ÍNDICE MEMORIA

| Resumen .. 6 |
|--|---|
| Resum .. 6 |
| Abstract .. 6 |
| Memoria .. 7 |
| Objeto del proyecto .. 7 |
| Alcance ... 7 |
| Titular del proyecto ... 8 |
| Autor del proyecto .. 8 |
| Emplazamiento de la instalación 9 |
| Clasificación de la actividad 10 |
| Reglamentación y disposiciones oficiales 11 |
| Bibliografía ... 12 |
| Descripción del inmueble ... 13 |
| Relación de superficies .. 14 |
| Maquinaria .. 15 |
| Instalación eléctrica ... 16 |
| Objetos ... 16 |
| Características del local .. 16 |
| Descripción de la instalación eléctrica 19 |
| Compañía suministradora ... 19 |
| Acometida ... 19 |
| Potencia solicitada .. 19 |
| Centro de Transformación .. 20 |
| Derivación Individual .. 21 |
| Cuadro General de Distribución 21 |
| Subcuadros .. 22 |
1.12.3.8	Canalizaciones .. 23
1.12.3.9	Protecciones Eléctricas ... 25
1.12.3.9.1	Protección contra sobreintensidades 25
1.12.3.9.2	Protección contra sobretensiones 27
1.12.3.9.3	Protección contra contactos directos e indirectos 29
1.12.3.10	Puestas a tierra ... 30
1.12.3.10.1	Uniones a Tierra ... 31
1.12.3.10.2	Resistencia de las tomas a Tierra 34
1.12.3.10.3	Toma a Tierra Independiente 35
1.12.3.10.4	Separaciones entre las tomas a tierra de las masas de la instalación de utilización y las masas de un centro de transformación 35
1.12.3.10.5	Revisión de las tomas a Tierra .. 36
1.12.3.10.6	Tomas a Tierra a instalar .. 36
1.12.3.10.7	Solución final Tomas a Tierra a instalar 37
1.12.3.11	Cálculo de las secciones .. 37
1.12.3.12	Compensación de la energía reactiva 41
1.13	Iluminación de la Nave .. 43
1.13.1	Objeto .. 43
1.13.2	Definición de zonas ... 44
1.13.3	Elección de equipos .. 45
1.13.3.1	Elección de lámparas ... 45
1.13.3.2	Elección de luminarias .. 47
1.13.4	Iluminación de la nave .. 48
1.13.4.1	Iluminación taller y almacén ... 48
1.13.4.2	Iluminación oficinas, sala de reuniones y despachos 50
1.13.4.3	Iluminación vestuarios y Aseos. 52
1.13.4.4	Iluminación exterior ... 55
1.13.4.5 Iluminación de emergencia .. 55
1.13.5 Cálculo de Iluminación ... 57
1.14 Instalación Contra incendios ... 58
 1.14.1 Objeto .. 58
 1.14.2 Reglamentación, Disposiciones Oficiales y Particulares 58
 1.14.3 Sectorización de la nave ... 59
 1.14.4 Zona Taller ... 60
 1.14.4.1 Recorrido de evacuación ... 60
 1.14.4.2 Dimensionado de los elementos de evacuación 60
 1.14.4.3 Comportamiento ante el fuego de los elementos constructivos y materiales ... 61
 1.14.4.4 Estabilidad al fuego de la estructura 61
 1.14.4.5 Resistencia al fuego de los elementos constructivos 62
 1.14.4.6 Cálculo del riesgo intrínseco de la instalación 62
 1.14.4.7 Dotación de Inst. de Protección contra incendios 64
 1.14.5 Zona Administrativa .. 66
 1.14.5.1 Recorrido de evacuación ... 66
 1.14.5.2 Dimensionado de los elementos de evacuación 67
 1.14.5.3 Comportamiento ante el fuego de los elementos constructivos y materiales ... 68
 1.14.5.4 Estabilidad al fuego de la estructura 68
 1.14.5.5 Cálculo del riesgo intrínseco de la instalación 69
 1.14.5.6 Situación relativa del local respecto al edificio 70
 1.14.5.7 Dotación de Inst. de Protección contra incendios 71
 1.14.6 Plan de Emergencia .. 72
 1.14.6.1 Emergencia en horas de actividad 72
 1.14.6.2 Emergencia en horas sin actividad 73
 1.14.6.3 Plan de actuación en caso de incendio 75
<table>
<thead>
<tr>
<th>Sección</th>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.14.6.4</td>
<td>Auxilios exteriores</td>
<td>75</td>
</tr>
<tr>
<td>1.14.6.5</td>
<td>Medidas correctoras</td>
<td>76</td>
</tr>
<tr>
<td>1.15</td>
<td>Planificación</td>
<td>76</td>
</tr>
</tbody>
</table>
RESUMEN

El proyecto consiste en el diseño de la instalación eléctrica y protección contra incendios de una nave industrial. Es una empresa dedicada al tratamiento del acero, se encarga de mecanizarlo y crear piezas de acero por encargo de otras empresas.

En este proyecto nos encargaremos de realizar todos los cálculos necesarios para hacer la instalación eléctrica, haremos un estudio lumínico para elegir y colocar las luminarias en cada una de las estancias y acabaremos con el sistema contra incendios, con el cual conseguiremos extinguir fuegos más rápidamente en caso de que se produzcan.

RESUM

El projecte consisteix en el disseny de la instal·lació elèctrica i protecció contra incendis d'una nau industrial. És una empresa dedicada al tractament de l'acer, s'encarrega de mecanitzar-lo i crear peces d'acer per encàrrec d'altres empreses.

En aquest projecte ens encarregarem de realitzar tots els càlculs necessaris per a fer la instal·lació elèctrica, farem un estudi lumínic per a triar i col·locar les lluminàries en cadascuna de les estades i acabarem amb el sistema contra incendis, amb el qual aconseguirem extingir focs més ràpidament en cas que es produeixin.

ABSTRACT

The project consists of the design of the electrical installation and protection against fires of an industrial ship. It is a company dedicated to the treatment of the steel, it takes charge mechanizing and creating pieces of steel for order of other companies.

In this project we will take charge realizing all the necessary calculations to do the electrical installation, will do a light study to choose and to place the lights in each of the stays and will finish with the system against fires, with which we will manage to extinguish fires more rapidly in case they take place are produced.
1. Memoria

1.1 Objeto del proyecto

El objeto del presente proyecto es el de exponer ante los Organismos Competentes que la instalación que nos ocupa reúne las condiciones y garantías mínimas exigidas por la reglamentación vigente, con el fin de obtener la Autorización Administrativa y la de Ejecución de la instalación, así como servir de base a la hora de proceder a la ejecución de dicho proyecto.

La ubicación y el espacio disponible para cada uno de los elementos de que está compuesto el estudio y las medidas correctoras pertinentes se designarán en apartados sucesivos de la presente memoria.

1.2 Alcance

El ámbito de aplicación del proyecto se centra en la totalidad de la instalación eléctrica de la nave industrial teniendo en consideración la correcta aplicación de las normas vigente en beneficio de la seguridad de las personas que trabajan en estas instalaciones.

Los diseños que se realizarán en este proyecto son los siguientes:

- Iluminación de las instalaciones.
- Instalación eléctrica que nos permitirán la distribución de la energía eléctrica de la industria y alimentar los receptores de estas.
- Cálculos de los sistemas de protección de los equipos eléctricos.
- Compensación de energía reactiva para mantener el factor de potencia a 0,95.
- Diseño de la instalación contra incendios.

Queda así de esta forma definido el alcance del proyecto en cuanto a su ámbito de aplicación.

Queda excluida del presente proyecto la red de alimentación del centro de transformación y el Centro de Transformación.

El cliente nos facilitará las características constructivas de la nave industrial, así como las actividades y la maquinaria necesarias en las diferentes zonas del edificio.
1.3 Titular del proyecto

- EMPRESA: Aceros
- DIRECCION: Polígono Industrial Pla del Mas 11-12, nave 4
- POBLACIÓN: Sallent (BCN)

1.4 Autor del proyecto

- NOMBRE: Oscar Rodríguez García
- NIF: 46459249-P
- DIRECCIÓN: Av/ Josep Molins nº 12
- POBLACIÓN: L’Hospitalet de Llobregat
- CP: 08906
- PROVINCIA: Barcelona
- TELÉFONO: 93 333 82 77 / 646 554 476
- FAX: 93 333 82 77
- E-MAIL: oscar_rg5@hotmail.com
1.5 Emplazamiento de la instalación

- **DIRECCIÓN:** Polígono Industrial Pla del Mas
- **PARCELA:** 11-12, nave 4
- **POBLACIÓN:** Sallent
- **CP:** 08650
- **PROVINCIA:** Barcelona
- **PLANO:** PL-01- Situación

La nave se encuentra en un polígono industrial de nueva construcción, comunicado por carretera con la BV-4511 y la C-16. Dicho polígono dispone de los servicios de recogida de residuos, vigilancia, instalación de hidrantes exteriores, suministros de agua, electricidad, telecomunicaciones, etc.

La distribución de la superficie de la parcela la podemos ver en el plano PL-03.
1.6 Clasificación de la actividad

La empresa que va a ser objeto de estudio es una empresa dedicada al tratamiento del acero, se encarga de mecanizarlo y crear piezas de acero por encargo de otras empresas (clientes).

Según la Clasificación Nacional de Actividades Económicas (CNAE), se clasifica la actividad de este local como:

- Grupo 27 - Metalurgia.

- Subgrupo 271 - Fabricación de productos básicos de hierro, acero y ferroaleaciones (CECA)

- Actividad 2710 - Fabricación de productos básicos de hierro, acero y ferroaleaciones (CECA)
1.7 Reglamentación y disposiciones oficiales

El presente proyecto recoge las características de los materiales, los cálculos y la forma de ejecución de las obras a realizar, dando con ello cumplimiento a las siguientes disposiciones.

- Ley 7/1994, de 18 de mayo, de protección ambiental.
- Reglamento de Calificación Ambiental.
- Reglamento Electrotécnico de Baja Tensión e ITC-BT (Decreto 842 / 2002).
- Real Decreto 1555/2000 de 1 de Diciembre, por el que se regulan las Actividades de Transporte, Distribución, Comercialización, Suministro y Procedimientos de Autorización de Instalaciones de Energía Eléctrica.
- Real Decreto 2267/2004, de 3 de diciembre por el que se aprueba el Reglamento de seguridad contra incendios en los establecimientos industriales. (RSCIEI)
- Código Técnico de la Edificación. Documento Básico de Seguridad en caso de Incendio (C.T.E.-D.B.S.I.)
- Norma Básica acústica de la edificación NBE-CA-88 y Ley de Protección contra la contaminación Acústica (Ley 16 / 2002 del 28 de Junio).
- NBE CT-79 de Condiciones Térmicas en los edificios.
- Normas Técnicas de la Edificación
- Legislación Vigente sobre Prevención de Riesgos Laborales y Seguridad y Salud en el Trabajo
- Ordenanzas Municipales de Sallent.
1.8 Bibliografía

- Manual de alumbrado PHILIPS.
- Reglamento Electrotécnico para Baja Tensión. Mc Graw Hill.
- Código Técnico de la Edificación. Documento Básico de Seguridad en caso de Incendio (C.T.E.-D.B.S.I.)

Páginas web visitadas

- www.schneiderelectric.com
- www.abb.es
- www.daisalux.es
- www.lightingsoftware.philips.com
- www.mtas.es
- www.ge.com
- www.aiscan.com
- www.legrand.es
- www.voltimum.es
- www.topcable.com
- www.merlin-gerin.com

Programas de Cálculo

Dialux 4.6: Cálculos lumínicos.
1.9 Descripción del inmueble

La nave forma parte de un conjunto de naves adosadas entre medianeras, situada en polígono industrial.

La entrada se realizará por la planta baja de la nave industrial situada en la Calle A tal y como se detalla en los planos correspondientes.

Situándonos como referencia en la entrada de la nave industrial, está linda con:

- Límite posterior: Calle Urbanizada
- Límite lateral izquierdo: Calle Urbanizada
- Límite lateral derecho: Nave Industrial anexa
- Límite delantero: Nave Industrial anexa
1.10 Relación de superficies

La nave industrial objeto del estudio posee una superficie de **1.159,97 m²** distribuida en dos plantas, tal y como se detalla a continuación:

<table>
<thead>
<tr>
<th>CUADRO DE SUPERFICIES PLANTA BAJA</th>
<th>Superficies en planta baja</th>
<th>Superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vestuarios</td>
<td>27,17</td>
<td>m²</td>
</tr>
<tr>
<td>Recursos Humanos</td>
<td>29,04</td>
<td>m²</td>
</tr>
<tr>
<td>Calidad</td>
<td>10,19</td>
<td>m²</td>
</tr>
<tr>
<td>Comercial</td>
<td>13,55</td>
<td>m²</td>
</tr>
<tr>
<td>Recepción</td>
<td>21,29</td>
<td>m²</td>
</tr>
<tr>
<td>Logística</td>
<td>16,40</td>
<td>m²</td>
</tr>
<tr>
<td>Local</td>
<td>814,58</td>
<td>m²</td>
</tr>
<tr>
<td>Sup. Total útil</td>
<td>932,22</td>
<td>m²</td>
</tr>
</tbody>
</table>

Tabla 1 – Superficies Planta Baja

<table>
<thead>
<tr>
<th>CUADRO DE SUPERFICIES PLANTA PRIMERA</th>
<th>Superficies en altillo</th>
<th>Superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Despacho 1</td>
<td>27,73</td>
<td>m²</td>
</tr>
<tr>
<td>WC 1</td>
<td>6,85</td>
<td>m²</td>
</tr>
<tr>
<td>Despacho 2</td>
<td>38,44</td>
<td>m²</td>
</tr>
<tr>
<td>WC 2</td>
<td>4,66</td>
<td>m²</td>
</tr>
<tr>
<td>Contabilidad</td>
<td>34,69</td>
<td>m²</td>
</tr>
<tr>
<td>WC 3</td>
<td>3,99</td>
<td>m²</td>
</tr>
<tr>
<td>Sala de reuniones</td>
<td>111,39</td>
<td>m²</td>
</tr>
<tr>
<td>Sup. Total útil</td>
<td>227,75</td>
<td>m²</td>
</tr>
</tbody>
</table>

Tabla 2 – Superficies Planta Primera

<table>
<thead>
<tr>
<th>CUADRO DE SUPERFICIES TOTAL</th>
<th>Superficies Totales</th>
<th>Superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta Baja</td>
<td>932,22</td>
<td>m²</td>
</tr>
<tr>
<td>Planta Primera</td>
<td>227,75</td>
<td>m²</td>
</tr>
<tr>
<td>Sup. Total útil</td>
<td>1159,97</td>
<td>m²</td>
</tr>
</tbody>
</table>

Tabla 3 – Superficie Total
1.11 Maquinaria

A continuación se detalla la cantidad de maquinaria que se dispone en la nave industrial objeto del estudio.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidades</th>
<th>Potencia (Kw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Puerta</td>
<td>1</td>
<td>1,5</td>
</tr>
<tr>
<td>Sistema Alimentación Ininterrumpido (SAI)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Proyector</td>
<td>1</td>
<td>0,3</td>
</tr>
<tr>
<td>Ordenadores</td>
<td>10</td>
<td>0,1</td>
</tr>
<tr>
<td>Impresora/Fotocopiadora/Fax</td>
<td>3</td>
<td>0,4</td>
</tr>
<tr>
<td>Central Telefónica</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>Central de alarma</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>Central de incendios</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>Extractores</td>
<td>2</td>
<td>1,5</td>
</tr>
<tr>
<td>Maquina de café</td>
<td>1</td>
<td>0,5</td>
</tr>
<tr>
<td>Maquinas expendedoras</td>
<td>1</td>
<td>0,5</td>
</tr>
<tr>
<td>centro de mecanizado CNC DECKEL MAHO</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>centro de mecanizado vertical CNC DECKEL MAHO 50T</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>torno semicontrol, DECKEL NEF 520</td>
<td>1</td>
<td>15,3</td>
</tr>
<tr>
<td>torno CNC OKUMA LB 15 II M</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

Tabla 4 – Relación Maquinaria
1.12 Instalación eléctrica

1.12.1 Objeto

El objeto del presente apartado del proyecto será el de certificar ante los organismos competentes que la instalación en baja tensión de la nave industrial, cumple con la normativa vigente para la obtención de la correspondiente autorización de alta de dicha instalación y servirá, a su vez, de base para la realización de la obra.

