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Abstract

A semi-explicit Lagrangian scheme for the simulation of thermally coupled
incompressible flow problems is presented. The model relies on combining an
explicit multi-step solver for the momentum equation with an implicit heat
equation solver. Computational cost of the model is reduced via application
of an efficient strategy adopted for the solution of momentum/continuity sys-
tem by the authors in their previous work. The applicability of the method
to solving thermo-mechanical problems is studied via various numerical ex-
amples.

Keywords: Navier-Stokes, thermo-mechanical, Particle Finite Element
Method, Lagrangian, explicit, benchmark, Boussinesq

1. Introduction

Lagrangian finite element models for the simulation of flow problems orig-
inated from the ideas presented in [1, 2] and [3]. Unlike their fixed-grid
counterparts, Lagrangian fluid models naturally track the evolving bound-
aries and do not suffer numerical diffusion. Lagrangian fluid approaches have
been further developed for free surface flows in [4] and [5] resulting in what
is now generally known as the "Particle Finite Element Method" (PFEM), a
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methodology that combines the features of the classical Lagrangian finite ele-
ment methods and the mesh-free approaches. The PFEMs have been further
advanced by various groups and applied to flows with multi-fluids [6, 7], fluid-
structure interactions [8, 9, 10] and multi-fluid-structure interaction problems
[11].

Another area where Lagrangian fluid models may be suitable are the ther-
mally coupled flow problems. In such problems PFEMs facilitate convection
of the material properties (which, in case of being temperature-dependent,
requires solving additional transport equations in case of using fixed grid ap-
proaches). This explains why PFEM-based models were successfully used for
analyzing polymer melting [12], [13]. PFEM-based models also appear to be
suitable for the simulation of material forming processes (e.g. mould filling),
also characterized by a strongly coupled thermo-mechanical nature. Since
convection is resolved automatically due to Lagrangian nature of the fluid
solver, the heat solver in these models involves solely the diffusion (diffusion-
radiation) equation [14].

In [15] a Lagrangian-based thermally coupled model was applied to the
simulation of metal casting. In [16] a basic strategy for the solution of incom-
pressible fluids with thermal convection and free surfaces using the PFEM
was presented. The integration scheme is fully implicit, pressure and ve-
locity are uncoupled via the fractional step approach. Besides, the thermal
buoyancy effects are considered by introducing the Boussinesq approxima-
tion. This strategy is applied to mould filling in [17]. Similar Lagrangian
thermally-coupled approach is used in commercial software POLYFLOW [18]
and applied to glass forming simulation in [19]. A PFEM-based model ap-
plied to bottle forming can be found in [20, 21].

All the afore-mentioned PFEM-based approaches rely on fully implicit
time integration schemes. Unfortunately, this usually results in very high
computational costs in case of mesh degradation and thus strongly limits the
application of the PFEM-based model to real-life application. As shown in
[22] time step restriction cannot be eliminated even by a frequent re-meshing.
The possibility of element inversion at any non-linear iteration step leads to
an immediate failure of the implicit solver [22]. Thus, all the mentioned
approaches require estimating a critical time step in order to ensure that no
element gets inverted. In practice, this often introduces a prohibitively small
time step restriction. Taking into account that the problem solution at each
time step involves non-linear iterations and each non-linear iteration, in turn,
requires solving large linear systems, the resulting methods turn out to have
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a very large computational cost.
In order to alleviate the above-mentioned drawbacks of the iterative pro-

cedure involved in an implicit solution, Idelsohn et al [23] proposed a scheme,
where particles were moved only once, prior to implicit solution of the Navier-
Stokes equations (which was considered linear). Such mesh movement step
was fully explicit. The obtained configuration was considered to be the end-
of-step configuration and was not further updated. In order to ensure im-
proved accuracy of this prediction, the particle positions were obtained fol-
lowing the streamline corresponding to velocity at the known time step. The
advantage of this method was that it allowed using large time steps without
falling into the danger of element inversion as the mesh was considered fixed
within an implicit step. The methodology that combined fixed background
mesh with the moving particles is extended to thermally coupled problems
in [24]. There, thermal and viscous diffusivity are treated explicitly. The
thermal coupling is carried out via a temperature-dependent buoyancy term
added to fluid acceleration (Boussinesq approximation).

