Resumen

En abril de 2002 pasó a ser de obligado cumplimiento la Directiva 2000/53/CE del Parlamento Europeo y del Consejo de la Unión Europea relativa a los vehículos al final de su vida útil, en la cual se establecía una regulación de la gestión de dichos residuos para automóviles, pero no para vehículos de dos ruedas. No obstante, dado el creciente endurecimiento de las exigencias medioambientales propuestas a nivel mundial, se prevé que las motocicletas acaben siendo incluidas en una normativa que gestione su fin de vida útil. Basándose en estos hechos, la Asociación de Fabricantes de Automóviles de Japón (JAMA) estableció un sistema alternativo de reciclado adaptado a las necesidades y las características de las motocicletas.

El presente proyecto tiene como objetivo avanzar en este campo, para lo cual analiza la normativa y gestión actuales existente para Vehículos Fuera de Uso, a nivel nacional, europeo y de países como EEUU. Se analiza también el Plan Voluntario de Reciclado de Motocicletas llevado a cabo en Japón y se realiza una propuesta de gestión para Motocicletas Fuera de Uso (MFUs). Se establece una definición de MFU y se estudia su grado de generación. Para un estudio más exhaustivo, se realiza el desglose de todos los componentes existentes en uno de los modelos de motocicletas Derbi, y por tanto de los diferentes materiales que la integran, tomando dicha motocicleta como modelo para la caracterización de los posibles residuos generados al final de su vida útil.

Siguiendo la propuesta de gestión para estos residuos, la parte metálica se reciclará en su totalidad, por lo que se puede hablar de una tasa de reciclado del 85%. Sin embargo, el 15% restante, constituido por gran variedad de materiales, tales como plásticos, cauchos o espumas, terminará en el vertedero en forma de residuo de fragmentación. Si se logra reducir la cantidad de materiales que va a parar al vertedero se aumentará entonces de manera viable la tasa de recuperación más allá del 85% en peso. Con este fin se propone el reciclado del guardabarros delantero fabricado en polipropileno y se evalúan las diversas alternativas para llevarlo a cabo, eligiendo finalmente el reciclado mecánico como la más ecoeficiente. Se estudia también la posibilidad de reciclado de los catalizadores presentes en el tubo de escape, los cuales se encargan de reducir las emisiones nocivas a la atmósfera y que cada vez están más presentes en motocicletas debido al proceso de reducción de emisiones llevado a cabo por la Comisión Europea. Se propone un método para la recuperación de los metales preciosos que lo integran y se estudia la viabilidad económica de todo el proceso.

Finalmente se exponen unas conclusiones y se crea un presupuesto mediante una estimación de los costos derivados de la elaboración del proyecto.
Págs 2 Memoria
Sumario

RESUMEN ___1

SUMARIO __3

1. GLOSARIO __5

2. PREFACIO __9

2.1. Origen del proyecto.. 9

2.2. Motivación.. 9

3. INTRODUCCIÓN ___11

3.1. Objetivos del proyecto.. 11

3.2. Alcance del proyecto.. 11

4. MOTOCICLETAS FUERA DE USO _________________________13

4.1. Información previa ... 13

4.2. Grado de generación de MFUs 14

5. ANÁLISIS DE LA LEGISLACIÓN Y POSICIONAMIENTO.____17

5.1. Normativa de rango europeo.. 17

 5.1.1. Clasificación en el Catálogo Europeo de Residuos (CER)............18

 5.1.2. Directiva 2000/53/CE..21

5.2. Normativa de rango nacional.. 23

5.3. Normativa de EEUU ... 24

5.4. Acuerdos voluntarios.. 26

 5.4.1. Plan Voluntario de Reciclado de Motocicletas en Japón............26

6. GESTIÓN DE MFUS. ______________________________________29

 6.1. Gestión de VFUs... 29

 6.1.1. Europa... 29

 6.1.2. España... 32

 6.1.3. EEUU ... 33

6.2. Experiencia en la gestión de MFUs en Japón..................... 35

 6.2.1. Descripción general del Sistema de Reciclado de Motocicletas....35

 6.2.2. Descripción de la infraestructura del sistema.37

6.3. Propuesta de gestión para MFUs..................................... 39

7. CARACTERIZACIÓN DE LOS RESIDUOS EN LAS MFUS ______41

 7.1. Materiales presentes en las MFUs................................. 41

 7.2. Materiales en la GPR 50cc Racing Esp. Biplz 04. 41
7.3. Plásticos en las MFUs. ... 44

8. **RECICLADO DE MFUS** ... 47
 8.1. Situación actual del reciclado de MFUs 47
 8.2. Piezas seleccionadas y su posibilidad de reciclado............... 50
 8.2.1. Reciclado de plásticos .. 54
 8.2.2. Recuperación de catalizadores 68

9. **RECICLADO DEL GUARDABARROS.** ... 71
 9.1. Propuesta del proceso de reciclado 71
 9.2. Estudio del sistema logístico del reciclado del guardabarros 73
 9.2.1. Generación de guardabarros .. 75
 9.2.2. Separación, limpieza, almacenamiento y recogida 75
 9.2.3. Reciclado de guardabarros .. 77
 9.3. Reciclado mecánico de Guardabarros 82
 9.3.1. Materia prima de los guardabarros 82
 9.3.2. Posibles métodos de separación 84
 9.3.3. Posibles métodos de identificación 94
 9.3.4. Sistemas de lavado .. 96

10. **RECICLADO DE CATALIZADORES.** .. 97
 10.1. Contaminación y proceso de reducción de emisiones 97
 10.2. Normativa europea de control de emisiones 103
 10.3. Los catalizadores en las motocicletas 107
 10.4. Posible proceso de reciclado .. 110
 10.4.1. Información previa .. 110
 10.4.2. Posible proceso de reciclado 111
 10.5. Análisis económico de un proceso viable 117
 10.5.1. Valor intrínseco medio del catalizador 117
 10.5.2. Cálculo aproximado del número de catalizadores para desguace. 118

CONCLUSIONES .. 123

AGRADECIMIENTOS ... 125

BIBLIOGRAFIA ... 127
 Referencias bibliográficas .. 127
 Bibliografía complementaria .. 129
1. Glosario

A continuación se detalla una lista de términos que serán utilizados con frecuencia a lo largo de toda la memoria y que son claves para la comprensión del mismo.

Instituciones, organismos

- **ANESDOR**: Asociación Nacional de Empresas del Sector de las Dos Ruedas.
- **ACEM**: Asociación Europea de Fabricantes de Motocicletas.
- **CER**: Catálogo Europeo de Residuos.
- **TAC**: Comité Técnico para el Progreso y Adaptación de la Ciencia y Tecnología.
- **USEPA**: US Environmental Protection Agency.
- **JAMA**: Japan Automobile Manufacturers Association.
- **APME**: Asociación Europea de Productores de Plástico.
- **APC**: American Plastic Council
- **LAT**: Laboratory of Applied Thermodynamics.
- **ADEME**: Agencia para el Medioambiente y la Gestión de Energías.
- **DGT**: Dirección General de Tráfico.

Materiales y substancias

- **EPDM**: Copolímero etileno-propileno-dieno.
- **FPM**: Cauchio fluorado
- **NBR**: Cauchio acrilonitrilo butadieno
- **NR**: Cauchio nitrílico.
- **VHQ**: Cauchio de silicona.
- **ABS**: Acrilonitrilo butadieno estireno.
- **PVC**: Policloruro de vinilo.
- **PMMA**: Polimetilmetacrilato
- **PUR**: Poliuretano.
- **PBT**: Tereftalato de polibutileno.
- **F.V.**: Fibra de Vidrio.
- **PCB**: bifenilos policlorados.
- **PA**: Poliamida.
- **PC**: Policarbonato.
- **PE**: Polietileno.
- **PP**: Polipropileno.
- **POM**: Polioximetileno.
- **HDPE**: Polietileno de alta densidad.
- **HIPS**: Poliestireno de alto impacto.
- **PET**: Polietilenoetereftalato.
- **BFR**: Pirorretardantes bromados.
- **EPM**: Caucho etileno/propileno.
- **MGP**: Metales del Grupo del Platino.
- **CO₂**: Dióxido de Carbono
- **CO**: Monóxido de Carbono.
- **NOx**: Óxidos de Nitrógeno.
- **NO**: Monóxido de Nitrógeno
- **HC**: Hidrocarburos
- **N₂**: Nitrógeno.
- **Pt**: Platino
- **Pd**: Paladio.
- **Rh**: Rodio.
· Al_2O_3: Alúmina

· Al: Aluminio.

· Ce: Cerio.

· Zr: Circonio.

· CaO: Óxido de Calcio.

· MgO: Óxido de Magnesio.

· La_2O_3: Óxido de Lantano.

· HBr: Ácido bromídrico.

· Br_2: Bromo.

· Pb: Plomo.

· Cu: Cobre.

· Ag: Plata.

· Au: Oro.

· Ir: Iridio.

Unidades

· €: euros.

· Kg, g: kilogramo, gramo.

· km: kilómetro.

· $^\circ\text{C}$: grado centigrado.

· $\text{nm}, \text{mm}, \text{cm}$: nanómetro, milímetro, centímetro.

· Tm: toneladas.

· cc, cm^3: centímetros cúbicos.

· pulg: pulgada.

· l: litro.
- \(h \): hora.

- \(CV \): caballos de vapor.

- \(MJ \): megajulios.

Otros

- \(VFU \): Vehículo Fuera de Uso o al Fin de su Vida Útil.

- \(MFU \): Motocicleta (según su definición en la memoria) Fuera de Uso o al Fin de su Vida Útil.

- \(DFE \): Design for Environment.

- \(RFA \): Residuo de Fragmentación del Automóvil.

- \(RLF \): Residuo Ligero de Fragmentación.

- \(RSM \): Residuos Sólidos Municipales.

- \(CAR D \): Centro Autorizado de Recepción y Descontaminación.

- \(CAT \): Centro Autorizado de Tratamiento.

- \(ITV \): Inspección Técnica de Vehículos.

- \(D A B \): Sistema de Diagnóstico a Bordo.

- **Motocicleta**: En toda la memoria se considerará como motocicleta (a excepción de cuando se indique lo contrario) cualquier vehículo motorizado de dos ruedas independientemente de su potencia y cilindrada. Es decir que se incluyen ciclomotores, scooters y motocicletas propiamente dichas.

- \(NIR, MIR \): Espectroscopias de infrarrojo cercano y medio respectivamente.

- \(SM \): Espectroscopia de masas.
2. Prefacio

2.1. Origen del proyecto

El origen del presente Proyecto Final de Carrera tiene lugar en una propuesta de Nacional Motor S.A.U., Derbi, empresa de fabricación de motocicletas y ciclomotores que siempre ha estado interesada en la minimización del impacto medioambiental de sus productos durante todo su ciclo de vida.

2.2. Motivación

Esta propuesta viene motivada por el problema creado debido al aumento de residuos especiales procedentes de motocicletas cuando estas llegan a su fin de vida útil.

La problemática de los Vehículos Fuera de Uso (VFUs) ha sido abordada por la Comisión Europea mediante la Directiva 2000/53/CE que con el fin de controlar el impacto ambiental del ciclo de vida de estos residuos regula su gestión mediante recogida en instalaciones con características determinadas y tratamiento específico de los diferentes componentes, así como la reducción del contenido de sustancias peligrosas en los vehículos, y los porcentajes en peso del vehículo que deben ser reciclados, reutilizados o valorizados. La creación en Europa de esta Directiva ha supuesto su trasposición a las leyes correspondientes a cada país, que en el caso de España es el Real Decreto 1383/2002.

El hecho de que las motocicletas fueran excluidas de dicha Directiva y el espectacular aumento en las exigencias medioambientales a nivel mundial y más concretamente a nivel europeo hacen pensar que según lo que se estime conveniente, los vehículos motorizados de dos ruedas (motocicletas y ciclomotores) puedan añadirse a una revisión posterior de la Directiva o bien que se establezca una normativa propia para su gestión una vez llegado el fin de su vida útil.

Además, países como Japón, uno de los principales productores mundiales de motocicletas, se han adelantado a estas exigencias llevando a cabo un Plan de Reciclado Voluntario de Motocicletas por parte de los fabricantes, que puede servir como modelo a seguir por países como EEUU o los miembros de la Unión Europea.

Todos estos factores motivan el interés de avanzar en este campo, partiendo de la información referente a Vehículos Fuera de Uso (VFUs) y adaptándola a las circunstancias particulares de las motocicletas.
3. **Introducción**

3.1. **Objetivos del proyecto**

El presente proyecto tiene dos partes fundamentales como son una propuesta para la gestión de motocicletas al fin de su vida útil y un análisis de alternativas para el aumento de su tasa de reciclado.

La primera parte tiene por objeto dar una visión global de la problemática de este tipo de residuos analizando la legislación referente a VFUs y la gestión logística que se les aplica y adaptándolas al caso particular de vehículos motorizados de dos ruedas.

Por otro lado, la segunda parte de este estudio se propone disminuir el porcentaje sin reciclar de una Motocicleta Fuera de Uso (MFU), presentando dos posibles componentes susceptibles de ser reciclados y analizando una posible ruta integral de reciclado para cada uno.

3.2. **Alcance del proyecto**

Este estudio abarca los aspectos legales y logísticos referentes a VFUs, existentes en el ámbito europeo y estadounidense así como el análisis de la única iniciativa creada hasta ahora en lo que a motocicletas se refiere y que procede de Japón.

El proyecto engloba bajo la definición de motocicleta cualquier tipo de vehículo motorizado de dos ruedas, sea cual sea su potencia, es decir, que quedan afectados por todo lo que en él se dice, motocicletas, scooters y ciclomotores.

En el estudio de las alternativas de recuperación para la fracción no reciclada de la MFU se ha usado como modelo una determinada motocicleta de la producción de Derbi, concretamente la GPR 50CC Racing Esp. Biplz 04. Sin embargo, se han escogido piezas altamente extrapolables a las motocicletas disponibles en el mercado, como son los guardabarros de polipropileno y los catalizadores.

Precisamente en el análisis económico del reciclado de catalizadores se ha tenido en cuenta el parque motociclista, así como el número de bajas y de matriculaciones de los últimos años a nivel estatal.
4. **Motocicletas fuera de uso**

4.1. **Información previa**

Desde octubre del año 2004 (desde la modificación del Reglamento de Conductores) las ventas de motocicletas se han incrementado espectacularmente. La combinación de esto con una cada vez mayor oferta de plazas de aparcamiento para este tipo de vehículos en muchas ciudades, su menor coste de adquisición y mantenimiento, y sus enormes capacidades urbanas, está provocando un cambio del parque de vehículos que permitirá una mejora sustancial de la calidad del aire en grandes ciudades.

El destino final de las motocicletas puede variar pero en general suele ser uno de los siguientes:

- **Abandonadas**, en lugares remotos o de difícil alcance.
- **Entregadas en los desguaces de motocicletas existentes**.
- **Robadas y vendidas por piezas**.
- **Almacenadas indefinidamente en condiciones de inactividad** por sus propietarios en propiedades privadas.
- **Mantenidas indefinidamente en condiciones de trabajo** por sus propietarios (motos clásicas).

