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Abstract 9 

Reactions and processes that occur in microalgae and bacteria systems are difficult to 10 
understand because most of them take place simultaneously and they are strongly 11 
interdependent.  In comparison with conventional wastewater treatment technologies, less is 12 
known about the physical, chemical and biochemical reactions and processes that occur in 13 
microalgae-bacteria treatment systems, such as high rate algal ponds (HRAP). In this paper we 14 
develop an integral mechanistic model describing the complex interactions in mixed algal-15 
bacterial systems. The model includes crucial physical, chemical and biokinetic processes of 16 
microalgae as well as bacteria in wastewater. Carbon-limited microalgae and autotrophic 17 
bacteria growth, light attenuation, photorespiration, temperature and pH dependency are some 18 
of the new features included. The model named BIO_ALGAE was built using the general 19 
formulation and structure of activated sludge models (ASM), and it was implemented in 20 
COMSOL MultiphysicsTM platform. Calibration and validation were conducted with high 21 
quality experimental data from triplicated pilot HRAPs receiving real wastewater. Calibration 22 
was conducted adjusting 6 parameters selected after a Morris’s sensitivity analysis: microalgae 23 
and heterotrophic bacteria specific growth rate, decay of heterotrophic bacteria and the transfer 24 
of gases to the atmosphere. The model was able to simulate the dynamics of different 25 
components in the ponds and the relative proportion of microalgae and bacteria. Furthermore, 26 
the model was used to investigate the relative effect of the factors that affect microalgae growth 27 
and the through practical study case the effect of different influent organic matter concentration 28 
on total biomass production and the relative proportions of microalgae and bacteria. The 29 
proposed model could be an efficient tool for industry to predict the production of microalgae, 30 
as well as to design and optimize the operations in contaminants removal from wastewater using 31 
algal-bacterial interactions. 32 
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Highlights 36 

- New integral mechanistic model for microalgae-bacteria wastewater treatment systems is 37 
developed. 38 



 

- The model was implemented in COMSOL MultiphysicsTM platform, calibrated and validated 39 
using experimental data for two different periods. 40 

- The model was able to accurately reproduce the dynamics of different components of the 41 
system.  42 

- Usefulness of the model was demonstrated with practical study case.  43 

1. Introduction 44 

 In the past decade, an increasing amount of research has been conducted on 45 
microalgae-bacterial systems for wastewater treatment. These efforts were initially 46 
stimulated by the interest in producing biofuel from microalgae (Park and Craggs, 2011; 47 
Milano et al., 2016), but, compared to conventional wastewater treatment technologies, 48 
the potential total cost savings, including in electrical power, are great enough to pursue 49 
this topic independently of biofuels production (Suganya et al., 2016). 50 

The system is based on the interactions of microalgae and bacteria in wastewater 51 
exposed to light. Algae photosynthesize and produce the oxygen used by bacteria, 52 
reducing or eliminating the need for mechanical aeration (Tricolici et al., 2014, Sayeda 53 
et al., 2016). Assimilation of nutrients (i.e. nitrogen and phosphorus) by algae is a 54 
further form of treatment (Liang et al., 2013), and pathogen inactivation also occurs in 55 
these algal-bacterial systems (Abdel et al., 2012).  56 

Algal-bacterial wastewater treatment was originally carried-out in unmixed 57 
ponds – shallow oxidation ponds and deeper facultative ponds (Oswald and Gotaas, 58 
1957), with mixed raceway ponds (specifically named high rate algal ponds) being 59 
introduced at full scale for increased cultivation control and algal productivity (Oswald 60 
et al., 1957). Using the produced algae biomass for biofuel feedstock was suggested 61 
shortly thereafter Oswald and Golueke (1960). Various other reactor designs have been 62 
proposed such as transparent vessels (e.g. tubular photobioreactors) and attached growth 63 
systems (e.g., algal turf scrubbers, Christenson and Sims, 2012). However, these other 64 
types of reactors are not a full scale reality, and belong to a more experimental domain 65 
in the field of wastewater treatment. These more complex and costly designs in 66 
comparison to mixed raceway ponds will be less competitive with conventional 67 
electromechanical treatment technologies. 68 

In comparison with conventional treatment technologies, less is known about the 69 
physical, chemical and biochemical reactions and processes that occur in microalgae-70 
bacteria wastewater treatment systems. Most of these reactions and processes take place 71 
simultaneously and they are strongly interdependent (García et al., 2006. Also, they are 72 
dependent on ever-changing outdoor environmental conditions such as light intensity, 73 
temperature, and the flow and quality of the influent wastewater. In order to predict 74 
performance and optimize reactor design, it is necessary to have a deep pond 75 
wastewater treatment system ecological understanding. 76 

Mathematical models offer an opportunity to study microalgae-bacteria 77 
interactions, can provide useful tools for design, and can control real-world parameters, 78 
which can all lead to increase bioreactor efficiency (Bitog et al., 2011). While much 79 



 

research has been conducted on microalgae models over the years (e.g. Dropp, 1968; 80 
Bernard et al., 2009), only recently has research intensively began on the integration of 81 
microalgal growth on biological wastewater treatment (microalgae-bacteria models). 82 
The very first modeling in this area was pioneered by Buhr and Miller (1983), and it 83 
focused on the simultaneous growth of algae and bacteria in high-rate algae ponds 84 
(HRAPs). HRAPs, which are shallow, low-energy, and paddle-wheel mixed treatment 85 
ponds, are typical in advanced pond wastewater treatment systems. Since Buhr and 86 
Miller (1983), other more sophisticated models have been developed mostly based on 87 
parameters and processes similar to those defined by the River Water Quality Model 1 88 
(RWQM1) of the International Water Association (Reichert et al., 2011). However, 89 
while RWQM1 includes expressions for growth of microalgae on N (ammonium and 90 
nitrate) and P (orthophosphate), it does not include expressions for essential C 91 
limitations (carbon dioxide and bicarbonate) which can occur in algae growing in 92 
wastewater systems (Gehring et al., 2010). In the model by Sah et al. (2011) algal 93 
growth was described as a function of either ammonium or nitrate, with preference for 94 
ammonium. Halfhide et al. (2015) developed a simplified algae-bacteria model to 95 
simulate ammonia removal from wastewater, assuming the irradiance as limiting factor 96 
for algae growth. Likewise, Steen et al. (2015) proposed a simplified version of the 97 
Activated Sludge Model no. 3 (ASM3) based on the biomass growth of ammonia 98 
oxidizing bacteria, nitrite oxidizing bacteria, and microalgae.  99 