An alternative explicit-implicit Lagrangian method was proposed in [25].
There, domain configuration was accurately predicted by using fourth order
Runge-Kutta scheme for integrating both the velocity and the particle po-
sitions. Due to the implicit nature of the pressure in incompressible flows,
pressure was integrated implicitly. The approach introduced re-meshing prior
to pressure solution step, ensuring that no element may be inverted during
the implicit step. This allowed to alleviate time step restrictions and elimi-
nate its dependence on the mesh deformation. The computational cost of the
method was strongly reduced also due to a technique that allowed solving
for the pressure only once per time step.

In the present work the explicit-implicit scheme proposed in [25] is ex-
tended to thermally coupled problems (a fixed-grid version of the scheme can
be consulted in [26] and [27] ). For the problems where buoyancy effects are
essential, Boussinesq term is added to the fluid acceleration.

The paper is organized as follows: Section 2 presents the governing equa-
tions of a thermally coupled incompressible fluid. The solution algorithm is
outlined. Section 3 is devoted to solution of various benchmarks. First, a
thermal square cavity is solved and the solution is validated using the bib-
liographic data. Next, a problem involving a thermally coupled fluid flow
in a backward facing step is solved. Ultimately, a thermally coupled fluid
sloshing example is simulated.

3



2. Numerical model for thermally coupled incompressible flows

In thermally coupled problems the energy equation is coupled to the mo-
mentum/continuity system via the convective velocity. For the low-speed
flows with non-negligible buoyancy effects, Boussinesq hypothesis is often
employed, provided that temperature gradients are small. It allows to ac-
count for the aforementioned thermal buoyancy phenomena using an incom-
pressible flow model [28]. According to this hypothesis the buoyant term of
the momentum equation is assumed to be temperature-dependent, while the
density is assumed constant everywhere else in the model. Boussinesq solvers
allow solving the energy and the momentum-continuity system in a staggered
fashion. The popularity of Boussinesq hypothesis is specially related to its
practical applicability and the simplicity of its implementation.

In the following the governing equations for a thermally coupled incom-
pressible flow problems are specified and the solution algorithm is presented.

2.1. Governing equations at continuum level
Let Ω ⊂ R3 be a bounded domain containing viscous incompressible fluid.

We denote the time by t, the Cartesian spatial coordinates by x = xi|3i=1, and
the vectorial operator of spatial derivatives by ∇ = {∂xi}3

i=1. The evolution
of the velocity v = v(x, t), the pressure p = p(x, t) and the temperature
T = T (x, t) is governed by the following equations:

ρ
∂v
∂t

+ ρ(v · ∇)v−∇ · (µD́) +∇p = f, (1)

∇ · v = 0, (2)

ρC
∂T

∂t
+ ρCv · ∇T − κ∆T = 0. (3)

where µ is the fluid dynamic viscosity, ρ is the density, p is the fluid
pressure, D́ = 1

2
(∇v +∇Tv) is the symmetric part of the velocity gradient

tensor, C is the heat capacity and κ is the thermal conductivity. According
to Boussinesq hypothesis the body force f is computed as

f = ρg[1− β(T − T0)] (4)

where g is the gravity acceleration, T and T0 are the actual temperature
and the reference temperature, respectively, and β is the thermal diffusion
coefficient.
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The position x of a given material particle (which coincides with the mesh
node once the problem is discretized) is given by:

Dx
Dt

= v (5)

Figure 1: Domain and boundaries.

