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Quantitative approach for the early detection of selection for
virulence of Meloidogyne incognita on resistant tomato in
plastic greenhouses12
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Departament d’Enginyeria Agroaliment�aria i Biotecnologia, Universitat Polit�ecnica de Catalunya, Esteve Terradas 8, 08860 Castelldefels,

Barcelona, Spain

Resistant tomato cultivars are an important tool to control Meloidogyne spp., which cause the highest yield losses

attributed to plant-parasitic nematodes. However, the repeated cultivation of Mi resistant cultivars can select virulent

populations. In the present study, the susceptible tomato cv. Durinta and the resistant cv. Monika were cultivated from

March to July in a plastic greenhouse for 3 years to determine the maximum multiplication rate, maximum nematode

density, equilibrium density, relative susceptibility and population growth rate of M. incognita; these were used as

proxy indicators of virulence and yield losses. The values of population dynamics and growth rate on the resistant

tomato increased year by year and were higher when it was repeatedly cultivated in the same plot compared to when it

was alternated with the susceptible cultivar and the level of resistance decreased from very to moderately resistant. The

relationship between the nematode density at transplanting (Pi) and the relative yield of tomato fitted to the Seinhorst

damage model for susceptible, but not resistant, cultivars. The tolerance limit and the relative minimum yield were

2–4 J2 per 250 cm3 of soil and 0.44–0.48, respectively. The tomato yield did not differ between cultivars at low Pi,

but it did at higher Pi values, at which the resistant yielded 50% more than the susceptible. This study demonstrates

the utility of population dynamics parameters for the early detection of selection for virulence in Meloidogyne spp.,

and that three consecutive years were not sufficient to select for a completely virulent population.

Keywords: damage function, equilibrium density, maximum multiplication rate, root-knot nematodes, Solanum lycop-

ersicum, virulence selection

Introduction

Tomato (Solanum lycopersicum) is one of the most
important crops in Europe, being cultivated mostly in
the Mediterranean region where about two-thirds of the
production comes from Italy and Spain (EUROSTAT,
2008). In Spain the annual production exceeds 4 million
tonnes in 48 617 ha, of which 38.05% is conducted
under plastic houses (MAGRAMA, 2013), mainly as a
monocrop (Talavera et al., 2012).
Root-knot nematodes (RKN), Meloidogyne spp., are

mainly responsible for yield losses caused by plant-para-
sitic nematodes on horticultural crops, primarily under
protected cultivation (Sikora & Fern�andez, 2005). In
Spain, under protected cultivation, the maximum veg-
etable yield losses due to M. incognita and/or M. javan-
ica, the most frequent RKN species in vegetable growing
areas, reached 88% on cucumber, 60% on tomato and
39% on courgette (Sorribas et al., 2005; Talavera et al.,
2009; Gin�e et al., 2014; Vela et al., 2014). Among all
available control methods to manage RKN, plant resis-
tance is the principal control method to be used in

integrated nematode management strategies, due to its
cost-effectiveness, its compatibility with other control
methods and its nil environmental impact (Starr et al.,
2002). Resistant plants are able to suppress the develop-
ment and reproduction of plant-parasitic nematodes
(Roberts, 2002). In tomato, resistance is conferred by the
Mi-1.2 gene introgressed from Solanum peruvianum
(Smith, 1944), which is active against M. arenaria,
M. incognita and M. javanica (Williamson, 1998). Nev-
ertheless, plant resistance to these nematode species con-
ferred by the Mi-1.2 gene is compromised when soil
temperatures are sustained above 28 °C (Dropkin,
1969), and/or against Mi-virulent populations or other
RKN species such as M. hapla, M. chitwoodi race 3
(Brown et al., 1997), M. enterolobi (Kiewnick et al.,
2009) or M. exigua (Silva et al., 2008). Moreover, the
genetic background of the resistant tomato plant has also
been shown to have an impact on the effectiveness of the
Mi-1.2- mediated resistance to the targeted RKN species
(Cortada et al., 2008). Despite this, resistant tomato cul-
tivars and/or rootstocks are widely used, and the
repeated cultivation of resistant genotypes can select for
Mi-virulent RKN-populations that can overcome the pro-
tective effect conferred by the Mi-1.2 gene (Williamson,
1998; Verdejo-Lucas et al., 2009). The selection of Mi-*E-mail: francesc.xavier.sorribas@upc.edu
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virulent nematode populations can be detected by an
increase of population density at the end of the resistant
crop (Pf), which tends to be similar to that achieved on a
susceptible cultivar for a given density at transplanting
(Pi). That is, when the maximum multiplication rate
(a, defined as the multiplication rate in absence of limit-
ing factors), the maximum Pf achieved by a nematode
population on a plant host under particular conditions
(M), and the equilibrium density (E, Pi at which the
plant can supply enough food to maintain the population
density at end of the crop; Pf = Pi; Pf/Pi = 1; Seinhorst,
1967), on the resistant genotype are close to those on the
susceptible cultivar. Another useful indicator of virulence
selection is the population’s growth rate (the relationship
between the multiplication rate (Pf/Pi) and Pi). This
parameter allows the comparison of the nematode popu-
lation dynamics on different plant species or genotypes
of the same plant species, the efficacy of control meth-
ods, or between cropping seasons for a given pathosys-
tem (Talavera et al., 2009; Vela et al., 2014). All these
relationships provide an insight into nematode reproduc-
tion, but do not provide information on the plants’ toler-
ance, which can be assessed by establishing the
relationship between the Pi and crop yield, as defined by
the Seinhorst damage function model (Seinhorst, 1965).
This relationship will estimate the tolerance limit (T) and
the minimum relative crop yield (m) for any given agro-
nomic conditions (Seinhorst, 1965).
Testing for virulence is usually done in pot experi-

