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Building blocks of life show well-defined chiral symmetry which has a direct influence on 

their properties and role in Nature. Chiral molecules are typically characterized by optical 

techniques such as circular dichroism (CD) where they exhibit signatures in the ultraviolet 

frequency region. Plasmonic nanostructures have the potential to enhance the sensitivity of 

chiral detection and translate the molecular chirality to the visible spectral range. Despite 

recent progress, to date, it remains unclear which properties plasmonic sensors should 
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 2

exhibit to maximize this effect and apply it to reliable enantiomer discrimination. Here, we 

bring further insight into this complex problem and present a chiral plasmonic sensor 

composed of a racemic mixture of gammadions with no intrinsic CD, but high optical 

chirality and electric field enhancements in the near-fields. Owing to its unique set of 

properties, this configuration enables us to directly differentiate Phenylalanine 

enantiomers in the visible frequency range.  

 

Chirality, geometrically understood as the lack of symmetry under specular reflection, is of 

major importance in biological systems as well as biological and chemical processes.1,2 For 

example, biological receptors for taste and smell are sensitive to enantiomers, the two mirrored 

images of a chiral molecule, and can chemically differentiate them by producing different 

responses that we interpret as, for instance, drastically different scents.3,4 This asymmetry is 

critical in the case of the physiological action of drugs, where in the worse scenario one 

enantiomer acts as a medicine while the other has detrimental effects.5,6 

Since such critical biological actions can be related with chirality, several spectroscopic 

techniques have been developed over the years to differentiate enantiomers. Such techniques 

include circular dichroism (CD), optical rotatory dispersion (ORD) and Raman optical activity 

(ROA).7,8 Although powerful, these techniques suffer from low signals and sensitivity (ROA) or 

are located in UV spectral range (CD and ORD), which rely on expensive equipment.9 It should 

be noted that the chiro-optical response of biomolecules is generally weak, thus high 

concentrations and analyte volumes are required. 
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The recent developments in nanotechnology come with novel metamaterials and nanophotonic 

sensors that exhibit high sensitivity and promising properties for bio-sensing applications.10–12 

These sensors concentrate light efficiently, creating highly sensitive nano-regions that interact 

strongly with matter and can be used to detect very small amounts of molecules through changes 

in their optical response.13–16 Nanostructures and metamaterials can also be designed to mimic 

the properties of chiral molecules, controlling the polarization of light in a given wavelength 

range.17–25 For instance, giant circular dichroism signals have been reported in the visible (VIS) 

and near infra-red (NIR) spectral range.19,25 Additionally, nanostructures can be devised to 

provide local fields with large so-called optical chirality, C, defined as � = ���
�� �	(��∗ ∙ ��). Here, 

�� is the vacuum permittivity, � the angular frequency of light, and �� and ��  are the electric and 

magnetic fields of light, respectively. Considering that C is ±1 for left (��) and right (��) 

circularly polarized light respectively, larger values may promote stronger light-molecule 

interactions and thus be beneficial for the detection of chiral molecules.26–29 However, there can 

also be a strong interaction between localized plasmons in metallic nanostructures and chiral 

molecules that induce CD signals through dipole and multipole Coulomb interactions.30–32 

Although it is still not clear what is the best way to extract conformational information from 

molecular signals coupled to plasmonic systems, several methods have been proposed for the 

detection of chiral molecules.30,33–37 While most of these methods use CD as a primary 

measurement of chirality, some works have also used related signals, e.g. differential 

transmission, and proposed different ways of extracting the chiral information from the 

molecules.37–39 There are several reports on induced CD from molecules near non-chiral 

plasmonic structures, that is, structures that exhibit no intrinsic CD signals.31,40–42 This method 

generally relies on plasmonic systems with high electric fields enhancements, but low C. 
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 4

