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Abstract

Two-wire impedance-based sensors involving electrolytes add the impedance of the electrodes to the electrical impedance of the medium
to measure. An equivalent circuit for the measured impedance is a resistance in series with the parallel combination of another resistance
and a capacitance. If the two electrodes are modelled by equal impedances, the equivalent circuit for the complete set up consists of
three impedance components, which can be determined from three independent measurements. This paper describes a novel method to
obtain those three components using a single square wave voltage (period 2T) instead of several sine waves and provides the equations
to calculate their value from the three current intensity amplitudes measured atT/8, 3T/8 and 5T/8. Other measurement times would need
different equations, but the same procedure applies. Anyway, the proposed method keeps the advantages of synchronous detection and
relies on analytical solutions instead of the customary curve fitting procedures. Computer simulation and experimental results obtained by
measuring the conductivity of known electrolyte samples validate the proposed method.
© 2003 Published by Elsevier B.V.
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1. Introduction

Electrical impedance-based sensors rely on the impedance
change produced by the measured quantity in a material or
in the geometry of a circuit. The sensor is often modelled
by several (lumped) circuit components and the measured
quantity yields specific changes in one or more of those
parameters ([1], Chapter 4). Simple models include a single
circuit element, such as a resistance or a capacitance. More
advanced models include a series or parallel combination of
resistance and capacitance (Fig. 1a and b), and even three
components, such as a resistance in series with the parallel
combination of a resistance and capacitance (Fig. 1c).

Impedances modelled by several lumped elements can be
measured in the frequency and in the time domains. Fre-
quency domain measurements are based on impedance spec-
troscopy where several sine waves (voltage or current) are
applied and the resulting current or voltage is measured ([2],
Chapter 1). A model in then fitted to the experimental data.
Time-domain measurement techniques usually apply a step
voltage [3] or a bi-phasic voltage pulse[4], and measure
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the current by converting it into a voltage and using an A/D
converter, then a model is fitted to the FFT of the measured
data. These time domain approaches need a fast A/D con-
verter in order to have enough data points to perform the
FFT and also a powerful enough data processor.

This paper describes a novel method to analytically de-
termine three independent components of the impedance
of a sensor by applying a single square-wave voltage and
measuring the resulting current intensity at only three dif-
ferent selected times. The impedance model is assumed to
be known in advance, then the response of this model to
a square wave is derived, and the lumped impedance ele-
ments are calculated from the three currents measured. This
procedure relies on basic calculus, the electronic circuitry is
substantially easier to build and the computations are faster
than in other time-domain techniques.

2. Equivalent circuits in impedance-based sensors

Measuring impedance by using sine waves is not conve-
nient in digital instruments because of the need to generate
accurate sine voltages or currents. Relaxation oscillators
have been applied to the measurement of single capaci-
tance ([1], Section 8.3), differential capacitance[5], and
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Fig. 1. Advanced models for impedance sensors include two or three
independent components rather than a single element.

two-independent impedance components[6]. Some sen-
sors, however, are better modelled by three independent
impedance components rather than two independent compo-
nents as shown in[7]. This is often the case when measuring
the conductivity of electrolytes: electrode impedance can
be modelled as shown inFig. 1c [2], electrode leads have
some resistance, and the electrolyte behaves as a resistance.
Because measuring in an electrolyte involves electrodes,
the equivalent circuit is that inFig. 2, whereRx is the re-
sistance of the electrolyte we wish to determine. Using a
four-wire (or Kelvin) measurement set up overcomes the ef-
fect of electrode impedance and lead resistance ([1], Section
3.1), but conductivity probes with four electrodes are more
difficult to manufacture, and hence more expensive. Fur-
thermore, four-electrode methods need differential voltage
amplifiers, which adds complexity to circuit design because
of the need for a bias path different from the electrodes.

If the two electrodes inFig. 2 have the same characteris-
tics, the equivalent circuit reduces to (2Rw +2Rspe+Rx) in
series with (2Rpe||Cpe/2) as inFig. 1c. Determining those
three components would enable us to calculateRsp and then
Rx by first calibrating the system by measuring a solution
of known conductivity. Here we propose to apply a single
square-wave voltage and to measure the resulting current
intensity at three different times (Fig. 3).