ments at constant soil temperatures under 28 °C, using
the field nematode population as inoculum and compar-
ing its reproduction on a resistant cultivar to that on a
susceptible cultivar (Sorribas et al., 2005; Verdejo-Lucas
et al., 2009). This type of experiment has to be carried
out at the end of the field crop, but the progressive selec-
tion of a virulent population can be detected earlier using
population dynamic parameters. In this study, the maxi-
mum multiplication rate, the maximum Pf, the equilib-
rium density, and the population growth rate of
M. incognita on resistant and susceptible tomato culti-
vars were determined during 3 years in which resistant
and/or susceptible tomato plants were cultivated in
spring–summer. In addition, the effect of increasing Pi

on relative crop yield of resistant and susceptible tomato
cultivars was assessed under plastic greenhouse condi-
tions.

Materials and methods

Experiments were carried out over three growing seasons (2010,

2011 and 2012) in a 700 m2 plastic greenhouse located in
Viladecans (Barcelona, Spain). The soil texture was sandy loam

with 83.8% sand, 6.7% loam and 9.5% clay; pH 8.7; 1.8% of

organic matter (w/w) and 0.5 dS m�1 electrical conductivity.

The majority of plots were infested with M. incognita in 2007.
The RKN species was identified by the morphology of perineal

pattern, esterase pattern, and sequence characterized amplified

region (SCAR) markers (Zijlstra et al., 2000). The rest of plots

remained uninfested for comparative yield studies. From 2007

to the beginning of the experiments, susceptible tomato culti-

vars, cucumber or black fallow succeeded in rotation, with or
without the application of non-fumigant nematicides, to achieve

gradients of nematode densities.

Sixty plots of 9.6 m2 were cultivated in total. Individual main

plots comprised four planting rows, with six plants per row. In
each plot, there was 50 cm between rows and plants were

spaced 55 cm apart within rows. The distance between individ-

ual plots was 110 cm in between rows and 100 cm along rows.
The sampling plots, of 3.2 m2, were composed of the two cen-

tral rows of each plot, from which 8 plants were processed to

conduct soil, root and yield analysis. The soil sample from each

plot was prepared individually to prevent cross contamination.
Tomato plants were cultivated from 12 April to 15 July

(95 days) in 2010, from 31 March to 6 July in 2011 (98 days)

and from 5 March to 17 July (135 days) in 2012. Tomato crops

were followed by black fallow or cucumber crop to achieve a
gradient of nematode densities. In all three cropping seasons, 30

plots were cultivated with the resistant tomato cv. Monika

(Syngenta Seeds) and 30 plots with the susceptible cv. Durinta

(Seminis). Each tomato cultivar was grown in the same plot (i.e.
cultivated consecutively) in spring-summer, or alternated with

the other cultivar. Plants were irrigated by drip irrigation system

as needed, and fertilized with a solution consisting of NPK
(15-5-30) at 31 kg ha�1 and iron chelate and micronutrients at

0.9 kg ha�1. Plants were vertically trained, and weeding was

done manually. Fruits were harvested when reaching their stan-

dard commercial size. The accumulated tomato yield was
expressed as kg of fruit per plant. Soil temperatures were

recorded daily at 30-min intervals with digital temperature soil

probes (Campbell Scientific) placed at 15 cm depth.