Most of these previous models use a relatively low number of parameters to 100 
describe the inherent complexity of algae cultures and/or focus on single processes 101 
within the system, neither of which considers that microalgae-bacterial technologies are 102 
systemic processes that involve multiple components (e.g. carbon, nitrogen, and 103 
dissolved oxygen (DO)). For example, widely accepted microalgae-bacteria models, 104 
such as RWQM1 and Sah et al., (2011) do not include carbon limitation on the growth 105 
of microalgae and autotrophic bacteria and any reference to the effects of high value 106 
dissolved oxygen in culture medium on microalgae activity.  107 

In this paper we complete the microalgae model previously developed by the 108 
authors (Solimeno et al., 2015, 2017), including crucial physical, chemical and 109 
biokinetic processes of microalgae as well as bacteria in wastewater treatment systems. 110 
The model, which is called BIO_ALGAE was mainly built by coupling the model of the 111 
authors (Solimeno et al., 2015) with the ASM3 (Iacopozzi et al., 2007). These models 112 
were used as base model to represent the microalgae and bacteria activity, respectively. 113 
The new most relevant features of the model are: the inclusion of carbon limitation on 114 
the growth of microalgae and the growth of autotrophic bacteria. Also, this model 115 
includes factors to represent photosynthesis, photolimitation, light attenuation, 116 
photorespiration, temperature dependency and the implementation of hydrodynamics in 117 
the system. 118 

Altogether the main purpose of this study was to develop, calibrate and validate 119 
the integral microalgae and bacteria model with high quality experimental data from 120 
triplicate raceway ponds located at the Delhi, California wastewater pond treatment 121 
plant. The implementation of BIO_ALGAE in the COMSOL MultiphysicsTM software 122 



 

allowed to simulate the dynamics of different components in the ponds and the relative 123 
proportion of microalgae and bacteria. Also the model was used for to applications: 1) 124 
to analyse the relative effect of the factors that affect microalgae growth, and 2) a study 125 
case on the effect of influent concentration of organic matter on the relative proportions 126 
of microalgae and bacteria. Our idea is to create a basis for a highly accepted platform 127 
that will be extensively used for different research purposes. Also, in the future, we 128 
believe that this model could help the industry to design and operate efficient systems.  129 

2. Model description  130 

2.1 Conceptual model 131 

In order to facilitate the comprehension of the model, Fig. 1 shows a general 132 
simplified schematic representation of the conceptual model describing the complexity 133 
of microalgal-bacterial interactions.  134 

Photosynthetic processes are activated with light. While microalgae (XALG) 135 
grow, they fix inorganic carbon (SCO2 and SHCO3), consume substrates (SNH4, SNO3 and 136 
SPO4) present in wastewater and supply oxygen (SO2) required by heterotrophic bacteria 137 
(XH) to oxidize organic matter. During bacterial organic matter oxidation, CO2 is 138 
produced and it is available for photosynthesis and nitrification. Nitrification is a two-139 
step process: first ammonium oxidizing bacteria (XAOB) convert ammonia and 140 
ammonium to nitrite (SNO2) and second nitrate oxidizing bacteria (XNOB) finish the 141 
conversion of nitrite to nitrate (SNO3) (Diehl et al., 2007). 142 

As result of microalgal activity, hydroxide ion concentrations (SOH) and pH 143 
increase. With increasing pH, bicarbonate-carbonate equilibrium is displaced, pushing 144 
carbon species towards the formation of carbonate (SCO3), lead ammonia volatilization, 145 
and phosphorus precipitation (Nurdogan and Oswald, 1995; Serodes et al., 1991). 146 

In darkness, both heterotrophic bacteria (XH) and microalgae (XALG) have a net 147 
CO2 release through oxidation of organic matter and endogenous respiration, 148 
respectively. With this release, concentrations of hydrogen ions increase and pH 149 
decreases, and the bicarbonate-carbonate equilibrium shifts and the carbonate turn into 150 
bicarbonate (SHCO3). This bicarbonate can be used as a substrate again in the presence of 151 
light. Microalgae respiration and bacterial growth reduce the oxygen level within the 152 
water. When oxygen levels are low, nitrate can become the primary source of oxygen, 153 
and denitrification occurs. This process is performed under anoxic conditions by 154 
denitrifying bacteria that reduce nitrate (SNO3) into nitrogen gas. In fact, denitrifying 155 
bacteria are considered the same heterotrophic bacteria (XH) that under oxygen 156 
depletion circumstances can facultative use SNO3 instead of SO2. 157 

Microalgae and bacteria processes are influenced by temperature, which also 158 
affects chemical equilibria, pH and gas solubility (Bouterfas et al., 2002). Furthermore, 159 
in HRAPs the excess of DO and CO2 is gradually transferred from the culture medium 160 
to the atmosphere. 161 

 162 



 

 163 
 164 

Fig. 1. General simplified schematic representation of the conceptual integrated model showing the main algal-165 
bacterial interactions in a high rate algal pond, during day (left) and night (right).  Components which enter the ponds 166 
with the influent are marked with * and processes are indicated by arrows. Particulate and dissolved components and 167 
processes are described in Sections 2.2.  168 

2.2. Model components 169 

The model uses the common nomenclature of the IWA models and considers 19 170 
components – 6 particulate and 13 dissolved – implicated as variables in the physical, 171 
chemical and biokinetic processes. In the following two sections components are 172 
described, as well as their main role in processes and their interactions with other 173 
components.  174 

2.2.1. Particulate components 175 

In the model all particulate constituents (microorganisms as well as organic 176 
matter) are subject to decay except XI (inert particulate organic matter). 177 
Microorganisms, of course, are subject to growth. None of these particulate organic 178 
constituents can be practically/easily distinguished from one another in the mixture of 179 
material in HRAPs. Microorganism concentrations listed below therefore can be 180 
modeled, but their experimental measurement is complicated. In fact, one tremendous 181 
advantage of the model is its capacity for predicting microorganisms concentrations. 182 
 183 
1. XALG [g COD m-3]: Microalgae biomass. It increases with growth processes 184 

pertinent to microalgae and decreases by endogenous respiration and inactivation of 185 
microalgae. Not present in influent wastewater. 186 