The governing equations are completed with standard Dirichlet and Neu-
mann boundary conditions. On the external boundary ∂Ω = ΓD

⋃
ΓN , such

that ΓD ∩ ΓN = ∅. The domain boundaries are shown in Fig. 1.(
v = v̄
T = T̄

)
onΓD (6)(

σ · n = σn

k∇T · n = q̄n

)
onΓN (7)

where v̄ and T̄ are the prescribed velocity and temperature respectively,
n is the outer unit normal to ΓN , σn and q̄n are the prescribed traction
vector and normal heat flux.

The discrete version of the governing equations is presented next.

2.2. Governing equations at discrete level
In the present work, we use a semi-explicit solver of [25] for the me-

chanical problem and a Backward Euler scheme for the heat equation. An
updated Lagrangian reference frame is considered. The semi-explicit solver
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for the momentum/continuity/position system is based on the fourth-order
Runge–Kutta scheme and is characterized by the second order temporal ac-
curacy.

Considering linear finite element approximations for the temperature (note
that N is the vector of shape functions)

T (x) = NT (x) T̄ (8)

heat equation discretized in space and time reads (note absence of the
convective term due to adopting the Lagrangian reference frame)

ρCM
T̄ n+1

∆t
+ κLT̄ n+1 = ρCM

T̄ n

∆t
. (9)

A linear approximation of the same order is used for the velocity and the
pressure

p (x) = NT (x) p̄ (10)

vi (x) = NT (x) v̄i (11)

We note that the nodal variables are distinguished from their continuum
counterparts by an overbar.

Applying the above spatial approximations and the fourth-order Runge-
Kutta time integration scheme, the following equations are obtained (see [25]
for further details):

v̄n+1 = v̄n +
∆t

6
M−1(r1 + 2r2 + 2r3 + r4)− ∆t

6ρ
M−1Gp̄n+1 (12)

where intermediate residuals, nodal velocities and positions are defined as:

ri = G( 1
ρ)
p̄j − K(µρ )v̄

k + F (13)

v̄βi = v̄n + φ∆tM−1rm (14)

xβi = xn + γ∆tv̄n (15)

In the following tables (1-3) i, j, k, m, n, φ and γ are summarized for the
different variables:

Introducing an intermediate velocity ṽ, following the fractional step ap-
proach [29] for decoupling the velocity and the pressure, Eq.(12) can be
replaced by the following three equations to be solved sequentially:

ṽ = v̄n +
∆t

6
M−1 (r1 + 2r2 + 2r3 + r4) +

∆t

6
M−1G( 1

ρ)
p̄n (16)
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ri i j k
1 n n
2 n β1

3 β2 β2

4 β3 β3

Table 1: Intermediate residuals

v̄βi i φ m
1 1/2 1
2 1/2 2
3 1 3

Table 2: Velocities

xβi i γ n
1 1/2 n
2 1/2 β1

3 1 β2

Table 3: Nodal positions

∆t

6
Lp̄n+1 =

∆t

6
Lp̄n −Dρṽ (17)

v̄n+1 = ṽ +
∆t

6
M−1G( 1

ρ)
(p̄n+1 − p̄n) (18)

Particle’s position x at time n+ 1 can be found as

xn+1 = Xn +
∆t

6
(v̄n + 2v̄β1 + 2v̄β2 + v̄β3) (19)

The matrices in the above equations are defined as:

K(µ
ρ

) =
∑
elem

∫
Ω

µ

ρ

(
∇NT∇N +∇NT∇TN

)
dΩ (20)

M =
∑
elem

∫
Ω

NTNdΩ (21)

F =
∑
elem

∫
Ω

NTgdΩ (22)

G( 1
ρ)

=
∑
elem

∫
Ω

1

ρ
∇NTNdΩ (23)

Dρ =
∑
elem

∫
Ω

ρN∇NTdΩ (24)

L( 1
ρ)

=
∑
elem

∫
Ω

1

ρ
∇NT∇NdΩ (25)

Eq.(17) must be stabilized to avoid numerical oscillation due to the equal
order of approximation for velocity and pressure. The stabilization technique
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used in the present work is the algebraic sub-grid scale method [30]. For
the sake of simplicity, stabilization terms are omitted here. They can be
consulted in [25] where the mechanical solver was derived.

