
Requirements Engineering and
Continuous Deployment
Nan Niu, University of Cincinnati, USA
Sjaak Brinkkemper, Utrecht University of Cincinnati, The Netherlands
Xavier Franch, Polytechnic University of Catalonia, Spain
Jari Partanen, Bittium, Finland
Juha Savolainen, Danfoss, Denmark

Abstract:
This column summarizes the panel on requirements engineering and continuous
deployment held in the 25th IEEE International Requirements Engineering
Conference. We highlight two synergistic points (user stories and linguistic
tooling) and one challenge (non-functional requirements) in fast-paced, agile-
like projects, and outline a couple of ideas to further the dialog.

Introduction
In a rapidly evolving IT environment, many companies seek to test and launch
digital products and services faster and at lower cost. With tools and processes
helping manage configurations, versioning, and roll-back, organizations build,
test, integrate, and deploy continuously. For example, Facebook adopts the
practice of continuous deployment, trying to release software to production as
soon as it is ready in short cycles [1]. As a result, the company makes significant
progress in increasing the frequency of its mobile releases. Although there exist
hundreds of Android hardware variants, Facebook’s Android release has gone
from a release every 8 weeks to every 1 week over a period of 4 years [1].

The high-speed software development, manifested in practices like continuous
deployment, changes the way that requirements are engineered. A big change
lies in the ability to quickly observe the effects of the software (or the “machine”
according to Michael Jackson [2]) in the environment, and to evaluate the
observations against stakeholders’ needs and desires. How is continuous
deployment, together with its related practices, influencing requirements
practitioners and researchers? What do they see as the most promising
synergies between requirements engineering and continuous deployment? The
most pressing challenges for the community to tackle?

These were the types of questions that we set out to explore in a panel at the
25th edition of the premier requirements engineering conference (re2017.org/).
In a gorgeous early-September day in Lisbon where unconditional hospitality
was experienced by every RE’17 participant, the panel offered sharp opinions
and engaged in diverse conversations, accompanied by heated debates and
controversies. In this column, we summarize the contributions made by the

http://re2017.org/
montse aragues
Texto escrito a máquina
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/MS.2018.1661332

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

panelists and the audience, with examples and additional materials prepared by
Wentao Wang from University of Cincinnati who also helped to run the panel in
Lisbon as a proud student volunteer. In what follows, we highlight two strongest
synergies and then present a prominent pain point for requirements practices in
fast-paced, agile-like projects.

No documented requirements? We’ve got “User Stories”
“Working software over comprehensive documentation” (agilemanifesto.org)
has led writing requirements to be seen as a taboo in agile development,
especially writing a central and upfront software requirements specification
(SRS) that should be correct, unambiguous, complete, consistent, ranked for
importance and/or stability, verifiable, modifiable, and traceable
(doi.org/10.1109/IEEESTD.1998.88286). Not only were practitioners puzzled by
“software before documentation” [3], but they externalized bits of information to
better understand stakeholders’ needs.

“People love stories. People relate to stories.” Ian Sommerville shared in his
RE’17 keynote about his requirements approach to Scotland’s digital learning
environment—Glow (connect.glowscotland.org.uk/). Even though developing
realistic user requirements for Glow was impossible, stories helped Ian and his
colleagues to make progress. The stories popular among agile practitioners are
user stories [4]. Figure 1 shows an example where the essential elements of a
requirement are captured in a structured way: who it is for, what it expects from
the system, why it is important, and how its implementation looks like.

#Submission 13 - Zoom and pan images # Early Adopter

As a: repository user

I want to: be able to deep zoom and pan on large, high-resolution images

So that: I don’t have to download a large image file to be able to zoom or pan

Done look like: Scholar@UC includes an IIIF-compliant image server in its stack,

making use of the image and presentation APIs to deliver content to users

Figure 1 A sample user story of Scholar@UC whose goals are digital preservation and discovery. The
project maintains about 150 user stories. Please see: github.com/uclibs/scholar_use_cases .