2. XH [g COD m-3]: Heterotrophic bacteria. These organisms use organic matter as a 187 
source of carbon and energy. They growth in aerobic as well as anoxic 188 
heterotrophic conditions and decrease by endogenous respiration and decay. These 189 
bacteria are responsible for hydrolysis processes and they are also present in the 190 
wastewater influent. 191 



 

3. XAOB [g COD m-3]: Ammonium oxidizing bacteria. Bacteria responsible for the first 192 
step of nitrification, the conversion of ammonium to nitrite. These microorganisms 193 
are produced by aerobic growth and decrease by endogenous respiration and decay. 194 
They are assumed to be present in the wastewater influent.   195 

4. XNOB [g COD m-3]: Nitrate oxidizing bacteria. Bacteria responsible for the second 196 
step of nitrification, the conversion of nitrite to nitrate. These microorganisms are 197 
produced by aerobic growth and decrease by endogenous respiration and decay. 198 
They are assumed to be present in the wastewater influent.   199 

5. XS [g COD m-3]: Slowly biodegradable particulate organic matter. Fraction of the 200 
particulate organic matter COD which can be hydrolyzed and converted into readily 201 
biodegradable organic matter COD (SS) and inert organic matter (SI). A large 202 
fraction of XS is assumed to originate from decay of microorganisms and it is also 203 
present in the wastewater influent. 204 

6. XI [g COD m-3]: Inert particulate organic matter. It is the remainder after 205 
particulate organic matter hydrolysis and it increases by endogenous respiration of 206 
microorganisms. It is also present in the wastewater influent. 207 

 208 
Note that particulate components are expressed in g COD m-3, as it is common 209 

practice to express organic matter concentrations in all IWA models. Microalgae and 210 
bacteria biomass is transformed from COD to TSS (total suspended solids) assuming a 211 
ratio COD/TSS= 0.80 (Sperling, 2007; Khorsandi et al., 2014). 212 

 213 

2.2.2. Dissolved components 214 

7. SNH4 [g NH4+-N m-3]: Ammonium nitrogen. Ammonium enters the ponds with the 215 
influent and is produced through endogenous respiration of all types of 216 
microorganisms in the model and decay of microorganisms. It is consumed through 217 
the growth of microalgae, heterotrophic bacteria (XH) and during the first step of 218 
nitrification by ammonium oxidizing bacteria (XAOB). 219 

8. SNH3 [g NH3-N m-3]: Ammonia nitrogen. It is in acid-base equilibrium with 220 
ammonium (SNH4), and comes into play in the model only as a gaseous compound. 221 
Its volatilization rate is modeled as a function of pH, temperature, and mixing 222 
intensity. 223 

9. SNO3 [g NO3--N m-3]: Nitrate nitrogen. Nitrate can enter the pond with the influent, 224 
although usually in negligible concentration. It is produced during nitrification by 225 
nitrite oxidizing bacteria (XNOB). Nitrate can be assimilated by microalgae (XALG) 226 
and heterotrophic bacteria (XH), and can also be used (consumed) as electron 227 
acceptor by heterotrophic bacteria, which are assumed to be facultative. 228 

10. SNO2 [g NO2-N m-3]: Nitrite nitrogen. Nitrite can enter the pond with the influent, 229 
although usually in negligible concentration. It is generated as an intermediate step 230 
the nitrification process. It is consumed by nitrite oxidizing bacteria (XNOB) and 231 
heterotrophic bacteria (XH) during denitrification. 232 



 

11. SPO4 [g PO4-- P m-3]: Phosphate phosphorus. It enters with influent wastewater and 233 
is released from oxidation of organic matter.  It is assimilated during the growth of 234 
microalgae, heterotrophic bacteria (XH) and autotrophic bacteria (XAOB, XNOB). It is 235 
generated during respiration and decay of all microorganisms.   236 

12. SO2 [g O2 m-3]: Dissolved oxygen. It is produced during photosynthetic growth of 237 
microalgae and it can be transferred to/from the atmosphere.  It is consumed during 238 
aerobic respiration and decay of all types of microorganisms. 239 

13. SCO2 [g CO2-C m-3]: Dissolved carbon dioxide. It is in chemical equilibrium with 240 
bicarbonate (SHCO3) and carbonate (SCO3). It is generated during respiration and 241 
decay, and can be transferred to/from the atmosphere. It is consumed by both 242 
microalgae (XALG) and autotrophic bacteria (XAOB and XNOB), and is produced 243 
during the growth of heterotrophic bacteria, and respiration and decay of all types 244 
of microorganisms. 245 

14. SHCO3 [g HCO3--C m-3]: Bicarbonate. It is in chemical equilibrium with carbon 246 
dioxide (SCO2) and carbonate (SCO3). It is consumed by microalgae. 247 

15. SCO3 [g CO32--C m-3]: Carbonate. It is in chemical equilibrium with bicarbonate 248 
(SHCO3) and carbon dioxide (SCO2). Carbonate cannot be directly used by microalgae 249 
and autotrophic bacteria. 250 

16. SH [g H+ m-3]: Hydrogen ions. They are involved in acid-base equilibria including 251 
the carbonate, ammonium, and phosphate systems. Hydrogen ions are produced by 252 
ammonium oxidizing bacteria (XAOB) and heterotrophic bacteria (XH). They 253 
decrease during the growth of microalgae and nitrifying bacteria (XNOB), and during 254 
endogenous respiration and decay of all  microorganisms. 255 

17. SOH [g OH--H m-3]: Hydroxide ions. They are in equilibrium with hydrogen ions. 256 
18. Ss [g COD m-3]: Readily biodegradable soluble organic matter. Fraction of the 257 

soluble organic matter directly available for biodegradation by heterotrophic 258 
bacteria (XH). It is contained in the influent wastewater and is produced during the 259 
hydrolysis of biodegradable particulate organic matter (XS). 260 

