,
respectively.

Theorem 6.1. Given an observer as (5) and the input-output form of its measurement equation as (31), the Minimum
Detectable Fault (MDF) in steady state is given under the single-fault assumption as

f∞
j

= min
i

f∞
ji
, f∞

ji
= 2

∥∥∥Hd,i(1)
∥∥∥

1∥∥∥H f ,i j(1)
∥∥∥

1

, (35)

where the magnitude f j of the single step faults that are necessarily detected satisfy f j > f∞
j

or f j < − f∞
j

, with

j = 1, ..., n f . A fault is said to be necessarily detected if ∃k, 0 <
〈
cε, b(Rε)

〉
is satisfied. Whereas j is an index for

single faults, i refers to the rows of Hd(z) and H f (z). More precisely, Hd,i(1) is the ith row of Hd(1) and H f ,i j(1) is
the element at the ith row and jth column of H f (1).

Proof. Since ε(z) = εd(z) + ε f (z) in z-domain, the residual can be expressed in the time domain and in steady state
(limit as k → ∞) as

ε∞ = ε∞d + ε∞f = Hd(1)d∞ + H f (1) f∞. (36)

Considering d ∈ [−1, 1]nd =
〈
0, Ind

〉
and a faultless scenario (it means f (z) = 0⇒ f∞ = 0), the residual in steady

state can be expressed according to (36) as
ε∞ ∈ 0 ± |Hd(1)|1, (37)

where | · | is the element-by-element absolute value operator and 1 is a column vector of ones of appropriate dimension.
Hence, |Hd(1)|1 is a vector whose ith element is the 1-norm (scalar) of the ith row Hd,i(1) of the matrix Hd(1). Thus,
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Tank 3 Tank 4

Tank 1 Tank 2

(1− γ2)K2v2

(1− γ1)K1v1

γ1 γ2
a3
√
2gh3 a4

√
2gh4

a1
√
2gh1 a2

√
2gh2

K2v2K1v1

Pump 2Pump 1

v1 v2

γ1K1v1 γ2K2v2

Figure 3: Schematic diagram of the quadruple-tank system

the ith element ε∞i of the residual ε∞ allows the detection of a fault if ε∞i < 0 ±
∥∥∥Hd,i(1)

∥∥∥
1 . Furthermore, (36) can be

rewritten ∀i as ε∞i = ε∞d,i + ε∞f ,i.
Therefore, in steady state, the condition ensuring the detection of the jth fault from the ith component of the

residual is:
H f ,i j(1) f∞j < 0 ± 2

∥∥∥Hd,i(1)
∥∥∥

1 . (38)

The factor 2 comes from the worst-case scenario where the disturbances have a maximal influence in the opposite
direction compared to that of the occurring fault. Thus, it can be written that

f∞j < 0 ± 2

∥∥∥Hd,i(1)
∥∥∥

1∥∥∥H f ,i j(1)
∥∥∥

1

. (39)

Equation (38) can be rewritten as (39) so that f∞
ji

in (35) interprets as the minimum magnitude f j such that the

jth fault is necessarily detected by the ith scalar residual ε∞i taken alone. This results in (35) when considering all the
scalar components of the innovation term.

�
Finally, the comparison of the ZKF and FD-ZKF approaches can be done in the FD framework using Theorem 6.1.

As it can be seen from (32), the transfer functions Hd and H f in (35) depend on the observer gain. In the ZKF
approach, the observer gain can be computed explicitly based on Section 5.2 using Theorem 5.1. In the FD-ZKF
approach, the observer gain can be computed based on Section 5.3 using Algorithm 2. Because of their distinct
observer gains, the FD performance is expected to be different between the ZKF and FD-ZKF approaches. In this
regard, further quantitative comparison of the approaches will be discussed in Section 7 based on a case study.

7. Case study

7.1. General description
A case study based on a quadruple-tank system is used to illustrate the approach proposed in the previous sections.

The quadruple tank is a multi input/multi output process proposed by [47]. Furthermore, the system contains two

13



Table 1: Model parameters.

