Resumen

El presente volumen agrupa la primera parte de los anexos de los que consta el proyecto “Ascensor de pasajeros para viviendas de cómo máximo 8 plantas” y corresponden a los cálculos realizados de los componentes importantes del ascensor, con el consiguiente de llegar a un correcto diseño de dichos componentes y por lo tanto del conjunto ascensor.

Estos cálculos que se detallan en este anexo se han desarrollado precisamente aquí, puesto que la información presente no se ha mostrado en la memoria, ya que para su comprensión no era necesario incluir los cálculos. Esta información, es por lo tanto, complementaria.
Ascensor de pasajeros para viviendas de máximo 8 plantas
Sumario

RESUMEN __ _______1
SUMARIO __ ________3
GLOSARIO ___ ________5

A. CÁLCULOS _______________________________________ ________16
 A.1. Cálculo de amortiguadores16
 A.1.1. Amortiguadores de la cabina22
 A.1.2. Amortiguadores de contrapeso30
 A.2. Selección del cable del limitador de velocidad ...33
 A.2.1. Perfiles de garganta de poleas34
 A.2.2. Cálculo de fuerzas y presiones específicas en los cables35
 A.3. Cálculo de las guías y selección de perfiles ...40
 A.3.1. Guías de la cabina 40
 A.3.2. Guías del contrapeso 49
 A.4. Cálculo del bastidor de la cabina52
 A.4.1. Operación normal de desplazamiento 52
 A.4.2. Actuación de los paracaídas tras la frenada de emergencia 61
 A.4.3. Choque con los amortiguadores del foso70
 A.5. Cálculo del bastidor de contrapeso79
 A.5.1. Operación normal de desplazamiento 79
 A.5.2. Actuación de los paracaídas tras la frenada de emergencia 84
 A.5.3. Choque con los amortiguadores del foso88
 A.6. Cálculo del contrapeso94
 A.7. Selección del motor de tracción96
 A.8. Operador de puertas .. 99
 A.8.1. Selección del motor 99
 A.8.2. Selección de la transmisión 101
 A.9. Cálculo del par de frenada ..114
 A.9.1. Momento de inercia de los frenos 120
 A.10. Fuerzas en el sistema de elevación ..126
 A.10.1. Tensiones y deformaciones en las cintas ..135
 A.11. Cálculo de rodamientos ..140
 A.11.1. Rodamientos de la polea tensora y del limitador de velocidad140
 A.11.2. Rodamientos de la polea de tracción ... 146
 A.11.3. Rodamientos de la polea de la cabina ... 157
A.11.4. Rodamientos de la polea del contrapeso .. 161
A.11.5. Comprobación de los rodamientos del operador de puertas.......................... 162
A.12. Acoplamiento eje motor y polea tractora... 165
A.13. Chavetas y estriados ... 169
 A.13.1. Chavetas del eje tractor... 169
 A.13.2. Chavetas de los ejes de la transmisión por cadena................................. 172
 A.13.3. Perfil dentado (estriado radial)... 174
A.14. Perfiles de soporte del grupo tractor ... 178
A.15. Muelle de tracción del limitador de velocidad.. 181
A.16. Cojinetes de bronce ... 190
Glosario

Lista de símbolos

a aceleración de retardo de un amortiguador; anchura de la cabina, aceleración de frenada máxima cuando actúan los paracaídas; aceleración de frenada máxima en funcionamiento nominal; dimensión en el eje x

\(a_{\text{max}} \) aceleración máxima de los resortes

b dimensión en el eje y; anchura de las cintas planas de elevación; anchura de chaveta
d diámetro del alambre del resorte; distancia entre rozaderas; diámetro de los cables de tracción; diámetro del eje tractor; diámetro de ejes de poleas; diámetro interior de un rodamiento; diámetro interno del cojinete de bronce

d_e diámetro externo del disco del freno
d_i diámetro inferior del dentado del estriado
d_s diámetro superior del dentado del estriado
d_i diámetro de la rueda o piñón i
d'_i diámetro de la rueda o piñón i corregido
e espesor en general
e_x posición de la carga en la cabina sobre el eje x
e_y posición de la carga en la cabina sobre el eje y

f desplazamiento o flecha total de la guía; coeficiente de rozamiento de los cables o cintas en las gargantas de las poleas de tracción; frecuencia de giro del motor

f_i desplazamiento de la guía debido a esfuerzo de flexión

f_h flecha debida a los esfuerzos horizontales originados por excentricidad de la carga
\(f_{\text{max}} \) carrera máxima del amortiguador de resorte

\(f_n \) factor de velocidad

\(f_t \) desplazamiento de la guía debido a esfuerzo de torsión

\(f_z \) factor de mayoración de cargas

\(f_L \) factor dinámico

\(g \) aceleración de la gravedad (9.81 m/s\(^2\))

\(g_s \) factor de esbeltez de Euler

\(h \) altura de diente que transmite el esfuerzo en el estriado; altura de chaveta

\(i \) radio de giro mínimo del perfil de la guía; radio de inercia; número de dientes del estriado radial; factor de cable

\(i_g \) relación de transmisión de los engranajes

\(i_i \) relación de reducción de la transmisión por cadena \(i (i=1,2) \)

\(i_{\text{total}} \) relación de reducción total de las transmisiones por cadena

\(j \) coeficiente de paracaídas

\(k \) masa de las guías por cm; rigidez del resorte

\(k_1 \) es el factor de servicio

\(k_2 \) es el factor de condiciones de trabajo

\(k_3 \) es el factor de reducción de velocidad

\(k_4 \) es el factor de frecuencia de maniobra

\(\ell \) longitud del resorte sometida a torsión; altura de los largueros de los bastidores

\(l_k \) distancia entre anclajes de las guías

\(m \) módulo de las ruedas dentadas en mm
m_L masa total de las cintas planas de suspensión

n número de espiras activas del resorte; velocidad del motor en rpm

n_f número de espiras finales del resorte

n_m rpm del motor

p presión superficial en el estriado; par de polos del motor; paso de las cadenas de rodillos de la transmisión por cadena; presión que ejercen los cables sobre las poleas

p_{max} presión máxima de servicio en las poleas

q_{fr} coeficiente para hallar la fuerza de adherencia en el estriado

q_e peso unitario de los cables conductores

q_{kx} peso unitario de los cables de compensación

q_l peso unitario de los cables de suspensión

t_1 altura desde la base del apoyo de la chaveta hasta el diámetro del eje

t_2 altura desde el perímetro del eje hasta la polea

t_b tiempo de frenada de la cabina en funcionamiento nominal

u apriete en el estriado

v velocidad nominal de la cabina; velocidad de apertura de las puertas del ascensor

v' velocidad tangencial de la transmisión por cadena corregida

v_0 velocidad inicial del impacto en un amortiguador

$v_x(l)$ velocidad del punto l en el eje X

v_x velocidad de apertura de las puertas del ascensor en el eje X

v_y velocidad de apertura de las puertas del ascensor en el eje Y
w coeficiente de aumento de cargas por pandeo

x alargamiento del resorte

y longitud variable del cable conductor bajo la cabina

z longitud variable desde la cabina hasta su posición más baja; número de caras del disco sobre las que actúan las pinzas del freno

z_c número de dientes en contacto en el piñón de la transmisión por cadena

z_i número de dientes del piñón o rueda i

A área de una sección del perfil de la guía

\overrightarrow{AB} vector de posición que va de A a B

B anchura de un rodamiento

C distancia entre centros de la transmisión por cadena; capacidad de carga dinámica de un rodamiento; par nominal a transmitir en un acoplamiento elástico

C_0 capacidad de carga estática de un rodamiento

C_1 coeficiente función de la deceleración a de frenado de la cabina y de la aceleración de la gravedad g

C_2 coeficiente que tiene en cuenta la variación del perfil de la polea de tracción debido al desgaste

C_s factor o coeficiente de seguridad

D diámetro de la polea de tracción; diámetro del cubo centrador; diámetro externo de un rodamiento; diámetro externo mayor del cojinete de bronce

D' diámetro externo menor del cojinete de bronce

D_e diámetro externo de los resortes

D_h diámetro de los hilos de acero contenidos en las cintas planas de tracción
D_i diámetro interno de los resortes

D_s diámetro medio de los resortes

E módulo de elasticidad

E_{pe} energía potencial elástica de los muelles

F fuerza de retardo para el recorrido del amortiguador; fuerza máxima con la que se abre la puerta del ascensor

F' fuerza tangencial de la transmisión por cadena corregida

F_0 fuerza de pretensado de los cables; fuerza de precompresión

F_a fuerza axial en un rodamiento

F_b fuerza de actuación de frenado de los paracaídas

F_c esfuerzo de la fuerza centrífuga

F_m fuerza del muelle de tracción

F_{max} fuerza con el resorte totalmente comprimido

F_x solicitud sobre la guía en el eje x

F_y solicitud sobre la guía en el eje y, fuerza radial en un rodamiento

F_{zul} fuerza en las poleas por cada 10 mm de anchura de cinta

F_A fuerza axial que generan los frenos de disco sobre el disco; fuerza de adherencia

F_E fuerza de encaje

G módulo de cizalladura del material; centro de inercia

H recorrido o longitud total de las guías

I intensidad nominal del motor en A (Amperios)

I_A tensor de inercia en el punto A
I_A tensor de inercia en G con la masa concentrada en el punto A

I_0 momento de inercia axial del perfil de la guía

I_{xx} momento de inercia transversal del perfil de la guía según el eje X

I_{xy} producto de inercia en el plano X-Y

I_{xz} producto de inercia en el plano X-Z

I_{yz} producto de inercia en el plano Y-Z

I_{yy} momento de inercia mínimo del perfil de la guía según el eje Y

J_b momento de inercia del freno

J_m momento de inercia del motor

J_p momento de inercia polar de la sección de la espira (en torno al eje perpendicular a la sección en el centro de ésta)

J_{motor} momento de inercia del motor

J_1 momento de inercia del rotor y del freno de disco

J_2 momento de inercia de la polea de tracción

J_3 momento de inercia de todas las partes móviles con movimiento lineal

K masa de la cabina; coeficiente de seguridad del acoplamiento

K_1 coeficiente que depende del grupo motor y grupo receptor

K_2 coeficiente que depende del número de arranques por hora de la máquina

K_3 coeficiente que depende del número de horas de funcionamiento de la máquina

L longitud estriada, longitud de las cadenas de rodillos; longitud de un cojinete de bronce

L_{cintas} longitud total de las cintas planas de suspensión
L_n duración en horas de un rodamiento

L_i longitud de las barras articuladas del operador de puertas

L_o longitud inicial de los muelles sin estar comprimidos

M carga total

M_s momento torsor en la polea

M_t momento de torsión en el resorte; par que actúa en el eje para colocar la chaveta

M_F momento flector

M_X momento torsor en el eje X

N número total de muestras en la distribución estadística

N_{max} velocidad angular máxima permitida para un acoplamiento elástico

P masa de la cabina; carga equivalente que actúa en un rodamiento; carga máxima permitida en un cojinete de bronce

P_e potencia del receptor

P_e' potencia del receptor corregida

P_{motor} potencia nominal del motor

P_{z_i} potencia que se transmite a la rueda o piñón de número de dientes z_i

Q carga útil; carga no equilibrada

Q_b peso de la cabina con puertas y operador de puertas

Q_c peso del contrapeso

Q_T peso total de la cabina más la carga útil

R_h reacción en la rozadera de las guías de la cabina

S área de la sección transversal de las cintas planas de tracción
Ascensor de pasajeros para viviendas de máximo 8 plantas

\(S_p \) superficie proyectada del cojinete de bronce

\(S_h \) desviación estándar

\(T \) fuerza de frenado que actúa sobre los cables; espesor del cojinete de bronce

\(T_1 \) tracción del cable en el ramal más cargado en un lado de la polea

\(T_2 \) tracción del cable en el ramal menos cargado en un lado de la polea

\(T_k \) esfuerzo de frenado del paracaidas

\(TCN \) par de acoplamiento mínimo

\(U \) tensión nominal del motor

\(V \) volumen en general

\(X, Y \) parámetros de la relación de fuerzas radiales y axiales de un rodamiento

\(W_t \) momento resistente a torsión

\(Z \) masa del contrapeso

\(\alpha \) deceleración angular; ángulo abrazado en la polea por los cables

\(\beta \) ángulo de arco cortado por la entalla de la garganta semicircular; ángulo de contacto del piñón con la cadena de rodillos; ángulo del sector circular que abrazan los frenos

\(\gamma \) ángulo de la garganta trapezoidal en las poleas

\(\gamma_{se} \) coeficiente se seguridad

\(\delta_{max} \) carrera máxima de amortiguadores

\(\varepsilon \) alargamiento unitario del material sometido a tracción

\(\eta \) rendimiento del conjunto

\(\eta_2 \) rendimiento mecánico del sistema
η_g' rendimiento de la transmisión por engranajes entre la polea y el motor

η_i rendimiento de la transmisión i ($i=1,2$)

η_{RS} rendimiento del sistema de elevación

η_S rendimiento de la polea

λ coeficiente de esbeltez

$\bar{\lambda}$ media aritmética de la densidad lineal

λ_{cintas} densidad lineal de las cintas planas de suspensión

μ coeficiente de rozamiento

ν coeficiente que depende de los tipos de soportes presentes en los resortes; grados de libertad en la distribución estadística

ξ relación entre el diámetro exterior y diámetro interior del disco de freno

σ_{adm} tensión admisible del material

σ_{ts} resistencia a tracción del alambre

τ_{oadm} pretensión admisible

τ_{adm} tensión tangencial máxima admisible

τ_p máxima tensión permisible a torsión

Γ_b par de frenada del motor

Γ_{est} par de frenada estático del motor

Γ_{din} par de frenada dinámico del motor

Γ_{motor} par nominal del motor

Φ ángulo de torsión del resorte
Ψ coeficiente de porcentaje de carga equilibrada con el contrapeso; coeficiente de Wahl

ω coeficiente de aumento de cargas a pandeo

ω_i velocidad angular de giro del piñón o rueda i en rpm o rad/s

ω_L velocidad angular de la barra L

ω_0 frecuencia propia de vibración
A. Cálculos

En este anexo presente se mostrarán los cálculos detallados de los componentes del ascensor, así como las hipótesis tomadas y los datos que no han ido apareciendo en el transcurso de la memoria, tablas y figuras que son útiles e inherentes para la realización de dichos cálculos.

A.1. Cálculo de amortiguadores

Para el cálculo de los amortiguadores, previamente se ha de realizar una selección del tipo de amortiguador a emplear, ya que según la normativa EN 81-1, se han de emplear unos amortiguadores u otros en función de la velocidad nominal de la cabina (Véase el apartado 6.1. Amortiguadores).

Bien, sabiendo que el ascensor en cuestión tiene una velocidad nominal de cabina de 1 m/s, de entrada se escogería un amortiguador de acumulación de energía. Pero por otro lado, también se tiene el amortiguador de disipación de energía, que se puede emplear para cualquier velocidad.

Para su elección, se ha tenido muy en cuenta el coste de ambos amortiguadores, ya que al emplear uno de disipación de energía el coste es mayor que uno de acumulación de energía por el hecho de ser hidráulico e implicar ello un coste de mantenimiento de engrase con lubricantes elevado. Por otra parte, se ha tenido en cuenta el impacto ambiental que puede originar el empleo de lubricantes, ya que este proyecto también procura diseñar un ascensor de viviendas respetuoso con el medio ambiente.

De este modo, se decide pues emplear un amortiguador de acumulación de energía, que para el correspondiente diseño y cálculo se decide que el amortiguador sea un muelle helicoidal a compresión, cilíndrico y de sección circular, que aparte de ser muy utilizado para aplicaciones y construcciones mecánicas se destacan las siguientes características:
• A igualdad de prestaciones es muy barata

• Es fácil de calcular, dimensionar y fabricar

• Permite obtener una amplia gamma de valores de la constante de rigidez, k

• Admite la aplicación exterior de fuerzas de tracción, compresión, torsión y de cizalladura, incluso

La manera de trabajar de un muelle helicoidal es análoga a una barra de torsión que se ha enrollado en forma de hélice, y por lo tanto el material trabaja a torsión en todas sus secciones. La hélice al ser cilíndrica tiene las mismas solicitudes en todas las secciones del muelle. [11]

Para analizar el estado de tensiones en una sección cualquiera de un muelle helicoidal cilíndrico de hilo de sección circular, se parte de considerar el equilibrio de una mitad del muelle cortado por la sección de estudio (Fig. A.1.1), donde se comprueba que la sección del hilo está sometida simultáneamente a un momento torsor, M_t, y a una fuerza de cortadura, F.

![Fig. A.1.1. Esquema de trabajo de un muelle helicoidal][11]
Por otro lado, en la Fig. A.1.2 se pueden ver separadamente las distribuciones de tensiones provocadas por la torsión (a), por las fuerzas de cortadura (b), y a su superposición (c). La distribución de tensiones de cortadura en (d) son las reales, que aparecen con forma ligeramente curvilínea. Las tensiones extremas son las siguientes (Ec. A.1.1):

$$\tau = \pm \frac{M_t}{W_t} + \frac{F}{A}$$

(Ec. A.1.1)

Fig. A.1.2. Distribución de tensiones en la sección del hilo [11]

Puesto que la tensión de torsión en el resorte helicoidal aumenta conforme disminuye la distancia del punto de evaluación de la tensión al eje del resorte es necesario inicialmente evaluar el factor de corrección de la tensión del hilo mediante el denominado coeficiente de Wahl (Ec. A.1.2) o bien mediante un gráfico (Fig. A.1.3). Es preciso comentar que los resultados obtenidos por ambos caminos son iguales:
Para hallar el coeficiente Wahl mediante la expresión (Ec. A.1.2) se estima la relación \(D_s/d\), en el que normalmente se toma una relación entre 6 y 15. En este caso se considera una relación \(D_s/d = 6\), ya que de esta manera una vez hallado el diámetro de la sección del hilo, el diámetro del resorte no sea muy grande y así permitir un ahorro de espacio en el foso.

Seguidamente, se determina la tensión admisible (Ec. A.1.3) a torsión del material. En este caso se obtiene multiplicando la resistencia a la tracción del material por un factor que es de 0.28:

\[
\tau_p = 0.28 \cdot \sigma_{ts}
\]

(Ec. A.1.3)

De las siguientes ecuaciones (Ec. A.1.4) y (Ec. A.1.5) y operando se despeja el valor del diámetro de la espira, \(d\), (Ec. A.1.6):
\[F_{\text{max}} = \frac{\pi \cdot d^3}{8 \cdot q \cdot D_s} \cdot \tau_p \quad (\text{Ec. A.1.4}) \]

\[\frac{8 \cdot F_{\text{max}} \cdot D_s \cdot \Psi}{\pi \cdot d^3} \leq \tau_p \quad (\text{Ec. A.1.5}) \]

\[d \geq \sqrt{\frac{8 \cdot F_{\text{max}} \cdot \Psi \cdot D_s}{\pi \cdot \tau_p \cdot d}} \text{ (mm)} \quad (\text{Ec. A.1.6}) \]

Nota: el coeficiente Wahl, \(\Psi \), y la \(q \) que aparece en el denominador de la ecuación (Ec. A.1.4) se refieren al factor de corrección de tensiones.

donde \(F_{\text{max}} \) es la fuerza en (N) con el resorte totalmente comprimido, que de acuerdo con las especificaciones europeas, la máxima fuerza (Ec. A.1.7) a realizar por el amortiguador es [7]:

\[F_{\text{max}} = 4 \cdot (Q + K) \cdot g \quad (\text{Ec. A.1.7}) \]

De esta manera, una vez obtenido el diámetro de la espira, \(d \), y estimada previamente la relación \(D_s/d \), se puede hallar el diámetro nominal del resorte, \(D_s \).

Por otro lado, para determinar el número de espiras activas del resorte helicoidal se siguen los pasos siguientes con las ecuaciones que figuran a continuación:

La compresión del resorte se puede expresar mediante la ecuación (Ec. A.1.8):

\[F_{\text{max}} = k \cdot x \quad (\text{Ec. A.1.8}) \]

donde \(k \) es la rigidez del resorte helicoidal pudiéndose expresar \(x \) como:

\[x = \phi \cdot \frac{D_s}{2} \quad (\text{Ec. A.1.9}) \]

tomando \(\Phi \) el ángulo de torsión se tiene la siguiente expresión:

\[\phi = \frac{M_t \cdot \ell}{G \cdot J_p} \quad (\text{Ec. A.1.10}) \]
donde M_t es el par de torsión (N·m), ℓ es la longitud del resorte sometida a torsión, G es el módulo de cortadura del material y J_p es el momento de inercia polar de la sección de la espira (en torno al eje perpendicular a la sección en el centro de ésta).

Como ya es conocido:

$$M_t = \frac{F_{max} \cdot D_s}{2} \text{ (N·mm)} \quad (\text{Ec. A.1.11})$$

$$\ell = \pi \cdot D_s \cdot n \text{ (mm)} \quad (\text{Ec. A.1.12})$$

donde n es el número de espiras activas del resorte,

$$J_p = \frac{\pi \cdot d^4}{32} \text{ (mm}^4\text{)} \quad (\text{Ec. A.1.13})$$

Sustituyendo (Ec. A.1.10), (Ec. A.1.11), (Ec. A.1.12) y (Ec. A.1.13) en la ecuación (Ec. A.1.9) se tiene:

$$x = \frac{8 \cdot F_{max} \cdot D_s^3 \cdot n}{G \cdot d^4} \quad (\text{Ec. A.1.14})$$

Combinando las ecuaciones (Ec. A.1.8) y (Ec. A.1.14) resulta:

$$\frac{F_{max}}{k} = \frac{8 \cdot F_{max} \cdot D_s^3 \cdot n}{G \cdot d^4} \quad (\text{Ec. A.1.15})$$

y por tanto, n, el número de espiras activas toma la siguiente expresión:

$$n = \frac{G \cdot d^4}{8 \cdot D_s^3 \cdot k} \quad (\text{Ec. A.1.16})$$

Antes de hallar el número de espiras activas del resorte, como se puede observar en la ecuación (Ec. A.1.16), es preciso conocer la rigidez del resorte, que a continuación se muestra la manera de hallarlo:
La carrera del amortiguador es el mayor de los valores siguientes, según EN 81-1:

\[f_{\text{max}} = \{65\text{mm}, 0.135 \cdot v^2\} \]

(Ec. A.1.17)

La carrera posible de los amortiguadores e acumulación de energía tengan o no amortiguación del movimiento de retorno, será por lo menos igual a dos veces la distancia de parada por gravedad con velocidad de 115% de la velocidad nominal, es decir, \(2 \cdot 0.067 \cdot v^2\) aproximadamente igual a \(0.135 \cdot v^2\), expresando la carrera en metros y la velocidad en m/s.

Luego, sabiendo que la máxima fuerza a realizar por el amortiguador (Ec. A.1.7), y combinándola con la ecuación A.1.17, se tiene el valor de la rigidez del muelle:

\[k = \frac{F_{\text{max}}}{f_{\text{max}}} \]

(Ec. A.1.18)

A.1.1. Amortiguadores de la cabina

Bien, con las ecuaciones mencionadas y los datos que figuran seguidamente, se procede al cálculo de los amortiguadores de acumulación de energía para la cabina y el contrapeso:

- Masa de la cabina: \(K = 650\) kg
- Carga nominal: \(Q = 450\) kg
- Masa del contrapeso: \(Z = 875\) kg
- Velocidad nominal: \(v = 1\) m/s

En lo que respecta al material del resorte se trata de un hilo de acero para conformar en caliente y bonificar, ya que este proceso de fabricación se emplea para muelles helicoidales de grandes dimensiones como es el caso (\(d = 18 \div 60\) mm) que requieren aceros aleados para asegurar una buena templabilidad o bien muelles que requieren una gran deformación del hilo de acero durante su fabricación.
El material se conforma en estado blando mediante laminación o recocido, y posteriormente se bonifica por temple y revenido. En este caso se ha decidido utilizar un acero destinado a muelles helicoidales fuertemente solicitadas y apto para aplicaciones con choques a una temperatura de servicio de 240 ºC. El acero en cuestión es el 60SiCr7 (acero F-1442 según UNE 36015-76), que tiene una resistencia a la tracción mayor a 1370 MPa. [12]

Pero al contactar con un experto en ascensores, recomienda una resistencia a la tracción muy elevada y cercana a los 2000 MPa. En este caso se ha decidido escoger un muelle de resistencia a la tracción de 1800 MPa. El módulo de cortadura es de G= 81.5 GPa.

Con estos datos, y aplicando las ecuaciones, (Ec. A.1.2), (Ec. A.1.3), (Ec. A.1.6), (Ec. A.1.7), (Ec. A.1.16), (Ec. A.1.17) y (Ec. A.1.18), junto con la estimación inicial de la relación D_s/d= 6 se tiene lo siguiente:

\[\Psi = \frac{6 - 0.25}{6 - 1} + \frac{0.615}{6} = 1.254 \]

\[\tau_p = 0.28 \cdot 1800 = 504 \text{ MPa} \]

\[F_{\text{max}} = 4 \cdot (450 + 650) \cdot 9.81 = 43164 \text{ N} \]

pero como se deciden colocar 2 muelles en el foso para la cabina para amortiguar mejor el choque y así ahorrar más espacio y material se tiene:

\[F_{\text{max}} = \frac{4 \cdot (450 + 650) \cdot 9.81}{2} = 21582 \text{ N para cada muelle} \]

\[d \geq \sqrt[\tau_p / \pi \cdot 504 \cdot 6} \geq 28.6 \text{ mm} \rightarrow 29 \text{ mm} \]

\[D_s = 6 \cdot 29 = 174 \text{ mm} \]

\[f_{\text{max}} = \{65 \text{ mm}, 0.135 \cdot 1^2\} = 0.135 \text{ mm} = 135 \text{ mm} \]

\[k = \frac{21582}{135} = 159.867 \text{ N/mm} \]
Con estos valores obtenidos, ahora es necesario comprobar que los dos amortiguadores calculados no pandean. Para ello se procede al cálculo de la longitud inicial de ambos muelles (Ec. A.1.1.1) y se hallan una serie de relaciones (ecuaciones (Ec. A.1.1.2) y (Ec. A.1.1.3)) que se verifican en el gráfico que se adjunta a continuación (Fig. A.1.1.1):

\[L_0 = (n + n_f) \cdot d + \delta_{\text{max}} \]

donde \(n_f \) es el número de espiras finales del resorte y \(\delta_{\text{max}} \) es la deformación máxima del resorte en mm.

\[\frac{\delta_{\text{max}}}{L_0} \]

\[\frac{\nu \cdot L_0}{D_s} \]

donde estas dos últimas expresiones servirán para evaluar el pandeo de los resortes empleando seguidamente la gráfica que aparece en la Fig. A.1.1.1. El parámetro \(\nu \) tiene en cuenta el tipo de soporte en los extremos como se puede ver adjunto en la Fig. A.1.1.1. En este caso se ha tomado el valor de \(\nu = 1 \), y como número de espiras finales se añade una espira más puesto que sólo tiene un extremo fijo.

De este modo, y aplicando las ecuaciones (Ec. A.1.1.1), (Ec. A.1.1.2) y (Ec. A.1.1.3) se tiene:

\[L_0 = (9 + 1) \cdot 29 + 135 = 425 \text{ mm} \]

\[\frac{\delta_{\text{max}}}{L_0} = \frac{135}{425} = 0.3176 \]

\[\frac{\nu \cdot L_0}{D_s} = \frac{1 \cdot 425}{174} = 2.4425 \]
Observando la Fig. A.1.1.1, se puede comprobar que los muelles de acumulación de energía calculados para la cabina no sufren el fenómeno del pandeo, por lo que el diseño y el cálculo de amos muelles es correcto y la relación estimada, $D_s/d=6$, proporciona un resultado correcto. De otro modo, se procedería a recalcular el muelle cambiando la relación D_s/d hasta obtener un muelle con resultados óptimos y ahorrando el mayor espacio posible.

Con las ecuaciones siguientes, (Ec. A.1.1.4) y (Ec. A.1.1.5), se calculan las dimensiones externas e internas en lo referente al diámetro del resorte:

\[
D_e = D_s + 2\frac{d}{2} \quad \text{(Ec. A.1.1.4)}
\]

\[
D_i = D_s - 2\frac{d}{2} \quad \text{(Ec. A.1.1.5)}
\]
En este caso, y aplicándolas, resulta:

\[D_e = 174 + 2 \frac{29}{2} = 203 \text{ mm} \]

\[D_i = 174 - 2 \frac{29}{2} = 145 \text{ mm} \]

Para cuantificar las tensiones tangenciales originadas por torsión y cizalladura en la sección circular de la espira, se aplica la ecuación (Ec. A.1.1) previamente mencionada a fin de obtener las tensiones tangenciales resultantes de ambos esfuerzos:

La tensión tangencial debida a torsión únicamente se halla de la siguiente manera:

\[\tau_{\text{torsión}} = \pm \frac{M_t}{W_t} = \pm \frac{F_{\text{max}} \cdot d}{W_t} \quad (\text{Ec. A.1.1.6}) \]

donde \(W_t \) es el momento resistente a torsión de la sección circular, que en este caso:

\[W_t = \frac{\pi \cdot d^3}{16} \quad (\text{Ec. A.1.1.7}) \]

La tensión tangencial debida al esfuerzo de cizalladura se halla:

\[\tau_{\text{ciz}} = \frac{F_{\text{max}}}{A} \quad (\text{Ec. A.1.1.8}) \]

donde \(A \) es el área de la sección circular del hilo del resorte

De este modo, y aplicando las ecuaciones (Ec. A.1.1.6), (Ec. A.1.1.7) y (Ec. A.1.1.8) se tienen los siguientes valores de tensiones tangenciales junto con la representación del diagrama de esfuerzos (Fig. A.1.1.2), donde se ven los esfuerzos debidos sólo a torsión (a), debidos sólo a cizalladura (b), y debidos a la superposición de ambos (c). En cuanto a (d), que corresponde al verdadero diagrama de esfuerzos cortantes, no se ha procedido a su cuantificación debido a su complejidad, y por tanto se toma por válido la aproximación de la superposición de esfuerzos en (c).
Como se puede observar en la Fig. A.1.1.2, se observa que en el punto A es donde hay una distribución de tensiones más desfavorable, debido al efecto de concentración de tensiones causado por la curvatura de la espira. Por este motivo, se adopta un factor de corrección de tensiones, \(\Psi \), función de la relación de enrollamiento, \(D_v/d \), que ya tiene en cuenta todos los efectos anteriormente citados.

De esta manera, y sabiendo que la tensión tangencial máxima pertenece al punto A, cuyo valor es de 98.02 MPa, se procede a evaluar su resistencia comparándola con la tensión tangencial admisible (Ec. A.1.1.9):
\[\tau_{adm} = \frac{0.58 \cdot \sigma_e}{\gamma_{se}} \]
\hspace{1cm} \text{(Ec. A.1.1.9)}

donde \(\sigma_e \) es el límite elástico del material y \(\gamma_{se} \) es el factor de seguridad a tomar.

En este caso, \(\sigma_e = 1590 \) MPa, y del coeficiente de seguridad se ha tomado un valor de \(\gamma_{se} = 4 \). De esta manera, y aplicando la ecuación (Ec. A.1.27) se tiene:

\[\tau_{adm} = \frac{0.58 \cdot 1590}{4} = 230.55 \text{ MPa} \]

que comparando este valor con \(\tau_{max} = 98.02 \) MPa, se observa claramente que este valor de tensión tangencial máxima es claramente inferior a la tensión tangencial admisible por el material. Así pues, los resortes diseñados aguantan los esfuerzos con un coeficiente de seguridad de 4.

Por último, ya que se trata de un amortiguador de acumulación de energía, sería interesante cuantificar una serie de magnitudes, como son la energía potencial elástica durante el choque (Ec. A.1.1.10), la deceleración máxima durante el choque (Ec. A.1.1.11), y el tiempo de duración del mismo (Ec. A.1.1.12):

\[E_{pe} = \frac{1}{2} \cdot F_{max} \cdot \delta_{max} \]
\hspace{1cm} \text{(Ec. A.1.1.10)}

\[a_{max} = \frac{v^2}{\delta_{max}} \]
\hspace{1cm} \text{(Ec. A.1.1.11)}

\[t_{choque} = \frac{\pi}{2 \cdot \omega_0} \]
\hspace{1cm} \text{(Ec. A.1.1.12)}

donde \(\omega_0 \) es la frecuencia propia de vibración y se calcula así:

\[\omega_0 = \frac{v}{\delta_{max}} \]
\hspace{1cm} \text{(Ec. A.1.1.13)}
Así pues, aplicando las ecuaciones de la (Ec. A.1.1.10) hasta la (Ec. A.1.1.13) se tiene:

\[E_{pe} = \frac{1}{2} \cdot 21582 \cdot 0.135 = 1456.78 \text{ J} \]

\[a_{\text{max}} = \frac{1^2}{0.135} = 7.41 \text{ m/s}^2 \]

\[t_{\text{choque}} = \frac{\pi}{2 \cdot \frac{1}{0.135}} = 0.212 \text{ s} \]

es el tiempo durante el cual se produce la absorción de energía, correspondiente a \(\frac{1}{4} \) del período de vibración del sistema masa-muelle.

Para llevar a cabo las ecuaciones anteriores, desde la (Ec. A.1.1.10) hasta la (Ec. A.1.1.13), se ha considerado el choque de una masa \(m \) que se mueve a velocidad \(v \) contra un muelle de característica elástica lineal con constante de rigidez \(k \). A partir del instante en que la masa entra en contacto con el muelle, la primera se decelera hasta que se detiene, momento en el cual el muelle ha absorbido toda la energía cinética de la masa.

Mientras la masa y el muelle no pierden el contacto, el conjunto se comporta como un sistema vibratorio masa-muelle. En efecto, el momento inicial del contacto masa-muelle se establece como posición de equilibrio y el movimiento se iniciará con la velocidad inicial de la masa en el momento de contacto en el sentido de compresión del muelle.