1.12.2 Características del local

La nave industrial (zona de trabajo y almacén) se clasifica según el Reglamento Electrotécnico para Baja Tensión, en su instrucción ITC-BT-30 como local polvoriento sin riesgo de incendio o explosión.

En dichas dependencias se cumplirá las siguientes condiciones:

- Las canalizaciones eléctricas tendrán un grado de protección mínimo IP5X (considerando la envolvente como categoría 1 según la norma UNE 20.324).

El resto de la nave industrial (oficinas) se clasifica según la ITC-BT-28 como "instalaciones en locales de pública concurrencia" ya que se considera un local con oficinas con presencia de público para más de 50 personas, considerando la ocupación de 1 persona por cada 0,8 m² de superficie útil, a excepción de pasillos, repartidores, vestíbulos y servicios.

Las instalaciones en los locales de pública concurrencia, cumplirán con las condiciones de carácter general que se detallan a continuación:

- El cuadro general de distribución deberá colocarse en el punto más próximo posible a la entrada de la línea general de distribución y se colocará junto a él los dispositivos de mando y protección establecidos en la ITC-BT-17.
• Del cuadro general saldrán las líneas que alimentan directamente los aparatos receptores o bien las líneas generales de distribución a las que se conectará mediante cajas o a través de cuadros secundarios de distribución los distintos circuitos alimentadores. Los aparatos receptores que consuman más de 16 amperios se alimentarán directamente desde el cuadro general o desde los cuadros secundarios.

• El cuadro general de distribución e, igualmente, los cuadros secundarios, se instalarán en lugares a los que no tenga acceso el público y que estarán separados de los locales donde exista un peligro acusado de incendio o de pánico por medio de elementos a prueba de incendios y puertas no propagadoras del fuego. Los contadores podrán instalarse en otro lugar, de acuerdo con la empresa distribuidora de energía eléctrica, y siempre antes del cuadro general.

• En el cuadro general de distribución o en los secundarios se dispondrán dispositivos de mando y protección para cada una de las líneas generales de distribución y las de alimentación directa a receptores. Cerca de cada uno de los interruptores del cuadro se colocará una placa indicadora del circuito al que pertenecen.

• En las instalaciones para alumbrado de locales o dependencias donde se reúna público, el número de líneas secundarias y su disposición en relación con el total de lámparas a alimentar deberá ser tal que el corte de corriente en una cualquiera de ellas no afecte a más de la tercera parte del total de lámparas instaladas en los locales o dependencias que se iluminan alimentadas por dichas líneas. Cada una de estas líneas estarán protegidas en su origen contra sobrecargas, cortocircuitos, y si procede contra contactos indirectos.

• Las canalizaciones deben realizarse según lo dispuesto en las ITC-BT-19 e ITC-BT-20 y estarán constituidas por:

 - Conductores aislados, de tensión asignada no inferior a 450/750 V, colocados bajo tubos o canales protectores, preferentemente empotrados en especial en las zonas accesibles al público.

 - Conductores aislados, de tensión asignada no inferior a 450/750 V, con cubierta de protección, colocados en huecos de la construcción totalmente construidos en materiales incombustibles de resistencia al fuego RF-120, como mínimo.
- Conductores rígidos aislados, de tensión asignada no inferior a 0,6/1 kV, armados, colocados directamente sobre las paredes.

- Los cables y sistemas de conducción de cables deben instalarse de manera que no se reduzcan las características de la estructura del edificio en la seguridad contra incendios.

- Los cables eléctricos a utilizar en las instalaciones de tipo general y en el conexionado interior de cuadros eléctricos en este tipo de locales, serán no propagadores del incendio y con emisión de humos y opacidad reducida. Los cables con características equivalentes a las de la norma UNE 21.123 parte 4 ó 5; o a la norma UNE 21.1002 (según la tensión asignada del cable), cumplen con esta prescripción.

- Los elementos de conducción de cables con características equivalentes a los clasificados como “no propagadores de la llama” de acuerdo con las normas UNE-EN 50.085-1 y UNE-EN 50.086-1, cumplen con esta prescripción.

- Los cables eléctricos destinados a circuitos de servicios de seguridad no autónomos o a circuitos de servicios con fuentes autónomas centralizadas, deben mantener el servicio durante y después del incendio, siendo conformes a las especificaciones de la norma UNE-EN 50.200 y tendrán emisión de humos y opacidad reducida. Los cables con características equivalentes a la norma UNE 21.123 partes 4 ó 5, apartado 3.4.6, cumplen con la prescripción de emisión de humos y opacidad reducida.

- Las fuentes propias de energía de corriente alterna a 50 Hz, no podrán dar tensión de retorno a la acometida o acometidas de la red de Baja Tensión pública que alimenten al local de pública concurrencia.

Será necesario prever una instalación de iluminación de emergencia, para el posible caso de corte accidental de suministro de fluido eléctrico o una baja de tensión a menos del 70% del valor nominal. De esta manera, el personal puede abandonar ordenadamente y sin peligro el local, ganando tiempo y efectividad en las diferentes operaciones.
1.12.3 Descripción de la instalación eléctrica

1.12.3.1 Compañía suministradora.

La energía eléctrica se tomará de la red de distribución eléctrica que posee la compañía FECSA – ENDESA en el polígono industrial objeto del estudio.

La distribución de la energía se realiza mediante un esquema TT; es decir, el neutro conectado directamente al conductor de protección y las masas de la instalación están conectados a una toma de tierra separada de la toma de tierra de la instalación.

1.12.3.2 Acometida

Cabe señalar que la acometida será parte de la instalación constituida por la Empresa Suministradora, por lo tanto su diseño debe basarse en las normas particulares de ella.

1.12.3.3 Potencia solicitada

La potencia instalada en la nave industrial objeto del estudio viene determinada por la maquinaria y los equipamientos que se encuentran en el interior de la misma.

La maquinaria expuesta en el apartado 1.11 de esta memoria junto con la iluminación de la nave se alimentaran mediante 4 subcuadros que se detallaran más adelante. Con la potencia de cada subcuadro podremos hallar la potencia total, los cálculos de estas potencias los encontramos en el apartado 2 (Cálculos) de este proyecto.
La potencia instalada en la nave industrial son **108,046 kW**.

1.12.3.4 Centro de transformación

La nave industrial poseerá un centro de transformación en propiedad de 250 kVA, situado a la entrada del inmueble.

Dicho centro de transformación realizará la conversión de media a baja tensión (25.000 / 400 V) para el suministro de la nave.

El centro de transformación será de tipo pre-fabricado ORMAZABAL con posibilidad de futuras ampliaciones.

El suministro de energía se efectuará a una tensión de servicio de 25 kV y una frecuencia de 50 Hz.

Las celdas a emplear serán de la serie SM6 de Merlin Gerin, que son celdas modulares de aislamiento en aire equipadas de aparellaje fijo que utiliza el hexafluoruro de azufre como elemento de corte y extinción de arco.

Del cuadro de BT del centro de transformación saldrá una línea (400 V) que alimentará el CGP.

La ubicación del centro de transformación se puede ver detallada en el plano PL-07.
1.12.3.5 Derivación Individual

Es la parte de la instalación que suministra energía eléctrica a una instalación de usuario.

Está regulada por la instrucción ITC-BT-15 del Reglamento Electrotécnico para Baja Tensión.

Los tubos y canales protectoras tendrán una sección nominal que permita ampliar la sección de los conductores inicialmente instalados en un 100%. Las uniones de los tubos rígidos serán roscadas, o embutidas, de manera que no puedan separarse los extremos.

Los conductos serán “No propagable llama” según UNE 50085-1 y UNE 50086-1.

El número de conductores vendrá fijado por el número de fases necesarias para la utilización de los receptores de la derivación correspondiente y según su potencia, llevando cada línea su correspondiente conductor neutral así como el conductor de protección.

Los cables no presentarán empalmes y su sección será uniforme, exceptuándose en este caso las conexiones realizadas en la ubicación de contadores y en los dispositivos de protección. Se seguirá el código de colores indicado en la ITC-BT-19 del Reglamento Electrotécnico para Baja Tensión.

Los cables y sistemas de conducción de cables deben instalarse de manera que no se reduzcan las características de la estructura del edificio en la seguridad contra incendios.

Los cables serán no propagadores del incendio y con emisión de humos y opacidad reducida, según UNE – 21.123 ó UNE 211002.

1.12.3.6 Cuadro general de distribución

Estos elementos de la instalación serán el principal sistema de mando, protección y control de los receptores eléctricos de la nave industrial de manera que a partir de estos dispositivos el usuario podrá efectuar el control de todos los circuitos eléctricos existentes en dicha nave.

Se coloca un cuadro general de protección correspondiente a la tensión de servicio deseada.
El cuadro general de protección, también llamado cuadro general de distribución o cuadro general de mando y protección, será el punto de partida de todos los circuitos de manera que a partir de estos se irán separando todas las instalaciones en sus diferentes cuadros y zonas de la nave.

Los dispositivos generales de mando y protección se situarán lo más cerca posible del punto de entrada de la derivación individual. La altura de la cual se situarán los dispositivos generales e individuales de mando y protección, siendo esta medida desde el nivel del suelo, estará entre 1 y 2 metros. Las características de los cuadros se ajustarán a las normas UNE 20.451 y UNE-EN 60.439-3, con un grado de protección IP43 según UNE 20.324 y IK09 según UNE-EN 50.102.

La envolvente para el interruptor de control de potencia será precintable y sus dimensiones estarán de acuerdo con el tipo de suministro y tarifa a aplicar. Sus características y tipo corresponderán a un modelo oficialmente aprobado.

El instalador fijará de forma permanente sobre el cuadro de distribución una placa, impresa con caracteres indelebles, en la que conste su nombre o marca comercial, fecha en que se realizó la instalación, así como la intensidad asignada del Interruptor General Automático.

Las disposiciones generales de este tipo de caja quedan recogidas en la ITC-BT-13.

El esquema de los mecanismos que protegen las líneas de este cuadro lo podemos ver especificado en el plano PL-18.

1.12.3.7 Subcuadros

La nave industrial estará compuesta por 4 subcuadros que se detallan a continuación:

- **Subcuadro 1: Máquinas**
- **Subcuadro 2: Taller**
- **Subcuadro 3: Oficinas Planta Baja**
- **Subcuadro 4: Oficinas Primera Planta**
Subcuadro 1: Máquinas
Este subcuadro estará destinado a la alimentación de las máquinas de la nave. Estará situado al lado del Cuadro General de Protección.

El esquema de los mecanismos que protegen las líneas de este subcuadro lo podemos ver especificado en el plano PL-19.

Subcuadro 2: Taller
Este subcuadro estará destinado a la alimentación de las instalaciones de la zona taller. Estará situado al lado del Subcuadro 1.

El esquema de los mecanismos que protegen las líneas de este subcuadro lo podemos ver especificado en el plano PL-20.

Subcuadro 3: Oficinas Planta Baja
Este subcuadro estará destinado a la alimentación de las instalaciones de las oficinas y vestuarios de la planta baja: Oficina de Calidad, RR.HH, Logística, Comercial, Recepción y Vestuarios. Estará situado al lado del Subcuadro 2.

El esquema de los mecanismos que protegen las líneas de este subcuadro lo podemos ver especificado en el plano PL-21.

Subcuadro 4: Oficinas Primera Planta
Este subcuadro estará destinado a la alimentación de las instalaciones de las oficinas y lavabos de la Primera Planta: Oficina Contabilidad, Despacho 1, Despacho 2, Sala de Reuniones, Lavabo 1, Lavabo 2 y Lavabo 3. Estará situado en el Despacho1 de la primera Planta.

El esquema de los mecanismos que protegen las líneas de este subcuadro lo podemos ver especificado en el plano PL-22.

1.12.3.8 Canalizaciones

Las canalizaciones dimensionadas por las instalaciones interiores que van desde los cuadros auxiliares hasta los receptores de la propiedad serán dimensionados según la preinscripción del REBT ITC -BT-21, y según el número de conductores que contengan en su interior. Las canalizaciones utilizadas para los diferentes conductores de los circuitos eléctricos estarán instaladas básicamente en tubos superficiales.
Para la ejecución de las canalizaciones bajo tubos protectores, se tendrán en cuenta las prescripciones generales siguientes:

- El trazado de las canalizaciones se hará siguiendo líneas verticales y horizontales o paralelas a las aristas de las paredes que limitan el local donde se efectúa la instalación.