3. Circuit analysis

The equivalent impedance connected to the voltage source
in Fig. 3 is

Rx

Rpe2

Cpe2

Rspe2 Rw2

Rpe1

Cpe1
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Fig. 2. Equivalent circuit for two electrodes and their leads (Rw1, Rw2) immersed in an electrolyte whose conductivity (1/Rx) is the measured quantity.
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Fig. 3. The proposed method to measure three impedance components is
based on (a) applying a square voltage and (b) measuring the resulting
current intensity at three given times.

Z(s) = Rsp
s + 1/τ

s + 1/(RpCp)
(1)

where

τ = RTCp (2)

and

RT = RspRp

Rsp + Rp
(3)

When applying a voltage with square waveform, ampli-
tude V0, and period 2T, the resulting current intensity at
any time instant within any positive half-period, 2nT < t <

(2n + 1)T (n being any integer), can be calculated from the
inverse Laplace transform ofI(s) = V(s)/Z(s). The result is

Ix(t) = V0

Rsp + Rp

[
2

Rp

Rsp
e−t/τ eT/τ

1 + eT/τ
+ 1

]
(4)
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where, for a given impedance network, all the factors are
constant exception made of the exponential factor that in-
cludest. Therefore, measuringIx at three given instantst1,
t2, andt3, yields three equations that can be solved for the
three unknownsRsp, Rp, andCp. If those instants are cho-
sen to be specific fractions of the period, this synchronous
sampling reduces the noise-equivalent bandwidth and en-
hances interference rejection[8]. Those measurement times
should be selected apart enough in order not to require a
very-high-resolution current meter. If, for example, we se-
lect the instants shown inFig. 3band name

�T = T

8
(5)

the current at any instantm �T(0 ≤ m < 8) is (see
Appendix A)

Ix(m �T) = IF

[
2A e−m�Tτ eT/τ

1 + eT/τ
+ 1

]
(6)

where

IF = V0

Rsp + Rp
(7)

is the intensity of the Faradic current (dc current) and

A = Rp/Rsp (8)

Measuring att1 = T /8, t2 = 3T /8, and t3 = 5T /8, as
shown inFig. 3b, yields an equation system involving the
measured currentsIx(�T), Ix(3�T), andIx(5�T). Solving
that system yields

e�T/τ = +
√

Ix(3�T) − Ix(�T)

Ix(5�T) − Ix(3�T)
(9)

A = Ix(3�T) − Ix(�T)

2[e−3�T/τIx(�T) − e−�T/τIx(3�T)] eT/τ

1+eT/τ

(10)

IF = Ix(3�T)

2A e−3�T/τ eT/τ

1+eT/τ + 1
(11)

In these two last equations eT/τ = (e�T/τ
)8 becauseT =

8�T (Eq. (5)). Replacing (10) and (11) in (7) and (8), and
solving for the resistances inFig. 3ayields

Rsp = V0

IF(1 + A)
(12)

Rp = ARsp (13)

From Rsp andRp, we can calculateRT in (3), and from (2)
and (9) the unknown capacitance is

Cp = �T

RT ln(e�T/τ)
(14)

If the current intensities measured at�T, 3�T and 5�T
were too close, the same procedure above formvalues other
than 1, 3 and 5 would lead to a similar equation system, yet

different equations to replace (9) to (11). Hence, it is not a
simple matter of replacing 1, 3 and 5 by the newm values,
but the procedure is the same.

4. Experimental results and discussion

The proposed measurement method has been imple-
mented by a custom circuit (square wave impedance meter
(SWIM)) built on an add-on PC board. The current intensity
Ix is determined by sampling the drop in voltage across a
known resistor at those specific times shown inFig. 3b.

The method has been first validated by simulating and then
experimentally measuring an impedance network like that
in Fig. 1cbuilt from 100� (Rsp) in series with 1�F||1 k�.
Simulation with PSpice V6.0 (Microsim) yields the exact
values for each of the three components.

The actual value of each network component has been
determined by separately measuring each of them at 350 Hz
using an Agilent impedance analyser that applies sine waves
to the impedance under test. Its uncertainty for those com-
ponent values and measurement frequency is about 0.3%.
Table 1shows that the resulting errors for each component
value when determined by applying the proposed method
(i.e. a 350 Hz square wave) to the impedance network were
3.5% forRsp, 0.2% forRp, and 0.3% forCp.

