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Abstract— In a previous work [1] we have identified the key
role played by the concept of cyclodissipativity in the solution of
the power–factor–compensation problem for electrical circuits
with general nonlinear loads and operating in nonsinusoidal
regimes. Namely, we have shown that a necessary condition
for a (shunt) compensator to improve the power transfer
is that the overall system satisfies a given cyclodissipativity
property. In this work, we extend the results of [1] proving that
cyclodissipativity is actually necessary and sufficient for power–
factor improvement. We prove in this way that cyclodissipativity
provides a rigorous mathematical framework useful to analyze
and design power–factor compensators. Moreover, we give
an energy equalization interpretation of the power–factor–
compensation problem.

I. INTRODUCTION

Optimizing energy transfer from an ac source to a load is

a classical problem in electrical engineering. In practice, the

efficiency of this transfer is typically reduced due to the phase

shift between voltage and current at the fundamental frequency.

The phase shift arises largely due to energy flows characterizing

electric motors that dominate the aggregate load. The power

factor, defined as the ratio between the real or active power

(average of the instantaneous power) and the apparent power

(the product of rms values of the voltage and current), then

captures the energy–transmission efficiency for a given load.

The standard approach to improving the power factor is to place

a compensator between the source and the load. To design the

compensator it is typically assumed that the equivalent source

consists of an ideal generator having zero Thevenin impedance

and producing a fixed, purely sinusoidal voltage, see [2]. If

the load is linear time invariant (LTI), the resulting steady–

state current is a shifted sinusoid, and the power factor is the

cosine of the phase–shift angle. Power–factor compensation is

then achieved by modifying the circuit to reduce the phase shift

between the source voltage and the current.

In the LTI sinusoidal case, a fundamental energy–equalization

mechanism underlies the phase–shifting action of power–factor

compensation. Indeed, it can be shown that the power factor

is improved if and only if the difference between the average

electric and magnetic energies stored in the circuit is reduced.

The optimal power factor is achieved when electric and mag-

netic energies are equal, which occurs when the impedance

seen from the source behaves like a resistor for the source
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frequency. Unfortunately, standard textbook presentations [2]–

[4] do not explain the power–factor compensation in terms of

energy equalization, but rather rely on an axiomatic definition of

reactive power, which in the LTI sinusoidal case, turns out to be

proportional to the energy difference mentioned above, and thus

reactive–power reduction is tantamount to energy equalization.

In this work, we prove that a necessary and sufficient condi-

tion for power factor improvement is is that the overall system

satisfies a given cyclodissipativity property [5]. In the spirit

of standard passivation [6], this result leads naturally to a for-

mulation of the power–factor–compensation problem as one of

rendering the load cyclodissipative. We prove in this way that

cyclodissipativity provides a rigorous mathematical framework

useful to analyze and design power factor compensators for

general nonlinear loads operating in nonsinusoidal regimes.

II. POWER FACTOR COMPENSATION

We consider the classical scenario of energy transfer from

an n–phase ac generator to a load as depicted in Figure 1.

Throughout this article, lower case boldface letters denote col-

umn vectors, while upper case boldface letters denote matrices.

The voltage and current of the source are denoted by the column

vectors vs, is ∈ R
n, while the load is described by a possibly

nonlinear, time–varying n–port system Σ. We formulate the

power–factor–compensation problem as follows:

C.1) vs ∈ Vs ⊆ L
n
2 [0, T ) := {x : [0, T ) → R

n : ‖x‖2 :=
1
T

∫ T

0
|x(τ)|2 dτ < ∞}, where ‖ · ‖ is the rms value

and | · | is the Euclidean norm. Depending on the context,

the set Vs may be equal to L
n
2 [0, T ) or it may consist

of a single periodic signal vs(t) = vs(t + T ) or a set

of sinusoids with limited harmonic content, for example,

vs(t) = Vs sin ω0t, where ω0 ∈ [ωm
0 , ωM

0 ] ⊂ [0,∞).

C.2) The power–factor–compensation configuration is depicted

in Fig. 2, where Yc,Yℓ : Vs → L
n
2 [0, T ) are the

admittance operators of the compensator and the load,

respectively. That is, Yc : vs 7→ ic and Yℓ : vs 7→
iℓ, where ic, iℓ ∈ R

n denote the compensator and load

currents, respectively. In the simplest LTI case the opera-

tors Yc,Yℓ can be described by their admittance transfer

matrices, which we denote by Ŷc(s), Ŷℓ(s) ∈ R
n×n(s),

where s ∈ C.