Cada una de estas opciones puede ser considerada como una forma de retirada del vehículo. Sin embargo desde el punto de vista del final de la vida útil de la motocicleta sólo en el caso de que sean entregadas a las instalaciones correspondientes o abandonadas, y por tanto retiradas definitivamente se considerarán como MFUs.

Los propietarios pueden retirar permanentemente sus motocicletas por varias razones como por ejemplo:

- Pérdida de integridad mecánica o estructural debido a un accidente, a corrosión, etc.
- Baja fiabilidad de piezas o componentes.
- Pérdida de rendimiento.

La decisión de retirar permanentemente una motocicleta lleva consigo una serie de problemas tanto a nivel económico como medioambiental. La vida de la motocicleta puede ser alargada mediante inversiones en recursos adicionales como nuevas piezas y componentes, sin
embargo el comportamiento medioambiental de una motocicleta antigua en cuanto al ahorro de combustible y las emisiones es peor que el de una motocicleta nueva. En cuanto a los factores económicos que influyen en esta decisión la depreciación del valor del vehículo y los costes que recaen en el propietario en concepto de reparaciones son algunos de ellos.

El flujo de material procedente de MFU’s depende de:

- El grado de generación de MFU’s
- El destino de las MFU’s generadas
- Los materiales que integran las MFU’s generadas
- La tecnología y la infraestructura para la gestión de las MFU’s

4.2. Grado de generación de MFUs

En los entornos urbanos es donde la motocicleta muestra su máximo potencial, especialmente gracias a su movilidad y al reducido espacio de ocupación. Pese a ello este medio de transporte no se encuentra especialmente presente en las calles de muchas ciudades españolas, debido principalmente a la climatología, pero también a la falta de una cultura respecto a este medio de transporte y a su fama de peligroso. Las motocicletas son medios de transporte mucho menos contaminantes que los vehículos de cuatro ruedas. La sustitución de turismos por motocicletas supone una reducción importante de prácticamente todos los contaminantes. Es por ello que muchas grandes ciudades se plantean planes para potenciar aún más la presencia de estos vehículos en las calles con la implantación de un sistema de incentivos. Por su bajo coste en relación con el de los turismos, las subvenciones a la adquisición de estos vehículos pueden lograr mejores resultados que subvenciones destinadas a la adquisición de vehículos menos contaminantes de cuatro ruedas.

El número de MFUs generadas en un determinado año depende de multitud de factores como:

- Las condiciones económicas generales (el grado de generación puede aumentar durante periodos de prosperidad económica y disminuir cuando la economía del país pasa por periodos de crisis).
- Porcentaje de accidentes ocurridos.
- Fiabilidad general de los antiguos modelos de motocicletas.

En ocasiones otros factores como posibles cambios en las normativas relacionadas o en los precios de los seguros obligatorios de estos vehículos, pueden también influir en el grado de generación de MFUs. Un ejemplo sería la reciente entrada en vigor desde el 19 de octubre de 2004, del nuevo reglamento de conductores que permite a los titulares del carné B1 conducir...
motocicletas de hasta 125 cc y 15 caballos de potencia, siempre y cuando tengan más de tres años de antigüedad en dicho carné. Estos vehículos se muestran insuficientes para acometer viajes de cierta longitud, pero son suficientemente potentes como para realizar desplazamientos urbanos con rapidez e incluso interurbanos de corta distancia. Su principal diferencia frente a los ciclomotores es su capacidad para acceder a las autopistas y autovías, lo que les permite entrar y salir de las ciudades.

Esta medida se ha traducido en un importante incremento de las ventas de estos vehículos en los primeros meses de aplicación y la Asociación Nacional de Empresas del Sector de Dos Ruedas (ANESDOR) ha previsto un incremento del 30% de la demanda de este tipo de vehículos en cada uno de los próximos 2 años, una previsión fácilmente alcanzable si se tiene en cuenta que en Italia una medida similar se tradujo en un incremento en las ventas de más del 300% durante los primeros meses.

Otro factor importante que hace prever un aumento potencial de las MFUs, es la creciente demanda de reducción de emisiones que viene impuesta por las Directivas creadas por la Comisión Europea. En algunos lugares como en la región de Lombardía en Italia, se ha creado ya un sistema de incentivos que pretende promocionar la compra de nuevas y menos contaminantes motocicletas por parte de los propietarios de vehículos viejos que no están todavía adecuados a las nuevas normativas. Iniciativas como ésta están siendo apoyadas y promovidas por ACEM (Asociación Europea de Fabricantes de Motocicletas) y se prevé que en un futuro puedan extenderse en otros lugares, sobretodo zonas urbanas, donde las emisiones contaminantes son elevadas [1].
5. Análisis de la legislación y posicionamiento.

5.1. Normativa de rango europeo.

Desde la Comisión Europea se está impulsando la política de gestión y eliminación de residuos, recogida en la Directiva 91/156/CEE (legislación española: Ley 10/1998).

Con posterioridad a esta Directiva, la Comisión Europea ha desarrollado normativa específica para ciertos residuos, entre los que cabe destacar los vehículos al final de su vida útil, que además se encuentran clasificados como residuos peligrosos en el Catálogo Europeo de Residuos (CER).

Respecto el tema de los vehículos al final de su vida útil (VFUs) y dentro del programa de acciones sobre el flujo de residuos prioritarios llevadas a cabo por la Comisión Europea, fue creado un grupo de trabajo que consistía en más 40 representantes de asociaciones industriales, grupos de consumidores y expertos en medio ambiente.

Después de más de 2 años de intensos diálogos y análisis este “Grupo de Comisiones del Proyecto del Flujo de Residuos Prioritarios para el Tratamiento de los Vehículos al Final de su Vida Útil” publicó la “Propuesta de Estrategia para el tratamiento de VFUs” en Febrero de 1994.

La conclusión del grupo de expertos fue que era necesaria una regulación del tema, para coches pero no para vehículos de motor de dos ruedas. Así pues en la mayoría de los estados miembros de la Unión Europea se adoptaron acuerdos voluntarios o sistemas legales en el ámbito nacional con relación a los automóviles, pero no a los vehículos de dos ruedas.

En el año 2000 el Parlamento Europeo y el Consejo de la Unión Europea redacta la Directiva 2000/53/CE, con el fin de armonizar las distintas medidas nacionales relativas a VFUs para así reducir al mínimo por una parte, las repercusiones sobre el medio ambiente resultantes, contribuyendo así a la protección y mejora de la calidad ambiental y a la conservación energética, y por otra, garantizar el buen funcionamiento del mercado interior y evitar distorsiones de la competencia en la Comunidad.

Dado que la comisión de expertos que estudió el tema no aportó ni ejemplos ni argumentos de por qué las motocicletas no habían sido incluidas en el alcance de esta propuesta se desarrollaron diferentes posturas en torno al tema.

La Asociación Europea de Fabricantes de Motocicletas (ACEM) se posicionó en contra de la necesidad de regulación de las motocicletas fuera de uso mediante una Directiva Europea.
ACEM alegaba que los vehículos de motor de dos ruedas no suponían problema alguno para el medio ambiente una vez llegados al final de su ciclo de vida útil y que su inclusión en la Directiva hubiera supuesto una administración masiva y un incremento de los costes de los productores y los importadores de motocicletas sin que por ello contribuyera a una mejora del medio ambiente [2].

En este capítulo se llevará a cabo un análisis de la normativa europea teniendo en cuenta que la definición de vehículo de la que en ella se hace uso, es la siguiente: “Vehículo: vehículo clasificado en las categorías M1 o N1 definidas en la parte A del Anexo II de la Directiva 70/156/CEE, así como los vehículos de motor de tres ruedas, según la definición recogida en la Directiva 92/61/CEE, pero con exclusión de los triciclos de motor.” Si nos remitimos a la Directiva 70/156/CEE se concluye que la definición de vehículo en esta Directiva engloba: vehículos de motor con al menos cuatro ruedas, destinados al transporte de personas, y que tengan, además del asiento del conductor, ocho plazas sentadas como máximo; los vehículos de motor con al menos cuatro ruedas, destinados al transporte de mercancías y que tengan una masa máxima no superior a 3,5 toneladas, y los vehículos de tres ruedas simétricas provistos de un motor de cilindrada superior a 50 centímetros cúbicos (cc), si es de combustión interna o diseñados y fabricados para no superar una velocidad de 45 km / h, con exclusión de los ciclomotores.

No quedará por tanto incluido ningún tipo de vehículo motorizado de dos ruedas, pero el estudio de estas normativas será de gran ayuda a la hora de trazar un plan de reciclado para éstos.

5.1.1. Clasificación en el Catálogo Europeo de Residuos (CER)

Los residuos procedentes del fin de vida de los VFUs aparecen clasificados en el CER bajo la entrada al nivel de los dígitos 16 01.

El CER fue aprobado inicialmente por la Comisión Europea en el año 1994, mediante la Decisión 94/3/CE por la que se establecía la lista de residuos de conformidad con la letra a) del artículo 1 de la Directiva 75/442/CEE del Consejo, relativa a los residuos peligrosos, y a la Decisión 94/904/CE del Consejo, por la que se establecía una lista de residuos. Posteriormente el 3 de mayo de 2000 se publicó una nueva decisión, la Decisión 2000/532/CE (ver contenido del CER en el Anexo B.1.), que sustituía a la Decisión 94/3/CE, y que modificaba el Catálogo Europeo de Residuos, ampliando las categorías consideradas y modificando el carácter peligroso de algunos de ellos. Esta modificación se basaba en un análisis de unas 250 de las casi 5000 comunicaciones recibidas por la comisión desde los Estados miembros durante el periodo transcurrido desde la publicación del Catálogo y la fecha de publicación, junio de 2000.

A lo largo de los últimos años se ha discutido la aprobación de un nuevo catálogo de residuos que incluya el análisis de la totalidad de las comunicaciones recibidas por la Comisión. El documento debatido por el TAC (Comité Técnico para el Progreso y Adaptación de la Ciencia y Tecnología) ha dado lugar a la adopción de las Decisiones/2001/118, 119 y 573/CE que
modifican la Decisión/2000/532/CE y establecen el nuevo Catálogo de Residuos Europeo que entró en vigor el 1 de enero de 2002.

Desde el punto de vista de su clasificación, los VFUs aparecen como tales a nivel de dos dígitos en el capítulo 16 del CER.

Los VFUs constituyen una corriente de residuos que a nivel de cuatro dígitos aparecen en el nuevo Catálogo Europeo de Residuos junto a sus componentes. A nivel de seis dígitos los VFUs presentan dos entradas según se trate de vehículos que han quedado fuera de uso y aún no se ha actuado sobre ellos (16 01 04*) que son considerados como residuos peligrosos o VFUs que han sido descontaminados (16 01 06) en los que los líquidos han sido drenados y los componentes peligrosos extraídos, estos últimos catalogados como no peligrosos.

El nuevo CER incluye a los VFUs bajo el capítulo 16 01, como: “Vehículos de diferentes medios de transporte (incluidas las máquinas no de carretera) al final de su vida útil y Residuos de desguace de vehículos al final de su vida útil y del mantenimiento de vehículos (excepto los de los capítulos 13 y 14 y los subcapítulos 16 06 y 16 08)”.

El grupo 16 01 contiene 9 entradas, de 6 dígitos, clasificadas como residuos peligrosos (señaladas mediante un asterisco), más once entradas para vehículos desechados, componentes distintos de aquellos que respectivamente contienen residuos peligrosos y materiales no considerados peligrosos:

16 01 03 Neumáticos fuera de uso

[16 01 04* Vehículos al final de su vida útil. Nota: Esta entrada no está incluida en la propuesta que se presenta al Comité para dictamen. Las modificaciones necesarias a esta entrada se harán atendiendo al resultado de la tramitación en el Consejo de la propuesta que figura en el documento COM(2000) 546]

16 01 06 Vehículos al final de su vida útil que no contengan líquidos ni otros componentes peligrosos

16 01 07* Filtros de aceite

16 01 08* Componentes que contienen mercurio

16 01 09* Componentes que contienen PCB

16 01 10* Componentes explosivos (por ejemplo, air bags)

16 01 11* Zapatas de freno que contienen amianto

16 01 12 Zapatas de freno distintas de las especificadas en el código 16 01 11
16 01 13* Líquidos de frenos
16 01 14* Anticongelantes que contienen sustancias peligrosas
16 01 15 Anticongelantes distintos de los especificados en el código 16 01 14
16 01 16 Depósitos para gases licuados
16 01 17 Metales ferrosos
16 01 18 Metales no ferrosos
16 01 19 Plástico
16 01 20 Vidrio
16 01 21* Componentes peligrosos distintos de los especificados en los códigos 16 01 07 a 16 01 11, 16 01 13 y 16 01 14
16 01 22 Componentes no especificados en otra categoría
16 01 99 Residuos no especificados de otra forma

Los componentes peligrosos de los VFUs pueden incluir las pilas y acumuladores clasificados como peligrosos en el código 16 06, así como catalizadores usados, clasificados con la entrada 16 08.

También en el capítulo 13, correspondiente a los residuos de aceites y de combustibles líquidos, podemos encontrar alguna entrada que puede ser incluida dentro de los residuos peligrosos de VFUs. En particular, dentro del grupo 13 02 de residuos de aceites de motor, de transmisión mecánica y lubricantes aparecen:

13 02 04* Aceites minerales clorados de motor, de transmisión mecánica y lubricantes.
13 02 05* Aceites minerales no clorados de motor, de transmisión mecánica y lubricantes.
13 02 06* Aceites sintéticos de motor, de transmisión mecánica y lubricantes.
13 02 07* Aceites fácilmente biodegradables de motor, de transmisión mecánica y lubricantes.
13 02 08* Otros aceites de motor, de transmisión mecánica y lubricantes.

Las consecuencias prácticas de clasificar una alta proporción de residuos de VFUs como
peligrosos son muchas, pero se pueden destacar las derivadas de las tramitaciones que es preciso cumplimentar para el movimiento de los mismos, lo cual tendrá efectos tanto para los gestores de estos residuos como para la labor de las administraciones competentes en el tema.

5.1.2. Directiva 2000/53/CE

Debe destacarse la entrada en vigor de la Directiva 2000/53/CE (ver contenido en el Anexo B.2.) del Parlamento Europeo y del Consejo de la Unión Europea, de 18 de septiembre, relativa a los vehículos al final de su vida útil, en la cual se da prioridad a la reutilización y al reciclado de los vehículos, y que pasó a ser de obligado cumplimiento a partir de abril de 2002. Dicha Directiva, impone unos ambiciosos objetivos de reciclaje, así como la prohibición del empleo de sustancias peligrosas. La directiva:

- Establece el principio de responsabilidad del productor en términos absolutos para la gestión de VFUs, exigiendo que los productores se hagan cargo de la totalidad o de una parte significativa de los costes inherentes a esta gestión. Se garantiza que la entrega del vehículo a una instalación autorizada de tratamiento se producirá sin coste alguno para el propietario final por carecer el vehículo de valor de mercado o tener un valor de mercado negativo. Esto será aplicable a los vehículos que salieron al mercado después del 1 de Julio de 2002 y a partir del 1 de Julio de 2007 a todos los vehículos sin importar su edad.