19. SI [g COD m-3]: Inert soluble organic matter. Fraction of the soluble organic matter 261 
that is not readily available for biodegradation by heterotrophic bacteria (XH). It is 262 
in the influent wastewater and is produced during the hydrolysis of biodegradable 263 
particulate organic matter (XS). 264 
 265 

2.3. Model processes 266 
 267 

In this section, a detailed description of bacterial processes involved in 268 
wastewater treatment is described. A description of the microalgae processes, chemical 269 
equilibrium reactions, and transfer of gases to the atmosphere was reported previously 270 
(Solimeno et al., 2015). 271 

Using Monod kinetics, bacterial processes were modelled in the same way as 272 
microalgae processes. The main inspiration for building the bacteria processes was the 273 
River Water Quality Model 1 (RWQM1) and Activated Sludge Model 3 (ASM3) 274 
(Reichert et al., 2001, Iacopozzi et al., 2007). A certain number of simplifications were 275 



 

made in order to make easier the control of biochemical processes. This means that in 276 
comparison to ASM3, the model does not consider processes related to the storage of 277 
readily biodegradable soluble organic matter (SS). Anaerobic biological processes, such 278 
as fermentation and sulfate reduction, which can sometimes be important in wastewater 279 
treatment, were also omitted because the relatively oxidized nature of microalgal-280 
bacterial processes. Moreover, absorption and desorption of phosphate on particular 281 
matter were neglected. 282 

Table S1 in the Supporting Information shows a list of the processes included in 283 
the complete model (bacteria and microalgae) and the equations describing their rates. 284 
Table S2 in SI shows the matrix of stoichiometric parameters. A complete list of 285 
parameters and stoichiometric coefficients used in the model is located in SI, Tables S3-286 
S6. 287 

- Aerobic and anoxic growth of heterotrophic bacteria (XH) (Processes 4a, 4b, 5 and 6 288 
in Table S1, SI). Growth of heterotrophic bacteria was modeled with Monod kinetics. 289 
Anoxic and aerobic heterotrophic processes use the same parameter and coefficient 290 
values. Anoxic processes include an additional reduction factor (ηH), similar to the 291 
ASM3 model (Gujer et al., 1999).  292 

In aerobic conditions, heterotrophic bacteria assimilate the readily biodegradable 293 
substrate (SS) (coming with the influent or produced during the hydrolysis of 294 
biodegradable particulate organic matter (XS)), and growth consuming both ammonium 295 
and ammonia (SNH4, SNH3) and nitrate (SNO3) as nitrogen source. Note that in the matrix 296 
of stoichiometric parameters (Table S2, SI) only the ammonium reaction rate is affected 297 
by bacterial growth because the concentration of ammonia is already in chemical 298 
equilibrium with it. Aerobic processes are generally the most responsible for the 299 
production of new bacteria biomass (Henze et al., 1987). 300 

At dissolved oxygen concentrations less than 0.5 g m-3 heterotrophic bacteria use 301 
nitrate (SNO3) as electron acceptor and convert it in nitrogen gas (N2) (denitrification) 302 
(Korner and Zumft, 1986). The denitrification is implemented in the model as 303 
separating processes with SNO3 and SNO2 as substrates for heterotrophic bacteria 304 
(processes 5 and 6 in Table S1, SI), (Iacopozzi et al., 2007). In HRAP this process can 305 
occur at night, when photosynthesis is not happening (García et al., 2000)  306 

The temperature dependence of bacterial processes is modeled with an 307 
Arrhenius type thermal factor (fT,MB) (Sah et al., 2011; Langergraber et al., 2009; 308 
Reichert et al., 2001). This factor increases exponentially with temperature (T, given in 309 
°C) (Reichert at al., 2001): 310 

 311 
                                                           fT,MB(T) = θT−Topt                                                   (1) 312 

where Topt was assumed equal to 20 °C, and θ is the temperature coefficient, 313 
which was assumed equal for both heterotrophic and autotrophic bacteria.  314 

- Aerobic and anoxic endogenous respiration of heterotrophic bacteria (XH) (Processes 315 
7 and 8 in Table S1, SI). These processes are modeled as the product between the 316 



 

maximum rate of endogenous respiration (kresp,H), the concentration of heterotrophic 317 
bacteria, the thermal factor (the same as used for growth), and the Monod function as it 318 
relates limiting oxygen and nitrogen concentrations respectively for aerobic and anoxic 319 
conditions. Endogenous respiration produces CO2 and transforms alive biomass into 320 
inert organic matter (XI). 321 
 322 
- Decay of heterotrophic bacteria (XH) (Process 9 in Table S1, SI). Decay of bacteria 323 
transforms alive biomass into dead slowly biodegradable (XS) and inert (XI) organic 324 
matter (Van Loosdrecht and Henze, 1999). This process is expressed as the product of 325 
the maximum rate of decay (kdecay,H) by the concentration of bacteria and the thermal 326 
factor (the same for growth). The process is assumed to continue with the same rate 327 
under aerobic and anoxic conditions (Henze et al., 1987). 328 
 329 
- Growth of autotrophic bacteria (XAOB and XNOB) (Processes 10 and 11 in Table S1, SI). 330 
These bacteria are responsible for the biological conversion of ammonium to nitrate 331 
nitrogen (nitrification) using molecular oxygen as electron acceptor. Nitrification is 332 
implemented in a two-step process (Iacopozzi et al., 2007). 333 
 334 
- Endogenous respiration of autotrophic bacteria (XAOB and XNOB) (Processes 12 and 13 335 
in Table S1, SI). This process is modeled in the same way as the aerobic endogenous 336 
respiration of heterotrophic bacteria. 337 
 338 
- Decay of autotrophic bacteria (XAOB and XNOB) (Process 14 in Table S1, SI). This 339 
process is modeled in the same way as the decay of heterotrophic bacteria using 340 
different decay rates, kdecay,AOB and kdecay,NOB, respectively for XAOB and XNOB. 341 
 342 
- Hydrolysis (Process 15 in Table S1, SI). Hydrolysis is the process of transformation of 343 
slowly biodegradable particulate organic matter (XS) into readily biodegradable soluble 344 
organic matter (SS) catalyzed by heterotrophic bacteria. 345 
 346 
2.4. Stoichiometric and parameter values 347 
 348 