The impedance analyser detects that the capacitorCp
has a non-negligible equivalent parallel resistance (leak-
age resistance). This resistance will reduce the equivalent
value of the resistorRp in parallel with the capacitance in
Fig. 1c. The relatively large error (3.5%) forRsp when using
the proposed method (SWIM), can be in part attributed to
the varying impedance ofCp for the range of frequencies
involved in the square wave[9], to the series resistance
of the capacitor, that the commercial impedance analyser
cannot detect because of its inability to directly determine
three independent components of an impedance network
[10], to the finite aperture time of the sample and hold
(S&H) amplifier that samples the three voltages (propor-
tional to Ix) in the proposed method, and to the uncertainty
in T and the three measurement instants. Anyway, those
errors are acceptable for a broad range of conductivity
sensors.

Table 1
Results when measuring an impedance network built from three passive
components, whose value has been (separately) determined by a commer-
cial impedance analyzer (Agilent 4294A)

Impedance
network (Fig. 1c)

Agilent 4294A SWIM Percentage
error

Rsp: 100� (0.1%) 100.05± 0.01� 103.6± 0.1� 3.5
Rp: 1 k� (0.1%) 1000.5± 0.1� 991.2± 0.1� 0.2
Cp: 1�F (10%) (1.033�F ± 1 nF)//

148 k�
1.036�F ± 5 nF 0.3

The proposed method (SWIM) determines the three components from a
single voltage injection.
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The proposed method has been applied to 15 samples
whose conductivity, from 12.0 to 215 800�S has been de-
termined by a Knick meter (Konductometer 703) using a
four-wire conductivity probe (ZU6985) that relies on the
impedance model inFig. 1b. The overall measurement er-
ror for the meter and the probe is less than 1%. We have
used two-wire platinum probes (Crison Instruments Ref.
52–92) connected to our circuit (SWIM). In order to better
appreciate the efficacy and interest of the proposed method
for three-component models for the electrode–electrolyte
impedance, we first considered one model with two series
impedance components (Fig. 1b) and then a model with
three impedance components (Fig. 1c). Final results for the
impedance model for the electrolyte are obtained by sub-
tracting the series resistance of electrode leads and electrodes
(Rw1 + Rw2 + 2Rspe in Fig. 2) from the readings obtained
by SWIM. That series resistance of electrode leads and elec-
trodes is measured by shorting the electrodes of the platinum
cell and measuring the total resistance with an ohmmeter.
Its value for the two-wire platinum probe used is 0.2�.

Table 2lists the measured conductivity values andFig. 4
shows the corresponding errors. The error for low conduc-
tivities is small even for the two-component model. For
conductivities above 40 mS, however, the error rapidly in-
creases for the two-component model but remains small for
the three-component model. This means that double-layer
effects at the electrode–electrolyte interface ([2], Section
2.1) are negligible for low-conductivity electrolytes but be-
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Fig. 4. Conductivity error for the electrolyte samples inTable 2when applying the proposed method.

Table 2
Conductivity of 15 electrolyte samples determined by a four-wire Knick
conductivity probe (model ZU6985) connected to a Knick conductivity
meter (model Konductometer 703) and a two-wire probe (Crison In-
struments Ref. 52–92) connected to the SWIM when considering a se-
ries two-component impedance model (Fig. 1b) and a three-component
impedance model (Fig. 1c)

Sample Conductivity

Knick
(�S) ± 1%

Model
Fig. 1b (�S)

Model
Fig. 1c (�S)

1 12.0 12.0 12.1
2 67.3 67.1 67.3
3 114.1 113.7 114.0
4 151.7 151.5 151.7
5 286.5 285.8 286.6
6 538.3 540.8 542.8
7 1225 1206 1213
8 2298 2268 2285
9 5244 5132 5195

10 11960 11730 11960
11 22260 21600 22250
12 45080 42740 44790
13 100900 92030 99240
14 155600 139070 153050
15 215800 188300 211200

come very important for high-conductivity electrolytes. A
series two-component impedance model (Fig. 1b) underesti-
mates high conductivities. The three-component impedance
model (Fig. 1c) better approximates the actual impedance
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of the system, and the proposed measurement method ac-
curately determines those three components by applying a
single voltage with a two-wire probe.

