RESUMEN

El objetivo de este proyecto es la implantación del software Power Studio Scada en una empresa que a partir de ahora llamaremos “Ametsak S.A.”. Es un software para la gestión de la energía dentro de la empresa. Dicho software se sirve de unos dispositivos colocados en las estaciones transformadoras para tener datos actualizados de energía, potencia, frecuencia, etc.

Se ha programado el software para las necesidades de la empresa. Se han diseñado las pantallas, con esquemas de las estaciones transformadoras, de forma que aparezcan alarmas si algún dispositivo no funciona correctamente; se han realizado informes energéticos para saber cuánto se consume y dónde se consume más.

El objetivo final de esta implantación es la reducción del consumo de energía. No se ha llevado a cabo una reducción de gastos, porque para ello hay que analizar el gasto durante unos meses, una vez esté implantado el software, aunque se ha hecho un pequeño ejemplo de ahorro de energía. Este proyecto trata de la implantación, lo que se ha conseguido es la imputación a cada departamento de su gasto y mediante una macro conseguir los datos de forma que se puedan tratar fácilmente en un Excel.

Lo interesante de la colocación de estos dispositivos es que haciendo una relación entre las líneas eléctricas y los departamentos que dispone la empresa se puede llegar a calcular cuánto gasta cada departamento. En esta época de crisis, se requiere una mejor gestión de la energía para poder reducir gastos. Con la implantación de este software se puede llevar un minucioso registro de los gastos y observar dónde se gasta más energía y si se podría reducir.
INDICE

INDICE DE FIGURAS .. 5
ÍNDICE DE TABLAS .. 6
ÍNDICE ANEXOS A-B-C-D-E ... 7
1.- GLOSARIO ... 8
2.- PREFACIO ... 9
 2.1 Origen del proyecto .. 9
 2.2 Motivación del proyecto ... 9
3.- OBJETIVOS Y ALCANCE DEL PROYECTO .. 10
 3.1 Objetivos .. 10
 3.2 Alcance .. 10
4.- NORMATIVA Y NORMAS APLICABLES ... 12
5.- INTRODUCCIÓN ... 13
6.- LA EMPRESA .. 15
 6.1 Departamentos .. 15
 6.2 Transformadores .. 16
 6.3 Piedra de Rosetta .. 17
7.- DESCRIPCIÓN DEL SOFTWARE .. 19
 7.1 Alternativas de softwares .. 19
 7.1.1 Circuit monitor 3000 de Merlin Gerin .. 19
 7.1.2 PSS/E de Siemens .. 20
 7.2 Definición del Power Studio Scada .. 21
8.- INFORMES ... 34
 8.1 Informes técnicos .. 35
 8.2 Informe para los departamentos .. 36
 8.2.1 Variables ... 37
 8.2.1.1 Variables globales .. 37
 8.2.1.2 Variables locales ... 40
 8.2.2 Discriminadores .. 43
 8.2.3 Años .. 44
9.- PANTALLAS ... 45
 9.1 Alarmas visuales ... 45
 9.2 Variables instantáneas y acumulativas ... 50
10.- EXPORTACIONES ... 51
 10.1 Intercambio Dinámico de Datos (DDE) ... 51
 10.2 Servicios XML .. 52
11.- SUCESOS .. 55
 11.1 Introducción .. 55
 11.2 Condiciones .. 56
 11.3 Configuración .. 56
12.- POSIBLES MEJORAS DEL SOFTWARE PPS .. 59
13.- AÑOS FUTUROS .. 61
14.- ANÁLISIS ECONÓMICO ... 63
 14.1 Reducción de costes ... 63
 14.2 Coste de la implantación ... 64
 14.3 Coste del proyecto ... 65
CONCLUSIONES ... 67
BIBLIOGRAFÍA .. 68
<table>
<thead>
<tr>
<th>Figura</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 6.1</td>
<td>Distribución por departamentos</td>
<td>16</td>
</tr>
<tr>
<td>Fig. 6.2</td>
<td>Ubicación de las estaciones transformadoras de BT</td>
<td>17</td>
</tr>
<tr>
<td>Fig. 7.1</td>
<td>Esquema de una instalación de Circutor</td>
<td>21</td>
</tr>
<tr>
<td>Fig. 7.2</td>
<td>Esquema de conexión de los dispositivos CVM 96</td>
<td>30</td>
</tr>
<tr>
<td>Fig. 7.3</td>
<td>Armario de la estación transformadora 2</td>
<td>32</td>
</tr>
<tr>
<td>Fig. 8.1</td>
<td>Configuración de las variables calculadas</td>
<td>38</td>
</tr>
<tr>
<td>Fig. 8.2</td>
<td>Ejemplo de ventana para llamar a una variable global</td>
<td>39</td>
</tr>
<tr>
<td>Fig. 8.3</td>
<td>Ejemplo de cómo elegir discriminador</td>
<td>40</td>
</tr>
<tr>
<td>Fig. 8.4</td>
<td>Configuración de fórmulas locales</td>
<td>41</td>
</tr>
<tr>
<td>Fig. 8.5</td>
<td>Gestión de fórmulas</td>
<td>41</td>
</tr>
<tr>
<td>Fig. 9.1</td>
<td>Ejemplo de una pantalla donde están los transformadores</td>
<td>48</td>
</tr>
<tr>
<td>Fig. 9.2</td>
<td>Ejemplo de pantalla con alarmas visuales solo de los dispositivos</td>
<td>49</td>
</tr>
</tbody>
</table>
ÍNDICE DE TABLAS

Tabla 7.2.: Características de medida de los analizadores de redes................................. 25
Tabla 7.3: Emplazamiento y tipo de dispositivo.. 29
Tabla 8.1: Ejemplo de nomenclatura.. 42
Tabla 10.1: Ejemplo de una tabla exportada al Excel mediante XML.............................. 53
Tabla 14.1: Resultados del estudio... 63
Tabla 14.2: Inversión realizada.. 64
Tabla 14.3: Precio por hora según la categoría... 65
Tabla 14.4: Distribución del coste en recursos humanos .. 65
Tabla 14.5: Coste de gastos.. 66
ÍNDICE ANEXOS A-B-C-D-E

INDICE DE FIGURAS .. 2
ÍNDICE DE TABLAS ... 3
A.- DISPOSITIVOS ... 4
 A.1 Piedra de rosetta .. 4
 A.2 Dispositivos en armario .. 9
 A.3 Denominación de los dispositivos 11
B.- INFORMES .. 13
 B.1 Periodos tarifarios .. 13
 B.2 Contrato para el suministro de la energía eléctrica 15
 B.3 Calendario .. 17
 B.3.1 Calendario 2009 de Cataluña 17
 B.3.2 Calendario 2008 de Cataluña 18
 B.4 Ejemplos de informes ... 19
 B.4.1 Informe técnico .. 22
C.- PANTALLAS ... 32
D.- EXPORTACIONES ... 40
E.- ANALISIS ECONÓMICO .. 71
 E.1 Reducción de costes .. 71
1.- GLOSARIO

ET: Estación Transformadora
BT: Baja Tensión
MT: Media Tensión
AT: Alta Tensión
PSS: Power Studio Scada
PSS/E: Power System Simulator for Engineering
CM: Circuit Monitor
Trafo: Transformador
DDE: Dynamic Data Exchange (Intercambio Dinámico de Datos)
FP: Factor de Potencia
THD: Total Harmonic Distortion (Distorsión Armónica Total)
PX: Periodo X
V_N: Tensión nominal entre fase y neutro
I: Intensidad
UTC: Universal Coordinated Time (Tiempo coordinado universal)
User Form: Formulario
Command Button: Botón de comando
Combobox: Lista combinada
Period: Periodo
DateTime: Fecha Hora
Id: Dispositivo
Value: Valor
AI: Autoinserción o Autoinsert
2.- PREFACIO

2.1 Origen del proyecto

La idea de realizar este proyecto surgió en la empresa Ametsak S.A., que se dedica a la producción de televisiones, por las circunstancias actuales de crisis económica mundial. Esta crisis está obligando a reducir todos los gastos posibles dentro de la empresa. El primer paso que se ha llevado a cabo es intentar controlar el gasto energético, ya que actualmente se consumen 16MW al año, y es una cifra que se quiere reducir.

Este proyecto comenzó en el año 2007, cuando se compraron unos dispositivos y el software Power Studio Scada a la empresa Circutor para tener un mayor control de la red eléctrica. Con estos dispositivos se tiene un control exacto de lo que se consume, además de tener un control del buen funcionamiento de la red. A finales del 2008, fue cuando se decidió implantar el software.

2.2 Motivación del proyecto

Las motivaciones personales que me han llevado a realizar este trabajo son dos: una, y posiblemente la más importante, encontrar la manera de combinar mi ocupación laboral y la realización de este proyecto final de carrera. La forma de combinar estas dos actividades es poder realizar como trabajo final de carrera uno de los proyectos “reales” que han surgido en mi empresa. Así, primer escollo resuelto.

La segunda motivación tiene que ver con mi formación. He estudiado Ingeniería Industrial, habiendo hecho previamente la Ingeniería técnica en mecánica. Me interesaba un proyecto no muy mecánico, ya que en la anterior carrera ya tuve opción de realizar un proyecto más mecánico. Además, siempre me ha gustado la informática y este proyecto me daba opción a profundizar un poco en el tema eléctrico y a aprender un programa nuevo.
3.- OBJETIVOS Y ALCANCE DEL PROYECTO

3.1 Objetivos

El objetivo principal del proyecto es la reducción del consumo energético en la empresa Ametsak S.A.. Éste, es un software de supervisión, no de control. Por lo tanto, se supervisarán los consumos con el fin de saber dónde se consume más para poder investigar una posible reducción. Además, se controlarán los consumos por departamentos para que cada uno cargue el gasto energético a su presupuesto, y no como se viene realizando hasta ahora que la energía la paga el departamento de mantenimiento. Como objetivo secundario estaría el control de las líneas eléctricas, es decir, saber que no están funcionando correctamente.