- Los tubos se unirán entre sí mediante accesorios adecuados a su clase que aseguren la continuidad de la protección que proporcionan a los conductores.

- Los tubosaislantes rígidos curvables en caliente podrán ser ensamblados entre sí en caliente, recubriendo el empalme con una cola especial cuando se precise una unión estanca.

- Las curvas practicadas en los tubos serán continuas y no originarán reducciones de sección inadmisibles. Los radios mínimos de curvatura para cada clase de tubo serán los especificados por el fabricante conforme a UNE-EN 50.086 -2-2.

- Será posible la fácil introducción y retirada de los conductores en los tubos después de colocarlos y fijados éstos y sus accesorios, disponiendo para ello los registros que se consideren convenientes, que en tramos rectos no estarán separados entre sí más de 15 metros. El número de curvas en ángulo situadas entre dos registros consecutivos no será superior a 3. Los conductores se alojarán normalmente en los tubos después de colocados éstos.

- Los registros podrán estar destinadas únicamente a facilitar la introducción y retirada de los conductores en los tubos o servir al mismo tiempo como cajas de empalme o derivación.

- Las conexiones entre conductores se realizarán en el interior de cajas apropiadas de material aislante y no propagador de la llama. Si son metálicas estarán protegidas contra la corrosión. Las dimensiones de estas cajas serán tales que permitan alojar holgadamente todos los conductores que deban contener. Su profundidad será al menos igual al diámetro del tubo mayor más un 50 % del mismo, con un mínimo de 40 mm. Su diámetro o lado interior mínimo será de 60 mm. Cuando se quieran hacer estancas las entradas de los tubos en las cajas de conexión, deberán emplearse prensaestopas o racores adecuados.

- En ningún caso se permitirá la unión de conductores como empalmes o derivaciones por simple retorcimiento o arrollamiento entre sí de los conductores, sino que deberá realizarse siempre utilizando bornes de conexión montados individualmente o constituyendo bloques o regletas de conexión; puede permitirse asimismo, la utilización de bridas de conexión. El retorcimiento o arrollamiento de conductores no se refiere a aquellos casos en los que se utilice cualquier dispositivo conector que asegure una correcta unión entre los conductores aunque se produzca un retorcimiento parcial de los mismos y con la posibilidad de que puedan desmontarse fácilmente. Los bornes de conexión para uso doméstico o análogo serán
conformes a lo establecido en la correspondiente parte de la norma UNE-EN 60.998.

- Durante la instalación de los conductores para que su aislamiento no pueda ser dañado por su roce con los bordes libres de los tubos, los extremos de éstos, cuando sean metálicos y penetren en una caja de conexión o aparato, estarán provistos de boquillas con bordes redondeados o dispositivos equivalentes, o bien los bordes estarán convenientemente redondeados.

- En los tubos metálicos sin aislamiento interior, se tendrá en cuenta las posibilidades de que se produzcan condensaciones de agua en su interior, para lo cual se elegirá convenientemente el trazado de su instalación, previendo la evacuación y estableciendo una ventilación apropiada en el interior de los tubos mediante el sistema adecuado, como puede ser, por ejemplo, el uso de una "T" de la que uno de los brazos no se emplea.

- Los tubos metálicos que sean accesibles deben ponerse a tierra. Su continuidad eléctrica deberá quedar convenientemente asegurada. En el caso de utilizar tubos metálicos flexibles, es necesario que la distancia entre dos puestas a tierra consecutivas de los tubos no exceda de 10 metros.

- No podrán utilizarse los tubos metálicos como conductores de protección o de neutro.

Las longitudes, secciones y diámetro de los tubos se hallan indicadas en el apartado 2 (Cálculos), capítulo 2.4.

1.12.3.9 Protecciones eléctricas

En el reglamento electrotécnico de baja tensión, especifica claramente las preinscripciones a cumplir en el presente proyecto, para la protección de las instalaciones eléctricas, estas están divididas en:

- ITC-BT-23: Protección contra sobretensiones.

1.12.3.9.1 Protección contra sobreintensidades

Todo circuito estará protegido contra los efectos de las sobreintensidades que puedan presentarse en el mismo, para lo cual la interrupción de este
La elección del circuito se realizará en un tiempo conveniente o estará dimensionado para las sobreintensidades previsibles.

Las sobreintensidades pueden estar motivadas por:
- Sobrecargas debidas a los aparatos de utilización o defectos de aislamiento de gran impedancia.
- Cortocircuitos.
- Descargas eléctricas atmosféricas

Protección contra sobrecargas

El límite de intensidad de corriente admisible en un conductor ha de quedar en todo caso garantizada por el dispositivo de protección utilizado.

El dispositivo de protección podrá estar constituido por un interruptor automático de corte omnipolar con curva térmica de corte, o por cortacircuitos fusibles calibrados de características de funcionamiento adecuadas.

Protección contra cortocircuitos

En el origen de todo circuito se establecerá un dispositivo de protección contra cortocircuitos cuya capacidad de corte estará de acuerdo con la intensidad de cortocircuito que pueda presentarse en el punto de su conexión. Se admite, no obstante, que cuando se trate de circuitos derivados de uno principal, cada uno de estos circuitos derivados disponga de protección contra sobrecargas, mientras que un solo dispositivo general pueda asegurar la protección contra cortocircuitos para todos los circuitos derivados.

Se admiten como dispositivos de protección contra cortocircuitos los fusibles calibrados de características de funcionamiento adecuadas y los interruptores automáticos con sistema de corte omnipolar.

La norma UNE 20.460 -4-43 recoge en su articulado todos los aspectos requeridos para los dispositivos de protección en sus apartados:

432 - Naturaleza de los dispositivos de protección.
433 - Protección contra las corrientes de sobrecarga.
434 - Protección contra las corrientes de cortocircuito.
435 - Coordinación entre la protección contra las sobrecargas y la protección contra los cortocircuitos.
436 - Limitación de las sobreintensidades por las características de alimentación.
1.12.3.9.2 Protección contra sobretensiones

Esta instrucción trata de la protección de las instalaciones eléctricas interiores contra las sobretensiones transitorias que se transmiten por las redes de distribución y que se originan, fundamentalmente, como consecuencia de las descargas atmosféricas, conmutaciones de redes y defectos en las mismas.

El nivel de sobretensión que puede aparecer en la red es función del: nivel isoceroúnico estimado, tipo de acometida aérea o subterránea, proximidad del transformador de MT/BT, etc. La incidencia que la sobretensión puede tener en la seguridad de las personas, instalaciones y equipos, así como su repercusión en la continuidad del servicio es función de:

- La coordinación del aislamiento de los equipos
- Las características de los dispositivos de protección contra sobretensiones, su instalación y su ubicación.
- La existencia de una adecuada red de tierras.

Esta instrucción contiene las indicaciones a considerar para cuando la protección contra sobretensiones está prescrita o recomendada en las líneas de alimentación principal 230/400 V en corriente alterna, no contemplándose en la misma otros casos como, por ejemplo, la protección de señales de medida, control y telecomunicación.

Categoría de las sobretensiones

Las categorías de sobretensiones permiten distinguir los diversos grados de tensión soportada a las sobretensiones en cada una de las partes de la instalación, equipos y receptores. Mediante una adecuada selección de la categoría, se puede lograr la coordinación del aislamiento necesario en el conjunto de la instalación, reduciendo el riesgo de fallo a un nivel aceptable y proporcionando una base para el control de la sobretensión.

Las categorías indican los valores de tensión soportada a la onda de choque de sobretensión que deben de tener los equipos, determinando, a su vez, el valor límite máximo de tensión residual que deben permitir los diferentes dispositivos de protección de cada zona para evitar el posible daño de dichos equipos. La reducción de las sobretensiones de entrada a valores inferiores a los indicados en cada categoría se consigue con una estrategia de protección en cascada que integra tres niveles de protección: basta, media y fina, logrando de esta forma un nivel de tensión residual no peligroso para los equipos y una capacidad de derivación de energía que prolonga la vida y efectividad de los dispositivos de protección.
Descripción de las categorías de las sobretensiones

En la tabla 1 de la ITC-BT-23 del REBT se distinguen 4 categorías diferentes, indicando en cada caso el nivel de tensión soportada a impulsos, en kV, según la tensión nominal de la instalación.

Categoría I

Se aplica a los equipos muy sensibles a las sobretensiones y que están destinados a ser conectados a la instalación eléctrica fija. En este caso, las medidas de protección se toman fuera de los equipos a proteger, ya sea en la instalación fija o entre la instalación fija y los equipos, con objeto de limitar las sobretensiones a un nivel específico.

Ejemplo: ordenadores, equipos electrónicos muy sensibles, etc.

Categoría II

Se aplica a los equipos destinados a conectarse a una instalación eléctrica fija.

Ejemplo: electrodomésticos, herramientas portátiles y otros equipos similares.

Categoría III

Se aplica a los equipos y materiales que forman parte de la instalación eléctrica fija y a otros equipos para los cuales se requiere un alto nivel de fiabilidad.

Ejemplo: armarios de distribución, embarrados, paramenta (interruptores, seccionadores, tomas de corriente...), canalizaciones y sus accesorios (cables, caja de derivación...), motores con conexión eléctrica fija (ascensores, máquinas industriales...), etc.

Categoría IV

Se aplica a los equipos y materiales que se conectan en el origen o muy próximos al origen de la instalación, aguas arriba del cuadro de distribución.

Ejemplo: contadores de energía, aparatos de telemedida, equipos principales de protección contra sobreintensidades, etc.
Selección de los materiales en la instalación

Los equipos y materiales deben escogerse de manera que su tensión soportada a impulsos no sea inferior a la tensión soportada prescrita en la tabla 1 de la ITC-BT-23, según su categoría.

Los equipos y materiales que tengan una tensión soportada a impulsos inferior a la indicada en la tabla 1 de dicho reglamento, se pueden utilizar:

- En situación natural, cuando el riesgo sea aceptable.
- En situación controlada, si la protección contra las sobretensiones es adecuada.

1.12.3.9.3 Protección contra contactos directos e indirectos.

En este apartado se describe las medidas destinadas a asegurar la protección de las personas y animales domésticos contra los choques eléctricos. En la protección contra los choques eléctricos se aplicarán las medidas apropiadas:

- para la protección contra los contactos directos y contra los contactos indirectos.
- para la protección contra contactos directos.
- para la protección contra contactos indirectos.

La protección contra los choques eléctricos para contactos directos e indirectos a la vez se realiza mediante la utilización de muy baja tensión de seguridad MBTS, que debe cumplir las siguientes condiciones:

- Tensión nominal en el campo I de acuerdo a la norma UNE 20.481 y la ITCBT-36.
- Fuente de alimentación de seguridad para MBTS de acuerdo con lo indicado en la norma UNE 20.460-4-41.
- Los circuitos de instalaciones para MBTS, cumplirán lo que se indica en la norma UNE 20.460-4-41 y en la ITC-BT-36.

Protección contra contactos directos.

Esta protección consiste en tomar las medidas destinadas a proteger las personas contra los peligros que pueden derivarse de un contacto con las partes activas de los materiales eléctricos.

Salvo indicación contraria, los medios a utilizar vienen expuestos y definidos en la norma UNE 20.460-4-41, que son habitualmente:
Protección por aislamiento de las partes activas.
Protección por medio de barreras o envolventes.
Protección por medio de obstáculos.
Protección por puesta fuera de alcance por alejamiento.
Protección complementaria por dispositivos de corriente diferencial residual.

La definición de cada uno de las protecciones anteriores se encuentra en el reglamento electrotécnico de baja tensión, en el apartado 3 de la ITC-BT-24, teniendo que cumplir los aspectos que implican en la nave industrial.

Protección contra contactos indirectos.

La protección contra contactos indirectos se conseguirá mediante un corte automático de la alimentación. Esta medida consiste en impedir, después de la aparición de un fallo, que una tensión de contacto de valor suficiente se mantenga durante un tiempo prolongado y pueda dar como resultado un alto riesgo.

La tensión límite convencional es igual a 50 V, valor eficaz en la corriente alterna, en condiciones normales y en 24 V en locales húmedos.

Todas las masas de los equipos eléctricos para un mismo dispositivo de protección, tienen que ser interconectados y unidos por un conductor de protección a una misma toma de tierra. El punto neutro de cada generador o transformador tienen que conectarse a tierra.

1.12.3.10 Puestas a tierra

La toma a tierra se establece principalmente a fin de limitar la tensión que, respecto a tierra, puedan presentar en un momento dado las masas metálicas, asegurando la actuación de las protecciones y eliminar o disminuir el riesgo que supone una avería en los materiales eléctricos.

La toma y conexión a tierra es la unión eléctrica, sin fusible ni protección alguna, por un lado del circuito eléctrico o por un lado conductor no perteneciente a la misma, mediante una toma a tierra con un electrodo o grupo de electrodos enterrados en el suelo.

Mediante la instalación de la toma a tierra se habrá conseguido que en el conjunto de las instalaciones de la nave y superficies próximas del terreno no aparezca deferencia de potencial peligrosa y que, al mismo tiempo, permita el paso a tierra de las corrientes de defecto o las descargas de origen climatológicas.
1.12.3.10.1 Uniones a tierra

Las disposiciones de la tomas a tierra pueden ser utilizadas a la vez o separadas, por razones de protección o razones funcionales, según las preinscripciones de la instalación.

La elección e instalación de los materiales que asegures la toma a tierra tienen que ser tales que:

- El valor de la resistencia de toma a tierra este conforme con la norma de protección y de funcionamiento de las instalaciones y se mantengan de esta manera a lo largo del tiempo.
- Las corrientes de defecto a tierra y las corrientes de fuga puedan circular sin peligro, particularmente desde el punto de vista de solicitudes térmicas, mecánicas y eléctricas.
- La solidez o la protección mecánica queda asegurada con independencia de las condiciones de influencia externa.
- Contemplen los posibles riesgos debidos a electrolisis que puedan afectar a otras partes metálicas.

Tomas a tierra

Para las tomas a tierra se pueden utilizar electrodos formados por:

- barras y tubos.
- Platinas y conductores desnudos.
- Placas.
- Anillos o mallas metálicas constituídas por elementos citados anteriormente o sus combinaciones.
- Armaduras de hormigón enterrados con excepción de las armaduras pretensadas.
- Otros conductores enterrados que se demuestren que son apropiados.