The complete stoichiometric matrix is presented in Table S2 in the Supporting 349 
Information and is based on the structure of IWA models (Petersen matrix). Values of 350 
physical, chemical and biokinetic parameters are shown in Table S3, SI. Mathematical 351 
expressions of the stoichiometric coefficients for each process are shown in Tables S5-352 
S6, SI. Using Tables (S1-S2, SI), the reaction rate for each component of the model (𝑟𝑟𝑖𝑖) 353 
is obtained using: 354 
 355 

                                                               ri = ∑ vj,i · ρjj                                                           (2)  356 

where i is the number of the component and j is the number of the processes; ρj 357 

is the reaction rate for each process j and vi,j is the stoichiometric coefficient. As 358 



 

example, the reaction rate of heterotrophic bacteria (XH) is described in the Supporting 359 
Information, page S13. 360 

The expressions of stoichiometric coefficients related to microalgae and bacteria 361 
processes are based on the fractions of carbon hydrogen, oxygen, nitrogen and 362 
phosphorus (Table S6, SI).  363 
 364 

3. Pilot plant and experimental verification 365 

High quality experimental data for model calibration and validation were 366 
collected from three sets of triplicate HRAPs ponds (3.5 m2 and 0.3 m deep), named 367 
South, Middle, and North, which were fed municipal wastewaters (Fig. 2). These small 368 
pilot raceways were located at a full-scale facultative pond-HRAP facility treating an 369 
average of 2,300 m3d-1 of wastewater from the inland community of Delhi, California 370 
(Fig. 3). Data for this work were obtained during experiments conducted to optimize 371 
wastewater treatment in conjunction with algae biomass production, harvesting, and 372 
conversion to liquid biofuel. 373 

Experimental data from the Middle pilot ponds were used. These ponds had 4.2-374 
day hydraulic retention time (HRT), were fed with facultative pond effluent and were 375 
mechanically aerated at night from 6:00 pm to 6:00 am. Mechanical aeration was 376 
applied in order to maintain enough dissolved oxygen (DO) in the ponds at night when 377 
oxygen was not produced by photosynthesis in order to have nitrification activity. 378 
INDICA LA CANTIDAD DE BOMBAS DE AIRE, SU MARCA Y EL CAUDA DE 379 
AIREThe ponds received regular influent pulses (approximately 26.5 L/pulse) during 380 
the hours of 7:00 am to 4:00 pm. Each pond had a rotating paddle wheel with a rotation 381 
speed of approximately 10 rpm. In order to monitor the hourly DO, pH, and temperature 382 
(˚C), probes were installed per pond set. The probes recorded measurements using 383 
Neptune System’s Apex Fusion software program. 384 

Samples from influent and pond effluents were taken at 9:00 am ±2 hours for 385 
four to six consecutive days in June and July of 2016. Within 48 hours of sampling, 386 
assays were conducted to determine the concentration of ammonia (g N m-3), nitrite (g 387 
N m-3), nitrate (g N m-3), total nitrogen (g N m-3), alkalinity (g CaCO3 m-3) and total 388 
suspended solids (g TSS m-3).  COD (g O2 m-3) influent was analysed only from the first 389 
sample of each experiment. These concentrations, as well as the hourly data from the 390 
Neptune software probes, were the main data for the model. Additionally, microscopic 391 
algal analyses were conducted on one of the four to six consecutive days for each 392 
experiment to identify the biological make-up within the ecosystem of each pond. 393 
Genera of microalgae common to the pilot ponds included Chlorella, Closterium, 394 
Chlorococcum, Oscillatoria, Spirogyra, Synedra, Ulothrix, Westella, Coelastrum, 395 
Micratinium, Cyclotella, Nitzchia, Pediastrum, Scenedesmus, and Stigeoclonium. 396 

Samples were analysed according to Standard Methods (APHA 1995). 397 
Modifications were made to the methods for nitrate and total nitrogen according to 398 
Hach Company Methods 10206 and 10071 (Hach, 1992), respectively. Nitrite, nitrate, 399 



 

and total nitrogen analysis were conducted using a Hach DR 3800 spectrophotometer 400 
(Hach, Loveland, Colorado) instrument. Ammonia analysis was conducted using a 401 
Timberline Model TL-2800 Ammonia/Nitrate Analyzer (Timberline Instruments, 402 
Boulder, Colorado) instrument.  403 

4. The BIO_ALGAE model 404 
 405 
The model was implemented in COMSOL MultiphysicsTM v5.1 software. The 406 

pilot raceways were represented in a 1D domain and were considered to be in a state of 407 
perfect mixing – a reasonably simplification due to their small size that streamlines the 408 
simulations to reduce computational time. The domain was 3.5 m long and a periodic 409 
condition was applied at boundaries to reproduce the continuous culture flow.  410 
Hydraulic and transport equations of aqueous phase species (i.e. dissolved and 411 
particulate) were added to represent the motion of the culture through the pond. 412 
Injection of dissolved oxygen (60 L/min) at night from 6:00 pm to 6:00 am was 413 
implemented in the model to reproduce the mechanical aeration of the middle ponds.  414 
Furthermore, assuming that each point of a section receives the same quantity of 415 
photons due to perfectly homogeneous of the pond, it was possible to calculate  the light 416 
attenuation trough an average light intensity representing any point of the culture 417 
medium. In this way though the pond depth was not incorporated into the domain 418 
design (1D), the exponential decrease of light intensity as it penetrates into the pond has 419 
been considered. Average light intensity (Iav. [µmol m-2s-1]) was described using 420 
Lamber-Beer’s Law and is attenuated by the presence of particulate components (XC = 421 
XALG+XH+XI+XS+XAOB+XNOB) and the depth (d) of  the pilot raceways  (Eq. 3). 422 

 423 

                                      Iav = Io· (1−exp (Ki · XC · d) 
Ki · XC · d

                                                 (3) 424 

 425 
where, Io [µmol m-2s-1] is the incident light intensity and Ki is the extinction 426 

coefficient for particulate biomass [0.07 m2 g-1] (Molina et al., 1994).  427 
A detailed description of hydrodynamic, transport of species, light intensity and 428 

the equations used in the model are reported in our previously work (Solimeno et al., 429 
2016 and in Supporting Information, Tables S3-S4. 430 