Nematode population densities were determined at transplant-
ing (Pi) and at the end (Pf) of each crop. Samples consisted of

eight cores taken from the first 30 cm of soil with a 2.5 cm

diameter auger. Soil samples were mixed and passed through a
4-mm-pore sieve to remove stones and roots. For each experi-

mental plot, mobile juveniles (J2) were extracted from 500 cm3

of soil composite samples using modified Baermann trays

(Whitehead & Hemming, 1965) incubated at 27 °C for 1 week.
The J2 present in the soil were then collected using a 25 lm
aperture screen. The roots retained in the 4 mm sieve were

rinsed with tap water, weighed and chopped, and eggs were

extracted by blender maceration in a 1% NaOCl solution for
10 min (Hussey & Barker, 1973). Initial population density (Pi)

was expressed as J2 per 250 cm3 of soil because no roots were

found. Final population density (Pf) included both number of J2
extracted from 500 cm3 of soil and number of eggs extracted

from roots contained in this volume of soil and was expressed

as J2+ eggs per 250 cm3. The nematode multiplication rate was

calculated as Pf/Pi.
At the end of the cropping season, plants were removed from

the ground with a pitchfork. Disease severity, expressed as the

gall index (GI), was rated, using Zeck’s range, from 0 to 10

(Zeck, 1971), where 0 = complete and healthy root system and
10 = plants and roots dead. Roots were rinsed with tap water,

weighed and chopped in 1-cm-long segments; two 20 g subsam-

ples were used to extract eggs as described above (Hussey & Bar-

ker, 1973). Root infestation by the nematode was expressed as
number of eggs per gram of fresh root weight. To determine the

resistance level of the tomato cultivars assessed, the reproduction

index (RI) was calculated as the percentage of eggs per gram of
root on the resistant tomato cultivar compared to the reproduc-

tion on the susceptible one. The RI value allows the categoriza-

tion of the response of the resistant cultivar as highly resistant
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(RI < 1%), very resistant (1% ≤ RI < 10%), moderately resis-

tant (10% ≤ RI < 25%), slightly resistant (25% ≤ RI < 50%) or
susceptible (RI ≥ 50%) (Hadisoeganda & Sasser, 1982).

The maximum multiplication rate (a) was estimated by the

slope of the linear regression between Pf and the lowest values

of Pi, according to Pf = aPi (Seinhorst, 1970). The maximum
population density at the end of the crop (M) was determined

from the experimental data, and the equilibrium density (E) was

calculated according to the equation M = aE/(a � 1) (Scho-
maker & Been, 2006). The relative susceptibility was calculated

as the ratio of a or M between the resistant and the susceptible

tomato cultivars (Schomaker & Been, 2006).

Statistical analysis

Data were analysed using SAS v. 9. Values of Pi and Pf/Pi were
transformed to log10(x) to linearize, and submitted to regression

analysis (PROC REG) for each tomato cultivar and year for deter-

mination of the population growth rate. The contrast of the lin-
ear regressions between years for each tomato cultivar was

conducted using the general lineal model procedure (PROC GLM).

In addition, contrasts between the relationship between Pi and

Pf/Pi from plots in which resistant (R) or susceptible (S) tomato
were cropped one (i.e. for the resistant cultivar the underlined

letter of the following combinations were used: RSS, RSR, RRS,

RRR, SRR, SRS, SSR), two (i.e. for the resistant cultivar the

underlined letter of the following combinations were used: RRS,
RRR, SRR) or three consecutive years (i.e. for the resistant culti-

var the underlined letter of the combination RRR was used)

were carried out to determine the putative selection for virulence

according to its population growth rate. Both the GI and the
number of eggs per gram of root measured on both the resistant

and the susceptible tomato cultivars were compared for each

cropping season and between years of repeated cultivation, by
analysis of variance. Means were separated by the least signifi-

cant difference (LSD) (P < 0.05).