Is this a good user story? Probably not if assessed based on the criteria of
“problem-oriented” (“Done look like” hints at the solution) and “atomic” (the
conjunction “zoom and pan” indicates more than one feature). Other desiderata
for user stories? Unambiguous, complete, conflict-free… [4]. Sounds familiar
(hint: doi.org/10.1109/IEEESTD.1998.88286)? For the Scholar@UC project, this
is a good user story because the hashtag “# Early Adopter” signals the elicitation
focus of engaging enthusiastic users in agile development. Moreover, stakeholder
needs, desires, and preferences become clearer as the implementations go on
(e.g., see the pull request comments github.com/uclibs/scholar_uc/pull/1109).
In short, as long as the user stories provoke more detailed understandings of the

http://agilemanifesto.org/
https://doi.org/10.1109/IEEESTD.1998.88286
https://connect.glowscotland.org.uk/
https://github.com/uclibs/scholar_use_cases
https://doi.org/10.1109/IEEESTD.1998.88286
https://github.com/uclibs/scholar_uc/pull/1109

requirements throughout development, they fit the purpose of serving as
anchors for further discussions with customers [5].

Linguistically linking continuous practices
Delivering values to customers at a much accelerated pace drives continuous
deployment and related practices. One of the panelists pointed out that, despite
the continuous practices like integration, delivery, and deployment, agility in
general is a requirements risk management method. Since self-knowledge is
power, it’s powerful to acknowledge that we lack perfect foresight to predict
what our customers need in detail. We then become more powerful in mitigating
our lack of knowledge by putting what we perceive as the working software to
the hands of our customers, by explicitly testing high risk assumptions, and by
doing so in short feedback cycles.

The cycles are managed very differently in different organizations and projects.
Figure 2 shows two examples. As the left of Figure 2 shows, a story is only one of
the anchors to further requirements understandings. A feature in Intel’s
application of Scaled Agile Framework refers to a relatively large portfolio item,
whereas a task is intended to be operated in days to fulfill the requirements. The
executions need to align with the strategic value stream [6]. Cognizant’s
practices, as shown in the right of Figure 2, illustrates the interdependency
between requirements and testing. Even for test-driven development (TDD)
advocates who want developers to create tests before writing new functional
code, it is important to realize that TDD requires a thorough understanding and
documentation of the requirements [7]. The low adoption of TDD practices [5]
reflects the intrinsic requirements challenge: if writing good (agile)
requirements is hard, so is writing good (agile) tests.

Figure 2 Intel’s experience of Scaled Agile Framework (left; adapted from [6]); Cognizant’s
application of agile software development (right; adapted from [7]).

Figure 3 illustrates one panelist’s vision of using linguistic tooling to support
agile development. The feature of being able to “deep zoom and pan on large,
high-resolution images” presented in Figure 1 can be traced in various artifacts
shown in Figure 3 via the specific term “zoom” and its variants. The challenge is
to build linguistic models for stakeholder tasks and to integrate the tooling into
the native development environments. Unfortunately, we didn’t find any testing

artifacts to linguistically link to Scholar@UC’s user story shown in Figure 3, but
recent work on using automated acceptance tests that are created as part of the
behavior-driven development (BDD) [8] helps instrument more ubiquitous
traceability between agile requirements and production code [5].

A traceability challenge is to realize that not all the known/documented user
stories should be traced. In fact, many are discarded (e.g., some “# Early
Adopter” tagged Scholar@UC stories used for elicitation purposes) and many
more get added during development and reflected only in development artifacts.
If agility is about better managing requirements risks and agile requirements
processes should be evenly spread throughout development [5], then
practitioners need the support—linguistic tooling and other kinds—to identify a
delta (what’s new and where’s the departure), find unarticulated hidden needs,
clarify how to test the high-risk assumptions and how to verify the results,
remove bias when providing feedback on the product increment delivery, grow
test assets matching customer requirements at the system boundary… The list
went on in our panel and the compilation is especially valuable for researchers
and tool vendors.