Otros objetivos son:
- Automatizar el informe mensual de energías, mediante una exportación a Excel, aparezca el gráfico mensual de consumo.
- Imputación del consumo real de los distintos procesos en las respectivas plantas, hasta ahora no se separaban por departamentos, sino que era un coste asociado a mantenimiento.
- Obtener gráficas de consumo, por día, por hora, etc... para cada departamento.
- Controlar las líneas de salida BT de las ET’s:
 - Tensiones.
 - Intensidades.
 - Potencias: activa, reactiva y aparente.
 - FP.
 - THD’s.

3.2 Alcance

Una vez definidos los objetivos de este trabajo nos vemos obligados a definir el alcance del mismo. Sin duda, el alcance del proyecto incluye aspectos tan diversos como:
• Realización de informes energéticos tanto por dispositivos como por departamentos.
• Diseño de las pantallas Scada.
• Realización del esquema unifilar de las estaciones transformadoras de baja tensión.
• Programación de los sucesos y alarmas, de forma que avisen si algún dispositivo no comunica o no funciona correctamente.
• Estudio económico.

Hay que mencionar que el software está en explotación, por lo tanto no se podrán ver los resultados. Para poder analizar los resultados habría que estudiar dos o tres meses para saber dónde se podrían reducir gastos.
4.- NORMATIVA Y NORMAS APLICABLES

A continuación se realizará una lista con la normativa y normas aplicables en este proyecto. En principio la empresa tiene contratada la energía eléctrica en media tensión (25.000V), por lo tanto, tiene que cumplir la normativa de media tensión; la calidad del suministro se basa en la norma UNE EN-50160.

Sin embargo, en este proyecto trabaja con baja tensión, por lo que la empresa no tiene obligación de cumplirla, pero a la hora de programar las alarmas, por ejemplo, se han seguido las indicaciones de las normas. De esta forma, se tendrá un control del la calidad del suministro de la energía. A continuación se tiene una lista de las normas aplicables, algunas ahora no se han tenido utilizado, pero en un futuro se podrían tener en cuenta.

- Norma UNE EN-50160: Características de la tensión suministrada por las redes públicas de distribución.

- Norma CEI 61000-4-30: Técnica de medida y ensayo. Métodos de medida de la calidad

- Real Decreto 1955/2000, de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica.

- Norma Internacional IEC 61000-4-15 (Febrero 2003): especificación funcional y de diseño para los aparatos de medición de parpadeo, destinados a indicar el nivel correcto de percepción de parpadeo para todas las formas de onda prácticas de fluctuación de tensión.

- Norma CEI 61000-4-7: inmunidad o susceptibilidad. Armónicos e inter armónicos.

- ORDRE TRE/14/2009, de 13 de gener, de modificació de l'Ordre TRE/499/2008, de 19 de novembre, per la qual s'estableix el calendari de festes locals a la Comunitat Autònoma de Catalunya per a l'any 2009 (DOGC núm. 5269, pàg. 87931, d'1.12.2008).

- ORDEN TRE/197/2007, de 28 de mayo, por la que se establece el calendario oficial de fiestas laborales para el 2008.
5.- INTRODUCCIÓN

Una de las propiedades particulares de la electricidad es que varias de sus características dependen a la vez del productor/distribuidor, de los fabricantes de equipos y del cliente. El número importante de protagonistas y la utilización de terminología y definiciones a veces aproximadas, explican la complejidad del tema tratado.

La calidad de la energía está convirtiéndose en un tema estratégico para las compañías eléctricas, el personal de mantenimiento, explotación o gestión de entornos terciarios o industriales y los constructores de equipos, esencialmente por las siguientes razones:

- La necesidad económica por parte de las empresas de aumentar la competitividad.
- La generalización del uso de equipos sensibles a las perturbaciones.
- La liberalización del mercado eléctrico.

En efecto, actualmente, las redes de baja tensión se encuentran muy contaminadas y sometidas a múltiples agresiones que pueden conllevar un funcionamiento defectuoso e incluso el deterioro de componentes eléctricos y receptores sensibles, como los aparatos electrónicos.

En un contexto de gran competitividad, es indispensable para la empresa reducir los costes relativos a la pérdida de la continuidad de servicio y a la falta de calidad, así como los relativos al dimensionamiento excesivo de las instalaciones y a las facturas energéticas.

Al mismo tiempo, la liberalización del mercado de la energía, modifica sensiblemente las reglas del juego. Con la apertura a la competencia de la producción de la electricidad, la producción descentralizada y la posibilidad para los grandes consumidores de elegir a su proveedor, la calidad de la energía eléctrica es ahora un factor diferencial y su garantía se convierte en un criterio importante para la elección del proveedor de energía. Disponer de una calidad adaptada a las necesidades es, por tanto, uno de los objetivos del personal de explotación, mantenimiento y gestión de los emplazamientos terciarios e industriales. Para ello, los sistemas de medida facilitan el diagnóstico de las instalaciones. Asociados a herramientas de software complementarias que llevan a cabo el control y la supervisión permanente de las instalaciones, garantizan el correcto funcionamiento de los
procesos y una gestión adecuada de la energía, dos factores que dependen de la calidad de la energía eléctrica y que resultan indispensables para incrementar la productividad.
6.- LA EMPRESA

La empresa Ametsak S.A. se dedica a la producción de televisores. Es una empresa de gran tamaño, ya que abarca un área de más de 10.000 m². El gasto energético de una empresa de gran tamaño es muy alto, con este software se va a poder supervisar el gasto energético. Hasta ahora, la energía eléctrica la pagaba el departamento de mantenimiento, es decir, se cargaba al presupuesto de este departamento. Con esta supervisión, por una parte, cada departamento pagará exactamente lo que gaste y por otra parte, se tendrá claro dónde se gasta más y se podrá realizar un estudio para reducir esos gastos. Al fin y al cabo el principal objetivo es la reducción de gastos energéticos.

6.1 Departamentos

Se ha realizado una división de la empresa en departamentos, en total hay ocho:

- Producción: Como su propio nombre indica, abarca la zona de producción, todas las líneas de montaje

- Logística: En este departamento entrarían todos los almacenes.

- Oficinas: Se refiere a las oficinas centrales, donde están los subdepartamentos de mantenimiento, compras, informática...y las oficinas que se encuentran en autoinserción.

- Autoinserción: Es el departamento donde se realizan las placas de televisión, está completamente automatizada.

- Diseño: Abarca los dos pisos de diseño. Es un departamento de oficinas dedicadas al diseño de las mejoras de los aparatos, tanto de las placas, como de las cajas...

- Service: Se encuentra en un primer piso, encima de producción y su objetivo es la reparación de televisores. También dispone de un espacio en planta.

- EMC: Es una zona de la empresa donde se realizan pruebas electromagnéticas, y que además se alquila a otras empresas para que puedan realizar las pruebas que necesiten.

- Rodilla: Es una zona de la empresa dedicada al reciclaje. Es un trabajo que está subcontratado. Está situada en la zona exterior noreste.
En la siguiente imagen se tiene la distribución de la empresa por departamentos; Para poder observarlo ver el plano 1:

![Fig. 6.1: Distribución por departamentos](image)

6.2 Transformadores

En la empresa existen tres estaciones de baja tensión. Su ubicación se puede ver en la figura 6.2:
En la estación transformadora 1, existen dos transformadores

En la estación transformadora 2, existen tres transformadores

En la estación transformadora 3, existen cuatro transformadores, hay uno de reserva que en caso de que el transformador 3 no funcione se pondría en marcha.

Ver el esquema unifilar de las estaciones transformadoras.

6.3 Piedra de Rosetta

El objetivo principal del proyecto es controlar el gasto de energía por departamentos, para ello, una vez colocados los dispositivos hay que decidir a que departamento pertenece ese gasto. Se ha realizado una piedra de Rosetta en el que se detalla qué dispositivos miden la energía de cada departamento. Hay que tener en cuenta, que no se tienen dispositivos en cada punto de conexión. Para calcular la diferencia, lo que se hace es...
resutar los dispositivos que se tienen al total, que es lo que miden los transformadores. Es decir, los transformadores nos miden el gasto total, y los dispositivos que se tienen son subtotales. Se realiza el resto de dispositivos, esto es, se resta al transformador correspondiente todos los dispositivos que cuelgan de él, y se decide a qué departamento corresponde esa energía. Esta piedra de Rosetta se ha realizado en base a la experiencia del encargado de mantenimiento, quien es el que ha decidido dónde colocar los dispositivos. Aún así, cuáles pertenecen al departamento de producción se ha verificado comprobando que empiezan a trabajar a las 5 de la mañana. En el anexo A, apartado 1, (“Piedra de Rosetta”) se puede observar los dispositivos por departamento y qué porcentaje corresponde a cada departamento.
7.- DESCRIPCIÓN DEL SOFTWARE

Este proyecto comenzó en el año 2007. En ese momento no se sabía muy bien si iba a resultar beneficioso o no. No había un presupuesto para el proyecto por lo que se fue realizando por etapas, es decir ir aumentando el número de dispositivo a lo largo del tiempo.

7.1 Alternativas de softwares

En aquel momento no se realizó un estudio exhaustivo de los softwares que había en el mercado. Se podían elegir los softwares de grandes empresas como ABB, Siemens, Merlin Gerin (son las empresas con las que trabaja Ametsak S.A.) o de una empresa más pequeña como Circutor. Las compañías internacionales tienen las ventajas de que tienen una mayor cobertura, los programas normalmente son mejores y suelen tener una actualización más continua... Pero se eligió Circutor por ser más económico y por proximidad geográfica; es más fácil que venga una persona de Circutor para resolver dudas o dar un curso sencillo del programa que un trabajador de una gran compañía.