De este modo, aplicando la teoría de las vibraciones (estudio en el cual no se entra en detalle) al sistema masa-muelle definido, se pueden obtener las expresiones que figuraban en las ecuaciones de (Ec. A.1.1.10) hasta (Ec. A.1.1.13), que corresponden a \(\frac{1}{4} \) del ciclo completo de oscilación. [11]
A.1.2. Amortiguadores de contrapeso

Una vez calculados los amortiguadores de acumulación de energía para la cabina, el cálculo correspondiente para el contrapeso es análogo al de la cabina como se puede observar a continuación, aplicando de nuevo las ecuaciones (Ec. A.1.2), (Ec. A.1.3), (Ec. A.1.6), (Ec. A.1.7), (Ec. A.1.16), (Ec. A.1.17) y (Ec. A.1.18):

$$\Psi = \frac{6 - 0.25}{6 - 1} + \frac{0.615}{6} = 1.254$$

donde de nuevo se hace una estimación de la relación $D_s/d = 6$ como para la cabina

$$\tau_p = 0.28 \cdot 1800 = 504 \text{ MPa}$$

$$F_{\text{max}} = 4 \cdot 875 \cdot 9.81 = 34335 \text{ N}$$

de manera que en este caso la fuerza máxima soportada por el muelle es la referente a la masa del contrapeso, que en este caso es de 875 kg.

$$d \geq \sqrt{\frac{8 \cdot 34335 \cdot 1.25}{\pi \cdot 504}} \cdot 6 \geq 36 \text{ mm}$$

donde se observa que el diámetro de espira calculado es muy grande, por lo que se plantea el hecho de colocar dos amortiguadores para el contrapeso. Así pues:

$$F_{\text{max}} = \frac{4 \cdot 875 \cdot 9.81}{2} = 17167.5 \text{ N para cada muelle}$$

de este modo, el diámetro de espira resultante es:

$$d \geq \sqrt{\frac{8 \cdot 17167.5 \cdot 1.25}{\pi \cdot 504}} \cdot 6 \geq 25.5 \text{ mm} \rightarrow 26 \text{ mm}$$

$$D_s = 6 \cdot 26 = 156 \text{ mm}$$

$$f_{\text{max}} = \{65 \text{ mm}, 0.135 \cdot 1^2 \} = 0.135 \text{ m} = 135 \text{ mm}$$

$$k = \frac{17167.5}{135} = 127.167 \text{ N/mm}$$
\[
\begin{align*}
n &= \frac{81.5 \cdot 10^3 \cdot 26^4}{8 \cdot 156^3 \cdot 127.167} = 9.64 \approx 10 \text{ espiras activas}
\end{align*}
\]

De nuevo, y procediendo como para el caso de los amortiguadores de la cabina, se comprueba que dichos amortiguadores no pandean. Aplicando las ecuaciones (Ec. A.1.1.1), (Ec. A.1.1.2) y (Ec. A.1.1.3) y observando el gráfico de la Fig. A.1.1.1 para la comprobación a pandeo, se tiene:

\[
L_0 = (10+1) \cdot 26 + 135 = 421 \text{ mm}
\]

\[
\frac{\delta_{\text{max}}}{L_0} = \frac{135}{421} = 0.3207
\]

\[
\frac{\nu \cdot L_0}{D_r} = \frac{1 \cdot 421}{156} = 2.6987
\]

Como se puede apreciar de nuevo en la Fig. A.1.1.1, los amortiguadores para el contrapeso no pandean, y por lo tanto, el cálculo de los mismos es correcto y la estimación de la relación, \(D_s/d=6\) es correcta y no trae problemas.

En cuanto a las dimensiones referentes al diámetro exterior e interior del resorte para el contrapeso, se tiene lo siguiente al aplicar las ecuaciones (Ec. A.1.1.4) y (Ec. A.1.1.5):

\[
D_s = 156 + 2 \cdot \frac{26}{2} = 182 \text{ mm}
\]

\[
D_i = 156 - 2 \cdot \frac{26}{2} = 130 \text{ mm}
\]

En cuanto al cálculo de las tensiones tangenciales, el cálculo es análogo al de los amortiguadores de cabina, aplicando las ecuaciones (Ec. A.1.1.6), (Ec. A.1.1.7), (Ec. A.1.1.8) y (Ec. A.1.1). De este modo se tiene:

\[
\tau_{\text{torsión}} = \pm \frac{M_s}{W_t} = \pm \frac{17167.5 \cdot 26^2}{\pi \cdot 26^3 / 2} = \pm 64.67 \text{ MPa}
\]

\[
\tau_{ct} = \frac{17167.5}{\pi \cdot (26^2)} \approx 32.33 \text{ MPa}
\]

A continuación se representan los diagramas de esfuerzos en la Fig. A.1.2.1, debidos a torsión simple (a), cizalladura simple (b) y la superposición de ambos (c). Por el mismo motivo mencionado antes en el caso de los amortiguadores de la cabina, en (d) no se cuantifica tampoco las tensiones y se da por válido la aproximación obtenida por superposición en (c):

Análogamente al caso de los amortiguadores de cabina, como se puede observar en la Fig. A.1.2.1, se observa de nuevo que en el punto A es donde hay una distribución de tensiones más desfavorable, debido al efecto de concentración de tensiones causado por la curvatura de la espira.

De esta manera, y sabiendo que la tensión tangencial máxima pertenece al punto A, cuyo valor es de 97.00 MPa, se procede a evaluar su resistencia comparándola con la tensión tangencial admisible procediendo de igual modo que para los amortiguadores de la cabina, aplicando la ecuación (Ec. A.1.1.9):

Fig. A.1.2.1. Diagrama de tensiones tangenciales en la espira
\[
\tau_{adm} = \frac{0.58 \cdot 1590}{4} = 230.55 \text{ MPa}
\]

que comparando este valor con \(\tau_{max} = 97.00 \text{ MPa} \), se observa claramente que este valor de tensión tangencial máxima es claramente inferior a la tensión tangencial admisible por el material. Así pues, los resortes diseñados para el contrapeso también aguantan los esfuerzos con un coeficiente de seguridad de 4.

Finalmente, procediendo como antes para el caso de la cabina y aplicando las ecuaciones de la (Ec. A.1.1.10) a la (Ec. A.1.1.13) se cuantifican las magnitudes referentes al choque de una masa contra los amortiguadores:

\[
E_{pe} = \frac{1}{2} \cdot 17167.5 \cdot 0.135 = 1158.81 \text{ J}
\]

\[
a_{max} = \frac{1^2}{0.135} = 7.41 \text{ m/s}^2
\]

\[
t_{choque} = \frac{\pi}{2 \cdot \frac{1}{0.135}} = 0.212 \text{ s}
\]

A.2. Selección del cable del limitador de velocidad

Para llevar a cabo la selección del cable del limitador de velocidad se deben tener en cuenta y principalmente, las normativas referentes al limitador de velocidad que figuran en el Anexo C.

Dichas normativas hacen referencia a la velocidad de disparo y a la fuerza con la que el paracaídas acciona a los cables del limitador de velocidad, de entre otros aspectos importantes a tener en cuenta.
A.2.1. Perfiles de garganta de poleas

El perfil de las gargantas de las poleas tiene influencia en la duración de los cables. Así por ejemplo, si la garganta es demasiado estrecha, el cable queda enclavado en ella; mientras que si es demasiado ancha, no encuentra el apoyo necesario y el cable se aplasta. Pero en los dos casos se produce un desgaste anormal y prematuro del cable. Los perfiles de garganta más utilizados son los trapezoidales o de cuña, los semiesféricos con entalla o ranura y los semiesféricos sin entalla (Fig. A.2.1.1). [8]

Mediante las gargantas trapezoidales (Fig. A.2.1.1a) se consigue una buena adherencia de las poleas con los cables, pero a costa de una gran presión que acelera el desgaste de cable y garganta.

Con las gargantas semicirculares, se obtiene menor adherencia pero tienen una duración mucho mayor de cable y garganta, siendo el ángulo de apoyo del cable más favorable el de 120º a 150º (Fig. A.2.1.1b).

Sin embargo, la garganta que más se emplea sin duda es la semicircular con ranura o entalla hoy en día, ya que mejora la adherencia de la garganta semicircular, y evita el rozamiento y deformación del fondo de la garganta (Fig. A.2.1.1c). Y como se puede apreciar en el gráfico de Wornle (Fig. A.2.1.2) se observa que las gargantas semicirculares con entalla duran más.

Fig. A.2.1.1. Perfiles de gargantas más utilizados [8]
A.2.2. Cálculo de fuerzas y presiones específicas en los cables

Para seleccionar el cable del limitador de velocidad se ha de conocer previamente la carga a rotura que es capaz de resistir. De este modo, y sabiendo que el cable limitador de velocidad acciona el paracaídas del que dispone el ascensor y que según la norma EN 81-1, el esfuerzo provocado por el limitador de velocidad como consecuencia de su disparo debe ser como mínimo el mayor de los valores siguientes:

a) 300 N
b) O el doble del esfuerzo de frenado máximo con que actúa el paracaídas
De este modo, sabiendo que la fuerza de actuación del paracaídas instantáneo de rodillos viene dada por la siguiente ecuación (Ec. A.2.2.1):

\[F_b = (P + Q) \cdot a_{\text{frenada}} \]

(Ec. A.2.2.1)

donde \(P \) es la masa de la cabina vacía en kg y \(Q \) es la carga nominal en kg

Así pues:

\[F_b = (650 + 450) \cdot 1.225 = 1347.5 \text{N} \]

donde \(a_{\text{frenada}} = 1.225 m/s^2 \) y se ha obtenido en el apartado A.9 de este mismo anexo, puesto que la aceleración de frenada no debe ser superior a \(1/8 \) de la aceleración de la gravedad, según se comenta posteriormente.

Luego, según la norma EN 81-1, se tiene el cálculo (Ec. A.2.2.2) de la carga a rotura del cable:

\[\text{Carga a rotura} = \max\{300N, 2 \cdot F_b\} \]

(Ec. A.2.2.2)

Aplicando, pues, la Ec. A.2.2.2 se obtiene el valor de la carga a rotura:

\[\text{Carga a rotura} = \max\{300N, 2 \cdot 1347.5\} = 2695N \]

Una vez conocida la carga a rotura del cable del limitador de velocidad se procede a la selección del tipo de cableado. Sabiendo que mientras el ascensor está en servicio hay una tendencia a la abrasión, y que en la instalación del ascensor objeto de estudio es más importante la abrasión que la fatiga, se decide escoger el tipo de cable Seale y no el Warrington, ya que éste al disponer de alambres externos más gruesos en su configuración, resulta idóneo escoger este tipo de configuración.

Por otro lado, en esta configuración de cable hay dos tipos, la Seale 6x19+1 textil y la Seale 8x19+1 textil. Vistas sus diferencias respecto a sus propiedades, coste y ámbito de uso, se decide escoger la configuración 6x19+1 textil, puesto que el ascensor a proyectar es de bajas prestaciones y de baja altura. Véase Anexo B.4.
Según se ha podido apreciar en la Tabla B.4.3, para el cable Seale 6x19+1 sólo se permiten diámetros nominales de 6-16 mm, una altura de 50 m y la garganta de polea de entalla no ancha o bien sin entalla.

En cuanto a la carga a rotura obtenida, 2.695 kN en este caso, se puede observar que en la Tabla B.4.1 se puede escoger cualquier cable de 6 mm de diámetro nominal haciendo referencia a la resistencia a la tracción que ofrecen.

Por este motivo, se escoge finalmente un cable preformado de 6 mm de diámetro nominal de la configuración Seale 6x19+1 textil y de resistencia a la tracción de 1600 MPa. El cable es preformado por las grandes ventajas que tienen estos cables tal y como se describe en el Anexo D, especialmente en lo que a duración se refiere. El diámetro de cable de 6 mm es pequeño, pero sabiendo que la relación que ha de haber según EN 81-1 entre el diámetro de la polea del limitador de velocidad y el diámetro del cable es de cómo mínimo 30 (Ec. A.2.2.3), esto implica que el diámetro de la polea será menor también, por lo que los costes de material de polea y de instalación serán menores que para un diámetro de cable mayor. [8]

De este modo, y aplicando la ecuación (Ec. A.2.2.3) que figura a continuación se tiene:

\[
\frac{D}{d} \geq 30 \quad \text{(Ec. A.2.2.3)}
\]

\[
D \geq 30 \cdot 6 = 180 \text{mm}
\]

Así pues, el diámetro de la polea del limitador de velocidad y de la polea tensora será de cómo mínimo 180 mm. Una vez conocido el diámetro de cable que va a emplear el limitador de velocidad y su configuración, el siguiente paso se trata de decidir el perfil de garganta de la polea más adecuado.

Observando la tabla B.4.3, el perfil de garganta de polea ha de ser de entalla no ancha o bien sin entalla, y como se ha explicado anteriormente en el apartado anterior, las gargantas sin entalla presentan mayor duración relativa respecto al resto de perfiles de gargantas de polea así como una mejora de la adherencia y menor rozamiento y deformación del fondo de la garganta. [8]
Conocidos pues el diámetro del cable, el de la polea y el perfil de garganta de la polea a emplear se procede a la evaluación de la presión específica del cable sobre la garganta de la/s polea/s para evitar de este modo el desgaste prematuro de la polea y del cable. Para ello, se tiene la ecuación (Ec. A.2.2.4), que determina la presión específica para las poleas de gargantas semicirculares con o sin entalla:

\[p = \frac{T}{n \cdot d \cdot D} \cdot \frac{8 \cdot \cos(\beta / 2)}{\pi - \beta \cdot \text{sen}(\beta)} \text{MPa} \]

(Ec. A.2.2.4)

Donde:

- T es la fuerza de frenado que actúa sobre los cables
- d es el diámetro de los cables en mm
- D es el diámetro de la polea en mm
- n es el número de cables
- \(\beta \) es el ángulo del arco cortado por la entalla de la garganta semicircular en radianes (\(\beta = 0 \text{rad} \) para gargantas sin entalla).

La presión específica evaluada según la ecuación (Ec. A.2.2.4) ha de ser menor a un valor determinado y dicho valor es la presión específica máxima (Ec. A.2.2.5):

\[p_{\text{max}} = \frac{12.5 + 4 \cdot v}{1 + v} \text{MPa} \]

(Ec. A.2.2.5)

\[T = F_b = 1347.5 \text{ N} \]

Aplicando las ecuaciones (Ec. A.2.2.4) y (Ec. A.2.2.5) anteriormente desarrolladas se tienen los siguientes valores:

\[p = \frac{1347.5}{1 \cdot 6.180} \cdot \frac{8 \cdot \cos(0 / 2)}{\pi - 0 - \text{sen}(0)} = 3.18 \text{MPa} \]

\[p_{\text{max}} = \frac{12.5 + 4 \cdot 1}{1 + 1} = 8.25 \text{MPa} \]
Se puede observar claramente que \(p \leq p_{\text{máx}} \), por lo que el diseño y el cálculo del sistema limitador de velocidad son correctos.

Respecto a la elección del alma textil para el cable en cuestión hay varias alternativas según se describe en el Anexo D.7. El criterio de elección en este caso se basará en la minimización de la cantidad de lubricante a emplear para el mantenimiento de dicho cable, ya que este proyecto tiene como uno de sus objetivos ser respetuoso con el medio ambiente entre otras cosas.

Por este motivo, se decide emplear un alma de fibra natural Sisal, puesto que la cantidad de lubricante debe ser menor al 17%, y como absorbe mucha cantidad de lubricante, las tareas de mantenimiento en cuanto a reposición de lubricante no serían tan abundantes y por tanto se minimizaría el uso de lubricantes tal como se pretende. [8]

Se podría haber optado por fibras sintéticas, como las descritas en el Anexo D.7, que emplean aún menor cantidad de lubricante. Pero este tipo de fibras tiene costes elevados y no interesa aumentar el coste de instalación de los cables. Y en cuanto al material empleado para la polea se tiene el siguiente:

- fundición nodular o de grafito esferoidal, FGE 50-7 (UNE 36118). Esta clase de fundición presenta una alta resistencia mecánica y al desgaste, y una resiliencia moderada. Se destaca este material en comparación con la fundición gris de grafito laminar por presentar mejor resistencia mecánica claramente superior, así como un módulo de elasticidad más alto, mejor tenacidad, mejor comportamiento al desgaste y una resistencia a la corrosión aceptable, incluso mejor que las de grafito laminar. [12]
A.3. Cálculo de las guías y selección de perfiles

En este apartado se lleva a cabo el cálculo de las guías del ascensor, tanto de la cabina como del contrapeso. El cálculo de las guías se realiza teniendo en cuenta previamente de qué material se trata, puesto que es imprescindible conocer su resistencia así como otras propiedades mecánicas características.

Por otro lado, se deben evaluar los esfuerzos que actúan sobre las guías, que son los empujes horizontales producidos por las posibles excentricidades de la carga y los esfuerzos de frenado cuando actúan los paracaídas. Una vez evaluados tales esfuerzos, se procede a la comprobación de los mismos verificando que el perfil seleccionado de las guías es válido.

Además, se deben evaluar los esfuerzos a flexión y torsión que se originan en las guías como consecuencia de la excentricidad que hay con la fuerza de frenado al actuar, ya que ésta se sitúa a una cierta distancia del eje longitudinal paralelo a la guía.

A.3.1. Guías de la cabina

Antes de realizar el cálculo pertinente a las guías de la cabina según los esfuerzos a los que están sometidas, es necesario definir previamente el material del que estarán fabricadas.

En este caso, se trata de acero de construcción de uso general, concretamente el S275 según UNE 10025-94, y con grado de soldabilidad JR a 20 ºC. Por tanto, su resistencia a la tracción estará comprendida entre 410 y 560 MPa. [12]

Se sabe también que el acero empleado para las guías tiene resistencias de tracción límites de 370 MPa como mínimo y 520 MPa como máximo. Por este motivo, del acero S275 a emplear para las guías se escoge el de menor resistencia a la tracción, que es el que tiene 410 MPa; y como se puede observar, queda comprendido entre los márgenes de los aceros empleados para las guías. [8]
Según la norma EN 81-1, el coeficiente de trabajo máximo que puede admitirse para las guías, por los esfuerzos derivados de la actuación del paracaídas no deben rebasar de:

140 MPa para guías de acero de 370 MPa

210 MPa para guías de acero de 520 MPa

Los valores intermedios, como en este caso, de 410 MPa, se procede a interpolar de manera lineal para hallar su coeficiente de trabajo máximo, como figura a continuación:

\[
\frac{520 - 370}{210 - 140} = \frac{410 - 370}{x - 140} \rightarrow x = 158.67 \text{ MPa}
\]

De este modo el coeficiente de trabajo máximo para el acero de 410 MPa de resistencia a la tracción es de 158.67 MPa.

Por otro lado, se sabe que las guías serán de perfil T, de manera que observando las tablas de los perfiles T (ver Anexo B.2), se tienen como perfiles T más pequeños y para cabinas y calibrados los T-70. Hay 3 de este tipo, y se diferencian básicamente en el espesor de las alas y del alma más fina, por lo que se decide arbitrariamente escoger el perfil T-70.

Concretamente se ha escogido el perfil T-70-70-9/A puesto que este perfil es el más empleado y de entre los tres de este perfil es el que tiene una anchura del alma de abajo mayor y mientras mayor sea mejor, especialmente por el cúmulo de tensiones internas. Y con este perfil se procederá a la comprobación de los esfuerzos que actúan sobre las guías para verificar la validez de este perfil. Si por el contrario no es válido, se procedería a escoger un perfil mayor.
Así pues, se tienen las características mecánicas más importantes:

- Sección transversal: \(A = 11.25 \text{ cm}^2 \)
- Momento de inercia mínimo: \(I_{yy} = 24.62 \text{ cm}^4 \)
- Momento de inercia transversal en eje \(x \): \(I_{xx} = 52.81 \text{ cm}^4 \)
- Radio de giro mínimo: \(i_{yy} = 1.48 \text{ cm} \)

Con estos datos se procede inicialmente a determinar el coeficiente (Ec. A.3.1.1) de esbeltez, que sigue a continuación, a fin de comprobar la validez de este perfil seleccionado para los esfuerzos de frenado durante la actuación de los paracaídas:

\[
\lambda = \frac{i_k}{i_{\min}} \quad \text{(Ec. A.3.1.1)}
\]

donde: \(i_k \) es la distancia entre los anclajes de las guías

\(i_{\min} \) es el radio de giro mínimo del perfil de la guía

Aplicando pues la ecuación (Ec. A.3.1.1) se tiene:

\[
\lambda = \frac{3000}{14.8} = 202.7 \approx 203
\]

Este valor se interpola linealmente en las tablas B.1 y B.2 y se obtiene el correspondiente coeficiente \(\omega \) de aumento de cargas a pandeo para el acero de 410 MPa:

\[
370 \text{ MPa } \rightarrow \lambda = 203 \rightarrow \omega = 6.96
\]

\[
410 \text{ MPa } \rightarrow \lambda = 203 \rightarrow \omega?
\]

\[
520 \text{ MPa } \rightarrow \lambda = 203 \rightarrow \omega = 10.44
\]

\[
\frac{520 - 370}{10.44 - 6.96} = \frac{410 - 370}{\sigma - 6.96} \rightarrow \omega = 7.89
\]
Con este valor se puede determinar el coeficiente de trabajo real (Ec. A.3.1.2) con que trabajan las guías con los esfuerzos de frenado del paracaídas según la norma EN 81-1. Este coeficiente de trabajo real es diferente para un tipo de paracaídas u otro, y sabiendo que se emplea un paracaídas instantáneo de rodillos se tiene:

$$\sigma_k = \frac{15 \cdot (P + Q)}{A} \cdot \omega \text{ en MPa}$$ \hspace{1cm} (Ec. A.3.1.2)

El valor obtenido debe ser menor que el coeficiente de trabajo máximo obtenido inicialmente para este tipo de acero, de 410 MPa de resistencia a la tracción.

Aplicando pues (Ec. A.3.1.2) se tiene:

$$\sigma_k = \frac{15 \cdot (650 + 450)}{11.25 \cdot 10^2} \cdot 7.89 = 115.72 \text{ MPa} \leq 158.67 \text{ MPa}$$

Como se puede observar, el coeficiente de trabajo real para este perfil de las guías, T-70-70-9/A es menor que el coeficiente de trabajo máximo, por lo que el cálculo a esfuerzo de frenado por la actuación del paracaídas es válido.

Por otro lado, y tal como se ha comentado anteriormente, las guías también se calcularán según si resisten a los empujes horizontales debido a posibles excentricidades de la carga.

Se supone que la mitad de la carga máxima de la cabina (Q/2), se sitúa a una distancia desde la proyección vertical del centro de inercia de la carga al plano de simetría de la cabina igual a ¼ de la anchura de ésta (a/4) [7] (Fig. A. 3.1.1):
El momento de vuelco producido por la citada carga, debe ser contrarrestado por la reacción \(R_h \) de las guías sobre una rozadera, multiplicada por la distancia a la otra rozadera, \(d \).

Es decir:

\[
\frac{Q}{2} \cdot \frac{a}{4} = R_h \cdot d \rightarrow R_h = \frac{Q}{8} \cdot \frac{a}{d}
\]

(Ec. A.3.1.3)

La flecha producida (Ec. A.3.1.4) por el empuje horizontal \(R_h \) sobre las guías, en el tramo \(l_k \) limitado por dos apoyos de éstas, siendo \(I_{xx} \) el momento transversal del perfil en \(T \) de las guías será:

\[
f_h = \frac{R_h \cdot I_k^3}{48 \cdot E \cdot I_{xx}}
\]

(Ec. A.3.1.4)

Aplicando las ecuaciones anteriores, (Ec. A.3.1.3) y (Ec. A.3.1.4) se obtiene lo siguiente:

\[
\frac{Q}{2} \cdot \frac{a}{4} = R_h \cdot d \rightarrow R_h = \frac{450 \cdot 9.81 \cdot 1000}{2600} = 212.23 \text{ N}
\]

\[
f_h = \frac{212.23 \cdot 3000^3}{48 \cdot 210000 \cdot 52.81 \cdot 10^4} = 1.076 \text{ mm}
\]
El Reglamento de Aparatos Elevadores Español limita la flecha que puede producirse en las condiciones establecidas a 5 mm. Como puede observarse, la flecha originada por los esfuerzos horizontales debido a las excentricidades de la carga es claramente inferior a 5 mm, por lo que estas guías son aptas para este tipo de esfuerzos.

Respecto a los esfuerzos a flexión, la fuerza de frenada cuando se acciona el limitador de velocidad actúa en un eje longitudinal paralelo a la guía pero en una posición excéntrica creando un momento flector adicional a la fuerza de compresión.

En la Fig. (A.3.1.2) se representa el diagrama de cargas sobre las guías. Las fuerzas pueden calcularse según las expresiones siguientes, (Ec. A.3.1.5) y (Ec. A.3.1.6):

\[
F_y = \frac{Q \cdot g \cdot e_y}{h}
\]

(Ec. A.3.1.5)

\[
F_z = \frac{Q \cdot g \cdot e_z \cdot (b + 2 \cdot e_y)}{2 \cdot h \cdot b}
\]

(Ec. A.3.1.6)

donde: \(e_y = b/4 \) y \(e_z = b/4 \) son las excentricidades de la carga

\(Q\) es la carga nominal en kg

\(h\) es la distancia entre rozaderas de las guías

\(b\) es la anchura de la cabina del ascensor

La flecha total de una guía debe calcularse teniendo en cuenta la superposición de las flechas parciales originadas por cada fuerza individual.
Por lo tanto, para calcular la flecha en el centro del tramo de la guía entre los apoyos se sabe que se conocen dos términos: uno el correspondiente al desplazamiento debido a la flexión y otro a la torsión.

La flecha a flexión (Ec. A.3.1.7) se halla así:

$$f_f = \frac{F_y \cdot l_k^3}{48 \cdot E \cdot I_{ss}}$$ \hspace{1cm} \text{(Ec. A.3.1.7)}

Mientras que la flecha a torsión (Ec. A.3.1.8) se obtiene como:

$$f_t = \frac{F_z \cdot l_k \cdot s^2}{G \cdot I_0}$$ \hspace{1cm} \text{(Ec. A.3.1.8)}

donde s y I_0 son datos del perfil en función de sus dimensiones, y dichos parámetros se hallan según las ecuaciones (Ec. A.3.1.9) y (Ec. A.3.1.10):
\[s = h_1 - \frac{n}{2} \text{ en mm} \quad \text{(Ec. A.3.1.9)} \]

\[I_0 = b_1 \cdot g^3 + (h_1 - n - g) \cdot c^3 + n \cdot k_1^3 \text{ en mm}^4 \quad \text{(Ec. A.3.1.10)} \]

Las dimensiones del perfil T para determinar los anteriores parámetros se pueden contemplar en la figura (Fig. A.3.1.3), donde las cotas de dicha guía se dan en mm:

![Fig. A.3.1.3. Cotas significativas del perfil T [17]](image)

La flecha total (Ec. A.3.1.11) se calcula por la suma de ambas flechas:

\[f = f_f + f_r \quad \text{(Ec. A.3.1.11)} \]

Así pues, aplicando conjuntamente las anteriores ecuaciones, de la (Ec. A.3.1.5) a la (Ec. A.3.1.7) se tienen los siguientes valores:

\[F_y = \frac{450 \cdot 9.81 \cdot (1000/4)}{3160} = 349.25 N \]
\[F_z = \frac{450 \cdot 9.81 \cdot (1000/4) \cdot (1000 + 2 \cdot 1000/4)}{2 \cdot 3160 \cdot 1000} = 261.94N \]

\[s = 70 - \frac{35}{2} = 52.5 \text{ mm} \]

\[I_0 = 70 \cdot 8.5^3 + (70 - 35 - 8.5) \cdot 7.9^3 + 35 \cdot 9^3 = 81569 \text{ mm}^4 \]

\[f_f = \frac{349.25 \cdot 3000^3}{48 \cdot 210000 \cdot 52.81 \cdot 10^4} = 1.77 \text{ mm} \]

\[f_i = \frac{261.94 \cdot 3000 \cdot 52.5^3}{80000 \cdot 81569} = 0.33 \text{ mm} \]

\[f = 1.77 + 0.33 = 2.10 \text{ mm} \]

Como se puede observar la flecha total a flexión y torsión combinadas es claramente inferior a los 5 mm que limita la norma EN 81-1. Por este motivo, estas guías son aptas también para los esfuerzos combinados a flexión y torsión debido a la excéntricidad de la fuerza de frenado.

En conclusión, el perfil T-70-70-9/A escogido para las guías sobre las que se moverá la cabina es válido tanto para los esfuerzos debidos a la fuerza de frenado cuando actúa el paracaídas, al empuje horizontal debido a las excéntricidades de la carga y a la flexión como consecuencia de la excéntricidad de la fuerza de frenado respecto a las guías. Además, la flecha máxima es inferior a la flecha admisible de 5 mm como fijan las normativas referentes a los ascensores.
A.3.2. Guías del contrapeso

El cálculo de las guías del contrapeso es análogo al de las guías de la cabina, con la única diferencia que el perfil T a emplear es más pequeño, evidentemente, puesto que las solicitudes para esta guía son menores respecto a las de la cabina.

Se ha de destacar que no se tendrán en cuenta los empujes horizontales fruto de las posibles excentricidades de la carga, puesto que el contrapeso al estar formado por bloques de hormigón, la carga no presenta excentricidades y su centro de inercia permanece en el mismo eje de simetría del contrapeso.

El material empleado será el mismo que para las guías de la cabina, es decir, acero S275 según UNE 10025-94, y con grado de soldabilidad JR a 20 °C [12]. La distancia entre los anclajes de estas guías será de $\ell = 1500$ mm en lugar de 3000 mm, ya que al ser perfiles con sección menor y con menor momento de inercia que los empleados para las guías se reduce el efecto del pandeo.

Para comenzar se decide escoger el perfil más pequeño de los empleados para guías de contrapeso y calibrados, es decir el T45/A. Se procede como en el caso anterior para la cabina, verificando los esfuerzos que actúan sobre la guía y comprobando las flechas admisibles originadas por dichos esfuerzos.

Las características mecánicas más importantes son:

Sección transversal: $A = 4.25\ cm^2$

Momento de inercia mínimo: $I_{yy} = 3.84\ cm^4$

Momento de inercia transversal en eje x: $I_{xx} = 8.08\ cm^4$

Radio de giro mínimo: $i_{yy} = 0.95\ cm$
Aplicando las ecuaciones (Ec. A.3.1.1) y (Ec. A.3.1.2) e interpolando para obtener el coeficiente \(\omega \) de aumento de cargas a pandeo, se tiene lo siguiente:

\[
\lambda = \frac{1500}{9.5} = 157.9 \approx 158
\]

\[370 \text{ MPa} \rightarrow \lambda = 158 \rightarrow \omega = 4.22\]

\[410 \text{ MPa} \rightarrow \lambda = 158 \rightarrow \omega?\]

\[520 \text{ MPa} \rightarrow \lambda = 158 \rightarrow \omega = 6.32\]

\[
\frac{520 - 370}{6.32 - 4.22} = \frac{410 - 370}{\omega - 4.22} \rightarrow \omega = 4.78
\]

La ecuación (Ec. A.3.1.2) se ha modificado (Ec. A.3.1.12) como se puede apreciar a continuación, puesto que la masa que interviene en el contrapeso es su propia masa, \(Z \):

\[
\sigma_k = \frac{15 \cdot Z}{A} \cdot \omega \text{ en MPa}
\]

(Ec. A.3.1.12)

Así que aplicando la ecuación anterior se tiene:

\[
\sigma_k = \frac{15 \cdot 875}{4.25 \cdot 10^3} \cdot 4.78 = 147.6 \text{ MPa} \leq 158.7 \text{ MPa}
\]

y como se puede observar, el coeficiente de trabajo real para este perfil de las guías, T45/A es menor que el coeficiente de trabajo máximo, por lo que el cálculo a esfuerzo de frenado por la actuación del paracaídas es válido también.

Respecto a los esfuerzos a flexión debidos a la fuerza de frenado en una situación excéntrica paralela al eje longitudinal de las guías, el cálculo es también análogo al de las guías de la cabina. Así pues, aplicando las ecuaciones de la (Ec. A.3.1.5) hasta la (Ec. A.3.1.7) se tiene:

\[
F_y = \frac{875 \cdot 9.81 \cdot (1000/8)}{1600} = 670.61 \text{ N}
\]
\[F_z = \frac{875 \cdot 9.81 \cdot (1000/8) \cdot (1000 + 2 \cdot 1000/8)}{2 \cdot 1600 \cdot 1000} = 419.13 \text{ N} \]

\[s = 45 - \frac{20}{2} = 35 \text{ mm} \]

\[I_0 = 45 \cdot 5^3 + (45 - 20 - 5) \cdot 5^3 + 10 \cdot 4.8^3 = 9231 \text{ mm}^4 \]

\[f_f = \frac{670.61 \cdot 1500^3}{48 \cdot 210000 \cdot 8.08 \cdot 10^4} = 2.78 \text{ mm} \]

\[f_i = \frac{419.13 \cdot 1500 \cdot 35^2}{80000 \cdot 9231} = 1.04 \text{ mm} \]

\[f = 2.78 + 1.04 = 3.82 \text{ mm} \]

Se puede ver que en las ecuaciones (Ec. A.3.1.5) y (Ec. A.3.1.6) han habido unas modificaciones: la carga que genera las fuerzas \(F_x \) y \(F_y \) se deben a la masa del contrapeso, \(Z \) y la distancia entre rozaderas del contrapeso es de \(h = 1600 \text{ mm} \). Por otro lado, las excentricidades \(e_x \) y \(e_y \) son iguales esta vez a \(1/8 \) de la anchura del contrapeso, ya que las excentricidades de la fuerza de frenado en las guías de contrapeso son menores que para las guías de la cabina.

De nuevo, la flecha total debida a flexión y torsión combinadas es inferior a los 5 mm que limita la norma EN 81-1. Por este motivo, estas guías también son aptas también para los esfuerzos combinados a flexión y torsión combinadas debido a la excentricidad de la fuerza de frenado.

Para concluir, el perfil T45/A escogido para el contrapeso es válido para los esfuerzos de compresión generados por la fuerza de frenado fruto de la actuación de los paracaidas y para los esfuerzos de flexión y torsión combinados debido a la excentricidad que presenta dicha fuerza de frenado sobre las guías. Además, la flecha total admisible es claramente inferior a los 5 mm que limita el Reglamento de Aparatos Elevadores Españoles.
A.4. Cálculo del bastidor de la cabina

Para calcular los perfiles de acero normalizados que constituyen el bastidor de la cabina, se han de conocer los esfuerzos que han de soportar o deberían soportar si se da el caso en cuestión. De este modo existen tres esfuerzos diferentes que actúan o actuarían sobre el bastidor [6]:

- Operación normal de desplazamiento de la cabina con carga nominal uniformemente distribuida en el suelo de cabina
- Actuación de los paracaídas tras la frenada de emergencia
- Choque con amortiguadores en caso de caída sobre los mismos

A.4.1. Operación normal de desplazamiento

El larguero superior está sujeto a una fuerza de tracción \(F \) (Ec. A.4.1.1) por las cintas de suspensión, justo en su centro de inercia. Puesto que el bastidor es simétrico y también la carga se localiza simétricamente en el eje vertical del bastidor, los momentos internos en los extremos del larguero superior \((M_1) \) serán idénticos además de los momentos internos en los extremos del larguero inferior \((M_2) \) [6].