- Impone el cumplimiento de los siguientes objetivos:
 - 1 de Enero de 2006:
 - Reutilización y Valorización: Mínimo del 85% del peso medio por vehículo y año.
 - Reutilización y Reciclado: Mínimo del 80% del peso medio por vehículo y año.
 - 1 de Enero de 2015:
 - Reutilización y Valorización: Mínimo del 95% del peso medio por vehículo y año.
 - Reutilización y Reciclado: Mínimo del 85% del peso medio por vehículo y año.

- Establece una reducción de algunos metales pesados por etapas. Impone un cambio en la legislación de los estados miembros de forma que los vehículos que salgan al mercado después del 1 de Julio de 2003 no contengan plomo, mercurio, cadmio y cromo hexavalente excepto en algunos componentes excluidos (por ejemplo el plomo en las baterías, el cromo hexavalente en recubrimientos preventivos contra la corrosión, determinados aceros que contienen plomo, aluminio y cobre, plomo como recubrimiento interior en depósitos de combustible, mercurio en faros, etc.). La directiva exige el
etiquetado de algunos de estos componentes exentos de la reducción ya que deben ser retirados y no triturados.

- Otros requisitos:
 - Los estados miembros deben promocionar el Diseño para el Medioambiente (DFE, Design for Environment).
 - Los fabricantes de vehículos y sus proveedores deben incrementar la cantidad de materiales reciclables en sus productos.
 - Los fabricantes de vehículos y sus proveedores deben codificar sus componentes y materiales para facilitar su identificación para la reutilización y recuperación del material.
 - Los productores deben suministrar información sobre el desmontaje para cada vehículo fabricado.
 - Los productores y los estados miembros deben informar de la gestión de los VFUs y de las medidas tomadas para el diseño del producto que aumenten la reutilización y el reciclaje.
 - Los sistemas de gestión de VFUs deben ser mejorados en concordancia con el aumento de rigurosidad de las normas medioambientales, lo cual requiere:
 - Autorización y registro de las instalaciones de recogida y de tratamiento.
 - Mejoras en el diseño de dichas instalaciones.
 - Retirada de fluidos, materiales peligrosos y materiales reciclables de los VFUs antes de proceder a su trituración.

De este modo, según la Directiva sobre VFUs, los fabricantes son los responsables del diseño de nuevos vehículos que cumplan los mínimos requisitos de reciclabilidad y de informar a los responsables del desmontaje del vehículo de los procedimientos de desmantelamiento más limpios (tanto para los nuevos modelos como para los ya existentes). También son responsables de garantizar la destrucción libre de costes para el consumidor de los vehículos. En cuanto a la recogida de vehículos, tres son los sistemas que rigen en Europa:

- El de cuota, usado por ejemplo en Holanda, consiste en cobrar una cuota única al primer propietario en concepto de gestión del residuo. Una organización sin ánimo de lucro la administra, encargándose del desmontaje, transporte y reciclaje de los coches.

- El de mercado, usado por ejemplo en Francia. Se caracteriza por su mínima intervención administrativa y en él, el mercado consigue por sí solo los objetivos de la
Directiva.

- El de Compañía a Compañía, utilizado en Reino Unido y Alemania. Carga las responsabilidades a los fabricantes, financiando un sistema de recogida y tratamiento de sus propios VFUs (también pueden asociarse a otros agentes) para cumplir con los objetivos de recuperación, reutilización y reciclaje.

Las empresas dedicadas al tratamiento son a su vez responsables de obtener su autorización, de cumplir los requisitos exigidos y lograr así la recuperación de los materiales de la forma más favorable para el medioambiente.

5.2. Normativa de rango nacional

Hasta hace poco no podía considerarse a España como un país medioambientalmente proactivo. Sin embargo, la mayor afluencia de información sobre los efectos medioambientales de los procesos industriales y la presión de la normativa europea sobre estos aspectos han provocado un cambio, de manera que la legislación nacional ha evolucionado de forma paralela a la europea.

El Real Decreto 1383/2002 de 20 de Diciembre (Anexo B.3.) incorpora al derecho interno la Directiva 2000/53/CE del Parlamento Europeo y del Consejo relativa a los VFUs. Regula este tipo de residuos que son definidos como todos aquellos procedentes de vehículos a los que les es de aplicación la Ley 10/1998, de 21 de abril, de Residuos, así como los vehículos abandonados en los términos establecidos en la Ley sobre Tráfico, Circulación de Vehículos a Motor y Seguridad Vial. Tiene como objetivo establecer medidas para prevenir la generación de residuos procedentes de los vehículos, regular su recogida y descontaminación al final de su vida útil, así como las demás operaciones de tratamiento, con la finalidad de mejorar la eficacia de la protección ambiental a lo largo del ciclo de vida de los vehículos.

Como desarrollo de este Real Decreto se elaboró el Plan de VFU 2001-2006, que actualmente está siendo revisado para hacerlo extensivo al período 2006-2013 y que recogerá, entre otros, los objetivos de mejora de los mecanismos de prevención de residuos y cuando ello no sea posible, la mejora en los procesos de reutilización, reciclado y valorización de los diferentes componentes del VFU. Todo ello, con vistas a la consecución de los objetivos fijados en la Directiva Europea 2000/53/CE para los años 2006 y 2015, que también han sido recogidos en el citado Real Decreto [3].

Esta ley pretende poner coto a un problema que genera en torno al millón de toneladas de residuos al año para su gestión en nuestro país. Como la Directiva de la que deriva, el Real Decreto pretende tener en cuenta el impacto ambiental de los vehículos desde su concepción, reduciendo el uso de sustancias peligrosas (plomo, cadmio, mercurio y cromo hexavalente) e incrementando el uso de materiales reciclados, favoreciendo la eficacia energética y la
reducción de emisiones durante su uso, minimizando los residuos e incrementando las posibilidades de reciclaje al final de su vida útil.

Se creó igualmente la figura del certificado de destrucción (antes, el usuario daba de baja el coche en Tráfico y lo enviaba al desguace, mientras que ahora los centros autorizados reciben el vehículo y expiden el certificado de destrucción para el usuario, a la vez que se encargan de notificar la baja a Tráfico y a la correspondiente Comunidad autónoma). También es importante la creación de la figura de los Centros Autorizados de Tratamiento a los que se exige el cumplimiento de una nueva normativa (los actuales desguaces se deben reconvertir si quieren seguir actuando como tales) que debe ser visada por las correspondientes comunidades autónomas.

A su vez dentro de los objetivos de reciclado, se fija el umbral de 2015 para lograr el 85% del peso del vehículo para reciclar mientras que la reutilización debe alcanzar el 95%. Antes, en enero de 2006, debe ser reciclado el 80% en peso del vehículo y reutilizado el 85%.

Al fabricante se le obliga en la parte del diseño a facilitar el desmontaje y a usar normas de codificación de piezas. También debe estar garantizada la disponibilidad de instalaciones en todo el territorio nacional. Teniendo en cuenta que el 46.5% de los vehículos de nuestro país se concentran en 9 puntos, existen zonas rurales o poco pobladas donde la existencia de centros autorizados sea escasa, en cuyo caso son los fabricantes de vehículos los que deben promover las instalaciones de recepción.

La definición de vehículo utilizada en este Real Decreto es la misma que la que la Comisión Europea implantó en la Directiva 2000/53/CEE, por lo que quedan excluidos en él los vehículos motorizados de dos ruedas.

5.3. Normativa de EEUU

El reciclaje de vehículos en los EEUU ha recibido mucho menos interés regulador que en Europa. En cuanto al marco legislativo a escala nacional, sólo ha sido creada en referencia a la gestión de VFUs la normativa Automobile Recycling Study Act of 1991 (HR 3369). La legislación propuesta fue el resultado del estudio de un aumento potencial del reciclaje del automóvil por parte de US Environmental Protection Agency (USEPA) en colaboración con las Secretarías de Transporte y Comercio. El citado estudio [4]:

- Identificó los principales obstáculos para un mayor reciclado de componentes de automoción y desarrolló nuevas maneras de superar dichos obstáculos.

- Definió los métodos para incorporar la reciclabilidad en el diseño y la producción de nuevos vehículos.
• Identificó los materiales tóxicos y no reciclables usados hasta el momento y sus posibles sustitutos.

• Estudió la factibilidad de establecer diseños normalizados para vehículos de forma que se accediera a una eliminación gradual de los materiales peligrosos y no reciclables.

• Se examinaron los métodos para la elaboración de plásticos más reciclables para la automoción.

Las actividades de gestión de VFUs se vieron afectadas por la legislación nacional principalmente en el tema de la destrucción de los residuos sólidos y peligrosos:

• Prohibición del vertido de líquidos pertenecientes a vehículos en vertederos, y sustitución por su almacenamiento para su posterior reciclaje.

• Prohibición del abandono de baterías con plomo en los vertederos, y sustitución por su almacenamiento para su posterior reciclaje.

• Normativa aplicable al reciclaje para la gestión de las baterías y los fluidos de los vehículos.

Otros asuntos legislativos significativos en cuanto a la gestión de VFUs en los EEUU serían:

• Clasificación en California del Residuo de Fragmentación del Automóvil (RFA) como residuo peligroso.

• Algunos estados impusieron pretratamiento y/o unos requerimientos especiales de gestión del RFA en los vertederos.

• Restricciones en el ámbito estatal de los vertederos en cuanto al tema del contenido de mercurio.

• Interés en el ámbito estatal en la gestión de neumáticos usados.

• Leyes en el ámbito nacional y estatal en referencia a la incineración de neumáticos para la obtención de energía.

• Imposición de leyes nacionales de gestión de las operaciones de desmantelamiento del vehículo.

Es interesante destacar que a diferencia de en Europa, en EEUU el RFA no es considerado como un residuo peligroso.

En cuanto al futuro:
• A corto plazo, el interés recae sobretodo en la gestión/destrucción de componentes que contengan mercurio.

• A largo plazo, dadas las iniciativas europeas y teniendo en cuenta además el hecho de que el flujo de residuos provenientes de VFUs está pasando a ser un problema global, la próxima etapa debería ser la creación de una normativa Norte Americana para la regulación del reciclado de los VFUs. Sin embargo, más que seguir el modelo europeo, es más probable que los EEUU, a través de la US Environmental Protection Agency (USEPA) o de iniciativas individuales de los diferentes estados creen leyes restrictivas sobre la destrucción o el tratamiento del RFA así como incentivos para la investigación sobre dicho tema.

5.4. Acuerdos voluntarios

5.4.1. Plan Voluntario de Reciclado de Motocicletas en Japón.

En la actualidad, 1,2 millones de motocicletas al año alcanzan el fin de su vida en servicio en Japón. De esta cantidad casi 700.000 son exportadas como vehículos de segunda mano, mientras que de las 500.000 unidades restantes se estima que aproximadamente 200.000 son reutilizadas en partes. Esto significa que el grado de reciclabilidad de las motocicletas fuera de uso es extremadamente alto en Japón, de manera que la destrucción de estos vehículos genera unas 840 toneladas de polvo anualmente, lo cual supone sólo el 1% de las 800.000 toneladas de polvo creadas cada año debido a la destrucción de los VFUs.

La ley japonesa estipula dos categorías específicas de responsabilidad por la manipulación y el procesado de los residuos. La primera es la llamada “responsabilidad del emisor”, en la cual aquellos que se deshacen de los residuos deben asumir la responsabilidad de la destrucción limpia y el reciclado de los materiales. La segunda es la “responsabilidad del productor” la cual requiere que aquellos que fabrican o venden los productos se hagan responsables de lo que ocurre con dichos productos una vez se convierten en residuos.

Con respecto a los automóviles, en Enero de 2005 la “Ley de Reciclado de los Automóviles” se encargó de poner de manifiesto todo este pensamiento en Japón. La tasa de reciclado demandada en 2005 es del 30%, y será del 50% en 2010 y del 70% en 2015, quedando la tasa de reutilización en el 88% en 2005, el 92% en 2010 y el 95% en 2015. En un primer momento se creyó que las motocicletas estaban también dentro del alcance de esta ley, sin embargo según las autoridades pertinentes no era factible compartir el sistema de gestión de las motocicletas con el de los automóviles. Por otra parte las motocicletas no usan CFC, no van equipadas con airbag y otras muchas características que las hacen ser muy diferentes a los automóviles. Así pues, poco a poco quedó aclarado y sin lugar a dudas que el sistema de reciclado ideado para ser usado en automóviles, simplemente no podía ser usado en motocicletas.
Basándose en estos hechos, la Asociación de Fabricantes de Automóviles de Japón, JAMA (Japan Automobile Manufacturers Association) estableció un sistema alternativo de reciclado adaptado a las necesidades y las características de las motocicletas.

La JAMA (Japan Automobile Manufacturers Association) anunció en una conferencia de prensa el 12 de Julio de 2004 el lanzamiento de un sistema voluntario de reciclado de motocicletas que entraría en vigor el 1 de Octubre del citado año. Gracias a este “Plan de Reciclado Voluntario de Motocicletas” los propietarios finales pueden encargarse a través de su punto de venta más cercano de entregar las MFUs en los “centros de recogida de motocicletas desechadas” o directamente a su destino final las “instalaciones de recepción designadas” desde donde pasarán a una de las 14 plantas japonesas de procesado donde se llevará a cabo el desmontaje y el reciclado de las motocicletas. Se espera que el porcentaje de reciclado en estos lugares alcance en breve la media del 75% por vehículo [5].
6. Gestión de MFUs.

6.1. Gestión de VFUs

6.1.1. Europa

El proceso de gestión de un VFU varía en función del país. Según la legislación Europea, cada VFU debe ser entregado a una instalación autorizada de tratamiento. Cada país de la Unión Europea puede introducir su sistema de certificación para VFUs. El certificado es expedido al titular del vehículo o propietario cuando éste es entregado en el centro de tratamiento. La presentación de este certificado de destrucción será una condición indispensable para la baja del VFU.

También el sistema económico utilizado para la destrucción del vehículo varía en cada país. En algunos países, el propietario puede recibir una cierta cantidad de dinero, mientras que en otros se ha de pagar una cuota. Algunos países de la Unión Europea han introducido sistemas de financiamiento para el tratamiento de VFUs.

Una vez entregado el vehículo en la instalación adecuada y según la normativa Europea los siguientes pasos serían:

1. **Recogida de VFUs.** En algunos casos el propietario entrega el coche a una instalación de recepción que puede ser temporal antes del centro de tratamiento. Esto pasa normalmente en áreas con una baja densidad de automóviles.

 A partir de aquí, son posibles dos caminos. Los VFUs pueden ser trasladados al desmontador o bien directamente a la fragmentadora para su reciclado. Esta segunda opción está siendo sometida a investigación en Europa ya que parece ser la forma más eficiente de gestión de aquellos vehículos que no poseen partes reutilizables.

