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ABSTRACT

The use of the Hilbert-Huang transform in the asiglyof biomedical signals has
increased during the past few years, but its useefpiratory sound (RS) analysis is still
limited. The technique includes two steps: empirit@de decomposition (EMD) and
instantaneous frequency (IF) estimation. Although mode mixing (MM) problem of
EMD has been widely discussed, this technique nages to be used in many RS analysis
algorithms.

In this study, we analyzed the MM effect in RS signeecorded from 30 asthmatic
patients, and studied the performance of ensemM® EEEMD) and noise-assisted
multivariate EMD (NA-MEMD) as means for preventingis effect. We propose
gquantitative parameters for measuring the sizejatémh of MM, and residual noise level
of each method. These parameters showed that EEMDgood solution for MM, thus
outperforming NA-MEMD. After testing different IFs@mators, we propose Kay's
method to calculate an EEMD-Kay-based Hilbert spectthat offers high energy
concentrations and high time and high frequencyluti®ns. We also propose an
algorithm for the automatic characterization of thmmous adventitious sounds (CAS).
The tests performed showed that the proposed EEMBHased Hilbert spectrum makes
it possible to determine CAS more precisely thaneottonventional time-frequency
techniques.

1. Introduction

discontinuous (DAS) adventitious sounds, as well as

Respiratory sounds (RS) are multicomponent, noatine different types of noise, such as clicks, backgdoun
and non-stationary signals. In general, RS sigmats talking, or heart sounds. Normal RS are randonsainne,

comprised of normal RS and may contain superimposed’Vhe“_eas CAS are quasi-periodic waveforms with a
abnormal RS, such as continuous (CAS) and duration of more than 80-100 ms and a fundamental

frequency of over 100 Hz, and DAS are transient and
short sounds (around 20 ms), with high frequency

*Corresponding author at: Institute for Bioengiriegrof Catalonia components (above 300 Hz) [1,2]. Therefore, RS are
(IBEC), Baldiri Reixac, 4, Tower |, 9th floor, 088Barcelona, Spain. complex signals made up of a set of componentd) eac
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one having different time-frequency features.
Due to the different and variable characteristitRS,
time-frequency distributions (TFDs) have become the



the most commonly used and straightforward teclesqu image processing techniques, including local peak
for RS characterization. In CAS analysis, specaoghas  detection and component linking [31] and blind seur
been the most widely used TFD [3-7], despite itsr@nmd separation [32], among others.

window-dependent resolution. Nevertheless, more The Hilbert-Huang transform (the HHT) [33,34] has
advanced TFDs have recently been proposed for CASeen proposed as a new adaptive technique for the
analysis, either through combining wavelet decontipss ~ analysis of nonlinear and non-stationary signalee T
with third order spectra features [8], or by deriyia technique consists of combining empirical mode
temporal-spectral dominance spectrogram from tlegtsh decomposition (EMD) and Hilbert spectral analysis t
time Fourier transform [9]. obtain an alternative TFD of a signal, called thiébétt

As opposed to CAS analysis, DAS analysis requiresspectrum (the HS), as a function of its IF and
TFDs with higher time resolution than spectrogram. instantaneous amplitude (1A).

Wavelet-based techniques, such as scalogram, teare b The HHT has some advantages over TFD-based IF
widely used for DAS detection [10-12]. In additidDAS estimation methods, which is why it was chosenR&
have also been analyzed by means of nonlineamnalysis in this paper. Since EMD is an adaptivd an
techniques, such as kurtosis and fractal dimensisn direct decomposition technique, it makes it possitd
measures of gaussianity and complexity, respegtile- retrieve the modes of a multicomponent signal, echll
15]. intrinsic mode functions (IMFs), without any a piio

Besides Fourier and wavelet-based techniques, dne dknowledge of the signal characteristics. In additidHT-
the most relevant parameters of time-frequencyyaiml based IF estimation is performed by means of
for nonlinear and non-stationary signals, such &8s iR differentiation; therefore, the HHT does not suffeam
the instantaneous frequency (IF), which consistghef  the uncertainty principle and simultaneously pregid
frequency content of a signal at each time insfa6i. both high time and high frequency resolutions. Mg,
The concept of IF has led to the definition of THDat since IF and IA sequences are separately calcufated
highly concentrate the energy of a signal alonglits  each component, we can work independently in either
which makes it possible to identify signal compdsen time-frequency or a time-energy domain, withoutihgv
more precisely. Several IF estimators have beepgsexd, to process an entire TFD. Furthermore, although the
such as the phase derivative of the analytic signalproperties of the HHT have led to its applicatian &
associated with a real signal [17,18], zero-cras$if], number of biomedical signals [35-38], it has raregen
or adaptive IF estimators based on data modeli6g?P. used for RS analysis, as there are only a few esudi
However, the most common IF estimators are based omainly focusing on DAS detection [39-41]. However
TFDs [16,23], which give IF estimates with lower found in our previous studies that the HHT also
variance. performed well in CAS detection [42,43], which iirspl

Quadratic TFDs, such as the Wigner-Ville distribati  us to analyze its performance for CAS charactadmah
(WVD), were defined based on the IF concept with th depth and explore its advantages over spectrogsich
aim of improving the resolution and concentratioh o has traditionally been the most commonly used tieeken
energy of spectrogram [16]. However, a major draskba for this purpose.
of the WVD is the presence of cross-terms, which Another reason for which this study was carriedvoas
complicate IF estimation, especially in multicompoh  that most proposed HHT-based methods for RS asalysi
signals. In order to reduce cross-terms, other iqtigd  [39-42] used the original EMD, which has a modeimgx
TFDs have been proposed as filtered versions of thgMM) effect. The MM effect consists either of an FV
WVD, using different time-frequency smoothing kdepe containing components of widely different frequeascor
such as the smoothed pseudo-WVD [24] or the reducedf a signal component appearing in different IMB4][
interference distributions [25], which reduce crtmsns Due to this MM, we found that EMD, when applied to
while maintaining high resolution. some RS signals, resulted in poor separation ofigisal

In addition to these smoothing approaches for eross components [42]. Nevertheless, the original EMD has
term reduction, other techniques have been proptsed been used in other RS analysis approaches [45-48].
increase the signal energy concentration and regolof Among the proposed solutions for MM, the ensemble
different TFDs. For example, the adaptive shoretim EMD (EEMD) [44,49] and the noise-assisted multiasi
Fourier transform [26,27] uses a variable windonglé EMD (NA-MEMD) [50] are some of the most well-
adapted to signal characteristics in order to imerthe established and widely used methods, but they raredy
resolution of spectrogram. Moreover, reassignmentbeen applied to RS analysis [43,51]. Moreover, the
techniques [28,29] are alternative approaches far t implementation and performance of these methods
enhancement of TFDs, especially the synchrosqugezindepend on each application and a detailed anadygise
transform [30], which allows mode retrieval in MM effect and the performance of EEMD and NA-
multicomponent signals. MEMD in RS signals is lacking.