Parameter value Unit
A1 = A3 = 28, cm2

A2 = A4 = 32 cm2

a1 = a3 = 0.071 cm2

a2 = a4 = 0.057 cm 2

g = 981 cm / s2

Table 2: Value of variables.

operating point Parameter value Unit(
h∗1, h∗2

)
(12.4, 12.7) cm(

h3∗, h∗4
)

(1.8, 1.4) cm(
v1∗, v∗2

)
(3, 3) V(

K1∗, K∗2
)

(3.33, 3.35) cm 3/ Vs(
γ1∗, γ

∗
2

)
(0.7, 0.6) -

pumps and four interconnected tanks.
As it can be seen from the schematic diagram of the system setup in Figure 3, the two process inputs are the

pump flows that are determined by the voltages v1 and v2 (input voltages to the pumps varying between 0 V to 10 V).
Furthermore, the outputs of the process are the water levels in the lower tanks that are obtained as voltages from the
measurement devices with the range between 0 V to 10 V. Tanks 3 and 4 are placed on top of Tanks 1 and 2. In
addition, the action of pumps is to fill the tanks by extracting the water from the basin. Furthermore, Tanks 1 and
2 receive additional water flow from Tanks 3 and 4 because of the gravity effect. The water flow to each tank is
controlled by the position of the valves determined by γ1 and γ2 in Figure 3. Furthermore, the position of the valves
γ1, γ2 ∈ (0, 1) are the ratios modeling how the output of the pumps are divided between the upper and lower tanks.

Regarding the physical features, the height of each tank is 20 cm and the connection of the tank and the pump is
done using a pipe with a diameter equal to 6 mm.

The mathematical model of the process can be determined based on the mass balance relations and Bernoulli’s
law as

dh1(t)
dt

= −
a1

A1

√
2gh1(t) +

a3

A1

√
2gh3(t) +

γ1K1

A1
v1(t), (40a)

dh2(t)
dt

= −
a2

A2

√
2gh2(t) +

a4

A2

√
2gh4(t) +

γ2K2

A2
v2(t), (40b)

dh3(t)
dt

= −
a3

A3

√
2gh3(t) +

(1 − γ2) K2

A3
v2(t), (40c)

dh4(t)
dt

= −
a4

A4

√
2gh4(t) +

(1 − γ1) K1

A4
v1(t), (40d)

where
• hi with i = 1, 2, 3, 4 is the water level in Tank i,
• Ai is the cross section of Tank i with i = 1, 2, 3, 4,
• ai is the cross section of the outlet pipe with i = 1, 2, 3, 4,
• K j is the constant of the Pump j with j = 1, 2,
• g is the acceleration due to gravity.
The value of the parameters of (40) is presented in Table 1. To apply the approach proposed in this paper, the

non-linear model (40) is linearized around the working point that is presented using the superscript ∗ in Table 2 and
introducing the variables h̃i = hi − h∗i and ṽi = vi − v∗i as
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˙̃h(t) =



−
1
T1

0
A3

A1T3
0

0 −
1
T2

0
A4

A2T4

0 0 −
1
T3

0

0 0 0 −
1
T4


h̃(t) +



γ1K1

A1
0

0
γ2K2

A2

0
(1 − γ1) K2

A3
(1 − γ1) K1

A4
0


ṽ(t), (41a)

y(t) =

[
Kc 0 0 0
0 Kc 0 0

]
h̃(t), (41b)

where the measured level signals are obtained considering that Kc = 0.5 V/cm and Ti = Ai
ai

√
2h∗i
g , with i = 1, 2, 3, 4 as

T1 = 62.7034, T2 = 90.3353, T3 = 23.8900 and T4 = 29.9930.
Finally, using the Euler discretization with a sampling time of 1s, a discrete-time linear model is obtained as

h̃+ = Ah̃ + Buṽ + Bdd + B f f , (42a)

y = Ch̃ + Duṽ + Ddd + D f f , (42b)

with

A =


0.9841 0 0.0419 0

0 0.9889 0 0.0333
0 0 0.9581 0
0 0 0 0.9667

 , Bu =


0.2102 0

0 0.0628
0 0.0479

0.0094 0

 ,
C =

[
0.5 0 0 0
0 0.5 0 0

]
, Du =

[
0 0
0 0

]
.