2. **Desmantelamiento del VFU.** La principal tarea del desmontador es la separación para la venta de componentes reutilizables, así como la descontaminación del coche. Esto último implica el drenaje de fluidos y la separación de componentes peligrosos como la batería.

 Algunos componentes pueden ser susceptibles de ser reciclados, por lo que deben ser extraídos y enviados directamente a los centros de reciclado. Después de la descontaminación, y del desmontaje para el reciclado o para la reutilización, lo que queda del vehículo es transportado a un centro de fragmentación donde se llevará a cabo el reciclaje de la parte metálica.
En algunos países de la UE los desmontadores son los encargados de la expedición del certificado de destrucción al propietario final.

3. *Fragmentación del VFU.* En la fragmentadora un gran molino de martillo fragmenta el coche en pequeñas piezas. Posteriormente se procede a la separación de diferentes tipos de materiales mediante técnicas relacionadas con sus propiedades paramagnéticas o de densidad. Los materiales ferrosos y no ferrosos son separados y vendidos para operaciones de reciclado posteriores. El resto de los materiales se suelen separar en fracción ligera y fracción pesada y acaban normalmente en el vertedero.

4. *Reciclado de material.* Además de la reutilización de algunos componentes del vehículo, el reciclado del material incluye también otras posibilidades:

- **Separación e Identificación.** La clave para un correcto reciclado es tener unas fracciones de material limpias. Son por tanto factores importantes a tener en cuenta para un material de reciclado de alta calidad el uso de procesos eficientes para la identificación y la separación de los diferentes materiales. Unos pequeños niveles de contaminación con otros materiales pueden dar como resultado un reciclado sin valor.

- **Reciclado Mecánico.** Se trata del reprocesamiento del residuo de material plástico mediante métodos físicos para su transformación en nuevos productos plásticos. Este tipo de reciclado involucra el almacenamiento, la separación, la trituración del material y el lavado antes de que éste sea mezclado con material virgen y transformado en un nuevo producto.
• Residuo de Fragmentación. En la fragmentadora un gran molino de martillos fragmenta el coche en piezas pequeñas. En los procesos siguientes básicamente se realiza la separación entre metales ferrosos y no ferrosos. El residuo de fragmentación que queda se divide generalmente en fracciones pesada y ligera y generalmente acaba en el vertedero.

• Reciclado como materia prima. Es un reprocesamiento del componente plástico en monómeros o compuestos petroquímicos básicos para la producción de plásticos. Esto incluye también su uso como agente reductor en fundiciones de metales. Dentro del reciclado químico existen diferentes posibilidades entre las que se encuentran:
 o Horno Alto
 o Reciclado químico
 o Gasificación

5. **Vertido del residuo de fragmentación.** En los países de la UE los residuos procedentes de la automoción son considerados como peligrosos. Esto es debido a algunos de los materiales que contienen, por ejemplo ciertos fluidos, que a pesar de no ser considerados como peligrosos durante su uso normal, deben ser tratados como tales cuando pasan a ocupar la categoría de residuo. Los vertederos con residuos peligrosos son estrictamente controlados sobretodo en cuanto a las emisiones atmosféricas y a la contaminación del agua. Los residuos plásticos pertenecientes a VFUs tienen valor, por ejemplo como fuente de energía. Este valor se pierde cuando el residuo de fragmentación es llevado al vertedero. En Europa los vertederos están sometidos a una cada vez más estricta legislación, y los costes de los vertederos se están incrementando.

Actualmente todos los esfuerzos están dirigidos a la investigación de nuevos tratamientos ecoeficientes para el residuo de fragmentación, evitando así su destino final en vertedero.

6. **Recuperación energética del residuo de fragmentación.** La revalorización energética consiste en la transformación del residuo para la generación de energía a través de su combustión directa con o sin otros residuos pero con la recuperación de calor. Los residuos que surgen de las fragmentadoras pueden ser recuperados como energía de tres maneras diferentes:

• Combustible alternativo. Reemplazando los combustibles fósiles en procesos de producción, o en combinación con otros combustibles para la generación de energía.

• Co-combustión de residuos sólidos municipales, RSM. En los combustores de los
RSM, el residuo de fragmentación puede generar calor y/o electricidad y contribuir a estabilizar el proceso de combustión.

- Generación de energía. Los residuos plásticos pueden ser transformados en gas sintético para ser usados en la generación de energía.

6.1.2. España

Antes de la aplicación del Real Decreto 1383/2002, la mayoría de los VFUs eran entregados en instalaciones de desguace, en su mayoría poco controladas y carentes de las oportunas autorizaciones; algunas de las piezas o componentes de los VFUs eran reutilizadas sin mucho control en vehículos viejos o de segunda calidad, y el resto era enviado a valorización como chatarra, sin una previa y adecuada descontaminación.

Saltan a la vista las deficiencias ecológicas que este modo de proceder implicaba, ya que una correcta gestión debe basarse en la previa descontaminación del VFU, mediante la separación de todos sus componentes que tengan el carácter de residuo peligroso para su envío a reciclaje por el gestor autorizado para cada tipo de residuo. El resto del VFU debe ser descompuesto por materiales, para el reciclaje independiente de cada uno de ellos.

Todo ello debe llevarse a cabo en centros que reúnan las condiciones técnicas, ecológicas y administrativas que garanticen que las operaciones se hacen correctamente. Estas instalaciones han pasado a designarse con las siglas CARDs (Centros Autorizados de Recepción y Descontaminación) [6] o CATs (Centros Autorizados de Tratamiento).

El proceso de gestión de los VFUs es básicamente el mismo que el seguido en Europa ya que viene dado por la Directiva que afecta a todos los países miembros:

1. **Entrega del vehículo**: La entrega del vehículo podrá realizarse directamente al CAT o a través de una instalación de recepción, tanto por parte del titular como del ayuntamiento en el caso de vehículos abandonados. En cualquier caso, la entrega no supondrá coste alguno para su titular cuando el vehículo carezca de valor de mercado o éste sea negativo, siempre que contenga al menos la carrocería y el grupo motopropulsor, y no incluya otros elementos no pertenecientes al mismo ni se le haya realizado ningún tipo de operación previa de desmontaje de piezas o componentes.

El proceso de tratamiento de los vehículos comienza en el momento en que estos son entregados a un centro autorizado. El proceso consta de las siguientes fases:

2. **Descontaminación**: Consiste en la extracción de todos los residuos peligrosos, es decir, combustible, líquido de transmisión y otros aceites hidráulicos; aceites del motor, del diferencial y de la caja de cambios (salvo que se reutilice el bloque completo, en cuyo caso se puede mantener lubricado), líquidos de refrigeración, de frenos y anticongelante; baterías de arranque; filtros de aceite y combustible; etc.
3. **Retirada de componentes reutilizables**: Se evalúan y retiran todos aquellos componentes del vehículo susceptibles de ser reutilizados, y son claramente identificados y almacenados para su posterior venta.

4. **Almacenamiento y compactación**: El vehículo se almacena a la espera de ser transportado a las instalaciones de fragmentación. Para lograr una mayor optimización de esta operación, los vehículos son previamente compactados.

Tanto las instalaciones de recepción y almacenamiento como los CATs han de cumplir unos requisitos técnicos que vienen dados por el RD 1383/2002 de 20 de Diciembre.

5. **Fragmentación**: Los vehículos son triturados por molinos de martillos y convertidos en pedazos de entre 20 y 40 cm. Dentro de la instalación, unas aspiradoras y unos ventiladores soplantes retiran los materiales menos pesados (los estériles) y, más tarde, corrientes magnéticas se encargan de separar metales férricos y no férricos.

6. **Reciclado de la parte metálica**: La parte metálica fragmentada, normalmente con un tamaño comprendido entre lo 20 y 40 cm, es cargada en camiones de hasta 25 toneladas y enviada a fundición.

7. **Tratamiento Residuo de Fragmentación**: Se aplicará el tratamiento adecuado según si se trata de residuo ligero de fragmentación o pesado.

6.1.3. EEUU

Excepto por las baterías de plomo, el automóvil es el producto más frecuentemente reciclado en los EEUU. Las cuatro actividades principales que se llevan a cabo en el proceso de reciclado del automóvil son: [7]

1. **Desmantelamiento**: Tiene lugar en una instalación de desmontaje o bien en un desguace o chatarrería. Se procede a la separación de los fluidos, de los neumáticos y de otras muchas piezas del vehículo con el fin de:
 - Reutilización directa
 - Reprocesado (motores)
 - Reciclado (fluidos, baterías, depósitos de combustible de acero)
 - Revalorización energética (neumáticos)
 - Destrucción (depósitos de combustible de plástico)

2. **Fragmentación**: Tiene lugar en las instalaciones de fragmentación y consiste en la segmentación del vehículo en multitud de piezas del tamaño de un puño.
3. **Separación y procesado del material resultante de la fragmentadora**: Este flujo de material es inicialmente separado en la instalación de fragmentación en dos grupos básicos usando una tecnología de tipo magnética:

- Metales ferrosos (todos los hierros y aceros excepto los aceros inoxidables)
- Materiales no ferrosos (tanto metales como no metales)

La fracción metálica ferrosa se envía para su reciclado a las fundiciones de acero, casi exclusivamente a hornos de arco eléctrico, los cuales están especializados en el procesado de chatarra de acero.

La fracción de material no ferroso se separa en dos grupos principales:

- Metales no ferrosos (aluminio, bronce, latón, cobre, plomo, magnesio, níquel, acero inoxidable y cinc).
- Residuo de Fragmentación del Automóvil (RFA). Está formado por todos los materiales no metálicos restantes (plásticos, cristal, caucho, espuma, textiles, madera, etc.) mezclados con partículas metálicas finas. Este es un residuo que normalmente se considera no recuperable y generalmente se procede a su envío a los vertederos para su destrucción.

4. **Destrucción del RFA en vertederos**. El RFA está considerado como un residuo no recuperable, por lo que normalmente suele acabar su vida en vertederos. Es por este motivo que la recuperación y el reciclado de plásticos que se hayan incluidos normalmente en el RFA es foco de numerosos estudios de investigación en la actualidad.

Así pues las instalaciones relacionadas con la gestión de VFU en EEUU incluyen:

1. **Desmontadores**, que pueden ser de dos tipos diferentes:
 - Desmontadores de partes de alto valor (gran volumen, operaciones rápidas con modelos de automóviles recientes)
 - Desguaces (pequeño volumen, operaciones lentas sobre la mayoría de los vehículos)

2. **Fragmentadoras**.

3. **Instalaciones de separación de no ferrosos**.

4. **Acerías** (sobretodo Hornos de Arco Eléctrico)
5. Vértederos.

6.2. Experiencia en la gestión de MFUs en Japón

6.2.1. Descripción general del Sistema de Reciclado de Motocicletas.

Este sistema de reciclado es la creación conjunta de cuatro fabricantes de motocicletas japoneses pertenecientes a JAMA (Honda, Kawasaki, Suzuki y Yamaha) junto con once importadores de motocicletas. El sistema reúne también la asistencia de vendedores con el fin de promocionar la destrucción limpia y el reciclaje de aquellas motocicletas que llegan al final de su vida en servicio [8].

Para la creación de este nuevo sistema, las entidades participantes asumieron la responsabilidad de la implantación de una infraestructura viable para el reciclado de motocicletas a través de todo el país. Las operaciones infraestructurales cubren todas las etapas del flujo de reciclado, desde la recolección del vehículo y su desmontaje hasta el reciclado, incluyendo la gestión de la información de las operaciones del sistema y de los fondos recogidos de los usuarios con el propósito de financiar estas operaciones.
Con el lanzamiento de este nuevo sistema, las cuotas de reciclado de los vehículos están incluidas en los precios de venta al detalle de todas las motocicletas puestas a la venta con la etiqueta “Motorcycle Recycling” pegada a ellas. Para las nuevas motocicletas vendidas sin dicha etiqueta (lo cual indica que provienen de fabricantes no participantes en este acuerdo voluntario) y para las que ya se poseían anteriormente a la fecha de entrada en funcionamiento de este sistema, los propietarios finales se harán cargo de la cuota de reciclado fijada cuando intenten deshacerse de sus motocicletas fuera de uso.

Por otra parte, hacia el 1 de Octubre de 2011, o lo que es lo mismo siete años después del lanzamiento de este nuevo sistema, el reciclaje de todas las motocicletas fabricadas en Japón se llevará a cabo libre de cargos para el usuario tanto si tienen la etiqueta de reciclado como si no. No obstante, debido a las condiciones de distribución relacionadas con la importación, algunos importadores podrán continuar imponiendo cuotas de reciclado a los propietarios finales de las motocicletas que no posean la etiqueta.
6.2.2. Descripción de la infraestructura del sistema.

Este sistema fue modelado en base al esquema adoptado por la mayor parte de fabricantes de aparatos eléctricos domésticos en Japón (Matsushita Electric, etc.) para el reciclado de sus productos. Este sistema engloba todos los canales de reciclaje necesarios así como el suministro para la distribución de la información relacionada, y fue concebido para ser puesto en marcha de una forma rápida y de bajo coste.

6.2.2.1. Instalaciones de recepción designadas

Un total de 190 centros extendidos por todo Japón fueron establecidos como instalaciones de recepción para la entrega por parte de los últimos propietarios de las motocicletas al final de su vida en servicio. Son estos propietarios los encargados del transporte de sus vehículos desechados hasta estas instalaciones o hasta uno de los centros de recogida de motocicletas que operan bajo la sombra de la Japan Mini-Vehicles Association. A nivel nacional el número de centros asciende a unos 15.000 por lo que en algunos casos podrían resultar más accesibles para los usuarios que las instalaciones de recepción designadas. Sin embargo en este caso, se cargaría al usuario una cuota adicional al margen de la tasa fijada para el reciclaje, en concepto del transporte del vehículo desde el centro de recogida hasta la instalación de recepción más cercana.

Estos centros de recogida deben presentar una etiqueta especial identificativa para dejar claro a los propietarios de las motocicletas fuera de uso la posibilidad de entregarlas en sus instalaciones.

![Etiqueta identificativa de los centros de recogida](image)

6.2.2.2. Centros de reciclado y procesado

Se crearon un total de 14 centros de reciclado y procesado de motocicletas que fueron distribuidos estratégicamente por todo Japón. Todas las motocicletas entregadas a dichos centros son procesadas, llevándose a cabo operaciones de desmontaje y reciclaje que siguen las premisas de un manual creado y distribuido para ese propósito por los fabricantes e importadores de motocicletas participantes en el acuerdo.
6.2.2.3. Cuotas de reciclaje y formas de pago

Para las motocicletas nuevas vendidas con la etiqueta “Motorcycle Recycling” las cuotas de reciclado están incluidas en el precio de venta. Estos vehículos una vez acabada su vida útil pueden ser entregados tanto a las instalaciones de recepción designadas como a los centros de recogida.

Para las motocicletas nuevas vendidas sin la etiqueta de reciclaje así como para las anteriores a este sistema, son los últimos propietarios los que deben hacerse cargo de las cuotas de reciclado. Estas cuotas fijas son establecidas y hechas públicas por los fabricantes o, en algunos casos por los importadores. El pago de dichas cuotas puede realizarse en las oficinas de correos usando un impreso creado con este fin el cual está disponible en las instalaciones de recepción designadas y en los centros de recogida de motocicletas. Las MFUs son aceptadas en estos centros una vez el pago ha sido efectuado y presentando el impreso que lo demuestra.