Los conductores de Cu desnudo utilizados como electrodos serán de construcción y resistencia eléctrica según la clase 2 de la norma UNE 21.022.

El tipo y la profundidad de enterrado de las tomas a tierra tienen que ser tales que la posibilidad de pérdida de humedad del suelo, la presencia de hielo o otros efectos climáticos no aumente la resistencia de la toma a tierra por encima de los valores previstos. La profundidad será mayor a 0,5 m.

Conductores a tierra.

La sección de los conductores de tierra, estando estos enterrados, tendrán que estar de acuerdo con los valores indicados en la tabla 1 de la ITC-BT-18 del REBT.
Durante la ejecución de las uniones entre conductores de tierra y electrodos de tierra debe extremarse el cuidado para que resulten eléctricamente correctas. Debe cuidarse, en especial, que las conexiones, no dañen ni a los conductores ni a los electrodos de tierra.

Bornes de toma a tierra.

En toda instalación de tomas a tierra debe preverse un borne principal de tierra, al cual deben unirse los conductores siguientes:

- Los conductores de tierra,
- Los conductores de protección.
- Los conductores de unión equipotencial principal.
- Los conductores de toma a tierra funcional, si son necesarios.

Debe preverse sobre los conductores de tierra y en lugar accesible, un dispositivo que permita medir la resistencia de la toma de tierra correspondiente. Este dispositivo puede estar combinado con el borne principal de tierra, debe ser desmontable necesariamente por medio de un útil, tiene que ser mecánicamente seguro y debe asegurar la continuidad eléctrica.

Conductores de protección.

Los conductores de protección sirven para unir electróicamente las masas de una instalación a ciertos elementos con el fin de asegurar la protección contra contactos indirectos.

En el circuito de conexión a tierra, los conductores de protección unirán las masas al conductor de tierra.

En otros casos reciben igualmente el nombre de conductores de protección, aquellos conductores que unen las masas:

- Al neutro de la red.
- A un relé de protección.

La sección de los conductores de protección será la indicada en la tabla 2, o se obtendrá por cálculo conforme a lo indicado en la Norma UNE 20.460 -5-54 apartado 543.1.1.
Si la aplicación de la tabla conduce a valores no normalizados, se han de utilizar conductores que tengan la sección normalizada superior más próxima.

Los valores de la tabla 2 solo son válidos en el caso de que los conductores de protección hayan sido fabricados del mismo material que los conductores activos; de no ser así, las secciones de los conductores de protección se determinarán de forma que presenten una conductividad equivalente a la que resulta aplicando la tabla 2.

En todos los casos los conductores de protección que no forman parte de la canalización de alimentación serán de cobre con una sección, al menos de:

- 2,5 mm\(^2\), si los conductores de protección disponen de una protección mecánica.
- 4 mm\(^2\), si los conductores de protección no disponen de una protección mecánica.

Cuando el conductor de protección sea común a varios circuitos, la sección de ese conductor debe dimensionarse en función de la mayor sección de los conductores de fase.

Como conductores de protección pueden utilizarse:

- Conductores en los cables multiconductor.
- Conductores aislados o desnudos que posean una envolvente común con los conductores activos.
- Conductores separados desnudos o aislados.

Los conductores de protección deben estar convenientemente protegidos contra deterioros mecánicos, químicos y electroquímicos y contra los esfuerzos electrodinámicos.

Las conexiones deben ser accesibles para la verificación y ensayos, excepto en el caso de las efectuadas en cajas selladas con material de relleno o en cajas no desmontables con juntas estancas.
Ningún aparato deberá ser intercalado en el conductor de protección, aunque para los ensayos podrán utilizarse conexiones desmontables mediante útiles adecuados.

Las masas de los equipos a unir con los conductores de protección no deben ser conectadas en serie en un circuito de protección, con excepción de las envolventes montadas en fábrica o canalizaciones prefabricadas mencionadas anteriormente.

Conductores equipotenciales

El conductor principal de equipotencialidad debe tener una sección no inferior a la mitad de la del conductor de protección de sección mayor de la instalación, con un mínimo de 6 mm². Sin embargo, su sección puede ser reducida a 2,5 mm², si es de cobre.

Si el conductor suplementario de equipotencialidad uniera una masa a un elemento conductor, su sección no será inferior a la mitad de la del conductor de protección unido a esta masa.

La unión de equipotencialidad suplementaria puede estar asegurada, bien por elementos conductores no desmontables, tales como estructuras metálicas no desmontables, bien por conductores suplementarios, o por combinación de los dos.

1.12.3.10.2 Resistencia de las tomas a tierra.

El electrodo se dimensionará de forma que su resistencia de tierra, en cualquier circunstancia previsible, no sea superior al valor especificado para ella, en cada caso.

Este valor de resistencia de tierra será tal que cualquier masa no pueda dar lugar a tensiones de contacto superiores a:

- 24 V en local o emplazamiento conductor.
- 50 V en los demás casos.

Si las condiciones de la instalación son tales que pueden dar lugar a tensiones de contacto superiores a los valores señalados anteriormente, se asegurará la rápida eliminación de la falta mediante dispositivos de corte adecuados a la corriente de servicio.

La resistencia de un electrodo depende de sus dimensiones, de su forma y de la resistividad del terreno en el que se establece. Esta resistividad varía frecuentemente de un punto a otro del terreno, y varía también con la profundidad.
1.12.3.10.3 Toma a tierra independiente.

Se considerará independiente una toma de tierra respecto a otra, cuando una de las tomas de tierra, no alcance, respecto a un punto de potencial cero, una tensión superior a 50 V cuando por la otra circula la máxima corriente de defecto a tierra prevista.

1.12.3.10.4 Separaciones entre las tomas a tierra de las masas de la instalación de utilización y las masas de un centro de transformación.

Se verificará que las masas puestas a tierra en una instalación de utilización, así como los conductores de protección asociados a estas masas o a los relés de protección de masa, no están unidas a la toma de tierra de las masas de un centro de transformación, para evitar que durante la evacuación de un defecto a tierra en el centro de transformación, las masas de la instalación de utilización puedan quedar sometidas a tensiones de contacto peligrosas.

Si no se hace el control de independencia, entre la puesta a tierra de las masas de las instalaciones de utilización respecto a la puesta a tierra de protección o masas del centro de transformación, se considerará que las tomas de tierra son eléctricamente independientes cuando se cumplan todas y cada una de las condiciones siguientes:

1. No exista canalización metálica conductor (cubierta metálica de cable no aislada especialmente, canalización de agua, gas, etc.) que una la zona de tierras del centro de transformación con la zona en donde se encuentran los aparatos de utilización.

2. La distancia entre las tomas de tierra del centro de transformación y las tomas de tierra u otros elementos conductores enterrados en los locales de utilización es al menos igual a 15 metros para terrenos cuya resistividad no sea elevada (<100 ohmios·m). Cuando el terreno sea muy mal conductor, la distancia se calculará, aplicando la fórmula especificada en el apartado 11 de la ITC-BT-18 del REBT.

3. El centro de transformación está situado en un recinto aislado de los locales de utilización o bien, si esta contiguo a los locales de utilización o en el interior de los mismos, está establecido de tal manera que sus elementos metálicos no están unidos eléctricamente a los elementos metálicos constructivos de los locales de utilización.

Sólo se podrán unir la puesta a tierra de la instalación de utilización (edificio) y la puesta a tierra de protección (masas) del centro de transformación, si el valor de la resistencia de puesta a tierra única es lo
suficientemente baja para que se cumpla que en el caso de evacuar el máximo valor previsto de la corriente de defecto a tierra (Id) en el centro de transformación, el valor de la tensión de defecto \(V_d = Id \cdot Rt \) sea menor que la tensión de contacto máximo aplicada, definida en el punto 1.1 de la MIERAT 13 del Reglamento sobre Condiciones Técnicas y Garantía de Seguridad en Centrales Eléctricas, Subestaciones y Centros de Transformación.

1.12.3.10.5 Revisión de las tomas de tierra

Por la importancia que ofrece, desde el punto de vista de la seguridad cualquier instalación de toma de tierra, deberá ser obligatoriamente comprobada por el Director de la Obra o Instalador Autorizado en el momento de dar de alta la instalación para su puesta en marcha o en funcionamiento.

Personal técnicamente competente efectuará la comprobación de la instalación de puesta a tierra, al menos anualmente, en la época en la que el terreno esté más seco. Para ello, se medirá la resistencia de tierra, y se repararán con carácter urgente los defectos que se encuentren.

En los lugares en que el terreno no sea favorable a la buena conservación de los electrodos, éstos y los conductores de enlace entre ellos hasta el punto de puesta a tierra, se pondrán al descubierto para su examen, al menos una vez cada cinco años.

1.12.3.10.6 Tomas a tierra a instalar.

Los conductores utilizados en las líneas a tierra tendrán una resistencia mecánica adecuada y ofrecerá una elevada resistencia a la corrosión. Su sección será tal que la máxima corriente de cortocircuito para estos, en caso de defecto o descarga atmosférica, no lleve a estos conductores a una temperatura próxima a la de fusión, ni ponga en peligro sus empalmes y conexiones.

A efectos de dimensionar las secciones, el tiempo mínimo a considerar por la duración del defecto a la frecuencia de la red, será de un segundo.

A pesar de lo comentado anteriormente, el ningún caso se admitirán secciones inferiores a 25 mm² en el caso de cobre y de 50 mm² en el caso de acero.

Podrán utilizarse como conductores a tierra las estructuras de acero de fijación de los elementos de la instalación, siempre que cumplan las características generales exigidas a los conductores y a su instalación. Por lo que es aplicable a las armaduras de hormigón armado, a no ser en caso...
de tratarse de armaduras pretensadas, en este caso se prohíbe el uso de los conductores a tierra.

1.12.3.10.7 Solución final Tomas a tierra a instalar.

La solución adoptada para la puesta a tierra de la nave industrial será el siguiente; conductores enterrados horizontalmente, los conductores enterrados tendrán una sección de 35mm2 y serán de Cu desnudo, con una longitud total de 101 m. Los electrodos serán picas con diámetro de 14 mm y una longitud de 2 cada uno de ellas, con un total a instalar de 4 picas. La resistividad del terreno es de 500 Ω·m, obteniendo una resistencia total de 9.8 Ω.

Los cálculos de las puestas a tierra los encontramos en el apartado 2 (Cálculos), capítulo 2.6.

1.12.3.11 Cálculo de las secciones

Los cálculos de las secciones y caídas de tensiones de las instalaciones de la nave están recogidos en el apartado 2 (Cálculos), capítulo 2.3.

A efectos de cálculo, las caídas de tensión máximas en la instalación según el RBT serán las expresadas a continuación:

- Línea de enlace: 1,5 %
- Alumbrado: 4,5 %
- Fuerza: 6,5 %

Conductores

Los conductores de la instalación eléctrica tienen que ser fácilmente identificables en montajes monofásicos y trifásicos especialmente para los que pertenecen al neutro y a los conductores de protección, es decir, los de tierra.

Esta identificación se efectúa por colores representados en su aislamiento. Cuando existen conductores neutros en la instalación eléctrica, se identifica mediante el color azul claro. El conductor de protección será identificado por el color amarillo-verde en forma de rayas longitudinales, mientras que los
conductores de fase son identificados con el color marrón o negro en líneas monofásicas, y con el negro, marrón y gris para líneas trifásicas.

Los conductores activos serán de cobre, irán colocándolos en el interior de tubos según la REBT de la ITC-BT-15

En referencia de los conductores de protección serán de cobre, y tendrán una sección mínima o igual a la que hace referencia a la tabla 2 de la ITC-BT-19, cogiendo como referencia la sección del conductor de fase de la presente instalación. Los conductores de protección estarán aislados y formarán parte de la conducción de la alimentación.

Los resultados obtenidos de los cálculos son los siguientes:

<table>
<thead>
<tr>
<th>Denominación</th>
<th>P.Cálculo (W)</th>
<th>Dist.Cálculo (m)</th>
<th>Sección (mm²)</th>
<th>I.Cálculo (A)</th>
<th>I.Adm (A)</th>
<th>C.T.Parc. (%)</th>
<th>C.T.Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DERIVACION IND.</td>
<td>112322.52</td>
<td>5</td>
<td>4x95+TTx50 Cu</td>
<td>170.66</td>
<td>245</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>SUBCUADRO 1 (MÁQUINAS)</td>
<td>71300</td>
<td>1.07</td>
<td>4x70+TTx50 Cu</td>
<td>128.64</td>
<td>149</td>
<td>0.02</td>
<td>0.09</td>
</tr>
<tr>
<td>SUBCUADRO 2 (TALLER)</td>
<td>31444.56</td>
<td>2.50</td>
<td>4x25+TTx25 Cu</td>
<td>56.73</td>
<td>77</td>
<td>0.02</td>
<td>0.09</td>
</tr>
<tr>
<td>SUBCUADRO 3 (OFI. PLANTA BAJA)</td>
<td>7548</td>
<td>3.50</td>
<td>4x4+TTx4 Cu</td>
<td>15.18</td>
<td>24</td>
<td>0.09</td>
<td>0.16</td>
</tr>
<tr>
<td>SUBCUADRO 4 (OFI. PRIMERA PLANTA)</td>
<td>6010</td>
<td>23</td>
<td>4x4+TTx4 Cu</td>
<td>14.97</td>
<td>24</td>
<td>0.60</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Tabla 8-Resumen cálculos CGMP.
SUBCUADRO 1 (MÁQUINAS)

<table>
<thead>
<tr>
<th>Denominación</th>
<th>P.Cálculo (W)</th>
<th>Dist.Cálc (m)</th>
<th>Sección (mm²)</th>
<th>I.Cálc. (A)</th>
<th>I.Adm (A)</th>
<th>C.T.Parc. (%)</th>
<th>C.T.Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>centro de mec. CNC DECKEL MAHO</td>
<td>35000</td>
<td>22.50</td>
<td>4x35+TTx16 Cu</td>
<td>74.29</td>
<td>96</td>
<td>0.34</td>
<td>0.43</td>
</tr>
<tr>
<td>centro de mec. vertical CNC DECKEL MAHO 50T</td>
<td>16250</td>
<td>21.50</td>
<td>4x10+TTx10 Cu</td>
<td>34.49</td>
<td>44</td>
<td>0.53</td>
<td>0.62</td>
</tr>
<tr>
<td>torno semicontrol, DECKEL NEF 520</td>
<td>19125</td>
<td>28.50</td>
<td>4x16+TTx16 Cu</td>
<td>39.66</td>
<td>59</td>
<td>0.50</td>
<td>0.59</td>
</tr>
<tr>
<td>torno CNC OKUMA LB 15 II M</td>
<td>18750</td>
<td>27.50</td>
<td>4x16+TTx16 Cu</td>
<td>38.88</td>
<td>59</td>
<td>0.47</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Tabla 9-Resumen cálculos Subcuadro 1.

