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The aim of this study was to evaluate the in vivo effect of antibacterial modified dental implants 

in the first stages of peri-implantitis. Thirty dental implants were inserted in the mandibular 

premolar sites of 5 beagle dogs. Sites were randomly assigned to Ti (untreated implants, 10 

units), Ti_Ag (silver electrodeposition treatment, 10 units), and Ti_TSP (silanization treatment, 

10 units). Coated implants were characterized by scanning electron microscopy, interferometry 

and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-

implantitis was initiated by ligature placement. Ligatures were removed 2 months later, and 

plaque formation was allowed for 2 additional months. Clinical and radiographic analyses were 

performed during the study. Implant-tissue samples were prepared for micro computed 

tomography, backscattered scanning electron microscopy, histomorphometric and histological 

analyses and ion release measurements. X-ray, SEM and histology images showed that vertical 

bone resorption in treated implants was lower than in the control group (P < 0.05). This effect is 

likely due to the capacity of the treatments to reduce bacteria colonization on the implant surface. 

Histological analysis suggested an increase of peri-implant bone formation on silanized implants. 

However, the short post-ligature period was not enough to detect differences in clinical 

parameters among implant groups. Within the limits of this study, antibacterial surface 

treatments have a positive effect against bone resorption induced by peri-implantitis. 

 

Keywords: Antibacterial coating; dental implants; in vivo; peri-implantitis; silver 

electrodeposition; TESPSA 
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1. Introduction 

Peri-implantitis is an inflammatory disease that affects soft and hard tissues around dental 

implants and is characterized by bleeding upon probing and progressive peri-implant bone loss 

[1,2]. If left untreated, it may cause progressively increased implant mobility and eventually 

implant failure. Peri-implantitis inflammatory reactions have been detected in about 10 to 45% of 

dental implants within 10 years after implantation [3]. Therefore, peri-implantitis creates a 

persistent clinical problem without an easy treatment [4].  

Bacterial biofilm can be decisive in the formation and progression of peri-implantitis, so 

inhibiting or decreasing the bacterial colonization of the implant surface in order to reduce biofilm 

formation is important for the treatment of peri-implantitis. Many studies have focused on the 

incorporation of antibacterial agents such as silver on titanium surfaces. Silver and silver-based 

compounds are highly effective at inhibiting bacteria growth [5] as they damage the DNA of 

both Gram-positive and Gram-negative bacteria [6]. Different techniques have been explored to 

add silver in different states to titanium surfaces (e.g., ion implantation [7], physical vapor 

deposition (PVD) [8], magnetron sputtering [9] and micro arc oxidation [10]). Another strategy 

to confer antibacterial properties to titanium surfaces involves using silanes as an anchoring 

platform for active molecules with different effects on cells and bacteria, such as induction of 

cell proliferation, cell differentiation, or antibacterial properties. Silanes may also induce such 

biological effects by themselves. In a previous study, the antibacterial effect of TESPSA silane 

was detected in vitro when compared to control and surface-treated titanium samples without 

eliciting cytotoxic effects on human cells [11]. 

Antibacterial coatings may significantly influence the progress of peri-implantitis. Different 

antibacterial coatings have been tested in vitro, achieving a decrease in biofilm formation and 
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bacterial adhesion. Few studies, however, have provided in vivo information on the early effect 

on peri-implantitis of antibacterial coatings of dental implants [12,13]. Most studies have focused 

on the effect of bonding antibiotics [14,15] or antiseptic molecules [16] onto the implant surface. 

Other investigations were based on doping titanium with a photosensitizing surface [17], metallic 

ions with antibacterial properties [18] or studying the effect of distinct titanium oxide 

microstructures and thicknesses [13]. 

The hypothesis of the present study was that dental implants treated with antibacterial coatings 

(silver electrodeposition and 3-(triethoxysilyl)propyl succinic anhydride (TESPSA) silane) 

would reduce bone resorption caused by ligature-induced peri-implantitis and enhance 

osseointegration.  

2. Material and Methods 

EU Directive 2010/63/EU and Spanish RD 1201/2005 regulations for the care and use of 

laboratory animals for scientific purposes have been observed. The protocol was approved by the 

Ethics Committee for Animal Research of the Rof Codina Veterinary Hospital, University of 

Santiago de Compostela, Spain. In order to minimize the effect of performance bias when 

allocating the implants in animals and assessing results, samples were identified with a code 

unknown by any person relevant to the study. All the details of the study are described in 

accordance with the ARRIVE guidelines [19]. 