6.2.2.4. Gestión del flujo de MFUs

Con el fin de maximizar la eficiencia operacional de este nuevo sistema y optimizar el coste de la gestión así como otros factores, se creó una red electrónica de información que conecta las instalaciones de recepción, los centros de desmontaje y reciclado y las entidades administrativas relacionadas.

6.2.2.5. Promoción del sistema de reciclaje de MFUs

El “Japan Automobile Recycling Promotion Center” es el responsable de las actividades informativas, de la investigación en todas las operaciones relacionadas y de la concienciación por parte del público de este nuevo sistema de reciclado de motocicletas y de cómo éste funciona.

6.2.2.6. Importadores participantes

Tanto los fabricantes como los importadores de motocicletas japoneses han tomado conciencia de sus responsabilidades sociales respecto al reciclaje de los productos que fabrican o distribuyen. Los once importadores siguientes han participado junto con los cuatro fabricantes japoneses de motocicletas en la creación de este nuevo sistema de reciclado:

Importador	Importador		
Aprilia Japan Corporation	BMW Japan	Bright Corporation	Cagiva Japan Co., Ltd.
Ducati Japan	Fukuda Motors Corp.	Kymco Japan	M’s Company, Ltd.
Narikawa & Company, Ltd.	Presto Corporation	Triumph Motorcycles Limited	
6.3. Propuesta de gestión para MFUs

Una vez detalladas las distintas experiencias llevadas a cabo, en Europa, España y EEUU en recogida y reciclaje de VFUs y las iniciativas voluntarias japonesas en el campo de las motocicletas, ya se puede crear un esquema genérico del ciclo de reciclado de estos residuos.

Las MFUs serán entregadas por los propietarios o por los ayuntamientos en caso de abandono a instalaciones de recepción o CATs. Los CATs, serán los mismos centros autorizados donde se entregan los automóviles, mientras que las instalaciones de recepción podrán ser instalaciones de titularidad privada, tales como las de los productores, concesionarios, compañías de seguros, actuales desguaces de motocicletas, etc. que se harán cargo temporalmente de la motocicleta fuera de uso para su traslado a los CATs. Ambos tipos de instalaciones deberán cumplir los mismos requisitos técnicos que en el caso de la recogida de automóviles.

Una vez en los centros de tratamiento adecuados deberá llevarse acabo un desmantelamiento de la motocicleta, extrayéndose en primer lugar de forma controlada componentes peligrosos tales como: combustibles, aceites usados, fluidos refrigerantes, líquido de frenos y anticongelantes, baterías, filtros de aceite y combustible y pastillas de freno con amianto y con mercurio si los hubiera. Todos estos materiales clasificados como peligrosos en el CER, deberán ir debidamente marcados o identificados. Seguidamente se procederá a la separación de cualquier pieza o componente que pueda ser reutilizado, ya que su precio como recambio normalmente será muy superior al valor obtenido mediante su reciclado. También se han de extraer otros componentes no peligrosos pero que serán susceptibles de ser reciclados o recuperados como: plásticos, neumáticos, catalizadores, cables y conductores, fibras, piezas de aluminio, piezas de acero y metales en general.

Los componentes extraídos serán clasificados y almacenados en lugares adecuados según sus características hasta que puedan llegar al siguiente paso de su vida de la manera más práctica posible y conservando las mejores condiciones. Por otro lado, en el caso de las MFUs no se cree necesaria la etapa de compactación llevada a cabo en los automóviles, ya que su volumen en considerablemente inferior al de éstos sobretodo una vez desmantelados por piezas.

Las piezas susceptibles de ser recicladas o recuperadas emprenderán caminos más o menos complicados en función de su material, tamaño, etc. En este proyecto se hablará sobre las posibilidades a seguir por parte de los plásticos y catalizadores. Otra fracción importante será la metálica cuyo reciclado no suele proporcionar problemas ya que generalmente se añade al flujo de materia prima, refundiéndose para la formación de nuevos productos.

Los componentes no peligrosos que no puedan ser recuperados, reciclados o reutilizados serán sometidos a un proceso de fragmentación o lo que es lo mismo de reducción de tamaño realizada normalmente mediante molinos de martillos. El residuo resultante de dicha
La fragmentación estará formada por tres fracciones principales:

- **Hierro y acero** que se separan mediante técnicas relacionadas con el comportamiento magnético de los metales y que se vende a las acerías de horno de arco eléctrico.

- **Fracción ligera** conteniendo plásticos, fibras, textiles, goma etc. que va a vertedero o a cementeras como combustible secundario. La fracción ligera, más conocida como Residuo Ligero de Fragmentación (RLF) suele acabar en vertedero, a pesar de que en la actualidad se están llevando a cabo multitud de estudios para su recuperación como los del Grupo Gallo, importante compañía de reciclaje europea que ha logrado establecer líneas de tratamiento de estos residuos.

- **Fracción pesada** que contiene metales no féreos mezclados con residuos del tipo de la fracción ligera que no han sido separados por la aspiración en la fragmentadora. La fracción pesada sigue dos caminos dependiendo de si las instalaciones de fragmentación disponen de separadores de metales no féreos por corrientes de Foucault o no.
 - **Fragmentadoras sin separadores de metales no féreos por corrientes de Foucault**: envía esta fracción pesada a una instalación única en el Estado Español y ubicada en la CC.AA. País Vasco. Allí se separan el aluminio y otros metales contenidos en esta fracción del resto de materiales ligeros utilizando medios densos para tal tarea. Estos últimos, de naturaleza muy similar a la de la fracción ligera, constituyen un residuo que en la actualidad va a vertedero.
 - **Fragmentadoras con separación por corrientes de Foucault**: obtienen aluminio limpio el cual pueden vender directamente a la fundición secundaria del aluminio. Sin embargo todavía les queda a estas fragmentadoras una fracción semi-ligera en la que hay metales y que se envía a la instalación de separación antes mencionada.
7. Caracterización de los residuos en las MFUs

7.1. Materiales presentes en las MFUs

Según la ACEM, un cálculo basado en la peor posibilidad posible revela que la cantidad total de residuo de fragmentación generado anualmente a partir de MFUs representaría sólo el 3.3% del total de los residuos resultantes de los VFUs, lo cual representa sólo el 0.2% de los residuos creados.

Por término medio, las motocicletas usan el 15% de la materia prima requerida para la fabricación de un coche [9].

<table>
<thead>
<tr>
<th>Material</th>
<th>Motocicleta</th>
<th>Coche</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso</td>
<td>%</td>
</tr>
<tr>
<td>METALES</td>
<td>127 kg</td>
<td>85</td>
</tr>
<tr>
<td>SINTÉTICOS</td>
<td>23 kg</td>
<td>15</td>
</tr>
<tr>
<td>TOTAL</td>
<td>150 Kg</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 7.1.1. Materiales en coches y motocicletas

Con el término MFU se abarcará desde un ciclomotor hasta las motocicletas más potentes. Sin embargo para realizar un estudio más específico se identificó como modelo de MFU la GPR 50CC Racing Esp. Biplz 04 una vez llegado el final de su vida útil, de manera que nos sirva en todo momento como punto de referencia.

La GPR 50CC Racing es un ciclomotor deportivo de 49.9 cc y 9 CV de potencia que dispone de un motor monocilíndrico de dos tiempos. Es escogida como ejemplo debido a que es una moto muy completa con un diseño y una dotación de serie reservada hasta ahora a motos de mucha mayor cilindrada.
En primer lugar y con la ayuda de un listado de los componentes que integran este modelo se procedió a la búsqueda de los materiales por los que estaban formados dichos componentes, acudiendo al plano técnico de cada uno de ellos. Con esta información se elaboró una base de datos cuyos resultados quedan resumidos en el Anexo C. En general se observó que los materiales encontrados en una MFU son básicamente:
ELASTÓMEROS	• EPDM	
	• FPM CAUCHO FLUORADO	
	• NBR CAUCHO ACRILO-NITRIL-BUTAD	
	• NR CAUCHO NITRILICO	
	• VHQ CAUCHO DE SILICONA	
METAL FÉRRICO	• ACERO ALEADO PARA TEMPLE Y REVENIDO	
	• ACERO DE CONSTRUCCIÓN	
	• ACERO DE FÁCIL MECANIZACIÓN	
	• ACERO DE FÁCIL MECANIZ. NO DESTINADO A TRATAMIENTO TÉRMICO	
	• ACERO DE FÁCIL MECANIZACIÓN PARA CEMENTACIÓN	
	• ACERO DE FÁCIL MECANIZACIÓN PARA TEMPLE Y REVENIDO	
	• ACERO DE FÁCIL SOLDADURA	
	• ACERO NO ALEADO ESPECIAL PARA TEMPLE Y REVENIDO	
	• ACERO PARA BOBINAS LAMINADAS EN CALIENTE	
	• ACERO PARA CEMENTAR	
	• ACERO PARA MUELLES	
	• AC. PARA MUELLES CONF. EN CALIENTE Y TRATADOS TÉRMICAMENTE	
	• ACERO PARA RODAMIENTOS	
	• ACERO PARA TEMPLE Y REVENIDO	
	• ACERO SINTERIZADO	
	• ACERO DE RECALCADO Y EXTRUIDO EN FRÍO	
	• BANDAS Y CHAPAS LAMINADAS EN FRÍO	
	• CHAPA LAMINADA EN CALIENTE PARA EMBUTICIÓN	
	• CHAPA LAMINADA EN FRÍO PARA EMBUTICIÓN	
	• FUNDICIÓN	
METAL NO FÉRRICO	• ACERÍNINOXIDABLE	
	• ALEACIÓN Zn-Al-Cu-Mg ZAMAK	
	• ALUMINIO Y ALEACIONES DE ALUMINIO	
	• BRONCE	
	• COBRE	
	• LATÓN	
PLÁSTICOS	• ACRILONITRIL BUTADINO ESTIRENO ABS	
	• COPOLÍMERO DE NBR-PVC	
	• COPOLÍMERO DE NR-EPDM	
	• ESPUMA DE POLIOLEFINA RETICULADA	
	• ESPUMA DE POLIURETANO	
	• POLIURETANO PUR	
	• TEREFTALATO DE POLIBUTILENO PBT	
	• BIFENILOS POLICLORADOS PCB	
	• POLIAMIDAL PA	
	• POLICARBONATO PC	
	• POLIETILENO PE	
	• POLIPROPILENO PP Y COPOLÍMEROS	
	• POLIOXIMETILENO POM	
	• CLORURU DE POLIVINIL PVC	
OTROS	• FIBRA CELULOIDE-LATEX	
	• FIBRA CERÁMICA	
	• FIBRA DE VIDRIO	
	• TEJIDO NABUK	

Tabla.7.2.1. Materiales en la GPR 50CC Racing Esp. Biplz 04
En general se observa una gran variedad de materiales (obviando las sustancias y componentes extraídos en la descontaminación de la MFU) que básicamente son metálicos y plásticos. El acero es un material muy importante ya que se encuentra presente en muchas piezas de pequeñas dimensiones (casquillos, arandelas tornillos, bridas, fijaciones, etc.), en multitud de piezas que conforman el motor (piñones, ejes, bielas, cigüeñal, etc.) y sobretodo en el chasis, que representa un parte importante (en peso) del conjunto de la moto. En la actualidad, cada vez más, en el proceso de adaptación de las motocicletas a la nueva demanda de vehículos más ligeros, los chasis (como el de la GPR 50cc Racing Esp. Biplz 04) tienden a ser de aluminio. El aluminio, por tanto está adquiriendo también una gran presencia en el mundo del motociclismo.

Tanto el acero como el aluminio son reciclados siendo refundidos e incorporados de nuevo en el proceso de fabricación desde hace mucho tiempo. Sin embargo los plásticos, el otro gran grupo presente, requieren técnicas de reciclado más sofisticadas y costosas, motivo por el cual la mayor parte de las veces acaban en vertedero.

7.3. Plásticos en las MFUs.

En las motocicletas existen diferentes tipos de plásticos formando parte de los diferentes componentes. La demanda de plásticos para la fabricación de motocicletas es fácil de explicar. En primer lugar los plásticos son más ligeros, versátiles y flexibles de manera que permiten innovaciones tecnológicas y una mayor libertad en el diseño. En la actualidad en el mundo de la automoción se demanda un material que pueda adaptarse a todo tipo de estéticas por muy sofisticadas que sean con la posibilidad de adquirir formas complejas en tres dimensiones y superficies interiores muy pulidas, que proporcione seguridad, confort y ahorro energético sin que todo esto suponga un incremento excesivo de los costes y sin que pierda por ello propiedades como la resistencia a la abolladura. Los plásticos cubren estas necesidades y suponen una ayuda para diseñadores e ingenieros que pueden seguir innovando y mejorando el comportamiento de los productos.

En la actualidad, y a diferencia de como ocurría con las motocicletas de hace décadas, no se concibe un diseño en el que no abunden los elementos de recubrimiento fabricados con materiales plásticos, sobre todo en las motocicletas de carretera y en los, cada vez más numerosos scooters.

La motocicleta de carretera, ya sea de tipo sport o turismo, incorpora numerosos elementos exteriores en su carrocería, bien para contribuir a una mejor penetración aerodinámica, bien para mejorar la comodidad de marcha. Estas grandes superficies de recubrimiento frontolaterales, denominadas carenados, se fabrican con materiales plásticos. Normalmente, no son de una pieza, sino que están formados por partes delantera, lateral e inferior (también denominada quilla). Los materiales con los que se fabrica suelen ser, en un elevado porcentaje, termoplásticos tipo ABS o PP.
La armonía en las líneas de la motocicleta se consigue con el diseño aerodinámico del guardabarros delantero y del colín trasero, fabricados, al igual que el carenado delantero, de material termoplástico.

La motocicleta dispone, además, de otros elementos como los retrovisores, guardabarros traseros, cubrecadenas y cajas de admisión de aire que, aunque también se fabrican con materiales plásticos tipo ABS o PP, no presentan las decoraciones y tonalidades de los elementos anteriormente descritos.

El caso de los scooters es aún más llamativo que el de las motocicletas de carretera, ya que prácticamente la totalidad de su carrocería exterior está fabricada con materiales plásticos, habitualmente también termoplásticos tipo ABS y PP. En este caso, no obstante, y debido a que algunas piezas han de soportar esfuerzos, además de cumplir cometidos estéticos (reposapiés, tapas, rejilla trasera, etc...), el material plástico con el que están fabricados suele llevar cargas de fibras, que aportan rigidez y resistencia mecánica a la pieza.