El larguero inferior está sometido a la carga nominal repartida uniformemente, de valor \(q \) (Ec. A.4.2):

\[
F = (K + Q) \cdot g \quad \text{(Ec. A.4.1.1)}
\]

\[
q = \frac{(K + Q)}{b} \cdot g \quad \text{(Ec. A.4.1.2)}
\]

Para llevar a cabo los cálculos, se toma cada elemento del bastidor por separado, considerándolos como vigas continuas y empotradas, de tal manera que los momentos internos obtenidos serán de empotramiento perfecto.
Por otro lado, las cargas se mayoran con un factor de seguridad de 5 [8] para garantizar así la resistencia a los esfuerzos a los que estarán sometidos los perfiles de acero que componen el bastidor del ascensor.

De este modo y comenzando por el larguero superior sometido a la fuerza de tracción F, y aplicando la ecuación (Ec. A.4.1.1) se tiene el siguiente dibujo (Fig. A.4.1.1):

$$ F = (450 + 650) \cdot 9.81 \cdot 5 = 53955 \text{ N} $$

![Fig. A.4.1.1. Fuerza que actúa sobre el larguero superior](image)

Como se puede observar en el dibujo, la fuerza F que actúa sobre el larguero superior genera dos momentos iguales y de sentido contrario de empotramiento perfecto en cada extremo, M_1, de valor (Ec. A.4.1.3):

$$ M_1 = \frac{1}{8} \cdot F \cdot b \quad \text{(Ec. A.4.1.3)} $$

De este modo, aplicando la ecuación (Ec. A.4.1.3) se tiene el valor de M_1, y en la Fig. A.4.1.2 se muestra el diagrama de momentos flectores sobre el larguero superior:

$$ M_1 = \frac{1}{8} \cdot 53955 \cdot 1 = 6744.4 \text{ N\cdot m} $$
Procediendo de manera análoga para el larguero inferior, y aplicando la ecuación (Ec. A.4.1.2) para obtener el valor de la carga repartida se tiene el siguiente dibujo (Fig. A.4.1.3):

La carga repartida, \(q \), que actúa sobre el larguero inferior genera dos momentos de empotramiento iguales y de sentido contrarios en cada extremo del larguero inferior, \(M_2 \), de valor (Ec. A.4.1.4):

\[
M_2 = \frac{1}{12} \cdot q \cdot b^2
\]

(Ec. A.4.1.4)
Aplicando esta ecuación anterior se obtiene el valor de M_2, y en la Fig. A.4.1.4 se puede observar el diagrama de momentos flectores para el larguero inferior:

$$M_2 = \frac{1}{12} \cdot 53955 \cdot 1^2 = 4496.3 \text{ N}\cdot\text{m}$$

![Diagrama de momentos flectores en larguero inferior](image)

Fig. A.4.1.4. Diagrama de momentos flectores en larguero inferior

Sabiendo que los momentos flectores de cada extremo de los largueros se transfieren a los extremos de los dos postes se tienen los siguientes postes con los siguientes diagramas de momentos flectores (Fig. A.4.1.5):

![Diagrama de momentos flectores en los postes](image)

Fig. A.4.1.5. Diagrama de momentos flectores en los postes

Respecto a los valores de momentos flectores 8992.5 N·m y 2248 N·m que aparecen en las Figs. A.4.1.2 y A.4.1.4 respectivamente se han calculado según las ecuaciones que vienen a continuación (Ec. A.4.1.5) y (Ec. A.4.1.6):
\[M_1' = 5 \cdot \frac{1}{4} \cdot (Q + K) \cdot g \cdot b - M_2 \]
(Ec. A.4.1.5)

\[M_2' = 5 \cdot \frac{1}{8} \cdot (Q + K) \cdot g \cdot b - M_2 \]
(Ec. A.4.1.6)

De modo que aplicándolas se obtiene:

\[M_1' = 5 \cdot \frac{1}{4} \cdot (450 + 650) \cdot 9.81 \cdot 1 - 4496.3 = 8992.5 \text{ N} \cdot \text{m} \]

\[M_2' = 5 \cdot \frac{1}{8} \cdot (450 + 650) \cdot 9.81 \cdot 1 - 4496.3 = 2248 \text{ N} \cdot \text{m} \]

Ya con estos valores y el diagrama de momentos flectores para cada componente del bastidor se procede al dimensionado de los mismos a través del criterio de la tensión normal debida a flexión máxima, y se escogen los perfiles necesarios. Así pues, comenzando por el larguero superior se tiene:

\[M_{\text{max}} = 8992.5 \text{ N} \cdot \text{m} \]

\[\sigma_{\text{adm}} = \sigma_e = 205 \text{ MPa (dato del material del perfil)} \]

Sabiendo que se tiene que cumplir (Ec. A.4.1.7) y aplicándola se tiene:

\[\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_z} \leq \sigma_{\text{adm}} \]
(Ec. A.4.1.7)

\[W_z \geq \frac{M_{\text{max}}}{\sigma_{\text{adm}}} \geq \frac{8992.5 \cdot 10^2}{205 \cdot 10^3} \geq 43.86 \text{ cm}^3 \]

Con este dato, y sabiendo que se empleará para el larguero superior 2 perfiles UPN, se consultan unas tablas (Anexo B.8) y se observa que el perfil UPN120 es el primero que cumple con esta condición, puesto que \(W_z = 60.7 \text{ cm}^3 \).
Pero como se colocan 2 perfiles UPN se calcula el módulo resistente resultante (Fig. A. 4.1.6), donde las cotas figuran en mm, y se plantea la posibilidad de emplear dos perfiles UPN100, ya que quizás sea suficiente:

\[I_y = 2 \cdot (I_y + A \cdot d^2) \] \hspace{1cm} (Ec. A.4.1.8)

\[I_z = 2 \cdot I_z \] \hspace{1cm} (Ec. A.4.1.9)

Conociendo los datos del perfil UPN100 y aplicando las dos ecuaciones anteriores se llega a:

\[A = 13.5 \text{ cm}^2 \]

\[I_y = 29.3 \text{ cm}^4 \]

\[I_z = 206 \text{ cm}^4 \]

d es la distancia perpendicular que hay entre los dos ejes Y e Yn

Fig. A.4.1.6. Dos perfiles UPN100
\[I_\gamma = 2 \cdot (29.3 + 13.5 \cdot (6 + 1.55))^2 = 1598 \text{ cm}^4 \]
\[I_z = 2 \cdot 206 = 412 \text{ cm}^4 \]

Para hallar ahora los momentos resistentes resultantes, cabe decir que sólo interesa hallar el referido al eje Z (Ec. A.4.1.10), puesto que es al que se hace referencia cuando se determina éste mediante el momento flector máximo y la tensión admisible. Así pues:

\[W_z' = \frac{I_z}{\gamma_{\text{max}}} \quad \text{(Ec. A.4.1.10)} \]

\[W_z = \frac{412}{10 - 5} = 82.4 \text{ cm}^3 \geq 43.86 \text{ cm}^3 \]

Como se puede observar, el momento resistente resultante respecto el eje Z para los dos perfiles UPN100 cumple con la ecuación (Ec. A.4.1.7), por lo que en principio es válido el perfil UPN escogido para el larguero superior.

Para el larguero inferior y procediendo de manera análoga al larguero superior se tiene:

\[W_z \geq \frac{M_{\text{max}}}{\sigma_{\text{adm}}} \geq \frac{4496.3 \cdot 10^2}{205 \cdot 10^2} \geq 21.93 \text{ cm}^3 \]

En principio parece ser que el perfil UPN80 es válido, puesto que observando las tablas de perfiles normalizados (Anexo B.8) el momento resistente tiene como valor \(W_z = 26.5 \text{ cm}^3 \). Pero al ser un perfil pequeño, se decide escoger un perfil UPN100, que es el siguiente y que tiene un momento resistente \(W_z = 41.2 \text{ cm}^3 \), de manera que el perfil escogido no quede muy justo en cuanto a tensión normal admisible.
Así, se halla el momento resistente resultante para los dos perfiles UPN100 escogidos para el larguero inferior de manera análoga al larguero superior (Fig. A.4.1.7):

Los datos para el perfil UPN100 son:

\[A = 13.5 \text{ cm}^2 \]

\[I_y = 29.3 \text{ cm}^4 \]

\[I_z = 206 \text{ cm}^4 \]

\[I_y' = 2 \cdot (29.3 + 13.5 \cdot (5 + 1.55))^2 = 1217 \text{ cm}^4 \]

\[I_z' = 2 \cdot 206 = 412 \text{ cm}^4 \]

\[W_z' = \frac{412}{10 - 5} = 82.4 \text{ cm}^3 \geq 41.2 \text{ cm}^3 \]

Visto este resultado final, es válido escoger dos perfiles UPN100 para el larguero inferior, por lo que en un principio se colocarán perfiles de esta medida en el largo.
Respecto a los dos postes del bastidor el procedimiento es análogo. Sabiendo que el momento máximo que actúa para cada poste es de \(M_{\text{max}} = 6744.4 \text{ N-m}\), el cálculo se hará sólo para un poste.

De este modo:

\[
W_{z} \geq \frac{M_{\text{max}}}{\sigma_{\text{adm}}} \geq \frac{6744.4 \cdot 10^2}{205 \cdot 10^2} \geq 32.90 \text{ cm}^3
\]

Observando de nuevo las tablas normalizadas de perfiles de acero, se observa que el primer perfil UPN que cumple esta condición es el UPN100, con un valor de momento resistente respecto el eje z de \(W_{z} = 41.2 \text{ cm}^3\). De esta manera se decide escoger un perfil UPN100 que cumple claramente con la condición impuesta por la ecuación (Ec. A.4.1.7), por lo que el perfil UPN100 escogido es válido.

Así, el diagrama de momentos flectores resultante de toda la estructura es el siguiente (Fig. A. 4.1.8):

Fig. A.4.1.8. Momentos flectores en toda la estructura
A.4.2. Actuación de los paracaídas tras la frenada de emergencia

Este caso se presenta cuando el ascensor, debido a una emergencia por rotura de las cintas de suspensión o del grupo tractor, los paracaídas que tiene instalados actúan de modo que frenan el movimiento de descenso de la cabina.

En este caso, las fuerzas que actúan sobre el bastidor vienen mayoradas por un factor ψ (Ec. A.4.2.1), que es un factor adimensional que tiene que ver con la aceleración de actuación del paracaídas, a, [6]:

$$\psi = 1 + \frac{a}{g}$$ \hspace{1cm} (Ec. A.4.2.1)

Donde a toma valores de entre (0.1 y 1) de la aceleración de la gravedad, g.

Aplicando esta ecuación para el valor de $a=1.225 \text{ m/s}^2$, que corresponde a la aceleración de frenada cuando actúa el paracaídas, se tiene:

$$\psi = 1 + \frac{1.225}{9.81} = 1.125$$

Como el bastidor es simétrico y también la carga se localiza simétricamente en el eje vertical del bastidor, y las fuerzas de frenado son simétricas, los momentos internos en los extremos del larguero superior (M_1) serán idénticos además de los momentos internos en los extremos del larguero inferior (M_2).

De este modo, en el larguero superior actúa una carga repartida q (Ec. A.4.2.2) y las fuerzas de frenado F (Ec. A.4.2.3):

$$q = \frac{\psi \cdot (Q + K) \cdot g}{b}$$ \hspace{1cm} (Ec. A.4.2.2)

$$F = \frac{1}{2} \cdot \psi \cdot (Q + K) \cdot g$$ \hspace{1cm} (Ec. A.4.2.3)

Para el cálculo de los perfiles en esta situación de cargas se procede análogamente como en la situación anterior, es decir, considerando cada elemento como una viga continua empotrada y mayorando las fuerzas con coeficiente de seguridad 5 [8].
De este modo, y comenzando por el larguero inferior y aplicando las ecuaciones (Ec. A.4.2.2) y (Ec. A.4.2.3) se tienen los siguientes valores y se muestran estas fuerzas en la Fig. A.4.2.1:

\[
q = \frac{5 \cdot 1.125 \cdot (450 + 650) \cdot 9.81}{1} = 60700 \text{ N/m}
\]

\[
F = 5 \cdot \frac{1}{2} \cdot 1.125 \cdot (450 + 650) \cdot 9.81 = 30350 \text{ N}
\]

Se puede apreciar en la Fig. A.4.2.1 como se generan momentos internos de empotramiento en cada extremo de la viga, M₂, de valores iguales pero de sentidos contrarios, cuyo valor viene dado por la siguiente ecuación (Ec. A.4.2.4):

\[
M₂ = \frac{1}{12} \cdot q \cdot b^2
\]

\[
M₂ = \frac{1}{12} \cdot 60700 \cdot 1^2 = 5058 \text{ N·m}
\]

![Fig. A.4.2.1. Fuerzas y momentos en el larguero inferior](image-url)
Con el valor calculado del momento de empotramiento, \(M_2 \), se tiene el siguiente diagrama de momentos flectores para el larguero inferior (Fig. A.4.2.2):

![Diagrama de momentos flectores en larguero inferior](image)

El valor de 2529 N·m se obtiene por medio de la siguiente ecuación (Ec. A.4.2.5):

\[
M_{2\text{min}} = \frac{1}{8} \cdot q \cdot b^2 - M_2
\]

(Ec. A.4.2.5)

\[
M_{2\text{min}} = \frac{1}{8} \cdot 60700 \cdot 1^2 - 5058 = 2529 \text{ N·m}
\]

Con el diagrama de momentos flectores del larguero inferior se procede al dimensionado del mismo procediendo análogamente como para la situación de cargas anterior y aplicando las ecuaciones desde la (Ec. A.4.1.7) hasta la (Ec. A.4.1.10), y sabiendo que se empleará un perfil UPN se tiene lo siguiente:

\[
W_z \geq \frac{M_{\text{max}}}{\sigma_{\text{adm}}} \geq \frac{5058 \cdot 10^2}{205 \cdot 10^3} \geq 24.67 \text{ cm}^3
\]

Con este valor y observando las tablas, el primer perfil UPN que cumple esta condición es el UPN80, puesto que \(W_z = 26.5 \text{ cm}^3 \), y a priori se seleccionarían perfiles UPN100 por tener un momento resistente muy ajustado. De esta manera, y colocando 2 perfiles UPN100 se calcula el módulo resistente resultante (Fig. A.4.2.3):
Procediendo como para el caso anterior se tiene:

\[A = 13.5 \text{ cm}^2 \]

\[I_y = 29.3 \text{ cm}^4 \]

\[I_z = 206 \text{ cm}^4 \]

\[I_{y'} = 2 \cdot (29.3 + 13.5 \cdot (6 + 1.55)^2) = 1598 \text{ cm}^4 \]

\[I_{z'} = 2 \cdot 206 = 412 \text{ cm}^4 \]

\[W_{c'} = \frac{412}{10 - 5} = 82.4 \text{ cm}^3 \geq 24.67 \text{ cm}^3 \]

De esta manera se observa que los perfiles UPN100 son válidos y en un principio se escogen perfiles de estas medidas.
A continuación, se procede al dimensionado de los postes izquierdo y derecho suponiendo que el momento máximo que actúa en los mismos es M_2 calculado anteriormente. Como la carga es simétrica y los momentos M_2 son iguales en cada poste se hará el cálculo sólo para un poste.

Así pues, aplicando nuevamente la ecuación (Ec. A.4.1.7) y sabiendo que es un perfil UPN el que se empleará para los postes se tiene:

$$W_z \geq \frac{M_{\text{max}}}{\sigma_{\text{adm}}} \geq \frac{5058 \cdot 10^2}{205 \cdot 10^2} \geq 24.67 \text{ cm}^3$$

Si se observan las tablas de perfiles de acero normalizados, se tiene que el primer perfil que cumple con esta condición es el UPN80, con $W_z = 26.5 \text{ cm}^3$. En un principio es válido este perfil, pero al ser tan ajustado el momento resistente se decide escoger un perfil UPN100, con $W_z = 41.2 \text{ cm}^3$.

Para hallar el valor del momento M_1 y poder dimensionar así el larguero superior se puede obtener a partir de las dos siguientes ecuaciones que vienen a continuación (Ec. A.4.2.6) y (Ec. A.4.2.7):

$$M_1 = \frac{\psi \cdot (Q + K) \cdot g \cdot b^2}{12} \cdot \frac{\ell \cdot I_1 \cdot I_2}{\ell^2 \cdot I_1 \cdot I_3 + 2b \ell (I_1 \cdot I_2 + I_2 \cdot I_3) + 3b^2 \cdot I_2^2} \quad \text{(Ec. A.4.2.6)}$$

$$M_2 = \frac{\psi \cdot (Q + K) \cdot g \cdot b^2}{12} \cdot \frac{2\ell \cdot I_1 \cdot I_2 + 3b^2 \cdot I_2^2}{\ell^2 \cdot I_1 \cdot I_3 + 2b \ell (I_1 \cdot I_2 + I_2 \cdot I_3) + 3b^2 \cdot I_2^2} \quad \text{(Ec. A.4.2.7)}$$

Las dos ecuaciones anteriores se deducen por medio de la igualdad de los ángulos de distorsión en el extremo izquierdo del larguero superior con la parte superior de los postes, y por igualdad de los ángulos de distorsión del extremo izquierdo del larguero inferior con la parte inferior de los postes. Se puede apreciar en las siguientes figuras (Fig. A.4.2.4 hasta Fig. A.4.2.9):
Fig. A.4.2.4. Viga biapoyada con carga puntual en el centro [6]

Fig. A.4.2.5. Viga biapoyada con carga uniformemente repartida [6]

Fig. A.4.2.6. Viga con carga puntual en posición generalizada [6]
Fig. A.4.2.7. Momento interno en el extremo donde se halla el ángulo de distorsión [6]

\[\varphi = \frac{M \times b}{3E \times J} \]

Fig. A.4.2.8. Momento interno en el extremo opuesto de donde se halla el ángulo de distorsión [6]

\[\varphi = \frac{M \times b}{6E \times J} \]
De esta manera y viendo las figuras anteriores, (Fig. A.4.2.4 hasta Fig. A.4.2.9) se llegan a las ecuaciones (Ec. A.4.2.8) y (Ec. A.4.2.9) a través de las cuales se deducen los valores de los momentos M_1 y M_2:

\[
\frac{(Q + K) \cdot g \cdot b^2}{16 \cdot E \cdot I_1} + \frac{M_1 \cdot b}{2 \cdot E \cdot I_1} = -\frac{M_1 \cdot \ell}{3 \cdot E \cdot I_2} - \frac{M_2 \cdot \ell}{6 \cdot E \cdot I_2}
\]

(Ec. A.4.2.8)

\[
\frac{(Q + K) \cdot g \cdot b^2}{24 \cdot E \cdot I_3} + \frac{M_2 \cdot b}{2 \cdot E \cdot I_3} = \frac{M_2 \cdot \ell}{3 \cdot E \cdot I_2} + \frac{M_1 \cdot \ell}{6 \cdot E \cdot I_2}
\]

(Ec. A.4.2.9)

De modo que resolviendo ambas ecuaciones y despejando M_1 y M_2 se llegan a las ecuaciones (Ec. A.4.2.6) y (Ec. A.4.2.7) anteriormente mencionadas.

Conocidos los valores de M_2 y de los siguientes parámetros, se aplica la ecuación (Ec. A.4.2.7) y se halla el valor de I_1:

\[
b = 1 \text{m}
\]

\[
\ell = 3.16 \text{m}
\]

\[
I_2 = 29.3 \text{cm}^4 = 2.93 \cdot 10^{-7} \text{m}^4
\]

\[
I_3 = 2 \cdot 206 = 412 \text{cm}^4 = 4.12 \cdot 10^{-6} \text{m}^4
\]
De modo que introduciendo los valores de \(I_2\) y \(I_3\) y despejando el valor de \(I_1\) se tiene:

\[I_1 = 2.326 \cdot 10^{-6} \text{ m}^4 = 232.6 \text{ cm}^4\]

Y aplicando ahora la ecuación (Ec. A.4.2.6) e introduciendo los mismos parámetros que para la ecuación (Ec. A.4.2.7) y el valor de \(I_1\) se tiene el valor de \(M_1\):

\[M_1 = \frac{2 \cdot (450 + 650) \cdot 9.81 \cdot 1^2}{12} \cdot \frac{2 \cdot 3.16 \cdot I_1 \cdot I_2 + 3 \cdot 1^2 \cdot I_2^2}{3.16^2 \cdot I_1 \cdot I_3 + 2 \cdot 1 \cdot 3.16 \cdot (I_1 \cdot I_2 + I_2 \cdot I_3) + 3 \cdot 1^2 \cdot I_2^2}\]

\[M_1 = 35.90 \text{ N} \cdot \text{m}\]

Con este valor se confirma la hipótesis que el momento \(M_2\) que actúa sobre los dos postes es la máxima, y además, ese momento es constante en todo el larguero superior. Además, según el valor obtenido de \(I_1 = 232.6 \text{ cm}^4\), se puede dimensionar el larguero superior, ya que si se sabe que se emplean perfiles UPN se puede observar que el perfil UPN más cercano a tener un valor similar es el UPN120 con un momento de inercia respecto el eje \(z\) de 364 cm\(^4\).

Para el dimensionado, pues, de los postes se procede de forma análoga, teniendo en cuenta el momento máximo en cada poste y aplicando la Ec. A.4.1.7:

\[W_c \geq \frac{M_{\text{max}}}{\sigma_{\text{adm}}} \geq \frac{5058 \cdot 10^2}{205 \cdot 10^2} \geq 24.67 \text{ cm}^3\]

De modo que observando de nuevo las tablas de perfiles UPN, el más cercano es el UPN80, y por los motivos anteriores, se decide escoger un perfil UPN100.
En la siguiente figura (Fig. A.4.2.10) se puede ver el diagrama de momentos flectores para la estructura del bastidor del ascensor y para este estado de cargas:

![Diagrama de momentos flectores](image)

Fig. A.4.2.10. Momentos flectores en toda la estructura

A.4.3. Choque con los amortiguadores del foso

Este caso se presenta cuando el ascensor cae por rotura de las cintas de suspensión y los paracaídas por algún motivo u otro no han actuado, y se produce el choque contra los amortiguadores de cabina ubicados en el foso.

Como se halló en el apartado A.1, existen dos amortiguadores en el foso para la cabina, y la fuerza de cada uno se halló por medio de la ecuación (Ec. A.1.7) resultando una fuerza para cada amortiguador de 21582 N. Pero si se mayoría con un coeficiente de seguridad 5, se tiene que la fuerza de cada amortiguador es de 107910 N.

Por otro lado, la carga repartida está mayorada por un factor \(\psi \), que como se halló en el apartado anterior por medio de la ecuación (Ec. A.4.2.1) el factor resultante es 1.125. La carga repartida se halla según la ecuación (Ec. A.4.2.2), que siendo mayorada por un coeficiente de seguridad 5, dicha carga toma como valor \(q = 60700N/m \).

Tanto la fuerza de los amortiguadores como la carga repartida actúan sobre el larguero inferior. Como el bastidor es simétrico y las cargas también, los momentos internos en los extremos del larguero superior \((M_1)\) serán idénticos además de los momentos internos en los extremos del larguero inferior \((M_2)\).
De esta manera, y procediendo análogamente como en las dos situaciones anteriores de carga en la estructura, y considerando cada componente del bastidor como una viga continua y empotrada se tiene, y comenzando por el larguero inferior, lo siguiente (Fig. A.4.3.1) y (Fig. A.4.3.2):

El momento de empotramiento total en el larguero inferior será la suma de los momentos de empotramiento resultantes en cada caso visto en las dos figuras anteriores, quedando evidente que dichos momentos de empotramiento serán iguales y de sentidos contrarios en cada extremo del larguero inferior.

Comenzando por el caso en que sólo actúa la carga repartida, por medio de la ecuación (Ec. A.4.1.4) se tiene el valor de M_x y se tiene el siguiente diagrama de momentos flectores para el larguero inferior (Fig. A.4.3.3):

Fig. A.4.3.1. Fuerzas y momentos debidos a la carga repartida

Fig. A.4.3.2. Fuerzas y momentos debidos al choque con los amortiguadores

El momento de empotramiento total en el larguero inferior será la suma de los momentos de empotramiento resultantes en cada caso visto en las dos figuras anteriores, quedando evidente que dichos momentos de empotramiento serán iguales y de sentidos contrarios en cada extremo del larguero inferior.
donde el valor 4496.3 N·m se obtiene por medio de la ecuación (Ec. A.4.2.5) anteriormente mencionada:

\[M_{2}^{a} = \frac{1}{12} \cdot 107910 \cdot 1^2 = 8992.5 \text{ N·m} \]

Respecto al caso en que se produce el choque con los dos amortiguadores se tiene, a través de la ecuación (Ec. A.4.3.1) el siguiente diagrama de momentos flectores (Fig. A.4.3.4):

\[M_{2}^{b} = \frac{F \cdot a \cdot (b-a)}{b} \]

(Ec. A.4.3.1)

\[M_{2}^{b} = \frac{107910 \cdot 0.325 \cdot (1-0.325)}{1} = 23672 \text{ N·m} \]
Fig. A.4.3.4. Diagrama de momentos flexores en larguero inferior debidos a la fuerza de los muelles

De modo que el diagrama de momentos flexores resultante (Fig. A.4.3.5) por medio del principio de superposición será la suma de los dos diagramas de momentos flexores, los debidos a la carga repartida (Fig. A.4.3.3) y los debidos al choque con los amortiguadores (Fig. A.4.3.4):

Fig. A.4.3.5. Momentos flexores resultantes en larguero inferior

donde el valor de -10183 N·m se obtiene de la ecuación (Ec. A.2.5):

\[
M_2^{\text{min}} = \frac{1}{8} \cdot 107910 \cdot 1^2 - 23672 = -10183 \text{N·m}
\]
Con el diagrama de momentos flectores resultante se puede pasar a determinar el perfil UPN necesario para el larguero inferior, así que, procediendo como anteriormente se ha hecho para su elección en las dos situaciones de carga anteriores se tiene, aplicando las ecuaciones desde la (Ec. A.4.1.7) a la (Ec. A.4.1.10):

$$W_z \geq \frac{M_{max}}{\sigma_{adm}} \geq \frac{32664.5 \cdot 10^2}{205 \cdot 10^2} \geq 159.34 \text{ cm}^3$$

Observando este valor y la tabla de perfiles normalizados, el perfil UPN que cumple a priori esta condición es el UPN200, puesto que $W_z = 191 \text{ cm}^3$. Pero al haber de colocar dos perfiles UPN se baraja la posibilidad de emplear perfiles UPN inferiores al obtenido, que podrían ser por ejemplo dos perfiles UPN140 (Fig. A.4.3.6):

Análogamente a los casos anteriores se tiene:

$$A = 20.4 \text{ cm}^2$$

$$I_y = 62.7 \text{ cm}^4$$

$$I_z = 605 \text{ cm}^4$$

$$I'_{y} = 2 \cdot (62.7 + 20.4 \cdot (9 + 1.75)^2 = 4840 \text{ cm}^4$$

$$I'_{z} = 2 \cdot 605 = 1210 \text{ cm}^4$$
\[
W_z' = \frac{1210}{14 - 7} = 172.8 \text{ cm}^3 \geq 115.5 \text{ cm}^3
\]

Con el valor obtenido y visto que cumple con la condición impuesta por la ecuación (Ec. A.4.1.7), en un principio se escogería un par de perfiles UPN140 para el larguero inferior.

Suponiendo de nuevo que el valor del momento máximo en el poste es \(M_{\text{max}} = 32664.5 \text{ N} \cdot \text{m} \), se procede al dimensionado del poste aplicando la ecuación (Ec. A.4.1.7):

\[
W_z \geq \frac{M_{\text{max}}}{\sigma_{\text{adm}}} \geq \frac{32664.5 \cdot 10^2}{205 \cdot 10^2} \geq 159.34 \text{ cm}^3
\]

Observando la tabla de perfiles normalizados, el perfil UPN más inmediato que cumple con la condición impuesta por la ecuación (Ec. A.4.1.7) es el UPN200, ya que su momento resistente toma como valor \(W_z = 191 \text{ cm}^3 \), por lo que a priori se escoge un perfil UPN200 para los postes del bastidor.

Finalmente, para el dimensionado del larguero superior, se debería conocer el valor del momento de empotramiento \(M_1 \). La manera de determinar dicho valor viene dada por la Ec. A.4.3.2, que se deduce a través de la igualación de los ángulos de distorsión en el extremo izquierdo del larguero superior con la parte superior de los postes, y por igualdad de los ángulos de distorsión del extremo izquierdo del larguero inferior con la parte inferior de los postes, tal como se ha comentado en el apartado anterior:

\[
-\frac{F \cdot b^2}{16 \cdot E \cdot I_3} + \frac{F \cdot b^2}{24 \cdot E \cdot I_3} + \frac{M_2 \cdot b}{2 \cdot E \cdot I_3} = -\frac{M_2 \cdot \ell}{3 \cdot E \cdot I_2} + \frac{M_1 \cdot \ell}{6 \cdot E \cdot I_2}
\]
(Ec. A.4.3.2)
Sabiendo que el larguero inferior tiene un momento de inercia de $I_3 = 1210 \text{ cm}^4$, y que los postes de perfil UPN200 tienen un momento de inercia de valor $I_2 = 148 \text{ cm}^4$, y luego $b = 1 \text{ m}$, y $\ell = 3.16 \text{ m}$, y sustituyendo tales parámetros en la ecuación (Ec. A.4.3.2) se obtiene el valor del momento M_1:

$$
-\frac{107910 \cdot 1^2}{16 \cdot E \cdot 1210} + \frac{107910 \cdot 1^2}{24 \cdot E \cdot 1210} + \frac{32664.5 \cdot 1}{2 \cdot E \cdot 1210} = -\frac{32664.5 \cdot 3.16}{3 \cdot E \cdot 148} + \frac{M_1 \cdot 3.16}{6 \cdot E \cdot 148}
$$

$M_1 = 68600 \text{ N·m}$

Con este valor obtenido se puede proceder a dimensionar el larguero superior mediante la Ec. A.4.1.7, y los postes se deberían redimensionar, puesto que con el valor del momento M_1 el valor máximo del momento es 68600 N·m. Por lo tanto, comenzando a redimensionar los postes se tiene:

$$W_z \geq \frac{M_{\text{max}}}{\sigma_{\text{adm}}} \geq \frac{68600 \cdot 10^2}{205 \cdot 10^2} \geq 334.63 \text{ cm}^3$$

Observando de nuevo la tabla de perfiles normalizados UPN, el más próximo que cumple con esta condición es el UPN260, por lo que se escoge uno de estas dimensiones.

Por otro lado, respecto al larguero superior y aplicando también la Ec. A.4.1.7 se obtiene la misma condición anterior para el valor que ha de tener el momento resistente, por lo que en un principio se escogería también un perfil UPN260. Pero al empelarse 2 perfiles UPN es probable que sea suficiente con emplear 2 perfiles más pequeños. Probando por 2 perfiles UPN200 (Fig. A.4.3.7) se tiene:
A = 32.2 cm2

$I_y = 148$ cm4

$I_z = 1910$ cm4

$I_{y'} = 2 \cdot (148 + 32.2 \cdot (13 + 2.01)^2 = 14805$ cm4

$I_{z'} = 2 \cdot 1910 = 3820$ cm4

$W_z = \frac{3820}{20 - 10} = 382$ cm$^3 \geq 334.63$ cm3

Con el valor obtenido y visto que cumple con la condición impuesta por la ecuación (Ec. A.4.1.7), se escogerían un par de perfiles UPN200 para el larguero inferior. En la Fig. A.4.3.8 se puede observar el diagrama de momentos flectores resultantes en todos los componentes de la estructura del bastidor de la cabina:
Y para concluir se hace un tanteo sobre los perfiles escogidos para los postes y los largueros superior e inferior. De esta manera se escogerá el perfil de acero normalizado para cada componente en función de las solicitudes más críticas de entre las 3 situaciones de carga descritas para el cálculo del bastidor de la cabina. Para realizar el tanteo se elabora la siguiente tabla (Tabla A.4.3.1) donde para cada estado de carga y para cada componente se tienen los perfiles de acero normalizados escogidos para cada uno de ellos:

<table>
<thead>
<tr>
<th></th>
<th>Situación normal de operación</th>
<th>Actuación del paracaídas</th>
<th>Choque con los amortiguadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larguero superior</td>
<td>2xUPN100</td>
<td>2xUPN120</td>
<td>2xUPN200</td>
</tr>
<tr>
<td>Postes</td>
<td>UPN100</td>
<td>UPN100</td>
<td>UPN260</td>
</tr>
<tr>
<td>Larguero inferior</td>
<td>2xUPN100</td>
<td>2xUPN100</td>
<td>2xUPN140</td>
</tr>
</tbody>
</table>

Tabla A.4.3.1. Perfiles para cada estado de carga y para cada componente
Como se puede apreciar en la Tabla A.4.3.1, la situación de carga más desfavorable es la tercera, es decir, cuando se produce el choque con los amortiguadores del foso, puesto que los perfiles empleados son más grandes que para los dos casos anteriores.

De esta manera, y globalmente se decide escoger para cada componente del bastidor de la cabina los siguientes perfiles de acero normalizados:

- Larguero superior: 2 x UPN200
- Postes: UPN260
- Larguero inferior: 2 x UPN140

A.5. Cálculo del bastidor de contrapeso

El contrapeso, al igual que la cabina dispone de un bastidor en su estructura para soportar los bloques de fundición que constituyen el contrapeso. El cálculo de los perfiles de acero normalizados que forman el esqueleto del contrapeso es análogo al de la cabina, puesto que los esfuerzos que actúan son los mismos con la única diferencia que los perfiles empleados son distintos tal como se verá a continuación.

A.5.1. Operación normal de desplazamiento

El procedimiento de cálculo es idéntico al bastidor de la cabina, y por tanto se prescindirá de muchas de las explicaciones, puesto que las mismas en referencia a la cabina son extrapolables al contrapeso.