Beyond the calculation of the aforementioned TFxs f  The aim of this study is to provide an in-depth
IF estimation, strictly speaking, estimating the dRly evaluation of the performance of the HHT for RS
makes sense for monocomponent or narrowband signalanalysis, which led us to calculate the HS withhhig
[18]. For that reason, estimating IF from the peaks resolution as an alternative representation to @wvgron
TFDs in multicomponent signals requires an extep $o the performance of spectrogram, especially for CAS
extract and isolate different components before IFcharacterization. The study is divided into twotpaFirst,
estimation methods can be applied to each componenive analyze the MM effect of EMD in recorded RS siign
For this purpose, a conventional approach congifts and evaluate the performance of EEMD and NA-MEMD
segmenting the TFD of a multicomponent signal using



to reduce this effect using a number of quantieativ

a

parameters (section 4). Second, we evaluate the 1000 t=:
performance of three different IF estimators toagbta ~ 800} k=2
suitable EEMD-Kay-based HS for CAS characterization T I =1
(section 5), and we propose a new method for the & 600 —_—
automatic segmentation and characterization of CAS 2 40}
based on the HS processing (section 6). This akgori £ ——
was tested using a set of synthetic and recorde® CA 200}
signals, which allowed us to compare the perforraaofc 0 . . . . ‘ . .
the HS and Spectrogram_ b 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1000 [
2. Study dataset
< 800¢
2.1. Recorded RSsignals I:, 600 /
Recorded RS were obtained from the Pulmonary g
Function Testing Laboratory of Germans Trias i Pujo 5 %0 /
University Hospital in Badalona, Spain. All recorgs = 200t
were acquired from 30 patients with asthma. Four
piezoelectric contact microphones (TSD108, Biopac 00 o1 02 03 04 05 06 o7
Systems, Inc.) were placed on the surface of thierga’ Time (s)

backs, on either side of the spinal cord, at theeband
near the upper lobe of the right/left lung. All sers were
attached to the skin using adhesive rings. Airfiignals
were recorded simultaneously with sound signalegusi
pneumotachograph (TSD107B, Biopac Systems, Indl.). A
signals were sampled at 12,500 samples/s, usirG}kat 1
analogue-to-digital converter (MP150, Biopac Sysem
Inc.). After digitalization, the sound signals were
decimated by a factor of 4 to 3,125 samples/s &ed t
respiratory phases were automatically detectedgutsia
airflow signal as the reference signal. After cycle

segmentation, we selected RS from 636 inspiratory
phases, with 353 normal sounds signals and 283 CAS;;(t) =1 c1x(t) + czr41(t) t € (0.025,0.275]

signals, including both monophonic and polyphonkSC
2.2. Synthetic signals

In order to test the performance of different IF

Fig. 1. Theoretical IF of synthetic CAS.IF laws of monophonic CAS
signals with slightly variable 1€, «(t) (a), and monophonic CAS signals
with frequency sweeping(t) (b).

wheref,x are the IF sequences of signalgt) (Fig. 1-b).

Finally, polyphonic CAS signals were formed by
combiningcik(t) andck(t) as follows:

1 (t) t €[0,0.025]
5)
c(t) t € (0.275,0.3]
t=0..03s5k=1..3

We obtained 11 different synthetic CAS signalsoitalt
Each synthetic CAS signal was added to a recordgd R

estimators and the proposed CAS characterizatiorsignal containing normal RS at different signahtse

algorithm, we generated several synthetic CAS s$igna
Monophonic CAS signals with slightly variable IF&nms
modeled as sinusoid frequency modulated signals:

c1i(t) = sin[2nf.(k)t + 0.6 sin(2m15t)] (1)

109, 1 0(2nf.(k)t + 0.6 sin(2m15t))

2m ot  2m ot

fie(®) = = f.(k) + 9 cos(2m15t)

)

t=0..03s,k=1..4,f =[80,150,250,550]

wherefy i are the IF sequences of signalgt) (Fig. 1-a).
Monophonic CAS signals with frequency sweeping were
modeled as linear frequency modulated signals:

Con(t) = sin[2nf, ()t + 2mu(k)t?] 3)
10 1902 k k)t?

for®) = o (gj"‘ - (2nfe( );: TR _ e k) + 2uie

(4)

t=0..025s,k=1..4,f
u = [100,150,300,500]

[80,150,250,550],

ratios (SNRs), thus simulating real CAS that
superimposed on normal RS. Since normal RS usually
have a sharp energy drop at about 200-250 Hz [1,2],
synthetic CAS signals containing components bel6@ 2
Hz (cik(t), cok(t), and cs(t) for k=1,2), which overlap
with normal RS, were added at SNRs from -4 dB to 12
dB, in increments of 2 dB. However, synthetic CAS
signals containing components above 200 ldz(1),
C2x(t), andcsk(t) for k>2) were added at SNRs from -8 dB
to 12 dB, in increments of 2 dB. As a result, atof 109
synthetic CAS signals were obtained, including 80
monophonic and 29 polyphonic CAS signals.

3. Overview of the HHT

The HHT consists of two steps, EMD and the Hilbert
transform. The central step of the HHT is EMD, whic
decomposes a multicomponent sigsé) into a set of
zero mean narrowband components (IMFs), for which
meaningful IF and IA can be calculated at any pbint



means of the Hilbert transform. The main advantafje
EMD is that it is a direct and adaptive decompoaiti
technique, which extracts each IMF directly frone th
original signal by means of a sifting process [38} a
result of this process, the sigrsftl) can be expressed as a
linear combination of its components as follows:

s(®) = Y1 IMF,() +1,() (6)

wheren is the number of extracted IMFs angt) is the
residue ofs(t). Having decomposes(t) by EMD, IF and
IA can be calculated by the phase derivative angtlepe
of the analytic signal of each IMF and, therefc(€), can
be expressed as a function of its IF and |A a®¥ait

s(t) = Y1 a;(t) cos(f 2mfi(t)dt) + 7, (t) )

where fi(t) and ai(t) are the IF and IA of théth IMF,
respectively. Building on expression (7), we caarrange
IF and IA in a three-dimensional TFD of the ammiuy
the HS.

4. Evaluation of the EMD step of the HHT in RS
signals

4.1. The MM effect of EMD in RSsignals

Ideally, each IMF of a multicomponent signal would

We calculated the power spectral density (PSD)aahe
IMF using Welch’s periodogram with a Hanning window
of 80 ms, 40 ms overlap, and 1,024 points for th&t f
Fourier transform. In order to make different PSDs
comparable, we divided them by their respective
maximum value (Fig. 3).