Los componentes plásticos más importantes del modelo estudiado, a nivel recuperación y reciclaje, son los reflejados en la siguiente tabla, ya que el resto son de tamaño reducido y/o sus tiempos de desmontaje son demasiado elevados ya que pertenecen a grupos complejos o simplemente son de difícil acceso.
<table>
<thead>
<tr>
<th>componente</th>
<th>material</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAJA FILTRO</td>
<td>PP + 30% TALCO</td>
</tr>
<tr>
<td>TAPA CAJA FILTRO</td>
<td>PP + 30% TALCO</td>
</tr>
<tr>
<td>VARILLA TAPA PINZA ESPUMA</td>
<td>PP + 30% TALCO</td>
</tr>
<tr>
<td>VARILLA CAJA PINZA ESPUMA</td>
<td>PP + 30% TALCO</td>
</tr>
<tr>
<td>DIAFRAGMA ENTRADA AIRE</td>
<td>PP</td>
</tr>
<tr>
<td>SOPTE.CARENADO POSTERIOR DERECHO</td>
<td>PA6 + 15% FIBRA DE VIDRIO</td>
</tr>
<tr>
<td>SOPTE.CARENADO POSTERIOR IZQUIERDO</td>
<td>PA6 + 15% FIBRA DE VIDRIO</td>
</tr>
<tr>
<td>SOPTE.CARENADO ANTERIOR DERECHO</td>
<td>PA6 + 15% FIBRA DE VIDRIO</td>
</tr>
<tr>
<td>SOPTE.CARENADO ANTERIOR IZQUIERDO</td>
<td>PA6 + 15% FIBRA DE VIDRIO</td>
</tr>
<tr>
<td>COLIN SILLIN</td>
<td>PP</td>
</tr>
<tr>
<td>LATERAL DERECHO CIERRE COLIN</td>
<td>PP</td>
</tr>
<tr>
<td>LATERAL IZQUIERDO CIERRE COLIN</td>
<td>PP</td>
</tr>
<tr>
<td>SUPLEMENTO GUARDABARROS TRASERO</td>
<td>PP</td>
</tr>
<tr>
<td>LATERAL DEREHO DEPOSITO GASOLINA</td>
<td>PP</td>
</tr>
<tr>
<td>LATERAL IZQUIERDO DEPOSITO GASOLINA</td>
<td>PP</td>
</tr>
<tr>
<td>LATERAL INFERIOR DERECHO</td>
<td>PP</td>
</tr>
<tr>
<td>LATERAL INFERIOR IZQUIERDO</td>
<td>PP</td>
</tr>
<tr>
<td>LATERAL SUPERIOR DERECHO</td>
<td>PP</td>
</tr>
<tr>
<td>LATERAL SUPERIOR IZQUIERDO</td>
<td>PP</td>
</tr>
<tr>
<td>CUBRE GUARDABARROS DELANTERO</td>
<td>PP</td>
</tr>
<tr>
<td>TOMA AIRE FRONTAL DERECHA</td>
<td>PP</td>
</tr>
<tr>
<td>TOMA AIRE FRONTAL IZQUIERDA</td>
<td>PP</td>
</tr>
<tr>
<td>CUBRECADENAS</td>
<td>PA6 + 15% FIBRA DE VIDRIO</td>
</tr>
<tr>
<td>CARENADO FRONTAL</td>
<td>PP</td>
</tr>
<tr>
<td>SUPLEMENTO SUPERIOR GUARDAB. TRASERO</td>
<td>PA6 + 15% FIBRA DE VIDRIO</td>
</tr>
<tr>
<td>SOPTE.CUBRE GUARDABARROS DELANTERO</td>
<td>PP</td>
</tr>
<tr>
<td>CUBRECARENADO DERECHO</td>
<td>PP</td>
</tr>
<tr>
<td>CUBRECARENADO IZQUIERDO</td>
<td>PP</td>
</tr>
<tr>
<td>SOPORTE ESPEJO DERECHO</td>
<td>PA6 + 15% FIBRA DE VIDRIO</td>
</tr>
<tr>
<td>SOPORTE ESPEJO IZQUIERDO</td>
<td>PA6 + 15% FIBRA DE VIDRIO</td>
</tr>
<tr>
<td>SOPORTE INFERIOR ESPEJO IZQUIERDO</td>
<td>PA6 + 15% FIBRA DE VIDRIO</td>
</tr>
<tr>
<td>SOPORTE INFERIOR ESPEJO DERECHO</td>
<td>PA6 + 15% FIBRA DE VIDRIO</td>
</tr>
<tr>
<td>SILEN.ANTERIOR FIJACION DPSTO.GASOLINA</td>
<td>PVC</td>
</tr>
<tr>
<td>TAPON DEPOSITO ACEITE</td>
<td>PVC</td>
</tr>
<tr>
<td>GUARDABARROS TRASERO</td>
<td>PP</td>
</tr>
<tr>
<td>GUARDABARROS DELANTERO</td>
<td>PP</td>
</tr>
<tr>
<td>SOPORTE TABLIER</td>
<td>PA6 + 15% FIBRA DE VIDRIO</td>
</tr>
<tr>
<td>PLACA ROZAMIENTO CADENA</td>
<td>PUR</td>
</tr>
<tr>
<td>SUBCONJUNTO SOPORTE INSTRUMENTOS</td>
<td>PA6 + 15% FIBRA DE VIDRIO</td>
</tr>
<tr>
<td>SOPORTE BATERÍA</td>
<td>PP</td>
</tr>
<tr>
<td>BASE SILLÍN PILOTO</td>
<td>PP</td>
</tr>
<tr>
<td>CONO CERRADURA SILLÍN</td>
<td>PA6</td>
</tr>
<tr>
<td>BASE SILLÍN PASAJERO</td>
<td>PP</td>
</tr>
<tr>
<td>CÚPULA CARENADO FRONTAL</td>
<td>PC</td>
</tr>
<tr>
<td>DEPÓSITO ACEITE</td>
<td>PE</td>
</tr>
</tbody>
</table>

Tabla 7.3.1: Principales plásticos en la GPR 50CC Racing 04
8. Reciclado de MFUs

8.1. Situación actual del reciclado de MFUs

En España se dan de baja entre 20.000 y 30.000 motocicletas al año, generando una gran cantidad de residuos de los cuales parte son, además, contaminantes. Algunos de ellos están conceputados como residuos asimilables a urbanos y otros como residuos peligrosos. No obstante, no se puede olvidar que a estos datos oficiales de la DGT, hay que añadir la gran cantidad de componentes de motocicletas y ciclomotores que pueden ser sometidos a un proceso de reciclado al ser extraídos de los vehículos todavía en uso y substituidos por otros.

Desde el punto de vista del final de la vida útil de la motocicleta sólo en el caso de que sean entregadas a las instalaciones correspondientes o abandonadas, y por tanto retiradas definitivamente se considerarán como MFUs. En estos casos las motocicletas llegan a los centros correspondientes que pueden ser: desguaces especializados en motocicletas, algunos de los CATs legalizados que existen actualmente en el país, o simplemente talleres. Según la Asociación Europea de Fabricantes de Motocicletas (ACEM), el análisis de los vehículos motorizados de dos ruedas muestra que el 75% en peso es reutilizado como piezas de recambio en otras máquinas cuando estos alcanzan el final de su vida útil. Mientras que la mayor parte del 25% restante es recuperada o reciclada debido a su valor residual a través de los sistemas de recuperación existentes.

En estos momentos, en los vehículos para desguace englobados dentro de VFUs, se está reciclando la parte metálica en su totalidad, por lo que se puede hablar de una tasa de reciclado del 75%. Suponiendo que esto ocurriera también con las MFUs, la tasa correspondiente al reciclado de las MFUs sería del 85%. Sin embargo, el 15% restante, constituido por gran variedad de materiales, tales como plásticos, cauchos, espumas o textiles, termina habitualmente en el vertedero en forma de residuo de fragmentación. El reto, pues, consiste en reducir la cantidad de materiales que va a parar al vertedero, aumentando, de manera viable la tasa de recuperación más allá de la elevada cifra media del 85% en peso.

Así pues, cuando una MFU llega a alguna de estas instalaciones, lo primero que se hace es extraer todas las piezas susceptibles de ser reutilizadas. Posteriormente pueden ser sometidas a su descontaminación. A continuación son enviadas a una instalación de fragmentación donde, tras su triturado, pasan a un separador de materia metálica. La chatarra metálica, que supone un 85% del peso del vehículo, se recicla posteriormente en las empresas siderúrgicas y el resto se destina a vertedero. No obstante, no siempre será así, ya que el final de su vida útil no está todavía regulado por ley, de manera que los centros, no tiene obligación de descontaminarlas y en general de la correcta gestión de los residuos que generan. Dada la necesidad de reducir la cantidad de residuos provenientes de todos los sectores posibles, que van a parar al vertedero
y asegurarse de que no contengan agentes contaminantes, es importante la descontaminación de las motocicletas cuyo destino final sea el desguace y la búsqueda de alternativas para llevar a cabo un mayor reciclado de materiales en las MFUs.

En estos momentos, existen una serie de tecnologías y de centros que podrían ser útiles a la hora de intentar aprovechar los materiales que forman parte de una motocicleta. Atendiendo a estas posibilidades y conociendo los estudios que ahora mismo se están desarrollando en el aprovechamiento de otros materiales, se podría establecer el siguiente esquema:

<table>
<thead>
<tr>
<th>FASE</th>
<th>ELEMENTO</th>
<th>DESTINO ACTUAL</th>
<th>POSIBLE DESTINO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCONTAMINACIÓN</td>
<td>BATERÍAS</td>
<td>RECICLAJE</td>
<td>RECICLAJE</td>
</tr>
<tr>
<td></td>
<td>LÍQUIDOS VARIOS</td>
<td>VERTEDERO</td>
<td>EN ESTUDIO</td>
</tr>
<tr>
<td></td>
<td>CATALIZADORES</td>
<td>VERTEDERO</td>
<td>RECICLAJE</td>
</tr>
<tr>
<td></td>
<td>ACEITES</td>
<td>GESTORES</td>
<td>GESTORES</td>
</tr>
<tr>
<td></td>
<td>COMBUSTIBLES</td>
<td>VALORIZACIÓN</td>
<td>VALORIZACIÓN</td>
</tr>
<tr>
<td>DESMONTAJE</td>
<td>PLÁSTICOS</td>
<td>VERTEDERO</td>
<td>RECICLAJE</td>
</tr>
<tr>
<td></td>
<td>TEXTILES Y ESPUMAS</td>
<td>VERTEDERO</td>
<td>EN ESTUDIO</td>
</tr>
<tr>
<td></td>
<td>NEUMÁTICOS</td>
<td>RECICLAJE</td>
<td>RECICLAJE-VALORIZACIÓN</td>
</tr>
<tr>
<td>FRAGMENTACIÓN</td>
<td>CHATARRAS FÉRRICAS</td>
<td>RECICLAJE</td>
<td>RECICLAJE</td>
</tr>
<tr>
<td></td>
<td>CHATARRAS NO FÉRRICAS</td>
<td>RECICLAJE</td>
<td>RECICLAJE</td>
</tr>
<tr>
<td></td>
<td>VARIOS</td>
<td>VERTEDERO</td>
<td>EN ESTUDIO</td>
</tr>
</tbody>
</table>

Tabla.8.1.1. Situación actual del reciclado de MFUs
En la actualidad, en los desguaces de motocicletas y en los talleres se están reutilizando gran cantidad de elementos, pero no se está reciclando ningún material que no sea metálico. En los CATs, sin embargo, es más probable que las MFUs se introduzcan en la gestión que los automóviles han de seguir por ley, y que por tanto se lleve a cabo una descontaminación y el reciclado de ciertos materiales no metálicos.

Las MFUs son sometidas a un proceso en el que se ven involucrados varios sectores:

- **Talleres**: a los talleres pueden también llegar motos siniestradas o cuyo coste de reparación sobrepase el coste de lo que es la motocicleta en sí. En este caso los propietarios suelen decidir deshacerse de ellas y pueden dejarlas en el mismo taller, donde serán desmontadas para la substraacción de las piezas que puedan ser reutilizadas. El resto de la motocicleta puede ser llevada a un CAT o simplemente deshacerse de las piezas sobrantes entregando las metálicas a una chatarrería y depositando las no metálicas en los contenedores de residuos urbanos o en los puntos de recogida de residuos.

- **Centros de Desguace de motocicletas**: en estos momentos, el sector del desguace viene realizando la labor de recepción de las motocicletas, de las que aprovecha el máximo número de piezas para su reutilización. Las MFUs pueden ser también sometidas (no existe obligatoriedad) a una descontaminación general, extrayéndose los líquidos, la batería, los neumáticos, etc. Una vez separadas las piezas aprovechables, el desguazador lleva sus vehículos, ya sea compactados o sin compactar, a la fragmentadora o al CAT más cercano.

- **CATs**: si la moto es entregada en un CAT, ya sea a través de un taller, de un desguace de motocicletas o del propio usuario, puede ser introducida en el proceso de gestión de VFUs, procediéndose a su descontaminación, a su desmontaje y separando los componentes aptos para ser reutilizados, los potencialmente reciclables o recuperables y el resto que acabará en la fragmentadora que puede estar en el mismo centro de tratamiento o bien en un centro de fragmentación independiente.

- **Centros de Fragmentación**: en ellos se realiza el triturado de los vehículos y se hace pasar los materiales triturados por un separador magnético que se encarga de discriminar la materia férrica del resto. Paralelamente, y mediante otros métodos, se realiza la separación de los materiales metálicos no férricos debido a que son fácilmente reciclables y poseen un alto valor. Todos estos materiales metálicos son enviados a las empresas siderúrgicas para su reciclado.

- **Empresas Siderúrgicas**: los materiales metálicos que llegan a estas empresas provenientes de las fragmentadoras son introducidos en el sistema de reciclado para obtener nueva materia prima.
En el posible esquema de tratamiento de las diversas partes de la motocicleta, aparecería el lugar correspondiente a los recicladores de las partes no metálicas que tendrán las funciones descritas a continuación:

- **Recicladores**: el material les sería entregado en algunos casos por medio de los agentes del proceso aunque en otros casos sería la propia empresa de reciclado la que se encargaría de la recogida y transporte de la materia desde los puntos de almacenaje hasta sus instalaciones. En el estudio llevado a cabo, sólo se tratan las empresas que reciclan plásticos y catalizadores pero en el futuro podría existir una gran cantidad de centros que se ocuparan de otros materiales o elementos de la motocicleta, y lo que resultaría todavía más sencillo, dado que se utilizan materiales muy parecidos en la fabricación de motocicletas y en la automoción, los materiales no metálicos pertenecientes a MFUs, podrían simplemente entrar dentro del flujo de materiales procedentes de VFUs, cuya gestión se encuentra más avanzada debido principalmente a que están sometidos a las exigencias de la Directiva Europea. Estrictamente, estas empresas no reciclan el material en sí, ya que su cometido suele ser prepararlo para que pueda ser utilizado en empresas que se dediquen a la fabricación de piezas o elementos de dicho material. Además, la práctica normal es la de utilizar este material mezclado en una cierta proporción con la materia prima del proceso.

8.2. Piezas seleccionadas y su posibilidad de reciclado.

Las rutas de reciclado y recuperación que hasta hace poco han seguido las MFUs estaban orientadas sobretodo hacia el reciclaje de metales. La mayor parte de los otros materiales fueron durante mucho tiempo retirados a vertederos, ya que ésta es la solución más barata. Para alcanzar los objetivos marcados por la Directiva Europea de VFUs, surgió la necesidad de recuperación o reciclaje de la fracción no metálica.