2.1. Animals 

Five adult female beagle dogs about 2.3±0.05 years old and 11.6±1.3kg were used. The number 

of animals was determined by considering previous studies, the 3 Rs (replacement, refinement, 

and reduction) for the use of animals in research and performing a sample size calculation for a 

statistical power of 0.9 [12,13,17,20-21]. All the animals had normal mandibles, no generalized 
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occlusal trauma, no viral or fungal lesions, good overall health, and no systemic compromises 

according to veterinary exams. During the experiment, the 5 animals were housed separately in 

kennels at Rof Codina Veterinary Hospital in 100% fresh air with ambient temperature of 

25±0.1
o
C and humidity of 40-70%. They were fed a soft diet twice daily and given free access to 

fresh water. 

2.2. Surface treatments 

Thirty commercial dental implants with cylindrical threaded geometry (3.5mm diameter and 

8mm length) were provided by Klockner (Soadco S.A., Escaldes-Engordany, Andorra). The 

implants are manufactured with the threaded body chemically etched and sandblasted, while the 

implant head is untreated (machined). 

Each implant group consisted of 10 implants. Groups were coded as: (i) Ti_Ag: Implants with 

silver electrodeposition, (ii) Ti_TSP: Implants with TESPSA silanization and (iii) Ti: Dental 

implants without further processing (control group).  

Electrodeposition of silver on dental implants was carried out as previously described for 

titanium surfaces [22,23]. Briefly, the anodizing process was controlled with a potentiostat 

(PARSTAT 2273, Princeton Applied Research, Oak Ridge, TN, USA) that generated a 

rectangular voltage pulse. The electrolyte consisted of a solution of AgNO3 0.1M and Na2S2O3 

0.2M. The treatment was applied to the head of the implant. All implants were sonicated in ethanol, 

distilled water and acetone for 15 min each and dried with nitrogen. 

TESPSA bonding to titanium surfaces has been described elsewhere [11]. Succinctly, dental 

implant surfaces were activated with 5M NaOH for 24h at 60ºC. Implants were thoroughly 

cleaned twice by immersion in distilled water for 30 min, washed with acetone and dried with 

nitrogen gas. Pretreated implants were silanized with TESPSA (0.5 %, v/v) in anhydrous toluene 
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for 1h at 70ºC in nitrogen atmosphere. The silanization was applied in a solution of 3% (v/v) 

N,N-diisopropylethylamine (DIEA) to maintain a basic environment. After completion of the 

reaction, the silanized implants were sonicated with toluene for 10 min. Afterwards, substrates 

were thoroughly washed with isopropanol, ethanol, distilled water, and acetone for 15 min each 

and dried with nitrogen. All implants were individually packaged and sterilized with ethylene 

oxide (Soadco S.A., Escaldes-Engordany, Andorra) and stored at room temperature. 

2.3. Physicochemical characterization of the surfaces 

Implant surfaces were analyzed with scanning electron microscopy (SEM) (Zeiss Neon40, Carl 

Zeiss NTS GmbH, Oberkochen, Germany) and white-light interferometry (Wyko NT1100, 

Veeco Instruments, NY, USA). Surface elemental analyses (3 per group) were performed by 

X-ray photoelectron spectroscopy (XPS) with a Mg anode XR50 operating at 150W (D8 

advance, SPECS Surface NanoAnalysis GmbH, Zurich, Switzerland). Binding energies were 

referred to the C 1s signal at 284.8 eV. 

2.4. Surgical and clinical procedures 

A modified ligature-induced peri-implantitis model in beagle dogs was used, because of their 

likeness with human bone in relation to their size and ease of handling [20,21]. An outline of the 

experiment is presented in Figure 1. Mandibular premolars were extracted from the animals. 

Implant insertion surgeries were performed 3 months later. Lateral incisions were made to avoid 

tension in the area of implantation, and mucoperiosteal flaps were elevated on both sides of the 

mandible (Figure 2). All surgeries were done under general inhalation anesthesia with a mix of 

isofluorane, nitrous oxide and oxygen (5%). 

Once the sites were prepared and cleaned of debris, the implants were placed with a torque wrench 

(maximum torque: 35Ncm) following the manufacturer’s surgical guide. Six implants (2 per implant 
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group) were inserted in each animal mandible. A permuted random block design was used to allocate 

each implant position avoiding duplication of either mandible side or position for an implant group, 

with a total of three implants on each mandible side (Figures 1 and 2). Dental implants were placed 

non-submerged with the 1.5mm machined surface exposed above the bone crest and a minimum 

distance of at least 3mm between them. 2mm healing abutments (Soadco S.A.) were screwed to the 

implants to protect the implant connection, tissue flaps were restored and the soft tissues were sutured 

around each implant using resorbable sutures (Vycril 4-0, Ethicon, Johnson&Johnson, New 

Brunswick, NY, USA).  