5. Conclusions

Electrolyte conductivity sensors and other impedance sen-
sors are better modelled by an impedance network that in-
cludes three independent components rather than a single
impedance component. Impedance spectroscopy permits the
determination of those three components but requires the in-
jection of several sine waves and solving the resulting equa-
tion system. Using a single square wave voltage also permits
the determination of those components if the current inten-
sity across the sample is measured at three given times and
the corresponding equation system is solved.

This method has been tested by measuring both a network
built from known passive components and the conductivity
of known electrolyte samples. The small errors obtained
validate the proposed method, which is particularly ad-
vantageous when measuring samples whose conductivity
exceeds 40�S. The same technique can be applied to other
impedance-based sensors or measurement techniques in-
volving electrodes and electrolytes provided that they can
be modelled by the network inFig. 1c.
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Appendix A

The intensity of the current through an impedanceZ(s)
when injecting a voltage whose Laplace transform isV(s), is

I(s) = V(s)

Z(s)
(A.1)

A method to obtain the inverse Laplace transform in order
to determinei(t) is to decompose the square waveform of
amplitudeV0 and period 2T in a sum of step signals delayed
by T from each other (Fig. A.1). For a linear system, the
current can be obtained by adding the current produced by
each step voltage input.

The impedance of the network inFig. 1cis

Z(s) = Rsp
s + ((Rsp + Rp)/(RspRpCp))

s + (1/RpCp)
= Rsp

s + (1/τ)

s + (1/τ1)

(A.2)

where

RT = RspRp

Rsp + Rp
(A.3)
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Fig. A.1. Any square wave voltages(t) can be decomposed as a sum of
step voltages with amplitudes+1, −2, +2, −2, +2, and so on, each step
delayed byNT seconds (N = 0, 1, 2, . . . ).

and

τ = RTCp (A.4)

τ1 = RpCp (A.5)

The square wave voltage can be decomposed into
(Fig. A.1)

u(t) = V0 sign(cos(2πft))

= V0[u(t) − 2u(t − T) + 2u(t − 2T)

− 2u(t − 3T) + · · · ] (A.6)

where u(t) is the unit step andf = 1/(2T) is the signal
frequency.

A single step voltage of amplitudeV0u(t), whose trans-
form is

V(s) = V0

s
(A.7)
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yields a current

IU(s) = V(s)

Z(s)
= V0

Rsp

1

s

[
s + (1/τ1)

s + (1/τ)

]

= V0

Rsp

1

s

[
s

s + (1/τ)

]
+ V0

Rsp

1

s

[
1/τ1

s + (1/τ)

]
(A.8)

that can be written as the sum of simple fractions,

IU(s) = A

s
+ B

s + (1/τ)
+ C

s + (1/τ)
(A.9)

The corresponding inverse transform is

iU(t) = L−1{I(s)} = V0

Rsp

[
e−t/τ + τ

τ1
− τ

τ1
e−t/τ

]
(A.10)

From (A.4) and (A.5) we have

τ

τ1
= CpRspRp/(Rsp + Rp)

CpRp
= Rsp

Rsp + Rp
(A.11)

Therefore (A.10) is equivalent to

iU(t) = V0

Rsp + Rp

[
Rp

Rsp
e−t/τ + 1

]
= IF[A e−t/τ + 1]

(A.12)

whereIF is the Faradic current

IF = V0

Rsp + Rp
(A.13)

and

A = Rp

Rsp
(A.14)

The current produced by the square wave voltage in (A.6)
is then

i(t) = iU(t) − 2iU(t − T) + 2iU(t − 2T)

− 2iU(t − 3T) + · · · (A.15)

At any given time instant, the current intensity will be the
result of the currents produced by the previous step voltages.
For t such that 2MT ≤ t < (2M +1)T , M being any positive
integer, we can considert = 2MT + m �T , where�T =
T /m, andm is any positive integer larger than 2. The current
at timet is then

i(2MT + m �T) = iU(2MT + m �T)