Annual tomato yield was compared between cultivars for each

Pi range, using the Student’s t-test. The Pi ranges were 0, 1–10,
11–100, 101–300, 301–500 and 501–1448 J2 per 250 cm3 of

soil in 2010 and 0, 10–100, 101–300, 301–500, 501–1000 and

1001–3322 J2 per 250 cm3 of soil in 2012. Data on tomato

yield for 2011 could not be included for comparison because
plants suffered blossom abortion, irrespective of the cultivar. In

addition, the relative yield of each tomato cultivar and the Pi

values were submitted to a nonlinear regression analysis using
the nonlinear procedure (PROC NLIN) in order to determine their

compliance with the Seinhorst damage function model

(y = m + (1 � m)0.95(Pi/T�1)), where m is the minimum relative

yield and T is the nematode population density above which
yield losses begin to occur. The values of m and T used to start

the iteration were estimated by plotting the experimental values

of tomato yield against log10(Pi). Contrasts with the Seinhorst
damage function model were done considering confidence inter-

vals at 95% of m and T.

Results

Mean soil temperatures ranged from 17.2 to 30.9 °C
(mean 26.0 °C) in 2010, from 19.7 to 31.4 °C (mean
25.4 °C) in 2011, and from 17.0 to 31.5 °C (mean
24.5 °C) in 2012. The number of days with mean soil
temperatures above 28 °C during tomato crops was 18,
22 and 27 in 2010, 2011 and 2012, respectively. Abso-
lute minimum and maximum soil temperatures during
the period in which mean soil temperatures were above
28 °C were 25.7 and 34.9 °C. Fluctuations of mean soil
temperatures during the 3 years of study are presented in
Figure 1.
The nematode population was able to complete two

generations during each cropping season according to the
accumulated soil temperatures (1521, 1504 and 1959 °C
DD degree days over a base temperature (Tb) of 10 °C
in 2010, 2011 and 2012, respectively) and its thermal
requirements on tomato (thermal constant (S) = 600–700
DD over Tb = 10 °C, Ferris et al., 1985).
Nematode population densities at the beginning of

tomato crops ranged from 0 to 1448 J2 per 250 cm3 of
soil in 2010, from 0 to 3749 J2 per 250 cm3 of soil in
2011, and from 0 to 3322 J2 per 250 cm3 of soil in
2012. The maximum multiplication rate, maximum pop-
ulation density, and equilibrium density of M. incognita
on both susceptible and resistant tomato cultivars each
year and during three consecutive years are shown in

Figure 14 Fluctuation of mean daily soil

temperatures in the plastic greenhouse

located in Viladecans (Spain) infested by

Meloidogyne incognita and cultivated with

susceptible tomato cv. Durinta and resistant

tomato cv. Monika. Soil temperatures were

taken at 15 cm depth. The cropping period

is indicated by the shaded areas.
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Table 1. The relative susceptibility of the resistant
tomato cv. Monika increased during both repeated and
alternated cultivation; however, after the third year of
repeated cultivation, the a value was still only 25% that
of the susceptible cultivar (Table 1).
The relationship between Pi and Pf/Pi on the suscepti-

ble tomato did not differ among the three growing sea-
sons (intercept P = 0.3175; slope P = 0.7034) and data
was pooled to obtain a general regression. On the resis-
tant tomato, the relationship between Pi and Pf/Pi

differed among the cropping seasons (intercept
P < 0.0001; slope P = 0.7558) as well as from that of
the susceptible cultivar (Fig. 2a). During the three plant-
ing seasons, the GI and the number of eggs per gram of
root on the resistant tomato ranged from 14.1 to 30.7%,
and from 3.6 to 9.4%, respectively, of those on the sus-
ceptible tomato. Cultivar Monika remained very resistant
(RI < 10%) over the three cropping seasons (Table 2).
After the repeated cultivation of the susceptible culti-

var, again, the relationship between Pi and Pf/Pi did not

Table 1 Maximum multiplication rate (a), maximum population density (M, J2+ eggs per 250 cm3 soil) and equilibrium density (E, J2+ eggs per