De esta manera y para comenzar, se tiene el siguiente diagrama de fuerzas (Fig. A.5.1.1) para el larguero superior, en el que la fuerza de tracción se ha obtenido según la ecuación (Ec. A.5.1.1), con la variante de que la masa en este caso es la del contrapeso:

\[F = Z \cdot g \]
(Ec. A.5.1.1)
\[F = 875 \cdot 9.81 \cdot 5 = 42919 \text{ N} \]

\[M_1 = \frac{1}{8} \cdot F \cdot b = \frac{1}{8} \cdot 42919 \cdot 1 = 5365 \text{ N}\cdot\text{m} \]

\[M_1' = 5 \cdot \frac{1}{4} \cdot Z \cdot g \cdot b - M_2 = 5 \cdot \frac{1}{4} \cdot 875 \cdot 9.81 \cdot 1 - 3577 = 7153 \text{ N}\cdot\text{m} \]

Fig. A.5.1.1. Fuerzas y momentos que actúan en el larguero superior

En la Fig. A.5.1.2 se muestra el diagrama de momentos flectores del larguero superior, cuyos valores que se observan se han obtenido análogamente según las ecuaciones Ec. A.4.1.3 y Ec. A.4.1.5, respectivamente:

\[M_1 = \frac{1}{8} \cdot F \cdot b = \frac{1}{8} \cdot 42919 \cdot 1 = 5365 \text{ N}\cdot\text{m} \]

\[M_1' = 5 \cdot \frac{1}{4} \cdot Z \cdot g \cdot b - M_2 = 5 \cdot \frac{1}{4} \cdot 875 \cdot 9.81 \cdot 1 - 3577 = 7153 \text{ N}\cdot\text{m} \]

Fig. A.5.1.2. Diagrama de momentos flectores en el larguero superior
Respecto a los esfuerzos que actúan en el larguero inferior (Fig. A.5.1.3) se tiene lo siguiente, en el que la carga repartida se ha obtenido según Ec. A.4.1.2, donde la masa ahora es la del contrapeso:

\[q = \frac{Z \cdot g}{b} = \frac{875 \cdot 9.81 \cdot 5}{1} = 42919 \text{ N/mL} \]

A continuación, en la Fig. A.5.1.4 se muestra el diagrama de momentos flectores del larguero inferior, en el que los valores que figuran se han obtenido según Ec. A.4.1.4 y Ec. A.4.1.6, respectivamente:

\[M_2 = \frac{1}{12} \cdot q \cdot b^2 = \frac{1}{12} \cdot 42919 \cdot 1^2 = 3577 \text{ N·m} \]

\[M_2' = 5 \cdot \frac{1}{4} \cdot Z \cdot g \cdot b - M_2 = 5 \cdot \frac{1}{4} \cdot 875 \cdot 9.81 \cdot 1 - 3577 = 1788 \text{ N·m} \]
Respecto a los dos postes, y sabiendo que los momentos flectores M_1 y M_2 de valores 5365 N·m y 3577 N·m, respectivamente, se transmiten desde los largueros a los postes, se tiene en la Fig. A.5.5 el diagrama de momentos flectores para ambos postes:

Una vez se tienen los diagramas de momentos flectores se procede al dimensionado de cada elemento del bastidor del contrapeso, empleando en este caso perfiles HEB para ambos largueros y perfiles UPN para los dos postes.
De esta manera, y comenzando por el larguero superior se tiene que cumplir la Ec. A.4.1.7:

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_z} \leq \sigma_{\text{adm}} \rightarrow W_z \geq \frac{M_{\text{max}}}{\sigma_{\text{adm}}} = \frac{7153}{205} = 34.89 \text{ cm}^3$$

Según las tablas, el primer perfil HEB que cumple con esta condición es el HEB100 con un valor de $W_z = 89.9 \text{ cm}^3$, de manera que en principio se escoge este perfil para el larguero superior.

En cuanto al larguero inferior se tiene:

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_z} \leq \sigma_{\text{adm}} \rightarrow W_z \geq \frac{M_{\text{max}}}{\sigma_{\text{adm}}} = \frac{3577}{205} = 17.45 \text{ cm}^3$$

que según las tablas, el primer perfil que también cumple con la condición es el perfil HEB100, igual que para el larguero superior.

Respecto a los postes y procediendo como antes:

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_z} \leq \sigma_{\text{adm}} \rightarrow W_z \geq \frac{M_{\text{max}}}{\sigma_{\text{adm}}} = \frac{5365}{205} = 26.17 \text{ cm}^3$$

de manera que observando la tabla de perfiles para los UPN se tiene que el primero en cumplir la condición impuesta por la Ec. A.4.1.7 es el perfil UPN100 con un valor de $W_z = 41.2 \text{ cm}^3$. Se escoge este perfil y no el UPN80 ya que el valor de W_z en este caso es de 26.5 cm3 y queda muy justo. Así, se tiene un diagrama de momentos flectores de toda la estructura del bastidor para este primer caso (Fig. A.5.1.6):
A.5.2. Actuación de los paracaídas tras la frenada de emergencia

Procediendo como en el apartado A.4.2, y comenzando por el larguero inferior se tiene el siguiente diagrama de fuerzas sobre dicho componente de la estructura (Fig. A.5.2.1)
onde los valores que se observan en el diagrama se han obtenido según las ecuaciones Ec. A.4.2.2 y Ec. A.4.2.3, respectivamente:

\[q = \frac{\psi \cdot Z \cdot g}{b} = \frac{5 \cdot 1.125 \cdot 875 \cdot 9.81}{1} = 48284 \text{N} \cdot \text{m} \]

\[F = \frac{1}{2} \cdot \psi \cdot Z \cdot g = 5 \cdot \frac{1}{2} \cdot 1.125 \cdot 875 \cdot 9.81 = 24142 \text{N} \]

Seguidamente, en la Fig. A.5.2.2 se tiene el diagrama de momentos flectores para el larguero inferior de modo que los valores obtenidos provienen de las ecuaciones Ec. A.4.1.4 y Ec. A.4.1.6:

\[M_2 = \frac{1}{12} \cdot q \cdot b^2 = \frac{1}{12} \cdot 48284 \cdot 1^2 = 4024 \text{N} \cdot \text{m} \]

\[M_2' = \frac{1}{8} \cdot q \cdot b^2 - M_2 = \frac{1}{8} \cdot 48284 \cdot 1^2 - 4024 = 2011.5 \text{N} \cdot \text{m} \]

Si se procede al dimensionado del larguero inferior imponiendo la Ec. A.4.1.7 como antes se ha realizado para el resto de casos se tiene:

\[\sigma_{\max} = \frac{M_{\max}}{W_z} \leq \sigma_{\text{adm}} \rightarrow W_z \geq \frac{M_{\max}}{\sigma_{\text{adm}}} = \frac{4024}{205} = 19.63 \text{cm}^3 \]

donde el primer perfil HEB que cumple esta condición según las tablas es el perfil HEB100 con valores de \(W_z = 89.9 \text{ cm}^3 \) y \(I_z = 450 \text{ cm}^4 \).
En cuanto al dimensionado de los dos postes, el momento M_2 que actúa en el larguero inferior se transmite al poste y se procede como en A.4.2 suponiendo que en los postes M_2 es mayor que M_1:

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_z} \leq \sigma_{\text{adm}} \rightarrow W_z \geq \frac{M_{\text{max}}}{\sigma_{\text{adm}}} = \frac{4024}{205} = 19.63 \text{ cm}^3$$

y en este caso, el primer perfil UPN que cumple con esta condición es el UPN80, con un valor de $W_z = 26.5 \text{ cm}^3$ y $I_z = 106 \text{ cm}^4$.

Para el dimensionado del larguero superior se procede como para el dimensionado del mismo para la cabina, aplicando las ecuaciones desde la Ec. A.4.2.6 hasta la Ec. A.4.2.7. Así pues, aplicando la Ec. A.4.2.7 y conociendo los siguientes parámetros se tiene:

$$M_2 = 4024 \text{ N·m}$$

$$I_z = 19.4 \text{ cm}^4$$

$$I_3 = 450 \text{ cm}^4$$

$$b = 1 \text{ m}$$

$$\ell = 0.9615 \text{ m}$$

$$4024 = \frac{2 \cdot 875 \cdot 9.81 \cdot 1^2}{12} \cdot \frac{2 \cdot 0.9615 \cdot I_1 \cdot I_2 + 3 \cdot 1^2 \cdot I_2^2}{0.9615^2 \cdot I_1 \cdot I_3 + 2 \cdot 1 \cdot 0.9615 \cdot (I_1 \cdot I_2 + I_2 \cdot I_3) + 3 \cdot 1^2 \cdot I_2^2}$$

de manera que se obtiene el valor de I_1, que es la incógnita y tiene como valor:

$$I_1 = 39.81 \text{ cm}^4 \rightarrow \text{Perfil HEB100 más cercano con } I_1 = 450 \text{ cm}^4$$

Ahora, introduciendo los mismos parámetros y el valor de $I_1 = 39.84 \text{ cm}^4$ mayorado a $I_1 = 450 \text{ cm}^4$ en la Ec. A.4.2.6, se obtiene el valor de M_1:

$$M_1 = \frac{2 \cdot 875 \cdot 9.81 \cdot 1^2}{12} \cdot \frac{0.9615 \cdot I_1 \cdot I_2}{0.9615^2 \cdot I_1 \cdot I_3 + 2 \cdot 1 \cdot 0.9615 \cdot (I_1 \cdot I_2 + I_2 \cdot I_3) + 3 \cdot 1^2 \cdot I_2^2}$$

$$M_1 = 54.11 \text{ N·m}$$
y como se puede ver, efectivamente se cumple $M_1 \leq M_2$, por lo que la hipótesis anterior es correcta y por tanto válida.

En la Fig. A.5.2.3 se muestra el diagrama de momentos flectores de toda la estructura:

![Diagrama de momentos flectores](image)

Fig. A.5.2.3. Diagrama de momentos flectores en toda la estructura

El valor de $\ell = 0.9615\,\text{m}$ que aparece en las ecuaciones Ec. A.4.2.6 y Ec. A.4.2.7 proviene del siguiente cálculo que corresponde a hallar la altura de los bloques de fundición del contrapeso:

Se sabe que la densidad de la fundición de hierro es aproximadamente igual a la del acero, y tiene como valor $\rho = 7800\,\text{kg/m}^3$. Luego, se sabe que el contrapeso tiene una masa de 875 kg como se podrá ver en el siguiente apartado. Pero al incluir los perfiles del acero se hará una suposición que la masa de fundición es de 750 kg.

Bien, con estos datos se puede hallar el volumen que ocuparán los bloques de fundición a colocar en el bastidor del contrapeso:

$$V = \frac{m}{\rho}$$

(Ec. A.5.2.1)

$$V = \frac{m}{\rho} = \frac{750}{7800} = 0.09615 \, \text{m}^3$$
Bien, sabiendo que la anchura del larguero inferior es de 1 m y su profundidad es de 0.1 m, que es un perfil HEB100, se sabe que la superficie es de 0.1 m². Por lo tanto, para conocer la altura de los bloques de fundición basta dividir el volumen total que ocupan los bloques de fundición por la sección del larguero inferior en la que se apoyan dichos bloques:

\[\ell = \frac{V}{A} \]

(Ec. A.5.2.2)

\[\ell = \frac{0.09615}{0.1} = 0.9615 \text{ m} \]

A.5.3. Choque con los amortiguadores del foso

De forma análoga al apartado A.4.3, se tienen los diagramas de fuerzas y momentos siguientes, uno debido a la carga repartida (Fig. A.5.3.1) y otro debido a las fuerzas que actúan sobre el bastidor cuando se produce el choque con los dos amortiguadores de foso del contrapeso (Fig. A.5.3.2):

![Diagrama de fuerzas y momentos](image-url)

Fig. A.5.3.1. Fuerzas y momentos en el larguero inferior debido a la carga repartida
Bien, dibujando el diagrama de momentos flectores para cada esfuerzo por separado y con referencia a las Figs. A.5.3.1 y A.5.3.2, se tienen los siguientes diagramas (Fig. A.5.3.3) y (Fig. A.5.3.4):
Los valores de los momentos flectores se obtienen de aplicar de nuevo las ecuaciones Ec. A.4.1.4, Ec. A.4.2.5 y Ec. A.4.3.1, las dos primeras correspondientes para la Fig. A.5.3.3:

\[M_2 = \frac{1}{12} \cdot q \cdot b^2 = \frac{1}{12} \cdot 42919 \cdot 1^2 = 3577 \text{ N} \cdot \text{m} \]

\[M_2^{\min} = \frac{1}{8} \cdot q \cdot b^2 - M_2 = \frac{1}{8} \cdot 42919 \cdot 1^2 - 3577 = 1788 \text{ N} \cdot \text{m} \]

\[M_2^b = \frac{F \cdot a \cdot (b - a)}{b} = \frac{85837.5 \cdot 0.325 \cdot (1 - 0.325)}{1} = 18831 \text{ N} \cdot \text{m} \]

De este modo y haciendo la suma de los diagramas de momentos flectores de las figuras Fig. A.5.3.3 y Fig. A.5.3.4 por el principio de superposición, se obtiene el diagrama de momentos flectores total del larguero inferior (Fig. A.5.3.5):

[Diagrama de momentos flectores total en el larguero inferior]

donde el valor de -8101 N·m se ha obtenido según la Ec. A.4.2.5:

\[M_2^{\min} = \frac{1}{8} \cdot 85837.5 \cdot 1^2 - 18831 = -8101 \text{ N} \cdot \text{m} \]
Con el diagrama de momentos flectores anterior del larguero inferior se pasa al dimensionado del mismo aplicando de nuevo la Ec. A.4.1.7:

\[
\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_z} \leq \sigma_{\text{adm}} \rightarrow W_z \geq \frac{M_{\text{max}} \cdot \sigma_{\text{adm}}}{205} = \frac{22408}{205} = 109.31 \text{cm}^3
\]

de manera que el perfil HEB más cercano a esta condición es el HEB120 con un valor de \(W_z = 144 \text{ cm}^3\) y un momento de inercia \(I_z = 864 \text{ cm}^4\).

A continuación se procede al dimensionado de los postes imponiendo también la Ec. A.4.1.7, y suponiendo de nuevo que \(M_2 > M_1\):

\[
\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_z} \leq \sigma_{\text{adm}} \rightarrow W_z \geq \frac{M_{\text{max}} \cdot \sigma_{\text{adm}}}{205} = \frac{22408}{205} = 109.31 \text{cm}^3
\]

donde el perfil UPN más cercano a esta condición es el UPN160 con un valor de \(W_z = 116 \text{ cm}^3\) y un momento de inercia \(I_y = 85.3 \text{ cm}^4\).

Seguidamente, se procede al dimensionado del larguero superior, pero para ello se debe conocer el momento \(M_1\) y con ello el valor del momento de inercia, \(I_1\). Bien, el modo de operar es análogo al apartado A.4.3, mediante el empleo de la ecuación Ec. A.4.3.2, y que se deducen por medio de los ángulos de distorsión según se ha comentado anteriormente.

De esta manera, y mencionando de nuevo la ecuación Ec. A.4.3.2, y los parámetros necesarios para su resolución y obtener así el valor de \(M_1\), se tiene:

\[
- \frac{F \cdot b^2}{16 \cdot E \cdot I_3} + \frac{F \cdot b^2}{24 \cdot E \cdot I_3} + \frac{M_2 \cdot b}{2 \cdot E \cdot I_3} = - \frac{M_2 \cdot \ell}{3 \cdot E \cdot I_2} + \frac{M_1 \cdot \ell}{6 \cdot E \cdot I_2} \quad \text{(Ec. A.4.3.2)}
\]

\[b = 1 \text{ m}\]

\[\ell = 0.9615 \text{ m}\]

\[I_2 = 85.3 \text{ cm}^4\]
\[I_3 = 450 \text{ cm}^4 \]

\[- \frac{85837.5 \cdot 1 \cdot 1}{16 \cdot E \cdot 450} + \frac{85837.5 \cdot 1 \cdot 1}{24 \cdot E \cdot 450} + \frac{3577 \cdot 1}{2 \cdot E \cdot 450} = - \frac{3577 \cdot 0.9615}{3 \cdot E \cdot 85.3} + \frac{M_1 \cdot 0.9615}{6 \cdot E \cdot 85.3} \]

\[M_1 = 7154 \text{ N·m} \]

donde se puede comprobar que \(M_1 < M_2 \). Así, aplicando la Ec. A.4.1.7 se puede dimensionar el larguero superior:

\[W_z \geq \frac{M_{\text{max}}}{\sigma_{\text{adm}}} = \frac{7154}{205} = 34.90 \text{ cm}^3 \]

De esta manera, según este valor, el perfil HEB que cumple con esta condición más próximo es el HEB100 cuyo valor de \(W_z = 89.9 \text{ cm}^3 \), y por tanto se escoge un perfil HEB100.

Y en la Fig. A.5.3.6 que viene a continuación se muestra el diagrama de momentos flectores en toda la estructura:

Fig. A.5.3.6. Momentos flectores en toda la estructura del bastidor
Y ya para concluir este apartado se realiza un tanteo para escoger los perfiles normalizados de acero definitivos para la estructura del bastidor, como se realizó para el caso de la cabina. El modo de proceder es análogo y se escogerán los perfiles definitivos correspondientes al caso más crítico (Tabla A.5.3.1):

<table>
<thead>
<tr>
<th></th>
<th>Situación normal de operación</th>
<th>Actuación del paracaídas</th>
<th>Choque con los amortiguadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larguero superior</td>
<td>HEB100</td>
<td>HEB100</td>
<td>HEB100</td>
</tr>
<tr>
<td>Postes</td>
<td>UPN100</td>
<td>UPN80</td>
<td>UPN160</td>
</tr>
<tr>
<td>Larguero inferior</td>
<td>HEB100</td>
<td>HEB100</td>
<td>HEB120</td>
</tr>
</tbody>
</table>

Tabla A.5.3.1. Perfiles para cada estado de carga y cada componente

Según se puede observar en la Tabla A.5.3.1, el caso más crítico es el caso en que se produce el choque con los amortiguadores del foso, puesto que los perfiles calculados son mayores y los esfuerzos también. De esta manera, cabe decir también que el hecho de emplear perfiles UPN160 en los postes, condiciona que los largueros, tanto superior como inferior sean de perfil HEB160 para que en el momento del montaje queden alineados y los bloques de fundición bien encajados.

Así pues, se concluye con que los perfiles para cada componente son:

- Larguero inferior: HEB160
- Larguero superior: HEB160
- Postes: UPN160
A.6. Cálculo del contrapeso

Según se ha podido observar en el apartado 6.7. Contrapeso, el contrapeso de un ascensor se calcula equilibrando la masa de la cabina y generalmente la mitad de la carga nominal, siempre y cuando el recorrido del ascensor no sea superior a 35 metros (edificios altos con recorrido superior a 35 m), ya que de ser así se debería tener en cuenta el peso de los cables y la presencia de cables de compensación.[7], [8]

En dicho apartado, 6.7. Contrapeso, se ha calculado la masa del contrapeso de forma sencilla realizando el equilibrado de la masa de la cabina y de la mitad del contrapeso por medio de la siguiente ecuación (Ec. A.6.1):

\[Z = P + Q/2 \]

(Ec. A.6.1)

Bien, de ser el recorrido del ascensor superior a los 30 metros de altura, se tiene el siguiente esquema, y a continuación ecuaciones que se emplearían para determinar la masa del contrapeso de un ascensor de dichas características en cuanto a recorrido se refiere (Fig. A.6.1):

Fig. A.6.1. Esquema de cálculo del contrapeso para un edificio alto [8]
Observando la figura anterior, se puede establecer un equilibrio de fuerzas mediante la ecuación (Ec. A.6.2) donde ahora participan los cables de compensación:

$$(K + \Psi \cdot Q) \cdot g + (H - z) \cdot q_L \cdot g + z \cdot q_k \cdot g + y \cdot q_e \cdot g =$$

$$Z \cdot g + z \cdot q_L \cdot g + (H - z) \cdot q_k \cdot g$$

(Ec. A.6.2)

Se puede establecer de forma simple la relación entre la variable y y z (Ec. A.6.3):

$$y = \frac{z}{2}$$

(Ec. A.6.3)

Sustituyendo esta última igualdad en la ecuación (Ec. A.6.2) resulta:

$$K + \Psi \cdot Q + H \cdot q_L + z \cdot (q_k - q_L + q_e/2) = Z + H \cdot q_k + z \cdot (q_k - q_k)$$

(Ec. A.6.4)

La ecuación (Ec. A.6.4) debe cumplirse para cualquier posición de la cabina, por lo tanto se pueden igualar los términos que no contienen la variable z resultando:

$$K + \Psi \cdot Q + H \cdot q_L = Z + H \cdot q_k$$

(Ec. A.6.5)

Y realizando la misma operación para los términos que multiplican a z, queda:

$$q_k - q_L + \frac{q_e}{2} = q_L - q_k$$

(Ec. A.6.6)

La ecuación (Ec. A.6.6) permite obtener el peso por unidad de longitud del cable de compensación:

$$q_k = q_L - \frac{q_e}{4}$$

(Ec. A.6.7)

Y finalmente sustituyendo la ecuación (Ec. A.6.7) en la ecuación (Ec. A.6.5), resulta una relación entre el contrapeso y el peso de la cabina, la carga útil, la altura y el peso por unidad de longitud del cable de tracción:

$$Z = K + \Psi \cdot Q + H \cdot \frac{q_e}{4}$$

(Ec. A.6.8)
Los contrapesos están constituidos por bloques de fundición o de hormigón. En cualquier caso, los bloques deben estar unidos por un bastidor o como mínimo por dos tirantes de acero (Norma EN 81), calculados con un factor de seguridad de 5 al menos. [8].

Las uniones del bastidor deberán estar soldadas, remachadas o fijadas con pernos múltiples con pasadores en las tuercas (Norma EN 81).

A.7. Selección del motor de tracción

El motor de tracción es el motor que suministra la potencia necesaria al ascensor para que éste realice los movimientos de subida y bajada. Este motor de tracción acciona a la polea tractora, y ésta tiene incorporada en su extremo un disco con unos frenos de disco.

Para su elección se ha de conocer la potencia necesaria para realizar las operaciones de subida y bajada, así como el par necesario para arrastrar dicha carga y la velocidad de régimen a la que funciona el receptor, que en este caso es el ascensor y contrapeso.

Primero se procede al cálculo de la potencia, en la que para su cálculo se debe conocer la carga desequilibrada, la velocidad nominal y el rendimiento de la instalación (Ec. A.7.1):

$$ P_{	ext{asc}} = \frac{F_{\text{deseq}} \cdot v_{\text{nom}}}{\eta_{\text{inst}}} $$ \hspace{1cm} (Ec. A.7.1)

donde: F_{deseq} es la fuerza de desequilibrio debida a las masas en desequilibrio (N)

v_{nom} es la velocidad nominal de subida y bajada del ascensor (m/s)

η_{inst} es el rendimiento de la instalación
Los siguientes datos son datos conocidos del ascensor, anteriormente citados:

\[P = 650 \text{ kg} \]
\[Q = 450 \text{ kg} \]
\[Z = 875 \text{ kg} \]
\[v_{\text{nom}} = 1 \text{ m/s} \]
\[\eta_{\text{inst}} = 0.86 \text{ (valor estimado de entre 0.65 y 0.9, según fabricante)} \]

Con estos datos y la determinación de las masas en desequilibrio (Ec. A.7.2) se tiene:

\[m_{\text{deseq}} = P + Q - Z \quad \text{(Ec. A.7.2)} \]
\[m_{\text{deseq}} = 650 + 450 - 875 = 225 \text{ kg} \]

\[P_{\text{asc}} = \frac{(225 \cdot 9.8) \cdot 1}{0.86} = 2563.95 \text{ W} = 2.56395 \text{ kW} \]

de modo que consultando un catálogo de motores sincronos de imanes permanentes (Anexo B.3) se tiene que a priori se empleará un motor de potencia nominal de 3.2 kW para este ascensor que tiene una suspensión 2:1.

Pero se debe conocer también la velocidad de régimen del receptor y observar que la velocidad angular nominal de giro del motor es suficiente. De este modo, conociendo la frecuencia de giro del motor, a base de consultar los catálogos se tiene:

\[\omega_{\text{motor}} = 2 \cdot \pi \cdot f \quad \text{(Ec. A.7.3)} \]

donde \(f \) es la frecuencia de giro del motor (Hz)

\[\omega_{\text{motor}} = 2 \cdot \pi \cdot 20 = 40 \cdot \pi = 125.66 \text{ rad/s} \cdot \frac{1 \text{ rev}}{2\pi \text{ rad}} \cdot \frac{60 \text{ s}}{1 \text{ min}} = 1200 \text{ rpm}, \] que es la velocidad angular de giro nominal a la que gira el motor.
Y conociendo el radio de la polea de tracción, y la velocidad nominal de subida y bajada se puede conocer la velocidad angular de giro del receptor:

$$v_{nom} = \omega_{rec} \cdot R_{polea}$$

(Ec. A.7.4)

$$R_{polea} = 87.5 \text{ mm (calculado en Anexo A.10)}$$

$$v_{nom} = 1 \text{ m/s}$$

de modo que sustituyendo en Ec. A.7.4 se tiene:

$$1 = \omega_{rec} \cdot 87.5 \cdot 10^{-3} \rightarrow \omega_{rec} = 11.43 \frac{rad}{s} \cdot \frac{1 \text{ rev}}{2 \pi \text{ rad}} \cdot \frac{60 \text{ s}}{1 \text{ min}} = 109.1 \text{ rpm}$$

Se puede observar que la polea de tracción, u órgano receptor gira a 109.1 rpm, un valor menor a la velocidad angular nominal de giro del motor de 1200 rpm. Por este motivo, el motor seleccionado es correcto a priori, y mediante un variador de frecuencia se puede obtener dicha velocidad de giro [7].

Por otro lado, también se debería determinar el par receptor necesario (Ec. A.7.5) y verificar que el par motor nominal sea mayor al receptor, porque de lo contrario el motor no será capaz de arrancar el ascensor y los devanados del motor acabarían quemándose por los picos de intensidad.

$$P_{asc} = \Gamma_{asc} \cdot \omega_{rec}$$

(Ec. A.7.5)

de manera que sustituyendo los valores ya conocidos en la ecuación anterior se tiene:

$$2563.95 = \Gamma_{asc} \cdot 11.43 \rightarrow \Gamma_{asc} = 224.3 \text{ N·m}$$

que si se observa el valor del $\Gamma_{motor} = 263 \text{ N·m}$, el valor del par del receptor es menor y por tanto será posible el arranque del ascensor.
Finalmente, se concluye que el motor escogido inicialmente en términos de potencia para el ascensor de suspensión 2:1 es también válido en términos de velocidad angular de giro y de par. De este modo, consultando el catálogo se tienen las siguientes prestaciones de dicho motor:

\[P_{motor} = 3.2 \text{ kW} \quad I = 6.9 \text{ A} \quad \text{Servicio: S5 (40\%)} \]

\[\Gamma_{motor} = 263 \text{ N-m} \quad U = 380 - 400 \text{ V} \quad \text{Aislamiento F} \]

\[J_{motor} = 0.415 \text{ kg-m}^2 \quad p = 2 \text{ pares de polos} \quad f = 10\text{Hz} \]

\[\Gamma_b = 658 \text{ N-m} \quad \text{IP} = 55 \]

Al estar restringido este anexo a cálculos, en el Anexo D se muestra la explicación de determinadas características del motor seleccionado, como su IP escogida, su aislamiento, su servicio y su control por variador de frecuencia.

A.8. Operador de puertas

El operador de puertas del ascensor se encarga de realizar las maniobras de apertura y de cierre de las puertas de cabina y/o de piso. Este operador consta de dos componentes fundamentales que son el motor que lo acciona y su mecanismo de transmisión, de manera que en los siguientes subapartados se detallan sus cálculos. [6]

A.8.1. Selección del motor

Para seleccionar el motor del operador de puertas se deben tener en cuenta los mismos aspectos que los que se ha tenido de cara a la selección del motor de tracción. Tales aspectos se refieren a las exigencias de potencia, de par resistente y de velocidad angular nominal.
Primeramente se debe determinar el valor de potencia que exige el receptor, que en este caso son las puertas. Bien, según EN 81, la velocidad de apertura de las puertas no debe rebasar los 0.3 m/s y la fuerza de apertura no debe ser superior a 150 N. De este modo, y observando la Fig. A.8.1.1 se tiene lo siguiente:

![Fig. A.8.1.1. Esquema del operador de puertas con sus componentes](image)

donde:
- \(z_1 \) es el número de dientes del primer piñón
- \(z_2 \) es el número de dientes de la rueda conducida por la primera transmisión
- \(z_2' \) es el número de dientes del piñón de la segunda transmisión
- \(z_3 \) es el número de dientes de la rueda conducida por la segunda transmisión
- \(\eta_1 \), \(\eta_2 \) son los rendimientos de cada transmisión
- \(i_1 \), \(i_2 \) son las relaciones de reducción de cada transmisión
- \(L_1 \) y \(L_2 \) son las longitudes de las barras 1 y 2
- \(v \) es la velocidad de apertura máxima de las puertas de cabina
- \(F \) es la fuerza máxima de apertura de las puertas de cabina
Con los parámetros anteriores se procede al cálculo de la potencia del receptor, ya que son valores conocidos la mayoría de ellos:

\[\eta_1 = \eta_2 = 0.97 \] (el valor más bajo de rendimiento de las transmisiones por cadena (\(\eta_2 \) 0.97-0.98))

\[\eta_3 = 0.80 \] (este valor se ha estimado a 0.80 y corresponde a las pérdidas por inercia del movimiento de vaivén de la barra \(L_1 \) que arrastra a la barra \(L_2 \))

La potencia del receptor se calcula según la siguiente ecuación, Ec. A.8.1.1:

\[\eta = \frac{P_{\text{salida}}}{P_{\text{entrada}}} \] (Ec. A.8.1.1)

donde \(\eta \) es el producto de los 3 rendimientos anteriormente citados

Así pues, aplicando Ec. A.8.1.1 y despejando \(P_{\text{entrada}} \) se obtiene que la potencia que debería suministrar el motor es la siguiente:

\[0.97 \cdot 0.97 \cdot 0.80 = \frac{45}{P_{\text{entrada}}} \rightarrow P_{\text{entrada}} = 59.78 \text{ W} \]

El valor obtenido de potencia es muy pequeño, pero no hay información suficiente todavía puesto que quedan pendientes por definir otros parámetros para la selección del motor. La discusión final vendrá dada por el par a transmitir que se calculará en el siguiente subapartado, y de la velocidad de giro del motor.

A.8.2. Selección de la transmisión

Como bien se sabe, motor y transmisión no pueden ir separados, por lo que el cálculo del mecanismo y su selección se realiza inmediatamente después de la selección del motor.

Pueden haber tres tipos de transmisiones para el movimiento que aparece esquematizado en la Fig. A.8.1.1 del operador de puertas, que son por engranajes, correas y cadenas [3].
Los engranajes suelen ser más caros de fabricar y de mantener a pesar de sus ventajas de transmitir elevadas potencias y disponer de rendimientos altos (≈ 98%). Mientras tanto, las correas tienen la ventaja de ser las más económicas y de mantenimiento más reducido así como disposición más sencilla. Pero tienen el inconveniente de ser más sensibles a las condiciones ambientales de humedad, temperatura, etc y del gran volumen que ocupan.

En cuanto a las cadenas, requieren más mantenimiento y son más caras que las correas pero más baratas que los engranajes. Como ventajas se destacan las distancias entre ejes cortas, su sincronismo entre ruedas conductoras y conducida y la elevada transmisión de par.

Por las ventajas e inconvenientes de cada una de las transmisiones se decide escoger una transmisión por cadena a pesar de su elevado mantenimiento, ya que al permitirse una distancia entre ejes corta permite que la transmisión ocupe menor volumen en el techo de la cabina.

Observando de nuevo la Fig. A.8.1.1, y conociendo la velocidad de apertura de las puertas se puede conocer la velocidad tangencial de la rueda conducida número 4, su velocidad de rotación y con ello conocer el valor de la relación de reducción total antes del cálculo del resto de parámetros de la/s cadena/s de transmisión.

Para ello, se tiene otro esquema donde se descompone la velocidad v =0.3 m/s en los dos ejes especificados (Fig. A.8.2.1) y cuyos valores son:

\[v_x = 0.3 \cdot \sin 50^\circ = 0.2298 \text{ m/s} \]

\[v_y = 0.3 \cdot \cos 50^\circ = 0.1928 \text{ m/s} \]
Por otro lado, y conociendo la longitud de la barra L_1 que es de 545.5 mm y la velocidad perpendicular a dicha barra, v_x, permite la determinación de la velocidad angular de dicha barra (Ec. A.8.2.1):

$$\omega_{L_1} = \frac{v_x}{L_1}$$ \hspace{1cm} (Ec. A.8.2.1)

$$\omega_{L_1} = \frac{0.2298}{545.5 \cdot 10^{-3}} = 0.4213 \text{ rad/s}$$

Sabiendo que el punto A es el centro instantáneo de rotación de la barra L_1 y que dicha barra tiene movimiento de vaivén que describe un arco, y conociendo la velocidad del punto C perpendicular a dicha barra se puede hallar la velocidad del punto B por medio de la Ec. A.8.2.2 de forma aproximada, ya que la barra L_2 no tiene una trayectoria ni un movimiento definido:

$$v_y(B) = v_y(A) + \omega_{L_1} \cdot AB$$ \hspace{1cm} (Ec. A.8.2.2)

$$v_y(B) = 0 + 0.4213 \cdot 180 \cdot 10^{-3} = 0.076 \text{ m/s}$$
La ilustración del triángulo de velocidades resultante para la barra L₁ es la que aparece en la Fig. A.8.2.2:

![Fig. A.8.2.2. Triángulo de velocidades de la barra L₁](image)

Una vez conocidos todos estos valores, se está a disposición de determinar la velocidad de rotación de la rueda conducida por la transmisión 2 (Ec. A.8.2.3):

\[v = \frac{\pi \cdot d_3 \cdot \omega_3}{6 \cdot 10^4} \]

(Ec. A.8.2.3)

donde: \(d_3 \) es el diámetro primitivo de la rueda 3 en mm
\(\omega_3 \) es la velocidad angular de la rueda 3 en rpm
\(v \) es la velocidad tangencial de transmisión en m/s

Así pues, sustituyendo en la Ec. A.8.2.3 se tiene:

\[0.076 = \frac{\pi \cdot 120 \cdot \omega_3}{6 \cdot 10^4} \rightarrow \omega_3 = 12.10 \text{ rpm} = 1.27 \text{ rad/s} \]

donde se ha impuesto que \(d_3 = 120 \text{ mm} \) con un módulo \(m_3 = 2.5 \text{ mm} \)
Una vez se tiene el valor de la velocidad angular de rotación de la rueda 4 se puede determinar el valor de la relación de reducción total que se necesita (Ec. A.8.2.4):

\[i_{total} = \frac{\omega_1}{\omega_3} \]
\[\text{(Ec. A.8.2.4)} \]

\[i_{total} = \frac{420}{12.10} = 34.71 \]

donde \(\omega_1 = 2 \cdot \pi \cdot f_1 = 2 \cdot \pi \cdot 7 = 14 \text{rad/s} \) \(\text{y} \) 420rpm, que corresponde a la velocidad nominal de giro del motor a la frecuencia de 7 Hz.