Recently, attention has turned towards chiral plasmonic array-based sensors that experience both 

large intrinsic CD and C.38,39 However, the drawbacks of these designs has been (1) the high 

intrinsic CD of the sensors (Fig. 1a-b), often orders of magnitude bigger than molecules, that 

potentially could over-shadow the small molecular signals and (2) the need for multiple 

measurements on separate left- and right handed sensors.38,39,43  

In this work, we propose a plasmonic sensor (Fig 1c) with highly chiral individual components 

arranged in a 2D arrangement together with the enantiomeric counterpart, which result in a non-

chiral superstructure. This sensor design has important advantages in terms of both functionality 

and reliability. While using chiral sensors is desired to achieve high optical chirality, the strong 

far field CD from the sensors ends up masking the much weaker molecular response. This 

requires post processing the data in order to extract the chiral signature from the molecules, 

which eventually can be a source of severe artefacts. Indeed, the subtraction of two very similar 

spectra may not be reliable especially when involving nano-sensor array that are not fully 

identical due to nanofabrication deviations. Eventually, our measurements give a direct chiral 

signature from the molecules hence dramatically increasing the reliability of the sensor. As 

illustrated in Fig. 1, such a racemic mixture of chiral sensors can keep as large values of C and 

electric field enhancements in the near fields as the totally handed sensors and at the same time 

the CD signal of the sensor is suppressed. Racemic sensor arrays have recently been suggested 

for chiral molecular detection,43 however this detection scheme has not been implemented 

experimentally until now. The main idea behind such a sensor is that one molecular enantiomer 

will interact more with one sensor component, which will shift the CD balance of the entire 

sensor system and yield a detectable signal. The CD signal is anticipated to mainly depend on the 

CD and C factor of the sensor components, as the main absorption and CD resonances of chiral 
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 5

molecules reside in the UV.  We show that the racemic sensor can be used for direct molecular 

detection and discrimination between the two phenylalanine enantiomers. D, L and the racemic 

forms (i.e. D+L at 50/50 concentration, denoted as DL) of the amino-acid are used in order to 

validate and link the results unambiguously to the chiral conformation of the molecules.  

Beyond the use of racemic sensors, another novelty of our study over the prior art is the way the 

molecules are controllably delivered to the sensors using molecular thermal evaporation 

(MTE),44 a rarely used method in this field, but extensively used in molecular electronics. 

Molecular delivery has also been a limitation in past studies due to poor control and 

reproducibility issues. MTE is very suitable for our purpose, since it allows accurate control of 

the molecular deposit conditions and thickness of the coatings, providing more reproducible, 

homogeneous and dense molecular layers using a solvent-free method.45,46 
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Figure 1: Handed vs. racemic gammadion arrays. The handed arrays, a) G+ and b) G-, exhibit 

large optical chirality (top) and large electric field enhancement (middle), but also large CD 

(bottom). c) The racemic gammadion array G+- shows large optical chirality and electric field 

enhancement, but no CD. σ+ and σ- indicates excitation with left and right circularly polarized 

light, respectively. 

 

Racemic plasmonic sensors. Gold chiral plasmonic nano-structures consist of gammadion 

elements arranged in a 2D matrix array of 120 µm in size. The arrays were produced by electron 

beam lithography (CRESTEC CABL9510C) using a negative resist (ARN7500.08) on 50 nm 
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 7

gold coated borosilicate substrates separated by a thin (~2 nm) Ti adhesion layer. After exposure 

and development, the gold layer was exposed to reactive ion etching (Oxford Plasmalab System 

100) followed by resist removal in piranha solution (Caution: piranha solution is a very reactive 

solution and should be handled with the maximum safety precaution). The nano-structures were 

optically characterized using a custom-made setup consisting of a white light source (100w 

halogen bulb) followed by a broadband linear polarizer (Thorlabs GL10) and quarter wave plate 

(Thorlabs FR600QM), then the sample followed by a low numerical objective (Olympus 

LMPLFLN5x) which couples to a grating spectrometer (Andor Shamrock 303i iDus401-BR-DD 

system) through an optical fiber. The interrogated area of the sensor is 60 µm in diameter, which 

account for an averaging over 28,000 gammadion structures. 