C.3) The power factor compensator is lossless, that is,

〈vs,Ycvs〉 = 0, ∀ vs ∈ Vs, (1)

where 〈x,y〉 := 1
T

∫ T

0
x⊤(t) y(t) dt is the inner product

in L
n
2 [0, T ).

We make the following fundamental assumption throughout

the work:

Assumption 1: The source is ideal, in the sense that vs

remains unchanged for all loads Σ.

The standard definition of power factor [3] is given as follows:
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Fig. 1. Circuit schematic of a polyphase ac system.

Definition 1: The power factor of the source is defined by

PF :=
〈vs, is〉
‖vs‖‖is‖

, (2)

where P := 〈vs, is〉 is the active (real) power and the product

S := ‖vs‖‖is‖ is the apparent power.

From (2) and the Cauchy–Schwarz inequality it follows that

P ≤ S. Hence PF ∈ [−1, 1] is a dimensionless measure of

the energy–transmission efficiency. Indeed, under Assumption

1, the apparent power S is the highest average power delivered

to the load among all loads that have the same rms current ‖is‖.

The apparent power equals the active power if and only if vs and

is are collinear. If this is not the case, P < S and compensation

schemes are introduced to maximize power factor.

Definition 2: Power–factor improvement is achieved with the

compensator Yc if and only if

PF > PFu :=
〈vs, iℓ〉
‖vs‖‖iℓ‖

, (3)

where PFu denotes the uncompensated power factor, that is, the

value of PF with Yc = 0.

Remark 1: We assume that all signals in the system are

periodic, with fundamental period T and belong to the space

L
n
2 [0, T ). However, as becomes clear below, all derivations

remain valid if we replace L
n
2 [0, T ) by the set of square–

integrable functions L
n
2 [0,∞). Hence, periodicity is not essen-

tial for our developments. Restricting our analysis to L
n
2 [0, T )

captures the practically relevant scenario in which, for most

power–factor–compensation problems of interest, the system

operates in a periodic, though not necessarily sinusoidal, steady

state.

Remark 2: Assumption 1 is tantamount to saying that the

source has no impedance, which is justified by the fact that

most ac power devices are designed and operated in this manner.

For ease of presentation and without loss of generality, we also

assume 〈vs, is〉 ≥ 0, which indicates that real (active) power is

always delivered from the source to the load.

Remark 3: The role of power factor as an indicator of

energy–transmission efficiency is usually explained in text-

books as follows [3]. In view of periodicity we can ex-

press the qth phase component of the terminal variables

in terms of their (exponential) Fourier series as vsq
(t) =

∑∞

k=−∞
V̂sq

(k) exp(jkω0t), where ω0 := 2π/T is the

fundamental frequency and, for integers k, V̂sq
(k) :=

1
T

∫ T

0
vsq

(t) exp(−jkω0t)dt, are the Fourier coefficients of the

qth phase element of the voltage, also called spectral lines or

harmonics. Similar expressions are obtained for the qth phase

components of the current vector is. Because the product of

sinusoidal variables of different frequencies integrated over a

common period is zero, only components of vs and is that are of

the same frequency contribute to the average power P . However,

if the current is distorted, the rms value of is can exceed the rms

value of the sum of the current components in phase with the

vs

ic

is

iℓ

Yc Yℓ

Fig. 2. Typical compensation configuration.

voltage. In this case, the source may not deliver its rated power,

although it may deliver its rated rms current.

III. A CYCLODISSIPATIVITY

CHARACTERIZATION OF POWER–FACTOR

COMPENSATION

In this section we prove that power factor is improved if and

only if the compensated system satisfies a given cyclodissipativ-

ity property. A corollary of this result is the (operator theoretic)

characterization of all compensators that improve the power

factor. Finally, we show that, as in the LTI sinusoidal case, a

phase–shifting interpretation of power factor compensation is

possible. To formulate our results we need the following.

Definition 3: The n–port system of Fig. 2 is cyclodissipative

with respect to the supply rate w(vs, is), where w : Vs ×
L

n
2 [0, T ) → R, if and only if

∫ T

0

w(vs(t), is(t))dt > 0 (4)

for all (vs, is) ∈ Vs × L
n
2 [0, T ).

Proposition 1: Consider the system of Fig. 2 with fixed Yℓ.