Pese a que el programa es el Power Studio Scada, se realizará un estudio de las alternativas de los softwares que hay actualmente en el mercado, ya que es muy complicado estudiar los programas que había en la época que se comenzó el proyecto. Se han analizado dos softwares, el de Merlin Gerin y el de Siemens, pero ninguno de ellos sirve como contador de energía por lo que no serían válidos para las necesidades de la empresa.

7.1.1 Circuit monitor 3000 de Merlin Gerin

Circuit Monitor CM3250 y CM3350 han sido diseñados para entornos industriales y grandes infraestructuras comerciales, con el fin de analizar la instalación eléctrica en puntos críticos (acometidas, cargas sensibles, consumos elevados).

Este analizador posee una potencia de procesamiento que proporciona la información necesaria para tomar decisiones proactivas y correctivas: perfiles de consumo, detección de problemas en la instalación, análisis de la calidad (según norma UNE 50160), supervisión y mantenimiento de los equipos.
Aplicaciones

- Control de armónicos. Análisis espectral de armónicos
- Control preciso de consumos a nivel interno (no como contador de energía)
- Supervisión exhaustiva de la instalación eléctrica en:
 - cargas críticas
 - instalaciones sensibles o problemáticas
 - grandes consumos (en control de energía, cuando prima la precisión).

El problema de este software es que no sirve como contador de energía. Las demás aplicaciones se parecen bastantes a las que permite realizar el Power Studio Scada.

7.1.2 PSS/E de Siemens

Desde su introducción en 1976, el PSS/E se ha convertido en el programa comercial de su tipo más completo, más técnicamente avanzado y más empleado en el mercado. El PSS/E ha sido probado en el tiempo y es ampliamente considerado como la herramienta para el análisis de sistemas de potencia de mejor ejecución.

PSS/E cubre muchas de las necesidades de simulación de Sistemas de Potencia. Es un programa integrado e interactivo, que se emplea para simular, analizar y optimizar, el comportamiento de un sistema de potencia. Pone a la disposición del usuario los métodos más avanzados y probados en muchas áreas técnicas, incluyendo:

- Flujo de carga
- Flujo de Carga Óptimos (OPF)
- Análisis de fallas balanceadas o desbalanceadas
- Simulación dinámica
- Simulación dinámica a término extendido
- Acceso abierto y precios
- Análisis de transferencias
- Reducción de redes
Este es un programa muy completo pero dirigido a la simulación de sistemas de potencia. A la empresa Ametsak S.A., le interesa tener la supervisión de la energía activa consumida.

7.2 Definición del Power Studio Scada

La empresa Circutor tiene en el mercado diversos softwares, pero los que nos interesan son el Power Studio Scada y el Power Studio. Hay que diferenciar los dos softwares.

Mediante el PowerStudio se puede leer en tiempo real los valores instantáneos de todos los equipos Circutor y generan un histórico de datos que se guarda en un PC para su posterior estudio. En la siguiente figura (7.1) se puede observar el esquema de instalación.

Fig. 7.1: Esquema de una instalación de Circutor

Este software permite al usuario tener un control absoluto de la instalación, conociendo en tiempo real y de primera mano, el estado de sus líneas de potencia e incluso de consumo general de su instalación tanto en baja como en media tensión. Dicho control es importante ya que puede realizarse un excelente mantenimiento preventivo, desde el cual se puede controlar una gran cantidad de parámetros eléctricos. Dentro de esta supervisión, mediante los captadores adecuados, se incluye el control de una gran cantidad de parámetros eléctricos y de proceso.
La finalidad del Power Studio Scada es el procesamiento de los datos y elaboración de informes, con el objetivo de adoptar medidas preventivas o correctivas en la instalación. Está diseñado para actuar como centralizador y gestor de información.

Debido al gran volumen de información que aporta cada central de medida, es necesario, disponer de un sistema centralizado de recogida de datos. El PowerStudio SCADA Además está pensado para que cualquier usuario pueda crear sus propias pantallas personalizadas.

Aplicaciones:
- Parametrización remota de los equipos
- Visualización de parámetros en tiempo real
- Registro de históricos
- Visualización de históricos mediante tablas y gráficas
- Impresión de gráficas y tablas
- Software Multipuesto (Servidor web) mediante pantallas estáticas
- Servidor XML y DDE integrado (para intercambio con otras aplicaciones de mercado)
- Gran versatilidad y muy fácil uso
- Acceso a través de Internet con contraseña y posibilidad de creación de perfiles de acceso.

Lo que se pretende instalando este software en la empresa Ametsak S.A. es tener una mejor gestión de la energía. La empresa tiene que cumplir la normativa de Alta Tensión, ya que es la que tiene contratada, pero la media y baja tensión se quiere tener controlada. Ya que teniendo este control se puede modificar la energía consumida.

Se ha calculado qué porcentaje de cada dispositivo consume cada departamento para poder calcular la energía total consumida por los departamentos. Actualmente, cada subdepartamento paga lo que gasta de papel, tinta... Se tienen que prever este tipo de gastos en el presupuesto. Hasta ahora la energía se pagaba entre todos sin tener en cuenta quién gastaba más. Para evitar esto, y que cada uno se haga responsable de sus gastos se ha instalado este programa. Lo ideal sería que se pudiera saber lo que gasta cada subdepartamento, pero esto queda pendiente para un futuro cuando se dispongan de más dispositivos conectados.
Dispositivos

Los analizadores de redes Serie CVM son centrales de medida de alta precisión, cuyo fin es el control y la supervisión de los principales parámetros eléctricos en redes monofásicas y/o trifásicas, de tres o cuatro hilos (en BT o MT).

La medida se realiza en Verdadero Valor Eficaz, mediante tres entradas de tensión y neutro, y tres entradas para la conexión de transformadores de corriente exteriores, con secundarios…/5 A ó …/1 A (las entradas de corriente, en los tipos ITF, son aisladas).

Los analizadores CVM, además de mostrar por display y transmitir por comunicaciones todas las magnitudes eléctricas medidas y/o calculadas, incorporan la función contador, siendo capaces de almacenar en su memoria interna la energía consumida y generada de la instalación, incluso ante ausencia de alimentación auxiliar.

Según tipo, los analizadores de redes CVM se les puede integrar la función de discriminador horario mediante una programación previa, obteniendo así, un totalizador de kW·h por cada una de las tarifas programadas. Dichos analizadores, al igual que los equipos de una sola tarifa, registran la energía activa, reactiva inductiva, reactiva capacitiva y aparente por cada uno de los períodos programados. En la siguiente tabla (Tabla 7.1) tenemos los parámetros de medida para este dispositivo.
Toda la serie lleva incorporada la función maxímetro, calculando la demanda integrada en un período programable; dicha integración deslizante en el tiempo puede llevarse a cabo respecto un parámetro a seleccionar: corriente trifásica, potencia activa trifásica, potencia aparente trifásica o corriente por fase. Los equipos expansibles o modulares, pueden dotárseles de funciones adicionales, ya que según la carta de expansión o tipo de CVM seleccionado tienen la posibilidad de poseer I/O analógicas (función multiconvertidor), I/O digitales (función de central de alarmas o generación de impulsos/kW-h), las cuales son asociables a cualquier parámetro eléctrico medido o calculado. Debido a la gran cantidad de información que aporta cada uno de los analizadores de redes CVM, los equipos están dotados de salida de comunicaciones; las topologías de conexión y protocolos de red pueden ser de muy diversos tipos (RS-232, RS-485, Módem RTB, Módem GSM, Radio (Modbus RTU, Modbus/TCP, Profi bus DP y Metasys N2) y Ethernet (WEB ó XML)).
En la empresa Ametsak S.A., los dispositivos serán del tipo Modbus/TCP. En un principio no se pensaba utilizar la configuración XML, ya que daba muchos problemas por haber nombrado los dispositivos utilizando guiones y espacios. Finalmente se cambiaron los nombres a los dispositivos para poder utilizarlos ya que da un servicio muy interesante como se verá en el apartado 10.

Cuando comenzó este proyecto se eligieron los dispositivos CVM-B/BD para colocarlos en los puntos de conexión de todos los transformadores de baja tensión, (ya que así se
podía tener un control del gasto energético total) excepto en el trafo 2 de reserva y trafo 3 de la estación transformadora 3. En algunos puntos estratégicos de la empresa también se colocaron estos dispositivos. Con el tiempo se vio que los datos proporcionados eran muy interesantes y se pensó en ir colocando más dispositivos en los puntos de conexión que se creía más información nos iban a dar. Los siguientes dispositivos fueron los CVM 96, que se colocaron en los dos transformadores que no tenían lectura. Estos dispositivos nos dan la misma información que los anterior y además los máximos, mínimos y los armónicos de corriente. Recientemente, se decidió llevar a cabo este proyecto y se compraron los CVM-MINI. Según la empresa Circutor todos los dispositivos colocados eran iguales, pero al conectarnos éstos nos daban los mismos datos que los CVM 96 pero con los armónicos de tensión y corriente. Otra diferencia entre estos dispositivos, es que los CVM 96 son de panel, mientras que los CVM-MINI y los CVM-B/BD son de carril Din.

Todavía no se tienen dispositivos en todos los puntos de conexión. No hay presupuesto para ello, lo que se ha realizado es colocar en los puntos más significativos y extrapolarse un poco los resultados. Por ejemplo, en lugar de colocar un dispositivo en los puntos de conexión de todas las farolas, se coloca en un punto de conexión de una farola y los datos se extrapolan.