As shown in Fig. 3, MM is evident because IMF 2
includes two widely separated frequency components,
which correspond to the CAS components. Moreover, t
CAS component at around 140 Hz is included wittothb
IMF 2 and IMF 3, whose PSDs overlap to a greatréxte
Due to this MM effect, the obtained IMFs do not umes
that the application of the Hilbert transform woulield
physically meaningful IF estimates.

4.2, EEMD and NA-MEMD as solutions for mode mixing

Over the past few years, many studies have focaeed
solving the MM effect of EMD. Although several
solutions have been proposed, EEMD and NA-MEMD
are the most well established and widely used nastho
These methods are examples of noise-assisted tge®)i
which use the benefits of noise in data analysis.

The MM effect occurs when some frequency scales are
missing in the original signal. In this case, eopels
calculated during the sifting process are influehiog the
extrema of widely different frequency components.

contain a few different frequency components of the However, when applied to white noise, which hadesca

signal. However, due to the MM effect of EMD, some

uniformly distributed across the entire time-frenoe

components may appear within different IMFs, thus plane, EMD acts as an adaptive dyadic filter b&ik3].

leading to some IMFs containing components of widel
different frequencies.

is added to a
components with

Accordingly, when white noise
multicomponent signal, all signal

Assessing the MM effect in multicomponent random different frequencies are automatically separatgdhe

signals, such as RS, is a complex task, since theve a
priori knowledge of the signal component charastis.
Nevertheless, this effect can be clearly obserme@AS

reference scales set by white noise.
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Fig. 2. The MM effect of EMD. IMFs obtained by meaof EMD on an RS signal with polyphonic CAS.



Based on the aforementioned principle, EEMD wast fir CAS.
proposed by Wu and Huang in 2009 [44]. The method The choice of the EEMD and NA-MEMD parameters
consists of the iterative application of the orgiEMD to highly depends on the type of signal to be analyzed
a signal plus multiple realizations of white noiSehe Therefore, we followed some basic instructions, as
final IMFs are calculated as the mean of thoseltiagu  described in [44] and [55], to choose the analysis
from each iteration. Although the resulting IMFsntain parameters of each method. Input parameters for EEM
a residual noise level, it can be almost totallpcedled include the number of iterations and the SNR fag th
using an appropriate number of iterations. added noise. As explained in section 4.2, the vesid

The MEMD method was later proposed by Rehman andnoise level ) of the obtained IMFs can be reduced by
Mandic [54], initially as an extension of EMD for increasing the number of iterations. Usually, a few
multivariate signals. Like EMD, MEMD has a dyadic hundred iterations are enough to significantly tedues.

filter bank property on white noise [50]. Baged this ~In fact, nies decreases following the rule,.; = n/vN,
property, NA-MEMD was proposed to avoid MM in wheren is the amplitude of the added noise &hé the
multivariate signals. The idea behind NA-MEMD catsi  number of iterations [44]. Based on this rule, veeided

of adding extra channels containing different mlons  to use square numbers for the number of iterationsa
of white noise to the original signal, and then wide range of SNRs.
decomposing the resulting multivariate signal byamee  With regard to NA-MEMD, input parameters include
of MEMD. This method can also be applied to unia&@i  the number of noisy extra channels, the amplitudthe
signals. In this case, only those IMFs obtainedHerfirst added noise, and the number of directions useden t
channel (original signal) are retrieved. MEMD process. At least two noisy extra channelsugdho
To provide an example of the performance of noise-pe used and, as a rule of thumb, the minimum nurober
assisted techniques in avoiding the MM effect, va@eh  directions should be twice the number of data chknn
applied the EEMD method to the polyphonic CAS signa [55]. Therefore, for EEMD and NA-MEMD, all possible

shown in the previous section, 4.1, using 100 ti@ma  combinations of the following parameters were t$te
and noise added at an SNR of 0 dB. The resultingsIM each RS signal:

are shown in Fig. 4. ) .

reduce MM, as different frequency components are 100,225, and 400; SNRs: -9, -6, -3, 0, 3, 6, 9,&lfl

separated in different IMFs. This separation ofjfiency

components is better observed in the PSDs of the NA-MEMD - number of extra channels: 2, 3, and 4;

resulting IMFs, shown in Fig. 5. number of directions: 8, 16, 32, and 64; SNRs-69 -
Comparing these PSDs with those shown in Fig. 8, it 3, 0,3,6,9, 15, and 21.

clear that noise has forced the frequency compsnient We programmed the EEMD algorithm using the

be uniformly distributed along the whole frequemnagge, original EMD algorithm reported by Rilling and Finin
thus separating widely different frequency compasen [56,57].

into different IMFs.

Although both EEMD and NA-MEMD manage to Ir —IMF1
reduce MM, there are some differences in the ~IMF 2
performance of the two methods, which are analyjged 2%75[ ||+ M o IMF 3
depth in the following section. 3 IMF 4

= 05 IMF 5
4.3. Performance assessment of EMD, EEMD, and NA- §025
MEMD in recorded RSsignals e

With the aim of comparing the performance of EMD, 050 100 200 300 500 1000
EEMD, and NA-MEMD in RS signal decomposition, we Frequency (Hz)
applied these methods to the 636 RS signals redaade Fig. 5.Separation of frequency components by EEMDPSDs of
described in section 2.1, which included normal &@  MFs showninFig. 4.
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For the NA-MEMD method, we used the Matlab code As shown, NA-MEMD usually produces 4 IMFs above

provided by Mandic [55], which applies the MEMD 250 Hz, whereas EEMD only produces 2 IMFs in the

algorithm reported by Rehman and Mandic [54]. same frequency range. Therefore, NA-MEMD also
The results were evaluated by means of six quéimtta produces more redundant IMFs at high frequenciea th

parameters that allowed us to choose the mostbémita EEMD.

method for RS signal decomposition. The proposed In addition toNiwr and Nime-rr, We also calculated the

parameters were divided into three groups depending mean decomposition computing tim@cf) along all RS

the measured feature. signals for each method. In other words, we lookéd
how long it takes for each method to decompose &n R
4.3.1. Sze and processing time signal into IMFs. All simulations were run in a ser

The first parameter used to compare the performafce with Windows Server 2008 R2 Enterprise installed, a
EMD, EEMD and NA-MEMD was the total number of Intel® Xeon® processor E7340 at 2.40 GHz with 4
IMFs (Nimr) resulting from the decomposition of each RS kernels, and 88 GB of usable RAM. Results showRidn
signal. Moreover, since the frequency range ofrestefor 8 indicate that EEMD is much faster than NA-MEMD.