−2
M∑

k=1

iU((2(M − k) + 1)T + m �T)

+2
M∑

n=1

iU(2(M − n)T + m �T) (A.16)

The first term is the current produced by the first voltage
step of amplitudeV0. The second term is the sum of the
current produced by all the voltage steps with amplitude

−2V0 (at T, 3T, and so on). The third term is the sum of
the current produced by all the voltage steps with amplitude
+2V0. From (A.12), whenM � 1, each term of (A.16) can
be, respectively, written as

iU(2MT + m �T) = IF (A.17)

−2
M∑

k=1

iU((2(M − k) + 1)T + m �T)

= 2IF

[
Ae−m �T/τ

(
eT/τ

1 − e2T/τ

)
+ (M − 1)

]
(A.18)

2
M∑

n=1

iU(2(M − n)T + m �T)

= −2IF

[
A e−m �T/τ

(
e2T/τ

1 − e2T/τ

)
+ (M − 1)

]
(A.19)

Substituting these expressions in (A.16) yields

i(2MT + m �T)

= IF − 2IF

[
A e−m �T/τ

(
eT/τ

1 − e2T/τ

)
+ (M − 1)

]

+2IF

[
A e−m �T/τ

(
e2T/τ

1 − e2T/τ

)
+ (M − 1)

]
(A.20)

This expression can be simplified to finally obtain that the
current through the impedance network inFig. 1cis

i(2MT + m �T) = IF

[
2A e−m�T/τ eT/τ

1 + eT/τ
+ 1

]
(A.21)

which isEq. (6) in the text.
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170 J. Lario-Garcı́a, R. Pallàs-Areny / Sensors and Actuators A 110 (2004) 164–170

[9] N. Hagiwara, T. Saegusa, An RC discharge digital capacitance meter,
IEEE Trans. Instrum. Meas. 32 (1983) 316–321.

[10] H. Haruta, Agilent Technologies Impedance Measurement Handbook,
second ed., Agilent Technologies, 2000, pp. 1-1–1-7.

Biographies

Javier Lario-Garc´ıa received the Telecommunication Engineer degree
from the Technical University of Catalonia (UPC), Barcelona, Spain, in
1995. He has 8 years experience in industrial design of medical and ana-
lytical instrumentation. He is currently a PhD candidate at the Department
of Electronic Engineering at the same University. His research work is
about electrical impedance analysis based on digital signals, particularly
applied to conductivity measurements in electrolytes and bioimpedance.

Ramon Pallàs-Arenyreceived the Ingeniero Industrial and Doctor In-
geniero Industrial degrees from the Technical University of Catalonia
(UPC), Barcelona, Spain, in 1975 and 1982, respectively. He is a Pro-

fessor of Electronic Engineering at the same University, and teaches
courses in medical and electronic instrumentation. In 1989 and 1990,
he was a visiting Fulbright Scholar and, in 1997 and 1998, he was
an Honorary Fellow at the University of Wisconsin, Madison. In 2001,
he was nominated Professor Honoris Causa by the Faculty of Electri-
cal Engineering of the University of Cluj-Napoca (Romania). His re-
search includes instrumentation methods and sensors based on electrical
impedance measurements, sensor interfaces, non-invasive physiological
measurements and electromagnetic compatibility in electronic systems.
He is the author of several books on instrumentation in Spanish and
Catalan, the latest one beingSensors and Interfaces, Solved Problems
(1999), published by Edicions UPC, Barcelona, Spain. He is also coau-
thor (with John G. Webster) ofSensors and Signal Conditioning, second
ed. (Wiley, 2001, New York), andAnalog Signal Processing(Wiley, 1999,
New York).

Dr. Pallàs-Areny was a recipient, with John G. Webster, of the 1991
Andrew R. Chi Prize Paper Award from the Instrumentation and Mea-
surement Society (IEEE). He is a Fellow of the IEEE and member of the
International Society for Measurement and Control (ISA).


	Measurement of three independent components in impedance sensors using a single square wave
	Introduction
	Equivalent circuits in impedance-based sensors
	Circuit analysis
	Experimental results and discussion
	Conclusions
	Acknowledgements
	Appendix A
	References