Post-operatively, buprenorphine
 
HCl was administered for pain control, and amoxicillin was 

used to prevent infection. For the next 10 days, chlorhexidine cleaning of the surgical areas was 

carried out with gauze. Animals were allowed free movement, fed a soft diet, and routinely 

monitored for swelling, dehiscence, and infection. The remaining teeth were brushed 3 times a 

week, together with chlorhexidine cleansing until ligature insertions. 

Two months after implant insertion, peri-implantitis was induced by placing a 4-0 silk ligature in 

a sub-marginal position around the head of the implant as previously described [20,24]. Oral 

hygiene care was stopped. Ligatures were withdrawn two months after placement.  

Radiographic measurements of the progression of peri-implant vertical bone loss (primary 

outcome) and clinical examinations (secondary outcome) were made at 2, 3, 4, and 6 months 

after implant insertion and compared to the values at the insertion time (Figure 1) [12,13,17]. 

The parameters examined included probing depth (PD), mucosal recession (R), keratinized 

gingiva (KG), clinical attachment level (CAL), plaque index, and gingival index [12,13,17].  

Data were recorded at buccal, medial, distal, and lingual sides of each dental implant. Probing 



8 

 

depth and clinical attachment level were evaluated using a UNC-15 periodontal probe with a 

probe-tip diameter of 0.4mm (Hu-Friedy GmbH, Leinmen, Germany). 

Periapical digital X-rays were taken for each implant site as previously described [12]. Image 

analysis software (ImageJ/BoneJ) [25] was used to perform the calibration and measurements 

using the implant-abutment junction as a calibration and reference element. Two analysts, 

blinded with regard to the implant type, measured the mesial and distal marginal peri-implant 

bone levels for each implant. 

Dogs were euthanized six months post-implantation by means of a thiopental sodium overdose 

(Tiobarbital Braun1, Braun Medical, Rubí, Spain) following sedation with acepromazine (Calmo 

Neosan1, Pfizer, Bilbao, Spain). An Oscillow GL 2000/831 (PRO-MED Instrumente GmbH, 

Tuttlingen, Germany) bone saw was used to extract 30 tissue samples, each containing an 

implant, the alveolar bone and the surrounding mucosa. The samples were kept in 5% 

glutaraldehyde solution buffered at pH 7.2 until laboratory processing. 

2.5. Histomorphometric and histological analysis 

Each tissue sample was rinsed in sterile saline solution and maintained in a 10% neutral buffered 

formalin solution for 2 weeks for fixation. Once fixed, the samples were rinsed in running water 

for 1h and dehydrated in ethanol solutions of increasing concentration before embedding in 

glicomethacrylate (Tecnovit 7200, Heraeus Kulzer GmbH, Kulzer, Germany) with 1% peroxide 

benzoyl (BPO, Heraeus Kulzer GmbH). Polymerization was achieved applying yellow (2h) and 

blue light (4h) (Histolux, Heraeus Kulzer GmbH). 

The 30 samples were analyzed by micro computed tomography (microCT) to determine implant 

position, bone implant contact (BIC) and bone volume/total volume (BV/TV). A µCT 35 

(Scanco Medical AG, Brüttisellen, Switzerland) was used at 70 kVp, 114µA, 600-ms integration 
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time and 30-µm voxel size. Thresholding (range 550-2500) and image analysis were performed 

with ImageJ/BoneJ software [25]. 

Each sample was sectioned in the bucco-lingual plane with a diamond-coated band saw with 

constant irrigation (Exakt 310, Exakt Apparatebau GmbH, Norderstedt, Germany). Two sections 

were obtained from each sample. Sections were polished, glued on SEM stubs and coated with a 

thin layer of carbon prior BS-SEM analysis with a Zeiss Neon40 Scanning Electron Microscope 

(SEM Carl Zeiss NTS GmbH, Oberkochen, Germany). Images with secondary electrons were 

taken all along the surface of each section at 15kV, a working distance of 9mm and 

magnification of 150× and finally stitched for analysis [26].  Vertical bone resorption, BIC and 

bone area per total area (BAT) were measured with Cuanto Implant software (Izolde AB, 

Uppsala, Sweden). 

After BS-SEM analysis, each section was polished to a final thickness of about 100 µm using a 

micro-grinding unit (Exakt, Apparatebau, Norderstedt, Germany). The tissue in the slice was 

stained using Goldner’s Trichrome [26]. Bone and tissue resorption were then evaluated by 

optical microscopy with 80× magnification (Leica AF7000, Leica microsystems, Mannheim, 

Germany). 

2.6. Ion release analysis 

Blood and lymph fluid samples were extracted before implant insertion and after euthanasia. 