The compensator Yc improves the power factor if and only if

the system is cyclodissipative with respect to the supply rate

w(vs, is) = (Yℓvs + is)
⊤(Yℓvs − is). (5)

Proof: From Kirchhoff’s current law, is = ic + iℓ, the

relation ic = Ycvs, and the lossless condition (1) we have

that 〈vs, is〉 = 〈vs, iℓ〉. Consequently, (2) becomes PF =
(〈vs, iℓ〉)/(‖vs‖‖is‖), and (3) holds if and only if

‖is‖2 < ‖Yℓvs‖2 (6)

where we use iℓ = Yℓvs. Finally, note that (4) with (5) is

equivalent to (6), which yields the desired result.

Corollary 1: Consider the system of Fig. 2. Then Yc im-

proves the power factor for a given Yℓ if and only if Yc satisfies

2〈Yℓvs,Ycvs〉 + ‖Ycvs‖2 < 0, ∀ vs ∈ Vs. (7)

Dually, given Yc, the power factor is improved for all Yℓ that

satisfy (7).

Proof: Substituting is = (Yℓ +Yc)vs in (6) yields (7)

To provide a phase–shift interpretation of power–factor com-

pensation, Fig. 3 depicts the vector signals vs, is, iℓ, and ic,

where the angles θ and θu are understood in the sense of the

inner product, as defined below. Note that the lossless condition

(1) imposes 〈ic,vs〉 = 0. Replacing iℓ = Yℓvs and ic =
Ycvs in the power–factor–improvement condition (7) yields

‖ic‖2 + 2〈ic, iℓ〉 < 0, (8)

which is equivalent to ‖ic‖ < 2∆, where the distance ∆ is

defined by ∆ := −〈iℓ, ic〉/‖ic‖ > 0. On the other hand, it is

clear from Fig. 3 that ‖ic‖ < 2∆ if and only if θ < θu. The
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∆

∆

Fig. 3. Phase–shift interpretation of the power factor compensation.

equivalence between power–factor improvement and θ < θu

follows directly from the fact that

θ := cos−1 PF, θu := cos−1 PFu, (9)

Notice that these functions are well defined and, furthermore,

because of the unidirectional energy–transfer assumption, it

follows that θ ∈ [−π
2 , π

2 ] and θu ∈ [−π
2 , π

2 ].
Remark 4: Readers familiar with the power–factor–

compensation problem may find the statements above to

be self–evident. Indeed, under Assumption 1, power–factor

improvement is equivalent to reduction of the rms value of the

source current. Now, using is = ic + iℓ to compute the rms

value of is yields

‖is‖2 = ‖iℓ‖2 + ‖ic‖2 + 2〈ic, iℓ〉. (10)

It is clear from (10) that a necessary and sufficient condition

for reducing ‖is‖ from its uncompensated rms value ‖iℓ‖ is

precisely (8), which, as shown in Proposition 1 is equivalent to

power–factor improvement.

Remark 5: Definition 3 of cyclodissipativity is not standard,

but captures the essence of the property introduced in [5], [7]

for systems with a state realization. In other words, a system

is cyclodissipative if it cannot create “generalized energy” over

closed paths. In our case, these paths are defined for port signals,

while these paths are typically associated with state trajectories.

The system might, however, produce energy along some initial

portion of a closed path; if so, the system would not be dis-

sipative. Clearly, every dissipative system is cyclodissipative,

stemming from the fact that in the latter case we restrict the

set of inputs of interest to those inputs that generate periodic

trajectories, a feature that is intrinsic in the version of the power–

factor–compensation problem we are considering.

IV. POWER FACTOR COMPENSATION IN THE LTI

SCALAR SINUSOIDAL CASE

We now specialize the above derivations to the case in which

n = 1, vs(t) = Vs sinω0t, where ω0 ∈ [ωm
0 , ωM

0 ] ⊂ [0,∞),

and the scalar LTI stable operators Yℓ, Yc are described by their

admittance transfer functions Ŷℓ(jω0) and Ŷc(jω0), respec-

tively. In this case, the steady–state source current is is(t) =
Is sin(ω0t + θ), where Is := Vs|Ŷℓ(jω0) + Ŷc(jω0)| and

θ := ∡{Ŷℓ(jω0) + Ŷc(jω0)}. Simple calculations confirm that

θ

Ŷc + Ŷℓ

Ŷℓ

∆ = Im{Ŷℓ}

Re

Im

Ŷc

θu

Fig. 4. Power factor compensation in the LTI case.