250 cm3 soil) of Meloidogyne incognita on resistant tomato cv. Monika and susceptible tomato cv. Durinta after each year of cultivation (2010, 2011

and 2012) and after 1, 2 or 3 consecutive years of cultivation

Susceptible Resistant Resistant:susceptible (%)

a M E a M E a M E

2010 9774 12 956 12 955 105 2254 2233 1.07 17.40 17.23

2011 8819 15 173 15 171 400 17477 1748 4.54 11.55 11.52

2012 8205 14 086 14 004 654 4176 4170 7.97 29.65 29.77

After 1 yeara 9659 13 444 13 422 270 2255 2247 2.80 16.77 16.74

After 2 years 8819 16 846 16 845 350 4897 4880 3.96 29.1 28.97

After 3 years 8457 19 959 19 957 1932 5275 5272 22.84 26.43 26.42

aFor 1 year, data from 53 plots for each tomato cultivar in which only one resistant or susceptible tomato were cultivated or the first resistant or sus-

ceptible tomato crop if more than one was cultivated (i.e. for the resistant cultivar the underlined letter of the following combinations were used:

RSS, RSR, RRS, RRR, SRR, SRS, SSR). For 2 consecutive years, 23 plots for each tomato cultivar (i.e. for the resistant cultivar the underlined letter

of the following combinations were used: RRS, RRR, SRR). For 3 consecutive years, eight plots were used for each tomato cultivar (i.e. for the resis-

tant cultivar the underlined letter of the combination RRR was used).

Figure 2 5The relationship between initial

population density (Pi, J2 per 250 cm3 of

soil) and the multiplication rate (final

population density/initial population density,

Pf/Pi) of Meloidogyne incognita over three

cropping seasons (a) and over 1, 2 or 3

consecutive years of cultivation (b) of the

susceptible tomato cv. Durinta (TS and TS

years) and the resistant cv. Monika (TR2010,

TR2011 and TR2012, and 1 year TR, 2 years

TR and 3 years TR) in a plastic greenhouse

in Viladecans (Spain).
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differ, and data was pooled to obtain a general regres-
sion (intercept P = 0.9006; slope P = 0.8515); however,
the relationship between Pi and Pf/Pi did differ on the
resistant tomato (intercept P = 0.0327; slope
P = 0.0295) and also between the two tomato cultivars
(Fig. 2b). The GI and the number of eggs per gram of
root obtained on the resistant tomato after 1, 2 and
3 years of repeated cultivation were 17.1, 21.4, and
35.3%, respectively and, on the susceptible cultivar Dur-
inta, were 3.9, 8.6 and 10.1%, respectively (Table 2).
Both GI and the number of eggs per gram of root

obtained after 3 years of cultivation were higher
(P < 0.05) than those obtained during the first and the
second year. After 3 years of repeated cultivation of the
resistant tomato, the level of resistance decreased from
very to moderately resistant (Table 2).
Tomato yield differed between cultivars when Pi was

higher than 100 J2 per 250 cm3 of soil in 2010 and
when Pi was higher than 10 J2 per 250 cm3 of soil in
2012 (Table 3). At the highest Pi, the resistant cv. Mon-
ika yielded 41 and 80% more (P < 0.05) than the sus-
ceptible cv. Durinta in 2010 and 2012, respectively.
The relationship between Pi and the relative yield fit-

ted to the Seinhorst damage model in 2010 and 2012
(Table 4) on the susceptible tomato cultivar, but not for
the resistant cv. Monika. The tolerance limit (T) and the
relative minimum yield (m) in 2010 were 2 J2 per
250 cm3 of soil and 0.48, respectively, and, in 2012,
were 4 J2 per 250 cm3 of soil and 0.44, respectively.

Discussion

This study demonstrates, for the first time, the utility of
population dynamic parameters for the early detection of

Table 2 Galling index (GI), eggs per gram of root and reproduction index (RI) of Meloidogyne incognita, on tomato cv. Durinta (susceptible) and

tomato cv. Monika (resistant) in 2010, 2011 and 2012 and in repeated cultivation (after 1, 2 and 3 years) in a plastic greenhouse in Viladecans

(Spain)

GIa Eggs per gram of root

RIb CategorySusceptible Resistant Susceptible Resistant

2010 6.5 � 0.4 b 1.3 � 0.1 b 5147 � 546 b 183 � 90 b 3.1 VR

2011 7.1 � 0.3 ab 1.0 � 0.1 b 7228 � 251 ab 378 � 62 b 5.2 VR

2012 7.5 � 0.3 a 2.3 � 0.1 a 8329 � 832 a 780 � 143 a 9.4 VR

After 1 yearc 7.0 � 0.3 a 1.2 � 0.1 b 6637 � 395 b 261 � 57 b 3.9 VR

After 2 years 7.0 � 0.2 a 1.5 � 0.2 b 7392 � 390 ab 632 � 136 b 8.5 VR

After 3 years 6.8 � 0.3 a 2.4 � 0.4 a 9574 � 2220 a 969 � 264 a 10.1 MR

Data are mean � standard error. Data within the same column followed by the same letter did not differ (P < 0.05) between 2010, 2011 and 2012