En las siguientes hojas se dispone de la tabla 7.3 con el emplazamiento de los dispositivos y los tipos. En el catálogo incluido en el anexo se pueden ver las características de cada dispositivo.
<table>
<thead>
<tr>
<th>UBICACIÓN</th>
<th>DISPOSITIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET1 TRAFO1</td>
<td>CVM-B/BD</td>
</tr>
<tr>
<td>ET1 TRAFO2</td>
<td>CVM-B/BD</td>
</tr>
<tr>
<td>ET1 BT1 TRAFO1</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET1 BT1 COMPRESORES</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET1 BT1 DEP. NORTE 2</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET1 BT1 DEP. SUR 1</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET2 TRAFO1</td>
<td>CVM-B/BD</td>
</tr>
<tr>
<td>ET2 BT2 AI1 y AI 3 ESTE</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET2 BT2 BT2 - armario distribución 9000m2</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET2 BT2 CS20 AI 2 ILUMINACION Y SERVICIOS</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET2 TRAFO2</td>
<td>CVM-B/BD</td>
</tr>
<tr>
<td>ET2 BT2 AUTOINSERT 2 OESTE</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET2 BT2 CLIMA AI 1 2 Y 3</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET2 BT2 CLIMA OFICINA Y PACKING</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET2 BT2 CLIMAT 8 FAN COILS OFICINA CENTRAL</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET2 BT2 CS13 MUELLE SUR OESTE ILUMINACIÓN Y SERVICIOS</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET2 BT2 CS18 ALTILO PACKING</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET2 BT2 CS22 MUELLE ESTE</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET2 BT2 CS26 NAVE SUR EDIFICIO ANEXO</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET2 BT2 CS3 AI 1 ILUMINACIÓN Y SERVICIOS</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET2 BT2 CS4 AI 3 ILUMINACIÓN Y SERVICIOS</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET2 BT2 CS5 MUELLE SUR LADO ESTE ILUMINACIÓN Y SERVICIOS</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET2 BT2 CS7 ALMACÉN SUR PARED CUARTO BAJA SERVICIOS VARIOS</td>
<td>CVM-MINI</td>
</tr>
<tr>
<td>ET2</td>
<td>BT2</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>ET2</td>
<td>BT2</td>
</tr>
<tr>
<td>ET2</td>
<td>BT2</td>
</tr>
<tr>
<td>ET2</td>
<td>BT2</td>
</tr>
<tr>
<td>ET2</td>
<td>BT2</td>
</tr>
<tr>
<td>ET2</td>
<td>TRAFO3</td>
</tr>
<tr>
<td>ET3</td>
<td>BT2</td>
</tr>
<tr>
<td>ET3</td>
<td>BT2</td>
</tr>
<tr>
<td>ET3</td>
<td>TRAFO3</td>
</tr>
<tr>
<td>ET3</td>
<td>BT3</td>
</tr>
<tr>
<td>ET3</td>
<td>TRAFO3</td>
</tr>
<tr>
<td>ET3</td>
<td>BT3</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>ET3</td>
<td>BT3</td>
</tr>
<tr>
<td>ET3</td>
<td>BT3</td>
</tr>
<tr>
<td>ET3</td>
<td>BT3</td>
</tr>
<tr>
<td>ET3</td>
<td>BT3</td>
</tr>
<tr>
<td>ET3</td>
<td>TRAFO 2</td>
</tr>
<tr>
<td>ET3</td>
<td>TRAFO 3</td>
</tr>
</tbody>
</table>

Tabla 7.3: Emplazamiento y tipo de dispositivo.
Conexión de los dispositivos

En el manual de los dispositivos se indica cómo conectar los dispositivos (Figura 7.2.)

 Una vez que los dispositivos están colocados lo que se debe hacer es configurar los dispositivos en el software. Se introducen los parámetros necesarios, se le indica cada cuanto tiempo queremos las medidas. En principio Circutor tiene las medidas cada 15 minutos, es decir, el dispositivo mide continuamente pero cada 15 minutos hace una media aritmética y ese es el valor que nos proporciona.

En la empresa se configuraron de forma que los transformadores realizaran una lectura cada 5 minutos, mientras que los demás dispositivos lo hicieran cada 15 minutos. La razón de esta diferencia es que se creyó conveniente tener muy controlados los
transformadores, pero no se habían colocado los demás dispositivos a 5 minutos para no
cargar de información el programa. Esto ha dado paso a distintos errores a la hora de
realizar operaciones. Lo que ocurría era que se definió como variable global “resto de
dispositivos”, en el cual a cada transformador se le restaban todos los dispositivos que
cuelgan de él, y esta operación daba un valor erróneo, siendo muchas veces negativa la
energía consumida. Por ello a finales de febrero se configuraron todos los dispositivos
con lecturas cada 5 minutos.

Hay que comentar que para poder aplicar la norma UNE EN 50160, habría que realizar
las medidas cada 10 minutos.

Por otra parte, tenemos ciertos dispositivos que no están colocados en los puntos de
conexión, sino que están a una cierta distancia porque no había espacio físico para
conectarlos. Estos dispositivos dan una medida cierta del gasto energético, pero no hay
que fiarse de los armónicos, o las fases... ya que puede haber cargas de por medio que
interfieran en la lectura real.

Los dispositivos que tienen una medida real, ya que están colocados en los puntos de
conexión son todos los transformadores y los tres dispositivos de Oficinas EMC. Los
demás dispositivos están en armario (ver anexo A apartado 2). En la figura 7.3 hay una
foto del armario de la estación transformadora 2.
Finalmente, mencionar que ha habido problemas con la conexión de algunos dispositivos ya que se colocaron al revés. Los cual conlleva que los datos obtenidos no sean
correctos, ya que en lugar de dar una lectura de la energía consumida, estaban dando una lectura de energía generada, lo cual no es cierto. En febrero de 2009 se han colocado todos los dispositivos correctamente, por lo cual, hasta esta fecha los valores obtenidos no serán tenidos en cuenta.
8.- INFORMES

Un informe sirve para tener un control de los parámetros medidos por los equipos Circutor durante unos intervalos de tiempo determinados. Con ello se pueden obtener informes energéticos, control de gastos, control de costes de producción...

Este software permite realizar informes diarios, semanales, mensuales, trimestrales, anuales o con fechas preestablecidas y con datos registrados. Además pueden ser impresos.

Lo primero que se debe hacer es pensar qué tipo de informe se quiere conseguir y cómo ha de ser. Hay que tener en cuenta que es un software de supervisión y no de control, por lo que estamos un poco limitados a la hora de programarlo.

Por otra parte, una vez que se ha “jugado” un poco con el PSS se ve que cada modificación en el nombre de alguna variable hay que hacerla a mano (modificar todas las ventanas donde aparezcan esas variables), es decir, no lo hace el software automáticamente. El software linka las variables a los nombres. Para facilitar el uso futuro del programa dentro de la empresa se ha decidido utilizar una nomenclatura especial a la hora de programar, que se explicará más adelante.

En estos momentos a la empresa le interesa realizar informes energéticos. Se ha decidido que se realizarán dos tipos de informes. Por una parte estará el informe técnico que será importante para el personal de mantenimiento y por otra parte estará el informe departamental, para que los jefes de departamento puedan ver lo que gastan.

Se han realizado informes de dos años, es decir, un informe para el año actual y otro para el año anterior, de forma que se puedan comparar los consumos, ya que el software no permite introducir distintas fechas en el mismo informe.
8.1 Informes técnicos

El Power Studio Scada da la posibilidad de realizar informes de varias páginas. En este momento se disponen de 54 dispositivos pero en un futuro se podrían añadir más. Por la cantidad de dispositivos que hay se ha decidido realizar un informe por cada transformador y cada informe tendrá tantas hojas como dispositivos cuelguen del transformador correspondiente más la del transformador.

Páginas de cada informe:

ET1_T1 → 1 pág.
ET1_T2 → 5 pág.
ET2_T1 → 4 pág.
ET2_T2 → 18 pág.
ET2_T3 → 3 pág.
ET3_T1 → 8 pág.
ET3_T2 → 13 pág.
ET3_T2 RESERVA → 1 pág.
ET3_T3 → 1 pág.

Estos informes serán de consumo energético. Para ello, se han realizado de forma que aparezca lo consumido por periodo, la tarifa de ese periodo y el total (ver ejemplo en el anexo B, apartado 4). Para poder saber el consumo realizado por periodo se han utilizado discriminadores (ver apartado 8.2.2)

Con esto se quiere conseguir tener una supervisión del gasto para poder analizar las reducciones que se podrían reducir. Ya que uno de los objetivos principales de este proyecto es poder reducir la energía consumida.
8.2 Informe para los departamentos

Además de los informes técnicos se ha realizado un informe departamental. De forma, que los jefes de sección puedan ver lo que se consume. Además de esta manera, se tendrá un control de los departamentos que más consumen para poder analizar los gastos e intentar reducirlos.

Para la realización de este informe se ha hecho uso de la herramienta “discriminadores” (ver apartado 8.2.2) y la piedra de Rosetta (ver apartado 6.3). Se han realizado un informe de diez hojas, en la que la primera es un resumen, ya que aparece lo que consume cada departamento por periodo y el gasto total que supone. La segunda página es el gráfico de consumo por departamentos. Las siguientes ocho páginas pertenecen a cada departamento, y se han diseñado de forma que se vea el consumo por periodo de dicho departamento y un gráfico en el que el departamento aparecerá como barra y los demás departamentos como líneas. Son informes semanales, pero el software permite variar el tiempo de observación en modo cliente.

Para un manejo más fácil del diseño se han declarado como variables globales (ver capítulo 8.2.1.1) los departamentos y se ha introducido como ecuación la piedra de Rosetta correspondiente a cada departamento. En el anexo B hay unos ejemplos del informe departamental.

Nomenclatura utilizada:

A la hora de declarar las variables globales se ha utilizado una nomenclatura especial. Para una programación más sencilla se han denominado los departamentos por números, así se acortan las fórmulas (a veces hay problemas de espacio en el lugar donde hay que colocar la ecuación) y se facilita la programación; ya que al copiar las páginas de los informes, únicamente habría que modificar un número.

Se denominará cada departamento mediante un número, es decir, a la hora de escribir el identificador se colocará un número y en el lugar del nombre el nombre correspondiente:

1 = Producción
2 = Logística
3 = Oficinas
8.2.1 Variables

El Power Studio Scada permite configurar tanto variables globales como locales. A continuación, se analizarán los dos tipos de variables. Se explicará cómo configurar los dos tipos de variables ya que en el manual del Power Studio Scada no queda muy clara la diferencia entre ambas variables.