RS analysis goes from 70 Hz onwards, we also ctied Despite the fact thaDcr increases exponentially with
the number of IMFs whose central frequendy), ( the number of iterations in EEMD, a few second®igy
measured from the PSD, was greater than 70Niz-£r). enough to decompose RS signals using a few hundred

The results shown in Fig. 6 indicate that the EEMD iterations, which are sufficient to reduce MM, as
method (solid lines in Fig. 6-a) provides lower IMF explained in the next section, 4.3.2. However, NA-
(about 8-10 IMFs) than the NA-MEMD method, which MEMD is a time-consuming method. While the amount
produces between 14 and 16 IMFs (solid lines in Big  of MM decreases with an increase in number of tivas
b). Similar to EEMD, the meaNvr of the original EMD  (see section 4.3.2)Dcr increases in the same way.
for all RS signals was 9.1 IMFs. Therefore,Dcr required to substantially reduce the MM

Figure 6 also shows that the meldime.rr for EEMD effect is too high in comparison with EEMD.
was around 5 IMFs at most (dotted lines in Fig.),6-a
which means that EEMD produces between 3 and 5 IMFs 4.3.2. Reduction of MM
(difference betweenNme and Niwerr) outside the In section 4.1 we showed that MM causes frequency
frequency range of interest for RS analysis. Ndwdess, overlap between PSDs of different IMFs. Based ds th
the meanNiverr for NA-MEMD was around 7 IMFs fact, we propose the following parameter to measiee
(dotted lines in Fig. 6-b), which indicates thastmethod  amount of MM, based on frequency overlapOJ
produces more redundant IMFs (around 7-9 IMFspat |  between pairs of IMFs:
frequencies, which are irrelevant for RS analysis. FO,(%)

As for the high frequencies, although CAS may appea _onmax(Uezi fesil Nlfezjo fes)]) — min([fean fesil Nfezjo fesj))
at up to 1,000 Hz, the frequency range of normal RS= 100 -
barely exceeds 250 Hz [2], so having many IMFs min{IDR60;, IDR60;}

covering high frequencies generates redundancyhitn 8)
sense, we analyzdg of the first four IMFs generated by 4
EEMD and NA-MEMD along all RS signals (Fig. 7). 1000k 1
4 0r 400 300 |
225 2
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Fig. 6. Size of EEMD and NA-MEMD. Nye (solid lines) andNiverr  Fig. 7. Tracking of high frequencies by EEMD and NAMEMD.

(dotted lines) for EEMD (a) and NMEMD (b). All values are the me  Central frequencyf{) of IMFs 1-4 for EEMD (a) and NA-MEMD (b).

and standard deviation along all RS signals. ForNA&MD (b), all valiles  All values are the mean and standard deviationgabdlhRS signal:

are also averaged along the number of extra channel For EEMD (a), all values are also averaged alorg riamber c
iterations. For NAMEMD (b), all values are also averaged alon¢
number of extra channels and the number of dinestio



where fwi, fei, and IDR60; are frequency parameters of MM, mainly depends on the SNR when the number of

measured from the PSD of tieh IMF. Specifically, fc iterations is greater than or equal to 16.

andfe are the frequencies at which 20% and 80% of the Since FO;; decreases as the SNR decreases, it would

energy of an IMF are reached, respectively. TBR60 seem that using the lowest SNR is the best soldtion

parameter is calculated as the difference betvigeand reducing MM. However, as explained in the nextisect

feo. 4.3.3, using very low SNRs increases the residoaen
We calculated the medrfO;; along all RS signals, for level.

EMD, EEMD, and NA-MEMD, and for different pairs of  Figure 10 shows the results for NA-MEMD. Since this

IMFs. The mearFO;; for the original EMD was 22.5% method produces more IMFs than the EEMD method, we

between IMFs 1-2, 22.0% between IMFs 2-3, and 21.3%calculatedFO;; between pairs of IMFs from IMF 1 to

between IMFs 3-4. The results for EEMD are shown inIMF 5.

Fig. 9, which illustrates th&O;;, and hence the amount As the figure shows0;; depends on both the SNR and

the number of directions. In general, the amouniitf

a 1ot decreases with a decrease in SNR and an incredhe in
5t number of directions (Figs. 10-b,c,d). Howeve&Q:,
2l increases with a decrease in SNR, especially ftowa
= I number of directions (Fig. 10-a). As explained é@ttson
VB 4.3.1, NA-MEMD tends to generate too many IMFs at
S otk high frequencies. If the SNR is too low, noise comgnts
cause IMFs to be uniformly distributed along all
frequencies, which forces IMFs covering high fremgies
0.01 : : : : : to be cramped, arfdO; ;> increases. On the contrary, if the
b b2 4 Numberlifiterzgons 100 400 SNR is high, the effect of noise is negligible, @i
4 allows IMFs 1 and 2 to be more widely separatedarin
1607 case, NA-MEMD needs a high number of directions to
1407 achieve results similar to those of EEMD, and thiesatly
120 » : .
2 100l E increases thBcr (see section 4.3.1).
S 80t 35
2 6ol o 4.3.3. Residual noise level
40+ A major challenge when working with EEMD and NA-
28' ) MEMD is minimizing the residual noise level in the

32

64

resulting IMFs. In order to quantify this residuadise

Number of directions level, we propose the following parameters:

Fig. 8.Processing time Dcr, for EEMD (a) and NA-MEMD (b). All
values are the mean and standard deviation aldngalsignals and

SNRs.

a b c 400
20 20 20 225
100

g 15 15 64
“ 36
So 10 25
= 16

5 5 4

2

0 0— 0 1

9-6-3 03 69 15 21 9-6-3 03 69 15 21 9-6-3 03 69 15 21 TIters.

SNR (dB) SNR (dB) SNR (dB)

Fig. 9.MM reduction by EEMD. Frequency overlagFQO) between IMFs 1-2 (a), IMFs 2-3 (b), and IMFs g&}for the EEMD method. All values are
the mean along all RS signals.

a 40 C d 64
20 20 20

30

S 32

20

(@]

A~ 16
10f

0 0 ol 8
9630369 96303609 9630369 15 21 Dirs.
SNR (dB) SNR (dB) SNR (dB)

Fig. 10.MM reduction by NA -MEMD. Frequency overlag=QO) between IMFs 1-2 (a), IMFs 2-3 (b), IMFs 3-4 @)d IMFs 4-5 (d) for the NA-MEMD
method. All values are the mean along all RS sgyaall the number of extra channels.

0 -
9630369 15 21
SNR (dB)

15 21 15 21



- CC: cross-correlation at zero lag between the PSD ofThis error depends on both the amplitude of thetevhi

the original signal *SD,) and the PSD of the
reconstructed signaP@Dre).

. PSDo(R)PSDrec(n)

9
\/znPSDo(n)z znPSDrec(n)Z ( )

cC= R\PSDOPSD,-EC(O) =

- PSDR: ratio of the absolute error betweefD,. and
PSD, versusPD,.