θ and the uncompensated angle θu := ∡{Ŷℓ(jω0)} coincide

with (9). We also have the following simple property.

Lemma 1: The scalar LTI operator Yc is lossless if and only

if Re{Ŷc(jω)} = 0 for all ω ∈ [0,∞).

Proof: From Parseval’s theorem we have

〈vs, Ycvs〉 =
1

2π

∫ ∞

−∞

V̂s(−jω)Ŷc(jω)V̂s(jω)dω

=
1

2π

∫ ∞

−∞

Re{Yc(jω)}|V̂s(jω)|2dω,

where, to obtain the second identity, we use the fact that

Im{Ŷc(jω)} is an odd function of ω.

Proposition 2: In the LTI scalar sinusoidal case, the power

factor is improved if and only if

Im{Ŷℓ(jω0)}
Im{Ŷc(jω0)}

< −1

2
, ∀ ω0 ∈ [ωm

0 , ωM
0 ]. (11)

Proof: In this case, the signal space of Fig. 3 can be

replaced by the complex plane with the admittances’ frequency

responses taking the place of the signals, as indicated in Fig. 4.

Notice that, because of Lemma 1, Yc(jω0) is purely imaginary.

From basic geometric considerations, we see that θ < θu if and

only if (11) holds.

Remark 6: The equivalence between power–factor improve-

ment and θ < θu is a restatement of the fact that energy–

transmission efficiency is improved by reducing the phase shift

between the source voltage and current waveforms, a statement

that can be found in standard circuits textbooks. However, the

explicit characterization (11) does not seem to be widely known.

Remark 7: The action of a power–factor compensator is

explained above without resorting to the axiomatic definition

of complex power used in textbooks to introduce the notion

of reactive power. In contrast with our geometric perspective

of power–factor compensation, this mathematical construction

cannot easily be extended to the nonlinear nonsinusoidal case.

Furthermore, the mathematical background used in the above

derivations is elementary.

Remark 8: For clarity the above analysis is restricted to the

scalar case, that is, n = 1. Similar derivations can easily

be carried out for n–phase systems. For instance, if Ŷc(s) is

diagonal, power–factor improvement is equivalent to
[

Im{Ŷc(jω0)}
]−1

Im{Ŷℓ(jω0)} < −1

2
In, ∀ ω0 ∈ [ωm

0 , ωM
0 ].

V. POWER–FACTOR COMPENSATION WITH LTI

CAPACITORS AND INDUCTORS

Corollary 1 identifies all load admittances for which the

source power factor is improved with a given compensator,
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namely, those load admittances that satisfy inequality (7). In this

section we further explore this condition for LTI capacitive and

inductive compensation. For simplicity we assume throughout

the section that the system is single phase, that is n = 1, but the

load is possibly nonlinear.

Proposition 3: Consider the system of Fig. 2 with n = 1 and

fixed LTI capacitor compensator with admittance Ŷc(s) = Ccs,
where Cc > 0. The following statements are equivalent:

(i) There exist Cmax > 0 such that the load is cyclodissipa-

tive with supply rate

wC(v̇s, iℓ) = −2iℓv̇s − Cmaxv̇2
s . (12)

(ii) For all Cc satisfying 0 < Cc < Cmax, the power factor is

improved.

Proof: Assume (i) holds. Integrating wC(v̇s, iℓ) and using

Definition 3 yields the cyclodissipation inequality

2〈iℓ, v̇s〉 + Cmax‖v̇s‖2 ≤ 0. (13)

Note that (13) implies that 2〈iℓ, Ccv̇s〉 + ‖Ccv̇s‖2 ≤ 0 for

all 0 < Cc < Cmax. The latter is the condition for power–

factor improvement (7) for the case at hand. The converse proof

is established by reversing these arguments.

A similar proposition can be established for inductive com-

pensation. In contrast with the upper bound given for Cc, a

lower bound on the inductance Lc is imposed. Furthermore, an

assumption on vs is needed to ensure absolute integrability of

the supply rate.

Proposition 4: Consider the system of Fig. 2 with n = 1 and

a fixed LTI inductor compensator with admittance Ŷc(s) = 1
Lcs

,

where Lc > 0. Assume vs has no dc component. The following

statements are equivalent:

(i) The load is cyclodissipative with supply rate

wL (z, iℓ) = −2Lminiℓz − z2, (14)

for some constant Lmin > 0 and ż = vs.

(ii) For all Lc > Lmin, the power factor is improved.