Taking into account the state disturbance and measurement noise, Bdd and Ddd are used in (42) with

Bd =


0.05 0.01 0 0 0 0 0
0.05 0 0.01 0 0 0 0
0.05 0 0 0.01 0 0 0
0.05 0 0 0 0.01 0 0

 , (44a)

Dd =
[
02x5 0.1 I2

]
, (44b)

As it can be seen in (44a), the first column of Bd is used to define a disturbance influencing all the states, e.g., rain
simultaneously getting into all the tanks. The idea of considering the rain that can have large influence on the direction
defined by the first column of matrix Bd in (44a) is to model a kind of flow (disturbance) affecting all tanks at the same
time. In addition, disturbances aiming at enclosing modeling errors like, e.g., linearization and discretization errors,
are introduced through the next diagonal block in Bd. Therefore, bounded disturbances acting in all the state-space
directions and the measurement noise are modeled with Bd and Dd, respectively.

Furthermore, the effect of faults on the state and the measurements is modeled through the terms B f f and D f f , re-
spectively. The possible faults that are considered are actuator faults, sensor faults and leakages. Hence, the following
matrices are chosen in the simulation in order to simulate all these faults:

B f =
[
10Bu 0.3 I4 04x2

]
, (45a)

D f =
[
02x6 10 I2

]
. (45b)

Consistently with the problem formulation in Section 3, the uncertain input vectors d and f are assumed to be
normalized in [-1,+1]. The values of Bd, Dd, B f and D f are defined accordingly. Then, a 10% step fault fi is
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Figure 4: State estimation in the case of an actuator fault f1

simulated with fi = 0.1 after the fault occurrence.

7.2. FD-ZKF filter implementation

The observer gain can be iteratively computed for the quadruple-tank system presented in (42) using Theorem 5.1
in the case of ZKF, and Algorithm 2 in the case of FD-ZKF. In both cases, the FD test is implemented based on
Algorithm 1.

7.3. Performing FD

Two FD tests are considered in this section. Both are implemented using the Algorithm 1. They only differ from
the observer gain used: it is determined using the ZKF or FD-ZKF approach as explained in the Section 5.

Regarding the disturbance scenario, (44) is used to simulate all the possible disturbances acting in all the directions.
Furthermore, regarding the fault simulation, the following fault scenario is set in all the simulations: from time instants
k = 0 to k = 200, the system is healthy. Then, an additive step (abrupt) fault occurs at time instant k = 200 and it
remains in the system until k = 1000. Moreover, single faults are considered based on the elements of the vector f ,
i.e.,

f =
[
f1 f2 f3 f4 f5 f6 f7 f8

]T
, (46)

where f1 and f2 indicate the actuator faults, f3, f4, f5 and f6 are the leakage faults and the sensor faults are denoted by
f7 and f8.

In the first simulation, the FD test is done when considering the actuator fault f1, i.e, the faultless scenario is
considered from the beginning of the simulation until time instant k = 200. Then, the occurrence of the actuator
fault f1 is simulated at k = 200 and it remains until the end of the simulation. Figure 4 shows the projection of the
computed state-bounding zonotope into the state space when the actuator fault occurs at time instant k = 200. The
state estimation in this figure is carried out by considering Proposition 4.1 using ZKF and FD-ZKF approaches to
compute the observer gain. As it was mentioned before, the fault is simulated after time instant k = 200. Thus, before
this time instant, the system is only affected by the effect of disturbances and noises. Consequently, the bounds that
are obtained at the first 200 time instants show the effect of both disturbances and noises. As it can be seen from the
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Figure 5: Zonotopes bounding the innovation/residual be-
fore the occurrence of the fault at k = 100

Figure 6: Zonotopes bounding the innovation/residual after
the occurrence of the fault at k = 600

time instant k = 0 until k = 200 where the system is only affected by the disturbance, the observer can properly follow
the system using both observer gains.

Furthermore, Figure 4 shows that the state estimation bounds are a bit more conservative with FD-ZKF compared
to ZKF for 0 ≤ k < 200. A possible explanation is related to the criteria of the approaches. The ZKF optimization
criterion is defined considering only the observation purposes whereas the FD-ZKF criterion is defined considering
FD performance. Thus, it is normal to obtain a better state estimation with ZKF. What is interesting in Figure 4 is
that even by considering FD purpose with the FD-ZKF approach, no significant differences are obtained from the
perspective of state estimation in comparison with ZKF.

After time instant k = 200, the effect of the actuator fault can be seen on the state estimation in Figure 4. The
inconsistency of the observation by the model using both ZKF and FD-ZKF approaches and the nominal behaviour
of the system allows to detect the fault. Furthermore, comparing the approaches after the fault occurrence reveals
the improvement provided by the FD-ZKF approach since its estimation envelope has more changes with respect to
the behaviour of the true system, so showing an increased sensitivity to the considered fault. Additionally, it can be
observed that the improved sensitivity of the FD-ZKF approach is persistent, even after reaching the steady state.