SUBCUADRO 2 (TALLER)

<table>
<thead>
<tr>
<th>Denominación</th>
<th>P.Cálculo (W)</th>
<th>Dist.Cálc (m)</th>
<th>Sección (mm²)</th>
<th>I.Cálc. (A)</th>
<th>I.Adm (A)</th>
<th>C.T.Parc. (%)</th>
<th>C.T.Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumbrado_1</td>
<td>2160</td>
<td>41.33</td>
<td>2x2.5+TTx2.5 Cu</td>
<td>9.39</td>
<td>21</td>
<td>2.68</td>
<td>2.77</td>
</tr>
<tr>
<td>Alumbrado_2</td>
<td>4320</td>
<td>46.12</td>
<td>2x4+TTx4 Cu</td>
<td>18.78</td>
<td>27</td>
<td>3.85</td>
<td>3.94</td>
</tr>
<tr>
<td>Alumbrado_3</td>
<td>4320</td>
<td>41.87</td>
<td>4x4+TTx4 Cu</td>
<td>18.78</td>
<td>27</td>
<td>3.49</td>
<td>3.58</td>
</tr>
<tr>
<td>Alumbrado_4</td>
<td>4320</td>
<td>39.34</td>
<td>2x4+TTx4 Cu</td>
<td>18.78</td>
<td>27</td>
<td>3.28</td>
<td>3.37</td>
</tr>
<tr>
<td>Alumbrado_5</td>
<td>4320</td>
<td>43.60</td>
<td>2x4+TTx4 Cu</td>
<td>18.78</td>
<td>27</td>
<td>3.64</td>
<td>3.73</td>
</tr>
<tr>
<td>Alumbrado_6</td>
<td>4320</td>
<td>47.87</td>
<td>2x4+TTx4 Cu</td>
<td>18.78</td>
<td>27</td>
<td>3.99</td>
<td>4.08</td>
</tr>
<tr>
<td>Alumbrado de emergencia</td>
<td>842.40</td>
<td>64</td>
<td>2x1.5+TTx1.5 Cu</td>
<td>3.66</td>
<td>15</td>
<td>2.65</td>
<td>2.74</td>
</tr>
<tr>
<td>Alumbrado exterior</td>
<td>2160</td>
<td>37.96</td>
<td>2x2.5+TTx2.5 Cu</td>
<td>9.39</td>
<td>21</td>
<td>2.46</td>
<td>2.55</td>
</tr>
<tr>
<td>Enchufes_1</td>
<td>1500</td>
<td>43.36</td>
<td>2x2.5+TTx2.5 Cu</td>
<td>8.15</td>
<td>21</td>
<td>1.94</td>
<td>2.03</td>
</tr>
<tr>
<td>Enchufes_2</td>
<td>1500</td>
<td>19.75</td>
<td>2x2.5+TTx2.5 Cu</td>
<td>8.15</td>
<td>21</td>
<td>0.88</td>
<td>0.97</td>
</tr>
<tr>
<td>Enchufes_3</td>
<td>1500</td>
<td>34.35</td>
<td>2x2.5+TTx2.5 Cu</td>
<td>8.15</td>
<td>21</td>
<td>1.54</td>
<td>1.63</td>
</tr>
<tr>
<td>Motor Puerta</td>
<td>1875</td>
<td>42.77</td>
<td>2x2.5+TTx2.5 Cu</td>
<td>3.50</td>
<td>18.5</td>
<td>0.44</td>
<td>0.53</td>
</tr>
<tr>
<td>Extractor_1</td>
<td>937.5</td>
<td>20.93</td>
<td>2x2.5+TTx2.5 Cu</td>
<td>1.83</td>
<td>18.5</td>
<td>0.11</td>
<td>0.20</td>
</tr>
<tr>
<td>Extractor_2</td>
<td>937.5</td>
<td>20.93</td>
<td>2x2.5+TTx2.5 Cu</td>
<td>1.83</td>
<td>18.5</td>
<td>0.11</td>
<td>0.20</td>
</tr>
<tr>
<td>Máquina de café y Máquina expendedor</td>
<td>1250</td>
<td>42.18</td>
<td>2x2.5+TTx2.5 Cu</td>
<td>7.99</td>
<td>21</td>
<td>2.29</td>
<td>2.38</td>
</tr>
</tbody>
</table>

Tabla 10-Resumen cálculos Subcuadro 2.
SUBCUADRO 3 (OFI. PLANTA BAJA)

<table>
<thead>
<tr>
<th>Denominación</th>
<th>P.Cálculo (W)</th>
<th>Dist.Cálc (m)</th>
<th>Sección (mm²)</th>
<th>I.Cálc. (A)</th>
<th>I.Adm (A)</th>
<th>C.T.Parc. (%)</th>
<th>C.T.Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumbrado 1</td>
<td>2034</td>
<td>36.56</td>
<td>2x1.5+TTx1.5 Cu</td>
<td>8.84</td>
<td>15</td>
<td>3.78</td>
<td>3.94</td>
</tr>
<tr>
<td>Alumbrado 2</td>
<td>1825.20</td>
<td>42.41</td>
<td>2x1.5+TTx1.5 Cu</td>
<td>7.93</td>
<td>15</td>
<td>3.90</td>
<td>4.06</td>
</tr>
<tr>
<td>Alumbrado de emergencia</td>
<td>172.80</td>
<td>43</td>
<td>2x1.5+TTx1.5 Cu</td>
<td>0.75</td>
<td>15</td>
<td>0.36</td>
<td>0.52</td>
</tr>
<tr>
<td>Enchufes 1</td>
<td>2000</td>
<td>41.02</td>
<td>2x2.5+TTx2.5 Cu</td>
<td>10.87</td>
<td>21</td>
<td>1.93</td>
<td>2.09</td>
</tr>
<tr>
<td>Enchufes 2</td>
<td>2000</td>
<td>41.17</td>
<td>2x2.5+TTx2.5 Cu</td>
<td>10.87</td>
<td>21</td>
<td>2.49</td>
<td>2.65</td>
</tr>
<tr>
<td>SAI</td>
<td>1000</td>
<td>43.62</td>
<td>2x1.5+TTx1.5 Cu</td>
<td>0.35</td>
<td>15</td>
<td>0.21</td>
<td>0.37</td>
</tr>
<tr>
<td>Central Telefónica</td>
<td>100</td>
<td>43.62</td>
<td>2x1.5+TTx1.5 Cu</td>
<td>0.35</td>
<td>15</td>
<td>0.21</td>
<td>0.37</td>
</tr>
<tr>
<td>Central de alarma</td>
<td>100</td>
<td>43.62</td>
<td>2x1.5+TTx1.5 Cu</td>
<td>0.35</td>
<td>15</td>
<td>0.21</td>
<td>0.37</td>
</tr>
<tr>
<td>Central de incendios</td>
<td>100</td>
<td>43.62</td>
<td>2x1.5+TTx1.5 Cu</td>
<td>0.35</td>
<td>15</td>
<td>0.21</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Tabla 11-Resumen cálculos Subcuadro 3.

SUBCUADRO 4 (OFI. PRIMERA PLANTA)

<table>
<thead>
<tr>
<th>Denominación</th>
<th>P.Cálculo (W)</th>
<th>Dist.Cálc (m)</th>
<th>Sección (mm²)</th>
<th>I.Cálc. (A)</th>
<th>I.Adm (A)</th>
<th>C.T.Parc. (%)</th>
<th>C.T.Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumbrado Sala de Reuniones</td>
<td>3110.40</td>
<td>26.64</td>
<td>2x2.5+TTx2.5 Cu</td>
<td>13.52</td>
<td>21</td>
<td>2.54</td>
<td>3.21</td>
</tr>
<tr>
<td>Alumbrado Oficina Contabilidad y Despachos</td>
<td>3200.40</td>
<td>25.96</td>
<td>2x2.5+TTx2.5 Cu</td>
<td>13.91</td>
<td>21</td>
<td>2.55</td>
<td>3.22</td>
</tr>
<tr>
<td>Alumbrado Lavabos</td>
<td>720</td>
<td>22.4</td>
<td>2x1.5+TTx1.5 Cu</td>
<td>3.13</td>
<td>15</td>
<td>0.79</td>
<td>1.46</td>
</tr>
<tr>
<td>Alumbrado de emergencia primera planta</td>
<td>104</td>
<td>18.71</td>
<td>2x1.5+TTx1.5 Cu</td>
<td>0.81</td>
<td>15</td>
<td>0.17</td>
<td>0.84</td>
</tr>
<tr>
<td>Enchufes primera planta</td>
<td>2000</td>
<td>22.53</td>
<td>2x2.5+TTx2.5 Cu</td>
<td>10.87</td>
<td>21</td>
<td>1.36</td>
<td>2.03</td>
</tr>
</tbody>
</table>

Tabla 12-Resumen cálculos Subcuadro 4.

1.12.3.12 Compensación de la Energía Reactiva

Teniendo en cuenta el tipo de receptores que irán instalados en la actividad, se optará por una compensación global, que consiste en la instalación de una batería de condensadores en el embarrado general del cuadro eléctrico, de tipo automática, que es aquella en la que suministramos la potencia reactiva según las necesidades de la instalación.

Las cargas inductivas de la nave industrial a parte de la iluminación, que son más predecibles, las componen motores asincronos cuya simultaneidad global es fluctuante entre unos márgenes más o menos conocidos. En definitiva la carga de energía reactiva es variable en el tiempo, por lo que la mejor opción es un sistema automatizado de compensación.

Desde el punto de vista de la forma de compensación, se elige la compensación global puesto que la instalación eléctrica para este tipo de actividad, no centraliza su distribución de energía en un punto, sino que parte de un cuadro general y reparte las cargas en numerosas zonas, controladas cada una de ellas por un subcuadro. Tratar de compensar cada zona implica un desembolso económico importante en número de equipos.

El equipo de compensación automática está formado principalmente por tres elementos básicos:

- El regulador: mide el cosϕ de la instalación y da la orden de funcionamiento a los contactores.
- Contactores: son los elementos que se encargan realizar las conexiones de los condensadores.
- Condensadores: son los elementos que aportan la energía reactiva a la instalación.

A partir de los cálculos realizados en el apartado 2 (Cálculos), capítulo 2.5, para el dimensionado de la batería de condensadores, se llega a una potencia reactiva teórica máxima a compensar de 16.85 kvar, entre factores de potencia de 0,90 y 0,95.

Se elige pues, un sistema de compensación automático de la casa ABB, de 51 kvar de compensación máx., con batería APCM1.
Características del equipo.

El compensador de energía reactiva se instalará al lado del cuadro general de protección.

Fiable y Segura

La APC tiene un grado de protección IP 23 D con la puerta cerrada y está protegida contra los contactos directos y accidentales con la puerta abierta. La batería automática de condensadores responde a la norma CEI 60439.

Ventilación

La APC está equipada con sondas de temperatura y un sistema de ventilación especialmente seleccionado por su extraordinaria duración. La velocidad de ventilación varía en función de la temperatura interna de la APC.

En caso de sobrecalentamiento temporal, la APC se desconecta automáticamente.

- Tensión nominal: **400 V**
- Frecuencia: **50Hz.**
- Conexión: **Trifásica.**
- Ajuste del factor de potencia: **De 0,7 inductivo a 0,7 capacitivo.**
- Ajuste de C/k: **De 0.05 A a 1 A con el regulador RVC.**
- Temperatura ambiente: -5º C/+40º C según la norma CEI 60831 – 1 y 2.
Funcionamiento
Ajuste automático o manual del regulador con indicación de:

- Número de salidas activas.
- Factor de potencia inductivo o capacitivo.
- Condiciones de alarma.
- Sobre temperatura.
- Una demanda para conectar/desconectar un escalón de condensador.

Condensadores
Secos con dieléctrico autorregenerable según norma CEI 60831-1 y 2.

1.13 Iluminación de la Nave

1.13.1 Objeto

El presente apartado se aplica a las instalaciones de receptores para el alumbrado. Se entiende como receptor para el alumbrado, los equipos o dispositivos que utilizan la energía eléctrica para la iluminación de espacios interiores o exteriores. Se pretende hacer una introducción de los tipos de luminarias que se desea instalar en las diferentes zonas de la nave.

El consumo del alumbrado es uno de los principales factores a tener en cuenta, ya que esta tiene que estar diseñada para un funcionamiento de larga duración. Una buena iluminación, cuando se trata de iluminación industrial, comporta un aumento de productividad y un rendimiento en el trabajo adecuado, aumentando también la seguridad del personal.

Se toman como premisas las características físicas de la zona y la actividad a desarrollar en ella, para determinar el modelo óptimo de iluminación, funcionalidad y protección.

La disposición de las luminarias consideradas se dirige a lograr una buena distribución de la luz en las zonas, atendiendo a la funcionalidad, estética, uniformidad de la iluminación y mínimo deslumbramiento.

La iluminación interior tiene que cumplir unas condiciones esenciales:
• Suministrar un flujo luminoso suficiente.
• Eliminar todas las causas de deslumbramiento y estar dentro de los valores definidos por el Real Decreto 486/1997.
• Prever aparatos de alumbrado idóneo para cada caso en particular.
• Utilizar Fuentes luminosos que aseguren, en cada caso, una satisfactoria distribución de los colores.

1.13.2 Definición de zonas

Para la iluminación de la nave se definen unas zonas diferenciadas según la función de la actividad que se realiza en ella. La dividiremos en tres zonas:

• Zona Taller
• Zona vestuarios y aseos
• Zona oficinas

En cada zona se obtendrá un alumbrado general, con el que se procurará que el nivel de iluminación sea lo más uniforme posible en todo el recinto. En la zona de trabajo que sea necesaria se aplicará un alumbrado localizado, con el cual aumentaremos el nivel de iluminación de esa zona.