Proposition 3 (resp., 4) states that the power factor of a load

can be improved with a capacitor (resp., inductor) if and only

if it is cyclodissipative with supply rate (12) [resp., (14)]. This

result constitutes an extension, to the nonlinear nonsinusoidal

case, of the definition of the inductive (resp., capacitive) loads.

VI. ENERGY EQUALIZATION AND

POWER–FACTOR COMPENSATION

We now explore connections between LTI LC power–factor

compensation and energy equalization, where the latter is un-

derstood in the sense of reducing the difference between the

stored magnetic and electrical energies of the circuit. We study

conditions for load cyclodissipativity, which is established in

Propositions 3 and 4 as equivalent to power–factor improve-

ment. Results on cyclodissipativity of nonlinear RLC circuits are

summarized in [8]. It is shown in [9] that general n–port nonlin-

ear RL (respectively, RC) circuits with convex energy functions

are cyclodissipative with supply rate iℓv̇s (respectively, vs
d
dt

iℓ).

In [10] a similar property is established for RLC circuits, which

is a slight variation of the result given below.

In this section we also prove a one–to–one correspondence

between cyclodissipativity and energy equalization for scalar

circuits with linear inductors and capacitors and nonlinear re-

sistors. Then, we identify a class of nonlinear RLC circuits

for which a large (quantifiable) difference between the average

electrical and magnetic energies implies power–factor compen-

sation. Finally, we show by example, that this relation may not

hold for time–varying linear circuits.

A. Equivalence for Circuits with Linear Inductors and Ca-

pacitors

The class of RLC circuits that we consider as load mod-

els consists of interconnections of possibly nonlinear lumped

dynamic elements (nL inductors, nC capacitors) and static

elements (nR resistors). Capacitors and inductors are defined

by the physical laws and constitutive relations [11]

iC = q̇C , vC = ∇HC(qC), vL = φ̇L, iL = ∇HL(φL),
(15)

where iC , vC , qC ∈ R
nC are the capacitor currents, voltages,

and charges, iL, vL, φL ∈ R
nL are the inductor currents,

voltages, and flux–linkages, HL : R
nL → R is the magnetic

energy stored in the inductors, HC : R
nC → R is the

electric energy stored in the capacitors, and ∇ is the gradient

operator. We assume that the energy functions HL and HC are

twice differentiable. For linear capacitors and inductors, HL and

HC are given by HC(qC) = 1
2q⊤

CC
−1qC and HL(φL) =

1
2φ⊤

LL
−1φL, respectively, where L ∈ R

nL×nL and C ∈
R

nC×nC are positive definite. For simplicity we assume that

L and C are diagonal. Finally, the circuit has nRL
current–

controlled resistors, which are described by their characteristic

functions v̂Ri
(iRi

), i = 1, . . . , nRL
, while the nRC

voltage–

controlled resistors are described by îRi
(vRi

), i = 1, . . . , nRC
.

Proposition 5: Consider the system of Fig. 2 with n = 1,

vs ∈ L2[0, T ), a (possibly nonlinear) RLC load with time–

invariant resistors, and fixed LTI capacitor compensator with

admittance Ŷc(s) = Ccs, where 0 < Cc < Cmax. Then the

following statements hold:

1. The power factor is improved if and only if

〈vL,∇2HLvL〉−〈iC ,∇2HCiC〉≥ Cmaxω2
0

∞
∑

k=1

k2|V̂s(k)|2,
(16)

where V̂s(k) is the kth spectral line of vs(t).

2. If the inductors and capacitors are linear (16) reduces to

∞
∑

k=1

k2

[

nL
∑

q=1

Lq|ÎLq
(k)|2−

nC
∑

q=1

Cq|V̂Cq
(k)|2

]

≥Cmax

2

∞
∑

k=1

k2|V̂s(k)|2,
(17)

where Cq, Lq are the qth capacitance and inductance, and

V̂Cq
(k), ÎLq

(k) are the spectral lines of the corresponding

capacitor voltage and inductor current.

3. If, in addition, vs(t) = Vs sinω0t then (16) becomes

HLav
(ω0) − HCav

(ω0) ≥
Cmax

8
V 2

s ,

where HCav
(ω0) :=

∑nC

q=1
1
4Cq|V̂Cq

(1)|2 and HLav
(ω0)

:=
∑nL

q=1
1
4Lq|ÎLq

(1)|2 are, respectively, the average

electric and magnetic energy stored in the load.