In order to visualize the properties of racemic gammadion arrays, we compare these with 

completely handed arrays. Note that both the gammadion structure as well as the racemic and the 

completely handed arrays have C4 symmetry, which ensures anisotropy-artifact-free 

measurements.20 Figure 2 displays scanning electron microscope (SEM, FEI Inspect F) images 

and spectra of gammadions of 275 nm in size arranged in a 350 nm pitch squared matrix. Here, 

extinction is defined as � = 1 − �, where T is the transmitted light, and the CD is calculated 

using 

�� = ���� ���� − ���!��� + ���!#, 

where ��!  and �� 	is the transmission of left and right circularly polarized light, respectively. 

The handed arrays had extinction and CD resonances at 660 nm, either in their G+ or G- form, as 

indicated in Fig. 2. For the racemic mixture, G+-, we placed right and left-handed gammadions 
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 8

alternatively in a row and then shifted the next rows by one. The racemic array showed a flat 

resonance peak in between 625-675 nm and zero CD signal all over the measured spectral range 

(Figure 2c). The difference in extinction spectrum is not surprising, as the local environment 

surrounding a specific gammadion is changed and is thus attributed to the interaction between G+ 

and G- components. This result confirms that, like in molecular systems, right and left 

enantiomer’s CD cancel out in a racemic mixture.  

 

Figure 2: Optical characterization of handed and racemic gammadion arrays. a) SEM images of 

handed G+ and G- arrays, as well as the racemic G+- array. b) Extinction and c) CD spectra of the 

fabricated nanostructures.  

 

Molecular layers. Mostly, previous works not only use different sensor systems, but also 

different chiral molecules like polymeric chains or proteins.31,38,40 These large molecules can 

possess supra-structural CD, which might be easier to detect, but the mirror molecule is seldom 
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 9

available, which makes the results difficult to validate thoroughly. On the other hand, 

enantiomeric systems are typically small and therefore produce small signals that are more 

challenging to detect. An ideal sensor should not only be able to detect a chiral molecule, but 

also give signals which reveal the enantiomer handedness in the sample. To fully validate a 

sensor, it is thus important to test the full set of molecules: not only the two enantiomers, but also 

the racemic mixture of the two. Phenylalanine, an essential amino-acid, was chosen in this 

experiment as both enantiomers and the racemic mixture are commercially available (78019, 

P1751 & 147966 Sigma Aldrich). Here, we used molecular thermal evaporation (MTE) in order 

to accurately control the delivery of molecules and ensure a high density coating. In this 

technique, the molecules sublimate from a crucible and reach the target substrate similarly to 

what would happen with conventional metal thermal evaporation (Fig 3a). This way, the 

molecules can reach the interparticle regions and the gaps within the gammadion nanostructures. 

The thickness of the layers can be carefully adjusted using a quartz crystal microbalance (QCM). 

First, we deposited the different enantiomers and racemic mixture on a quartz substrate. 

Phenylalanine molecules were sublimated at 100 °C with a deposition rate of 5 Å/s, leading to an 

amorphous layer. The thickness was estimated using the QCM readings together with scanning 

electron microscope images (SEM, Fig. 3b) and was set to be 150 nm in order to fully cover all 

sensitive areas of the nano-structures. The SEM image confirms the uniformity and thickness of 

the coating.  
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 10

 

Figure 3: L, D and DL (racemic) coatings of phenylalanine on quartz. a) Schematic of the 

molecular thermal evaporation technique, where crucibles are filled with the molecules and 

gently heated under vacuum, until they sublimate and are deposited onto the substrates. b) SEM 

image of a 150 nm thin layer of DL phenylalanine. c) Absorbance and d) CD spectra of the 

respective coatings, named CDm to be distinguished from sensors CD. 