Se puede observar que este valor de la relación de reducción total es alto, por lo que en una sola etapa no se podría obtener en una transmisión de cadena. Se obtendría por medio de aproximadamente 2 transmisiones por cadena en serie, puesto que cada una de ellas acepta como máximo relaciones de reducción de 8 [1].

De este modo y comenzando por la primera transmisión e imponiendo que el piñón tiene \(z_1 = 19 \) dientes por condiciones de diseño, y una relación de reducción de \(i_1 = 6 \) se tiene (Ec. A.8.2.5) el número de dientes del piñón 2:

\[i_1 = \frac{z_{conducida}}{z_{conductora}} \]
\[\text{(Ec. A.8.2.5)} \]

\[6 = \frac{z_{conducida}}{19} = \frac{z_2}{19} \rightarrow z_2 = 19 \cdot 6 = 114 \text{ dientes} \]

Y aplicando Ec. A.8.2.6 se obtiene el diámetro primitivo del piñón 1:

\[d_1 = m_1 \cdot z_1 \]
\[\text{(Ec. A.8.2.6)} \]

\[d_1 = 2.5 \cdot 19 = 47.5 \text{ mm} \]

Aplicando de nuevo la Ec. A.8.2.4 se obtiene la velocidad de giro de la rueda 2:

\[6 = \frac{420}{\omega_2} \rightarrow \omega_2 = 70 \text{ rpm} = 7.33 \text{ rad/s} \]
Luego, si el receptor consume una potencia de $P_e = 59.78 \, \text{W}$, ésta se corrige por medio de la Ec. A.8.2.7:

$$P'_e = P_e \cdot k_1 \cdot k_2 \cdot k_3 \cdot k_4$$ \hspace{1cm} \text{(Ec. A.8.2.7)}

donde: k_1 es el factor de servicio

k_2 es el factor de condiciones de trabajo

k_3 es el factor de reducción de velocidad

k_4 es el factor de frecuencia de maniobra

De esta manera, y consultando las tablas B.6.1 hasta la tabla B.6.4, se tienen los siguientes valores de estos factores y el valor de la potencia corregida:

- $k_1 = 1.7$, motor asíncrono en estrella-triángulo y sobrecarga de entre 250-400%, y suponiendo que es aproximadamente una banda transportadora de pequeña carga

- $k_2 = 1$, suponiendo que el ascensor trabaja globalmente durante 1.5 horas al día

- $k_3 = 1.6$, ya que la relación de reducción total es de 34.71 >3.5

- $k_4 = 1$, suponiendo que el ascensor tiene entre 0-10 conexiones por hora

$$P'_e = 59.78 \cdot 1.7 \cdot 1 \cdot 1.6 \cdot 1 = 162.6 \, \text{W} \cdot \frac{1 \text{CV}}{736 \, \text{W}} = 0.221 \text{CV}$$

Este valor de potencia corregido es el que llega al piñón 1, y sabiendo que el piñón 1 gira a una velocidad angular de $\omega_1 = 420 \, \text{rpm} = 4011 \, \text{rad/s}$ se puede determinar el paso de la cadena de transmisión a emplear para la primera reducción mediante la consulta de un gráfico del Anexo B.6 que relaciona la potencia que le llega al piñón en CV y la velocidad de giro del mismo en rpm.

Si se consulta dicho gráfico para los dos valores anteriores se obtiene un paso normalizado para la primera cadena de $p_1 = 9.525 \, \text{mm}$ en primera aproximación, y el modelo de cadena es el 06 B-1.
Con el valor del paso se pueden determinar otros parámetros de interés que contribuyen al correcto diseño de las cadenas de transmisión.

Para comenzar, se corrigen los diámetros primitivos del piñón y de la rueda, por medio de las ecuaciones Ec. A.8.2.8 y Ec. A.8.2.9:

\[d'_1 = p \cdot \cos \text{cosec} (\alpha) \] \hspace{1cm} (Ec. A.8.2.8)

\[d'_2 = i_1 \cdot d'_1 \] \hspace{1cm} (Ec. A.8.2.9)

Como \(z_1 = 19 \), según la tabla que relaciona el número de dientes y el valor de cosec \(\alpha \) que aparece en el Anexo B de este proyecto, dicho valor de cosec \(\alpha \) toma el valor de 6.076; por lo que según la Ec. A.8.2.8, el diámetro corregido del piñón 1 es de:

\[d'_1 = 9.525 \cdot 6.076 = 57.87 \text{mm} \]

\[d'_2 = 6 \cdot 57.87 = 347.22 \text{mm} \]

Corrigiendo la velocidad tangencial en la transmisión 1 (Ec. A.8.2.3) se tiene:

\[v = \frac{\pi \cdot 420 \cdot 57.87}{6 \cdot 10^4} = 1.273 \text{m/s} \]

La fuerza de transmisión corregida se obtiene (Ec. A.8.2.10):

\[F' = \frac{P'_e}{v} \] \hspace{1cm} (Ec. A.8.2.10)

\[F' = 0.221 \cdot 736 \cdot 1.273 = 127.8 \text{N} \]

La distancia entre centros, \(C \), a tomar viene acotada por la siguiente condición:

\[30 \cdot p \leq C \leq 80 \cdot p \] \hspace{1cm} (Ec. A.8.2.11)

donde se tomará un valor de \(C \) intermedio a los valores anteriores:

\[285.75 \text{mm} \leq C \leq 762.00 \text{mm} \], por ejemplo, \(C = 370 \text{mm} \)
El número de eslabones a tomar para esta cadena viene dado por la Ec. A.8.2.12:

\[
N = \frac{2 \cdot C + z_1 + z_2}{p} + \frac{p \cdot (z_1 - z_2)^2}{40 \cdot C}
\]
(Ec. A.8.2.12)

\[
N = \frac{2 \cdot 370}{9.525} + \frac{19 + 114}{2} + \frac{9.525 \cdot (19 - 114)^2}{40 \cdot 370} = 149.99 \approx 150
\]

donde se suele tomar de valor \(N' \geq N\) siempre que sea un número par. En este caso, se tiene que \(N'=150\) eslabones.

El valor de \(C\) tomado se corrige mediante las siguientes ecuaciones:

\[
C' = \frac{p}{8} \cdot (A + \sqrt{A^2 - 0.81 \cdot B^2})
\]
(Ec. A.8.2.13)

\[
A = 2 \cdot N' - (z_2 + z_3)
\]
(Ec. A.8.2.14)

\[
B = z_3 - z_2
\]
(Ec. A.8.2.15)

de modo que aplicándolas se obtiene:

\[
A = 2 \cdot 150 - (19 + 114) = 167
\]

\[
B = 114 - 19 = 95
\]

\[
C' = \frac{9.525}{8} \cdot (167 + \sqrt{167^2 - 0.81 \cdot 95^2}) = 369.63\text{ mm}
\]

En cuanto al ángulo de contacto, se calcula según Ec. A.8.2.16:

\[
\beta = 180 - 2 \cdot \arcsin \left(\frac{d_2 - d_1}{2 \cdot C'} \right)
\]
(Ec. A.8.2.16)

\[
\beta = 180 - 2 \cdot \arcsin \left(\frac{347.22 - 57.87}{2 \cdot 369.63} \right) = 134^\circ
\]
Respecto a las fuerzas que actúan sobre la cadena se obtienen de la siguiente manera:

\[
F_1 = \frac{F_e e^{\beta}}{e^{\beta} - 1} \quad \text{(Ec. A.8.2.17)}
\]

\[
F_2 = \frac{F_2 e^{\beta}}{e^{\beta}} \quad \text{(Ec. A.8.2.18)}
\]

\[
F_1 = \frac{127.8 \cdot e^{\frac{134 \pi}{180}}}{e^{\frac{134 \pi}{180}} - 1} = 141.4 \text{ N}
\]

\[
F_2 = \frac{141.4}{e^{\frac{134 \pi}{180}}} = 13.6 \text{ N}
\]

El número de dientes en contacto se obtiene según Ec. A.8.2.19:

\[
z_c = \frac{\beta}{360} \cdot z_1 \quad \text{(Ec. A.8.2.19)}
\]

\[
z_c = \frac{134}{360} \cdot 19 = 7.07
\]

Para concluir este cálculo, se determina el par resistente (Ec. A.8.2.20) del piñón para poder escoger a posteriori el motor del operador de puertas:

\[
\Gamma_{\text{piñón}} = (F_1 - F_2) \cdot \frac{d_1}{2} \quad \text{(Ec. A.8.2.20)}
\]

\[
\Gamma_{\text{piñón}} = (141.4 - 13.6) \cdot \frac{57.87 \cdot 10^{-3}}{2} = 3.69 \text{ N\cdot m}
\]

El valor del par del piñón es un valor pequeño, y su valor no garantiza la selección del motor, ya que se debe conocer el par resistente total que llega a la rueda de la segunda transmisión, de modo que el valor de dicho par se determinará a continuación.
Por otro lado, hay una serie de condiciones que se deben verificar para confirmar el correcto diseño de la cadena de transmisión:

- \(v_{\text{max}} \leq 20 \text{ m/s} \rightarrow 1.273 \text{ m/s} \leq 20 \text{ m/s} \)
- \(z_{\text{c mín}} = 7 \rightarrow 7.07 \geq 7 \)
- Número mínimo de dientes del piñón =19 \(\rightarrow z_{\text{mín}} = 19 \geq 19 \)
- Número máximo de dientes de la rueda \(\leq 150 \rightarrow z_{\text{max}} = 114 \leq 150 \)
- \(z_1+z_2 \geq 50 \rightarrow 19+114=133 \geq 50 \)
- \(F_1 \leq F_R \rightarrow 141.4 \text{ N} \leq 10000 \text{ N} \)

Al observar que se cumplen todas las condiciones anteriores se concluye que el diseño de la primera transmisión por cadena es correcto.

Respecto a la segunda transmisión, se continúa ahora con el cálculo de la transmisión por cadena que va desde el piñón \(z_2' \), solidario a la rueda \(z_2 \), hasta la rueda conducida \(z_3 \).

Los cálculos son análogos a la transmisión anteriormente calculada, por lo que se tiene:

\[
\omega_2 = \omega_2' = 70 \text{ rpm} = 7.33 \text{ rad/s}
\]

\[
i_2 = \frac{i_{\text{total}}}{i_1} = \frac{34.71}{6} = 5.785
\]

El número de dientes del piñón 2 de la segunda transmisión será de 19 también, ya que según las condiciones de diseño es el mínimo número de dientes que debe poseer el piñón. Así, aplicando la Ec. A.8.2.6, se obtiene el diámetro primitivo del piñón 2:

\[
d_2' = 2.5 \cdot 19 = 47.5 \text{ mm}
\]
Por otra parte, sabiendo que inicialmente se ha decidido que el diámetro primitivo de la rueda 3 tendrá un diámetro de 120 mm, se puede obtener su número de dientes por medio de la Ec. A.8.2.6:

$$120 = 2.5 \cdot z_3 \rightarrow z_3 = 48 \text{ dientes}$$

Ahora se determina la potencia corregida que transmite el piñón z_2' a la rueda z_3 tal como se ha realizado antes. Se sabe que la potencia corregida que le llega a la rueda z_2, anteriormente calculada tiene como valor $P_{z2} = 0.221 \text{ CV} = 162.6 \text{ W}$.

Como la rueda z_2 es solidaria al piñón z_2', este piñón transmite una potencia a la rueda z_3 de valor:

$$P_{z2'} = 0.221 \cdot 0.97 = 0.214 \text{ CV} = 157.5 \text{ W}$$

Y sabiendo que la velocidad a la que gira el piñón z_2' es de $\omega_2 = \omega_2 = 70 \text{ rpm}$, se accede al gráfico adjunto que figura en el Anexo B.6 y se obtiene el paso normalizado para esta transmisión de $p_2 = 9.525 \text{ mm}$, que es la cadena 08 B-1.

A continuación se corrigen los diámetros primitivos del piñón y de la rueda:

$$d_2'' = p \cdot \cos ec(\alpha) = 9.525 \cdot 6.076 = 57.87 \text{ mm}$$

ya que, $z_2'=19 \text{ dientes}$, y por tanto $\cos ec \alpha=6.076$, según las tablas del Anexo B.6.

$$d_3' = i_2 \cdot d_2'' = 5.785 \cdot 57.87 = 334.78 \text{ mm}$$

La fuerza de transmisión corregida tiene como valor:

$$F' = \frac{P'}{v} = \frac{0.214 \cdot 736}{0.076} = 2072 \text{ N}$$
En cuanto a la distancia entre centros, C, se toma una distancia comprendida entre las siguientes, igual que antes, por ejemplo, C = 400 mm:

\[C_{\text{min}} = 30 \cdot 9.525 = 285.75 \text{ mm} \]

\[C_{\text{max}} = 80 \cdot 9.525 = 762.00 \text{ mm} \]

El número de eslabones a tomar para esta cadena es:

\[N = \frac{2 \cdot 400}{9.525} + \frac{19 + 48}{2} + \frac{9.525 \cdot (19 - 48)^2}{40 \cdot 400} = 117.99 \approx 118 \]

donde se suele tomar de valor \(N' \geq N \) siempre que sea un número par. En este caso, se tiene que \(N' = 118 \) eslabones.

El valor de C corregido es el siguiente:

\[C' = \frac{P}{8} \cdot (A + \sqrt{A^2 - 0.81 \cdot B^2}) = \frac{9.525}{8} \cdot (169 + \sqrt{169^2 - 0.81 \cdot 29^2}) = 400.02 \text{ mm} \]

\[A = 2 \cdot N' - (z_3' + z_3) = 2 \cdot 118 - (19 + 48) = 169 \]

\[B = z_4 - z_3' = 48 - 19 = 29 \]

En cuanto al ángulo de contacto, se tiene:

\[\beta = 180 - 2 \cdot \arcsin\left(\frac{d_1' - d_2'}{2 \cdot C'}\right) = 180 - 2 \cdot \arcsin\left(\frac{334.78 - 57.87}{2 \cdot 400.02}\right) = 139.5^\circ \]

El número de dientes en contacto que se obtiene es:

\[z_c = \frac{\beta}{360} \cdot z_2' = \frac{139.5}{360} \cdot 19 = 7.36 \geq 7 \]
Igual que para la primera transmisión, se deben verificar las mismas condiciones de diseño para la segunda transmisión y verificar también la validez de su diseño. Así pues:

- \(\frac{v_{\text{máx}}}{20 \text{ m/s}} \rightarrow 0.076 \text{ m/s} \leq 20 \text{ m/s} \)

- \(z_{c \text{ mín}} = 7 \rightarrow 7.36 \geq 7 \)

- Número mínimo de dientes del piñón =19 \(\rightarrow z_{\text{mín}} =19 \geq 19 \)

- Número máximo de dientes de la rueda \(\leq 150 \rightarrow z_{\text{máx}} = 110 \leq 150 \)

- \(z_{1}+z_{2} \geq 50 \rightarrow 19+110=129 \geq 50 \)

- \(F_{1} \leq F_{R} \rightarrow 2072 \text{ N} \leq 10000 \text{ N} \)

Por lo tanto, el diseño de la segunda transmisión por cadena también es correcto según las condiciones de diseño anteriores.

Finalmente, en cuanto a las longitudes de las cadenas de transmisión, se pueden determinar según la Ec. A.8.2.21:

\[
L = p \cdot N'
\]

\(\text{Ec. A.8.2.21} \)

donde \(p \) es el paso y \(N' \) es el número de eslabones par adoptado para la cadena.

Así pues, para cada transmisión se tiene:

\[
L_{1} = p_{1} \cdot N_{1}' = 9.525 \cdot 150 = 1428.75 \text{ mm}
\]

\[
L_{2} = p_{2} \cdot N_{2}' = 9.525 \cdot 118 = 1123.95 \text{ mm}
\]

Para concluir, visto que las cadenas de transmisión de la primera y segunda transmisión son correctas, se tienen las siguientes cadenas para cada transmisión [1]:

- Transmisión 1: Cadena 06 B-1 con \(F_{R}=1000 \text{ daN} \) y \(p=9.525 \text{ mm} \)
- Transmisión 2: Cadena 06 B-1 con \(F_{R}=1000 \text{ daN} \) y \(p=9.525 \text{ mm} \)
Finalmente, queda definir qué motor se selecciona para accionar el operador de puertas, puesto que hay datos suficientes de potencia y par. Se sabe que la potencia necesaria es de 59.78 W, y el par a transmitir máximo a la rueda de la segunda transmisión es:

\[
\Gamma_{\text{rueda3}} = \Gamma_{\text{piñón1}} \cdot i_1 \cdot i_2 = 3.69 \cdot 6 \cdot 5.785 = 128.08 \text{ N·m}
\]

La potencia es pequeña y en principio se escogería un motor pequeño que suministre poca potencia y a un régimen de giro bajo, pero al observar el par a transmitir bastante alto hace pensar en seleccionar un motor capaz de arrastrar dicha carga. Por otro lado, y como se desea que el consumo eléctrico sea menor que un motor eléctrico convencional, y que además sea compacto y que ocupe poco espacio, se decide emplear un motor síncrono de imanes permanentes con un variador de frecuencia. De este modo, el motor seleccionado tiene las siguientes prestaciones:

- \(P_{\text{motor}} = 1.5 \text{ kW} \)
- \(I = 3.8 \text{ A} \)
- Servicio: S5 (50%)
- \(\Gamma_{\text{motor}} = 387 \text{ N·m} \)
- \(U = 380 – 400 \text{ V} \)
- Aislamiento F
- \(J_{\text{motor}} = 0.505 \text{ kg·m}^2 \)
- \(p = 6 \) pares de polos
- \(f = 7 \text{ Hz} \)
- \(\Gamma_b = 988 \text{ N·m} \)
- IP = 55

A.9. Cálculo del par de frenada

Como se comentó en la memoria de este proyecto, el freno actúa cuando hay un fallo de suministro de corriente eléctrica. Este freno, en tal situación actúa y detiene a la cabina del ascensor aplicando un par de frenada sobre el disco solidario a la polea de tracción y que también conlleva a una deceleración en un determinado tiempo. [6]

De acuerdo con la norma EN 81, el par de frenada debe ser capaz de frenar de forma segura el ascensor con una carga equivalente al 125 % de la carga nominal y de bloquearlo después de la parada.
El par se compone de dos partes: la componente estática necesaria para bloquear el sistema después de la detención, y la componente dinámica para absorber la energía cinética de todas las partes móviles del sistema. [8]

En el caso de una disminución del suministro de energía eléctrica cuando la cabina se detiene en cada con la carga equivalente al 125 % de la carga nominal, el freno debe ser capaz de detener la cabina de forma fiable y conseguir que la cabina alcance la cota del piso más bajo de forma suave. Por lo tanto, el par estático y dinámico se deben tomar en consideración, a pesar de que en condiciones normales de funcionamiento, el par de frenada del freno es prácticamente igual al par estático. [6]

Sean los siguientes datos:

Q: carga nominal = 450 kg \[J_m = 1.66 \, GD^2 = 1.66/4 = 0.415 \, \text{kg} \cdot \text{m}^2 \]

P: peso de la cabina = 650 kg \[J_b = 1.741 \, \text{kg} \cdot \text{m}^2 \] (inerca del freno)

Z: peso del contrapeso = 875 kg \[m_L: \text{masa de las cintas de suspensión} \]

D: diámetro de la polea = 175 mm \[i: \text{factor de cable} = 2 \, (\text{suspensión 2:1}) \]

Y sean las siguientes expresiones:

\[\Gamma_{est} = \left[\frac{1.25 \cdot Q + P - Z}{i} + m_L \right] \cdot g \cdot \frac{D}{2 \cdot i_g} \cdot \eta_2 \] \hspace{1cm} (Ec. A.9.1)

donde: \(i_g \) es la relación de transmisión de los engranajes

\(\eta_2 \) es el rendimiento mecánico del sistema

\[\Gamma_{din} = J \cdot \alpha \] \hspace{1cm} (Ec. A.9.2)

con:

\[J = J_1 + J_2 + J_3 \] \hspace{1cm} (Ec. A.9.3)

\[\alpha = \frac{\pi \cdot n_2}{30 \cdot t_b} \] \hspace{1cm} (Ec. A.9.4)
siendo:

α la deceleración angular en rad/s²

t₀: tiempo de frenada de la cabina cuando actúa el freno en segundos

J₁: momento de inercia del rotor y freno de disco en kg·m²

J₂: momento de inercia de la polea en kg·m²

J₃: momento de inercia de todas las partes del sistema con movimiento lineal en kg·m² y:

\[J₃ = \left(1.25 \cdot Q + P + Z + m_L \cdot i^2\right) \cdot \frac{D^2}{4 \cdot i^2 \cdot i_s^2} \cdot \eta_2 \] (Ec. A.9.5)

\[\eta_2 = \eta_{RS} \cdot \eta_s \cdot \eta_g' \] (Ec. A.9.6)

siendo:

\(\eta_{RS} \): rendimiento del sistema de elevación (cintas planas de suspensión)

\(\eta_s \): rendimiento de la polea

\(\eta_g' \): rendimiento de la transmisión por engranajes entre polea y motor

Con toda la información anterior se puede determinar el par de frenada del freno de disco, puesto que los parámetros de rendimiento y de reducción son conocidos, como se observa a continuación:

\(\eta_{RS} = 0.95 \), valor estimado comprendido entre 0.85 y 1.0

\(\eta_s = 0.97 \), es el rendimiento que suele adoptar una polea lisa

\(\eta_g' = 1 \), ya que no hay transmisión por engranajes entre polea y motor

\(i_g = 1 \), ya que la máquina de tracción no dispone de engranajes
\[J_1 = J_{\text{motor}} + J_{\text{freno}} \] \hspace{1cm} \text{(Ec. A.9.7)}

\[J_1 = 0.415 + 1.741 = 2.156 \text{ kg}\cdot\text{m}^2 \]

\[J_2 = J_{\text{polea}} = \frac{1}{2} m_{\text{polea}} R_{\text{polea}}^2 \] \hspace{1cm} \text{(Ec. A.9.8)}

\[J_2 = J_{\text{polea}} = \frac{1}{2} \cdot 35 \cdot 0.0875^2 = 0.134 \text{ kg}\cdot\text{m}^2 \]

Para determinar la masa de las cintas planas de suspensión se tiene la siguiente ecuación (Ec. A.9.9):

\[m_L = L_{\text{esp}} \cdot \lambda_{\text{esp}} \] \hspace{1cm} \text{(Ec. A.9.9)}

donde:

\[L_{\text{esp}} : \text{es la longitud total de las cintas planas de suspensión de todo el sistema} \]

\[\lambda_{\text{esp}} : \text{es la densidad lineal de las cintas planas en kg/m} \]

De manera que aplicando la Ec. A.9.9 se tiene:

\[m_L = 62 \cdot 0.405 \cdot 3 = 75.33 \text{ kg} \]

El 3 que multiplica a la expresión anterior es el número de cintas planas. Como la norma EN-81 exige mínimo dos, se decide colocar una más.

Por otro lado, aplicando las ecuaciones Ec. A.9.6, Ec. A.9.5 y Ec. A.9.3 en este orden permite obtener los siguientes valores que conllevan al cálculo posterior del par estático y par dinámico:

\[\eta_2 = 0.95 \cdot 0.97 \cdot 1 = 0.9215 \]

\[J_3 = \left(1.25 \cdot 450 + 650 + 875 + 75.33 \cdot 2^2\right) \cdot \frac{0.175^2}{4 \cdot 2^2} \cdot 0.9215 = 4.213 \text{ kg}\cdot\text{m}^2 \]

\[J = 2.156 + 0.134 + 4.213 = 6.503 \text{ kg}\cdot\text{m}^2 \]
Luego, para determinar la deceleración angular según la Ec. A.9.4 es preciso comentar que el tiempo de frenada, \(t_b \), queda limitado en función de la aceleración de frenada, que es de 0.8 m/s\(^2\) como máximo en condiciones normales de funcionamiento para un ascensor eléctrico de baja altura [7]. De esta manera, y sustituyendo en la Ec. A.9.4 el valor de este tiempo se puede determinar la deceleración angular:

\[
\alpha = \frac{\pi \cdot 109.1}{30 \cdot 1.25} = 9.14 \text{ rad/s}^2
\]

El valor del tiempo \(t_b=1.25 \) s que aparece en esta última ecuación se ha determinado según la Ec. A.9.14, que aparece al final de este subapartado, mientras que el valor de \(n_2 \) se determinó en el apartado A.7 de este anexo durante la selección del motor de tracción y tiene como valor \(n_2=109.1 \) rpm =11.43 rad/s.

Con estos valores ya calculados se está en disposición de hallar el par estático y dinámico, según las ecuaciones Ec. A.9.1 y Ec. A.9.2, respectivamente:

\[
\Gamma_{\text{est}} = \left[\frac{1.25 \cdot 450 + 650 - 875}{2} + 75.33\right] \cdot 9.8 \cdot \frac{0.175}{2 \cdot 1} \cdot 0.9215 = 192.9 \text{ N}\cdot\text{m}
\]

\[
\Gamma_{\text{din}} = 6.503 \cdot 9.14 = 59.4 \text{ N}\cdot\text{m}
\]

De esta manera, el par de frenada total se puede determinar, y es la resultante de la suma del par estático y par dinámico, como se puede observar a continuación en la Ec. A.9.10:

\[
\Gamma_b = \Gamma_{\text{est}} + \Gamma_{\text{din}} \quad \text{(Ec. A.9.10)}
\]

\[
\Gamma_b = 192.9 + 59.4 = 252.3 \text{ N}\cdot\text{m}
\]

Otras prestaciones de interés [13] para este freno son la fuerza axial, \(F_A \), y la presión máxima de contacto, \(p_{\text{max}} \), que se obtienen según las ecuaciones Ec. A.9.11 y Ec. A.9.12:

\[
\Gamma_b = z \cdot \frac{\xi + 1}{4 \cdot \xi} \cdot \mu \cdot d_c \cdot F_A
\]

\[
\text{(Ec. A.9.11)}
\]
Ascensor de pasajeros para viviendas de máximo 8 plantas

\[p_{\text{max}} = \frac{4 \cdot \xi^2}{\beta \cdot (\xi - 1) \cdot d_e^2} \]
(Ec. A.9.12)

siendo:

\(\xi \): la relación entre los diámetros externo e interno del disco

\(\beta \): es el ángulo del sector circular que abrazan las pinzas de los frenos en radianes

\(z \): es el número de caras del disco sobre las que actúan los frenos

\(d_e \): es el diámetro más externo de los discos

\(\mu \): es el coeficiente de rozamiento entre el disco y las pinzas del freno

Así pues, consultando las dimensiones necesarias para el cálculo de la fuerza axial y de la presión máxima de contacto se tiene:

\[\xi = \frac{d_e}{d_i} \]
(Ec. A.9.13)

\[\xi = \frac{d_e}{d_i} = \sqrt{3} \] , ya que es el valor óptimo de diseño de los frenos [13]

Los valores de \(\mu \) y \(z \) son conocidos, ya que:

\(z = 2 \), puesto que los frenos actúan en las dos caras del disco

\(\mu = 0.35 \), es el coeficiente de rozamiento entre el disco y las pinzas de los frenos

Ya conocidos los valores anteriores, se aplican las ecuaciones Ec. A.9.11 y Ec. A.9.12 y se tiene:

\[252.3 = 2 \cdot \frac{\sqrt{3} + 1}{4 \cdot \sqrt{3}} \cdot 0.35 \cdot 0.520 \cdot F_A \rightarrow F_A = 1758 \text{ N} \]
\[p_{\text{max}} = \frac{4 \cdot (\sqrt{3})^2}{66.5 \cdot \frac{\pi}{180} \cdot (\sqrt{3} - 1)} \cdot \frac{1758}{0.520^2} = 91830 \, \text{Pa} = 0.0918 \, \text{MPa} \]

Por otro lado, y ya para concluir, se sabe que el tiempo de frenada viene en función de la aceleración de frenada como se comentó anteriormente y dicha aceleración no debe rebasar 0.8 m/s\(^2\) \cite{7}. Bien, sabiendo que se trata de un movimiento uniformemente acelerado se puede determinar el tiempo de frenado (Ec. A.9.14):

\[v = v_0 + a \cdot \Delta t \]

(Ec. A.9.14)

\[1 = 0 + 0.8 \cdot \Delta t \rightarrow \Delta t = 1.25 \, \text{s} \]

A.9.1. Momento de inercia de los frenos

Como se ha observado en el apartado anterior, el valor del momento de inercia de los frenos estaba valorado en \(J_b = 1.741 \, \text{kg} \cdot \text{m}^2 \). Este valor se obtiene de manera muy aproximada como viene a continuación.

Sea la siguiente figura (Fig. A.9.1.1) una de las dos pinzas del freno que integra el freno de disco, y sea su aproximación a un rectángulo cuyas dimensiones son las que aparecen en la Fig. A.9.1.2:

Fig. A.9.1.1. Pinza del freno de disco
Sea el siguiente modelo empleado para determinar los momentos y productos de inercia de una placa rectangular homogénea en el punto A (Fig. A.9.1.3):

Fig. A.9.1.2. Aproximación de la pinza de freno a un rectángulo

Fig. A.9.1.3. Modelo de placa rectangular homogénea
Según el modelo de la figura anterior, los momentos de inercia en los ejes X e Y, y los productos de inercia toman como valores los siguientes en el punto A:

\[I_{xx} = \frac{1}{3} m b^2 \]

(Ec. A.9.1.1)

\[I_{yy} = \frac{1}{3} m a^2 \]

(Ec. A.9.1.2)

\[I_{xy} = -\frac{1}{4} m a b \]

(Ec. A.9.1.3)

Teniendo en cuenta las tres figuras anteriores, en especial la Fig. A.9.1.3, se puede determinar el momento de inercia de la pinza del freno de disco respecto el eje Z, perpendicular al plano. Como bien se sabe, los frenos que componen el sistema de frenada son dos y hay la presencia del disco de freno. Representando de la manera más conveniente la disposición de las pinzas de freno y el disco de freno se facilita el cálculo de los tensores de inercia.

Para comenzar, se tiene la disposición de los frenos y el disco (Fig. A.9.1.4) en el plano X-Y:

Fig. A.9.1.4. Representación en el plano XY del disco y los frenos
Sabiendo como están dispuestos los frenos y el disco sobre el plano XY, se trata ahora de determinar el tensor de inercia resultante sobre el punto O debido a los frenos y al disco. Para ello, se determina previamente el tensor de inercia de una pinza de freno respecto su centro de inercia, G. Esto se consigue aplicando el teorema de Steiner:

\[I_A = I_G + I_A^0 \]

(Ec. A.9.1.4)

donde:

\[I_G : \text{ tensor de inercia en el centro de inercia, } G \]

\[I_A^0 : \text{ tensor de inercia en } A \text{ con toda la masa concentrada en } G \]

Puesto que el tensor de inercia en el punto A está tabulado y se conoce, como bien se ha citado en las ecuaciones Ec. A.9.1.1, Ec. A.9.1.2 y Ec. A.9.1.3, y el tensor de inercia en el punto A con toda la masa concentrada en dicho punto se puede hallar, se tiene:

\[I_A = I_G + I_A^0 \rightarrow I_G = I_A - I_A^0 \]

(Ec. A.9.1.4)

\[
I_A = \begin{bmatrix}
\frac{1}{3} \cdot m \cdot b^2 & -\frac{1}{4} \cdot m \cdot a \cdot b & 0 \\
-\frac{1}{4} \cdot m \cdot a \cdot b & \frac{1}{3} \cdot m \cdot a^2 & 0 \\
0 & 0 & \frac{1}{3} \cdot m \cdot (a^2 + b^2)
\end{bmatrix}
\]

(Ec. A.9.1.5)

\[
I_A^0 = \begin{bmatrix}
m \cdot (y^2 + z^2) & -m \cdot x \cdot y & -m \cdot x \cdot z \\
-m \cdot y \cdot x & m \cdot (x^2 + z^2) & -m \cdot y \cdot z \\
-m \cdot z \cdot x & -m \cdot z \cdot y & m \cdot (x^2 + y^2)
\end{bmatrix}
\]

(Ec. A.9.1.6)

Para determinar este último tensor de inercia mostrado, se deben hallar las componentes del vector \(\overline{AG} \), en referencia a la Fig. A.9.1.3:

\[
\overline{AG} = \begin{bmatrix}
a / 2 \\
b / 2 \\
0
\end{bmatrix}
\]

(Ec. A.9.1.7)
Sustituyendo las componentes del vector \overrightarrow{AG} en la Ec. A.9.1.6, el tensor de inercia en A con la masa concentrada en G queda:

$$I_A^\oplus = \begin{bmatrix} m \cdot \frac{b^2}{4} & -a \cdot \frac{b}{4} & 0 \\ -a \cdot \frac{b}{4} & m \cdot \frac{a^2}{4} & 0 \\ 0 & 0 & m \cdot \frac{(a^2 + b^2)}{4} \end{bmatrix}$$

Sustituyendo este valor obtenido y el tensor de inercia de A en la Ec. A.9.1.4, y operando se obtiene:

$$I_G = \frac{1}{12} \cdot m \cdot \begin{bmatrix} b^2 & 0 & 0 \\ 0 & a^2 & 0 \\ 0 & 0 & a^2 + b^2 \end{bmatrix}$$

Una vez se conoce el tensor de inercia de cada freno en su centro de inercia, G, se trata ahora de hallar el tensor de inercia en el punto O teniendo en cuenta la Fig. A.9.1.4.