8.2.1.1 Variables globales

Son aquellas variables que una vez definidas se manejan como si fuesen dispositivos. Se pueden utilizar en las pantallas, los informes, las tablas, los gráficos e incluso discriminar. Con esta opción, se pueden definir nuevas variables como combinación de otras.

La configuración de estas variables es muy sencilla. En la pestaña configurar, se escoge variables calculadas. Aparecerá la siguiente ventana (Figura 8.1)
Estas variables son como vectores. Se define el nombre del grupo y a continuación se pueden introducir distintas variables, a las que se les puede dar un identificador (según la nomenclatura utilizada, como ya se ha explicado en el apartado anterior) y el nombre al que se refiere.

Se han utilizado estas variables para definir los departamentos, el precio de la energía, el resto de los dispositivos, los años, las condiciones...faltan algunas más

Al definir una variable global no se puede discriminar. Hay que discriminarla cuando se está realizando el informe, y si esta variable tiene dos discriminadores se deberá realizar una suma.
Para llamar a una variable global hay que realizar los siguientes pasos:

- Control de fórmulas

 - Quiero añadir una referencia a una variable de equipo

 - Power Studio Scada

 - Variables calculadas

 - Elegir grupo

A la hora de llamar a una variable global que no haya que discriminar, por ejemplo: el precio de la energía por periodo, habrá que llamarla sin discriminar y en la siguiente opción aparecerá qué periodo se requiere, ver figura 8.2 y 8.3.

![Fig. 8.2: Ejemplo de ventana para llamar a una variable global](image)
8.2.1.2 Variables locales

Son aquellas variables que se definen en un informe o en una pantalla y únicamente pueden utilizarse en aquel informe o pantalla. Son de gran utilidad a la hora de realizar los informes, ya que se definen todas las variables y se pueden utilizar en todas las páginas del informe.

Como los informes son de consumo energético se han definido las variables: coste por periodo para cada dispositivo, en el informe correspondiente. De esta forma, al realizar los resúmenes no hay que volver a introducir la ecuación.

La configuración de estas variables es muy sencilla, únicamente hay que pinchar sobre la ventana de configurar fórmulas, como se puede observar en la siguiente figura 8.4.

Fig. 8.3: Ejemplo de cómo elegir discriminador
Una vez se ha clicado sobre ese botón, aparecerá una ventana donde podremos introducir la variable. En este caso, no tienen forma de vector, no se puede definir un grupo, únicamente se pueden definir variables (Figura 8.5).

![Gestión de fórmulas](Image)
Nomenclatura utilizada:

Como estas variables únicamente sirven en cada informe, se ha normalizado la nomenclatura. Las variables se denominan Coste_PX_Y. Siendo “X” el periodo, así que podrá ser del 1 al 6. Por otra parte, “Y” será un dispositivo, se han numerado los dispositivos ver anexo A, apartado 3, “Denominación dispositivos”. Los transformadores no llevarán Y, pero todos los dispositivos que cuelguen de ellos lo llevarán. Si de algún dispositivo cuelga algún otro se denominará poniendo “_Z”. Tanto la “Y” como la “Z” serán números empezando por el 1 hasta el número de dispositivos que contengan el informe.

Ejemplo para explicar cómo denominar las fórmulas: ET1_T2

(Siguiendo el ejemplo de la tabla Gestión de fórmulas)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coste_P1</td>
<td>Coste_P1_1</td>
<td>Coste_P1_2</td>
<td>Coste_P1_3</td>
</tr>
<tr>
<td>Coste_P2</td>
<td>Coste_P2_1</td>
<td>Coste_P2_2</td>
<td>Coste_P2_3</td>
</tr>
<tr>
<td>Coste_P3</td>
<td>Coste_P3_1</td>
<td>Coste_P3_2</td>
<td>Coste_P3_3</td>
</tr>
</tbody>
</table>

Tabla 8.1: Ejemplo de nomenclatura

Ejemplo: Coste_PX_Y_Z:

Dispositivo 15: Coste_P1_15

Dispositivo que cuelga del 15: Coste_P1_15_1

Así en el caso de que se instalen más dispositivos únicamente habrá que aumentar la tabla.
8.2.2 Discriminadores

PowerStudio proporciona un completo conjunto de herramientas que permiten la definición de discriminadores energéticos así como su posterior análisis y estudio sobre los datos recogidos por los dispositivos de una manera potente e intuitiva a la vez.

El estudio de un discriminador proporciona un resultado consistente en una representación del consumo energético para cada tipo de hora (contador) definido en todo momento. Esta representación puede visualizarse indistintamente en forma de tabla o gráfico.

Igualmente es posible estudiar estos datos visualizándolos en diversos intervalos de tiempo y agrupándolos en diversos periodos. Así, podríamos verlos en intervalos de un año y agrupados por meses, en intervalos de un mes y agrupados por días, etc.

Como puede verse los estudios de discriminadores consisten básicamente en definir los discriminadores (típicamente un calendario) y aplicar dicho discriminador a los datos almacenados por un dispositivo. Entonces obtendrá una representación del estudio realizado que podrá configurarse al antojo del usuario (y visible tanto en forma de gráfico como de tabla).

Se han configurado los discriminadores en función de los periodos tarifarios que impuestos. En anexo B se encontrará la tabla de los periodos tarifarios, aunque la hoja sea de hc energía los periodos son impuestos por el Estado. La compañía suministradora es Endesa. En el mismo anexo se podrá encontrar parte del contrato firmado por la empresa Ametsak S.A y Endesa, donde están los precios de la energía por periodo y la potencia contratada. Para configurar el calendario se han cogido los festivos de Cataluña, ya que en España cada Comunidad Autónoma impone sus días festivos y no hay un calendario global. En el anexo B se puede ver el calendario del 2008 y el de 2009 impuesto por la Generalitat Catalana, que cumplen las normas ORDRE TRE/14/2009 y ORDRE TRE/197/2007.

La configuración de los discriminadores es muy sencilla y está explicada en el manual del Power Studio Scada. Lo único que se comentará será la nomenclatura, para tener una idea de lo que se está hablando hay que saber que a la hora de configurar un discriminador hay que definir el tipo de hora, el de día y el calendario.
Nomenclatura utilizada:

Si se observa el calendario tarifario hay periodos en los que en un mismo mes están partidos, lo que conlleva definir dos tipos de hora. Los tipos de hora se denominarán con el periodo, barra baja y el número del discriminador, es decir, PX_X.

Ejemplo:

Para el periodo 1 solo hay un tipo de hora → P1_1

Para el periodo 2 hay dos tipos de hora → P2_1, P2_2

Normalizando un poco estos nombres cuando se realice un copia-pegar de un periodo a otro simplemente habrá que cambiar el número. Y se podrán añadir tantos discriminadores como hagan falta. Es una forma de agilizar la programación.

8.2.3 Años

El principal objetivo de la implantación de este software es la supervisión del gasto energético y la reducción de gastos. Por lo tanto, se realizarán informes de dos años, a los que se denominarán A y B. Siendo A el año par y B el año impar.

Únicamente se realizan dos y con esta nomenclatura porque los informes van ligados a los discriminadores, por lo tanto, al cambiar de año habría realizar todos los informes otra vez.

De esta forma, lo que habrá que hacer al cambiar de año es:

- definir los discriminadores, para reestablecer los periodos de dicho año.

- cambiar los precios de la energía de dicho año.

- Dentro de las variables globales cambiar el nombre de los años A y B.

Si en lugar de utilizar las variables A y B, se utilizaran los años normales (2008, 2009...) al empezar cada año, se deberían cambiar todas las ecuaciones en las que se haga referencia al año, es decir, en todos los discriminadores. Por ello se ha optado por normalizarlo.
9.- PANTALLAS

El scada permite la visualización de una o más ventanas, con o sin dibujo de fondo, incorporando controles de visualización, convirtiendo al PC en un potente y versátil cuadro sinóptico de la instalación.

El objetivo era realizar pantallas con el diagrama unifilar de las estaciones transformadoras. El inconveniente fue que la resolución de pantalla no es muy buena, por lo que no se pudieron incluir los esquemas, se tuvo que realizar en forma esquemática. Además, para que la resolución sea algo mejor se han utilizado más de una pantalla para un solo transformador, dejando un cuadrado libre que hace de hipervínculo con la siguiente pantalla.

Una de las aplicaciones que se les ha dado a las pantallas es avisar de si hay alguna anomalía. Para ello se han colocado alarmas visuales. De forma que la pantalla principal es un plano de la empresa con los ocho departamentos. En dicha pantalla, hay colocadas alarmas de forma que avisen si algo no funciona correctamente.

9.1 Alarmas visuales

Como ya se ha comentado, se han colocado alarmas para saber cómo es el funcionamiento de los dispositivos. Hay tres tipos de alarmas:

Roja = No funciona

Naranja = Funciona pero no correctamente

Verde = Funciona correctamente

A la hora de la elección de las alarmas se ha optado por seguir la norma [UNE-EN 50160]. En principio se ha elegido controlar la tensión.

Valores indicativos (según la Norma UNE-EN 50160)

Variaciones de la tensión suministrada en condiciones normales de explotación:
- Para cada periodo de una semana, el 95% de los valores eficaces de la tensión suministrada promediados en 10 minutos deben situarse en un intervalo Un ± 10%.
- Para todos los periodos de 10 minutos, los valores promediados del valor eficaz de la tensión deben situarse en el intervalo Un + 10% / – 15%.
No se va a cumplir la norma a rajatabla, ya que las medidas en la empresa se realizan cada cinco minutos como se ha explicado en apartados anteriores. Además, hay que tener en cuenta que los dispositivos que se encuentran en armarios nos podrían dar una medida un poco distorsionada. Sin embargo, dichos dispositivos darían un valor desviado de la distorsión de tensión y de la distorsión de corriente, no del valor de la tensión.