Five samples of 0.2ml were analyzed for each animal. Additionally, about 0.2g of soft tissue was 

extracted from the vicinity of each dental implant. The samples were digested with 1mL of 

HNO3 (65%). After 12h, 1mL of ultrapure water was added to the digested fluid. Trace elements 

of Ti and Ag were directly determined in the diluted supernatant of 5 samples for each implant 

group by ICP-MS (Agilent 7500ce, Agilent, Santa Clara, CA, USA).  
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2.7. Statistical analysis 

Mean and standard deviation values were calculated for all variables of each group. 

Nonparametric statistical Kruskal-Wallis and Mann-Whitney U-tests were used to analyze the 

parameters evaluated (P < 0.05). Data were analyzed with SPSS rev.20 (IBM, Jersey City, NY, 

USA). 

3. Results 

3.1. Physicochemical characterization of the surfaces 

SEM images (Figure 3) showed a topographical effect after silver electrodeposition with the 

shape of rounded etching and silver deposits with globular morphology. These deposits were 

homogeneously dispersed on the implant surface and remained attached after sonication. 

Silanized implants exhibited a nonporous morphology due to the alkaline etching process. As 

expected, an increase in roughness was observed on implant surfaces after both treatments 

(Table 1) but without significant differences vs the control group.  

The atomic composition of all surfaces was analyzed by means of XPS (Table 2). The treated 

samples showed an increase of carbon and nitrogen presence and a decrease in titanium and oxygen 

in comparison with the control group. In particular, the presence of silicon was unequivocally 

attributed to the presence of TESPSA on the surface of Ti_TSP implants. Ti_Ag implants had 

appreciable silver contents on their surface. These results are consistent with previous studies 

[11,22,23].
 

3.2. Clinical findings 

All the surgical procedures were well tolerated by the animals, and healing after implant 

placement was uneventful at all implant sites. Plaque formation during peri-implantitis resulted 

in signs of inflammation in the peri-implant mucosa and persisted after ligature removal. 
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The measured clinical parameters are shown in Table 3. A moderate rise in the probing depth 

was detected while the ligature was in place. Subsequently, an increase in the clinical attachment 

level was also observed after ligature insertion for all the implants studied. Once the ligature was 

removed, PD returned to pre-ligature levels for all samples except for Ti_TSP implants. On the 

other hand, mucosal recession increased with a corresponding increase in CAL values. 

Keratinized gingiva exhibited a slow reduction as the study progressed. Plaque and gingiva index 

values, however, increased with ligature insertion and afterwards.  

3.3. Histomorphometric and histological findings 

Mean BIC values measured by BS-SEM indicated significant differences for both Ti_Ag and 

Ti_TSP (Table 4). Likewise, an increase was observed for BAT values on the silane-treated 

implants compared to the control group. On the other hand, when measured with the microCT 

technique, both BIC and BV/TV values did not show significant differences between treated and 

control implants. Moreover, the mean values were higher than those measured by BS-SEM.  

Radiographic analysis of the bone level around the implants was done at 0, 2, 3, 4, and 6 months 

after implant insertion (Table 5). During the healing period (the period after implant placement 

and before ligature removal) no significant differences were observed among groups, suggesting 

that the surface treatments do not have any influence in the healing of the marginal bone. 

Throughout the active breakdown period (after ligature placement and before ligature removal) 

an increase in bone resorption was measured for all experimental groups, but was more 

pronounced for the untreated implants. Significant differences were detected between Ti and 

modified surfaces (Ti_Ag and Ti_TSP) 6 months after implant insertion. Measurements of bone 

resorption and soft tissue on histology sections by BS-SEM and optical microscopy (Table 5 

and Figure 4) further confirmed the bone resorption observed by radiographic analysis. 
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3.4. Ion release analysis 

ICP-MS measurements (Table 6) did not detect significant systemic levels of silver or titanium 

(detection limit for the ICP-MS equipment was < 50ng/g for Ti and < 10ng/g for Ag) in blood or 

lymph fluid for any of the samples extracted before implant insertion or extracted after 

euthanasia. For tissue samples, however, silver was detected in the tissues around dental implants 

treated with silver (2392.3ng/g). Traces of titanium were also detected for all samples. 

4. Discussion  

Implant macro- and micro- design surfaces play important roles in implant–tissue interactions. 

Most surface modification treatments are intended to optimize the biological response by altering 

the surface topography or chemical properties. Many in vivo studies have been published 

regarding antibacterial treatments for metallic medical devices (e.g., K-wires [27,28] or 

prostheses [29]) or the effect of infection removal on already infected dental implants [30]. 