% |PSDrec(n)—PSDy (1))
2 PSDo(1)

PSDR (%) = 100

(10)

wheren is the number of points used for the fast Fourier

transform. The reconstructed signals were calodlate
the direct sum of the corresponding IMFs and ressdu

Ideally, PSDR andCC would be 0 and 1, respectively, if
the reconstructed signal were exactly equal taotiginal
signal. This is the case of EMD and NA-MEMD, which
provide a perfect reconstruction of the originagnsil.
However, EEMD causes a slight error in the recaicstd
signal due to the use of white Gaussian noise & th
decomposition process.
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Fig. 11. Measures of residual noise levelPSDR (a) andCC (b) for
EEMD, as a function of SNR and number of iteratiof values are

the mean along all RS signals.
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noise and the number of iterations, as shown in Hg

As shown,CC reaches its maximum using 16 iterations
or more, independently of the SNR. Howev&SDR
highly depends on the two parameters. Neverthelgss,
applying a few hundred iterations, we obtained an
acceptabld’SDR (below 3%) for a wide range of SNRs.
Therefore, we can assume that the residual nois ie
not a major drawback of EEMD in RS signals provided
that the SNR and number of iterations are correctly
chosen.

4.4, Selection of parametersin EEMD

Based on the previous results, we decided that EEMD
was better than NA-MEMD for RS signal decomposition
since EEMD produced fewer redundant IMFs, managed
to reduce the MM effect to a greater extent, and faater
than NA-MEMD. However, in order for EEMD to
perform at its fullest potential, we had to fix its
parameters (SNR and number of iterations) so thistt M
was reduced as much as possible and the residisd no
level was not significant. To this end, we analyzkd
FOi; and thePSDR parameters together for different pairs
of IMFs, as shown in Fig. 12.

Values of the intersection points between both
parameters for each number of iterations are shiown
Table 1.

Assuming 3% as an acceptable upper limitHex; and
PSDR, an SNR below 1 dB and more than 64 iterations
should be used for EEMD. We decided to fix the SMR
0 dB and use 100 iterations to decompose RS sidpyals
means of EEMD. Th&0;; did not decrease significantly,
neither by using more iterations nor by decreashey
SNR. However, increasing the number of iterations o
decreasing the SNR greatly increased g and the
PSDR, respectively.

5. IF-IA estimation and the HS in RS signals

Having decomposed an RS signal into IMFs, the next
step in calculating the HS is IF-IA estimation. Tuse of
HHT involves estimating IF as the phase derivatiéhe
analytic signal of each IMF. It is the most intuéiand
direct way to define IF of a real signal [17]. Rbe case

of a lengthM IMF, the analytic signalz(n), is defined as
follows:

0 0
9-6-3 0369 9-6-3 0369

SNR (dB)

15 21

SNR (dB)

0 =10 1
96303609 21

SNR (dB)

15 21 15

Fig. 12. Performance parameters of EEMD.Combination of measures of the amount of MMDJ (solid lines) and residual noise levEISPR)
(dotted lines) for IMFs 1-2 (a), 2-3 (b), and 3¢} gbtained by EEMD. All values are the mean alalh@RS signals.



Table 1. Performance of EEMD for RS signal decompdtion as a function of the number of iterations andSNR.

Iterations 1 2 4 16 25 36 64 100 225 400
IMFs 1-2 SNR (dB) 8.7 7.7 6.3 3.6 2.8 2.1 1.0 0.1 -1.7 -2.7
FO../PSDR (%) 141 9.8 7.0 3.9 3.2 2.9 2.3 1.9 15 1.2

IMFs 2-3 SNR (dB) 8.0 6.7 5.4 2.2 13 0.6 -0.5 -1.6 -3.7 2-5.
FO,/PSDR (%) 17.1 11.7 8.4 51 4.2 3.6 2.8 25 2.0 17
IMFs 3-4 SNR (dB) 7.9 7.5 6.9 4.7 3.5 2.7 11 -0.3 -2.8 -5.0
FO;4/PSDR (%) 17.4 10.2 6.4 3.3 2.9 25 2.2 2.0 17 17

FO: frequency overlap paramet&3DR: residual noise level parameter.

zi(n) = IMF,(n) + jHUIMF;(n)] = a;(Wexp[jo;(Mln=1..M

1) £(n) ~ /;_-,;\/w[IMFi(n+2)—IMFi(n+1)] n=1.M-3

w[IMFi(n+2)]
. : : (16)
whereH[] is the Hilbert transformai(n) is the IA, and
@i(n) is the phase ofi(n). Having calculateddi(n) for WIMF;(n+2)]
eachi-th IMF, the next issue is how to address the phase %I~ Jommim eyt 1M =3
derivative in discrete time. The most common apginda (17)
to use finite impulse response derivative filtdansis is the
case of our first IF estimation method, which idive- wherey[] is the TEO.
point least squares polynomial derivative (LSPD) After calculating IF and IA for each IMF, the HSnche
approximation [58]: directly obtained by constructing a two-dimensioaahy
with the accumulation of all of the values of th& |
fi(n) =£ﬂ 4 _obe®;(n—k),b = [by, by, by, by, by = sequences at the positions determined by the
1 i _ corresponding IF values and time instants. Sinoee ti
20 -L=2ln=1.M (12) instants can be determined within the resolutiorthef

) , . sampling period, and IFs can be precise at any sumb
wherefn is the sample frequency. A major problem of this pajow the Nyquist frequency, the HS can have higfe t

estimator is that it has very high variance. Howel@v  5nq high frequency resolutions. Both resolutiongedel
variance estimators are preferable for calculaifgHS, o the bin size selected for each dimension. s shidy,
since it ought to be an accurate time-frequency\ye defined time and frequency bin sizes df, Beconds
representation in which the signal energy is as(g 32 ms forf, = 3125 Hz) and 0.5 Hz, respectively. The

concentrated as possible around the IF. _ resulting HS consisted of a matrix of 3125 rows &hd
In order to reduce variance, Kay proposed a wetghte ¢o|ymns, whereM was the number of samples of the

phase difference estimator [17]. This method cd®$  5n51yzed RS signal. For display reasons, a smapthin
calculating the IF estimate by a weighted averaging fjjter js usually applied to the HS. In this stuaye used a
sequence of phase difference measurements, aggollo  >0.sample Gaussian filter with a standard deviatién
five samples.
fi (n + EJ) = ’;—’;ZQ’;{? wk)[®;(n+k +2) — Figure 13 shows the spectrogram and three HSs,evhos
o,n+k+1D],n=1..M-N (13) IFs_ were calculated by means of the aforementidied
estimators, of a synthetic polyphonic CAS3(t), added
. N 2 to a normal RS signal at an SNR of 6 dB (sectid).2.
w(k) = L (@) (14) The spectrogram was calculated using a 250-sample
NZ-1 N/2 length Hanning window, with 240 overlapping samples
and 2,048 points for the fast Fourier transform.