El modo de operar es análogo al empleado para hallar el tensor de inercia del freno en el punto G. Se sabe que el tensor de inercia del sistema frenos-disco tiene el siguiente valor:

$$I_{\text{sistema}} = 2 \cdot I_{\text{freno}} + I_{\text{disco}} \quad \text{(Ec. A.9.1.8)}$$

Para comenzar, el valor del tensor de inercia del freno es respecto al punto O, por lo que su valor será el siguiente:

$$I_{\text{frenoO}} = I_{\text{frenoG}} + I_{\text{frenoO}}^\oplus \quad \text{(Ec. A.9.1.9)}$$

donde:

I_{frenoO} : tensor de inercia de un solo freno respecto al punto O

I_{frenoO}^\oplus : tensor de inercia de un solo freno respecto el punto O con la masa concentrada en G
El valor del tensor de inercia en G se ha obtenido anteriormente mediante la Ec. A.9.1.4, por lo que se facilita el cálculo del tensor de inercia en el punto O, ya que, aplicando la Ec. A.9.1.6 y sabiendo que las componentes del vector \(\overrightarrow{GO} \) son:

\[
\overrightarrow{GO} = \begin{cases} -x \\ 0 \\ 0 \end{cases}
\]

(Ec. A.9.1.10)

Se tiene el tensor de inercia \(I_0^{\oplus} \):

\[
I_{\text{frenoO}} = \begin{bmatrix}
0 & 0 & 0 \\
0 & m \cdot x^2 & 0 \\
0 & 0 & m \cdot x^2
\end{bmatrix}
\]

Aplicando ahora la Ec. A.9.1.9 se tiene el valor del tensor de inercia del freno en el punto O, \(I_0^{\oplus} \):

\[
I_{\text{frenoO}} = \begin{bmatrix}
\frac{1}{12} \cdot m \cdot b^2 & 0 & 0 \\
0 & \frac{1}{12} \cdot m \cdot a^2 + m \cdot x^2 & 0 \\
0 & 0 & \frac{1}{12} \cdot m \cdot (a^2 + b^2) + m \cdot x^2
\end{bmatrix}
\]

A continuación, el valor del tensor de inercia del disco en el punto O tiene el siguiente valor, puesto que se ha supuesto que se trata de un disco homogéneo y el punto O es su centro de inercia:

\[
I_{\text{discoO}} = \begin{bmatrix}
\frac{1}{4} \cdot m \cdot R^2 & 0 & 0 \\
0 & \frac{1}{4} \cdot m \cdot R^2 & 0 \\
0 & 0 & \frac{1}{2} \cdot m \cdot R^2
\end{bmatrix}
\]

(Ec. A.9.1.11)

Finalmente, aplicando la Ec. A.9.1.8, y sustituyendo el valor de los siguientes parámetros, se obtiene el valor del tensor de inercia del sistema:

\[
\begin{align*}
a &= 140 \text{ mm} & R &= 260 \text{ mm} \\
b &= 268 \text{ mm} & m &= 10 \text{ kg}
\end{align*}
\]
Como solo interesa el valor del momento de inercia del eje Z, se tiene que el momento de inercia del sistema, y por tanto del freno de modo aproximado, toma el valor de \(I_b \) (freno) =1.741 kg·m².

A.10. Fuerzas en el sistema de elevación

El sistema de elevación es el sistema que comprende el cableado de tracción que mantiene en suspensión el sistema cabina-contrapeso, que junto con el motor de tracción y las poleas tractoras se encargan de las maniobras de subida y bajada del ascensor. [6]

En este sistema trascendental para el ascensor, es indispensable realizar una evaluación de fuerzas y esfuerzos en los cableados, con el fin de verificar entre otras cosas, el cumplimiento de las normativas europeas referidas a ascensores, la norma EN-81.

Para comenzar, se debe observar la Fig. A.10.1, donde se muestra un esquema simple sobre las fuerzas que actúan en cada ramal de la polea tractora:

- \(T_1 \) es la fuerza del ramal más cargado en N
- \(T_2 \) es la fuerza del ramal menos cargado en N
- \(\alpha \) es el ángulo del arco abrazado por el cable a lo largo de la polea
- \(P, Q \) y \(Z \) son las masas de la cabina, carga útil y contrapeso, respectivamente
Los valores de T_1 y T_2 dependen de la carga útil y del peso de la cabina o del contrapeso respectivamente, el peso del cable y el factor del cable. Sin embargo, si se emplean cables de compensación se deben tener en cuenta su peso así como las fuerzas de tracción existentes en ellos. Pero este no es el caso, y por tanto no se tendrán en cuenta para los cálculos de las fuerzas en cada ramal de la polea.

Las expresiones de cálculo de los valores de T_1 y T_2 se hallan como viene a continuación:

$$T_1 = \left(\frac{P + Q}{i} + m_l\right) \cdot g \quad \text{(Ec. A.10.1)}$$

$$T_2 = \frac{Z}{i} \cdot g \quad \text{(Ec. A.10.2)}$$

No obstante, a pesar del esquema del cálculo de las fuerzas T_1 y T_2, este esquema es extrapolable para cualquier configuración de cables y poleas, por lo que en la Fig. A.10.2 se muestra el esquema real del sistema de elevación [6]:

Fig. A.10.1. Esquema de cálculo de fuerzas en polea de tracción
Aplicando las ecuaciones Ec. A.10.1 y Ec. A.10.2 se hallan las fuerzas T_1 y T_2:

\[
T_1 = \left[\frac{650 + 450}{2} + 75.33 \right] \cdot 9.8 = 6128 \text{ N}
\]

\[
T_2 = \frac{875}{2} \cdot 9.8 = 4288 \text{ N}
\]

Sin embargo, a pesar de los valores de T_1 y T_2 se debe verificar la siguiente condición de adherencia, según la norma EN-81, en los dos casos siguientes:

\[
\frac{T_1}{T_2} \cdot C_1 \cdot C_2 \leq e^{\mu_\alpha}
\]

(Ec. A.10.3)
siendo:

C_1: Coeficiente que tiene en cuenta la aceleración de la gravedad, aceleración de frenada y condiciones particulares de la instalación (Ec. A.10.4):

$$C_1 = \frac{g+a}{g-a} \quad \text{(Ec. A.10.4)}$$

Pero, se pueden tomar valores mínimos de C_1 en función de la velocidad nominal:

- 1,10 para velocidades nominales: $V(n) \leq 0,63 \text{ m/s}$.
- 1,15 para velocidades nominales: $0,63 \text{ m/s} < V(n) \leq 1,0 \text{ m/s}$.
- 1,20 para velocidades nominales: $1,0 \text{ m/s} < V(n) \leq 1,6 \text{ m/s}$.
- 1,25 para velocidades nominales: $1,6 \text{ m/s} < V(n) \leq 2,5 \text{ m/s}$.

C_2: Coeficiente que tiene en cuenta la variación del perfil de las gargantas de la polea de tracción debido al desgaste:

- $C_2 = 1$ para gargantas semicirculares o entalladas.
- $C_2 = 1,2$ para gargantas en V.

f: coeficiente de fricción de los cables en las gargantas de la polea de tracción:

$$f = \frac{4 \cdot \mu \cdot (1 - \sin(\beta/2))}{\pi - \beta - \sin \beta} \quad \text{para gargantas entalladas o semicirc.} \quad \text{(Ec. A.10.5)}$$

donde μ es el coeficiente de rozamiento entre las poleas y los cables

β: ángulo de la garganta entallada o semicircular de la polea de tracción (rad) ($\beta = 0$ para gargantas semicirculares).

α: ángulo de arrollamiento de las cintas sobre polea de tracción, en radianes

1) Cabina cargada con el 125% de la carga nominal bajando a la planta baja

2) Cabina vacía subiendo a la planta más alta
Teniendo en cuenta esta información extraída de la norma EN-81, y aplicando las ecuaciones Ec. A.10.4 y Ec. A.10.5, se tienen los siguientes valores de los parámetros comentados en la página anterior:

\[\mu = 0.35, \text{ que es el coeficiente de rozamiento entre las poleas de fundición y el poliuretano del cual están hechas las cintas planas} \]

\[\beta = 0, \text{ se puede dar este valor puesto que la polea es lisa y se puede dar por válido este valor de } \beta \]

\[C_1 = \frac{9.8 + 1.225}{9.8 - 1.225} = 1.2857, \text{ se escoge este valor en lugar de } C_1=1.15 \text{ para una velocidad nominal de } v = 1 \text{ m/s, puesto que se desea comprobar la adherencia en el peor caso posible.} \]

\[C_2=1, \text{ se puede tomar este valor puesto que la polea es lisa. Y como el valor más grande de } C_2 \text{ es 1.2, no habría mucha diferencia con el resultado obtenido} \]

\[f = \frac{4 \cdot 0.35 \cdot (1 - \sin(0/2))}{\pi - 0 - \sin 0} = 0.573 \]

Con los valores anteriores calculados, se aplica la Ec. A.10.3 a fin de comprobar la condición de adherencia entre las cintas planas y las poleas en los dos casos descritos:

1) **Cabina cargada con el 125% de la carga nominal bajando a la planta baja:**

En este caso, el ramal más cargado y menos cargado toman los valores siguientes, respectivamente:

\[T_1 = 1.25 \cdot Q + P + m_L \] \hspace{1cm} \text{(Ec. A.10.6)}

\[T_1 = 1.25 \cdot 450 + 650 + 75.33 = 1288 \text{ kg} \]

\[T_2 = Z \] \hspace{1cm} \text{(Ec. A.10.7)}

\[T_2 = 875 \text{ kg} \]
Así, aplicando la condición general de adherencia, Ec. A.10.3, se tiene:

$$\frac{1288 \cdot 9.8}{875 \cdot 9.8} \cdot 1.2857 \cdot 1 \leq e^{0.573 \left(\frac{\pi}{180} (69+118) \right)} \rightarrow 1.893 \leq 6.489 \rightarrow \text{OK}$$

Se puede observar que en este caso, las condiciones de adherencia impuestas por la norma EN-81 se verifican, y por tanto, el diseño y cálculo de las cintas de suspensión es válido.

2) **Cabina vacía subiendo a la planta más alta:**

En este caso, el ramal más cargado y menos cargado toman los valores siguientes, respectivamente:

$$T_1 = Z + m_L$$ \hspace{1cm} (Ec. A.10.8)

$$T_1 = 875 + 75.33 = 950.33 \text{ kg}$$

$$T_2 = P$$ \hspace{1cm} (Ec.A.10.9)

$$T_2 = 650 \text{ kg}$$

Aplicando de nuevo la Ec. A.10.3 se tiene:

$$\frac{950.33 \cdot 9.8}{650 \cdot 9.8} \cdot 1.2857 \cdot 1 \leq e^{0.573 \left(\frac{\pi}{180} (69+118) \right)} \rightarrow 1.879 \leq 6.489 \rightarrow \text{OK}$$

En este caso también se verifica la condición de adherencia impuesta por EN-81, y por tanto el diseño y cálculo son válidos.

Tras estos cálculos y la comprobación de la adherencia según la norma EN-81, seguidamente se realiza la comprobación de la adherencia con los valores hallados de T_1 y de T_2.
\[
\frac{6128}{4288} \cdot 1.2857 \cdot 1 \leq e^{0.573\left(\frac{69}{180} - \frac{69+118}{180}\right)} \rightarrow 1.837 \leq 6.489 \rightarrow \text{OK}
\]

A continuación, se procede a la selección del modelo de las cintas planas de suspensión. Para ello, es indispensable tener el valor de las fuerzas, \(T_1\) y \(T_2\) calculadas y definir por tanto un diámetro para la polea de tracción y el modelo a emplear de las cintas planas de suspensión.

Según se puede observar en el gráfico que aparece en el Anexo B.8, en el eje de ordenadas se entra por el valor de la fuerza del ramal más grande y dicho valor se divide por 10 mm.

En este caso, el valor más grande de la fuerza de uno de los ramales en la polea tractora es \(T_1 = 6128\) N, ya calculado anteriormente según la Ec. A.10.1.

Si se divide dicho valor por 10 mm, se obtiene:

\[
F_{\text{zul}} = \frac{6128}{10} \cdot 12 = 7353.6 \text{ N/mm}
\]

donde 12 es el coeficiente de seguridad que se aplica para el cableado para ascensores de adherencia con tres o más cables, que en este caso se trata de cintas planas, según EN-81.

Si se accede a la gráfica del Anexo B.5, este valor permite seleccionar el modelo cinta plana XHS, que corresponde a la cinta de mayor resistencia. Además, permite seleccionar cualquier diámetro de polea, que puede ser perfectamente de 250 mm. Sin embargo, mediante el contacto con expertos en cintas planas, en estos casos de arbitrariedad en la elección de diámetros de poleas, se pueden seleccionar diámetros menores, siempre y cuando no sean más de 100 mm menores dichos diámetros escogidos.

De este modo, se decide seleccionar un diámetro de polea de tracción de 175 mm. Luego, si se observa el catálogo de las cintas en el Anexo B.5, para el modelo XHS, la anchura mínima a escoger es de 85 mm, por lo que se escoge esta anchura.
Además, se debe conocer la longitud a tomar de las cintas. Para ello, se puede determinar de manera aproximada por medio del esquema del sistema de suspensión que aparece en la Fig. A.10.2:

\[
L_{\text{c,int,ax}} = 27.129 + 26.485 + 0.1 \cdot \pi + 0.843 + 0.1 \cdot \frac{\pi}{2} + 0.1 \cdot \frac{\pi}{2} + 3.345 + 0.1 \cdot \pi + 0.534
\]
\[
+ \frac{67}{180} \cdot \pi \cdot 0.1 + \frac{120}{180} \cdot \pi \cdot 0.0875 = 61.982m \approx 62m
\]

donde se han tenido en cuenta los radios de las poleas, tanto la de tracción como las de desvío.

Cabe decir que el diámetro de la polea de tracción es de 175 mm, mientras que para las poleas de desvío son de 200 mm, escogidas arbitrariamente siempre y cuando sean de diámetro mayor que la polea tractora.

Otro dato que merece también especial interés es el valor de la densidad lineal de las cintas planas de suspensión, ya que su valor se ha obtenido experimentalmente realizando la media aritmética de una muestra de 16 cintas planas de longitudes y masas diferentes:

<table>
<thead>
<tr>
<th>N</th>
<th>m (gr)</th>
<th>L (cm)</th>
<th>(\lambda) (kg/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>101.21</td>
<td>25</td>
<td>0.405</td>
</tr>
<tr>
<td>2</td>
<td>98.17</td>
<td>22</td>
<td>0.446</td>
</tr>
<tr>
<td>3</td>
<td>99.28</td>
<td>23.4</td>
<td>0.424</td>
</tr>
<tr>
<td>4</td>
<td>100.05</td>
<td>18.6</td>
<td>0.538</td>
</tr>
<tr>
<td>5</td>
<td>99.36</td>
<td>25</td>
<td>0.397</td>
</tr>
<tr>
<td>6</td>
<td>76.15</td>
<td>21</td>
<td>0.363</td>
</tr>
<tr>
<td>7</td>
<td>88.86</td>
<td>22</td>
<td>0.404</td>
</tr>
<tr>
<td>8</td>
<td>94.13</td>
<td>24.1</td>
<td>0.391</td>
</tr>
<tr>
<td>9</td>
<td>110.62</td>
<td>26.3</td>
<td>0.421</td>
</tr>
<tr>
<td>10</td>
<td>96.71</td>
<td>37.1</td>
<td>0.261</td>
</tr>
<tr>
<td>11</td>
<td>81.13</td>
<td>21.7</td>
<td>0.374</td>
</tr>
<tr>
<td>12</td>
<td>91.06</td>
<td>22.2</td>
<td>0.410</td>
</tr>
<tr>
<td>13</td>
<td>105.12</td>
<td>16.3</td>
<td>0.645</td>
</tr>
<tr>
<td>14</td>
<td>85.23</td>
<td>32.1</td>
<td>0.266</td>
</tr>
<tr>
<td>15</td>
<td>79.14</td>
<td>27.6</td>
<td>0.287</td>
</tr>
<tr>
<td>16</td>
<td>90.11</td>
<td>20.1</td>
<td>0.448</td>
</tr>
</tbody>
</table>

Tabla A.10.1 Medidas de la masa y longitud de N=16 cintas
Una vez se tienen los datos anteriores de una muestra de N=16 cintas, se procede a la determinación de la media aritmética de los valores de la densidad lineal obtenida, λ, y de su desviación estándar, según las ecuaciones siguientes:

\[
\bar{\lambda} = \frac{\sum_{i=1}^{N} \lambda_i}{N} \quad \text{(Ec. A.10.10)}
\]

\[
S^2_{\lambda} = \frac{1}{N-1} \cdot \sum_{i=1}^{N} (\lambda_i - \bar{\lambda})^2 \quad \text{(Ec. A.10.11)}
\]

de modo que aplicando las ecuaciones anteriores resulta:

\[
\bar{\lambda} = \frac{0.405 + 0.446 + \ldots + 0.448}{16} = 0.405 \, \text{kg/m}
\]

\[
S^2_{\lambda} = \frac{1}{16-1} \cdot ((0.405 - 0.405)^2 + \ldots + (0.448 - 0.405)^2) = 0.009 \, \text{kg}^2/\text{m}^2
\]

\[
S_{\lambda} = \sqrt{0.009} = 0.095 \, \text{kg/m}
\]

Una vez se tienen estos valores se establece un intervalo de confianza que comprenda un determinado rango de valores, de manera que dentro de ese rango pertenecerían los valores válidos de λ. Dicho esto se escoge el intervalo de confianza dicho por el criterio tri-sigma, que consiste en hallar un intervalo de confianza con una probabilidad del 99.8%:

\[
\lambda = \bar{\lambda} \pm t_{\nu, P'} \cdot S_{\lambda}
\]

\[
P' = \frac{1 - P}{2} \quad \text{(Ec. A.10.13)}
\]

\[
P' = \frac{1 - 99.8}{2} = 0.001
\]
Con el valor obtenido de P', y según el número de grados de libertad, ν, siendo:

$$\nu = N - 1$$ \hspace{1cm} (Ec. A.10.14)

$$\nu = 16 - 1 = 15$$

se puede determinar el valor de $t_{\nu, P'}$ consultando las tablas de la distribución de t-Student que figuran en el anexo B.10:

$$t_{\nu, P'} \rightarrow t_{15, 0.001} = 3.733$$

Una vez se tiene el valor de $t_{\nu, P'} \rightarrow t_{15, 0.001} = 3.733$, se puede determinar el intervalo de confianza para una probabilidad del 99.8%, según la Ec. A.10.12:

$$\lambda = 0.405 \pm 3.733 \cdot 0.095 = 0.405 \pm 0.355 \text{ kg/m}$$

de modo que el intervalo de confianza resulta amplio:

$$[0.405-0.355, 0.405+0.355] = [0.050, 0.760] \text{ kg/m}$$

Bien, este intervalo obtenido es amplio. Ahora se debería observar la tabla A.10.1 y observar si hay valores de λ que no entran dentro de dicho intervalo, que si se diese el caso se recalcularía de nuevo el intervalo de confianza sin el /los valor/es desechados. Pero este no es el caso y por lo tanto los valores de λ determinados son todos válidos, y el valor que adoptará finalmente λ en los cálculos será su valor medio de $\lambda = 0.405 \text{ kg/m}$.

A.10.1. Tensiones y deformaciones en las cintas

Una vez conocidas las fuerzas a las que están sometidas las cintas planas y sus medidas tras su selección es necesario determinar las tensiones que soportan sus secciones y las deformaciones a las que están sometidas.

Para hallar las tensiones y deformaciones se realizará mediante la ley de Hooke y suponiendo que las cintas tienen un comportamiento lineal:

$$\sigma = E \cdot \varepsilon$$ \hspace{1cm} (Ec. A.10.1.1)
siendo:

- \(\sigma \): tensión a la que está sometida la sección del material en MPa

- E: módulo de elasticidad o de Young del material en MPa

- \(\varepsilon \): deformación unitaria del material al estar sometido a tensión

Puesto que las cintas de poliuretano están rellenas de hilos de acero trefilados de alta resistencia, previamente se debe determinar el módulo de Young resultante de las cintas, así como otras propiedades mecánicas de interés como el límite elástico.

Para ello, se plantea una situación de isodeformación, es decir, la deformación del material compuesto (PU+hilos de acero) es igual a la deformación sufrida por los hilos de acero y de el poliuretano. Además, la tensión aplicada es paralela a las fibras, que en este caso son los hilos de acero (Fig. A.10.1.1):

![Fig. A.10.1.1. Situación de isodeformación con tensión paralela a las fibras](image)

\[\varepsilon_{\text{cinta}} = \varepsilon_{\text{acero}} = \varepsilon_{\text{PU}} \]

Una vez vista la figura anterior se supone que la matriz en este caso es el poliuretano, mientras que las fibras son los hilos de acero contenidos en su interior. Para determinar pues, el módulo de Young resultante de la cinta y la tensión admisible se deben aplicar las siguientes ecuaciones:

\[E_{\text{cinta}} = E_{\text{PU}} \cdot V_{\text{PU}} + E_{\text{acero}} \cdot V_{\text{acero}} \]
\[(\text{Ec. A.10.1.2}) \]
\[\sigma_{\text{cinta}} = \sigma_{PU} \cdot V_{PU} + \sigma_{\text{acero}} \cdot V_{\text{acero}} \]
\hspace{1cm} \text{(Ec. A.10.1.3)}

siendo:

\(V_{PU} \) y \(V_{\text{acero}} \) los tantos por ciento en volumen que ocupan dichos componentes en la cinta

\(E_{PU} \) y \(E_{\text{acero}} \) los módulos de Young en MPa de los respectivos componentes

\(\sigma_{PU} \) y \(\sigma_{\text{acero}} \) las tensiones admisibles en MPa de dichos componentes

Tomando una muestra de cinta de 250 mm de largo, y de 85 mm de anchura y 4.5 mm de espesor se procede a la determinación de su volumen total (Ec. A.10.1.4):

\[V_{\text{cinta}} = L \cdot b \cdot e \]
\hspace{1cm} \text{(Ec. A.10.1.4)}

\[V_{\text{cinta}} = 250 \cdot 85 \cdot 4.5 = 95625 \text{ mm}^3 \]

La cinta contiene en su interior 18 hilos de acero de diámetro \(D_h = 2.8 \text{ mm} \), de manera que el volumen que ocupan estos hilos se puede hallar según la Ec. A.10.1.5:

\[V_{\text{acero}} = \pi \cdot \frac{D_h^2}{4} \cdot L \]
\hspace{1cm} \text{(Ec. A.10.1.5)}

\[V_{\text{acero}} = \pi \cdot \frac{2.8^2}{4} \cdot 250 \cdot 18 = 27709 \text{ mm}^3 \]

Teniendo los valores anteriores se puede hallar ahora el tanto por ciento en volumen que ocupa cada componente en la cinta:

\[V'_{\text{acero}} = \frac{V_{\text{acero}}}{V_{\text{cinta}}} \cdot 100 \]
\hspace{1cm} \text{(Ec. A.10.1.6)}

\[V'_{\text{acero}} = \frac{27709}{95625} \cdot 100 = 28.98\% \]

\[V'_{PU} = \frac{V_{\text{cinta}} - V_{\text{acero}}}{V_{\text{cinta}}} \cdot 100 \]
\hspace{1cm} \text{(Ec. A.10.1.7)}
\[V_{PU} = \frac{95625 - 27709}{95625} \cdot 100 = 71.02\% \]

Teniendo los valores anteriores y conociendo el valor del módulo de Young de los componentes que componen las cintas [12], poliuretano y acero, se puede proceder a determinar el módulo de Young resultante de la cinta, aplicando las ecuaciones Ec. A.10.1.2 y Ec. A.10.1.3:

\[E_{\text{acero}} = 210000 \text{ MPa} \]

\[E_{\text{PU}} = 400 \text{ MPa} \]

\[\sigma_{\text{PU}} = 20 \text{ MPa} \]

\[\sigma_{\text{acero}} = 1320 \text{ MPa} \]

\[E_{\text{inta}} = 400 \cdot \frac{71.02}{100} + 210000 \cdot \frac{28.98}{100} = 61142 \text{ MPa} \]

\[\sigma_{\text{inta}} = 20 \cdot \frac{71.02}{100} + 1320 \cdot \frac{28.98}{100} = 396.7 \text{ MPa} \]

Para aplicar finalmente la ley de Hooke, Ec. A.10.1.1, se debería conocer a qué tensión máxima está sometida la sección de la cinta (Ec. A.10.1.8):

\[\sigma_{\text{max}} = \frac{F_{\text{max}}}{S} \quad \text{(Ec. A.10.1.8)} \]

Se sabe que:

\[F_{\text{max}} = T_i = 6128 \cdot 12 = 73536 \text{ N}, \text{ con un coeficiente de seguridad de 12} \]

\[S = b \cdot e = 85 \cdot 4.5 = 382.5 \text{ mm}^2 \]
Por lo tanto:

\[\sigma_{\text{max}} = \frac{73536}{382.5} = 192.3 \text{ MPa} \leq 396.7 \text{ MPa} \]

que como se puede observar, la tensión máxima es inferior a la admisible y por lo tanto resiste a la tracción sometida.

Aplicando ahora la ley de Hooke, Ec. A.10.1.1, se puede determinar la deformación longitudinal sufrida por las cintas en tanto por ciento:

\[\sigma = E \cdot \varepsilon \rightarrow \varepsilon = \frac{\sigma_{\text{max}}}{E} = \frac{192.3}{61142} = 0.003144 \]

\[\rightarrow 0.003144 \cdot 100 = 0.3144\% \]

de manera que si se compara el alargamiento a ruptura de la cinta con el del acero, que en este caso es del 6%, es claramente inferior [12]. Además, se ha supuesto que la deformación sufrida por la cinta es la misma que la sufrida por el acero y el poliuretano, de manera que la cinta trabaja dentro de los límites admisibles y por lo tanto, es válida su elección.

Y ya para concluir, se sabe que el diámetro de los hilos de acero es de 2.8 mm, y el de polea de tracción es de 175 mm. Ahora se debe comprobar que la relación entre ambos diámetros cumple con la norma EN-81, sea cual sea el número de cables, y efectivamente resulta ser que cumple con EN-81 (Ec. A.10.1.9):

\[\frac{D_{\text{polea}}}{D_{\text{cables}}} \geq 40 \]

(Ec. A.10.1.9)

\[\frac{175}{2.8} = 62.5 \geq 40 \]
A.11. Cálculo de rodamientos

Para determinados componentes del ascensor, como son el limitador de velocidad, la polea tensora, los apoyos de rodillos y las poleas de tracción como de reenvío requieren la presencia de rodamientos para reducir así la fricción entre dichos rodamientos y los ejes de los que disponen tales componentes citados. Con los rodamientos se cambia la fricción por una rodadura, lo que supone un menor desgaste por los puntos de apoyo de los ejes de los componentes anteriormente citados y por tanto una mayor durabilidad. Sin embargo, los rodamientos que se dimensionarán son los del limitador de velocidad, polea tensora, polea de tracción y apoyos del árbol del tonillín sinfín.

A.11.1. Rodamientos de la polea tensora y del limitador de velocidad

El limitador de velocidad como la polea tensora no van accionados por medio de ningún accionamiento, de modo que las únicas fuerzas que actúan en estos elementos son la fuerza de pretensado inicial, F_0 y F_0'.

Bien, previamente se han de conocer estas fuerzas. La fuerza de pretensado F_0 ya queda impuesta por el fabricante para garantizar así la tensión del cable limitador de velocidad por medio de la polea tensora. Además, el diámetro de las poleas es el mismo para ambas y son datos conocidos según el apartado A.2, la velocidad nominal de dichas poleas y la duración en años que se desea para dichas poleas.

Con estos datos se puede proceder al dimensionado de los rodamientos que tendrán las poleas, aunque previamente se hará un dimensionado del eje de las poleas.

De este modo se tiene lo siguiente:

\[F_0 = 500 \text{ N} \]

\[v_{nom} = 1 \text{ m/s} \]

\[D_{polea} = 180 \text{ mm} \]
Se desea además que los rodamientos tengan un ciclo de vida de 20 años, lo que supone una duración en horas de:

\[
20 \text{ años} \cdot \frac{365 \text{ días}}{\text{año}} \cdot \frac{1.5 \text{ horas}}{\text{día}} = 10950 \text{ horas}
\]
donde se ha supuesto que el ascensor trabaja 1 hora y media en un día entero

Por otro lado, la velocidad angular de las poleas es conocida, puesto que la velocidad periférica y el diámetro de las mismas se conoce. Así pues:

\[
v = \omega \cdot R_{polea}\]

de modo que sustituyendo y despejando se tiene:

\[
1 = \omega \cdot 0.18/2 \quad \rightarrow \quad \omega = 11.11 \frac{\text{rad}}{s} \cdot \frac{1 \text{ rev}}{2 \pi \text{ rad}} \cdot \frac{60 \text{ s}}{\text{min}} = 106.1 \text{ rpm}
\]

Bien, tal como se ha comentado a continuación se realiza un previo dimensionado del eje de las poleas. Se supone que el eje de las poleas está sometido en su punto medio a una carga puntual debido a la masa de las poleas, \(m_p\), y a las dos fuerzas de pretensado \(F_0\) y \(F_0'\). Por otro lado, estas dos fuerzas de pretensado crean un momento torsor sobre el eje, de modo que dicho eje se dimensionará como viene a continuación:

Se supone que el eje es una biga biapoyada de modo que tiene dos reacciones en sus extremos, que se obtienen aplicando las ecuaciones de equilibrio de fuerzas de la estática:

\[
\sum F_x = 0 \quad \text{(Ec. A.11.1.2)}
\]

\[
\sum F_y = 0 \quad \text{(Ec. A.11.1.3)}
\]

\[
\sum M_A = 0 \quad \text{(Ec. A.11.1.4)}
\]

de tal manera que aplicando dichas ecuaciones se llega al diagrama del sólido libre siguiente (Fig. A.11.1.1) y consecuentemente al diagrama de momentos flectores (Fig. A.11.1.2):
\[R_A + R_B - 127.4 - F_0 - F_0' = 0 \]

\[-(127.4 + F_0 + F_0') \cdot 10 + R_B \cdot 20 = 0 \quad \Rightarrow \quad R_B = R_A = 645 \text{ N} \]

en el que los valores de \(F_0 \) y \(F_0' \) están calculados en la siguiente página y valen respectivamente, 500 N y 663 N.

\[\frac{127.4 + F_0 + F_0'}{20} = 645 \text{ N} \]

\[\frac{20}{2} = 645 \text{ N} \cdot \text{m} \]

donde el momento flector se calcula:

\[M_f = R_A \cdot L / 2 \quad \text{(Ec. A.11.1.5)} \]

\[M_f = 645 \cdot 0.20 / 2 = 645 \text{ N} \cdot \text{m} \]
Por otro lado, las fuerzas F_0 y F_0' generan un momento torsor según el eje X de valor:

$$F_0' = F_0 \cdot e^{\mu \alpha} \quad \text{(Ec. A.11.1.6)}$$

donde μ es el coeficiente de rozamiento entre la polea y el cable de acero y tiene como valor 0.09 y α es el ángulo de contacto que subtiende el cable en la polea y tiene como valor π radianes:

$$F_0' = 500 \cdot e^{0.09 \pi} = 663 \text{ N}$$

![Diagrama de momento torsor](image)

Fig. A.11.1.3. Fuerzas tangenciales en polea y diagrama de momento torsor

$$M_x = (F_0' - F_0) \cdot R_{polea} \quad \text{(Ec. A.11.1.7)}$$

$$M_x = (663 - 500) \cdot 180 / 2 = 14.67 \text{ N\cdotm}$$

Una vez se tienen los diagramas de momentos flectores y torsores del eje, se puede proceder al dimensionado del diámetro del eje aplicando el criterio de Von Mises (Ec. A.11.1.8):

$$d^3 = \frac{16}{\pi \cdot \sigma_{adm}} \cdot \sqrt{4 \cdot M_y^2 + 3 \cdot M_x^2} \quad \text{(Ec. A.11.1.8)}$$

donde $\sigma_{adm} = 355 \text{ N/mm}^2$, ya que el material escogido para el eje es el acero St 52-3 y M_y y M_x son los momentos flectores y torsores respectivamente.
Así, sustituyendo y despejando \(d \) en la ecuación (Ec. A.11.1.8) se tiene:

\[
d^3 \geq \frac{16}{\pi \cdot 355/5} \cdot \sqrt{4 \cdot 6450^2 + 3 \cdot 14670^2} = 2044.1 \text{ mm}^3
\]

\[
d \geq \frac{\sqrt[3]{2044.1}}{\text{mm}} = 12.69 \text{ mm}
\]

Cabe decir que en el valor de \(\sigma_{adm} \) se le ha aplicado un coeficiente de seguridad 5, como se puede observar en la sustitución de valores de la Ec. A.11.1.8.

De esta manera, el eje queda dimensionado y se toma un valor arbitrario y que sea acorde con el diámetro interior de los rodamientos normalizados que cumpla con el resultado obtenido, por ejemplo: \(d = 15 \text{ mm} \).

Por tanto, se puede proceder ya al dimensionado de los rodamientos de la polea. Bien, sobre estos rodamientos se tiene pensado colocar ambos del tipo rígidos de bolas de contacto angular, de modo que las cargas radiales aplicadas sobre el rodamiento originan fuerzas axiales que se deben contrarrestar; por este motivo se disponen de manera que puedan ajustarse contra un segundo rodamiento.

Bien, el diagrama de fuerzas correspondiente es el que se ve a continuación (Fig. A.11.1.4):

Fig. A.11.1.4. Cargas y radiales en los rodamientos A y B
donde las fuerzas F_{yA} y F_{yB} corresponden a los valores obtenidos anteriormente de las reacciones sobre los rodamientos, $R_A = R_B = 774$ N, y mayoradas con un factor $f_z=1.2$, puesto que las vibraciones en las poleas son de tipo medio. [5]

Ahora que se conocen las cargas radiales de los rodamientos se procede al dimensionado de los mismos. Para ello, es preciso destacar previamente que las cargas son constantes en los rodamientos y el tipo de rodamientos a emplear es el rígido de bolas puesto que se desea que la instalación funcione con el menor ruido posible y el rozamiento sea menor para tener así un ciclo de vida mayor.