2.3. Solution algorithm
The problem to be solved can be formulated as: given the nodal positions,

the velocity, the pressure and the temperature at time step tn, find these
variables at tn+1. The overall solution strategy according to the method
proposed is summarized in Table 4.

1. Knowing the velocity v, pressure p, temperature T and nodal position
x corresponding to time tn perform the explicit step:
• For i from 1 to 4

Evaluate intermediate Runge-Kutta residuals ri (i = 1, ..., 4)
using Eqs.(13).

Move particles to the new position x(Eq.(19)).
Update elemental matrices and vectors according to the new

nodal positions (Eqs. 20-25).

2. Re-mesh the fluid domain

3. Perform the implicit step: solve the Poisson’s equation for the pressure
(Eq.(17)). Result: p̄n+1.

4. Correct the velocity to obtain a divergence-free solution. Result: v̄n+1

(Eq.(18)).

5. Solve the heat equation (Eq. (9)). Result: T̄ n+1

6. Compute the Boussinesq term for the next time step using the obtained
temperature (Eq. (4)).

7. Go to the next time step.

Table 4: Lagrangian explicit-implicit solution algorithm for thermally coupled incompress-
ible flow problems.
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3. EXAMPLES

The model presented in this paper was implemented by the authors in
the open source Kratos Multi-Physics software [31]. In the following, three
numerical tests are solved. They validate the thermo-mechanical scheme
proposed.

3.1. The thermally driven cavity benchmark
This test models the fluid flow in two-dimensional unitary square. Differ-

ent temperatures are prescribed and maintained at the vertical walls. Con-
vective transport in this test is known as "natural convection". It develops
exclusively due to non-zero temperature gradients. This example is used
to test the numerical algorithms designed for the integration of the Navier-
Stokes equations in incompressible recirculating flows. Boussinesq approxi-
mation [32] is valid due to very small temperature variation.

The input data provided below is taken from the benchmark description
given in [33]. The top and the bottom walls are insulated (adiabatic condition
is considered) and the velocity at all boundaries is set to zero. Vertical walls’
temperatures are T0=298.5 K (right wall) and T1=297.5 K (left wall). Fluid
inside the cavity is initially at rest. Its initial temperature equals the mean of
the temperatures on the vertical walls. The scheme of the example is shown
in Fig. 2.

The simulations were executed for a range of Rayleigh number (Ra =
gβH3∆T

αν
) values: Ra = 106, Ra = 105 and Ra = 104. Prandtl number

(Pr = ν
α
) was set to (0.71). Note that g, β, α and ν are the gravity, thermal

diffusion coefficient, thermal diffusivity and kinematic viscosity, respectively.
A constant temperature difference of ∆T=1 K was applied to the two ver-
tical walls, adjusting the thermal diffusion coefficient β until obtaining the
desired Rayleigh number, keeping all the other variables constant. The fol-
lowing values were used for the main variables

ρ = 1
kg

m3

ν = 0.001
m2

s
gy = -10

m

s2

α = 0.001
m2

s
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The simulations were carried out using mesh size h =0.015 m and time
step dt =0.0025 s.

To validate the present numerical results, the obtained results are com-
pared for different Ra values with the data found in bibliography [33, 34, 35]
and [36, 24]. The values and the locations of maximum horizontal and verti-
cal velocities are considered. The comparison is summarized in Tables 5-7.A
nearly exact match in terms of the maximum vertical and horizontal velocity
for the entire range of the considered Rayleigh numbers is observed. For
Ra = 106 and Ra = 104 the results are compared against the fixed grid
simulations of [33], [36] and the combined PFEM-Eulerian simulation of [24].
For Ra = 105 no results are presented in [36] and [24], thus the comparison is
made only with [33]. One can see a very good agreement among the results.
Largest discrepancy is observed in the location of the maximum vertical ve-
locity. One can see that for Ra = 106 the difference between the compared
values is as high as 20 %. For smaller Rayleigh number this discrepancy
diminishes.