It is clearly noticeable that the five-point LSPD
approximation (Fig. 13-c) and the TEO-based method
(Fig. 13-d) have very high variance. However, Kay’'s
method (Fig. 13-b) greatly reduces variance andiges
an accurate HS in which the energy of the signhighly
concentrated around its IF. Furthermore, this EEKHY-
based HS has higher energy concentration and t&solu
than spectrogram. The performance of these two
representations for CAS characterization is evatliah
the next section using a larger dataset.

wherew(k) is the lengthN averaging window. The larger
the window size, the smaller the variance will Béer
testing different window sizes, we propose an ayierp
window of 32 samples.

Together with the aforementioned methods, in thidy
we also tested an alternative approach for IF edtim
based on the Teager energy operator (TEO) [59]s Thi
method has very low computational complexity and is
very straightforward, as IF and IA are directlyatdated
from the IMF signal as follows:

Y[IMF(n)] = IMF?(n) — IMF(n — 1)IMF(n + 1) (15)
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criteria on IF sequences to delimit RS signal segme
with a lower IF dispersion. Each delimited RS signa
segment was characterized by means of a specifiofse
6.1. Processing of the HSfor CAS segmentation features extracted from the IF and IA, including thean

. . and standard deviation IF, among other featuregsd@h
In this section, we propose a new method for thefeatures were used to classify each delimited RBasi

gutorgaﬂc HsSegmentat_lon 'I?r?d charactdenlzatl(_)tr;] O.f dC;ASsegment as containing CAS or normal RS using astipp
ased on processing. The proposed algorithrase vector machine classifier.

on the region growing methodology and consistshofd In the present study, we used the outputs from the

partg: dgt?cfclonl of i’:\nalyss areas in thde HS.&)I:%IEN aforementioned algorithm (classification, mean #nd
seed points forloca’ region growing, and regioming. standard deviation IF) to mark out an analysis anethe

In light of the results from the previous sectidnand 5 L -
. ) o HS for each delimited segment of an RS signal. Each
we decided to calculate the HS using EEMD with 100 analysis area was centered on the mean IF, had a

iterations and 0 dB for the SNR, Kay's method vtB2- frequency width of twice the standard deviation &Rd

fsample Ieg_gth .Wmd?\’g) 3f(2)r IF ejtgné‘tﬁn’ time ?‘”d was delimited by the first and the last time instainthe
requency bin sizes ot 9.s2 ms and .- Z’.resww delimited RS signal segment. Figure 14 shows some
and a 20'5?‘”?p'e G_au55|an smoothing filter with aexamples of analysis areas detected from two eiffer
standard deviation of five samples. synthetic CAS signals. Analysis areas with greegesd
(CAS areas) correspond to segments classified as
containing CAS, whereas analysis areas with rece®dg
(normal areas) correspond to segments classified as
containing normal RS.
Although some areas of an RS signal may be
misclassified, CAS areas are more likely to congither
an entire or a part of a CAS component than noereds.
oreover, we considered CAS areas not overlappiitly w
normal RS to be more likely to actually contain CAS
components than CAS areas overlapping with nornsal R
According to these criteria, three types of analysieas
' were defined:

6. Performance assessment of the HS for CAS
characterization

6.1.1. Detection of analysisareasin the HS

The first part of the CAS segmentation algorithm
consisted of the CAS detection algorithm proposedur
previous study [43]. That algorithm detected thgnsents
within an RS signal that were more likely to cont@AS
based on the hypothesis that the IF dispersion edéyk
decreases when CAS appear in an RS signal. For th
purpose, IF and IA sequences were calculated fimam t
IMFs of an RS signal that had been previously
decomposed by EEMD. In that previous study, IF was
calculated using the five-point LSPD approximation
which had high variance and emphasized the difteren
in IF dispersion between those segments of an R&aki - High-pitched CAS areas: CAS areas whose mean IF
containing CAS and those containing normal RS. So,  was above 250 Hz.
since IF and IA sequences allowed us to work- Low-pitched CAS areas: CAS areas whose mean IF
independently in either a time-frequency or a tenergy was below 250 Hz.
domain, we were able to use simple dispersion-based Normal areas



a
400
)
<300
Q
[=]
[}
2200
2
&
100
0 0.2 0.4 0.6
Time (s)

400
300
200
100
0 0.2 0.4 0.6
Time (s)

Fig. 14.Detection of analysis areas in the H®etected analysis areas for synthetic CAS signal$) (a) andc,(t) (b) added to a normal RS signal at

an SNR of -2 dB and -4 dB, respectively, as deedrib section 2.2.

This classification of analysis areas was usecaticn
6.1.3 for applying different thresholds when linkin
regions detected from each type of area. Previpasly
areas were considered for seed point searchingoaadl
region growing, as explained in the next section.

6.1.2. Seed point search and local region growing

Ideally, CAS components are represented in the $IS a

ridges describing the IF where signal energy conatss
(see Fig. 13-b and Fig. 14). These ridges are ceagpof
several linked regions, which, in turn, are fornhbgda set

max{feas — B20f.cas » fminarea) < fap < min{feas + B20f cas » fnax,area)

where grcas Was the standard deviation frequency along
all points already included in a regidinarea aNdfraxarea
were the minimum and the maximum frequencies of the
analysis area, respectively, afidwas a scale factor. This
factor was first set to 3 when searching for newdse
points between the temporal boundaries of the aiwmly
area. When no new seed points were found withieethe
temporal boundariegf, was set to 2 to search for new
seed points outside the temporal boundaries of the

of connected points. Therefore, having detected analysis area.

analysis area in the HS of an RS signal, the rtext was
to detect regions with a high concentration of gwyer
around this area.

Each new region was grown by adding neighboring
points that met either the following criterion:

A determining parameter in this CAS segmentation |fnp—fCAS| < P10fcas

algorithm was the point amplitude, which was assed
with the signal energy at a certain IF. Since déf¢é RS
signals had different signal energies, we firstrmalized
the HS by dividing it by its maximum. Then, we
determined an amplitude threshold to reject thasiatp
corresponding to background noise or having vewy lo
amplitude. After analyzing histograms from sevei&s,

when the analysis area corresponded to a segment
extracted from either IMF 1 or IMF 2, or the followg
criterion:

|fnp - fCASl < max{ﬁlaf,CAS 'ﬁlo—f,area}

when the analysis area corresponded to a segment

we decided to consider only those points with anextracted from either IMF 3 or IMF 4. The region

amplitude exceeding 0.05.
A region growing algorithm was applied to each
detected analysis area, in which regions were grioem

seed points by adding neighboring points that met a6.1.3.

particular inclusion criterion. The first seed poivas the
point with the highest amplitude inside the anal\eiea.
The first region was then grown by adding neightgri
points that met the following criterion:

|fnp - fCASl < ﬁlo—f,area

wheref,, was the frequency of the neighboring pojfs
was the mean frequency along all points alreadiudtex

in the first region,oraea Was the standard deviation
frequency along all points of the HS within the Isae
area, angb, was a scale factor, which was empirically set
to 3. When the growth of the first region stoppaagther
seed point was sought and a new region was groach E
new seed point was the point with the highest amnnmdi
not yet belonging to any region and sought betwéen
following frequency boundaries:

growing process was continued until no new seedtpoi
were found.