and in repeated cultivation according to the LSD test.
aGI (galling index) on a scale from 0 to 10, where 0 = complete and healthy root system and 10 = plants and roots dead (Zeck, 1971).
bRI (reproduction index) calculated as the number of eggs per gram of root on the resistant cv. Monika and divided by the number of eggs per

gram of root on the susceptible cv. Durinta 9 100. Categories: VR: very resistant (RI < 10%), MR: moderately resistant (10% ≤ RI < 25%) (Hadisoe-

ganda & Sasser, 1982).
cFor 1 year, data from 53 plots for each tomato cultivar in which only one resistant or susceptible tomato were cultivated or the first resistant or sus-

ceptible tomato crop if more than one was cultivated (i.e. for the resistant cultivar the underlined letter of the following combinations were used:

RSS, RSR, RRS, RRR, SRR, SRS, SSR). For 2 consecutive years, 23 plots for each tomato cultivar (i.e. for the resistant cultivar the underlined letter

of the following combinations were used: RRS, RRR, SRR). For 3 consecutive years, eight plots were used for each tomato cultivar (i.e. for the resis-

tant cultivar the underlined letter of the combination RRR was used).

Table 3 Yield (kg plant�1) of resistant tomato cv. Monika and

susceptible tomato cv. Durinta in soil infested by Meloidogyne

incognita in a plastic greenhouse in Viladecans (Spain) in 2010 and

2012 with increasing initial population (Pi) range

Year Pi range

Yield (kg plant�1)

Monika Durinta

2010 0 2.3 � 0.4 2.6 � 0.3

1–10 1.9 � 0.04 1.8 � 0.2

11–100 2.1 � 0.3 1.7 � 0.2

101–300 2.3 � 0.2 1.1 � 0.1*

301–500 1.9 � 0.1 1.2 � 0.1*

501–1448 2.2 � 0.2 1.3 � 0.2*

2012 0–10 2.0 � 0.5 1.3 � 0.4

11–100 2.2 � 0.2 0.9 � 0.1*

101–300 2.2 � 0.3 0.9 � 0.2*

301–500 2.2 � 0.2 0.5 � 0.1*

501–1000 2.3 � 0.2 0.5 � 0.02*

1001–3322 2.5 � 0.3 0.5 � 0.3*

Values are means � standard deviations per each Pi range. Data

within the same row with * are significantly different according to Stu-

dent’s t-test (P < 0.05).

Table 4 Parameters of the Seinhorst damage function model for

tomato cv. Durinta cropped in soil infested by Meloidogyne incognita

in a plastic greenhouse in Viladecans (Spain) in 2010 and 2012

Year m T (J2 per 250 cm3 of soil) R2 P

2010 0.48 � 0.09 2.02 � 0.98 0.94 <0.001

2012 0.44 � 0.18 4.43 � 4.26 0.82 <0.001

Data are mean � confidence interval (95%). Seinhorst damage func-

tion model: y = m + (1 � m)0.95(Pi/T�1), where m is the minimum rela-

tive yield, Pi is the initial population density and T is the tolerance limit.
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selection for virulence of RKN, and confirms that three
successive crops of the resistant cv. Monika were not suf-
ficient for selection of a completely virulent population,
as previously stated (Sorribas et al., 2005; Verdejo-Lucas
et al., 2009).
The results of the present study confirm the efficacy of