Results shown in Fig. 3 compare the isotherms obtained in our simula-
tions with those corresponding to the reference solution [37]. The results are
in very good agreement with the benchmark solution.

Fig. 4 shows the horizontal velocity profiles in the cavity along the vertical
line at x=0.5. One can see that the present results coincide with those of
[36] for all the considered values of Rayleigh number.

The results of the present method are compared against those of the
former version of thermally coupled purely Lagrangian implicit PFEM model
in Fig. 5. Rayleigh number considered here is Ra = 106 and nine isotherms
are shown so as to facilitate the comparison with the reference results. Fig.
5 a) shows the solution obtained in the present work, while Fig. 5 b) and
c) display the isotherms of the reference solution [33] and the PFEM model
of [38], respectively. One can see that all the isotherms in the upper part of
the graphs are nearly identical for all the models, while the third isotherm
(counted from the bottom) obtained by the present approach exhibits a much
closer match to the reference solution than the former PFEM model, where
the isotherm is considerably shifted towards the bottom.

3.2. Heat transfer for backward facing step duct flows
This example models the well-known backward facing step duct flow,

which is one of the very commonly simulated CFD problems. Although the
geometry of the test is simple, it is characterized by complex flow physics.
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Figure 2: Boundary conditions for thermal cavity benchmark problem

Ra Data RK Davis [33] Corzo [36] Sklar [24]
106 vx,max(x = 0.5) 65.45 65.81 64.558 64.483
106 ymax 0.85 0.852 0.851 0.845
106 vy,max(y = 0.5) 213.07 214.64 221.572 218.054
106 xmax 0.0474 0.0396 0.067 0.037

Table 5: Numerical solution for the thermal square cavity, Ra=106. Comparison with [33],
[36], [24].

Ra Data RK Davis
105 vx,max(x = 0.5) 34.924 34.870
105 ymax 0.862 0.855
105 vy,max(y = 0.5) 67.910 67.910
105 xmax 0.0576 0.067

Table 6: Numerical solution for the thermal square cavity, Ra=105. Comparison with [33].

This example is commonly used to validate conjugate heat transfer models
[39]. In our case for the sake of simplicity heat transfer is modeled only in a
single homogeneous fluid.

Geometrical details, boundary and initial conditions of the problem are
depicted in Fig. 6. The problem was simulated for two values of Reynolds
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(a) Ra=104, [37] (b) Ra=104, RK

(c) Ra=105, [37] (d) Ra=105, RK

(e) Ra=106, [37] (f) Ra=106, RK

Figure 3: Natural convection in a square cavity. Temperature field and iso-lines. Com-
parison with [37]. Blue and red colors in the present method results (RK) correspond to
297.5 and 298.5 K, respectively.
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(a) Ra=104 (b) Ra=105

(c) Ra=106

Figure 4: Natural convection in a square cavity. Horizontal velocity profiles along the
vertical cut at x=0.5. Comparison with [36]
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Ra Data RK Davis [33] Corzo [36] Sklar [24]
104 vx,max(x = 0.5) 16.250 16.182 16.282 15.982
104 ymax 0.821 0.823 0.822 0.824
104 vy,max(y = 0.5) 19.541 19.509 19.547 19.378
104 xmax 0.115 0.120 0.123 0.116

Table 7: Numerical solution for the thermal square cavity, Ra=104. Comparison with [33],
[36], [24].

Figure 5: Natural convection in a square cavity, isotherms. a) present work b) [33] c) [38].

number: Re=100 and Re=800. Prandtl number was maintained identical in
both cases: Pr= 0.71. Fluid conductivity was set as κ =0.02 W/(m · K).
Gravity is neglected.