Region linking

The last step in the CAS segmentation algorithm teas
retain only those regions that guaranteed the teahjpnd
frequency continuity of the CAS component. We first
rejected any CAS component not containing at least
region longer than 20 ms for high-pitched CAS ar&és
ms for low-pitched CAS areas, or 80 ms for norntaha.

In this way, we prevented the detection of falseSCA
components that might result from linking many shor
regions corresponding to background noise. Then,
assuming that the longest region inside the arsalysa
truly belonged to the CAS component, adjacent regio
were progressively checked from the nearest to the
farthest in both directions along the time axis.rééh
parameters were calculated for eacith region to
measure its proximity to regions already retainscpart

of the CAS component:



t.cas and ficass temporal and frequency distances
between the two nearest points among those afitine
region and those of all regions already retained.
Afmean;.cs. difference between the mean frequency of
thei-th region and the mean frequency of the neares
20-millisecond length segment along the regions
already retained.

We considered the nearest regions to be more likely
belong to the CAS component than the farthest regio
Accordingly, we defined three ranges ftkss whose
boundaries were determined by threshdhds th2, and
th3 as follows:

i-cas <

Range j: tht;_; <t tht;,j =1..3,tht0 =0

Regions belonging to ranges 3 and 1 had the makt an
the least restrictive conditions, respectively, rfetention.
Thei-th region belonging to theth range was retained if
it met one of the following criteria:

d; = thdur; & Afmean;_cqs < thf & fi_cqs < thf (18)
(19)

where thresholdhdur; was the required minimum length
of the i-th region €) belonging to thg-th range, and
thresholdthf was the limit for the frequency parametrs
s and Afmean.ces and guaranteed the frequency
continuity of the CAS component. We made all the
thresholds dependent on the type of analysis asea (
section 6.1.1) and whether tiwh region was inside or
outside the analysis area. In this study, threshtiitl,
tht2, tht3, thdurl, thdur2, thdur3, andthf were empirically
set to the values shown in Table 2. These valuag we
fixed after analyzing many HSs from recorded R®alig}

All regions not belonging to some range and not
meeting any of the criteria defined in (18) and)(W@re
rejected. After checking all of the regions, thegioas
retained formed the segmented CAS component. Fjnal
according to the definition of CAS [1,2], we rejedtany
CAS component shorter than 100 ms.

<

100 ms & d; = 125ms

ti—cas

t

6.2. Characterization of simulated CASsignals

In this section, we applied the proposed CAS
segmentation algorithm to the HS and spectrograthef
109 synthetic CAS signals described in section Si@ce
our algorithm was designed to be applied to thepsed
EEMD-Kay-based HS, we had to adjust some parameters
for its use with spectrogram, which was calculatsithg a
250-sample length Hanning window, with 240
overlapping samples, and 2,048 points for the Fastrier
transform. Specifically, we increased the amplitude
threshold from 0.05 to 0.1 arfd (see section 6.1.2) from
3to 4.

Together withD andFrean, We calculated the following
two parameters for each segmented CAS componemt as
means of measuring the concentration of both TFDs:

or. average value of the point by point weighted

standard deviation frequency.

or-r. average value of the point by point weighted

standard deviation frequency in relation to real IF

values, which were defined in (2) and (4) (section

2.2).
These parameters allowed us to compare the
performance of the proposed HS and spectrograrR$r
analysis, at different SNRs. Figure 15 shows theplite
value of the differences betwedd (Errp) and Fmen
(Erfemean) calculated using the CAS segmentation
algorithm and their real values, and the concebptmat
measures o and or.r) for the HS and spectrogram.
Statistical differences between these parameterthef
two TFDs were evaluated using a one-sided Wilcoxon
signed rank test at the 5% significance level.

As shown in Fig. 15-a, there were two SNR ranges in
which Errp was similar for both TFDs. One of those SNR
ranges included synthetic CAS signals added torenalo
RS signal at SNRs greater than or equal to 0 dBghwh
represented situations where, due to their highliandp,
CAS components could be easily detected by the two

Each segmented CAS component was characterized bgpethods. Similarly, the performance of both TFDswa

means of the most relevant parameters from a alinic
point of view:

Duration (D): difference between the last and fhet f
point along the time axis.

Weighted mean frequency (Fmean) of all points,
whose amplitudes in the HS were the weights.

Table 2. Thresholds for region linking

also similar within the SNR range from -8 dB todB,
which included only synthetic CAS signals contagnin
components above 200 Hz (see section 2.2). Detpite
low SNR, those CAS components did not overlap with
normal RS and, therefore, could be segmented more
easily by both TFDs. The mednrp in all of those cases
was 18.2 + 31.6 ms for the HS and 19 + 21.6 mdgHer
spectrogram. Compared to the duration of syntfeAS
signals (either 250 ms or 300 ms), both mgarn, were
acceptable, as they represented between 6% andf8% o
synthetic CAS duration.

Type of analysis area thtl thdurl tht2 thdur2 tht3 thdur3 thf
(ms)  (ms) (ms)  (ms) (ms)  (ms) (Hz)

High-pitched CAS areas, inside 20 none 30 10 100 50 25
High-pitched CAS areas, outside 17.5 5 30 25 100 50 25
Low-pitched CAS areas, inside 17.5 5 30 25 50 100 5 2
Low-pitched CAS areas, outside 10 15 22.5 35 50 100 25
Normal areas, inside 10 15 225 35 225 none 20
Normal areas, outside 5 20 10 55 10 none 20
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Fig. 15.Characterization of synthetic CAS signalsAbsolute value of the differences between calcdlated reaD (Errp) (a) andFmean (Erfrmean) (b),
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However, the advantages of the HS became cledaein t has higher energy concentration than spectrogram.
SNR range from -4 dB to -2 dB, which represented an
unfavorable scenario for synthetic CAS signals aimihg 6.3. Characterization of recorded CASsignals
components below 200 Hz, due to their overlap with
normal RS. In those cases, thanks to the high temhpo In this section, we applied the proposed CAS
resolution and energy concentration of the HSIlawsed segmentation algorithm to the HS and spectrogratheof
the temporal boundaries of CAS components to beemor 283 CAS signals recorded as described in sectibnl2.
accurately determinedE(rp = 39.7 + 46.5 ms). However, this case, as quantitative measurementsEofh and
the poor resolution and the scattered energy of theErrrmean could not be obtained, we calculated the mean
spectrogram prevented it from delimiting CAS actelsa  and standard deviation dD, Frean, and of along all
(Errp = 68.9 + 84.6 ms). These differences betwEsmm segmented CAS components (Table 3).
of the two TFDs were statistically significant (p = There were no relevant differences betwBeaindFean
0.0018), which indicated thefErro was higher for the measured from the two TFDs. Even so, these parasnete
spectrogram than for the HS. Relative to synth€i&kS  were absolute measures and were not representétilie
duration, mearErrp was between 13% and 16% for the performance of the two TFDs in recorded CAS
HS and between 23% and 28% for the spectrogram. segmentation, unlik&rrp and Erremean described in the