Las alarmas son las siguientes:

Roja: \(V = 0 \)

Naranja: \(V > (V_N + 0,10 \times V_N) \)
\[V < (V_N - 0,10 \times V_N) \]

Verde: \(V < (V_N + 0,10 \times V_N) \)
\[V > (V_N - 0,10 \times V_N) \]

Siendo \(V_N \) la tensión nominal entre fase y neutro, 230 Voltios.

Para la realización de las condiciones se han definido unas variables globales. Se ha decidido así porque en el caso de que se deseen cambiar las condiciones a más restrictivas o menos, únicamente habrá que cambiar la variables global. Al grupo se le ha llamado Condiciones y dentro del grupo están las alarmas siguientes:

ALARMA1: 230+0,1x230

ALARMA2: 230-0,1x230

Además, de estas alarmas también están las que corresponden a los sucesos, pero se explicarán más adelante.

En un futuro se podrían colocar más alarmas para no controlar únicamente la tensión, sino también la corriente, la frecuencia... Además, se pueden colocar algunas alarmas a los dispositivos más significativos, como serían los transformadores. De hacerlo, se seguirá algunas de las normas mencionadas.

Se colocará una alarma delante de cada trafo y de cada dispositivo. Además detrás de cada trafo se colocará una alarma que avise si los dispositivos que cuelgan de dicho transformador no funcionan o no funcionan correctamente. El Power Studio Scada tiene
por defecto la configuración de que si se cumple alguna de las condiciones se mostrará la imagen o lo que corresponda. En el caso de las alarmas verdes no interesa que sea así, porque deberán ser verdes si se cumplen todas las condiciones, pero para las amarillas y las rojas sí que interesa que sea así. Esto ocurre en las alarmas que están debajo de los transformadores, es decir, que tienen las condiciones de todos los dispositivos que cuelgan del trafo. Para las alarmas de los dispositivos no influiría, ya que se colocan las alarmas en la misma condición. Las alarmas debajo de cada trafo están compuestas por tantas condiciones como dispositivos cuelguen de él.

Por lo tanto, se colocarán alarmas verdes, naranjas y rojas delante de todos los dispositivos y debajo de cada transformador se colocarán únicamente alarmas naranjas y rojas.

Además, en la pantalla de la distribución departamental se colocarán las mismas alarmas de los dispositivos cada una en el departamento al que corresponde. Por la misma razón que debajo de cada transformador solo se colocan alarmas rojas o naranjas, en esta pantalla tampoco se colocarán las alarmas verdes. En el caso de los dispositivos que corresponden a más de un departamento, se colocará su alarma correspondiente en todos los departamentos a los que pertenece.

Ejemplo:

Si alguno de los cuatro dispositivos que cuelgan del transformador 2 no funcionara, tendría la alarma roja y además debajo del trafo 2 la alarma también sería roja (Fig.9.1 y 9.2).
Fig. 9.1: Ejemplo de una pantalla donde están los transformadores
Fig. 9.2: Ejemplo de pantalla con alarmas visuales solo de los dispositivos
9.2 Variables instantáneas y acumulativas

Anteriormente se ha comentado que existen variables globales y locales. Por otra parte, se tienen variables instantáneas y acumulativas. Las variables instantáneas son aquellas que están contando continuamente y almacenan el valor. Sin embargo, las variables acumulativas almacenan el valor continuamente pero al cabo del tiempo que corresponden realizan la media. En el caso de Ametsak, los dispositivos se han programado para que realicen capturas cada 5 minutos, por lo tanto cada 5 minutos realizarán la media y darán el valor. Por poner un ejemplo, la potencia es una variable instantánea mientras que la energía es acumulativa. Esto es debido a que la energía es la potencia por el tiempo.

Por otra parte, cuando el programa deja de comunicar por alguna razón, los dispositivos siguen acumulando. Cuando el programa vuelva a comunicar las variables acumuladas darán todo lo acumulado mientras ha estado incomunicado.

Estas variables han influido a la hora de realizar las pantallas, ya que se deseaba colocar el consumo energético instantáneo (energía activa consumida) debajo de cada transformador, pero no fue posible. Al colocar la variable de energía activa daba un valor de lo que se había consumido pero no se sabía desde que fecha. Por lo tanto, se ha colocado la potencia activa consumida. Con esta ventana se quiere saber si lo que se está gastando en cada momento es normal. Se desea colocar un intervalo en el que debería de estar siempre la potencia, de forma que sea sencillo saber si la potencia que se está consumiendo es normal. Para ello, a finales del mes de marzo principios de abril se realizará un histórico con las potencias instantáneas y se elegirán los máximos y mínimos.
10.- EXPORTACIONES

Una de las utilidades que se le quiere dar a este software es facilitar la realización del presupuesto, y tener una visión clara del gasto energético. Al comenzar con este proyecto se estaba realizando el presupuesto para el 2009 y hacían falta los datos del 2008. Se tuvieron que exportar las tablas una a una desde el modo edición pero además hay que realizarlo en el servidor. Ya que fuera del servidor no permite las exportaciones. Se exportan las tablas y luego hay que guardarlas como una página Excel y desde ahí modificarlas. El Power Studio Scada permite realizar exportaciones XML o Intercambio Dinámico de Datos (DDE). A Ametsak S.A. le interesaría tener una forma dinámica de conseguir los datos, y no tener que exportar las tablas una a una, puesto que esta operación consume mucho tiempo. En principio, lo que se necesita es obtener la energía activa consumida, tanto mensualmente como anualmente. A continuación se comentarán las dos aplicaciones que dispone el software para la obtención de los datos. Hay que recordar que la energía es una variable acumulativa, y no instantánea.

10.1 Intercambio Dinámico de Datos (DDE)

Cualquier aplicación basada en Windows que posea funciones de DDE puede establecer vínculos de Intercambio Dinámico de Datos con PowerStudio.

El DDE (Dynamic Data Exchange) es un protocolo de Windows entre aplicaciones. Se puede actuar en modo cliente (Solicitar datos a otras aplicaciones) y/o modo servidor (Suministrar datos a otras aplicaciones). El programa PowerStudio actúa en modo servidor, es decir, una vez establecida una comunicación con otra aplicación Windows (Excel, Paradox, Word, Programas en C, en Visual Basic, etc.) PowerStudio le suministra a esta, los valores leídos en los drivers. Así, por ejemplo, se puede estar viendo en tiempo real una tensión, corriente, etc. en Excel.

Aquellas aplicaciones que permiten forzar un valor a través del DDE podrán modificar un parámetro del driver, como por ejemplo salidas digitales, registros internos, etc. La llamada mediante el DDE se realizará de la siguiente manera:

PWSTDValues a continuación el dispositivo y la variable.
Por ejemplo “=PWSTDValues|Dispositivo1!VI1”.

En principio esta aplicación no es de mucha utilidad para la empresa. Primero porque la llamada se tiene que realizar desde un programa que esté en el mismo servidor, lo que dificulta su uso, ya que, se debería permitir el acceso al servidor a todas aquellas personas que vayan a analizar los datos; lo ideal sería poder realizar la llamada desde fuera del servidor. Y segundo, porque da los valores instantáneos y no los acumulados. Estos valores se pueden obtener entrando en el modo cliente. Sería interesante si se fuera a realizar algún tipo de tabla con los valores instantáneos, pero de momento no hay un proyecto para ello.

10.2 Servicios XML

PowerStudio proporciona una serie de servicios XML para posibilitar, en ciertos aspectos, la comunicación con otras aplicaciones. Es una aplicación muy interesante ya que da la opción de obtener los datos en un Excel, y pueden ser tanto valores instantáneos como acumulados. Se ha realizado una macro en el Excel para obtener una tabla con los datos que el usuario necesite. El código de la macro se encuentra en el anexo D. La llamada que hay que realizar es la siguiente:

/services/user/records.xml?begin=...?end=...?var=...?period=900

Las variables son:
El dispositivo, la variable a analizar, la fecha de inicio (con la hora si se desea), la fecha final (con la hora si se desea) y el periodo en el que se quieren los datos (hay que darlo en segundos).

El formato de "begin" y "end" será DDMMAAAA cuando se desee indicar solamente la fecha (en este caso la hora será la 00:00:00) ó DDMMAAAAHHMMSS cuando se especifique tanto la fecha como la hora. Tanto "begin" como "end" deberá estar expresado en UTC (Universal Coordinated Time).

En la siguiente (Figura 10.1) figura se mostrará el UserForm programado en visual basic, para preguntar al usuario qué quiere analizar. Desde el Excel se realiza la llamada al userform pulsando sobre el botón “captura de datos”.
Una vez que el usuario elige lo que quiere analizar se ejecuta la llamada desde Excel mediante el servicio XML, y los datos son exportados en una tabla como la siguiente:

<table>
<thead>
<tr>
<th>Period</th>
<th>DateTime</th>
<th>id</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>86400</td>
<td>31122008230000</td>
<td>ET1 TRAFO 1.AE</td>
<td>0</td>
</tr>
<tr>
<td>86400</td>
<td>1012009230000</td>
<td>ET1 TRAFO 1.AE</td>
<td>7.17</td>
</tr>
<tr>
<td>86400</td>
<td>2012009230000</td>
<td>ET1 TRAFO 1.AE</td>
<td>9,906</td>
</tr>
<tr>
<td>86400</td>
<td>3012009230000</td>
<td>ET1 TRAFO 1.AE</td>
<td>0</td>
</tr>
<tr>
<td>86400</td>
<td>4012009230000</td>
<td>ET1 TRAFO 1.AE</td>
<td>15,261</td>
</tr>
<tr>
<td>86400</td>
<td>5012009230000</td>
<td>ET1 TRAFO 1.AE</td>
<td>0</td>
</tr>
<tr>
<td>86400</td>
<td>6012009230000</td>
<td>ET1 TRAFO 1.AE</td>
<td>162,256</td>
</tr>
<tr>
<td>86400</td>
<td>7012009230000</td>
<td>ET1 TRAFO 1.AE</td>
<td>239,377</td>
</tr>
<tr>
<td>86400</td>
<td>8012009230000</td>
<td>ET1 TRAFO 1.AE</td>
<td>312,221</td>
</tr>
<tr>
<td>86400</td>
<td>9012009230000</td>
<td>ET1 TRAFO 1.AE</td>
<td>148,898</td>
</tr>
<tr>
<td>86400</td>
<td>10012009230000</td>
<td>ET1 TRAFO 1.AE</td>
<td>148,655</td>
</tr>
</tbody>
</table>

Tabla 10.1: Ejemplo de una tabla exportada al Excel mediante XML.