Mi-1.2-mediated resistance to supress M. incognita
reproduction and disease severity without significant
yield losses compared to susceptible tomato cultivars
(Rich & Olson, 2004; Sorribas et al., 2005). However,
the resistant tomato cultivar did not confer immunity
against M. incognita because a proportion of the nema-
tode population was able to infect, develop and repro-
duce on it. Thus, a low proportion of the nematodes
within the studied population were able to overcome the
resistance provided by the Mi-1.2 gene when they was
exposed for the first time to the resistant tomato cultivar.
The percentage of J2 that was able to reproduce on the
Mi resistant tomato cv. Monika increased over the years,
after repeated cultivation, but without achieving an
entirely Mi-virulent population (RI > 50%). In this
study, population dynamic parameters (a, M and E) were
used to assess the selection of Mi-virulent populations.
Over the experimental period, the a, M, and E values on
the resistant cultivar increased to 25% of the values on
the susceptible cultivar, indicating that selection for viru-
lence was taking place. Evidence of selection for Mi viru-
lence was also given by the population growth rate
(relationship between Pf/Pi and Pi), which was higher
when the resistant tomato was repeatedly cultivated in
the same plot than when it was alternated with the sus-
ceptible cultivar, as previously found by Talavera et al.
(2009). Thus, the maximum multiplication rate and the
equilibrium density increased from 1.5 to 25.1% and
from 2.9 to 17.1% of the values obtained on the suscep-
tible cultivar, respectively. GI and eggs per gram of root
also increased after repeated cultivation of the resistant
tomato (2 and 3.7 times, respectively), but did not reach
the values observed on the susceptible cultivar, which
were 2.8 and 9.9 times higher, respectively.
The tomato cv. Monika was very resistant to

M. incognita when it was alternated with the susceptible
cultivar, but was only moderately resistant (RI = 10.1)
the third year after repeated cultivation in the same
plots. This indicates that selection for Mi-virulence was
occurring, although the research period was not sufficient
to obtain a fully virulent population. Some reports have
shown an increase in the reproduction index of
M. incognita after 3 years of repeated cultivation of the
resistant cv. Monika in a plastic greenhouse; the cultivar
was found to be only slightly (RI = 26), rather than mod-
erately resistant (Sorribas et al., 2005), or susceptible
(RI = 108), rather than slightly resistant (Verdejo-Lucas
et al., 2009) to the nematode population by the end of
these studies, indicating that selection for Mi-virulence
was underway. Some RKN populations can be naturally
Mi-virulent without previous exposure to an Mi-resistant
cultivar (Ornat et al., 2001), can be selected (Wil-
liamson, 1998), or can be achieved progressively after

repeated cultivation of resistant genotypes (Eddaoudi
et al., 1997). The values resulting from the population
dynamics, as well as those coming from the population
growth rates, could be helpful for the early detection of
such selection for virulence.
In the present study, sustained daily mean soil temper-

atures above 28 °C were only achieved at the end of the
crop, but the temperature fluctuated over each day. It
has been demonstrated that tomato resistance under
intermittent elevated soil temperatures above 28 °C did
not compromise the resistance (Verdejo-Lucas et al.,
2013). In fact, a minimum of 48–72 h at constant tem-
peratures of 32 °C were needed for breaking tomato
resistance (Dropkin, 1969), conditions that did not occur
in the present study. Thus, it was not considered that
high soil temperatures in the study caused failure of the
Mi-1.2 gene.
The tolerance limit of both tomato cultivars did not

differ, but the resistant cultivar yielded about 50% more
than the susceptible in both cropping seasons, confirming
previous results observed in the Mediterranean agroeco-
logic conditions (Sorribas et al., 2005; Talavera et al.,
2009).
Including plant resistance in rotation sequences can

be a useful tool to prevent the build up of RKN densi-
ties and to reduce yield losses in the following suscep-
tible crop, as has been previously reported (Rich &
Olson, 2004; Talavera et al., 2009). Nonetheless, when
the selection for Mi-virulence begins, both virulent and
avirulent subpopulations coexist in the same agricul-
tural soil and, as the present results showed, the
selected Mi-virulent subpopulation is maintained,
regardless of the following susceptible crop. However
the fitness associated with the acquisition of this Mi-
virulent status by the nematode population is unclear.
In some cases, it has been associated with a reduction
of infective capacity and/or fecundity on susceptible
genotypes or other susceptible plant hosts (Djian-
Caporalino et al., 2011). Other reports do not identify
any adverse cost of fitness (Tzortzakakis et al., 1998)
and others indicate both adverse and no effect,
depending on the virulent nematode lines (Petrillo &
Roberts, 2005). For this reason, the only way to main-
tain the efficacy of the Mi-1.2 resistance gene in
tomato cultivars (S. lycopersicum 9 S. peruvianum) in
the long term is to prevent an increase in the fre-
quency of Mi-virulent individuals over the nonvirulent
within the population. As the virulence is highly speci-
fic to a given resistance gene, rotation with crops con-
taining other single resistance genes and non-host crops
could promote the durability of the resistance con-
ferred by the Mi-1.2 resistance gene (Djian-Caporalino
et al., 2011).
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