 

We then characterized the layers optically in a CD-spectrometer (Applied photo-physics 

Chirascan plus), as seen in Fig. 3c-d. Absorbance spectra of the coatings reveal a main peak at 

200 nm within accordance of 10% for both enantiomers and reflection symmetry of CD. 

Interestingly, the absorbance of DL coating got a flat peak in a similar fashion as the racemic 

plasmonic array. As expected, the CD of the racemic mixture is negligible over  the entire 

measurement range, confirming the racemic nature of the mixture film. Note that no CD was 

measured outside of the displayed spectral range for any of the coatings.  
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Results. After the previous calibration step on the deposition of molecular layers, we performed 

evaporations of the different molecules on the racemic plasmonic arrays (Figure 4). The optical 

measurements were performed in a custom-made setup, which features a detection area four 

orders of magnitude smaller than the commercial equipment and no lock-in amplification (see 

Supporting Information for details). Figure 4b-c shows the extinction and CD of the coated 

plasmonic nano-structures. The flat extinction peak from the bare arrays (Fig 2b) has now 

become two close, but distinguishable, peaks. Overall, the extinction increased by 20% in height 

and shifted about 75 nm due to the coatings. Exclusively, DL coating extinction increased an 

extra 10% and split significantly the two peaks in comparison with D and L coatings extinctions. 

Even more interestingly, the molecular enantiomers induced CD signals with opposite sign 

originating from the symmetric molecular system (phenylalanine D and L), about 500 nm from 

the previous CD peak wavelength. This is made possible thanks to the synergetic effect of the 

local optical chirality and field enhancement of the sensors which selectively enhances the 

residual CD of the enantiomers in the VIS-NIR range. Eventually, the signal stems from an 

unbalance in the racemic array components, in which either G+ or G- interacts more with the 

interrogated molecules.. In addition, the DL coating induced no significant CD, in line with the 

CD measurements of the molecular coatings. These results are in accordance with the symmetry 

of the system, as we already saw in the molecular coatings and in the plasmonic nano-structures. 

However, a degradation of the signals and symmetry could be expected due to accumulations of 

experimental errors for the final measurement. The non-zero CD of the racemic coating could 

thus originate from slight imperfections in fabrication that lead to different CD enhancements 

together with minor differences in the coating properties (see more details on symmetry 

observations in the Supporting Information). Additional sets of experiments have successfully 
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reproduced the results, both in the same as well in a completely new batch of sensors (see 

Supporting Information). 

 

 

Figure 4: Enantiomer detection in the visible spectral range using racemic gammadion arrays. a) 

The molecules were deposited on different sensor arrays, showing the corresponding b) 

extinction and c) CD spectrum.  

 

COMSOL simulations were performed for racemic gammadion arrays on glass (n = 1.5) in 

molecular refractive index na = 1.6, using the geometry in Fig. 2 (see Supporting Information for 

details). Figure 5a-b depicts the results, which show two clear peaks in the extinction spectrum 

and zero CD, in accordance with the experimental results. Experimental peaks are likely broader 

due to nano-particle fabrication defects that result in inhomogeneously broadened spectra. Note 

also that the simulations indicate that while the individual components of the array experience 
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very large CD but due to the involved symmetry, when combined, the total CD for the array is 

zero. Consequently, small shifts in this balance could lead to detectable CD signals.  

 

Figure 5: Simulations of gammadions for chiral sensing. a) Extinction and absorption spectra for 

gammadions on a glass substrate (n = 1.5) and in a n = 1.6 layer with geometries from the SEM 

in Fig. 2. b) CD spectrum of the individual components of the array (G+ and G-), showing large 

and symmetric CD, and the total CD of the system (G+-), without any CD. c) CD enhancement 

spectrum for the same array with D and L molecular layers.  Optical chirality C, the optical 
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chirality dissymmetry ∆C, electric field enhancement E and chiral dissymmetry of the electric 

field enhancement ∆E at d) 500 nm, e) 725 nm and f)  900 nm.  