Proof: Applying Tellegen’s theorem [11] to the RLC load

yields iℓv̇s = i⊤Rv̇R + i⊤L v̇L + i⊤C v̇C , which upon integration
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yields

〈iℓ, v̇s〉 = 〈iR,v̇R〉+〈iL,v̇L〉+〈iC , v̇C〉

= −
〈

d

dt
iL,vL

〉

+〈iC , v̇C〉

= −〈∇2HLvL,vL〉 + 〈iC ,∇2HCiC〉,
where the second identity uses the fact that, along periodic

trajectories, 〈iR, v̇R〉 = 0 for time–invariant resistors. The last

identity follows from the constitutive relations (15). The proof

of the first claim is completed by replacing the expression above

in (13) and using

‖ḟ‖2 = 〈ḟ , ḟ〉 , 2ω2
0

∞
∑

n=1

n2|F̂ (n)|2 (18)

to compute ‖v̇s‖2 , 2ω2
0

∑∞

n=1 n2|V̂ (n)|2.

The second and third claims are established as follows. From

linearity of capacitors and inductors we have

〈iℓ, v̇s〉= −〈L−1vL,vL〉 + 〈iC ,C−1iC〉
= −〈L−1φ̇L, φ̇L〉 + 〈q̇C ,C−1q̇C〉

= 2ω2
0

∞
∑

k=1

k2

[

nC
∑

q=1

Cq|V̂Cq
(k)|2 −

nL
∑

q=1

Lq|ÎLq
(k)|2

]

where (15) is used for the second identity and equation (18) to

compute the last line. Claim 3 follows by taking one spectral

line and using the classical definition of averaged energy stored

in linear inductors and capacitors [11].

Results analogous to Proposition 5 can be established for

inductive compensation checking the key cyclodissipation in-

equality 〈iℓ, z〉+ 1
2Lm

‖z‖2 ≤ 0, which stems from (14). Simple

calculations show that the latter is equivalent to

〈qC ,∇HC〉 − 〈φL,∇HL〉 ≥
1

2Lm

‖z‖2, (19)

which in the LTI sinusoidal case becomes

HCav
(ω0) − HLav

(ω0) ≥
V 2

s

8ω2
0Lmin

. (20)

Inequalities (17) and (20) reveal the energy–equalization

mechanism of power–factor compensation in the LTI scalar

sinusoidal case, that is, power–factor improvement with a capac-

itor (respectively, inductor) is possible if and only if the average

magnetic (respectively, electrical) energy dominates the average

electrical (respectively, magnetic) energy. Claim 2 shows that

this interpretation of power–factor compensation remains valid

when the source is an arbitrary periodic signal and the resistors

are nonlinear, by viewing, in a natural way, Lq|ÎLq
(k)|2 and

Cq|V̂Cq
(k)|2 as the magnetic and electric energies of the kth

harmonic for the qth inductive and capacitive element, respec-

tively.

Remark 9: Claim 3 of Proposition 5 is established in [12]

using the relation between the impedance of an LTI RLC circuit,

Ẑℓ(s) = V̂s(s)/Îℓ(s), and the averaged stored energies

Ẑℓ(jω)=
1

|Îℓ(jω)|2
{2Pav(ω)+4jω [HLav

(ω)−HCav
(ω)]} ,

(21)

where Pav(ω) = 1
2

∑nR

q=1 Rq|Îq(jω)|2 is the power dissipated

in the resistors. The expression (21) appears in equation 5.6 of

Chapter 9 of [11]. Indeed, applying Parseval’s theorem to the

cyclodissipation inequality (13), we obtain the equivalences

〈iℓ, v̇s〉 +
Cmax

2
‖v̇s‖2 ≤ 0

if and only if
{

Re{jωẐℓ(jω)}|Îℓ(jω)|2 + Cmaxω2

2 V 2
s ≤ 0

4ω2 [HCav
(ω) − HLav

(ω)] + Cmaxω2

2 V 2
s ≤ 0.

(22)

Remark 10: Simple calculations show that (11) of Proposi-

tion 2 with Ŷc(s) = Cmaxs is equivalent to (22). Indeed, it is

easy to prove that

Re{jωẐℓ(jω)} = ω|Ẑℓ(jω)|2Im{Ŷℓ(jω)}.
Replacing the latter, together with |V̂s(jω)|2 =
|Ẑℓ(jω)|2|Îℓ(jω)|2, in (22) yields Im{Ŷℓ(jω)} < −Cmaxω

2 ,

which is the expression obtained in (11) for capacitive

compensation (See Fig. 4).