As an example, Figs. 16 and 17 show the CASprevious section 6.2. Nevertheless, there werdfiignt
segmentation of two synthetic monophonic CAS signal differences between the of both TFDs (p << 0.0001),
added to a normal RS signal at an SNR of -2 dB-dnd which again demonstrates that the HS has higheggne
dB, respectively, as described in section 2.2. concentration than spectrogram.

White rectangles in the figures above (Figs. 16and The advantages of the HS over spectrogram in redord
17-c,d) show the boundaries of the theoretical k8. CAS segmentation, especially weak CAS with low
shown, it is more difficult to distinguish betwe@&@AS energy, are clearly illustrated in Figs. 18, 19] a0.
components and normal RS in the spectrogram thérein The figures above show that the spectrogram fdibed
HS, where the boundaries of the CAS component ean bentirely extract some CAS components with low
detected more accurately. However, some normal RSmplitude, especially in CAS signals that contained
components are detected as part of the CAS comf®nenseveral CAS components with quite different amplts.
in the spectrogram. The performance of spectrogranThis performance was contrary to that shown in the
could be improved by increasing the amplitude thoék examples with synthetic CAS (Fig. 16 and Fig. 1in),
However, it would be more difficult to detect we@S which the spectrogram detected some normal RS
components, as explained in the next section 6.3. components as CAS components. However, the same

With regard toErremean (Fig. 15-b), although it was algorithm and thresholds were used in both caskis T
higher in the HS (4.1 £ 9.7 Hz) than in the spegptam means that spectrogram is more dependent on the
(2.6 £ 6.1 Hz), botHErrrmean Were low in comparison with  amplitude threshold. However, since the HS achieves
Errp, which is more critical. However, there were clear more energy concentration along the CAS componénts,
and significant differences (p << 0.0001) betweba t is less dependent on this parameter of the CAS
frequency dispersionot and orr) of both TFDs, as segmentation algorithm.
shown in Figs. 15-c and 15-d, which means thatHBe
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7. Discussion and conclusions Although EEMD has already been used in previous
studies as part of the HHT [60-62], the proceduaretlie
In this study, we conducted a comprehensive evialuat correct choice of its parameters (amplitude of ddeled
of the performance of the HHT for RS analysis, wHid noise and number of iterations) is still uncleard ahey
us to propose an EEMD-Kay-based HS that performedmust be adjusted to the characteristics of diffesggnals.
very well for CAS characterization. In comparisoitrw  In this regard, our proposed parameters could kd us
spectrogram, which is the most widely used techmiigu assess MM and select EEMD parameters in other
CAS analysis, the HS detected CAS components morepplications.
precisely, especially those at low SNR that overiaih The IF is estimated in the HHT by means of the phas
normal RS. derivative of the analytic signal of IMFs. However,
The most critical stage of the HHT is EMD, due t® i major drawback of this IF estimation method is kiigh
MM effect, which causes poor separation of freqyenc variance of the IF estimates. Kay’'s IF estimataved to
scales. We have gone into detail about the MM efiéc  be a direct and straightforward method that sigaiitly
EMD in RS signals and the performance of EEMD andreduced that variance, which is a desirable prgpient
NA-MEMD to solve MM. We propose a number of the purpose of obtaining an accurate HS with high
parameters to quantify the size, reduction of MMda concentrations of signal energy. In fact, we preptdse
residual noise level of each method. The resultsraf use of an EEMD-Kay-based HS as an alternative and
applying EEMD and NA-MEMD to recorded RS signals precise time-frequency representation of RS signals
showed that EEMD is more concise than NA-MEMD, as The main advantage of the proposed HHT-based
EEMD produces fewer redundant IMFs and is fastanth approach over other TFD-based approaches for RS
NA-MEMD. Moreover, EEMD reduces the MM effect analysis is the high temporal and high frequency

more effectively than NA-MEMD. resolution of the HS. Since IF is calculated by
differentiation, time resolution can be as high that
Table 3. Characteristic parameters of recorded CASignals determined by the sampling rate. Moreover, theueagy
Spectrogram HS resolution in the HS does not depend on the dagtheas
D (ms) 5997 + 132.6 302.8 +122.9 Fourier-based or wavelet-based techniques, buerittis

determined by the bin size selected. Furthermdre, t
Finean (H2) 287.0+136.0 285.6+135.0 EEMD allows us to separate different signal composie
or (Hz) 7.2+26 42+1.2 prior to IF and IA calculation without having toqmess
D: duration;Fmean: mean frequencyjr: frequency dispersion an entire TFD.
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Accordingly, the HHT does not only allow working én Taking advantage of properties of the HS, we prefmos
time-frequency plane, like other TFDs, but alsolyziag new method for the automatic segmentation and
IF and IA sequences separately. characterization of CAS. A key point of our methsdhe



CAS detector (section 6.1.1) that we previouslyppsed
in [43]. Using this CAS detector as the first stepour
CAS segmentation algorithm, we can
components in the time-frequency plane, which itatds

the HS, whose performance has been thoroughlydteste
both synthetic and real CAS signals.

locate CAS Our proposed version of the HHT based on EEMD and
Kay’s IF estimator is a promising tool for the ars$ of

their subsequent segmentation using a region gmwin RS signals. Due to its high resolution, the propgdd§ is

methodology together with a set of region linkimgeia.
The main advantage of the CAS detector is thatlittised
solely on a number of IF criteria, which makes Q&S

methodology,

a suitable TFD to analyze not only CAS signals, ddsb
shorter RS signal components, such as DAS. This
characterization

including the CAS

segmentation algorithm less dependent on amplitudealgorithm could be included within a more comple8 R

criteria.

analysis system that facilitates long-term monitgrand

We applied the proposed CAS segmentation algorithmimproves reliability in the diagnosis of obstruetiv

to the HS and spectrogram of two sets of synthetid
recorded CAS signals to compare the performandbeof

pulmonary diseases.
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