En este ejemplo las variables elegidas han sido:
Periodo: 86400 segundos (el equivalente a un día).
Fecha inicio: 31-12-2008 a las 23:00:00
Fecha final: 10-01-2009 a las 23:00:00
Dispositivo: ET1_TRAFO_1 (El transformador 1 de las estación transformadora 1)
La variable: La energía activa consumida.

Una vez que se tienen los datos en Excel el usuario podrá tratar los datos y así realizar gráficos, incrustarlos en otras tablas o lo que necesite en ese momento. Lo que se ha pretendido realizando esta macro es automatizar lo máximo posible la obtención de los datos. En un futuro, se podría aumentar la macro realizando automáticamente los gráficos, o sacando por defecto algunas variables. Todo dependerá de lo que los responsables de mantenimiento crean conveniente, o lo que más analicen. Pero se deberá esperar a que el software lleve implantado algún tiempo para saber qué interesa automatizar.
11.- SUCESOS

11.1 Introducción

Los sucesos son las alarmas de la Aplicación. La finalidad de los sucesos es advertir de una situación anómala en la instalación.

Éstos podrán quedar registrados sin realizar ninguna notificación, podrán advertir mediante una ventana emergente, incluso podrán advertir también de su existencia, mediante la ejecución de un programa externo o mediante una salida digital disponible en alguno de los dispositivos. Se podrá realizar un histórico con el listado de sucesos ocurridos en un determinado espacio de tiempo. Lógicamente, un suceso se activará cuando la condición de activación de éste, se cumpla, y esta condición es totalmente flexible y configurable.

El programa solo mostrará sucesos cuando se encuentre en modo ejecución, siendo el modo edición donde se podrá añadir, modificar o eliminar los diferentes sucesos que serán de utilidad para alertar de posibles estados peligrosos o excepcionales de la instalación.

Además para cada suceso se podrá definir un horario de inhabilitación del suceso. Esto es, se podrá definir en que periodos el suceso no será valido y por tanto no se tendrá en cuenta en el software.

También será posible asociar una anotación cada vez que se active el suceso para, por ejemplo, guardar el valor de una variable que ha ocasionado el suceso.

Por último, para cada uno de los posibles estados de los sucesos, se podrán definir una serie de acciones que el software ejecutará mientras el suceso se encuentre en cada uno de estos estados.
11.2 Condiciones

En la empresa Ametsak S.A. las condiciones de activación de los sucesos serán los siguientes:

- Para los transformadores:
 - La intensidad máxima que se permitirá serán 1600 A, si se sobrepasa esa intensidad se activará un suceso (I<1.600A).

- Para todos los dispositivos incluidos los transformadores:
 - Cuando la tensión fase-neutro esté al 50% de su valor nominal por encima o por debajo (V < 0,5 V_N ó v > 0,5 V_N)

Al igual que en el caso de las alarmas, las condiciones se han definido en la variable global Condiciones, y son las siguientes:

SUCESO1: 1600
SUCESO2: 230 + 0,5 x 230
SUCESO3: 230 - 0,5 x 230

Se podría poner algún suceso teniendo en cuenta la temperatura, pero en la empresa ya se dispone de otro programa que avisa en caso de que la temperatura supere unos límites.

Lo normal será que antes de que esto ocurra viendo las alarmas visuales avisen de que algo no funciona correctamente, pero en el caso de que no haya nadie mirando las pantallas, está bien que el suceso avise.

11.3 Configuración

La configuración de los sucesos se realizará de la siguiente manera:

- En la pestaña “General”

 Nombre: Variable_nombre del dispositivo
 Ejemplo: Tensión BT2 CLIMA AI 1 2 y 3

 Condición: V_{dispositivo} < SUCESO 3 || V_{dispositivo} > SUCESO2
Ejemplo:
\[\text{[BT2_CLIMA_AL_1_y_3.VI1]}<\text{[R$\text{CAL}_\text{Condiciones.SUCESOS}3]}\]||\[\text{[BT2_CLIMA_AL_1_y_3.VI1]}<\text{[R$\text{CAL}_\text{Condiciones.SUCESOS2}]}\]

Se notificará mediante ventana emergente.
Se registrará en archivo.

En la figura 11.1 se puede ver cómo configurarlo:

![Imagen de configuración de suceso](image)

Fig. 11.1 Configurar un suceso.

En la pestaña “Avanzado”
Inhabilitar: Nunca. No se inhabilitará ningún horario, porque es muy difícil saber que dispositivos limitar. Las líneas no tienen un horario fijado. Por ejemplo, las farolas no tienen un horario fijo de activación, sino que tienen una fotocélula y se encienden según la luz que haya en el exterior.

Retraso activación: 0
Retraso desactivación: 0

Anotación: El suceso de nombre ‘%n’ se activó cuando la tensión marcaba %a1 V.
Argumento: nombre.variable
En la pestaña “Acciones del motor”
Cuando se active el suceso, el programa mandará un email a los responsables de mantenimiento. Al igual que cuando el suceso se desactive. De esta manera, se tendrá un control de los sucesos ocurridos y si se han reparado. La idea inicial era realizar perfiles y dependiendo del dispositivo se mandaría un correo electrónico a unas personas determinadas, realizar grupos y relacionar los grupos con los dispositivos. Sin embargo, el sistema únicamente permite ir introduciendo una a una las personas a las que tiene que mandar el correo. Por lo que finalmente se ha decidido poner a todas las personas de mantenimiento en todos los dispositivos.

Por otra parte, el software permite ejecutar programas externos. Se han pensado dos opciones:
1.- Instalar el Outlook en el servidor y ejecutarlo cuando se active un suceso. Ya que al mandar el correo hay que escribir en cada dispositivo a quién va dirigido de esta manera se podrán definir unos grupos y cuando haya que cambiar el correo de alguna persona sería más rápido, que ir dispositivo a dispositivo.
2.- Instalar un programa que envíe sms cada vez que se active un suceso.

Para esta parte, se depende del departamento de informática de la empresa. Deben aceptar la solicitud de la instalación de un nuevo programa e instalar el que crean conveniente. Lo mejor sería uno que mandara mensajes cortos, porque los correos se pueden tardar días en leer.

En la pestaña “Acciones del cliente”
Al activarse, se visualizará el dispositivo.
12.- POSIBLES MEJORAS DEL SOFTWARE PPS

Después de haber implantado el Power Studio Scada en la empresa se han visto algunos defectos que se podrían mejorar, o por lo menos, sería interesante que los fabricantes del software los tuvieran en cuenta para las siguientes versiones. A continuación se comentarán las mejoras propuestas.

1.- Posibilidad de realizar hipervínculos a las páginas e hipervínculos de los informes a las pantallas. Actualmente, únicamente se pueden hacer hipervínculos a los informes, pero no a una página directamente. Además, se pueden realizar hipervínculos de las pantallas a los informes pero no al contrario, lo que dificulta un poco la visión de todo el sistema.

2.- Las variables van ligadas al nombre del dispositivo, lo que dificulta la programación, ya que, un mínimo cambio en el nombre de un dispositivo o en una variable global conlleva volver a renombrar todas las ecuaciones en las que toman parte esos dispositivos o variables. Sería interesante que no dependieran del nombre y se modificaran automáticamente.

3.- Posibilidad de comparar distintos periodos de tiempo en una mismo página. El software es de supervisión por lo que interesaría que se pudieran colocar dos periodos distintos en una misma página, de forma que se coloque el mismo periodo de dos años distintos y se pueda ver la energía consumida en cada año.

4.- La calidad de las imágenes. El software permite imágenes de 2.065 x 2.065 pixeles. Se intentaron introducir imágenes de Autocad con el diagrama unifilar de las estaciones transformadoras de baja tensión pero el software no lo permitió. Se podían introducir como imagen JPG pero la calidad era muy baja.

5.- Mayor espacio para la introducción de las ecuaciones. A la hora de configurar las ecuaciones en ocasiones no hay espacio suficiente y hay que dividir la ecuación para luego sumarlas.
6.- Poder configurar las condiciones de forma que el programador elija si se han de cumplir todas para que la acción se lleve a cabo, o como está ahora por defecto que con que se cumpla una vale.

7.- Posibilidad de crear perfiles a la hora de enviar correos en los sucesos. Como ya se ha explicado en el capítulo de sucesos sería interesante poder crear grupos y enviar a cada grupo los sucesos que le correspondan.

8.- Pese a que es un software de supervisión y no de control, sería muy conveniente el poder simular horarios o cargas. De forma que la información que daría el software sería muy útil. Por ejemplo, la simulación de un horario sería en lugar de entrar a trabajar a las 8 si se entra a las 6 cuánto se ahorraría.
13.- AÑOS FUTUROS

Una vez que se ha implantado el software es importante dejar constancia de lo que deberían hacer los próximos en modificar el software, ya que de esta manera se ahorrará tiempo porque ya sabrán que deberán cambiar. En este apartado se dará a conocer lo que deben hacer al empezar un nuevo año o al insertar un nuevo dispositivo. Sin embargo, hay que tener en cuenta que el Power Studio se acaba de implantar y que se modificará según el uso que se le quiera dar en cada momento.

Al empezar un nuevo año:
1.- Modificar las variables globales:
 - Precio energía: Habrá que modificar el precio de la energía eléctrica del año correspondiente.