However, in vivo studies of dental implants with antibacterial surface treatments are scarce.  In 

this study, a ligature-induced peri-implantitis model was chosen to reveal the in vivo 

effectiveness of the antibacterial properties of silver and silane surface treatments [12,13]. This 

work is a follow-up of previous in vitro studies on the antibacterial properties of both types of 

surfaces [11,22,23]. Godoy-Gallardo et al. studied and evaluated the antibacterial properties in 

vitro of both surfaces in a whole oral biofilm, reproducing the biofilm complexity found in vivo 

oral biofilms. The results obtained showed that both treated surfaces displayed a promising 

reduction in bacterial adhesion for multispecies biofilms. After 4 weeks of incubation the treated 

surfaces still showed a reduction in bacterial viability, increasing the proportion of dead bacteria 

through time on surfaces treated with silver or TESPSA [11].  
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Effectiveness of the surface treatments, with surface conditions similar to those studied in vitro 

[11,22,23] was confirmed by both SEM (Figure 3) and XPS (Table 2) analyses. SEM was used to 

observe the titanium surfaces after the treatments. Both processes had an important effect on 

morphology as the samples etched with NaOH showed a stable amorphous sodium titanate layer 

with a characteristic nanoporous morphology, whereas silver electrodeposition displayed round 

deposits which consist of silver and a rounded etching consequence of the pretreatment. XPS 

analyses characterized the silver electrodeposition by the presence of silver on the substrate with 

a larger concentration in the globular deposits, and silanization by the presence of silicon. 

The thickness of the titanium oxide layer doped with silver is proportional to the applied electric 

potential, with an estimated thickness of 10-15 nm [31]. Previous studies measured a silane dry-

layer thickness of 1.8-3.6nm [32]. Concurrently, the stability of the coatings was analyzed. All 

implants were cleaned thoroughly by sonication. Afterwards, the morphology was studied and 

compared with samples not sonicated (results no shown). Even though no measure was made of 

the adhesion of silver to the substrate, the deposits on silver persisted even after being challenged 

by sonication, suggesting a good adhesion to the substrate. No effects were observed for the 

silane coatings, even though there could suffer hydrolysis of the siloxane bonds. It is remarkable 

that even after an aggressive mechanical challenge, the capacity of the coatings to reduce the 

adhesion of both single biofilms and whole oral plaque was maintained [23]. 

Wettability and SFE are key parameters determining the adsorption of biomolecules onto 

surfaces and therefore controlling the adhesion of cells and bacteria. Changes in the wettability 

of the samples can be used to monitor the surface modification. In previous studies, it has been 

shown that TESPSA silane decreased the contact angle values with a significant increase of the 
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surface energy [11]. Silver electrodeposition, however, showed similar contact angle values 

compared to untreated titanium [22].  

The absence of complications in the present study (no implants were lost) confirmed the in vitro lack 

of cytotoxicity. A normal bone healing and osseointegration sequence was observed for all the 

implants before the ligature insertion. After ligature placement, the evaluation of the clinical 

parameters corroborated the presence of signs of peri-implantitis infection around the dental implant, 

as expected for the chosen model [12,13]. The lack of a control group without ligature applied does 

not allow correlating ligature placement and bone loss. No statistically significant differences among 

groups, however, were detected in clinical parameters (Table 3), suggesting that differences in the 

infection between implant groups were not important enough to be detected by means of the 

measured clinical parameters. 

Radiographic images were taken throughout the study for a direct determination of bone 

resorption around the dental implants (Table 5 and Figure 4). The measurements showed the 

existence of bone resorption around all the implants as early as 1 month after ligature placement 

(3 months after implant insertion). However, significant differences between treated implants 

and the control group were only detected 2 months after ligature removal (6 months after 

implantation). This result may indicate a limitation of this study, namely, that 2 months post-ligature 

was barely enough time for detecting differences between control and treated groups.  

The differences observed in bone resorption between the implant groups in this study may arise 

from different causes. A more pronounced progression of peri-implantitis has been reported for 

implants with a rough surface than for those with a smooth surface in other studies with dogs 

[12,33]. In this study, even after discounting the effect of the macrotopographic features on the 

implant surface with a Fourier high-pass filter at 40/mm, Ra is quiet similar in all implant groups 
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(Table 1). Another possible cause could be that the specific experimental animal or the implant 

insertion position affects the results. When these variables were analyzed, however, no 

correlation was found between them and bone resorption. Hence, the differences observed in 

bone resorption (by radiography, BS-SEM and histology images) are probably a consequence of 

chemical modifications produced by the surface treatments.  