The model was calibrated using data collected during June 27, 2016 to June 30, 431 
2016, from the first two Middle ponds (M1 and M2) in the triplicate set. Data from the 432 
third pond (M3) was not used due to lack of DO data.  433 

Influent pond concentrations were used to run simulations. Average influent 434 
concentrations are shown in Table 1. Fractions of influent COD were estimated using 435 
values recommended by Henze et al., (2000). Accordingly, the proportion of each 436 
fraction was defined as: 22% SS, 50% XS, 10% SI, 8% XI, and 10% XH. The initial 437 
concentrations of components in the Middle ponds M1 and M2 at the beginning of the 438 



 

experiments, temperature and irradiance are shown in Table 2. Initial conditions from 439 
M1 pond were considered to run simulations. Unfortunately, the concentration of each 440 
particulate component in the pilot raceway at the beginning of the experiment was not 441 
known. Therefore, initial ratio of XALG, XS, XI, XH, XAOB and XNOB concentrations were 442 
quantified from initial TSS value (from M1 pond) based on previous experiments.  443 

In this model 46 additional parameters were added to the 31 originally-444 
implemented microalgae parameters (Solimeno et al., 2015), for a total of 87 445 
parameters. Most of these parameters were obtained from the existing RWQM1 446 
(Reichert et al., 2001), ASM1, and ASM3 (Gujer et al., 1999, Henze et al., 2000, 447 
Iacopozzi et al., 2007). Parameters related to temperature, photorespiration, carbon 448 
limitation and light attenuation were obtained from other literature cited in Supporting 449 
Information (S3). 450 

Morris`s uncertainty method (Morris, 1991) was applied to screening which 451 
parameters had the greater influence on the simulation response. The detailed 452 
implementation of Morris’s uncertainty method (Morris, 1991) is described in our 453 
previously work (Solimeno et al., 2016). 454 

  Based on previously uncertainty analysis, the model was calibrated by 455 
adjusting the values of maximum growth rate of microalgae (μALG), the maximum 456 
growth rate and the decay of heterotrophic bacteria (μH and kdeath,H) and the parameters 457 
related to the transfer of gases to the atmosphere (Ka,O2, Ka,CO2 and Ka,NH3). Calibration 458 
was performed comparing real data with simulation curves. Manual trial of parameters 459 
was used to match measured data as much as possible using graphical representations. 460 
Moreover, characteristic parameters (μALG, μH, kdeath,H, Ka,O2, Ka,CO2 and Ka,NH3), values 461 
were adjusted in order to minimize the root mean square error (RMSE) between 462 
experimental data and simulated curves. After calibration the model was validated using 463 
data collected from July 17 to July 20, 2016 from the two Middle ponds M1 and M2. 464 

Phosphorus was not considered in the simulations presented here since usually 465 
does not cause any growth limiting effect in high rate algal ponds treating wastewaters 466 
(Shilton, 2005, García et al., 2004). 467 

Practical study cases were conducted to evaluate the relative effect of nutrients 468 
availability (i.e. nitrogen and carbon), temperature and light attenuation on microalgae 469 
growth. Moreover, total biomass production and the relative proportion of microalgae 470 
and bacteria as a function of different influent concentrations of organic matter were 471 
investigated. Keeping the same nutrient concentrations of the influent wastewater in the 472 
pond used for the calibration of the model and the same concentration of microalgae at 473 
beginning of the experiment, two scenarios were evaluated reducing COD influent and 474 
the initial concentration of bacteria (XH, XAOB and XNOB), inert organic matter (XI) and 475 
soluble organic matter (XS) of 50% and 70%.  476 

 477 

5. Results and discussion 478 

5.1. Model calibration  479 



 

 480 
The model was calibrated using duplicate experimental data of pH, DO, TSS, 481 

alkalinity, and nitrogen species concentrations from Delhi, California’s pilot raceway 482 
ponds. The initial concentrations of components at the beginning of the experiments and 483 
the maximum and minimum water temperature and irradiance recorded for the four days 484 
of experiment, are shown in Table 2.TENDRIAS QUE DECIR QUE SE USARON 485 
LAS MEDIAS PARA LAS SIMULACIONES, NO? From the 87 parameters included 486 
in the BIO_ALGAE model (SI, S3), a sensitivity analysis of the maximum growth rate 487 
of microalgae (μALG), the maximum growth rate and the inactivation of heterotrophic 488 
bacteria (μH and kdeath,H) was performed to evaluate the impact of these parameters on 489 
simulation response. In this work, the sensitivity analysis of Ka,O2, Ka,CO2 and Ka,NH3 was 490 
neglected since the model results, from our previously works (Solimeno et al., 2016, 491 
2015), have proven to be very sensitive to mass transfer coefficients to the atmosphere 492 
and therefore likely to be changed during the calibration. Note that the μALG, μH and 493 
kdeath,H were selected because a global sensitivity analysis of whole set of model 494 
parameters (87) is quite unattainable objective unless high-end computational facilities 495 
are available. Moreover, these three parameters have demonstrated to influence mostly 496 
the model response during the calibration. Results of the sensitivity analysis, as reported 497 
in Figure S1 in the Supporting Information, have confirmed that these parameters 498 
selected (μALG, μH and kdeath,H) have the greatest impact on simulation outputs, therefore 499 
need to be calibrated. Once the most sensitive parameters of the model were identified, 500 
the calibration was performed in order to fit the model with the experimental data.  501 

Table 3 presents the values of the six calibrated parameters which were used to 502 
obtain the results shown in Figures 4 to 6. 503 

Fig. 4 shows the wave-like pattern of pH and DO concentrations in both the 504 
simulated and experimental data, which is consistent with known pond microalgae and 505 
bacteria activity. During night DO was not near 0 due to mechanical aeration. The 506 
model was able to match pretty well pH and DO values, in fact the the root mean square 507 
error of the simulation was low in relation to measured values (RMSEpH= 0.11 and 508 
RMSEDO= 0.62 g O2 m-3). This meant a good agreement between experimental data and 509 
simulations (Willmott et al., 1985; Bennet et al., 2013). 510 