2.- Discriminadores: Los contratos con la compañía eléctrica se modifican cada año y los periodos varían. Se tendrán que modificar los periodos del año al que correspondan fijándose si varían las horas, los días y el calendario.

Al introducir un nuevo dispositivo:
1.- Al configurar el dispositivo recordar que tiene que tener un tiempo de captura de 5 minutos, porque el programa no puede operar con variables cuyos dispositivos tengan distintos tiempos de captura.
2.- Renovar el esquema unifilar de la estación de baja tensión correspondiente.
3.- Modificar la pantalla correspondiente añadiéndole el nuevo dispositivo, colocando las alarmas y añadiendo el hipervínculo.
4.- Modificar los informes:
 - Informe técnico: Añadir una página más al informe al que pertenezca el dispositivo. Al realizar esta acción habrá que colocar seis variables locales más, una por cada periodo.
 - Informe departamental: se modificará cuando se varíen las variables globales.
5.- Renovar las variables globales:
 - Resto de dispositivos: Restar al tráfico del que cuelga el nuevo dispositivo, su valor.
- Departamentos: Se deberán modificar las variables de los departamentos a los que afecte el dispositivo colocado.

6. Macro de Excel: Se deberá cambiar la macro, introduciendo el nuevo dispositivo en el tráfo al que pertenece y asignándole el nombre que se ha introducido en el software.

7. Sucesos: Configurar el suceso que le corresponda.
14.- ANÁLISIS ECONÓMICO

En este apartado se va a realizar un análisis del coste total del proyecto. Antes de analizar el coste de la implantación habría que mencionar que para abaratar gastos lo que se ha hecho es una red pequeña concentrada en una zona (entre 50 y 100 metros). De esta forma, el cableado es más barato. Una vez que se tienen las redes se conectan a una red Ethernet.

14.1 Reducción de costes

Pese a que en el alcance del proyecto ya se ha especificado que no se podrán analizar la reducción de costes, hay una parte que fácilmente se puede analizar. Observando los periodos tarifarios (Anexo B) impuestos por el gobierno se puede ver que trabajando de madrugada o los fines de semana la energía es bastante más barata.

Se ha realizado un análisis de lo que se ahorraría si se cambiara el horario de producción. Actualmente el horario es de 6 a 14 de la mañana. Adelantando una hora, es decir de 5 a 13 horas, el coste se reduce.

Para la realización de este estudio lo que se ha hecho ha sido calcular el coste con el horario actual y una vez realizado se han desplazado los consumos una hora hacia atrás, es decir, lo que se consumía de 3 a 4, ahora se consumirá de 2 a 3. De esta forma, los valores son los mismo pero suponiendo que se entra a trabajar una hora antes.

Se han extraído los datos de consumo de energía de las semana del 9 al 15 de marzo de 2009 (una semana normal, pero de marzo cuando no son los periodos más caros), los datos se pueden ver en el anexo E, y los resultados obtenidos son los siguientes (Tabla 14.1):

<table>
<thead>
<tr>
<th></th>
<th>Coste (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horario actual</td>
<td>2.891,06</td>
</tr>
<tr>
<td>Horario cambiado</td>
<td>2.840,22</td>
</tr>
<tr>
<td>Ahorro semanal</td>
<td>50,84</td>
</tr>
<tr>
<td></td>
<td>1,76%</td>
</tr>
</tbody>
</table>

Tabla 14.1: Resultados del estudio
El ahorro semanal no será el mismo siempre. Dependerá de la época del año, ya que el precio de la energía varía, en este caso son los períodos P3 y P4, pero en invierno y parte de verano serían los períodos P1 y P2 los cuales son más caros. Por lo tanto, sería interesante realizar este cálculo cuando se tengan datos de todo el año.

De todas formas, el ahorro no es muy alto son alrededor de 50€ a la semana para el departamento de producción. Se debería de decidir si merece la pena que todas los operarios entren a las 5 de la mañana para ahorrar alrededor de 50€ semanales.

De la misma manera que entrando una hora antes se consigue una reducción de gastos, trabajando los fines de semana o durante agosto también se reduciría el gasto.

En principio se ha hecho el estudio únicamente de producción pero se puede hacer de los demás departamentos. Lo que ocurre es que el departamento que tiene un horario fijo es el de producción, el horario de los demás departamentos es más flexible.

14.2 Coste de la implantación

En la tabla 14.2 que hay a continuación se detalla el presupuesto de la inversión realizada.

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Precio unitario</th>
<th>Coste (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Power Studio Scada</td>
<td>1</td>
<td>956</td>
</tr>
<tr>
<td>Formación Power Studio Scada (5h)</td>
<td>1</td>
<td>420</td>
</tr>
<tr>
<td>CVM-MINI-ITF-HAR-RS485-C2</td>
<td>40</td>
<td>242</td>
</tr>
<tr>
<td>Trafo nucleo abierto TP23</td>
<td>117</td>
<td>47</td>
</tr>
<tr>
<td>Repetidor CAR-485</td>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>Marcos CVM-MINI</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Conversor TCP2/ RS</td>
<td>3</td>
<td>306</td>
</tr>
<tr>
<td>CVM-96</td>
<td>2</td>
<td>290</td>
</tr>
<tr>
<td>CVM-B/BD</td>
<td>12</td>
<td>200</td>
</tr>
<tr>
<td>TOTAL (sin IVA)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 14.2: Inversión realizada
14.3 Coste del proyecto

En el coste de la implantación se contabilizan los costes de recursos humanos y medios utilizados. Por ello, se asignan las diferentes tasas y se aplica un precio por hora según la categoría profesional correspondiente (Tabla 14.3)

<table>
<thead>
<tr>
<th>Categoría profesional</th>
<th>Precio (€/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero superior</td>
<td>42</td>
</tr>
<tr>
<td>Ingeniero técnico</td>
<td>24</td>
</tr>
<tr>
<td>Operario eléctrico</td>
<td>20</td>
</tr>
<tr>
<td>Administrativo</td>
<td>12</td>
</tr>
</tbody>
</table>

Tabla 14.3: Precio por hora según la categoría

La distribución del coste en recursos humanos se presenta en la tabla 14.3 donde se separan las horas en las cuatro fases del proyecto

<table>
<thead>
<tr>
<th>Fases</th>
<th>Categoría profesional</th>
<th>Tiempo (h)</th>
<th>Coste (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definición de objetivos y recopilación de la información</td>
<td>Ingeniero superior</td>
<td>90</td>
<td>3780</td>
</tr>
<tr>
<td>Compra, colocación y conexión a red de los dispositivos</td>
<td>Operario eléctrico</td>
<td>60</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>Administrativo</td>
<td>10</td>
<td>120</td>
</tr>
<tr>
<td>Diseño de las pantalla, informes, sucesos y exportaciones.</td>
<td>Ingeniero superior</td>
<td>280</td>
<td>11760</td>
</tr>
<tr>
<td></td>
<td>Ingeniero técnico</td>
<td>100</td>
<td>2400</td>
</tr>
<tr>
<td>Generación de los planos</td>
<td>Ingeniero superior</td>
<td>20</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td>Ingeniero técnico</td>
<td>10</td>
<td>240</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>570</td>
<td>20.340</td>
</tr>
</tbody>
</table>

Tabla 14.4: Distribución del coste en recursos humanos
Para realizar la implantación hay una serie de gastos, alquiler de oficina y material. En la tabla 14.5 se resumen los gastos.

<table>
<thead>
<tr>
<th>Oficina</th>
<th>Coste (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alquiler</td>
<td>1.800</td>
</tr>
<tr>
<td>Electricidad</td>
<td>350</td>
</tr>
<tr>
<td>Teléfono</td>
<td>200</td>
</tr>
<tr>
<td>Material</td>
<td></td>
</tr>
<tr>
<td>Uso del ordenador, impresora, escaner y cámara digital</td>
<td>500</td>
</tr>
<tr>
<td>Licencias de programas informáticos</td>
<td>300</td>
</tr>
<tr>
<td>Material de escritura e impresión</td>
<td>120</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3.270</td>
</tr>
</tbody>
</table>

Table 14.5: Coste de gastos

El coste total sin IVA de la implantación del software Power Studio Scada es:

$$20.878 + 20.340 + 3.270 = 44.488 \text{ €.}$$
CONCLUSIONES

Una vez realizado el proyecto cabe remarcar que aunque se haya implantado el software, no se ha terminado. Se debe ir modificando para mejorar y utilizar todas las ventajas que puede proporcionar.

El principal objetivo del proyecto que es la reducción de gastos no se puede analizar en este momento (ya se ha comentado este punto en el alcance). Lo único que se puede hacer es calcular lo que se ahorraría cambiando el horario de trabajo. Cuando el programa lleve unos meses implantados se podrán analizar los consumos con detenimiento y llevar a cabo las acciones necesarias para reducir gastos.

Otro de los objetivos es el de imputar a cada departamento su gasto. Este punto se ha conseguido. Si en un futuro se siguen comprando dispositivos se podrá realizar un piedra de Rosetta más exacta, y así se podrá dividir en subdepartamentos, pero de momento esto no es importante.

Por otra parte, sería interesante analizar la viabilidad del proyecto, pero esto se deberá llevar a cabo cuando se realicen acciones para la reducción de gasto. La implantación del proyecto ha supuesto un importe elevado y no se sabe si la inversión realizada ha merecido la pena. Sin embargo, hay que tener en cuenta que a parte de la reducción de gastos este programa sirve de supervisión de la red eléctrica. Esta supervisión, aunque económicamente no suponga un coste tiene un valor muy importante ya que puede avisar de que un error va a suceder y se puede corregir antes de que suceda.
BIBLIOGRAFÍA

Referencias bibliográficas:

2.- Circutor, Tutorial PowerStudio Scada v2.7, 2008

Páginas web:

9.- ABB: http://www.abb.com/energyefficiency (enero 2009)

10.- Schneider-Electric: http://conecta2.schneiderelectric.es/nbd/docs/index/21/4 (enero 2009)