Once the development of bone resorption was characterized, the histomorphometric parameters 

were analyzed. BIC and BAT were calculated, and the effect of the TESPSA silane on 

osseointegration was studied (Table 4). The measured BIC results indicated that all three 

surfaces osseointegrated. Both BIC and BAT values were higher for Ti_TSP implants, and 

significant differences with the control surfaces were detected. The quantitative differences 

observed in BIC and BV/TV measurements between microCT and BS-SEM imaging could be 

due to image artifacts induced by titanium in the vicinity of the implant volume in the microCT 

reconstruction. These artifacts difficult measuring the voxel layer closest to the implant surface 

[34].  

The concentration of titanium ions in blood and lymph observed in this study (<50ng/g) is in 

accordance with those reported for titanium prostheses in animal models and humans [35]. No 

significant differences in titanium presence in the tissues surrounding the dental implants (close 

to 2µg/g) were detected between the three implant groups. Our results are consistent with values 

reported by other studies [35], although high variability in measurements was detected. This 

variability can be explained by the variations of biological samples (such as different 

metabolisms of the animals) and the effect of different ion concentration in nearby implants. 

Thus, it is reasonable to assume that the studied antibacterial treatments do not disrupt the 

implant surface, increasing titanium ion release.  
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The systemic silver ion levels detected (<10ng/g) were also similar to those found in other in 

vivo studies [29]. The measured concentrations were much lower than the values accepted as 

normal in blood (200ng/g) due to the daily ingestion of small amounts of silver in food [36].  

The silver obtained in the vicinity of silver-treated implants was 2.4 µg/g, while 0.3 µg/g was 

measured in tissues near the other implants. According to these values, it is reasonable to assume 

that the presence of silver close to Ti and Ti_TSP implants is because of local diffusion from a 

nearby silver-treated implant. 

Silver has bactericidal activity at concentrations as low as 35ng/g [37]. The minimal inhibitory 

concentration (MIC), however, depends on the studied strain and the study conditions. A MIC of 

0.5 µg/g was reported for silver ions by Straub et al for gram-negative bacteria associated with 

periodontitis in vivo [38]. Mulley et al described that the MIC in LB broth was 3.6 µg/ml for 

S.aureus (strain MSSA476), 2.2 µg/ml  for P.aeruginosa (strain PA01) and 3.3 µg/ml for E.coli 

(strain K12) [39]. Berger et al showed that using electrically generated silver, 16 bacterial 

species were inhibited in vitro at a concentration of 1.25 µg/ml [40]. Thus, the silver 

concentration measured close to silver-treated implants is within the therapeutic range for 

antibacterial activity. It is therefore expected that an antibacterial effect appears locally around 

those implants, as suggested by the reduced bone resorption measured around Ti_Ag implants 

(Table 6). 

The in vivo evaluation of silver toxicity is complex due to the diverse states that silver can 

present in tissues and also to the different technique used by researchers. Contradictory reports 

can be found of whether silver nanoparticles are less [41-43] or more toxic [10] than silver ions 

at equivalent concentrations. In the present study, silver concentration in the tissues close to 

silver anodized implants (2.4µg/g) is lower than reported limits of in vitro toxicity on mammal 
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cells (4µg/g) [44]. However, in vitro results cannot be directly transposed to in vivo 

measurements. Thus, the treated surfaces were previously tested in vitro for cytotoxic effects in 

two different human cell lines [11,22,23]. The results demonstrated inexistent or very low 

cytotoxicity effects. These results, combined with the fact that the histological observations of 

the samples did not found evidences of toxic effects on cells, suggest that the silver or silane 

concentrations present in the surroundings of the treated implants were not cytotoxic. 

A post-hoc analysis of the statistical power of the study was calculated with the measured global 

effect size (0.496), resulting in a resulting statistical power of 0.63. The a priori estimation (0.9), 

coupled with the 3 Rs, led to use of five animals, with each dog receiving 6 implants. The 

decrease in the statistical power is a consequence of a much lower effect size in the present study 

compared to the previous studies used to calculate the sample size [12,13,20,21]. The most 

probable reason is that the time limitation in the spontaneous peri-implantitis progression after 

ligature removal might not have been optimal. In line with the 3 Rs, a short period of 

spontaneous peri-implantitis progression after ligature removal was chosen, but long enough to 

detect changes in bone resorption [20]. The reduced statistical power may limit the conclusions 

of this study. Nonetheless, the results provide sufficient preliminary evidence for the potential of 

using antibacterial coatings for prevention of early peri-implantitis effects on bone resorption.  

The fact that the analysts knew the aim of the study (detection bias) could also be a possible 

limitation of this study. However, blinding was imposed on researchers regarding the types of 

sample that they analyzed, as well as the surgeons placing the implants (performance bias).  