Fig. 5 shows the changes in both experimental and simulated bicarbonate 511 
(C_HCO3), ammonium nitrogen (N_NH4), nitrate (N_NO3) and nitrite (N_NO2) 512 
concentrations in the HRAPs. Bicarbonate and nitrate had relatively constant values in 513 
the different days, and the model was able to reproduce quite well the pattern of these 514 
experimental data. Ammonium and nitrite had clearly lower concentration than nitrate 515 
and much more relative variation. The RMSE values were 1.26 g C_HCO3 m-3, 0.73 g 516 
N_NH4 m-3, 1.72 g N_NO3 m-3, 0.16 g N_NO2 m-3. Altogether these results are 517 
indicative of a great nitrification activity, and it is very interesting to see how the model 518 
is very sensitive and can show slight diurnal variations which are not detected with the 519 
experimental samples. For example, it can be seen that higher simulated ammonia 520 
concentrations are observed at night when microalgae do not grow and DO 521 
concentrations are the lowest. 522 



 

Average total biomass concentration in M1 and M2 changed from approximately 523 
300 g TSS m-3 at the beginning of the experiment to 363 g TSS m-3 within four days. 524 
Simulated TSS concentrations (Fig. 6) match such growth patterns with a good accuracy 525 
(RMSETSS= 8.11 g TSS m-3). Moreover, the Fig. 6 shows the simulated curve of 526 
microalgal (XALG) and bacterial biomass (XH, XAOB and XNOB). As can be seen much of 527 
the biomass corresponds to microalgae (36.5% in average of TSS) and heterotrophic 528 
bacteria (28%). Nitrifiers biomass is comparatively very low (0.2%), however their 529 
activity is very important. The remaining solids are attributable to XS (5%) and XI 530 
(30.3%). This low amount of nitrifiers in comparison to other bacteria groups has been 531 
also obtained in previous simulation studies (Samsó and García, 2013; Krasnits et al., 532 
2009; Silyn-Roberts and Lewis, 2001). 533 

 534 
5.2. Model validation 535 
 536 
 The model was validated with experimental data obtained over four days. Solar 537 

radiation, temperature, and initial conditions of culture medium were different in the 538 
calibration and validation data sets (Table 2). Validation was conducted using the 539 
previous calibrated parameter values (Table 3). 540 

 Experimental results of the validation were similar to those of the calibration, 541 
and simulations matched pretty well the data. Fig. 7 shows the pH and DO fluctuations. 542 
The global error of the simulations was slightly higher than in the calibration 543 
(RMSEpH= 0.38 and RMSEDO= 1.88 g O2 m-3), but also the range of variation of the two 544 
parameters was much higher. Nitrates were again the N species with the higher 545 
concentration (Fig. 8). The RMSE values of each component were: RMSEHCO3= 2.25 g 546 
C_HCO3 m-3, RMSENH4= 0.85 g N_NH4 m-3, RMSENO3= 4.80 g N_NO3 m-3, 547 
RMSENO2= 0.18 g N_NO2 m-3. Simulated ammonium curve shows that the model was 548 
able to reproduce a wavelike trend of ammonium observed during the calibration, 549 
although with less accuracy (RMSENH4 values of validation was 0.85 g N_NH4 m-3 550 
against 0.73 g N_NH4 m-3 calculated from calibration result).  551 

Simulated TSS concentrations fitted well the experimental data and the RMSE 552 
had a similar value to those obtained before during the calibration (RMSETSS= 7.93 g 553 
TSS m-3). Likewise of calibration, the model could to estimate microalgal (XALG) and 554 
bacterial biomass (XH, XAOB and XNOB) over the four days of simulation (Fig. 9). Again 555 
much of the average biomass corresponds to microalgae (36.2% in average of TSS) and 556 
heterotrophic bacteria (30% in average), while nitrifiers (0.22%) had a low 557 
concentration. The remaining solids were XS (4.8 %) and XI (28.7 %). The relative 558 
proportion of particulate components respect to TSS obtained from model validation 559 
matches pretty well to those provided from the calibration.   560 

 561 
5.3. Model applications 562 
 563 
5.3.1. Analysis of factors affecting microalgae growth 564 
 565 



 

These results of high nitrate concentration (in average 41.2 g N_NO3 m-3 from 566 
calibration results) in conjunction with the relatively low microalgae biomass (in 567 
average 128 g TSS m-3from calibration results) suggest C limitation for the growth of 568 
microalgae (note that nitrifiers and microalgae compete for inorganic carbon). In fact 569 
the C:N average ratio in the culture medium was 1:2. In general it is considered that 570 
microalgae growing in wastewater systems such as HRAP, in which no external carbon 571 
dioxide is supplied, are usually carbon limited (Park and Craggs, 2011; García et al., 572 
2010; Oswald, 1988; Buhr and Miller, 1983). 573 

With a deep analysis of model outputs this hypothesis could be tested and it 574 
could be investigated which factor is more affecting microalgae concentration. Fig. 10 575 
shows the changes of Monod-limited functions values for inorganic carbon, nitrate and 576 
ammonium, as well as the light factor fL(I) (Processes 1a, 1b, in Table S1 in Supporting 577 
Information). As can be seen, Monod functions had values near 1 and therefore 578 
microalgae were no limited by carbon or nitrogen, rejecting the hypothesis of carbon 579 
limitation. In fact, microalgae were strongly influenced by the light factor fL(I), that had 580 
values clearly lower than 1 and reduced growth from 40 to 60 %. This factor takes into 581 
account the effects of light intensity (e.g. photoinhibition, photolimitation and light 582 
attenuation) and is considered to be the main limiting factor in pure microalgae systems 583 
(Larsdotter, 2006 REVISA QUE ESTA REFERENCIA SEA ADECUADA PARA 584 
“PURE SYSTEMS”). Fig. 11 shows the changes in incident light intensity (I0) and 585 
subsequent changes in pond average light intensity (Iav) (Eq. 3), which had a direct 586 
effect on the values of the light factor. The effect of the light factor fL(I) on microalgae 587 
growth can be detected in Fig. 6b, where the slope of the main pattern of the curve 588 
slightly changes from days 1-2 to 3-4.  589 