Obtained velocity and temperature fields are shown in Figs. 7 - 10. The
results obtained using the present semi-explicit model are compared with
those of an implicit fixed-grid model. The latter solver was validated and
applied to the thermally coupled backward facing step in [40].

The correlation between the solutions obtained for Re=100 using the
present model and the Eulerian model can be seen in Fig. 7 (velocity) and
Fig. 8 (temperature). The solutions are nearly identical.

For Re=800 some differences between the Lagrangian and the Eulerian
simulation results manifest. As can be seen from in Figs. 9 and 10 the cold
fluid entering from the left reattaches on the solid wall at approximately
x=6 m. After the reattachment point, the cold fluid in contact with the
relatively hot solid wall is heated. A hot spot that appears in the fluid region
extending from x=0 to the reattachment point results from the fluid trapped
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Figure 6: Thermally coupled backward facing step. Geometric details, initial and bound-
ary conditions.

between the entering fluid stream and the channel. However, the posterior
development of the thermal boundary layer downstream of the impingement
point is slightly different. This is related with the evolution of the velocity
that can be observed in detail in Fig. 12 which affects the evolution of
the heated layer of fluid. While the Eulerian model exhibits a steady-state
solution, the Lagrangian model shows a periodic solution. The difference is
particularly evident in the vicinity of the step. Nevertheless, the velocity
and the temperature distributions are very similar in the entire domain.
This issue requires further investigation as the same periodic behavior was
obtained when applying fomerly proposed implicit schemes as well.

Temperature profiles along the vertical axis recorded at x=6, 14 and 30
are plotted in Figs.11 and 12. Once again, one can see that for Re=100 Eule-
rian and Lagrangian solutions are coincident. For Re=800 present approach
slightly deviates from the reference solution due to the unsteady nature of
the flow in the vicinity of the step. This difference is largest along the hori-
zontal axis of the channel at y=0.5. Further away from the step the solutions
completely coincide.

Figure 7: Thermally coupled backward facing step. Velocity magnitude contours (Re=100,
Pr=0.71) at 40 sec. Eulerian (above) vs Lagrangian (below) simulation results. Red and
blue colors stand for 1.5 and 0 m/s, respectively.
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Figure 8: Thermally coupled backward facing step. Temperature contours (Re=100,
Pr=0.71) at 40 sec. Eulerian (above) vs Lagrangian (below) simulation results. Red
and blue colors stand for 0 and 1 C, respectively.

Figure 9: Thermally coupled backward facing step. Velocity magnitude contours (Re=800,
Pr=0.71) at 40 sec. Eulerian (above) vs Lagrangian (below) simulation results. Red and
blue colors stand for 1.5 and 0 m/s, respectively.

Figure 10: Thermally coupled backward facing step. Temperature contours (Re=800,
Pr=0.71) at 40 sec. Eulerian (above) vs Lagrangian (below) simulation results. Red and
blue colors stand for 0 and 1 C, respectively.

3.3. Sloshing in a hot container
While previous examples involved analysis of problems with fixed bound-

aries and were solved for the sake of the solver validation, next test deals
with a problem that involves a domain with moving boundaries. It deals
with a free-surface flow in a container with hot walls. Tests of this kind were
proposed in [41] for illustrating the capability of thermally coupled PFEM-
solvers. The example focuses on the impact of temperature-induced viscosity
changes upon the flow behavior.

Domain configuration at t=0 is shown in Fig. 13. No-slip boundary
condition is prescribed at all the walls of the domain. Free surface (zero
tractions) condition is prescribed at the free surface. The dimensions of the
domain are: H=0.1 m and h=0.02 m. The free surface shape is sinusoidal.
The properties are: density ρ = 1000 kg/m3, gravity g = −9.8 m/s2.