En este proyecto se estudiará la posibilidad de reciclado de componentes que no estén formados por metales tradicionalmente reciclados, como acero o aluminio, de tal forma que representen un incremento en la tasa de reciclado de las motocicletas.

Generalmente de todas las piezas realizadas en plástico que forman parte de una motocicleta, sólo las de polipropileno (PP) ya suponen un porcentaje muy elevado del total de todas ellas. Es por ello que en el apartado de plástico, se creyó conveniente el estudio del posible reciclado de una pieza de polipropileno. Para ello se evaluaron las piezas de PP con mayor homogeneidad y facilidad de desmontaje. El resultado fue que las piezas más accesibles de PP son aquellas que pertenecen al carenado, es decir a la carrocería exterior. La mayor parte de estas piezas para cumplir con ciertos requisitos decorativos suelen tener la misma tonalidad por lo que en general son componentes de PP pintados en colores llamativos.

Dada la dispersión en cuanto al peso de las piezas del carenado existentes en el mercado, se
utilizará como valor medio los valores pertenecientes a la motocicleta analizada.

En la siguiente tabla se muestran en el caso de la GPR 50cc, los pesos de estos elementos, sus tiempos de separación extraídos de la Guía de Tiempos 2006 de Derbi [10], junto con los porcentajes que representan cada uno de ellos frente al total de la motocicleta y frente al 15% no reciclado. Consultando la guía de tiempos, se estima que de todos estos componentes, el guardabarros, laterales inferiores y el carenado frontal son los más fáciles de extraer empleándose en ello unos 6 minutos. Sin embargo, en el caso del carenado frontal, se ha de tener en cuenta que en los 6 minutos que apunta el manual sólo se incluye su separación del resto de la motocicleta, sin tener en cuenta que para emprender un proceso de reciclado se tendrán que extraer previamente los faros, los retrovisores y la cúpula de carenado que se encuentran unidos a él. Sólo la extracción de la cúpula de policarbonato aumentaría en 12 minutos más este tiempo, por ello no se considerará el carenado como uno de los componentes más fáciles de separar.
<table>
<thead>
<tr>
<th>PIEZA</th>
<th>TIEMPO DE SEPARACIÓN (minutos)</th>
<th>PESO (gramos)</th>
<th>% vs MFU % vs 15% no reciclado</th>
<th>DISEÑO</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLÍN SILLÍN</td>
<td>24</td>
<td>710</td>
<td>0,70</td>
<td>4,83</td>
</tr>
<tr>
<td>LATERAL INFERIOR DERECHO</td>
<td>6</td>
<td>497</td>
<td>0,49</td>
<td>3,38</td>
</tr>
<tr>
<td>LATERAL INFERIOR IZQUIERDO</td>
<td>6</td>
<td>472</td>
<td>0,46</td>
<td>3,21</td>
</tr>
<tr>
<td>LATERAL SUPERIOR DERECHO</td>
<td>18</td>
<td>450</td>
<td>0,44</td>
<td>3,06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>LATERAL SUPERIOR</td>
<td>18</td>
<td>440</td>
<td>0,43</td>
<td></td>
</tr>
<tr>
<td>IZQUIERDO</td>
<td></td>
<td></td>
<td>3,00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,00</td>
<td></td>
</tr>
<tr>
<td>CARENADO</td>
<td>6</td>
<td>680</td>
<td>0,67</td>
<td></td>
</tr>
<tr>
<td>FRONTAL</td>
<td></td>
<td></td>
<td>4,63</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,63</td>
<td></td>
</tr>
<tr>
<td>GUARDABARROS</td>
<td>6</td>
<td>470</td>
<td>0,46</td>
<td></td>
</tr>
<tr>
<td>DELANTERO</td>
<td></td>
<td></td>
<td>3,20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,20</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>84</td>
<td>3,719</td>
<td>3,65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25,31</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 8.2.1. Piezas de PP que forman parte del carenado
Analizando el peso de cada uno y el peso total de la motocicleta (102 kg), el componente que representa un mayor porcentaje del total de la motocicleta es el carenado frontal que representa el 0,67 % del total y el 4,63% de la fracción no metálica. En segundo lugar se encuentra el lateral inferior derecho con el 0,49 %. Le siguen el lateral inferior izquierdo y el guardabarros delantero, representando el 0,46 % de la motocicleta cada uno.

Si tenemos en cuenta tanto la rapidez de extracción como el peso que representan sobre el total, el lateral inferior derecho debería ser el escogido. Pero dado que la diferencia entre pesos es sólo de unos pocos gramos parece más adecuada la elección del guardabarros como pieza modelo para el estudio de su reciclado. Esto es debido a su condición de mayor extrapolabilidad con respecto a otras motocicletas, ya que prácticamente todos los vehículos del sector contarán con guardabarros, mientras que no todos lo harán con tapas inferiores laterales.

Siguiendo este razonamiento, el estudio en el apartado de plásticos se centrará en el reciclado de guardabarros delanteros, que generalmente son de polipropileno y que suponen aproximadamente el 3,20% de la fracción no reciclada.

La realización de la reparación dentro del tiempo señalado incluye el ajuste de los reglajes que se alterarán inevitablemente durante la reparación, el tiempo extra en relación con posibles tuercas, tornillos oxidados y el desmontaje y montaje de las piezas requeridas hasta llegar a las piezas a reparar. Pero se ha de tener en cuenta que la manera de llevar a cabo esta separación depende de lo que se pretenda en cada caso. Si la pieza es reutilizable es normal que la separación se realice con cuidado de no dañarla, ya que su precio como recambio puede ser superior que el que se puede conseguir como pieza para reciclado y el tiempo se corresponderá con el del manual. Por el contrario el tiempo real en el caso del desmantelamiento para reciclaje sería menor que el reflejado en los manuales ya que en estos casos no serán tan importantes los ajustes ni la posibilidad de dañar las piezas. Esto provocará una extracción de las piezas citadas mucho más rápida y similar entre ellas que las reflejadas en la guía de tiempos oficial.

Así pues, a pesar de hablar específicamente de los guardabarros, y dado que el resto de las piezas son también del mismo material, de tamaños semejantes, con la misma presentación (pintura) y con tiempos de extracción cortos, el proceso de reciclado propuesto podrá ser útil para todo el carenado presente en las MFUs.

8.2.1. Reciclado de plásticos

Los plásticos, por su composición y su origen derivado del petróleo y por tanto de una materia prima agotable, son un residuo de alto valor, relativamente fácil de recuperar y abundante (tanto o más que el vidrio en los residuos domésticos y creciente entre los residuos industriales). Paradójicamente durante mucho tiempo no han sido objeto de una recogida selectiva y prácticamente la mayoría del que se ha recuperado procede de las plantas de tratamiento de residuos domésticos. En conjunto, el porcentaje de recuperación del plástico utilizado en diferentes sectores industriales es muy bajo.
Los materiales plásticos se obtienen por procesos de síntesis química, polimerización y policondensación, la mayoría a partir de derivados de naftas. Los elementos químicos que los componen, su configuración y la longitud de la cadena molecular, condicionan sus propiedades físico-químicas, las cuales a su vez determinan las características de procesado para su moldeado (transformado a piezas) y sus prestaciones.

Técnicamente los materiales plásticos se dividen en dos grandes familias:

- **Termoestables**: son cadenas entrelazadas químicamente, lo que comporta que las piezas, una vez moldeadas, no se puedan modificar sin destruir la estructura molecular con la consiguiente alteración de propiedades. De aquí que su reciclado quede limitado a su molturación e incorporación a nuevas masas de materiales, aunque existen determinados materiales plásticos termoestables, como por ejemplo el poliuretano, al cual se le pueden aplicar métodos de reciclado químicos. Los plásticos termoestables se consideran potencialmente reciclables mecánicamente.

- **Termoplásticos**: son cadenas libres que a temperatura ambiente se presentan en estado sólido, funden por calor y por tanto se pueden moldear repetidas veces. Por este motivo pueden ser fácilmente reciclables. No obstante, según la aplicación que se les da y las condiciones de reprocesado, van sufriendo ligeras alteraciones que conllevan la modificación de sus propiedades, por lo que deben desecharse después de 5-7 ciclos de procesado. Una característica inherente a su estructura química es la poca compatibilidad entre productos de diferentes familias por la baja solubilidad de un polímero en otro o por sus aditivos, quedando rebajadas las propiedades mecánicas de las mezclas respecto de las de los materiales homogéneos.

Entre los polímeros más frecuentes cabe destacar los estirénicos como el ABS (acrilonitrilo butadieno estireno) o el HIPS (poliestireno de alto impacto), las poliolefinas como el HDPE (polietileno de alta densidad) o el PP (polipropileno), y el PVC (policloruro de vinilo).

Son muy pocos los polímeros básicos (conocidos también como resinas) que se utilizan o procesan sin mezclar; la mayoría de los plásticos son mezclas de polímeros y aditivos formuladas para que tengan exactamente las propiedades que se requieren para una aplicación concreta. A continuación se detallan los aditivos más usuales presentes en los materiales plásticos [11].
Aditivos anti-vejezamiento que evitan la degradación oxidativa. Hasta el 11%

Materiales inertes que se utilizan para reducir el coste del material y aumentar su procesabilidad. Hasta el 40%

Para conseguir materiales ligeros con buenas propiedades aislantes tanto térmicas como acústicas o gran capacidad de amortiguación del impacto. Hasta el 2%

Para aumentar las propiedades mecánicas como el módulo de elasticidad, resistencia a la tracción, resistencia a la abrasión, etc. Hasta el 10%

Modificadores de las propiedades ópticas. Hasta el 5%

Facilitan la transformación del material y aumentan la resistencia al impacto y la flexibilidad. Hasta el 40%

Aumentan la resistencia a la degradación térmica o fotoquímica. Hasta el 5%

Inhibidores del proceso de combustión originado cuando hay un gran aporte de flujo térmico. Hasta el 15%

Para el final de la vida útil de las motocicletas será preciso contar con tecnologías capaces de realizar una rápida identificación y clasificación automática de los plásticos, en función del tipo de polímero, de los aditivos (halogenados u otros alternativos), metales pesados, pigmentos cargas, de manera que su proceso de reciclado sea controlado con garantía de calidad y económicamente viable.

Despiezando las MFUs e identificando los materiales plásticos, se podrá recuperar una parte de los materiales que se hallen en buen estado (PA, ABS, PVC, PP). Éstos son apreciados, no por la cantidad, sino por su valor alto en el mercado.

El espectacular aumento en el consumo de los plásticos en la sociedad moderna, que se estima que crece un 4% anualmente, se ha producido en paralelo con el desarrollo tecnológico de estos materiales, cuyo uso se ha extendido además de en el campo ya convencional de los envases, en la fabricación de componentes en las industrias de automoción, vivienda, vestido y todo tipo de bienes de consumo. Así, según la Asociación Alemana de Fabricantes de Plástico
(VKE) el consumo mundial de materiales plásticos ha pasado de los 10 millones de Tm en 1978 hasta los 176 millones de Tm en el año 2003 de los cuales el 25% corresponde a Norteamérica, el 32% al sureste asiático y el 22% al oeste de Europa. El consumo de plásticos en España en el 2003 fue de 3,55 millones de Tm [12].

Sin embargo, el éxito en el desarrollo tecnológico no ha llevado emparejada la previsión de reciclado de los productos, política de reciente actualidad y que condiciona ya la propia filosofía de fabricación. Se estima que se recupera o recicla menos del 15% de los materiales plásticos residuales.

La combustión es una idea interesante desde la perspectiva de recuperación de energía de los materiales plásticos, los cuales poseen un elevado poder calorífico (PE, 43 MJ/kg; PP, 44 MJ/kg; PS, 40 MJ/kg; PVC, 20 MJ/kg, etc.). Sin embargo, la combustión debe estar sujeta a fuertes controles medioambientales, para neutralizar los residuos sólidos y los efluentes gaseosos (como cloruro de hidrógeno de la combustión del PVC).

El reciclaje de plásticos procedentes de envases y embalajes, ha sufrido un crecimiento significativo en los últimos diez años en la mayor parte de los países industrializados. La recuperación de plásticos procedentes de otros flujos como la automoción, los electrodomésticos, ordenadores, otros equipos electrónicos e incluso equipamientos deportivos ha empezado a generar interés desde hace relativamente poco tiempo. Este interés ha venido dado por un número de factores tales como la nueva legislación en torno a los productos al final de su vida útil, así como iniciativas medioambientales tomadas por algunos productores dentro de campañas de marketing. La recuperación de estos plásticos es complicada debido sobretodo a factores como: la existencia de un gran rango de plásticos diferentes e incompatibles; una infraestructura de recogida poco desarrollada todavía; su presencia en gran variedad de productos al final de su vida útil; la gran cantidad de materiales extraños con los que pueden estar mezclados como metales, cauchos, espumas, etc.

Existen diversos métodos en el tratamiento del reciclado de los plásticos, denominados: Primario, secundario, terciario y cuaternario.

- **El tratamiento primario** consiste en operaciones mecánicas para obtener un producto de similares características que el producto original. Este reciclado se aplica para el aprovechamiento de recortes de las plantas de producción y transformación, y corresponde a un porcentaje muy reducido de los denominados residuos plásticos.

- **En el tratamiento secundario**, consistente en la fusión, los desechos son convertidos en productos de diferentes formas y con mayor espectro de aplicaciones, las cuales son diferentes a las del plástico original, en un proceso evolutivo "en cascada" hacia prestaciones inferiores. Esta es la tecnología más usada hasta ahora, particularmente en la industria del automóvil, y se estima en sólo el 20% los plásticos que pueden ser reciclados de esta forma.
• **El reciclado terciario**, o "reciclado químico", persigue el aprovechamiento integral de los elementos constitutivos del plástico, por transformación del mismo en hidrocarburos, los cuales pueden ser materias primas integrables bien nuevamente en la ruta de obtención de plásticos o en otras rutas de la industria petroquímica. Los métodos pueden ser químicos o térmicos, dependiendo del tipo de polímero.

• **El reciclado cuaternario** consiste en la incineración para recuperar energía. Actualmente es muy discutido socialmente por los problemas medioambientales.

Desde un punto de vista tecnológico, para el reciclado de la fracción plástica existen cuatro opciones principales relacionadas con seis tecnologías:

1. **Reciclado mecánico**: el desmantelamiento de las piezas plásticas y el consiguiente reciclado mecánico representan uno de los posibles caminos a seguir. En este caso el reciclado puede sustituir al material virgen.

2. **Reciclado químico**: Se trata de diferentes procesos mediante los cuales las moléculas de los polímeros son craqueadas (rotas) dando origen nuevamente a materia prima básica que puede ser utilizada para fabricar nuevos plásticos.

3. **Recuperación energética**: después de la fragmentación y de la separación de los metales, la mayor parte del residuo de fragmentación forma parte de la fracción plástica. Esta porción puede ser usada como combustible en hornos de cemento después del pre-tratamiento o directamente en la combustión del residuo municipal, con el fin de recuperar su contenido energético.