B. Necessity of Energy Equalization for Nonlinear RLC

Loads

The presence of the energy functions in (16) and (19), which

hold for nonlinear RLC loads, suggests that energy equalization

is related with power–factor compensation for more general

loads. Indeed, Proposition 6 establishes that a sufficiently large

difference between magnetic and electrical energies is necessary

for capacitive power–factor compensation. The proof of this

result, which is technical and thus is outside the scope of this

article follows from the arguments used in [10]. The dual result

for inductive power–factor compensation is also true, but is

omitted for brevity.

Proposition 6: Consider a nonlinear topologically complete

RLC circuit with a voltage source vs ∈ L
n
2 [0, T ) in series with

inductors and satisfying the following assumptions:

B.1 The energy functions of the inductors and capacitors are

strictly convex.

B.2 The voltage–controlled resistors are linear and passive.

B.3 All capacitors have a (voltage–controlled) resistor in paral-

lel and the value of the resistance is sufficiently small.

Then, the circuit is cyclodissipative with supply rate d
dt

i⊤ℓ vs.

Furthermore if the current–controlled resistors are passive then

the circuit is dissipative.

Assumptions B.1 and B.2 are technical conditions needed to

construct the virtual storage function. Assumption B.3 ensures

that the electrical energy stored in the capacitors is smaller

than the magnetic energy stored in the inductors. As shown in

[10], the qualifier “sufficiently small” in Assumption B.3 can be

explicitly quantified using an upper bound on the resistances.

Indeed, since all capacitors have linear resistors in parallel, we

have that as the value of the resistances decreases the currents

tend to flow through the resistors and the energy stored in the

capacitors becomes small. The stored energy tends to zero as

the resistances go to zero, which is the limiting case when all of

the capacitors are short–circuited.

C. Limits of Energy Equalization Equivalence

Unfortunately, the energy–equalization interpretation of

power–factor compensation breaks down even for simple time–

varying LTI circuits, as shown in the following example taken

from [13].
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Σ: switched resistive load
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Yc

is iℓ
Network

vs

Fig. 5. Circuit with a TRIAC controlled resistive load.

D. Example

Consider the linear time–varying circuit of Fig. 5 with a

TRIAC controlled purely resistive load R = 10 Ω. The TRIAC

can be modeled as a switched resistor with characteristic

iℓ(t) =

{

0 if t ∈ [kT
2 , kT

2 + α), k = 0, 1, . . .
vs(t)

R
otherwise.

where T = 2π/ω0 is the fundamental period and 0 ≤
α < T/2 is the TRIAC’s firing angle. The uncompensated

voltage vs(t) and current is(t) are depicted in Fig. 6 for

vs(t) = 220
√

2 sin(ω0t) V and vs(t) = 220
√

2 sin(ω0t) +
50
√

2 sin(3ω0t) V, with ω0 = 100π rad/s and α = T/4 =
0.005 s. It is important to emphasize that this switched resistor

circuit does not contain energy–storage elements. Furthermore,

the TRIAC does not satisfy condition 〈iR, v̇R〉 = 〈iℓ, v̇s〉 = 0,

which is used to establish the proof of Proposition 5.

For the sinusoidal source we obtain 〈v̇s, iℓ〉 = −48.4 × 104

V-A/s and ‖v̇s‖ = 6.91 × 104 V/s, and thus a shunt capacitor

with 0 < Cc < 0.202 mF improves the power factor. The

optimal capacitor is C⋆ = 0.101 mF, which increases the

uncompensated power factor PFu = 0.7071 to PF = 0.7919.

If vs(t) is the two–harmonic periodic signal above, we obtain

〈vs,
d
dt

iℓ〉 = 28.9× 104 V-A/s. Hence the load can be compen-

sated with a capacitor whose optimal value is C⋆ = 0.0413 mF,

yielding PF = 0.7258.