 590 

 591 
Fig. 10. Changes in the microalgae Monod-limited functions for inorganic carbon, nitrate and 592 

ammonium, and in the light factor (fL) over the 4 days of the experiment. Results obtained from 593 
calibration. 594 
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 598 
Fig. 11. Changes in in incident light intensity (I0) (green line) and average light intensity in the 599 

pond (Iav) (red line) evolution over the 4 days of the experiment. Results obtained from calibration. 600 
 601 
In addition, it is known that the growth of microalgae is highly dependent on 602 

temperature; it increase when optimum temperature is reached and drastically decrease 603 
when optimum temperature is exceeded (Solimeno et al., 2017; Dauta et al., 1990). The 604 
effect of the photosynthetic thermal factor on microalgae growth is shown in Fig. 12 605 
(Processes 1a, 1b, in Table S1 in Supporting Information). As can be seen this factor 606 
lowered growth at night and midday (when water temperature was greater than 25 °C). 607 
However the global effect of the thermal factor was not as important as the light factor 608 
(having values ranging from 0.90 to 0.9.  609 

 610 

 611 
 612 
Fig. 12. Changes of the thermic photosynthetic factor (fT_FS) (blue line) and the water 613 

temperature (T) (orange line) over the 4 days of the experiment. Results obteined from calibration. 614 
 615 
5.3.2. Study case: effect of organic matter influent concentration on the relative 616 

proportion of microalgae and bacteria 617 
 618 
According to the results presented in the previous section, attenuation of light 619 

within the pond was the main limiting factor on microalgae growth. Light attenuation 620 
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depends strongly on particulate components concentration; therefore it could be 621 
expected that with lower organic matter influent concentrations the relative proportion 622 
of microalgae could increase, due to a lower growth of heterotrophic bacteria. To test 623 
this hypothesis, results from calibration were compared with two scenarios where total 624 
COD influent and initial concentration used for the calibration of particulate organic 625 
matter (except microalgae concentration) were reduced by 50% and 70%, respectively.  626 
As can be observed in Fig. 13, simulations indicated that the total biomass production 627 
(in average of TSS) increased from 5.3 g TSS m-2 d-1to 7.4 g TSS m-2d-1with the lower 628 
organic matter. Also the proportion of particulate components changed. Microalgae 629 
production is increased from 2.6 g TSS m-2 d-1to 4.7 g TSS m-2d-1, while heterotrophic 630 
bacteria and inert particulate organic matter are decreased. The negative net production 631 
of slowly biodegradable particulate matter (XS) is due to the conversion into readily 632 
biodegradable soluble organic matter (SS) through hydrolysis process catalyzed by 633 
heterotrophic bacteria. A lower concentration of heterotrophic bacteria reduces the rate 634 
of hydrolysis. Autotrophy bacteria were not considered since their concentration is 635 
usually low. 636 

Moreover, Fig. 13 shows the relative proportion of each particulate component 637 
respect to the total biomass. The proportion of microalgae in microalgae/bacteria 638 
biomass is increased trough an influent less loaded of particulate organic matter (from 639 
56% to 77%). This result is in accordance with previous study by Park and Craggs, 640 
2010, where the proportion of algae in the algae/bacteria biomass for an HRAP 641 
operating at 4-day hydraulic retention time (HRT) with CO2 addition (approximately the 642 
same of our pilot raceways HRT= 4.4 d) was around 80.5%. On the other hand, 643 
microalgae production is relatively low (4.7 g TSS m-2d-1in average) comparing to 644 
values measured by Park and Craggs, 2010 (mean areal algal productivity = 16.7 ± 7.1 g 645 
m-2d-1). The low microalgae production suggests that microalgae are limited by carbon 646 
due to the absence of CO2 addition.  Fig. 14 shows that carbon Monod functions had 647 
values near 1 and therefore microalgae were no limited by carbon. Microalgae 648 
production is reduced due to the light attenuation by the high TSS concentrations in the 649 
culture medium. Although, the light factor (fL) continues to reduce microalgae growth 650 
(~ 60%), an influent with less particulate organic matter slightly increases this factor 651 
promoting the growth of microalgae, especially at days 3-4, where the value of light 652 
factor (fL) was most limiting (Fig. 14).    653 

 654 



 

 655 
b) 656 

Fig. 13. Comparison average biomass production (TSS) as function of COD influent. Proportion 657 
of particulate components (in average of TSS) as function of COD influent. 658 

 659 

 660 
 661 
Fig. 14. Comparison between light factor (fL) evolution and microalgae Monod-limited function 662 

for inorganic carbon over the 4 days of the experiment as function of COD influent. Red colour 663 
correspond to COD = 232 g TSS m-3(calibration value) green to COD = 116 g TSS m-3 and blue to COD 664 
= 70 g TSS m-3. Continues and dotted lines correspond to light factor and Monod function values, 665 
respectively. 666 

 667 
6. Conclusion 668 

In this paper the integral microalgae-bacteria model BIO_ALGAE for 669 
microalgae culture systems is presented. Biological processes, chemical and physical 670 
parameters affecting simultaneously microalgae and bacteria cultures were implemented 671 
in COMSOL MultiphysicsTM software.  672 

Based on RWQM1 and ASM3, BIO_ALGAE model considers carbon limitation 673 
on the growth of microalgae and autotrophic bacteria, and factors to represent 674 
photosynthesis, photolimitation, light attenuation, photorespiration, temperature 675 
dependency and the hydrodynamics of the system. 676 
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Uncertainty parameters from previously sensibility analysis were calibrated and 677 
validated by comparing simulated results and experimental data from triplicate pilot 678 
raceway ponds fed with facultative pond effluent for two different periods of four days. 679 
Results of the calibration and validation have indicated that the model was able to 680 
accurately reproduce total biomass concentrations, pH, dissolved oxygen and nutrient 681 
uptake. 682 

The developed model has demonstrated to be a useful tool to simulate the 683 
performance of microalgae-bacteria wastewater treatment, in order to predict, for 684 
instance, the biomass growth of involved microorganisms (i.e. microalgae and bacteria) 685 
and their relative proportion as function of different COD influent. Moreover, the model 686 
could help to understand better physical and biochemical effects on the overall 687 
functioning system. 688 

The next step in order to better understand microalgal-bacterial wastewater 689 
treatment would be to predict the production of microalgae and nutrient uptake using 690 
the model over a long period of time. 691 
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