For further illustration, the FD test is done based on Algorithm 1 considering the innovation term. As it is shown in
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Figure 7: Envelopes of the scalar innovation terms
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Figure 5, a threshold (here zero) is included by both innovation zonotopes generated by ZKF and FD-ZKF approaches,
respectively, before the occurrence of the fault. But, after the fault occurrence, both zonotopes move and the fault can
be detected since zero is outside of the zonotopes bounding the innovation. The higher sensitivity of the FD-ZKF
approach in comparison with ZKF approach can be seen in Figure 6 since its generated zonotope moves further from
the non-faulty region. Therefore, it can be obsrved that FD-ZKF is more sensitive with respect to the effect of the
fault.

Moreover, for the completion of the analysis, it is also interesting to combine the innovation terms and see the
effect of the fault over both innovation terms together. In this regard, the ratio between the Euclidean norm of the center
and the generator matrix of the innovation term is computed for both ZKF and FD-ZKF approaches. In particular,

the ratio
‖cε‖2
‖Rε‖2

is compared when the state-bounding observer is designed using both approaches. Figure 8 shows the

results obtained in this context.
As expected from the previous results in Figure 7, the most sensitive performance is obtained with FD-ZKF. But,

now Figure 8 presents a single scalar criterion aggregating all the scalar components of the innovation that provides
a well-defined basis for the comparison of the approaches. Indeed, directly comparing the values of the optimization
criteria (16) and (18) is not relevant since they consider different goals. Moreover, considering independently each
scalar term of the innovation as in Figure 7 may significantly complicate the sensitivity analysis when the number of
sensors is greater than 2 or 3. Moreover, the bottom plot in Figure 8 shows the FD test decision resulting from both
approaches: 0 means no-fault affecting the system and 1 means the fault is detected.
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Figure 8: Ratio
‖cε‖2
‖Rε‖2

and the FD test in the case of an actuator fault f1.

The second considered scenario corresponds to a sensor fault. The output of the system is measured from the level
measurement device. Since the height of each tank is 20 cm, the output of the system from the level measurement
device is between 0 − 10 V. The matrix D f in (45b) is defined with the whole range of the measurement. Then, the
simulation of a step sensor fault with a magnitude of 10% of the whole range is simulated after the fault occurrence
with

f =
[
0 0 0 0 0 0 0 0.1

]T
. (47)

As in the case of the actuator fault, the ratio between the Euclidean norm of the center and the generator matrix
of the innovation term is computed and reported in Figure 9. Once again, the sensitivity to the fault with FD-ZKF is
improved compared to ZKF.
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Figure 9: Ratio
‖cε‖2
‖Rε‖2

and the FD test in the case of a sensor fault f8

The last scenario considered to test the proposed FD-ZKF approach corresponds to a leakage fault f3 simulated
using B f as in (45a). Figure 10 shows a similar improvement of the sensitivity with FD-ZKF and an analog detection
ability compared to the other fault scenarios (sensor and actuator faults).

7.4. Minimum Detectable Faults (MDF) analysis

Based on Theorem 6.1, the computation of the MDF is influenced by the observer gain. In order to compute the
MDF for the case study, (35) is used. Therefore, based on the different observer gains G∗∞ obtained with ZKF and FD-
ZKF, magnitudes of the the MDF can be determined. Moreover, the constant observer gain that is obtained in steady
state can be used to compute the MDF that can be detected in order to compare the performance of the observer when
using FD-ZKF and ZKF approaches. In this regard, the following observer gains are obtained in steady state from the
simulation of the two approaches:

FD-ZKF approach: G∗∞ =


0.0679 0.0804
0.0807 0.0746
0.0469 0.0391
0.0484 0.0469

 , (48a)

ZKF approach: G∗∞ =


0.0828 0.0730
0.0731 0.0845
0.0446 0.0421
0.0466 0.0475

 , (48b)

where G∗∞ is the obtained optimal gain in steady state.
Then, the obtained results based on Theorem 6.1 are reported in Table 3. This means that the detection of the fault

with the magnitude either bigger than the obtained magnitude in Table 3 or smaller than the obtained magnitude in
Table 3 with negative sign can be guaranteed. Furthermore, from Table 3 and for the considered faults, the size of the
MDF is systematically smaller in case of the FD-ZKF. This illustrates the sensitivity improvement obtained by the
proposed optimal tuning of the observer gain in a FD framework.