Como se comentaba anteriormente, la duración en horas de los rodamientos deseada es de 10950 horas y la velocidad de giro en rpm es de 106.1 rpm. De este modo, se calculan los factores dinámicos (Ec. A.11.1.9) y los factores de velocidad (Ec. A.11.1.10):

$$ f_L = \sqrt{\frac{L_h}{500}} $$ \hspace{1cm} (Ec. A.11.1.9)

donde $p=3$ al tratarse de rodamientos de bolas y L_h es la duración en horas deseada para los rodamientos [5]

$$ f_n = \sqrt{\frac{331/3}{n}} $$ \hspace{1cm} (Ec. A.11.1.10)

donde $p=3$ al tratarse de rodamientos de bolas y n es la velocidad de giro en rpm

Así pues, aplicando las ecuaciones anteriores se tiene:

$$ f_L = \sqrt{\frac{10950}{500}} = 2.7978 $$

$$ f_n = \sqrt{\frac{331/3}{106.1}} = 0.6798 $$

Sabiendo ahora que el rodamiento B (Fig. A.11.1.4) soporta sólo cargas radiales, aplicando las Ec. A.11.1.11 y Ec. A.11.1.12 se podrá proceder al dimensionado de dicho rodamiento:
\[P = F_r \]
\[f_L = \frac{C}{P} \cdot f_u \]

donde \(C \) es la capacidad de carga dinámica del rodamiento en N y \(P \) es la carga dinámica equivalente en N.

\[P = F_y^{\prime} = 774 \text{ N} \]

\[2.7978 = \frac{C}{774} \cdot 0.6798 \quad \rightarrow \quad C = 3185 \text{ N} \]

Obtenido este valor de \(C = 3185 \text{ N} \), el rodamiento que más se aproxima a este resultado y teniendo en cuenta el diámetro del eje es el rodamiento rígido de bolas SKF 6002 con las dimensiones siguientes: \(d=15 \text{ mm} \), \(D = 32 \text{ mm} \) y \(B=9 \text{ mm} \), y con un valor de \(C=5850\text{N}. \) [22]

Si se pasa a comprobar el factor dinámico para este rodamiento resulta lo siguiente:

\[f_L = \frac{5850}{774} \cdot 0.6798 = 5.138 \geq 2.798 \quad \text{y por tanto es válido} \]

Respecto al rodamiento A (Fig. A.11.1.4) se observa que también soporta cargas radiales y del mismo valor que el rodamiento B, por lo que sus dimensiones son análogas a las del rodamiento B.

A.11.2. Rodamientos de la polea de tracción

El proceso de dimensionado de los rodamientos de la polea de tracción es análogo al de las poleas tensoras y limitadores de velocidad, ya que en función de las solicitudes se realiza un dimensionado previo del eje de dicha polea y a continuación el dimensionado de los rodamientos, aunque en este caso se debe comentar que a pesar de que la velocidad de giro es constante, la fuerza axial que aparece en uno de los rodamientos no lo es.
Para comenzar se tienen los siguientes datos de la polea de tracción:

\[m_{\text{polea}} = 35 \text{ kg} = 35 \times 9.8 = 343 \text{ N} \]

\[L_{\text{polea}} = 330 \text{ mm} \]

\[R_{\text{polea}} = 87.5 \text{ mm} \]

\[T_1 = 6128 \text{ N} \] (calculado en el apartado A.10)

Para comenzar a dimensionar el eje de la polea tractora se debe realizar una previa descomposición de las fuerzas (Fig. A.11.2.1) que actúan sobre ella:

\[\frac{T_1}{T'} \leq e^{f' \alpha} \rightarrow T'_1 = \frac{T_1}{e^{f' \alpha}} = \frac{6128}{0.573 \times 180} = 1883 \text{ N} \] (Ec. A.11.2.1)

\[T'_{1x} = T'_1 \cdot \cos(16^\circ) = 1883 \cdot \cos(16^\circ) = 1810 \text{ N} \] (Ec. A.11.2.2)

\[T'_{1y} = T'_1 \cdot \sin(16^\circ) = 1883 \cdot \sin(16^\circ) = 519 \text{ N} \] (Ec. A.11.2.3)

Fig. A.11.2.1. Descomposición de fuerzas en la polea de tracción
Una vez se tienen las fuerzas descompuestas en la polea de tracción, se procede al dimensionado del eje de la polea:

a) **Plano ZY**: en la Fig. A.11.2.2 se pueden ver las fuerzas y momentos que actúan sobre la polea tractora en el plano ZY

![Fig. A.11.2.2. Fuerzas que actúan sobre la polea tractora](image)

Mediante esta breve explicación y las ecuaciones de la estática (Ec. A.11.2.4 hasta Ec. A.11.2.6) se obtienen los siguientes valores de las reacciones en los apoyos de la polea tractora:

\[\sum F_z = 0 \] \hspace{1cm} \text{(Ec. A.11.2.4)}

\[\sum F_y = 0 \] \hspace{1cm} \text{(Ec. A.11.2.5)}

\[\sum M_B = 0 \] \hspace{1cm} \text{(Ec. A.11.2.6)}

que si se aplican se tiene:

\[-F_b + 1740 = 0 \rightarrow F_b = 1758 \text{ N}\]

\[-R_A \cdot 390 + (343 + T_1 + T_{1y}) \cdot \frac{390}{2} = 0 \rightarrow R_A = 3495 \text{ N}\]
\[R_A + R_B - (343 + T_1 + T_y') = 0 \rightarrow R_B = 3495N \]

A continuación se muestra el diagrama de momentos flectores:

Fig. A.11.2.3. Diagrama de momentos flectores en el plano ZY

El momento flector máximo se ha calculado según la Ec. A.11.2.7:

\[M_{F(ZY)} = R_A \cdot \frac{0.390}{2} = 3495 \cdot \frac{0.390}{2} = 681.5 \text{ N}\cdot\text{m} \quad (\text{Ec. A.11.2.7}) \]

b) Plano ZX: en la Fig. A.11.2.4 se observan los esfuerzos sobre la polea tractora respecto el plano ZX:

Fig. A.11.2.4. Fuerzas sobre la polea tractora en el plano ZX
En este caso, las reacciones en los apoyos se han determinado por simetría, puesto que la fuerza \(T_{1x}' = 1810 \text{ N} \) actúa en el punto medio de la polea, y por tanto las reacciones en los apoyos son iguales y del mismo sentido, como se puede ver en la Fig. A.11.2.4.

A continuación se tiene el diagrama de momentos flectores en el plano ZX (Fig. A.11.2.5) y como se ha determinado éste (Ec. A.11.2.8):

![Diagrama de momentos flectores en el plano ZX](image)

\[
M_{F(ZX)} = 905 \cdot \frac{0.390}{2} = 176.4 \text{ N-m} \quad \text{(Ec. A.11.2.8)}
\]

Una vez se tienen los dos momentos flectores máximos en cada plano, ZY y ZX, se determina el momento flector resultante:

\[
M_{F(\text{total})} = \sqrt{M_{F(ZY)}^2 + M_{F(ZX)}^2} \quad \text{(Ec. A.11.2.9)}
\]

\[
M_{F(\text{total})} = \sqrt{681.5^2 + 176.4^2} = 703.9 \text{ N-m}
\]

c) **Momento torsor en el eje X**: el momento torsor en el eje X coincide con el valor calculado del par resistente en el apartado A.7 y es constante de valor \(M_{tx} = 224.3 \text{ N-m} \) (Fig. A.11.2.6).
De esta manera, una vez se tienen los valores del momento torsor y flector resultantes se puede proceder al dimensionado del eje de la polea tractora según Von Mises (Ec. A.11.2.10):

\[d^3 = \frac{16}{\pi \cdot \sigma_{adm}} \cdot \sqrt{4 \cdot M_j^2 + 3 \cdot M_x^2} \]
\[\text{(Ec. A.11.2.10)} \]

\[d^3 \geq \frac{16}{\pi \cdot 355/5} \cdot \sqrt{4 \cdot (703.9 \cdot 10^3)^2 + 3 \cdot (224.3 \cdot 10^3)^2} = 104758.7 \text{ mm}^3 \]

\[d \geq \sqrt[3]{104758.7} = 47.1 \approx 50 \text{ mm} \]

Una vez se tiene dimensionado el eje de la polea tractora se procede como en el apartado anterior para determinar los rodamientos que se colocarán en los apoyos de la polea tractora. En este caso se emplean rodamientos rígidos de bolas de contacto angular, dado que este tipo de rodamientos resiste mejor las cargas combinadas (fuerza axial + fuerza radial) en comparación con los rodamientos rígidos de bolas.

Por otro lado, en la Fig. A.11.2.8 se pueden observar las fuerzas sobre los rodamientos A y B, en el que el rodamiento B es en el que actúan las cargas axiales y radiales, y en el rodamiento A la fuerza radial:
Las fuerzas en los rodamientos A y B están mayoradas por un factor $f_z = 1.2$ como en el caso anterior, puesto que los rodamientos están afectados por vibraciones de grado medio, de modo que las fuerzas R_A, R_B y H_B toman los siguientes valores [5]:

\[
R_A = 3495 \cdot 1.2 = 4194 \text{ N}
\]

\[
R_B = 3495 \cdot 1.2 = 4194 \text{ N}
\]

\[
H_B = 1758 \cdot 1.2 = 2110 \text{ N}
\]

Antes del dimensionado de los rodamientos se determinan los factores dinámicos y de velocidad empleando las ecuaciones Ec. A.11.1.10 y Ec. A.11.1.11, respectivamente:

\[
f_L = \frac{L_h}{\sqrt{500}} \quad \text{(Ec. A.11.1.10)}
\]

donde $p=3$ al tratarse de rodamientos de bolas y L_h es la duración en horas deseada para los rodamientos.

\[
f_n = \sqrt{\frac{331/3}{n}} \quad \text{(Ec. A.11.1.11)}
\]

donde $p=3$ al tratarse de rodamientos de bolas y n es la velocidad de giro en rpm.
Así pues, aplicando las ecuaciones anteriores se tiene:

\[f_L = \frac{1}{3} \sqrt[3]{\frac{10950}{500}} = 2.7978 \]

\[f_n = \frac{1}{3} \sqrt[3]{\frac{331/3}{109.15}} = 0.6734 \]

Bien, sabiendo ahora que el rodamiento A (Fig. A.11.2.8) soporta sólo cargas radiales, aplicando las Ec. A.11.1.12 y Ec. A.11.1.13 se podrá proceder al dimensionado de dicho rodamiento:

\[P = F_r \quad \text{(Ec. A.11.1.12)} \]

\[f_L = \frac{C}{P} \cdot f_n \quad \text{(Ec. A.11.1.13)} \]

\[P = 4194 \text{ N} \]

\[2.7978 = \frac{C}{4194} \cdot 0.6734 \rightarrow C = 17425 \text{ N} \]

Si se observa el catálogo SKF y teniendo en cuenta que el diámetro del eje es \(d = 50 \text{ mm} \) pero tiene un escalón donde está ubicado dicho rodamiento donde el diámetro del eje es de \(d = 55 \text{ mm} \), el rodamiento correspondiente para esta capacidad dinámica obtenida es el 6211 con las dimensiones \(d = 55 \text{ mm}, D = 100 \text{ mm} \) y \(B = 21 \text{ mm} \) con un valor de \(C = 46200 \text{ N} \) y \(C_0 = 29000 \text{ N} \) [22]. De modo, que si se comprueba la duración, se tiene:

\[f_L = \frac{46200}{4194} \cdot 0.6734 \rightarrow f_L = 7.418 \]

\[7.418 = \frac{1}{3} \frac{L_h}{500} \rightarrow L_h = 204094 \text{ horas} \geq 10950 \text{ horas} \]

Por tanto, el rodamiento escogido para el apoyo A es totalmente válido.
Para seleccionar el rodamiento B, por medio de métodos experimentales se sabe que la fuerza axial \(F_A = 2110 \) N correspondiente a la actuación de los frenos de disco toma este valor el 75% de las veces durante su ciclo de vida y, es nulo para el 25% restante.

El rodamiento B, al estar sometido tanto a esfuerzos radiales como axiales, se debe hallar una carga equivalente resultante, ya que la carga axial varía.

De este modo, por medio de la Ec. A.11.2.11 se establece lo siguiente [5], y para el caso en que \(F_A = 2110 \) N:

\[
\frac{F_r}{F_{3B}} = \frac{2110}{4194} = 0.503
\]

(Ec. A.11.2.11)

El valor obtenido es muy grande y mayor que cualquier valor de \(e \), por lo que la carga axial influye en la carga equivalente. Al no conocerse la carga equivalente, \(P \), no se puede calcular la capacidad de carga dinámica \(C \) y por tanto no se sabe que rodamiento se necesita, y tampoco el valor de \(C_0 \) para obtener el valor del cociente \(F_a/C_0 \) con el que definir los valores de \(Y \) y \(e \) correspondientes.

Como \(Y \) puede variar entre 1 y 2 [5], se toma inicialmente un valor arbitrario de \(Y \). En este caso se toma \(Y = 1.6 \).

Así, por medio de la siguiente ecuación, se determina la carga equivalente resultante para el valor de \(Y \) escogido:

\[
P = X \cdot F_r + Y \cdot F_a = 0.56 \cdot 4194 + 1.6 \cdot 2088 = 5689N
\]

(Ec. A.11.2.12)

Aplicando ahora la Ec. A.11.1.13, se obtiene el siguiente valor de la capacidad dinámica equivalente para el valor calculado de \(P \):

\[
2.7978 = \frac{C}{5689} \cdot 0.6734 \rightarrow C = 23636N
\]
Con este valor obtenido de C, y teniendo en cuenta que el eje tiene un diámetro de
d= 45 mm en el punto B, el rodamiento seleccionado en el catálogo de SKF es el 6209,
cuyas dimensiones son d= 45 mm, D= 85 mm y B= 19 mm. Mientras que los valores de C y
C₀ son 35100 N y 21600 N, respectivamente.

Por medio de la Ec. A.11.2.13, se determina el cociente siguiente:

\[
\frac{F_a}{C_0} = \frac{2088}{21600} = 0.097 \approx 0.1
\]

(Ec. A.11.2.13)

de modo que interpolando se obtienen los siguientes valores:

e = 0.29

X = 0.56

Y = 1.5

Por medio de estos valores obtenidos, se recala la valor de la carga equivalente,
P, aplicando de nuevo la Ec. A.11.2.12:

\[
P = X \cdot F_r + Y \cdot F_a = 0.56 \cdot 4194 + 1.5 \cdot 2088 = 5481 N
\]

Así pues, se obtiene el valor de la carga equivalente, P, sobre el rodamiento B para
el caso en que la fuerza axial toma el valor de F_a = 2088 N.

Para el caso en que F_a = 0 N (25%), en el rodamiento B es como si la fuerza axial
no actúase y por tanto sólo está sometida a la fuerza radial, por lo que el valor de la carga
equivalente, P, coincide con la fuerza radial y en este caso:

\[
P = F_{rB} = 4194 N
\]

Si se determina la capacidad de carga dinámica para este caso se obtiene lo
siguiente:

\[
2.7978 = \frac{C}{4194} \cdot 0.6734 \rightarrow C = 17425 N
\]
Y observando el catálogo de SKF [22], se observa que el rodamiento más conveniente es el mismo que para el caso anterior, es decir, el 6209.

Por lo tanto, una vez se tienen los valores de las cargas equivalentes en los dos casos señalados anteriormente, se determina a continuación el valor de la carga equivalente resultante por medio de la siguiente ecuación:

\[
P = \sqrt[3]{p_1^3 \cdot \frac{q_1}{100} + p_2^3 \cdot \frac{q_2}{100}}
\]

(Ec. A.11.2.14)

\[
P = \sqrt[3]{5481^3 \cdot \frac{75}{100} + 4194^3 \cdot \frac{25}{100}} = 5216N
\]

Con el valor obtenido de la carga equivalente en el rodamiento B se está en disposición de determinar el valor de la capacidad dinámica equivalente por medio de la Ec. A.11.1.13:

\[
2.7978 = \frac{C}{5216} \cdot 0.6734 \rightarrow C = 21671N
\]

Si se observa el valor de \(C = 35100 \) N del rodamiento previamente seleccionado, el valor obtenido de \(C \) queda cubierto suficientemente.

Ahora, si se comprueba la duración del rodamiento se tiene:

\[
f_L = \frac{35100}{5147} \cdot 0.6734 \rightarrow f_L = 4.59
\]

\[
4.59 = \sqrt[3]{\frac{L_h}{500}} \rightarrow L_h = 48351\text{horas} \geq 10950\text{horas}
\]
A.11.3. Rodamientos de la polea de la cabina

Para dimensionar los rodamientos de la polea de la cabina se procede de manera análoga que para los casos anteriores, dimensionando previamente el eje y operando de forma adecuada con las ecuaciones convenientes para dimensionar dichos rodamientos.

Para comenzar se tienen los siguientes datos y el esquema de fuerzas en dicha polea (Fig. A.11.3.1):

\[R_{polea} = 100 \text{ mm} \]
\[m_{polea} = 42 \text{ kg} \]
\[L_{polea} = 330 \text{ mm} \]

Una vez se tiene el diagrama de fuerzas sobre la polea, se determina el valor de la fuerza \(T_1' \) por medio de la Ec. A.11.1.6, ya que el valor de \(T_1 = 6128 \text{ N} \), calculado en el apartado A.10:

\[T_1 = T_1' \cdot e^{\mu \alpha} \rightarrow 6128 = T_1' \cdot e^{0.573 \cdot \pi} \rightarrow T_1' = 1013 \text{ N} \]

donde \(\mu = 0.573 \) y \(\alpha = \pi \text{ rad} \), que es el ángulo que forman las dos fuerzas en la polea.
Por medio de las dos fuerzas, T_1 y T_1', se genera un momento torsor en la polea y se obtiene por medio de la Ec. A.11.1.7:

$$M_s = (T_1 - T_1') \cdot R_{polea} = (6128 - 1013) \cdot 0.1 = 511.5 \text{ N} \cdot \text{m}$$

Luego, por medio de estas fuerzas, el peso de la polea y el peso de la cabina junto con la carga nominal, existe una fuerza resultante de valor:

$$F = (450 + 650) \cdot 9.8 + 42 \cdot 9.8 - 6128 - 1013 = 4050 \text{ N}$$

Bien, esta fuerza resultante calculada actúa en el centro de la polea, (Fig. A.11.3.2) y por medio de las ecuaciones de la estática, Ec. A.11.1.2 hasta Ec. A.11.1.4 se obtienen las reacciones en los apoyos:

$$R_A + R_B - 4050 = 0$$

$$-(4050) \cdot \frac{330}{2} + R_B \cdot 330 = 0 \quad \Rightarrow \quad R_B = R_A = 2025 \text{ N}$$

Teniendo estos valores de las reacciones en los apoyos se tiene el siguiente diagrama de momentos flectores (Fig. A.11.3.3) donde el valor del momento flector máximo se obtiene de acuerdo con la Ec. A.11.1.5:
Ahora que se tiene el valor del momento flector y el torsor se ha calculado anteriormente se puede proceder al dimensionado del diámetro del eje de la polea por medio de la Ec. A.11.1.8:

\[
d^3 = \frac{16}{\pi \cdot \sigma_{adm}} \cdot \sqrt{4 \cdot M_f^2 + 3 \cdot M_t^2}
\]

donde \(\sigma_{adm} = 355 \text{ N/mm}^2 \), ya que el material escogido para el eje es el acero St 52-3 nuevamente. De modo que:

\[
d^3 \geq \frac{16}{\pi \cdot 355/5} \cdot \sqrt{4 \cdot (334.1 \cdot 10^3)^2 + 3 \cdot (511.5 \cdot 10^3)^2} \rightarrow d \geq 43.0 \text{ mm}
\]

Se adopta un valor de \(d = 45 \text{ mm} \), ya que para colocar rodamientos normalizados no los hay de \(d = 43 \text{ mm} \).
En la Fig. A.11.3.4 se observa un esquema de los rodamientos y las fuerzas que actúan sobre ellos:

Se decide colocar rodamientos rígidos de bolas, ya que al no haber fuerzas axiales no resulta necesario colocar rodamientos de bolas de contacto angular. Y si se generan fuerzas axiales serían de valores pequeños en comparación con las fuerzas radiales.

Mayorando de nuevo las fuerzas sobre los rodamientos por un factor de $f_x = 1.2$ se tiene que el valor de las fuerzas toma un valor de 2430 N ambas.

Para determinar la capacidad de carga dinámica, C, en el rodamiento A (Ec. A.11.1.13) se deben conocer los valores de f_L y de f_n, que se obtienen por medio de las ecuaciones Ec. A.11.1.9 y Ec. A.11.1.10:

$$f_L = \sqrt{\frac{10950}{500}} = 2.7978$$

$$f_n = \frac{\sqrt[3]{331/3}}{95.49} = 0.704$$

donde el valor de 95.49 rpm se ha obtenido:

$$\omega = \frac{v}{R_{polea}} = \frac{1}{0.1} = \frac{10 \text{ rad}}{s} \cdot \frac{1 \text{ rpm}}{2\pi \text{ rad}} \cdot \frac{60 \text{ s}}{1 \text{ min}} = 95.49 \text{ rpm}$$
Aplicando ahora la Ec. A.11.1.12 se obtiene el calor de C, y por tanto se puede dimensionar el rodamiento A, puesto que sólo actúa una fuerza radial:

\[f_L = \frac{C}{P} \cdot f_a \rightarrow 2.7978 = \frac{C}{2430} \cdot 0.704 \rightarrow C = 9657 \text{ N} \]

Si se consultan ahora los catálogos de rodamientos SKF [22], el rodamiento más adecuado para la capacidad dinámica obtenida es el: 6009 con las dimensiones \(d = 45 \text{ mm}, D = 75 \text{ mm}, B = 16 \text{ mm} \) y una capacidad dinámica \(C = 22100 \text{ N} > 9657 \text{ N} \), por lo que dicho rodamiento es válido.

Luego, en el rodamiento B también sólo actúa la fuerza radial \(F_{yB} \) de valor igual a \(F_{yA} = 2430 \text{ N} \), por lo que la carga equivalente coincide con la carga radial y por lo tanto, la capacidad dinámica que se obtendría es la misma que para el rodamiento A, de modo que el rodamiento escogido para el B es el mismo que para el rodamiento A y el resultado sigue siendo válido.

A.11.4. Rodamientos de la polea del contrapeso

Para el dimensionado de los rodamientos de la polea del contrapeso, el procedimiento es análogo al caso de la cabina, por lo que no se entra en detalles del desarrollo de los cálculos ni los esquemas y se muestran directamente los valores hallados:

\[T_2' = 708.5 \text{ N} \quad F_{yB} = F_{yA} = 1995.5 \cdot 1.2 = 2395 \text{ N} \]

\[M_x = 358 \text{ N·m} \quad P = F_{yB} = 2395 \text{ N} \]

\[R_A = R_B = 1995.5 \text{ N} \quad C = 9516 \text{ N} \]

\[M_E = 329.3 \text{ N·m} \quad d_{eje} = 45 \text{ mm} \]

El rodamiento escogido en este caso, tanto para el rodamiento A como el rodamiento B es el 6009 con las dimensiones: \(d = 45 \text{ mm}, D = 75 \text{ mm}, B = 16 \text{ mm} \), y una capacidad dinámica \(C = 22100 \text{ N} > 9516 \text{ N} \), de modo que los resultados son válidos también en este caso.
Quedaría por dimensionar los rodamientos de las poleas de desvío y las poleas fijas de lo que queda del sistema de suspensión de la instalación. No obstante, debido al rozamiento de las cintas con las dichas poleas, las fuerzas que actúan sobre dichas poleas son menores que para el caso de la cabina y el contrapeso, de modo que las solicitudes serían más pequeñas, y por tanto si se colocan rodamientos iguales que para el contrapeso sería suficiente para resistir dichas solicitudes.

A.11.5. Comprobación de los rodamientos del operador de puertas

Una vez se fabrican los piñones y las ruedas, y los ejes de determinadas dimensiones; se adquieren rodamientos de ciertas medidas que encajan con dichos ejes. En este apartado por tanto se realizará la comprobación de la validez de los rodamientos empleados para los ejes del operador de puertas, como se verá a continuación.

a) Rodamientos del eje tractor: los rodamientos son del tipo SKF 6201 rígidos de bolas y vienen dos unidades, las medidas y especificaciones son las siguientes:

- \(d = 12 \text{ mm}\)
- \(B = 10 \text{ mm}\)
- \(C_0 = 3100 \text{ N}\)
- \(D = 32 \text{ mm}\)
- \(C = 7280 \text{ N}\)

Bien, sabiendo que la fuerza de transmisión corregida que se transmite sobre la primera transmisión es de \(F_t = 127.8 \text{ N}\), la velocidad de giro es de \(\omega = 420 \text{ rpm}\), y que se prevé que dichos rodamientos tengan una vida de 10 años, correspondiente a trabajar a 1.5 horas al día los 365 días del año, se pueden aplicar las ecuaciones Ec. A.11.1.9 hasta la Ec. A.11.1.12 para comprobar dicho rodamiento:

\[
f_L = \sqrt[4]{\frac{L_n}{500}} = \sqrt[4]{\frac{5475}{500}} = 2.22
\]

\[
f_n = \sqrt[4]{\frac{331/3}{n}} = \sqrt[4]{\frac{331/3}{420}} = 0.43
\]

donde \(p = 3\), por ser un rodamiento de bolas y \(L_n\) es la duración en horas del rodamiento:
Suponiendo a continuación que la fuerza tangencial que se transmite en la primera transmisión se reparte por igual en cada rodamiento, que la masa del piñón es despreciable y que cada rodamiento sólo soporta cargas radiales, se tiene:

\[P = F_r = \frac{127.8}{2} = 63.9 \, \text{N} \]

Finalmente, se puede aplicar la Ec. A.11.1.12 para realizar la comprobación del rodamiento:

\[f_L = \frac{C}{P} \cdot f_n \rightarrow C = \frac{P \cdot f_L}{f_n} = \frac{63.9 \cdot 1.3 \cdot 2.22}{0.43} = 428.9 \, \text{N} < 7280 \, \text{N} \]

Se puede observar que la fuerza radial de cada rodamiento se ha mayorado con un factor de 1.3, ya que se trata de ruedas dentadas normales (con errores de paso y de perfil de 0.02 a 0.1 mm), y que el valor que se obtiene de la capacidad de carga dinámica del rodamiento es de 428.9 N. Este valor es inferior al del rodamiento 6201, por lo que el rodamiento es totalmente válido.

A continuación se muestra un esquema de los rodamientos y de las fuerzas que actúan sobre ellos, Fig. A.11.5.1:

Fig. A.11.5.1. Fuerzas en los rodamientos del eje motor de la 1ª transmisión
b) Rodamientos del eje de la rueda de la primera transmisión: las dimensiones de los dos rodamientos que componen este eje son (SKF 6005, rígidos de bolas):

- d= 25 mm - B= 12 mm -C₀= 6550 N
- D= 47 mm - C= 11900 N

La fuerza de transmisión corregida es de 2072 N en este caso, y la velocidad de giro es de 70rpm. La duración prevista es la misma que para los dos rodamientos anteriores, de modo que se aplican de nuevo las ecuaciones Ec. A.11.1.9 hasta Ec. A.11.1.12, suponiendo de nuevo que la fuerza de transmisión se transmite a partes iguales en cada rodamiento y que la masa de las ruedas dentadas es despreciable:

\[
f_L = \sqrt[3]{\frac{L_{nr}}{500}} = \sqrt[3]{\frac{5475}{500}} = 2.22
\]

\[
f_n = \sqrt[3]{\frac{331/3}{n}} = \sqrt[3]{\frac{331/3}{70}} = 0.78
\]

\[
P = F_r = \frac{2072}{2} = 1036 \text{ N}
\]

\[
f_L = \frac{C}{P} \cdot f_n \rightarrow C = \frac{P \cdot f_L}{f_n} = \frac{1036 \cdot 1.3 \cdot 2.22}{0.78} = 3833 \text{ N} < 11900 \text{ N} \text{ (para SKF 6005)}
\]

Se puede observar que para los rodamientos de este eje, la capacidad dinámica que absorbe es menor que la admisible, por lo que dichos rodamientos son válidos.

c) Rodamientos de la rueda de la segunda transmisión: las dimensiones de los dos rodamientos que componen este eje son las mismas que las anteriores (SKF 6005, rígido de bolas):

- d= 25 mm - B= 12 mm -C₀= 6550 N
- D= 47 mm - C= 11900 N
La fuerza de transmisión corregida es también de 2072 N en este caso, y la velocidad de giro es de 12.1 rpm. La duración prevista es la misma que para los dos rodamientos anteriores, de modo que otra vez se aplican las ecuaciones Ec. A.11.1.9 hasta Ec. A.11.1.12, en el supuesto que la fuerza de transmisión se transmite a partes iguales en cada rodamiento y que la masa de la rueda dentada es despreciable:

\[
\frac{L_n}{500} = \frac{5475}{500} = 2.22
\]

\[
\frac{331/3}{n} = \frac{331/3}{12.1} = 1.40
\]

\[
P = F_r = \frac{2072}{2} = 1036 \text{ N}
\]

\[
f_L = \frac{C}{P} \cdot f_n \rightarrow C = \frac{P \cdot f_L}{f_n} = \frac{1036 \cdot 1.3 \cdot 2.22}{1.40} = 2136 \text{ N} < 11900 \text{ N (para SKF 6005)}
\]

Estos rodamientos para este eje también resultan válidos, pues la capacidad de carga dinámica de los rodamientos es inferior a la admisible según se puede observar en el último cálculo de comprobación.

A.12. Acoplamiento eje motor y polea tractora

Como bien se sabe, la finalidad de los acoplamientos es la de transmitir el par del órgano motor al órgano receptor, además de compensar posibles desalineaciones existentes entre los ejes motor y receptor, y también de absorber vibraciones que se originan durante el funcionamiento del sistema.

En este caso, se dispone de un motor eléctrico que acciona una polea de tracción de un ascensor de viviendas. Al colocar el acoplamiento correspondiente entre ambos órganos, el par motor se transmite al receptor absorbiendo en la medida de lo posible las
vibraciones y las irregularidades. Esto se consigue con mayor éxito mientras más flexible sea dicho acoplamiento a diferencia de los rígidos.

De este modo, como interesa que las vibraciones sean mínimas en la medida de lo posible y que las irregularidades sean bajas, se decide colocar un acoplamiento elástico.

Para comenzar a la selección del acoplamiento, se debe conocer previamente el valor de la potencia nominal del motor de tracción, así como su velocidad angular nominal de giro, y el diámetro de su eje; puesto que conociendo tales datos se puede determinar el valor del par nominal a transmitir (Ec. A.12.1), cosa que es el factor principal de dimensionado de los acoplamientos de los ejes y de las máquinas directamente conectadas a ellos.

Según la Ec. A.12.1 se puede hallar el par nominal a transmitir, C:

$$C = \frac{9735 \cdot P_{\text{nom}} \text{ (kW)}}{\omega_{\text{nom}} \text{ (rpm)}} \cdot 3$$

(Ec. A.12.1)

Bien, como se calculó en el apartado A.7 de este anexo, el valor de la potencia nominal del motor es de 3.2 kW y su velocidad angular de giro es de 1200 rpm. El diámetro del eje motor es de 60 mm.

Aplicando la Ec. A.12.1 se tiene:

$$C = \frac{9735 \cdot P_{\text{nom}} \text{ (kW)}}{\omega_{\text{nom}} \text{ (rpm)}} = \frac{9735 \cdot 3.2}{1200} = 25.96 \text{ N} \cdot \text{m}$$

Este valor se puede obtener de manera gráfica según un gráfico que aparece en el apartado B.10 del Anexo B por medio del valor de la potencia nominal y de la velocidad angular de giro nominal. Se trazaría una recta que una la potencia nominal y la velocidad angular de giro y el punto de corte en el eje central es el valor del par nominal a transmitir.

Si se realiza gráficamente para los anteriores valores de potencia y de velocidad angular, se obtiene un par nominal a transmitir de aproximadamente 26 N·m, que efectivamente corresponde al calculado numéricamente según la Ec. A.12.1.
Al obtener este valor se realiza la pre-selección del acoplamiento [21], mediante un desplazamiento horizontal hacia el lado del tipo de máquina motora, que en este caso es hacia la izquierda dado que la máquina motora es un motor eléctrico. Con este desplazamiento horizontal se hace una intersección con los posibles tipos de acoplamientos que cumplen con los datos obtenidos.

En este caso, aparecen como candidatos los tipos: Juboflex, MPP y Miniflex [21]. En función del par de acoplamiento, que se obtendrá a continuación, se puede proceder definitivamente a la selección del acoplamiento.

Una vez se tiene el valor de la potencia nominal a transmitir, ésta se debe mayorar por un coeficiente de seguridad K, que es función de tres factores, K_1, K_2 y K_3. Al mayorarse el par nominal a transmitir se obtiene el par de acoplamiento nominal mínimo a seleccionar, que es el valor estándar del par nominal correspondiente al tipo de acoplamiento seleccionado.

Para comenzar, se halla el coeficiente de seguridad K según la Ec. A.12.2:

$$K = K_1 \cdot K_2 \cdot K_3$$ \hspace{1cm} (Ec. A.12.2)

siendo:

K_1: coeficiente que depende de la máquina motriz y máquina receptora

K_2: coeficiente que depende de la frecuencia de arranque

K_3: coeficiente que depende del número de horas de funcionamiento diario

Bien, para obtener el valor de los tres coeficientes anteriores, se hace por medio de unas tablas que aparecen en el Anexo B.10 y son los siguientes:

- Máquina motora: motor eléctrico/turbina

- Máquina receptora: ascensor, con marcha irregular e inercia pequeña

Con estos valores se obtiene (2) y por tanto el coeficiente $K_1 = 1.2$.
Por otro lado, el valor de K_2 se obtiene de acuerdo con el número de arranques por hora de la máquina. Como el ascensor trabaja diariamente 1.5 horas al día, ese hecho implica que hayan aproximadamente unos 30 arranques por hora, con lo cual el valor del coeficiente $K_2=1.2$. [21]

El coeficiente K_3 depende del número de horas de funcionamiento diario de la máquina, que según se acaba de comentar es de 1.5 horas al día. Por lo tanto, $K_3=0.9$. [21]

Aplicando ahora la Ec. A.12.2 se obtiene el valor total del coeficiente se seguridad K:

\[K = 1.2 \cdot 1.2 \cdot 0.9 = 1.296 \]

Una vez obtenido este valor se está en disposición de determinar el par de acoplamiento mínimo según la Ec. A.12.3 [21]:

\[TCN = K \cdot C \]

\[TCN = 1.296 \cdot 25.96 = 33.64 \text{ N-m} \]

Con este valor ya se puede seleccionar el tipo concreto de uno de los acoplamientos elásticos candidatos obtenidos. De entre los 3 candidatos posibles se decide seleccionar el Juboflex, ya que este tipo tiene un comportamiento muy elástico frente a las deformaciones axiial, cónica y torsional y elástico frente a las deformaciones radiales.

El resto de candidatos no cumplen los requisitos que el Juboflex, ya que los demás son algo más rígidos que el escogido y eso supondría una menor absorción de las vibraciones y de las irregularidades.