Iluminancia media requerida por cada zona en función de su actividad:

<table>
<thead>
<tr>
<th>Zona</th>
<th>Función</th>
<th>Nivel Medio (lux)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta baja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vestuario</td>
<td>Vestuario</td>
<td>200</td>
</tr>
<tr>
<td>Zona de trabajo</td>
<td>Maquinaria General</td>
<td>600</td>
</tr>
<tr>
<td>Recepción</td>
<td>recepción</td>
<td>200</td>
</tr>
<tr>
<td>Logística</td>
<td>Oficina</td>
<td>500</td>
</tr>
<tr>
<td>Comercial</td>
<td>Oficina</td>
<td>500</td>
</tr>
<tr>
<td>RRHH</td>
<td>Oficina</td>
<td>500</td>
</tr>
<tr>
<td>Calidad</td>
<td>Oficina</td>
<td>500</td>
</tr>
</tbody>
</table>
Zona | Función | Nivel Medio (lux)
--- | --- | ---
Planta Primera
Despachos | oficina | 500
Contabilidad | oficina | 500
Sala de reuniones | Sala de reunión | 500
Aseos | Lavabos | 200

Tabla 13: Iluminancia de cada Zona.

1.13.3 Elección de equipos

Se adoptan como criterios principales para la determinación del equipo adecuado la facilidad de instalación, el confort, el rendimiento y la economía.

El confort luminoso viene dado por la cantidad y calidad de luz que proporciona el sistema de luminarias. Se tiene en cuenta el flujo lumínico que debe incidir sobre el área a iluminar, la reflexión, temperatura de color e índice de reproducción cromática.

Se entiende por rendimiento luminoso de un aparato de alumbrado, a la relación entre el flujo emitido al exterior del aparato y el de la fuente o de las lámparas en él contenidas.

La eficiencia luminosa de la lámpara es la relación entre el flujo emitido por la lámpara misma y la potencia eléctrica utilizada para generarlo, que determina a su vez la economía del modelo escogido, su coste total y su duración en el tiempo.

1.13.3.1 Elección de lámparas

En su elección se consideran los siguientes puntos:

- **Potencia**: La energía eléctrica que consume la lámpara para su funcionamiento.
• Flujo luminoso: Es la cantidad de luz emitida por una fuente en la unidad de tiempo. Su unidad representativa es el Lumen. La relación entre flujo luminoso y potencia determina la eficiencia luminosa en lumen / vatio.

• Rendimiento luminoso: El rendimiento luminoso de un aparato de alumbrado es la relación entre el flujo emitido al exterior del aparato (Fa) y el de la fuente o de las fuentes (lámparas) en él contenidas (Fl). Su fórmula de cálculo es h= Fa / Fl, viene dado en unidades adimensionales.

• Rendimiento de color: El índice de reproducción cromática IRC constituye una característica de las lámparas obtenida a partir de una correlación de resultados obtenidos sobre muestras de color distintas y definidas, entre el iluminante patrón y la propia lámpara a igualdad de temperatura de color. La coincidencia de resultados nos determina el índice de reproducción cromática, obteniéndose el valor 100 cuando esta coincidencia es total. La norma DIN 5035 en sus hojas primera y segunda propone para las distintas fuentes de luz atendiendo a su temperatura de color expresada en grados kelvin y a su índice de reproducción cromática los siguientes grupos:

 a.- Color de la luz blanco natural, 6000 ºK.
 b.- Color de la luz blanco neutro. 4000 ºK.
 c.- Color de la luz blanco cálido. 3000 ºK.

<table>
<thead>
<tr>
<th>GRUPO DE RENDIMIENTO DE COLOR</th>
<th>IRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>70 - 85</td>
</tr>
<tr>
<td>3</td>
<td>Lámparas con IRC <70 pero con propiedades de rendimiento en color bastante aceptables para uso en locales de trabajo</td>
</tr>
</tbody>
</table>

Tabla 14-Rendimiento de color.

• Vida útil: Es el tiempo que se estima de vida útil de una lámpara en función de un número determinado de encendidos.
• Posición de funcionamiento: La colocación del foco en la dirección de la perpendicular del plano a iluminar, determina la cantidad de flujo luminoso incidente en cada punto de la superfi cie iluminada.

• Coste: Se procura el coste más económico posible

En base a estos argumentos se seleccionan las siguientes lámparas para cada zona.

1.13.3.2 Elección de luminarias

En su elección se consideran los siguientes puntos:

• Dimensiones del local: Determinaran las características geométricas del flujo luminoso emitido desde la luminaria, simétrico o asimétrico, y la dirección de emisión del flujo, de forma directa, indirecta o una combinación de estas propiedades.

• Reflexión de las superfi cies que delimitan el local: En función de las reflexiones, se establecerá el modelo de dirección de flujo y el difusor, refractor o re flector del equipo.

• Humedad: Un nivel de humedad excesivo obliga a emplear equipos con protección a los cortocircuitos o contactos por esta causa.

• Polvo: El polvo adherido a lo largo del tiempo, resta eficacia a los equipos. Va en función del ambiente y el mantenimiento de la instalación.

• Protección a las personas y bienes: Los modelos con lamas y los cerrados aportan también protección ante el riesgo de rotura de lámparas o contactos en zonas de concurrencia pública.
1.13.4 Iluminación de la nave

La iluminación de la nave se puede ver detallada en el plano PL-12.

Con las consideraciones antes mencionadas se seleccionan las siguientes lámparas y luminarias:

1.13.4.1 Iluminación taller y almacen

Lámpara:

Lámparas de halogenuros metálicos con envoltura exterior de cristal opalizado de PHILIPS, modelo MASTER HPI Plus 400W/767 BU E40 CRP.

![Lámpara Philips Master HPI](image)

Figura 2 – Lámpara Philips Master HPI.

Características:

- Bulbo exterior ovoide con recubrimiento fluorescente
- Alta eficacia luminosa, durante toda la vida de la lámpara
- Temperatura de color blanco neutro y blanco frío estable hasta el final de la vida de la lámpara
- Los tipos "S" son directamente intercambiables con lámparas de vapor de mercurio
- Los tipos "P" incorporan una protección de teflón y pueden utilizarse en luminarias abiertas
Ventajas:

- El excelente mantenimiento del flujo y la larga duración garantizan altos niveles de iluminación y mínimos costes de mantenimiento
- La buena reproducción cromática crea un ambiente agradable con alto grado de confort visual
- La excelente estabilidad cromática garantiza la uniformidad del color durante toda la vida de la lámpara incluso con recambios puntuales de lámparas
- El concepto "Plus", mayor flujo luminoso, permite conseguir importantes ahorros energéticos y de inversión

Luminaria:

Philips HDK 100 MPK100 +GPK100 WB +GCWB1xHPI-P400W-BU. Luminaria funcional de interior para naves de gran altura que utiliza lámparas de descarga de alta intensidad y se suministra con reflector.
Descripción técnica:

- Equipo/alimentación eléctrica: convencional: 230 V o 240 V
- Lámpara: 1x HPI-Plus, SON o HPL
- Material: carcasa de fundición de aluminio y policarbonato, reflector de aluminio anodizado, cierre de vidrio termoendurecido.

<table>
<thead>
<tr>
<th>Características</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de lámparas</td>
<td>1</td>
</tr>
<tr>
<td>Código de gama de la lámpara</td>
<td>HPI-P</td>
</tr>
<tr>
<td>Potencia de lámpara</td>
<td>400</td>
</tr>
<tr>
<td>Equipo</td>
<td>CONV</td>
</tr>
<tr>
<td>Alumbrado de emergencia</td>
<td>No</td>
</tr>
<tr>
<td>Código IP</td>
<td>IP65</td>
</tr>
</tbody>
</table>

1.13.4.2 Iluminación oficinas, sala de reuniones y despachos

Lámpara:

PHILIPS MASTER TL-D Super 80 36W/830 SLV

![Figura 4 – Lámpara Philips Master TL-D](image)

Características:

- Revestimiento fluorescente de tres bandas altamente eficaz en combinación con la tecnología de prerrevestimiento de Nueva Generación
- Alto flujo luminoso inicial
- Disponible en diferentes temperaturas de color
- Muy bajo contenido en mercurio (3 mg)
- Lámparas reciclables
- El casquillo incorpora una tapa de fondo verde para identificar la lámpara como reciclable
Ventajas:

- El revestimiento fluorescente especial permite una buena reproducción cromática
- Alta eficacia y buen mantenimiento del flujo luminoso durante toda la vida de la lámpara
- Permite crear atmósferas desde blanco cálido a blanco frío

Luminaria:

PHILIPS Impala TBS160 4xTL-D36W IC C6-60 PI.

![Luminaria Philips Impala TBS160](image)

Figura 5 – Luminaria Philips Impala TBS160.

Descripción técnica:

- **Equipo/alimentación eléctrica:**
 - HF: 220 - 240 V (HFB, HFP, HFR, EI*)
 - Convencional: 230 V
- **Lámparas:** 4 fluorescentes TL-D
- **Conexión:** conector push-in (clema de conexiones)
- **Carcasa:** acero blanco prelacado
1.13.4.3 Iluminación vestuarios y Aseos.

Lámparas vestuario:

PHILIPS MASTER TL-D Super 80 36W/840 SLV.

Las características son las mismas que las lámparas de las oficinas.

Lámparas lavabos:

PHILIPS Accentline 50W GU5.3 12V 36D 1CT

Características:

- El revestimiento del reflector dicroico transmite el calor hacia detrás y refleja la luz hacia delante
- Quemador con filtro UV
- Temperatura de color blanco cálido
- Casquillo GU5.3 para facilitar la sujección en la luminaria

Figura 6 – Lámpara Philips Accentline 50W.
Características

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código ANSI</td>
<td>E×N</td>
</tr>
<tr>
<td>Apertura de Haz</td>
<td>36</td>
</tr>
<tr>
<td>Pot. de la Lámpara Estimada</td>
<td>50</td>
</tr>
<tr>
<td>Intensidad Luminosa</td>
<td>1600</td>
</tr>
<tr>
<td>Índice Rendimiento Cromática</td>
<td>100</td>
</tr>
<tr>
<td>Base/Casquillo</td>
<td>GU5.3</td>
</tr>
<tr>
<td>Temperatura de Color</td>
<td>3000</td>
</tr>
<tr>
<td>Forma de la lámpara</td>
<td>MR16</td>
</tr>
<tr>
<td>Tensión de Red</td>
<td>12</td>
</tr>
<tr>
<td>Ejecución</td>
<td>Cerrado</td>
</tr>
<tr>
<td>Posición de Funcionamiento</td>
<td>any</td>
</tr>
<tr>
<td>Vida al 50% de Fallos</td>
<td>3000</td>
</tr>
</tbody>
</table>

Ventajas:

- Excelente reproducción cromática

Luminarias vestuarios

PHILIPS Pacific TCW216 2xTL-D36W I PI

![Figura 7 – Luminaria Philips Pacific TCW216.](image)
Descripción técnica:

- **Equipo/alimentación eléctrica:**
 - Convencional: 230 V
- **Lámparas:** 2 fluorescentes TL-D
- **Carcasa:** poliéster gris reforzado con fibra de vidrio
- **Difusor:** policarbonato

<table>
<thead>
<tr>
<th>Características</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de lámparas</td>
<td>2</td>
</tr>
<tr>
<td>Código de gama de la lámpara</td>
<td>TL-D</td>
</tr>
<tr>
<td>Rendimiento (LOR)</td>
<td>0.69</td>
</tr>
<tr>
<td>Potencia de lámpara</td>
<td>36</td>
</tr>
</tbody>
</table>

Luminarias lavavos:

Philips Mezzo SBN210 MB36 1xSDW-T50W

![Figura 8 – Luminaria Philips Mezzo SBN210.](image)

Descripción técnica:

- **Alimentación eléctrica:** 12 V o 230 V (Twistline)
- **Posición de la lámpara:** vertical
- **Portalámparas:**
 - GU5.3: MASTER Line ES
- **Material:** fundición de aluminio
1.13.4.4 Iluminación exterior

PHILIPS QKF102 HAL-TDS300W BK

Figura 9 – Luminaria Philips QKF102.

Tipo de lámpara adecuado: Halógena 300 W

Materiales y acabado:

- Carcasa de inyección de aluminio
- Óptica asimétrica de aluminio resistente a la corrosión
- Acabado rugoso en negro o blanco
- IP-65

1.13.4.5 Iluminación de emergencia

Para dar respuesta a las exigencias de la normativa que hace referencia a los sistemas de protección contra incendios, se han elegido dos tipos de luminarias, con dos criterios de diseño:

- Zona de uso industrial.
- Zona de servicios, como son oficinas, comedor, lavabos...

La normativa nos exige para el alumbrado de emergencia:

- Será fija, estará provista de fuente propia de energía y entrará automáticamente en funcionamiento al producirse un fallo del 70 por ciento de su tensión nominal de servicio.
- Mantendrá las condiciones de servicio durante una hora, como mínimo, desde el momento en que se produzca el fallo.
- Proporcionará una iluminancia de un lx, como mínimo, en el nivel del suelo en los recorridos de evacuación.
- La uniformidad de la iluminación proporcionada en los distintos puntos de cada zona será tal que el cociente entre la iluminancia máxima y la mínima sea menor que 40.
Los niveles de iluminación establecidos deben obtenerse considerando nulo el factor de reflexión de paredes y techos y contemplantdo un factor de mantenimiento que comprenda la reducción del rendimiento luminoso debido al envejecimiento de las lámparas y a la suciedad de las luminarias.

Por lo que se ha elegido para uso industrial la luminaria Daisalux ESTANCA 40 C24, con las siguientes características:

- Funcionamiento: Combinado
- Autonomía (h): 1
- Formato: Pantalla Estanca
- Lámpara en emergencia: FL 36 W
- Piloto testigo de carga: Led
- Lámpara en red: FL 36 W
- Grado de protección: IP65 IK08
- Aislamiento eléctrico: Clase I
- Dispositivo verificación: No
- Puesta en reposo a distancia: Si
- Flujo lumínico: 1200 lúmenes

Para las zonas de servicios la luminaria Daisalux NOVA N8, con las siguientes características:

- Funcionamiento: No permanente
- Autonomía (h): 1
- Formato: Nova
- Lámpara en emergencia: FL 8 W DLX
- Piloto testigo de carga: Led
- Lámpara en red: -
- Grado de protección: IP44 IK04
- Aislamiento eléctrico: Clase II
- Dispositivo verificación: No
- Puesta en reposo a distancia: Si
- Flujo lumínico: 435 lúmenes

La iluminación de emergencia de la nave se puede ver detallada en el plano PL-13.
1.13.5 Cálculo de Iluminación

Para la realización de los cálculos lumínicos se utilizará un programa informático de cálculo luminotécnico, el programa es DIALUX 4.6.