Further simulations are carried out for the case study by changing the fault magnitudes. It is interesting to see the
magnitude of the faults that can be detected considering not only the steady state (Table 4), but also the whole time
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Figure 10: Ratio
‖cε‖2
‖Rε‖2

and the FD test in the case of a leakage fault f3

range of the simulation as reported in Table 5. By increasing the magnitude of the fault, the FD-ZKF detection test
(Algorithm 1) is used to see whether the fault with this magnitude can be detected or not. The results of this analysis
are collected in Tables 4 and 5.

Table 4 shows those magnitudes of the fault that can be still detected at the end of the simulation, i.e., in steady
state. Therefore, data from this table can be compared with the data in Table 3, which shows the theoretical MDF
magnitudes obtained from Theorem 6.1. In this regard, by comparing Tables 3 and 4, no significant differences are
found between the size of the MDF in all the cases. Hence, Table 4 confirms through numerical simulations the
theoretical values previously reported in Table 3 and the improvement achieved by FD-ZKF. Further analysis is done
in Table 5 to obtain the magnitude that can be detectable in whole the time range of the simulation.

Moreover, it can be observed from the comparison of Tables 4 and 5, that the magnitude of the fault that can be
detected considering the whole time range of the simulation is almost the same in the case of actuator and leakage
fault. However, in the case of sensor faults and because of the fault reinjection involved by the observer structure
leading to some transient behavior (see the overshoot in Figure 9), the magnitude of the detectable fault is improved
on the whole time range of the simulation compared to steady state only. This illustrates that FD-ZKF is well suited
to also address time-varying and transient behaviors to enhance the FD ability.

Table 3: MDF (theoretical sensitivity analysis under a steady-state operation)

Actuator fault Leakage fault Sensor fault
f1 f2 f3 f4 f5 f6 f7 f8

ZKF approach 0.0641 0.5291 0.4340 0.4300 0.4340 0.4300 0.4082 0.5826
FD-ZKF approach 0.0578 0.4812 0.3898 0.3641 0.3898 0.3641 0.3667 0.4934
Improvement 9.8284% 9.0531% 10.1843% 15.3256% 10.1843% 15.3256% 10.1666% 15.3107%

8. Conclusion

This paper has proposed a new Fault Detection (FD) observer based on a Zonotopic Kalman Filter (ZKF), called
FD-ZKF, that enhances the sensitivity to faults while increasing the robustness to disturbances. As a novelty, in the
proposed FD-ZKF approach, the time-varying observer gain is optimized by considering the FD purposes and it can
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Table 4: MDF at the end of the simulation

Actuator fault Leakage fault Sensor fault
f1 f2 f3 f4 f5 f6 f7 f8

ZKF approach 0.0472 0.5012 0.4132 0.4121 0.4122 0.4313 0.3990 0.5912
FD-ZKF approach 0.0421 0.4620 0.3621 0.3412 0.3592 0.3552 0.3492 0.4897
Improvement 10.8051% 7.8212% 12.3669% 17.2046% 12.8578% 17.6443% 12.4812% 17.1685%

Table 5: MDF by considering the whole time range of the simulation

Actuator fault Leakage fault Sensor fault
f1 f2 f3 f4 f5 f6 f7 f8

ZKF approach 0.04901 0.4997 0.4139 0.4098 0.4134 0.4231 0.3582 0.5718
FD-ZKF approach 0.0431 0.4631 0.3597 0.3396 0.3517 0.3497 0.3013 0.4698
Improvement 12.0588% 7.3244% 13.0950% 17.1303% 14.9250% 17.3481% 15.8850% 17.8384%