 

Figure 5c show the CD enhancement spectra of L and D molecules on top of the racemic sensor. 

The CD enhancement was calculated from the ratio CDG/CD0, where CDG is the CD of the 

racemic sensor and the chiral layer, while CD0 is the CD of only the chiral layer without any 

nanostructures. The over-all line-shape of the simulated spectrum agrees fairly well with the 

experimental results, even though the latter do not resolve the double peak and feature weaker 

CD enhancements (see Fig. S4 from Supporting Information). The maximum CD enhancement 

values are around two orders of magnitude, however, this is likely under-estimated, as the 

majority of the CD signal originates from a thin layer near the metal, which suggest that it can be 

much higher locally. In particular, the volume contained between gammadion arms is responsible 

for about 40% of the CD enhancement (see Fig. S6 from Supporting Information). 

Figures 5d-f show C and the E-field enhancement for σ+ illumination at 500, 725 and 900 nm, 

together with their chiral dissymmetry, calculated as ∆� = �(��) − �(��) and ∆� = �(��) −
�(��). Due to the racemic composition of the array, reciprocal patterns of C and E are generated 

using σ+ and σ- illumination. Consistent with the experimental results, the strongest C and the E-

field enhancement are found at 725 nm. Similarly, ∆� and ∆� are shown to be larger at this 

wavelength. For a given illumination, the corresponding gammadion within the unit cell, i.e. G+ 

under σ+ or G- under σ-, shows stronger E-field enhancement. However, C showed to be larger at 

odd gammadion-illumination combinations, which is most clearly visualized in the gaps in 

between the gammadion arms. Regarding C and E dissymmetry, ∆� exhibit clear reflection 
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symmetry with the gammadion handedness, whereas ∆� exhibit handedness-independent 

distribution.  

Aside from the clear wavelength dependence of these parameters from Fig. 5, the influence of 

the parameters on the molecule-sensor system is subtler. The sign of C promotes the interaction 

for a given enantiomer with the sensor. While the magnitude of ∆� shows the difference of this 

interaction, which would be related to the discrimination capacity of the system and is shown to 

be independent to the gammadion handedness. On the other hand, E shows the excitation 

enhancement for a given illumination. For example, G+ shows a stronger enhancement for σ+ 

illumination and, reciprocally, G- is best excited using σ-. Hence, ∆� shows the local chiral 

dependence of the enhancement. Combining these properties of C and E, a given sensor 

enantiomorph will interact more with a given molecular enantiomer, for example promoting G+ 

and L molecule or G- and D molecule interaction. At the same time, the symmetry of the array 

yield equal interaction capabilities with both molecular enantiomers. The racemic array thus 

enables the enantiomer discrimination in a one-shot measurement.   

Conclusions. In this study, we measured CD of L, D and racemic phenylalanine on chiral gold 

nano-structures mixed in an array in a racemic fashion. The designed sensors showed zero 

intrinsic CD, but locally high optical chirality and electric field enhancements. When in contact 

with a chiral molecular layer, the CD signal separates from zero, indicating the handedness of the 

enantiomer near the plasmonic resonance region. This way we demonstrate that plasmonic 

sensors can be engineered to offer chiral selectivity while they remain intrinsically CD free.  

Page 15 of 23

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 16

We show that the use of molecular enantiomers, as well the use of racemic molecular mixture as 

a control, is a key point to confirm chiral detection in plasmonic sensing experiments, which 

offers a robust model to validate any chiral sensing platform.  

Furthermore, phenylalanine species were evaporated using molecular thermal evaporation, a 

robust deposition technique that allowed us to deposit layers of ~150 nm of the different 

enantiomers and racemic mixture of the molecules. We believe that this method is an important 

step forward towards more reproducibility in the loading of the chiral sensors as well as a way to 

better understand the physical and chemical mechanisms involved in plasmon-enhanced chiral 

sensing.  
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