Figure 3 Linguistically linking software artifacts in agile development

Continuous deployment is about speed. What about safe
deployment, larger-scale deployment, etc.?
“If you want to trigger a hot debate among a group of requirements engineering
people, just let them talk about non-functional requirements.” Martin Glinz
wrote in most influential paper [9] awarded at RE’17. This held true in multiple
occasions during our panel. Rapid development and continuous deployment
quickly deliver the requirements to the customers and also continually allow the

consequences of development decisions to emerge. As the software cumulates a
critical mass of features and becomes more mature, tradeoffs must be
considered between speedy deployment and other non-functional requirements
such as safe and scalable deployment. For example, safety stories can be added
to the sprint backlog for software systems that have safety implications at lower
levels of the criticality spectrum [10]. For Figure 1’s user story, compatibility
issues such as whether the image format .jp2 should be supported arose in the
pull request (github.com/uclibs/scholar_uc/pull/1109). Improving the quality
attributes like compatibility not only clarifies the meaning of requirements in
terms of which phenomena belong to the machine, the environment, and their
intersections [2], but also shapes testing, build, integration, deployment, and
other continuous practices.

Continuous dialog
Our panel represents the effort of continuous dialog of requirements
practitioners and researchers on contemporary issues. We wish the participants
had fun as we did by running the panel (see Figure 4). To further the dialog,
topics of interest to conferences shall be modernized, workshops and special
issues organized, tutorials on writing good and better requirements
(continuously) offered, and myths (e.g., user stories are agile ways of specifying
requirements) challenged. We can’t wait for the panels and interactive events at
RE’18 in Banff, Canada (www.re18.org/).

Figure 4 Crowning the inaugural MVP (most valuable panelist) at RE’17. Congratulations, Juha—with
tolerable error rate, and yes, “fault tolerance” is yet a non-functional requirement!

https://github.com/uclibs/scholar_uc/pull/1109
http://www.re18.org/

References
1. Tony Savor, Facebook, “Continuous Mobile Deployment”,

http://www.cs.ucdavis.edu/fse2016/program/showcase/ Last accessed:
November 2017.

2. Michael Jackson. “The meaning of requirements”. Annals of Software

Engineering, Volume 3, 5-21, 1997.

3. Christof Ebert and Maria Paasivaara. “Scaling agile”. IEEE Software, Volume
34, Issue 6, 98-103, Nov/Dec 2017.

4. Garm Lucassen, et al. “Forging high-quality user stories: towards a discipline
for agile requirements”. Proc. 23rd IEEE International Requirements
Engineering Conference (RE’15), 2015, pp. 126-135.

5. Lan Cao and Balasubramaniam Ramesh. “Agile requirements engineering
practices: an empirical study”. IEEE Software, Volume 25, Issue 1, 60-67,
Jan/Feb 2008.

6. Yariv Weltsch-Cohen, Intel, “Implementing SAFe MDO (Intel) test case”,
http://www.scaledagileframework.com/wp-
content/uploads/2014/09/Implementing-SAFe-MDO-test-case.pdf Last
accessed: November 2017.

7. Naziya Iqbal Sayed, Cognizant, “The Case for Agile Testing”,
https://www.cognizant.com/InsightsWhitepapers/The-Case-for-Agile-Testing-
codex891.pdf Last accessed: November 2017.

8. Garm Lucassen, et al. “Behavior-Driven Requirements Traceability via
Automated Acceptance Tests”. Proc. 2nd Just-in-Time Requirements
Engineering Workshop (JIT RE’17), 2017, pp. 431-434.

9. Martin Glinz. “On Non-Functional Requirements”. Proc. 15th IEEE
International Requirements Engineering Conference (RE’07), 2007, pp. 21-
26.

10. Jane Cleland-Huang. “Safety Stories in Agile Development”. IEEE Software,
Volume 34, Issue 4, 16-19, July/Aug 2017.

http://www.cs.ucdavis.edu/fse2016/program/showcase/
http://www.scaledagileframework.com/wp-content/uploads/2014/09/Implementing-SAFe-MDO-test-case.pdf
http://www.scaledagileframework.com/wp-content/uploads/2014/09/Implementing-SAFe-MDO-test-case.pdf
https://www.cognizant.com/InsightsWhitepapers/The-Case-for-Agile-Testing-codex891.pdf
https://www.cognizant.com/InsightsWhitepapers/The-Case-for-Agile-Testing-codex891.pdf

	Introduction
	No documented requirements? We’ve got “User Stories”
	Linguistically linking continuous practices
	Continuous deployment is about speed. What about safe deployment, larger-scale deployment, etc.?
	Continuous dialog
	References