Another limitation of this study is the standard stain used in the histology section, which did not 

allow for the evaluation of soft tissue inflammation provoked by peri-implantitis. Soft tissues are 

also critical for the long-term implant success. Future investigations should focus on the long-
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term effects of antibacterial surface treatments on bone resorption caused by peri-implantitis, 

combined with immunohistochemical studies of peri-implant tissues and ion release measurements.  

5. Conclusions 

Antibacterial surface treatments with silver electrodeposition or TESPSA silane immobilization 

were successfully applied to dental implants and tested in vivo in beagle dogs in the first stages 

of the peri-implantitis. Peri-implant bone resorption after ligature-induced peri-implantitis was 

reduced in treated implants compared to untreated controls in X-ray measurements. No 

correlation was found between experimental animal or implant position with bone resorption. 

The short post-ligature period was not enough to detect differences in clinical parameters among 

implant groups. Histological observations of tissue sections close to TESPSA-treated implants 

suggested that this silane may enhance osseointegration. Both antibacterial surface treatments 

may be considered for further in vivo studies and clinical applications. 
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Figures 

 

Figure 1. Study outline: L1-L3 and R1-R3 are the left- and right-mandible implant sites. 

Ligatures were placed 2 months after implant insertion and removed at month 4. Animals were 

euthanized 2 months later. ‘X’ indicates that a given analysis/evaluation was conducted at the 

corresponding milestone. 
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Figure 2. Appearance of the gingival tissue at the moment of implant placement. Three implants 

were installed on each side of the mandible; sutures were applied (A), and protective healing 

abutments were placed on the implants (B). 
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Figure 3. Representative BS-SEM image of a dental implant. Insets show SEM images of 

titanium control (Ti), silver electrodeposited implant surfaces (Ti_Ag) and silanized implant 

surfaces (Ti_TSP). 
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Figure 4. Optical microscopy image of a histological slice representative of each group of 

implants studied. Tissue was dyed with Goldner’s Trichrome stain. Soft tissue and bone 

resorption measurements are shown with arrows. 
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Table 1. Roughness parameters measured for each implant group [mean ± standard deviation]. 

 

 Unfiltered Fourier high-band pass filter (40/mm) 

 Ra (nm)  Rku  Rsk  Ra (nm)  Rku Rsk  

Ti_Ag 690 ± 92 2.9 ± -0.3 ± 309 ± 55 5.8 ± 0.0 ± 0.1
a
 

Ti_TSP 532 ± 80 3.0 ± -0.4 ± 298 ± 15 8.4 ± 0.6 ± 0.2
a
 

Ti 410 ± 49 6.3 ± 0.3 ± 0.1 288 ± 17 5.4 ± 0.3 ± 0.1 

 

 

 

 

Table 2. Chemical composition (atomic %) and Ag/Ti, S/Ti and Si/Ti relative atomic ratios. 

C 1s N 1s O 1s S 2p Si 2p Ti 2p Ag 3d Ag/Ti S/Ti Si/Ti 

Ti_Ag 47.3 ± 1.1 1.2 ± 0.2 40.1 ± 8.1 2.0 ± 0.7 

 

6.2 ± 4.7 3.2 ± 1.0 0.6 ± 0.3 0.3 ± 0.1 

 Ti_TSP 24.1 ± 0.7 0.8 ± 2.0 55.7 ± 0.1 

 

5.1 ± 0.4 14.3 ± 0.4 

   

0.4 ± 0.1 

Ti 22.6 ± 0.3 0.9± 1.0 54.4 ± 0.5   22.1 ± 1.4     
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Table 3. Mean ± SD (mm) of probing depth (PD), mucosal recession (R), clinical attachment 

level (CAL), keratinized gingival (KG), plaque index, and gingival index. Statistically significant 

differences between measures at studied time and ligature insertion (2 months) are indicated with 

an “a”. Statistically significant differences between treated samples vs. control titanium are 

indicated with a “b” (P < 0.05) (Time is indicated as months after implant insertion). 

  PD (mm) R (mm) CAL (mm) 

 Ti Ti_Ag Ti_TSP Ti Ti_Ag Ti_TSP Ti Ti_Ag Ti_TSP 

2 months 1.9 ± 0.5 1.9 ± 0.5 1.9 ± 0.4 0.5 ± 0.4 0.6 ± 0.4 0.7 ± 0.5 2.4 ± 0.7 2.5 ± 0.7 2.6 ± 0.7 