Los resultados de los cálculos luminotécnicos los encontramos en el Anexo_1 Iluminación Nave.

El programa DIALUX 4.6 calcula las iluminancias y las luminancias sobre todas las superficies del ambiente, mobiliarios incluidos, considerando también las sombras que dichos muebles crearán. El sistema procesa los datos de forma matricial en todos los puntos de la superficie.

La base de datos y cálculo del programa informático proporciona los cómputos necesarios para el estudio lumínico; sólo precisa ingresar los datos de las dimensiones del local, iluminancia requerida, tipo de luminaria y lámpara escogida. El programa devuelve un esquema con el número de luminarias necesarias, su distribución geométrica y un detallado informe fotométrico del volumen y la superficie iluminada.

El DIALUX 4.6 resulta una herramienta fiable y muy productiva; ahorra mucho tiempo dedicado a cálculos intermedios manuales y proporciona una información minuciosa de todos los puntos de la superficie, obtención que resultaría compleja realizando los cálculos de forma manual. Por otra parte suministra información amplia y detallada de las características funcionales de los productos del catálogo de PHILIPS, que facilitan la selección de las distintas aplicaciones.
1.14 Instalación Contra incendios

1.14.1 Objeto

El objeto del presente proyecto es el de exponer ante los Organismos Competentes que la instalación de protección contra incendios que nos ocupa reúne las condiciones y garantías mínimas exigidas por la reglamentación vigente, con el fin de obtener la Autorización Administrativa y la de Ejecución de la instalación, así como servir de base a la hora de proceder a la ejecución de dicha instalación.

1.14.2 Reglamentación, Disposiciones Oficiales y Particulares.

El presente proyecto recoge las características de los materiales, los cálculos que justifican su empleo y la forma de ejecución de las instalaciones a realizar, dando con ello cumplimiento a las siguientes disposiciones:

- Código Técnico de la Edificación. Documento Básico de Seguridad en caso de Incendio (C.T.E.-D.B.S.I.)
- Normas Tecnológicas de la Edificación NTE IPF-IFA.
- Normas UNE 23032, 23033, 23034 y 23035 sobre Seguridad contra incendios.
- Norma UNE 23102:1990 sobre Ensayos de reacción al fuego de los materiales de construcción.
- Normas UNE 23721, 23723, 23724, 23725, 23726, 23727, 23728,
23729, 23730 y 23735 sobre Ensayos de reacción al fuego de los materiales de construcción.

- Norma UNE 23.110 para lucha contra incendios a través de extintores portátiles.

- Normas UNE 23.541, 23.542, 23.543 y 23.544 para sistemas de extinción por polvo.

- Real Decreto 1627/1997 de 24 de octubre de 1.997, sobre Disposiciones mínimas de seguridad y salud en las obras.

- Real Decreto 485/1997 de 14 de abril de 1997, sobre Disposiciones Condiciones impuestas por los Organismos Públicos afectados y Ordenanzas Municipales.

1.14.3 Sectorización de la nave

Para realizar la sectorización de la nave industrial en cuestión se tendrán en cuenta dos factores.

Por un lado se considerará una zona de trabajo industrial y almacén de material y otra zona administrativa (que incluirá además lavabos y vestuarios).

Por tanto se sectorizará la nave en dos zonas:

1. Zona taller.
2. Zona Administrativa.

La sectorización de la nave se puede ver detallada en el plano PL-14.

La nave dispone de tres puertas destinadas a la salida de personas al exterior, una puerta se encuentra en recepción, en la planta baja de las oficinas, en la zona administrativa, otra puerta se encuentra cerca de las máquinas en la zona taller y por último una puerta que se encuentra en la entrada de la nave.

Todas estas puertas pueden ser utilizadas para la evacuación de personal en caso de incendio.
La altura libre de la nave es de 8 metros.

1.14.4 Zona Taller

La superficie de este sector será de 814.58 m2 con una ocupación aproximada de 13 personas. Este sector está compuesto por la parte de producción, donde están las máquinas, y por el almacén, donde se almacenará la producción.

El establecimiento industrial ocupa totalmente un edificio que está adosado a otro/s edificio/s, ya sean éstos de uso industrial o bien de otros usos.

Por tanto, será del tipo B.

1.14.4.1 Recorrido de evacuación

El recorrido de evacuación desde cualquier punto de la nave conducirá a la salida más cercana que conecte directamente con el exterior, por lo que se cumple con la normativa citada en el CTE-SI 3.

En la zona del Taller dispondremos de 2 salidas, una al lado de las máquinas de producción y otra en la entrada de la nave.

Se utilizarán las señales de salida, de uso habitual o de emergencia, definidas en la norma UNE 23034:1988. Deben disponerse señales indicativas de dirección de los recorridos, visibles desde todo origen de evacuación. Las señales se dispondrán de forma coherente, con la asignación de ocupantes.

El recorrido de evacuación de la nave se puede ver detallado en el plano PL-16.

1.14.4.2 Dimensionado de los elementos de evacuación

Según la tabla 4.1., S.I.3. del C.T.E., podemos calcular el dimensionado de los elementos de la evacuación.
- **Puertas y Pasos:**

La anchura de toda hoja de puerta no debe ser menor que 0,60 m, ni exceder de 1,20 m.

\[
A \geq \frac{P}{200} = 0.07 \geq 0.8
\]

Donde:
- \(A \) es la amplitud del elemento (m)
- \(P \) es el número total de personas previsto para evacuar por este elemento.

Las puertas de evacuación de la nave tienen una anchura de 0.90 m, por lo tanto cumplen con la normativa.

1.14.4.3 Comportamiento ante el fuego de los elementos constructivos y materiales

Las condiciones de reacción al fuego de los elementos constructivos cumplen con las normas exigidas en la tabla 4.1., del D.B. S.I.1.

<table>
<thead>
<tr>
<th>Situación del elemento</th>
<th>Revestimientos</th>
<th>De Paredes y techos</th>
<th>De Suelos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonas ocupables</td>
<td>C-s2,d0</td>
<td>E(_{FL})</td>
<td></td>
</tr>
<tr>
<td>Pasillos y escaleras protegidos</td>
<td>B-s1,d0</td>
<td>B(_{FL-s1})</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 15 – Clases de reacción al fuego de los elementos constructivos.

1.14.4.4 Estabilidad al fuego de la estructura

La estabilidad al fuego mínima exigible vendrá determinada según el CTE-SI 1, que para locales de pública concurrencia y con una altura no superior a 15 metros, será de EI-90.
1.14.4.5 Resistencia al fuego de los elementos constructivos

Se define como los tiempos durante los que dicho elemento debe mantener las siguientes condiciones durante el ensayo normalizado conforme a la norma UNE 23093.

Para el taller la resistencia al fuego será de RF-120.

- Estructura general RF-60
- Cubierta RF-60
- Paredes exteriores RF-120
- Puertas interiores RF-30
- Puertas exteriores RF-60
- Pared separadora oficinas-fábrica RF-120

La resistencia de los materiales de cerramiento exteriores de la nave industrial posee una resistencia al fuego de 120 minutos cumpliendo con la norma detallada anteriormente.

1.14.4.6 Cálculo del riesgo intrínseco de la instalación

Calcularemos la carga de fuego ponderada utilizando la fórmula:

\[Q_s = \sum G_i q_i C_i \frac{1}{A} R_a \quad \text{MJ/m}^2 \text{ o Mcal/m}^2 \]

Donde:

- \(Q_s \) = Densidad de carga de fuego, ponderada y corregida, del sector de incendio, en MJ/m\(^2\) o Mcal/m\(^2\).
- \(G_i \) = Masa, en Kg, de cada uno de los combustibles (i) que existen en el sector de incendio (incluidos los materiales constructivos combustibles).
- \(q_i \) = Poder calorífico, en MJ/Kg o Mcal/Kg, de cada uno de los combustibles (i) que existen en el sector de incendio.
C_i = Coeficiente adimensional que pondera el grado de peligrosidad (por la combustibilidad) de cada uno de los combustibles (i) que existen en el sector de incendio.

Ra = Coeficiente adimensional que corrige el grado de peligrosidad (por la activación) inherente a la actividad industrial que se desarrolla en el sector de incendio, producción, montaje, transformación, reparación, almacenamiento, etc.

A = Superficie construida del sector de incendio, en m².

Para realizar el sumatorio tendremos en cuenta los materiales más abundantes y peligrosos, obteniendo el grado de peligrosidad según los valores que nos ofrece la tabla situada en la normativa.

El riesgo de activación de nuestra nave industrial se considerará de nivel bajo, según la tabla de riesgo. Por tanto Ra = 1.

La superficie de este sector es de 814.58 m²

Conociendo ya todos los términos se puede calcular el valor de la carga ponderada y obtener el riesgo intrínseco, según la tabla de riesgo.

<table>
<thead>
<tr>
<th>Material (tipo)</th>
<th>G<sub>i</sub> (Kg)</th>
<th>q<sub>i</sub> (Mcal/Kg)</th>
<th>C<sub>i</sub></th>
<th>Sumatorio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madera</td>
<td>1000</td>
<td>6</td>
<td>1.0</td>
<td>6000</td>
</tr>
<tr>
<td>PVC</td>
<td>600</td>
<td>5</td>
<td>1.2</td>
<td>3600</td>
</tr>
<tr>
<td>Grasas</td>
<td>50</td>
<td>10</td>
<td>1.2</td>
<td>600</td>
</tr>
<tr>
<td>Cartón</td>
<td>100</td>
<td>4</td>
<td>1.2</td>
<td>480</td>
</tr>
<tr>
<td>Taladrina</td>
<td>500</td>
<td>5</td>
<td>1.0</td>
<td>2500</td>
</tr>
<tr>
<td>Aceites</td>
<td>500</td>
<td>10</td>
<td>1.2</td>
<td>6000</td>
</tr>
<tr>
<td>Estantería metálica</td>
<td>5000</td>
<td>3</td>
<td>1.0</td>
<td>15000</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>34180</td>
</tr>
</tbody>
</table>

Tabla 16 – Cálculo de la carga de fuego zona Taller.
El riesgo de activación en la zona taller será:

\[Q_s = \frac{34180}{814.58} \times 1 = 41.96 \text{Mcal/m}^2 \]

Para el sector del Taller nos resulta un nivel de riesgo **BAJO**.

1.14.4.7 Dotación de instalaciones de protección Contra Incendios (CTE-SI 4)

Según la tabla 1.1., S.I.4. del C.T.E., se indica las instalaciones de protección contra incendios necesarias.

Estas instalaciones las podemos ver detalladas en el plano PL-15.

Las instalaciones serán las siguientes:

Extintores

En esta zona se colocarán seis extintores de polvo ABC con una eficacia de 21 A – 113 B, y también tendremos dos extintores de CO\(_2\), uno al lado del cuadro general y los subcuadros, y el otro al lado de las máquinas.

Serán fácilmente localizables con la iluminación de emergencia encendida. Todos los extintores estarán señalizados con un cartel visible para ser localizados rápidamente, el cartel estará encima de los extintores a una distancia de 2,30 m. del suelo y será del siguiente estilo:

Figura 10 - Señal de extintor
Columna seca

Según las características del edificio no será necesaria la instalación de columna seca, ya que la altura del edificio es inferior a 24 m.

Hidrantes exteriores

Debido a la situación relativa, al riesgo intrínseco bajo y a la poca superficie de la nave, **no es necesario** hidrante exterior.

Bocas de incendio equipadas

Obliga su instalación con superficies mayores a los 2000 m\(^2\). Según esto, su instalación **no es necesaria**.

Centralita de detección de incendio y aviso acústico

Dispondrá de una centralita de detección de incendios que estará situada en la oficina de logística, dentro de un armario. Tendremos dos alarmas acústicas, una cerca de las máquinas de producción y otra en la entrada de la nave, al lado de las oficinas.

Detectores de humo

Según normativa, **no es necesaria** la instalación de detectores de humo en zonas con superficies menores de 2000 m\(^2\).

Pulsadores de alarma manuales

Según normativa, **no es necesaria** la instalación de pulsadores de alarma en la zona por tener una superficie total menor a 1000 m\(^2\).

Pero para un mejor control de los posibles incendios se colocarán pulsadores de alarma en el taller.

Serán fácilmente localizables con la iluminación de emergencia encendida. Todos los pulsadores de alarma manuales estarán señalizados con un cartel visible para ser localizados rápidamente, el cartel estará encima de los pulsadores a una distancia de 2,30 m. del suelo y será del siguiente estilo:
Alumbrado de emergencia

En toda la zona taller se colocará el alumbrado de emergencia correspondiente, las luminarias que colocaremos han sido detalladas en apartados anteriores, este alumbrado de emergencia permitirá la evacuación de la gente de la zona taller sin ningún tipo de peligro cuando se produzca una situación de riesgo.

La señalización y el alumbrado de emergencia que colocaremos en la nave se pueden ver detallados en el plano PL-13.

1.14.5 Zona Administrativa

La superficie de este sector será de 345,39 m2 con una ocupación aproximada de 11 personas. Este sector dispone de 2 plantas, unidas entre sí por una escalera interior.

Según la normativa la densidad de ocupación permisible es de 1 persona cada 10 m2.

En nuestro caso se cumplirá esta condición ya que:

\[
Ocupación = 345,39 \cdot \frac{1\text{ persona}}{10\text{ m}^2} = 34,54 \text{ personas} \approx 34 \text{ personas}
\]

1.14.5.1 Recorrido de evacuación

El recorrido de evacuación desde cualquier punto de la nave conducirá a la salida más cercana que conecté directamente con el exterior, por lo que se cumple con la normativa citada en el CTE-SI 3.
En la planta baja de las oficinas dispondremos de 2 salidas, una en recepción y otra en la entrada de la nave.

En el piso superior habrá dos vías de evacuación, una por las escaleras bajando a la segunda planta y saliendo por recepción y otra bajando al taller por las escaleras de la sala de reuniones y saliendo por la puerta principal.