VII. CONCLUDING REMARKS

This article advances an analysis and compensator design

framework for power–factor compensation based on cyclodissi-

pativity. While we concentrated here on passive shunt compen-

sation, we are certainly aware that current source–based control

is an attractive option cases. For these actuators or active filters,

which can be modeled by discontinuous differential equation,

the control objective is current tracking. See [14] for an in-

troduction and [15] for a modeling procedure consistent with

the energy–based approach advocated here. Although nonlinear

control strategies have been used for basic topologies [16]–[18],

many questions remain unanswered [19]. Another important

problem in energy–processing systems with distorted signals

is the regulation of harmonic content. Although we have not

explicitly addressed this issue here, it is clear that improving the

power factor reduces the harmonic distortion; a quantification of

this effect is a subject of current research.
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dissipativity condition for power factor improvement in electrical
circuits,” in Proc. American Control Conference 2006, Minneapolis,
Minnesota, USA, June 14-16 2006, pp. 2492–2497.

vs

vs, iℓ

t
α

iℓ
t

α

vs

iℓ

vs, iℓ

Fig. 6. Voltage and current waveforms for the (uncompensated) circuit
with the TRIAC controlled resistive load.

[2] R. De Carlo and P. Lin, Linear Circuit Analysis. UK: Oxford Press,
2001.

[3] J. G. Kassakian, M. F. Scholecht, and G. C. Verghese, Principles

of power electronics, ser. Series in Electrical Engineering. Adison
Wesley, 1991.

[4] W. Sheperd and P. Zand, Energy Flow and Power Factor in Nonsinu-

soidal Circuits. Cambridge University Press, 1979.
[5] D. J. Hill and P. J. Moylan, “Dissipative dynamical systems: basic

input-output and state properties,” Journal of the Franklin Institute,
vol. 309, no. 5, pp. 327–357, May 1980.

[6] R. Ortega, A. Loria, P. J. Nicklasson, and H. Sira-Ramirez, Passivity–

based control of Euler-Lagrange systems, ser. Communications and
Control Engineering. Berlin: Springer-Verlag, 1998.

[7] J. C. Willems, “Dissipative dynamical systems. Part I: General theory:
Part II: Linear systems with quadratic suply rates.” Archive for

Rational Mechanics and Analysis, vol. 45, pp. 321–393, 1972.
[8] D. Jeltsema, “Modeling and control of nonlinear networks: a power–

based perspective,” Ph.D. dissertation, Delft University of Technology,
The Netherlands, May 2005.

[9] R. Ortega and B. E. Shi, “A note on passivity of nonlinear RL and
RC circuits,” in 15th IFAC World Congress, Barcelona, Spain, 2002.

[10] R. Ortega, D. Jeltsema, and J. M. A. Scherpen, “Power shaping: a new
paradigm for stabilization of nonlinear RLC circuits,” IEEE. Trans. on

Automatic Control, vol. 48, no. 10, pp. 1762– 1767, October 2003.
[11] C. A. Desoer and E. S. Kuh, Basic circuit theory. NY: Mc Graw

Hill, 1969.
[12] E. Garcı́a-Canseco and R. Ortega, “A new passivity property of linear

RLC circuits with application to power shaping stabilization,” in
American Control Conference, Boston, MA, USA, June 30-July 2
2004.

[13] L. S. Czarnecki, “Energy flow and power phenomena in electrical
circuits: illusions and reality,” Electrical Engineering, vol. 82, pp. 119–
126, 2000.

[14] L. Moran and G. Joós, “Principles of active power filters, IAS Tutorial
Course Notes,” in IEEE-IAS, 1998.

[15] G. Escobar, A. J. van der Schaft, and R. Ortega, “A Hamiltonian
viewpoint in the modeling of switching power converters,” Automatica,
vol. 35, no. 3, pp. 445–452, 1999.

[16] D. Karagiannis, E. Mendes, A. Astolfi, and R. Ortega, “An experimen-
tal comparison of several PWM controllers for a single-phase ac-dc
converters,” IEEE Trans. Control Systems Technology, vol. 11, no. 6,
pp. 940 – 947, 2003.

[17] G. Escobar, R. Ortega, A. Astolfi, M. Martinez, and J. Leyva–Ramos,
“Repetitive based controllers for a shunt active filter to compensate for
reactive power and harmonic distorsion,” in 44th IEEE Conference on

Decision and Control and European Control Conference 2005, Sevilla,
Spain, December 12–15 2005.

[18] R. Costa–Castello, R. Griñó, and E. Fossas, “Odd–harmonic digital
repetitive control of a single–phase current active filter,” IEEE Trans.

on Power Electronics, vol. 19, no. 4, pp. 1060–1068, 2004.
[19] B. G. Gu and K. Nam, “Theoretical minimum dc-link capacitance in

PWM converter-inverter systems,” IEE Pric.-Electr. Power Appl., vol.
152, no. 1, pp. 81–88, January 2005.

FrC16.3

6048