3 months 2.5
a
 ± 0.4 2.6

a
 ± 0.4 2.6

a 
 ± 0.6 0.6 ± 0.5 0.8 ± 0.5 0.6 ± 0.8 3.1

a
 ± 0.5 3.4

a
 ± 0.5 3.2

a
 ± 0.7 

4 months 2.9
a
 ± 0.5 2.9

a
 ± 0.5 2.8

a 
 ± 0.2 0.3

a
 ± 0.6 0.6

a
 ± 0.6 0.4

a
 ± 0.7 3.2 ± 0.6 3.5 ± 0.6 3.2 ± 0.7 

6 months 2.0 ± 0.8 2.1 ± 0.8 2.5
a,b

± 0.7 1.2
 a
 ± 0.9 1.3

a
 ± 0.9 1.4

a
 ± 0.7 3.2

a
 ± 1.5 3.4

a
 ± 1.5 3.9

a
 ± 1.4 

 KG (mm) Plaque Index (mm) Gingival Index (mm) 

 Ti Ti_Ag Ti_TSP Ti Ti_Ag Ti_TSP Ti Ti_Ag Ti_TSP 

2 months 4.3 ± 0.8 3.9 ± 0.9 3.8 ± 0.9 0.7 ± 0.5 0.8 ± 0.4 0.8 ± 04 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.3 

3 months 4.0 ± 1.4 3.2 ± 1.5 3.6 ± 1.5 1.6
a
 ± 0.7 1.6

a
 ± 0.7 1.6

a
 ± 0.8 1.0

a
 ± 0.6 1.2

a
 ± 0.6 1.3

a
 ± 0.6 

4 months 2.8
a
 ± 1.5 2.5 ± 1.8 2.8 ± 1.3 1.8

a
 ± 0.6 1.8

a
 ± 0.6 1.8

a
 ± 0.6 1.5

a
 ± 0.7 1.5

a
 ± 0.7 1.5

a
 ± 0.5 

6 months 3.1
a
 ± 1.6 2.6 ± 1.7 2.6 ± 1.5 1.7

a
 ± 0.8 1.9

a
 ± 0.5 1.9

a
 ± 0.5 1.0

a
 ± 1.1 1.5

a
 ± 1.0 1.2

a
 ± 1.0 

 

 

 

Table 4. Mean ± SD of bone to the implant contact (%BIC) and bone area per total area (%BAT) 

by BS-SEM and %BIC and bone volume per total volume (%BV/TV) by microCT. Statistically 

significant differences between treated implants vs. titanium controls (Ti) are indicated with an 

“
a
” (P < 0.05). 

 BIC(%) BAT(%) BIC (microCT) (%) BV/TV (microCT) (%) 

Ti 63.4 ± 23.4 64.6 ± 28.1 84.6 ± 10.5 84.5 ± 11.1 
Ti_Ag 47.3a ± 24.7 63.3 ± 23.4 81.6 ± 7.4 81.3 ± 8.0 

Ti_N_TSP 70.6a ± 27.4 70.6a ± 27.4 82.5 ± 8.7 81.9 ± 9.2 
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Table 5. Mean ± SD bone resorption (mm) measured by radiographic imaging with time 

measured in months after implant insertion. Mean ± SD of distance from implant platform to the 

marginal bone floor measured by BS-SEM, and optical microscopy of the histological sections, 

and distance from implant platform to soft tissue measured with optical microscopy. Statistically 

significant differences between treated implants vs. titanium controls (Ti) are indicated with an 

“
a
” (P < 0.05). 

 Bone X-Ray (mm)  Bone Bone (mm) Soft tissue (mm)  

 0 month 2 months 3 months 4 months 6 months (BS-SEM)  (Histology) (Histology) 

Ti 2.1 ± 0.5 3.0 ± 0.6 3.9 ± 0.7 4.6 ± 0.7 4.9 ± 0.5 3.8 ± 0.7 3.9 ± 1.0 2.3 ± 0.6 

Ti_Ag 2.2 ± 0.6 2.9 ± 0.6 3.5 ± 0.4
a
 4.1 ± 0.5 4.4

a
 ± 0.5 3.2

a
 ± 0.5 3.2

a
 ± 0.7 1.9 ± 0.4 

Ti_N_TSP 1.9 ± 0.6 2.8 ± 0.5 3.6 ± 0.5 4.0 ± 0.5
a
 4.1

a
 ± 0.7 3.2

a
 ± 0.6 3.2

a
 ± 0.7 1.9 ± 0.7 

 

 

 

 

Table 6. Presence of Ag and Ti as trace elements in the tissue samples (mean ± SD). Statistically 

significant differences between Ti_Ag samples vs. Ti plus Ti_N_TSP samples are indicated with 

an “
a
” (P < 0.05). 

  Ti (ng/g) Ag (ng/g) 

Ti & Ti_N_TSP 1827.3 ± 1294.3 322.7 ± 223.1 
Ti_Ag 2940.9 ± 2573.3 2392.3a ± 334.1 

 

 