Se utilizarán las señales de salida, de uso habitual o de emergencia, definidas en la norma UNE 23034:1988. Deben dispenseñales indicativas de dirección de los recorridos, visibles desde todo origen de evacuación. Las señales se dispondrán de forma coherente, con la asignación de ocupantes.

El recorrido de evacuación de la nave se puede ver detallado en el plano PL-16.

1.14.5.2 Dimensionado de los elementos de evacuación

Según la tabla 4.1., S.I.3. del C.T.E., podemos calcular el dimensionado de los elementos de la evacuación.

- **Puertas y Pasos:**

La anchura de toda hoja de puerta no debe ser menor que 0,60 m, ni exceder de 1,20 m.

\[
A \geq \frac{P}{200} = 0.06 \geq 0.8
\]

Donde:

- A es la amplitud del elemento (m)

- P es el número total de personas previsto para evacuar por este elemento.

Las puertas de evacuación de la nave tienen una anchura de 0.90 m, por lo tanto cumplen con la normativa.

- **Escaleras**

En caso de evacuación descendente:
\[A \geq \frac{P}{160} = \frac{11}{160} = 0.07 \]

Donde:
- A es la amplitud del elemento (m)
- P es el número total de personas previsto para evacuar por este elemento.

Observamos que la anchura de la escalera de las oficinas (1.20 m) es superior al cálculo teórico detallado anteriormente, y la anchura de las escaleras de la sala de reuniones (1.00 m) también es superior, por lo tanto las dos escaleras cumplen con la normativa.

1.14.5.3 Comportamiento ante el fuego de los elementos constructivos y materiales

Las condiciones de reacción al fuego de los elementos constructivos cumplen con las normas exigidas en la tabla 4.1., del D.B. S.I.1.

<table>
<thead>
<tr>
<th>Situación del elemento</th>
<th>Revestimientos De Paredes y techos</th>
<th>De Suelos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonas ocupables</td>
<td>C-s2,d0</td>
<td>E_{FL}</td>
</tr>
<tr>
<td>Pasillos y escaleras protegidas</td>
<td>B-s1,d0</td>
<td>B_{FL-s1}</td>
</tr>
</tbody>
</table>

Tabla 17 – Clases de reacción al fuego de los elementos constructivos.

1.14.5.4 Estabilidad al fuego de la estructura

La estabilidad al fuego mínima exigible vendrá determinada según el CTE-SI 1, que con uso administrativo y una altura no superior a 15 metros, será de EI-60.
1.14.5.5 Cálculo del riesgo intrínseco de la instalación

Calcularemos la carga de fuego ponderada utilizando la fórmula:

$$Q_s = \frac{\sum G_i q_i C_i}{A} Ra \ (\text{MJ/m}^2) \ o \ (\text{Mcal/m}^2)$$

Donde:

- Q_s = Densidad de carga de fuego, ponderada y corregida, del sector de incendio, en MJ/m2 o Mcal/m2.
- G_i = Masa, en Kg, de cada uno de los combustibles (i) que existen en el sector de incendio (incluidos los materiales constructivos combustibles).
- q_i = Poder calorífico, en MJ/Kg o Mcal/Kg, de cada uno de los combustibles (i) que existen en el sector de incendio.
- C_i = Coeficiente adimensional que pondera el grado de peligrosidad (por la combustibilidad) de cada uno de los combustibles (i) que existen en el sector de incendio.
- Ra = Coeficiente adimensional que corrige el grado de peligrosidad (por la activación) inherente a la actividad industrial que se desarrolla en el sector de incendio, producción, montaje, transformación, reparación, almacenamiento, etc.
- A = Superficie construida del sector de incendio, en m2.

Para realizar el sumatorio tendremos en cuenta los materiales más abundantes y peligrosos, obteniendo el grado de peligrosidad según los valores que nos ofrece la tabla situada en la normativa.

El riesgo de activación de nuestra nave industrial se considerará de nivel bajo, según la tabla de riesgo. Por tanto $Ra = 1$.

La superficie de este sector es de $345,39 \text{ m}^2$
Conociendo ya todos los términos se puede calcular el valor de la carga ponderada y obtener el riesgo intrínseco, según la tabla de riesgo.

SECTOR DE INCENDIO ZONA ADMINISTRATIVA

<table>
<thead>
<tr>
<th>Material (tipo)</th>
<th>Gᵢ (Kg)</th>
<th>qᵢ (Mcal/Kg)</th>
<th>Cᵢ</th>
<th>Sumatorio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aparatos eléctricos</td>
<td>800</td>
<td>15</td>
<td>1.2</td>
<td>14400</td>
</tr>
<tr>
<td>Archivos y documentos</td>
<td>300</td>
<td>4</td>
<td>1.0</td>
<td>1200</td>
</tr>
<tr>
<td>Madera</td>
<td>650</td>
<td>6</td>
<td>1.0</td>
<td>3900</td>
</tr>
<tr>
<td>Estanterías metálicas</td>
<td>200</td>
<td>3</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>Libros</td>
<td>80</td>
<td>4</td>
<td>1.0</td>
<td>320</td>
</tr>
<tr>
<td>Material de escritorio</td>
<td>100</td>
<td>10</td>
<td>1.0</td>
<td>1000</td>
</tr>
<tr>
<td>Objetos sintéticos</td>
<td>100</td>
<td>10</td>
<td>1.0</td>
<td>1000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>21820</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 18 – Cálculo de la carga de fuego zona Administrativa.

El riesgo de activación en la zona administrativa será:

\[Q_s = \frac{21820}{345.39} \times 1 = 63.17 \text{Mcal/m}^2 \]

Para el sector de las oficinas nos resulta un nivel de riesgo **BAJO**.

1.14.5.6 Situación relativa del local respecto al edificio

Según la tabla de situaciones relativas extraemos que se trata de una actividad adyacente a una de tipo industrial.

Por tanto, será del **tipo B**
1.14.5.7 Dotación de instalaciones de protección Contra Incendios (CTE-SI 4)

Según la tabla 1.1., S.I.4. del C.T.E., se indica las instalaciones de protección contra incendios necesarias.

Estas instalaciones las podemos ver detalladas en el plano PL-15.

Las instalaciones serán las siguientes:

Extintores

En la zona de oficinas de la nave se colocarán cuatro extintores de polvo ABC con una eficacia de 21 A – 113 B, y se colocará un extintor de CO$_2$ al lado del subcuadro 4.

Serán fácilmente localizables con la iluminación de emergencia encendida. Todos los extintores estarán señalizados con un cartel visible para ser localizados rápidamente, el cartel estará encima de los extintores a una distancia de 2,30 m. del suelo y la señal será como la de la figura 10.

Columna seca

Según las características del edificio no será necesaria la instalación de columna seca, ya que la altura del edificio es inferior a 24 m.

Bocas de incendio equipadas

Obliga su instalación con superficies mayores a los 2000 m2. Según esto, su instalación no es necesaria.

Detectores de humo

Según la tabla, no es necesaria la instalación de detectores en zona de oficinas en superficies menores de 2000 m2.

Pulsadores de alarma manuales

Según la tabla, no es necesaria la instalación de pulsadores de alarma en la zona administrativa por tener una superficie total menor a 1000 m2.
Alumbrado de emergencia

En todas las dependencias de la zona administrativa se colocará el alumbrado de emergencia, las luminarias que colocaremos han sido detalladas en apartados anteriores, este alumbrado de emergencia permitirá la evacuación de la gente de oficinas sin ningún tipo de peligro cuando se produzca una situación de riesgo.

La señalización y el alumbrado de emergencia que colocaremos en la nave se pueden ver detallados en el plano PL-13.

1.14.6 PLAN DE EMERGENCIA

Se expone a continuación el Plan de Emergencia Contra Incendios que se seguirá por el personal de la actividad y que ha de definir la secuencia de acciones a desarrollar para el control inicial de las emergencias que se puedan producir.

1.14.6.1 Emergencia en horas de actividad

El plan de actuación en el caso de una eventual emergencia será el siguiente:

- Extinguirlo con los medios de protección que se encuentren a su alcance
- Si no es posible, sin demora, solicitar la intervención de los bomberos, intentando durante la espera reducir y muy especialmente evitar que se extienda por las instalaciones del entorno.
- Cuando se tenga que solicitar la intervención de auxilios exteriores (bomberos, protección civil, ambulancias, policía, etc.) lo realizará el técnico de seguridad o en su caso el responsable del establecimiento. Si no hubiera nadie, se realizará directamente, a los teléfonos de auxilios exteriores que figuran en el cuaderno de emergencias.
- El personal no se expondrá a riesgos innecesarios o desproporcionados en sus acciones y siempre actuarán asegurándose el camino de salida del establecimiento.
• Cuando se declaren incendios exteriores en fincas colindantes, el personal tomará las precauciones adecuadas para proteger las instalaciones de la empresa, y solamente actuarán si reciben instrucciones al respecto, o bien cuando el incendio sea de tal magnitud que amenace las propias instalaciones.

1.14.6.2 Emergencia en horas sin actividad

El plan de actuación en el caso de emergencia estando el local desocupado será:

El Jefe de Intervención, a la notificación de la situación de emergencia se personará en el local a fin de colaborar en la extinción.

A la llegada de cada uno de los auxilios solicitados (Bomberos, Policía Municipal y Cruz Roja), el Jefe de Emergencia les entregará una copia del presente Plan (de las varias que existirán en el local) para su conocimiento.

Definición, funciones y posibilidades del equipo de seguridad

El equipo de Seguridad se creará con el conjunto de personal del establecimiento.

La misión fundamental de prevención de este equipo es el de tomar las precauciones oportunas para impedir que se pueda originar un incendio.

Por ello, cada uno de los componentes del equipo de seguridad habrá de:

- Estar informado del riesgo de cada uno de los procesos de la actividad.
- Señalar las anomalías que se detecten.
- Tener conocimiento de la existencia y sus de los medios de protección y extinción de que se dispone.
- Observar el mantenimiento de todos los aparatos de protección y extinción.
- Estar capacitado para suprimir las causas de cualquier anomalía dando la alarma según el plan de actuación o actuando de manera directa y rápida.
- Combatir el fuego desde su inicio:
 - Dando la alarma
 - Siguiendo el plan de emergencia
 - Atacando el fuego con los medios de protección
- Dar auxilios a personas afectadas
- Coordinar con los miembros del equipo para anular los efectos de los accidentados o reducirlos al mínimo
- Vigilar que las condiciones de ocupación del edificio no superen los supuestos contemplados en el Plan de Emergencia.

El equipo de Seguridad estará formado:
- Equipos de Primeros Auxilios
 - Sus componentes darán los primeros auxilios a los lesionados por la emergencia
- Equipos de Primera Intervención
 - Sus componentes, con formación y entrenamiento adecuados irán al lugar donde se ha producido la emergencia para intentar su control.
- Equipos de Alarma y Evacuación
 - Sus componentes realizan acciones encaminadas a asegurar una evacuación total y ordenada del sector y a garantizar que se ha dado la alarma
 - Jefe de Intervención
 - Valorará la emergencia y asumirá la dirección y coordinación de los Equipos de Primera Intervención
 - Jefe de Emergencia
 - Desde el centro de comunicaciones del establecimiento y en función de la información que le facilite el Jefe de Intervención, sobre la evolución de la emergencia, enviará al área del siniestro las ayudas internas disponibles y solicitará las externas cuando sea necesario.
La composición de cada uno de los equipos mencionados será como mínimo de dos personas. El jefe de Intervención y el Jefe de Emergencia, podrá ser la misma persona.

1.14.6.3 Plan de actuación en caso de incendio

Se tiene que actuar con calma y sin precipitación con el fin de evitar situaciones de pánico; de producirse alguna, esta será cortada inmediatamente por los presentes.

Para protegerse del humo se utilizarán mascaras de protección adecuadas, si hay en el establecimiento. Si no existieran mascaras, se taparán la boca y la nariz con un pañuelo húmedo.

En ningún caso se penetrará en una zona con humo (incluso llevando máscara)

Si alguien resulta herido por las llamas, no tiene que correr, ha de rodar por el suelo o taparse con una manta o un abrigo.

En caso de evacuación, se caminará con paso vivo, pero sin correr. Si hay escaleras, estas se bajarán amarrándose a la barandilla. Una caída puede provocar la obstrucción de una escalera o vía de evacuación

Evacuación

Si fuera necesaria la evacuación del recinto, esta se realizará ordenadamente, por el camino más alejado del foco del incendio y procurando no perder el contacto entre el personal.

Una vez fuera del edificio o recinto se reunirán en la entrada, permaneciendo allí hasta que los responsables del área hayan efectuado el recuento y se haya comprobado que no queda nadie en el interior.

1.14.6.4 Auxilios exteriores

Para la información de las ayudas externas en caso de emergencia, se dispondrá en los accesos al establecimiento una copia del Plan, colocado en
el interior de un armario, buzón o similar con la inscripción “USO EXCLUSIVO BOMBEROS”

A continuación se detallan los teléfonos de interés, en caso de producirse una emergencia en la nave objeto del estudio:

<table>
<thead>
<tr>
<th>AUXILIO EXTERIOR</th>
<th>TELEFONO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bomberos</td>
<td>080</td>
</tr>
<tr>
<td>Mossos d’Esquadra</td>
<td>088</td>
</tr>
<tr>
<td>Emergencias</td>
<td>112</td>
</tr>
<tr>
<td>Guardia Urbana</td>
<td>092</td>
</tr>
</tbody>
</table>

Tabla 19 – Teléfonos de interés.

1.14.6.5 Medidas correctoras

El local considerado gozará de una serie de condiciones tanto de evacuación y señalización como en sus instalaciones específicas, que proporcionaran un sistema de medidas correctoras adecuadas al local y actividad que nos ocupa.

Mantenimiento

Para el correcto funcionamiento del plan de emergencia dispuesto en la nave se procederá cada mes un técnico de mantenimiento conjuntamente con un miembro del personal, llevarán a cabo el plan de mantenimiento mensual de las medidas contra incendios y los elementos de corrección contra incendios.

Cada año se realizará un simulacro de emergencia general, del que se deducirán las conclusiones precisas para conseguir una mayor efectividad y mejora del plan.

1.15 Planificación

A continuación se muestra el diagrama de GANTT por barras, con la planificación de las diferentes instalaciones a realizar del presente proyecto. En esta planificación solo se contempla las instalaciones de alcance del proyecto especificado en la memoria de este proyecto.