Una vez escogido el tipo de acoplamiento, se escoge ya de manera detallada dicho acoplamiento con sus dimensiones y prestaciones [21]:

- Referencia: 632029 - TCN = 250 N·m
- $N_{\text{max}} = 3500$ rpm - $D_{\text{max-eje motor}} = 60$ mm

Sus dimensiones son las que figuran en el Anexo B.10 según las prestaciones del acoplamiento escogido.
Y ya para finalizar, este tipo de acoplamiento dispone de los siguientes datos de interés [21]:

- Desalineación cónica = 1.9° para N= 1200 rpm
- Desalineación radial = 1.5 mm
- Par vibratorio = 125 N·m
- Ángulo de torsión bajo TCN = 7°
- Rigideces: a) Axial = 11.5 daN/mm
 b) Radial = 30 daN/mm
 c) Torsional = 2.12 kN·m/rad
 d) Cónica = 0.57 kN·m/rad

A.13. Chavetas y estriados

En este apartado se detallan los cálculos para la selección de las chavetas y pasadores adecuados para el eje de la polea tractora y los ejes que componen las transmisiones por cadena del operador de puertas, en función de los esfuerzos a transmitir en dicho eje. De esta manera, en los dos apartados siguientes se detallan dichos cálculos.

A.13.1. Chavetas del eje tractor

La polea tractora va unida al eje tractor y dicha polea no tiene movimiento relativo de rotación respecto el eje tractor. También dicho eje se une a un acoplamiento que se acopla con el eje del motor y el acoplamiento no tiene tampoco movimiento relativo de rotación respecto el eje. Para ello, se deben colocar chavetas con el fin de asegurar la unión en rotación del eje y la polea, y del eje tractor y eje del motor con el acoplamiento.
Comenzando por la unión del eje de la polea y la polea, se debe conocer el diámetro nominal del eje, que en este caso es de \(d_{\text{eje}} = 50 \text{ mm} \). Además, se debe conocer también el par nominal que se transmite y en este caso es de \(\Gamma_{\text{asc}} = 224.3 \text{ N}\cdot\text{m} \), según se ha determinado en el apartado A.7. Conocidos estos datos, se toman las dimensiones de la chaveta a colocar, que como el diámetro del eje es de 50 mm, son estas las dimensiones:

- Anchura: \(b = 16 \text{ mm} \)
- Altura: \(h = 10 \text{ mm} \)
- Altura desde la base del apoyo de chaveta hasta el diámetro: \(t_1 = 6 \text{ mm} \)
- Altura desde el perímetro del eje hasta la polea: \(t_2 = 4.3 \text{ mm} \)

Luego, sabiendo que el botón es de acero cuya presión máxima es de 90 MPa [9], y aplicando la siguiente ecuación, Ec. A.13.1.1 [9] se dimensiona la longitud que ha de tener la chaveta a colocar:

\[
p = \frac{M}{(h - t_1) \cdot \frac{d_{\text{eje}}}{2} \cdot L} \leq p_{\text{max}}
\]

\[
p = \frac{224.3 \cdot 10^3}{(10 - 6) \cdot \frac{50}{2} \cdot L} \leq 90 \rightarrow L \geq 24.92 \text{ mm}
\]

La longitud de la chaveta ha de ser mayor de 24.92 mm. Esta longitud es muy pequeña, por lo que se decide adoptar una longitud de chaveta más grande y normalizada [3], y que cumpla con la condición obtenida. En este caso se decide adoptar una longitud de chaveta de 63 mm, claramente superior al valor obtenido, y además normalizada.

Pero como la polea es muy larga, de longitud 330 mm, se decide colocar 2 chavetas, una en cada extremo y así se asegura la fijación de la polea con el eje sin necesidad de emplear una chaveta muy larga.
Respecto a la unión del acoplamiento con el eje del motor y el eje tractor, el procedimiento de cálculo es análogo, puesto que el par a transmitir es el mismo y el diámetro del eje motor es de 60 mm y el del extremo del eje tractor que se acopla al eje motor también tiene un diámetro de 60 mm, ya que el eje dispone de varios escalones.

De este modo, como ambos ejes tienen un diámetro de 60 mm, las dimensiones de la chaveta son las siguientes:

- Anchura: \(b = 18 \text{ mm} \)
- Altura: \(h = 11 \text{ mm} \)
- Altura desde la base del apoyo de chaveta hasta el diámetro: \(t_1 = 7 \text{ mm} \)
- Altura desde el perímetro del eje hasta la polea: \(t_2 = 4.4 \text{ mm} \)

Y el botón al ser de acero cuya presión máxima es de 90 MPa, se aplica de forma análoga la Ec. A.13.1.1 para dimensionar la longitud de las chavetas a colocar, que en este caso serán 2 también, una para cada eje:

\[
p = \frac{M_t}{(h-t_1) \cdot \frac{d_{ex}}{2} \cdot L} \leq p_{\text{max}} \rightarrow \frac{224.3 \cdot 10^3}{(11-7) \cdot \frac{60}{2} \cdot L} \leq 90 \rightarrow L \geq 20.76 \text{mm}
\]

De nuevo, esta longitud de chaveta hallada es muy pequeña, de manera que se decide emplear una chaveta de longitud normalizada y mayor. En este caso, se toma un valor de \(L= 50 \text{ mm} \), suficiente para cumplir la condición, y que esté normalizado con las dimensiones de la chaveta.
A.13.2. Chavetas de los ejes de la transmisión por cadena

La manera de proceder para el cálculo de las chavetas de unión de los piñones y ruedas de las transmisiones por cadena del operador de puertas es análoga al caso anterior.

De este modo, el primer eje, que es el eje del motor, tiene un diámetro de 12 mm y a la vez éste acciona el piñón de la primera transmisión y con un par torsor de valor 3.69 N·m. Así, las dimensiones de la chaveta a colocar son las siguientes:

- Anchura: \(b = 5 \text{ mm} \)
- Altura: \(h = 5 \text{ mm} \)
- Altura desde la base del apoyo de chaveta hasta el diámetro: \(t_1 = 3 \text{ mm} \)
- Altura desde el perímetro del eje hasta la polea: \(t_2 = 2.3 \text{ mm} \)

Como el botón en este caso también es de acero, su presión máxima es de 90 MPa, de manera que aplicando la Ec. A.13.1.1 se puede dimensionar la longitud de las chavetas a colocar:

\[
p = \frac{M_i}{(h-t_1) \cdot \frac{d_{eje}}{2} \cdot L} \leq p_{\text{max}} \rightarrow \frac{3.69 \cdot 10^3}{(5-3) \cdot \frac{12}{2} \cdot L} \leq 90 \rightarrow L \geq 3.42 \text{ mm}
\]

La longitud de la chaveta hallada es muy pequeña, de manera que se decide emplear una chaveta de longitud normalizada y mayor [3]. En este caso, se toma un valor de \(L = 20 \text{ mm} \), más que suficiente para cumplir la condición.

Respecto al eje que une la rueda de la primera transmisión con el piñón de la segunda transmisión se tienen los siguientes datos: el diámetro del eje es de 25 mm, y el par que se transmite es:

\[
\Gamma_{\text{rueda}} = \Gamma_{\text{piñón}} \cdot i_1 = 3.69 \cdot 6 = 22.14 \text{ N·m}
\]

Así, aplicando de nuevo la Ec. A.13.1.1 y sabiendo que los botones siguen siendo de acero cuya presión máxima es de 90 MPa, se obtiene:
\[p = \frac{M_t}{(h-t_1) \cdot \frac{d_{ce}}{2} \cdot L} \leq p_{\text{max}} \rightarrow \frac{22.14 \cdot 10^3}{(7-4) \cdot \frac{25}{2} \cdot L} \leq 90 \rightarrow L \geq 6.56 \text{mm} \]

donde las dimensiones de la chaveta para un eje de diámetro de 25 mm son:

- Anchura: \(b = 8 \text{ mm} \)
- Altura: \(h = 7 \text{ mm} \)
- Altura desde la base del apoyo de chaveta hasta el diámetro: \(t_1 = 4 \text{ mm} \)
- Altura desde el perímetro del eje hasta la polea: \(t_2 = 3.3 \text{ mm} \)

La longitud de la chaveta hallada debe ser mayor o igual a 6.56 mm, una longitud muy pequeña. Por este motivo se escoge una longitud normalizada que cumpla con dicha condición, que en este caso se toma un valor de \(L = 40 \text{ mm} \).

Finalmente, respecto al eje de la rueda de la segunda transmisión se dispone de la siguiente información:

- Diámetro del eje: 25 mm
- Par a transmitir: \(\Gamma_{\text{rueda}} = \Gamma_{\text{pinión}} \cdot i_1 \cdot i_2 = 3.69 \cdot 6 \cdot 5.785 = 128.08 \text{ N\cdot m} \)
- Dimensiones de la chaveta para un eje de 25 mm de diámetro:

 o Anchura: \(b = 8 \text{ mm} \)
 o Altura: \(h = 7 \text{ mm} \)
 o Altura desde la base del apoyo de chaveta hasta el diámetro: \(t_1 = 4 \text{ mm} \)
 o Altura desde el perímetro del eje hasta la polea: \(t_2 = 3.3 \text{ mm} \)

Con la información anterior se está de nuevo en disposición de aplicar la Ec. A.14.1.1 y dimensionar así la longitud de la chaveta para la rueda de la segunda transmisión:
Esta longitud de chaveta hallada es considerable, pero se debe tomar un valor normalizado [3] y que cumpla con la condición establecida, de forma que en este caso la longitud de la chaveta es de $L = 40\text{ mm}$.

A.13.3. Perfil dentado (estriado radial)

El eje de la polea tractora, en uno de sus extremos se debe fijar el disco de freno y esto se consigue por medio de emplear un cubo centrador. Bien, para este cubo centrador existen muchas posibilidades de emplear diversas uniones para fijar dicho cubo con el eje de la polea, pero se emplea una en concreto.

Puesto que en la zona de unión del cubo centrador y el eje tractor de la polea tractora existe una variación de par fruto de la diferencia entre el par nominal de funcionamiento y el par de frenada cuando actúan las pinzas de los frenos, resulta conveniente emplear un perfil dentado para la unión del eje tractor y el cubo.

Su motivo de empleo se debe a la presencia de momentos torsores alternativos y además dicha unión está sometida a sacudidas. Sin embargo, como se verá a continuación, el par resultante que actúa es pequeño pero como se ha comentado los pares que actúan en la unión son alternativos y someten a sacudidas la unión, hecho de gran peso que sugiere el empleo de un perfil dentado.

Para comenzar, se debe conocer el valor del par que actúa en la unión de los 2 componentes. Para ello, se sabe que el par nominal que actúa es de $224.3\text{ N}\cdot\text{m}$, mientras que el par de frenada que actúa sobre el disco tiene como valor $268.26\text{ N}\cdot\text{m}$.

El par resultante que actúa por tanto sobre dichos componentes será diferencia entre ambos:

$$\Delta \Gamma = 268.26 - 224.3 = 43.96 \approx 44\text{ N}\cdot\text{m}, \text{ en el sentido de frenada}$$
Una vez se conoce el valor del par se debe cuantificar el momento torsor que se transmite por medio de la siguiente ecuación [9]:

\[M_t = 0.75 \cdot i \cdot h \cdot r_m \cdot L \cdot \frac{p}{10} \cdot [kg \cdot cm] \]

(Ec. A.13.3.1)

donde:

i: número de dientes

h: altura de diente que transmite el esfuerzo (mm)

L: longitud dentada

p: presión superficial (kg/mm²)

\[r_m = \frac{d_i + d_s}{4} \]

(Ec. A.13.3.2)

siendo:

d_i: diámetro inferior del dentado

d_s: diámetro superior del diente

Como se puede apreciar en la Ec. A.13.3.1, el momento torsor se transmite por varias superficies laterales de las que con una fabricación de precisión, se considera como superficie activa un 75 %. [9]

Por otro lado, es imprescindible conocer el diámetro del eje y del cubo que en este caso es de 36 mm y 62 mm, respectivamente, y tanto el material del eje tractor como del cubo es acero St50.

Estos perfiles dentados se deben montar con un ajuste transversal con apriete, a base de introducir el eje enfriado con hielo seco (ajuste por dilatación). [9]

Con este dato y los anteriores se procede a evaluar la fuerza de adherencia y de encaje y a realizar una serie de comprobaciones para verificar la validez mecánica del perfil dentado empleado, que en este caso es el dentado 36x40 DIN 5481:
\[F_A = u \cdot q_1 \cdot L \cdot \left(1 - \frac{d^2}{D^2}\right) \text{[kg]} \]
(Ec. A.13.3.3)

\[F_E = 0.47 \cdot F_A \text{[kg]} \]
(Ec. A.13.3.4)

El valor del ajuste, \(u \), se puede determinar por medio de la Ec. A.14.3.5, en el que el ajuste como se había comentado anteriormente, es por dilatación:

\[u = \frac{0.67 \cdot d}{1000} \text{[cm]} \]
(Ec. A.13.3.5)

Como el cubo y el eje están fabricados en acero St50, el valor que toma el coeficiente \(q_1 \) presente en la Ec. A.13.3.3 es de \(q_1 = 5 \cdot 10^5 \).

Luego, se sabe que \(d = 36 \text{ mm} \), \(D = 62 \text{ mm} \) y \(L = 50 \text{ mm} \). De este modo, se está en disposición de determinar las fuerzas de adherencia y de encaje:

\[F_A = 0.02412 \cdot 5 \cdot 10^5 \cdot 5 \cdot \left(1 - \frac{(36 \cdot 10^{-1})^2}{(62 \cdot 10^{-1})^2}\right) = 3996.9 = 4000 \text{kg} \]

con \(u = \frac{0.67 \cdot 36}{1000} = 0.002412 \text{ cm} \)

\[F_E = 0.47 \cdot 4000 = 1880 \text{kg} \]

Por otro lado se debe realizar la siguiente comprobación, Ec. A.13.3.6, con la finalidad de asegurar que las fuerzas tangenciales son menores que las de adherencia y que por tanto no hay movimiento relativo entre el cubo y el eje en condiciones estáticas:

\[F_A = u \cdot q_1 \cdot L \cdot \left(1 - \frac{d^2}{D^2}\right) \geq \frac{2 \cdot \Delta \Gamma}{d} \]
(Ec. A.13.3.6)

\[4000 \geq \frac{2 \cdot (44/9.81) \cdot 100}{3.6} \rightarrow 4000 \text{kg} \geq 249.2 \text{kg} \]
Como se puede apreciar, la fuerza de adherencia es mayor que la fuerza tangencial, de modo que no hay movimiento relativo entre el cubo y el eje en condiciones estáticas.

Ahora se determina el momento torsor que se transmite en la unión, resultado de la presión del dentado, por medio de la Ec. A.13.3.1:

\[M_i = 0.75 \cdot 37 \cdot 0.39 \cdot 1.8975 \cdot 5 \cdot \frac{2.36}{10} = 24.2 \text{ kg-cm} = 2.37 \text{ N-m} \]

Según unas tablas [9], se tienen los siguientes datos para del dentado 36x40 DIN 5481:

- \(i = 37 \)
- \(d_1 = 36 \text{ mm} \)
- \(d_3 = 39.9 \text{ mm} \)
- \(h = d_3 - d_1 = 39.9 - 36 = 3.9 \text{ mm} \)

\[r_w = \frac{36 + 39.9}{4} = 18.975 \text{ mm} \]

La presión superficial se ha obtenido según la siguiente ecuación:

\[p = \frac{F_A}{\pi \cdot \mu \cdot d \cdot L} \]
\[\text{(Ec. A.13.3.7)} \]

con \(\mu \) que varía entre 0.15 y 0.30 según la lubricación. En este caso se toma \(\mu = 0.30 \) porque se considera que el montaje se hace en seco.

Así, aplicando la Ec. A.13.3.7 se obtiene:

\[p = \frac{4000}{\pi \cdot 0.30 \cdot 36 \cdot 50} = 2.36 \text{ kg/mm}^2 \]
Para finalizar, se debe comprobar que el momento torsor que se transmite en el dentado es menor que el momento torsor admisible correspondiente al dentado 36x40:

\[M_{adm} = 0.7 \cdot M_{10} \cdot L \]

(EC. A.13.3.8)

donde \(M_{10} \) es el valor tabular para el dentado correspondiente y en este caso tiene como valor 1025 kg·cm.

Así pues:

\[M_{adm} = 0.7 \cdot 1025 \cdot 5 = 3587.5 \text{ kg·cm} = 351.93 \text{ N·m} \]

Y según se puede comprobar, 2.37 N·m < 351.93 N·m, de modo que el dentado 36x40 es válido para el estriado.

A.14. Perfiles de soporte del grupo tractor

El grupo tractor, que se compone del motor de tracción, la polea, el freno, los soportes del freno y de la polea, así como una plataforma de soporte de todo el grupo tractor se asienta sobre unos perfiles de acero normalizados que están atornillados y apoyados sobre salientes de hormigón en la parte superior del hueco.

Conociendo la masa de todos los componentes, así como la longitud de los perfiles sobres los que se apoya dicho grupo tractor, se procede en este apartado al cálculo de dichos perfiles.

Para comenzar, se tienen los siguientes datos en lo que respecta a las masas de cada componente presente en el grupo tractor, que en conjunto la masa total actúa sobre los perfiles:

\[m_{motor} = 225 \text{ kg} \quad m_{disco} = 21.5 \text{ kg} \quad m_{eje tractor} = 7.5 \text{ kg} \]
\[m_{polea} = 35 \text{ kg} \quad m_{central freno} = 7 \text{ kg} \quad m_{placa soporte} = 80 \text{ kg} \]
\[m_{soporte polea} = 21 \text{ kg} \quad m_{soportes freno} = 24 \text{ kg} \quad m_{frenos} = 2 \cdot 17.5 = 35 \text{ kg} \]
La masa total en conjunto es de:

\[m_{\text{total}} = 225 + 35 + 21 + 7.5 + 21.5 + 7 + 24 + 80 + 35 = 456 \text{ kg} \]

A continuación se muestra un esquema del grupo tractor sobre los perfiles HEB que se van a determinar (Fig. A.14.1), y el esquema de las fuerzas que actúan sobre las vigas (Fig. A.14.2):
Aplicando las ecuaciones de la estática se pueden determinar las reacciones en la biga biapoyada. Pero al observar la Fig. A.14.2, la carga puntual actúa justo en el punto medio de la biga y no hay fuerzas externas que equilibren la fuerza horizontal en B, por lo que dicha reacción horizontal es nula, mientras que las reacciones verticales en A y B son iguales y coinciden con la mitad de la fuerza vertical externa:

\[F_{zB} = 0 \text{ N} \]

\[F_{yA} = F_{yB} = \frac{(456 \cdot 9.81)}{2} = 2236.7 \text{ N} \]

Por medio de estos valores se puede representar el diagrama de los momentos flectores sobre la viga (Fig. A.14.3), donde se puede observar que el valor máximo está en el punto medio, cuyo valor es:

\[M_{\text{max}} = \frac{F_{yA} \cdot l}{2} = \frac{2236.7 \cdot 1.549}{2} = 1732 \text{ N} \cdot \text{m} \]

Fig. A.14.3. Diagrama de momentos flectores de la viga

Sabiendo que el material de los perfiles normalizados de acero tiene una tensión admisible de \(\sigma_{\text{adm}} = 205 \text{ MPa} \) y que se ha de cumplir la siguiente ecuación (Ec. A.4.1.7), se pueden dimensionar los perfiles HEB necesarios:

\[\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_{z}} \leq \sigma_{\text{adm}} \]

(Ec. A.4.1.7)

\[W_{z} \geq \frac{M_{\text{max}}}{\sigma_{\text{adm}}} \geq \frac{1732 \cdot 10^{2}}{205 \cdot 10^{2}} \approx 42.24 \geq \text{cm}^{3} \]
Observando el valor obtenido, se deben escoger 2 perfiles HEB que cumplan con la condición obtenida. Si se observan las tablas de perfiles de acero normalizados relativos a los perfiles HEB, se observa que el más pequeño es el HEB100, cuyo valor es del momento resistente es $W_z = 89.9 \text{ cm}^3$.

Si se procede a determinar el momento resistente resultante, W_z, de ambos perfiles se tiene (Ec. A.4.10):

$$W'_z = \frac{I'_z}{y_{\max}}$$ \hspace{1cm} (Ec. A.4.1.10)

$$W'_z = \frac{450 + 450}{10 - 5} = 180 \text{ cm}^3 \geq 38.98 \text{ cm}^3$$

Por lo tanto, los perfiles HEB100 escogidos son más que suficientes para resistir el peso del conjunto del grupo tractor situado en la parte superior del hueco con un coeficiente de seguridad de 5.

A.15. Muelle de tracción del limitador de velocidad

El limitador de velocidad consta de un muelle de tracción, puesto que dicho limitador de velocidad es del tipo centrífugo según se ha determinado y decidido para su elección. Este muelle tiene como finalidad mantener unidos a los contrapesos del limitador mientras está en funcionamiento normal. Si la fuerza del muelle que une a los contrapesos se sobrepasa tras un exceso de velocidad, los contrapesos se separan más de su posición de equilibrio hasta quedar engatillados en unos resaltos.

En este apartado se calcula el muelle de tracción que debe llevar el limitador de velocidad, definiendo así sus características principales, así como el material del que está fabricado.

Para comenzar, se cuantifican las fuerzas que aparecen en el muelle del limitador de velocidad debido a las fuerzas externas. De esta manera, en la Fig. A.15.1 se muestra un diagrama de las fuerzas sobre el limitador de velocidad.
Aplicando a continuación las ecuaciones de la estática (Ec. A.11.1.2 hasta Ec. A.11.1.4), se obtiene el valor de la fuerza del muelle y las reacciones en el punto fijo O:

\[\sum F_x = 0 \rightarrow O_x - F_m \cdot \sin 17^\circ = 0 \]

\[\sum F_y = 0 \rightarrow O_y - 5 - 5 - 1347.5 - 1199 + F_m \cdot \cos 17^\circ = 0 \]

\[\sum M_O = 0 \rightarrow \]

\[(F_m \cdot \cos 17^\circ) \cdot 56 + (F_m \cdot \sin 17^\circ) \cdot 44 - 5 \cdot 23 - 5 \cdot 7 + 1347.5 \cdot 90 - 1199 \cdot 90 = 0 \]

Resolviendo tales ecuaciones se obtienen los siguientes resultados en cuanto a la fuerza del muelle y las reacciones horizontales y verticales en el punto O, que es un punto fijo:
Fm = −199N

Ox = −58.18N

Oy = 2366.19N

Para aclarar ciertos valores de fuerzas que aparecen en la Fig. A.15.1, los 2 valores de fuerzas de 5 N son las fuerzas peso de ambos contrapesos de los que consta el limitador de velocidad; mientras que 1306 N es la fuerza del ramal menos cargado del cable del limitador de velocidad y se ha obtenido de la siguiente manera (Ec. A.10.3):

\[
\frac{T_1}{T_2} \cdot C_1 \cdot C_2 \leq e^{f \alpha}
\]

\[
\frac{1347.5}{T_2} \cdot 1.257 \cdot 1 \leq e^{0.11 \pi} \rightarrow T_2 = 1199N,
\]

imponiendo que la condición de la expresión anterior sea igual estricto.

T1 es la fuerza de frenado que actúa tras la actuación del paracaídas, cuyo valor de 1347.5 N se ha determinado previamente en el apartado A.2 de este anexo

C1 es un coeficiente que se ha determinado que se ha determinado según la expresión (Ec. A.10.4), teniendo en cuenta la aceleración de la gravedad y la de frenada:

\[
C_1 = \frac{g + a}{g - a} = \frac{9.8 + 1.225}{9.8 - 1.225} = 1.2857
\]

C2 es un coeficiente que tiene en cuenta la variación del perfil de las gargantas de la polea de tracción debido al desgaste, y en este caso, C2 = 1 para gargantas semicirculares o entalladas.

f toma como valor 0.11, puesto que μ=0.09 [8], ya que están en contacto un cable de acero con una polea de fundición, como es el presente caso.
Una vez se tiene el valor de la fuerza del muelle, se procede a determinar sus parámetros característicos, empleando las ecuaciones que aparecen en el apartado A.1 de este anexo, referentes al cálculo de muelles helicoidales, con la única diferencia que el muelle a calcular ahora es de tracción y no de compresión.

Para empezar, se decide emplear de material para el muelle un hilo de acero bonificado para conformar en frío, puesto que tienen una elevada resistencia a la ruptura, un límite elástico bajo que le proporciona mayor deformabilidad y un buen acabado superficial para asegurar una buena resistencia a la fatiga. [12]

Según la norma alemana DIN 17223, hay 4 grados de calidad creciente, A, B, C y D para hilos de acero de hasta d=20 mm. Bien, a pesar de que la fuerza del muelle calculada anteriormente es pequeña, se decide emplear una de calidad D, que son para solicitudes estáticas altas y solicitudes dinámicas medianas, ya que se desea que el muelle sea de alta calidad y asegure una buena resistencia en condiciones normales de funcionamiento y en condiciones ocasionales de actuación del paracaídas. [12]

Las propiedades mecánicas del material del muelle para esta calidad escogida son las siguientes:

\[E = 210 \text{ GPa} \]
\[G = 81.5 \text{ GPa} \]
\[\sigma_{ts} = 2230 \text{ MPa} \]

Aplicando las ecuaciones Ec. A.1.2, Ec. A.1.3 y Ec. A.1.6 y tomando un valor de la relación de \(D_s/d = 6 \) por los mismos motivos ya explicados en A.1.1 se tiene lo siguiente:

\[\Psi = \frac{D_s}{d} - 0.25 \left(1 - \frac{6}{D_s/d} \right) = \frac{D_s}{d} - 0.25 \left(1 - \frac{6}{d} \right) = 0.615 \left(\frac{D_s}{d} - 1 \right) + \frac{0.615}{6} + \frac{0.615}{6} = 1.25 \]

\[\tau_p = 0.28 \cdot \sigma_{ts} = 0.28 \cdot 2230 = 624.4 \text{ MPa} \]

\[d \geq \sqrt{\frac{8 \cdot F_{\max} \cdot \Psi \cdot D_s}{\pi \cdot \tau_p \cdot d}} \geq \sqrt{\frac{8 \cdot 199 \cdot 1.25 \cdot 6}{\pi \cdot 624.4}} \geq 2.47 \text{ mm} \]
Con este valor se puede tomar un diámetro de alambre de 2.50 mm, pero es muy ajustado; por lo que se decide escoger un diámetro de alambre de 2.70 mm. Luego, con la relación de $D_s/d=6$, se tiene que el valor de D_s correspondiente es:

$$D_s=2.7 \cdot 6 = 16.2 \text{ mm}$$

Para buscar a continuación el alargamiento que experimenta el muelle una vez los contrapesos se enclavan en los resaltes, se tiene la Fig. A.15.2, donde se muestra en la línea roja la longitud total del muelle cuando se produce el enclavamiento de los contrapesos, y corresponde a un giro de 15° del limitador de velocidad respecto el su centro de inercia, o punto O. La longitud inicial del muelle es de 97.05 mm como se puede observar.

Fig. A.15.2. Longitud inicial y final del muelle de tracción
Una vez se conocen las longitudes inicial y final del muelle de tracción, se puede determinar su alargamiento:

\[x = L_f - L_0 = 128.78 - 97.05 = 31.73 \text{mm} \]

Teniendo su alargamiento, se pueden determinar otros parámetros característicos del muelle, como son la rigidez, \(k \), y su número de espiras, \(n \), por medio de las ecuaciones que vienen a continuación (Ec. A.1.8, Ec. A.1.12 y Ec. A.1.16):

\[
F_{\text{max}} = k \cdot x
\]

\[
\ell = \pi \cdot D_s \cdot n
\]

\[
n = \frac{G \cdot d^4}{8 \cdot D_s^3 \cdot k}
\]

Aplicando tales ecuaciones se obtiene lo siguiente:

\[
F_{\text{max}} = k \cdot x \rightarrow k = \frac{F_{\text{max}}}{x} = \frac{199}{31.73} = 6.27 \text{N/mm}
\]

\[
n = \frac{G \cdot d^4}{8 \cdot D_s^3 \cdot k} = \frac{81.5 \cdot 10^3 \cdot 2.7^4}{8 \cdot 16.2^3 \cdot 6.27} = 20.31 \rightarrow 21 \text{ espiras}
\]

\[
\ell = \pi \cdot D_s \cdot n = \pi \cdot 16.2 \cdot 21 = 1068.77 \text{mm}
\]

También existe un parámetro característico de los resortes de tracción y es la llamada fuerza de precompresión. Esta fuerza, \(F_0 \), viene limitada por la máxima pretensión admisible del material, \(\tau_{\text{adm}} \), y la geometría del enrollamiento.

Para evaluar esta fuerza de precompresión, \(F_0 \), se parte de considerar la característica elástica teórica, a partir del cual se puede establecer en función de la ecuación Ec. A.15.1 [11]:

\[\text{(Equación 15.1)} \]
Ascensor de pasajeros para viviendas de máximo 8 plantas

\[F_0 = \frac{\pi \cdot d^3}{8 \cdot D_s} \cdot (\tau_0) \]

(Ec. A.15.1)

donde el valor de la tensión de precompresión, \(\tau_0 \), queda limitado por los valores admisibles, \(\tau_{0\text{adm}} \), que aparecen en la gráfica (Fig. A.15.3):

Bien, teniendo en cuenta que el diámetro obtenido del resorte es de 1.4 mm, y que el muelle es de clase D según DIN 17223, se obtiene según la gráfica citada un valor de \(\tau_0 \) de aproximadamente 110 MPa. Por tanto, y aplicando la Ec. A.15.1 se obtiene la fuerza de precompresión:

\[F_0 = \frac{\pi \cdot d^3}{8 \cdot D_s} \cdot (\tau_0) = \frac{\pi \cdot 2.7^3}{8 \cdot 16.2} \cdot 110 = 52.48 N \]
Para concluir, se procede como en el caso de los amortiguadores de cabina y contrapeso, evaluando las tensiones tangenciales totales en el resorte de tracción por medio de las ecuaciones Ec. A.1.1.6 hasta Ec. A.1.1.8:

\[
\tau_{\text{torsión}} = \pm \frac{M_t}{W_t} = \pm \frac{F_{\text{max}} \cdot d}{W_t} \quad \text{(Ec. A.1.1.6)}
\]

\[
W_t = \frac{\pi \cdot d^3}{16} \quad \text{(Ec. A.1.1.7)}
\]

\[
\tau_{\text{ciz}} = \frac{F_{\text{max}}}{A} \quad \text{(Ec. A.1.1.8)}
\]

Si se sustituyen los valores en las ecuaciones anteriores se obtienen los siguientes resultados:

\[
\tau_{\text{torsión}} = \pm \frac{M_t}{W_t} = \pm \frac{199 \cdot 2.7}{3.86} = \pm 69.6 \text{MPa}
\]

\[
W_t = \frac{\pi \cdot d^3}{16} = \frac{\pi \cdot 2.7^3}{16} = 3.86 \text{mm}^3
\]

\[
\tau_{\text{ciz}} = \frac{F_{\text{max}}}{A} = \frac{199}{\pi \cdot 2.7^2} = 34.7 \text{MPa}
\]

Si se representan gráficamente ahora estos valores en los diagramas de tensiones siguientes se obtienen los diagramas que figuran a continuación (Fig. A.15.4):
Como se puede observar en la Fig. A.15.4, se observa que en el punto A es donde hay una distribución de tensiones más desfavorable, debido al efecto de concentración de tensiones causado por la curvatura de la espira.

De esta manera, y sabiendo que la tensión tangencial máxima pertenece al punto A, cuyo valor es de 104.3 MPa, se procede a evaluar su resistencia comparándola con la tensión tangencial admisible, análogamente a como se ha procedido en el apartado A.1 (Ec. A.1.1.9):

\[
\tau_{adm} = \frac{0.58 \cdot \sigma_e}{\gamma_{se}}
\]

(Ec. A.1.1.9)

Donde \(\sigma_e \) es el límite elástico del material y \(\gamma_{se} \) es el factor de seguridad a tomar.

En este caso, \(\sigma_e = 1800 \) MPa, y del coeficiente de seguridad se ha tomado un valor de \(\gamma_{se} = 4 \). De esta manera, y aplicando la ecuación (Ec. A.1.27) se tiene:

\[
\tau_{adm} = \frac{0.58 \cdot 1800}{4} = 261 \text{ MPa}
\]
que comparando este valor con $\tau_{\text{max}} = 104.3$ MPa, se observa que este valor de tensión tangencial máxima es inferior a la tensión tangencial admisible por el material. Así pues, el resorte diseñado aguanta la fuerza del muelle con un coeficiente de seguridad de 4.

A.16. Cojinetes de bronce

En el operador de puertas se han colocado cojinetes de bronce sinterizados con valona sobre los bulones, para proporcionarles a éstos mayor compacidad y resistencia a la flexión, puesto que dichos bulones son largos y hay un cierto riesgo para que flecten. Estos cojinetes se han soldado, uno de ellos a una estructura fija, otro en la rueda dentada de la segunda transmisión del operador de puertas, y otro en la unión de las barras articuladas.

En este apartado se determinará la carga máxima permitida por el cojinete colocado en el bulón de la rueda dentada, cuyas dimensiones son las siguientes:

- Diámetro interior, $d = 16$ mm
- Diámetro exterior mayor, $D = 28$ mm
- Diámetro exterior menor, $D' = 22$ mm
- Longitud, $L = 25$ mm
- Espesor, $T = 6$ mm

Para determinar la carga máxima permitida, se debe conocer la velocidad angular de rotación del bulón, que en este caso es de 12.1 rpm (1.27 rad/s), calculado en el apartado A.8.2, y aproximando que se ubica en el perímetro de la rueda dentada. Con este dato, y los datos anteriores en referencia a sus dimensiones, se puede determinar la carga en kg por cm2 de superficie proyectada.

La superficie proyectada es un rectángulo, cuyos lados son el diámetro interior del cojinete y su longitud. Así (Ec. A.16.1):

$$ S_p = L \cdot d $$

(Ec. A.16.1)
Sabiendo que el diámetro del bulón es de 16 mm, y que éste gira a 12.1 rpm, al observar el gráfico, Fig. A.16.1, de manera aproximada se obtiene una carga de 180 kg/cm² de superficie proyectada:

Si este valor se multiplica por los 4 cm² de superficie proyectada obtenidos anteriormente, se obtiene una carga admisible de:

\[P = 180 \cdot 4 = 720 \text{kg} \cdot \frac{9.81N}{1\text{kg}} = 7063.2N \]
Ascensor de pasajeros para viviendas de máximo 8 plantas
Ascensor de pasajeros para viviendas de máximo 8 plantas