be perceived as an extended version to FD of the ZKF approach where the observer gain is only computed for state
observation purposes. In the proposed algorithm, the influences of all possible disturbances and faults within the
specified ranges have been considered to compute the observer gain with the aim of increasing the sensitivity to faults
with respect to disturbances. This is achieved through the optimization of a set-based criterion explicitly taking the
relative influence of faults with respect to disturbances into account. Furthermore, the Minimum Detectable Fault
(MDF) is characterized using a classical sensitivity analysis in order to show the effectiveness of the proposed time-
varying observer gain on FD performance. The comparison of FD-ZKF and ZKF approaches has been conducted
on a case study based on a quadruple-tank system. The obtained results show a significant improvement of the FD-
ZKF approach in comparison with the ZKF approach in FD performance. Furthermore, a quite small difference
is obtained between the approaches when computing the state-bounding sets. Thus, a small relaxation of the state
observation ability has given sufficient freedom degrees to significantly enhance the efficiency of FD. As a future
research, enhancing the sensitivity to specific kind of faults will be considered to improve not only the fault detection
performances, but also the fault isolation capabilities.
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[1] M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, J. Schröder, Diagnosis and fault-tolerant control, Vol. 691, Springer, 2006.
[2] J. Chen, R. J. Patton, Robust model-based fault diagnosis for dynamic systems, Vol. 3, Springer Science & Business Media, 2012.
[3] V. Puig, S. Montes de Oca, J. Blesa, Adaptive threshold generation in robust fault detection using interval models: time-domain and frequency-

domain approaches, International Journal of Adaptive Control and Signal Processing 27 (10) (2013) 873–901.
[4] V. Puig, Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies, Applied Mathematics

and Computer Science 20 (4) (2010) 619–635.
[5] T. Alamo, J. M. Bravo, E. F. Camacho, Guaranteed state estimation by zonotopes, Automatica 41 (6) (2005) 1035–1043.
[6] T. Raı̈ssi, D. Efimov, A. Zolghadri, Interval state estimation for a class of nonlinear systems, IEEE Transactions on Automatic Control 57 (1)

(2012) 260–265.
[7] M. Pourasghar, V. Puig, C. Ocampo-Martinez, Q. Zhang, Reduced-order interval-observer design for dynamic systems with time-invariant

uncertainty, IFAC-PapersOnLine 50 (1) (2017) 6271–6276.
[8] D. Efimov, T. Raı̈ssi, A. Zolghadri, Control of nonlinear and LPV systems: interval observer-based framework, IEEE Transactions on

Automatic Control 58 (3) (2013) 773–778.

21



[9] F. Karimi Pour, V. Puig, C. Ocampo-Martı́nez, Comparative assessment of LPV-based predictive control strategies for a pasteurization plant,
in: 4th International Conference on Control, Decision and Information Technologies, 2017, Spain, pp. 1–6.

[10] R. E. Kalman, A new approach to linear filtering and prediction problems, Journal of Basic Engineering 82 (1) (1960) 35–45.
[11] P. S. Maybeck, Stochastic models, estimation, and control, Vol. 3, Academic press, 1982.
[12] F. Schweppe, Recursive state estimation: Unknown but bounded errors and system inputs, IEEE Transactions on Automatic Control 13 (1)

(1968) 22–28.
[13] L. Uusitalo, A. Lehikoinen, I. Helle, K. Myrberg, An overview of methods to evaluate uncertainty of deterministic models in decision support,

Environmental Modelling & Software 63 (2015) 24–31.
[14] J. Gertler, Fault Detection and Diagnosis, Springer, 2015.
[15] V. Puig, J. Quevedo, T. Escobet, A. Stancu, Robust fault detection using linear interval observers, IFAC Proceedings Volumes 36 (5) (2003)

579–584.
[16] R. E. Kalman, R. S. Bucy, New results in linear filtering and prediction theory, Journal of Basic Engineering 83 (1) (1961) 95–108.
[17] C. Combastel, Stable interval observers in C for linear systems with time-varying input bounds, IEEE Transactions on Automatic Control

58 (2) (2013) 481–487.
[18] V. T. H. Le, C. Stoica, T. Alamo, E. F. Camacho, D. Dumur, Zonotopic guaranteed state estimation for uncertain systems, Automatica 49 (11)

(2013) 3418–3424.
[19] M. Pourasghar, V. Puig, C. Ocampo-Martinez, Comparison of set-membership and interval observer approaches for state estimation of

uncertain systems, in: European Control Conference (ECC), 2016, Denmark, pp. 1111–1116.
[20] B. Noack, F. Pfaff, U. D. Hanebeck, Optimal Kalman gains for combined stochastic and set-membership state estimation, in: The 51st IEEE

Conference on Decision and Control (CDC), 2012, pp. 4035–4040.
[21] L. Jaulin, Robust set-membership state estimation; application to underwater robotics, Automatica 45 (1) (2009) 202–206.
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