Initial temperature of the fluid is set to T0 = 273 K. Walls are kept at
a fixed temperature: Tw (the simulation is carried out for three values of
wall temperature: 273, 373 and 473 K). The viscosity is computed from the
temperature using the following expression:

ν = −2.996 · T 3 · 10−7 + 0.000379 · T 2 − 0.161 · T + 23.12 (26)
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(a) x=6. (b) x=14.

(c) x=30.

Figure 11: Thermally coupled backward facing step. Comparison of temperature profiles
at x=6; 14 and 30 for the case of Re=100. Eulerian (reference) [40] vs Lagrangian (present
approach) simulation results.
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(a) x=6. (b) x=14.

(c) x=30.

Figure 12: Thermally coupled backward facing step. Comparison of temperature profiles
at x=6; 14 and 30 for the case of Re=800.
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(a) Initial domain geometry (b) Wave height at the left wall

Figure 13: Free-surface fluid sloshing in a hot container.

The above formula mimics the relative viscosity change of water between
273 and 473 K [42]. The heat capacity C and the conductivity κ of the fluid
were set to: 4000.0 J/(kg ·K) and 2000.0 W/(m ·K), respectively.

A total time of 1 s is simulated. The domain is discretized with an
unstructured triangular mesh of size 0.002 m (6000 elements approximately).

We test the impact of the thermal effects upon the fluid behavior consid-
ering that the walls of the container are hot. Domain configurations showing
temperature distributions are shown at various time instances in Fig. 14.
As the temperature propagates (mainly due to diffusion in the present case)
from the walls into the fluid volume, the viscosity changes and the differences
in the free surface location becomes more and more evident. In particular,
at t=0.9 s the case characterized by the highest wall temperature exhibits
a significantly different solution, as the temperature increases significantly
nearly in the entire domain (except for the small area in the center). Attain-
ing lower viscosity the fluid moves faster, therefore, e.g. at 0.9 s the crest of
the wave moves further from the right wall as the temperature of the walls
growth.

The example above shows that for the free-surface flow problems charac-
terized by temperature changes, the present fluid solver may be advantageous
as it allows to easily account for temperature-dependent viscosity by simply
adding a diffusion solver to an efficient semi-explicit mechanical solver.
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(a) Tw = 273 K, t=0.2 s (b) Tw = 273 K, t=0.4 s (c) Tw = 273 K, t=0.9 s

(d) Tw = 373 K, t=0.2 s (e) Tw = 373 K, t=0.4 s (f) Tw = 373 K, t=0.9 s

(g) Tw = 473 K, t=0.2 s (h) Tw = 473 K, t=0.4 s (i) Tw = 473 K, t=0.9 s

Figure 14: Sloshing in a hot container. Temperature distribution at various time instances.
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4. Summary and conclusion

In this paper a semi-explicit incompressible flow model was coupled to
a heat equation solver. Being fully Lagrangian, the model automatically
resolves convection and the heat module solves only the transient diffusion
equation. The model belongs to the second generation of the Particle Finite
Element Method solvers, where the particles-nodes are moved explicitly prior
to the solution of the implicit problem. The solver for the thermally coupled
flows presented here inherits the advantages of the mechanical solver formerly
proposed by the authors in [25], namely the possibility of using constant time
step.

The thermal coupling was validated using several benchmark cases. The
validation tests revealed that the proposed solver provides reliable solutions.
Being semi-explicit the solver provides an attractive alternative to the fully
implicit models, provided that the time step estimates are favorable. In par-
ticular, since in the mechanical part of the solver only the pressure is treated
implicitly, favorable time step can be encountered in problems characterized
by low viscosity values. For the flows characterized by high viscosity, the
proposed solver is not advantageous (e.g. the casting problems, or melting
problems where material viscosity at low temperatures is typically very high).
This occurs due to the time step size restriction introduced by the explicit
treatment of the viscous term. However, it is beneficial for thermo-mechanical
fluid flow problems characterized by temperature-dependent viscosity.
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