4. **Vertederos**: no representan una opción viable desde el punto de vista de la ecoeficiencia. El depósito de los plásticos en los vertederos está siendo eliminado pues en lugar de ser una solución es un grave problema por su reducida degradabilidad, tanto desde el punto de vista de deterioro del paisaje (tégase en cuenta su reducida densidad, vivos colores, etc.), como porque su descomposición en vertederos origina una fuerte producción de metano, más nocivo que el dióxido de carbono.

8.2.1.1. **Reciclado mecánico**.

El reciclado mecánico de los plásticos es la opción más importante y consiste en separar, limpiar y triturar los objetos plásticos desechados para elaborar grana que servirá para fabricar nuevos objetos, que se moldearán en una máquina extrusora-granceadora mediante métodos tradicionales. Solamente puede aplicarse a los termoplásticos, que son aquellos que funden por la acción de la temperatura. El reciclaje mecánico puede ser económicamente viable, pero puede tener algunos inconvenientes. Un ejemplo sería la necesidad de un suministro limpio de plásticos de post-consumo y de una tecnología de separación eficiente para obtener los diferentes tipos de resina pura. Otro inconveniente sería la falta de homogeneidad dentro del
mismo tipo de polímero debida casi siempre a la presencia de aditivos diferentes según su aplicación. Por otro lado el plástico reciclado resultante presentará una cierta pérdida de sus propiedades por lo que tendrá algunas limitaciones de mercado, viéndose obligado a ser empleado en la fabricación de otro tipo de productos con menos exigencias.

Las operaciones básicas en el proceso de reciclado mecánico son las siguientes:

1. Almacenamiento y clasificación
2. Identificación
3. Triturado o molienda
4. Lavado
5. Homogeneización
6. Extrusión granceada
7. Homogeneización final y control de calidad
8. Expedición y distribución

El esquema del proceso de reciclado mecánico de los plásticos sería el siguiente [13]:

...
Para obtener materiales reciclados de altas prestaciones de los componentes plásticos hallados en la MFU es necesario pasar por tres pasos clave: el desmontaje, la identificación de los diferentes plásticos y su separación específica. Sin este pre-tratamiento, el reciclado sólo podría ser usado para aplicaciones de baja calidad con mercados muy limitados. Los materiales plásticos reciclados no suelen conseguir el comportamiento técnico del material virgen, pero para extender sus aplicaciones suelen presentarse mezclados con material virgen.

La variedad de plásticos utilizada en los componentes usados en la fabricación de motocicletas hace que sea necesario algún método de separación, ya que el marcado de dichos componentes que tiene como objeto una rápida identificación no facilita la separación en un ambiente industrial. En general, las principales razones para separar los plásticos por tipo son:
• La mayor parte de los materiales contaminantes extraños disminuyen el comportamiento del material principal, y muchos de ellos no son totalmente compatibles con el polímero base.

• Incluso si se producen mezclas compatibles con otros plásticos, sería difícil asegurar una composición consistente de la mezcla elaborada a partir de un material mezclado reciclado.

• La máxima formulación y la mayor flexibilidad se obtienen en materiales en estado puro.

Clasificación y separación de plásticos

Las tecnologías tradicionales para la separación y clasificación de plásticos se basan principalmente en la diferencia de densidades. Algunas de estas técnicas son: [14] [15]

• Clasificación manual.

• Separación por corrientes de Foucault (recuperación de metales no férreos).

• Separación magnética (recuperación de metales férreos).

• Separación mediante cribas.

• Separación neumática.

• Flotación-hundimiento. Separación por gravedad específica. Sólo es eficaz la separación de dos o tres plásticos. Se ha de tener en cuenta que los rellenos perturban el proceso.

• Hidrociclones. Se basa en la separación triboeléctrica, es decir en la carga electrostática que se genera en pequeñas partículas de plástico provocada por la fricción con la pared del cilindro provocada por un remolino de aire. Una vez cargadas las partículas se proyectan a un campo electrostático creado por unas placas metálicas a las que se aplica un potencial de 120.000 voltios. Por este método se han podido separar a temperatura ambiente PA 6-6 de PMMA, dos tipos de PE y PVC con una pureza del 96%.

• Robots y manipuladores.

• Separación electrostática. Uso de cargas electrostáticas en campos eléctricos para separar el PVC y el PE de cables y alambres. Su eficacia es superior al 90%.

• Disolución selectiva. Consiste en disolver la mezcla de plásticos en diferentes disolventes de manera que sólo disuelvan uno de ellos y separando el resto por
filtración. Esta técnica queda limitada a ser utilizada a nivel laboratorio, pues el trabajo con disolventes orgánicos a escala industrial lleva asociado algunos inconvenientes tales como la peligrosidad de los mismos, toxicidad, inflamabilidad y el alto coste de recuperación para ser utilizados posteriormente.

- **Separación por superficies inclinadas.**
- **Separación por impacto.**
- **Separación por centrifugación.** Separación por gravedad específica en la que se somete a los plásticos a fuerzas centrífugas. Proporciona purezas entre el 95 y el 99 %.
- **Separación por diferencias en los puntos de fusión mediante pegado a una superficie.**
- **Separación por incorporación de marcadores químicos.** Consiste en la incorporación específica de un determinado marcador para cada polímero, de manera que se le proporcione al material una cierta propiedad física fácilmente identificable, como la respuesta fluorescente a la radiación ultravioleta o la respuesta a la radiación infrarroja.

Estas tecnologías encuentran dificultades al tratar de separar plásticos con densidades similares, como los pares PP/PE o PVC/PET, al clasificar por colores plásticos que tienen la misma composición, o también, cuando los aditivos, refuerzos o cargas, que algunos polímeros pueden contener, modifican sus características físicas.

Identificación de plásticos

Las técnicas de identificación de plásticos se basan en las diferencias existentes en sus características físicas o químicas, así por ejemplo la densidad o el espectro de infrarrojo.

Los métodos tradicionales de identificación de plásticos más utilizados son los métodos basados en la densidad, punto de fusión, solubilidad, calor específico, conductividad, propiedades electrostáticas, humectación y propiedades superficiales. Muchos plásticos presentan propiedades físicas demasiado similares para poder realizar la identificación basándose en una sola técnica, por lo que requieren combinar varias, como las especificadas a continuación [14][15]:

- **Incorporación de códigos.** Este procedimiento consiste en marcar cada artículo de plástico con un triángulo de flechas curvas, en cuyo interior aparece un número identificativo de cada plástico. Este hecho facilita la separación en las cadenas de triaje.
- **Basados en propiedades eléctricas.**
- **Discriminación óptica.** Se realiza una inspección óptica mediante fotodiodos o visión mecánica con dispositivos de acoplamiento de carga. Es útil para clasificar plásticos
según la transparencia y el color, pero no puede identificar químicamente a los polímeros.

- **Espectroscopia de infrarrojo cercano (NIR).** Se trata de un tipo de espectroscopia de reflexión de 800 a 2.500 nm que se basa en la estimulación de oscilaciones armónicas y oscilaciones combinadas. Adecuada para la separación de PET, PVC, PP, PE, y PS. Proporciona una buena identificación de envases plásticos. Los rellenos del plástico pueden perturbar el proceso. No son aptos para la identificación de polímeros de color negro y aditivos.

- **Espectroscopia de infrarrojo medio (MIR).** Espectroscopia de reflexión en el IR medio basada en la estimulación de oscilaciones de grupo. Pueden distinguirse once clases de plásticos: PE, PP, PVC, ABS, PC, PA, PBT, PPE y EPDM. Es un buen método para la identificación de plásticos técnicos. Requiere una amplia preparación de la muestra. No puede automatizarse y es demasiado lento.

- **Espectroscopia Raman**

- **Espectroscopia de masa (MS).** Detección de productos pirolíticos. El tiempo de detección es largo y es difícil de automatizar.

- **Espectroscopia ultravioleta.** Espectroscopia de reflexión de 200 a 400 nm basada en la estimulación de vibraciones y electrones. Se utiliza para una identificación mínima de los polímeros. Su inconveniente es la gran influencia de los aditivos y su difícil automatización.

- **Espectroscopia fotoelectrónica láser.** Adecuada para la separación de PET, PVC, PP, PE y PS. Se utiliza para una identificación mínima de los polímeros. Puede identificar ingredientes heteroatómicos y se caracteriza por ser automatizable.

Para que un sistema de identificación automática de plásticos sea aplicable industrialmente, es
deseable que reúna características como robustez y fiabilidad, y tener un alto índice de aciertos en la identificación con una rapidez adecuada, sería deseable inferior a 0,1 segundos. Por otro lado, es un factor importante la capacidad de integración del sistema de identificación a instalaciones automáticas de separación para incrementar rendimientos.

El reciclaje mecánico tradicional de los plásticos está considerado todavía como la mejor opción por parte de un gran número de actores. Sin embargo, solamente es aplicable a una fracción de los residuos de plástico que aparecen relativamente limpios y fáciles de separar en monofracciones. Con todo, el mayor problema del reciclaje mecánico de plásticos tiene que ver con la capacidad de absorción del mercado, entre otras cosas porque se presentan en fuerte competencia con los plásticos vírgenes. En este contexto se necesita encontrar alternativas de reciclaje para los residuos de plástico mezclados cuya separación en monofracciones resulta muy costosa, consume energía y no es necesariamente ventajosa desde el punto de visto medioambiental.

El reciclado aumentaría si se avanzase en las tecnologías de identificación y separación así como en incremento de la recogida selectiva de los objetos que han llegado a su fin de vida. En un futuro el reciclado mecánico de equipos duraderos como las motocicletas será más fácil, ya que actualmente gracias al cada vez más implantado eco-diseño su posterior reciclado es tenido en cuenta a la hora de su diseño.

8.2.1.2. Reciclado químico.

Mientras que en el reciclado mecánico se utiliza el polímero como tal para producir nuevos productos de polímero, también es posible introducir los plásticos en una gama de procesos por los que a partir de materiales postconsumo se llega a la obtención de los monómeros de partida u otros productos, como gas de síntesis y corrientes hidrocarbonadas (productos de primera generación), que serán transformados posteriormente en plásticos o bien en otros derivados. Generalmente a esos procesos se les denomina reciclado como materia prima (proceso en el que se rompen las cadenas de polímero en sus componentes básicos) y reciclado químico. Este reciclado químico es una opción para aquellos plásticos que no se puedan reciclar mecánicamente, como los plásticos mezclados provenientes de las MFU. Algunos estudios han probado que el reciclado químico es medioambientalmente favorable pero económicamente dudoso [16].

El proceso químico seguido es diferente según haya sido el tipo de reacción de polimerización. Así los polímeros hidrocarbonados (poliolefinas, poliestireno) que se obtuvieron por reacciones de adición, son sometidos a procesos térmicos o catalíticos denominados termólisis dando lugar a una mezcla compleja de productos hidrocarbonados y también a gas de síntesis. Si los polímeros se formaron por reacciones de condensación (poliésteres, poliamidas y poliuretanos) los tratamientos químicos a los que se someten son de tipo hidrolítico, reciben el nombre de solvólisis y pueden producir monómeros u oligómeros.
En los métodos de solvólisis, según el agente utilizado las vías de tratamiento son: metanólisis, glicólisis e hidrólisis. Es de destacar que los procesos de metanólisis (con metanol) y glicólisis (con etilenglicol) eliminan impurezas de los plásticos y los compuestos obtenidos se pueden dedicar a la fabricación de artículos con importantes requerimientos de calidad.

- **Glicólisis**: conduce a la despolimerización parcial por acción del etilenglicol, formando el éster hidroxietílico y la mezcla de oligómeros. La mezcla de reacción se somete a purificación, siendo polimerizada posteriormente con resina virgen.

- **Hidrólisis**: conduce a la despolimerización total por acción del agua en presencia de ácidos o álcalis.

- **Metanólisis**: Es un avanzado proceso de reciclado que consiste en la despolimerización total del plástico por acción del metanol. En su aplicación al PET, se da un proceso de trans-esterificación en el que se obtiene dimetiltereftalato y etilenglicol, los cuales pueden ser luego repolimerizados para producir resina virgen.

El método termolítico de descomposición es necesario para la rotura de las cadenas de los polímeros de adición como los vinílicos, acrílicos fluoroplásticos y poliolefinas. Este método tiene mayor diversidad y flexibilidad que la solvólisis en tanto que comprende tratamientos a altas temperaturas como la pirólisis y gasificación y otros procesos que son habituales en refinería, generalmente con intervención de catalizadores sólidos: craqueo térmico, hidrogenación catalítica y craqueo catalítico. Los polímeros son convertidos a monómero, a combustibles gaseosos y líquidos, y a compuestos de base en la petroquímica. Algunas opciones de descomposición térmica tienen la ventaja de disponer parcialmente de infraestructura en las refinerías con tecnologías contrastadas. Además la termólisis puede utilizarse en flujos de residuos plásticos mezclados que contengan algún porcentaje de contaminantes no plásticos. La solvólisis, sin embargo, requiere flujos relativamente puros de polímeros y tiene una menor tolerancia a los contaminantes; así mismo los costes de preparación de la materia prima son más elevados. Los procesos termolíticos pueden ser usados para flujos de mezclas de polímeros provenientes de los residuos plásticos municipales, del residuo de fragmentación de vehículos, de residuos médicos, y de mezclas de caucho y plástico. En ocasiones puede ser necesario algún pretratamiento para la reducción de tamaño o para la extracción de algunos contaminantes, pero siempre será de menor grado que el requerido para la solvólisis. Los inconvenientes se centran en: 1) El coste de la necesaria separación y clasificación de plásticos. 2) La alimentación al equipo de tratamiento, preferiblemente en una corriente fluida. 3) La eliminación de contaminantes como el cloro y el nitrógeno. Estando resueltos los mayores problemas tecnológicos de estos métodos, el reto es hacer interesante la economía de estos tratamientos, cuya competitividad dependerá siempre del precio del barril de petróleo.

A continuación se detallan las prácticas más generalizadas de este tipo de reciclaje:
• **Pirólisis**: la pirólisis consiste en un proceso de descomposición térmica de las sustancias químicas en ausencia de oxígeno en una cámara cerrada. Los productos de la pirólisis se pueden utilizar como producto químico o fuel. La pirólisis produce una fracción líquida consistente en un aceite crudo sintético y que debería ser adecuado como materia prima en una refinería. La fracción no condensable creada durante la pirólisis suele usarse para alimentar el proceso de calor y los excesos, si los hubiera, se combustionan.

• **Hidrogenación**: la hidrogenación es un tratamiento con hidrógeno a altas temperaturas y con presión (presión superior a 100 atmósferas), el cual produce gases y aceites que son más puros que los procedentes de la pirólisis y que pueden ser utilizados en refinerías.

• **Gasificación**: en la gasificación tiene lugar la oxidación parcial de los plásticos usando altas temperaturas (mayores que en el caso de la pirólisis) en una atmósfera controlada de oxígeno. El resultado es un gas de síntesis (mezcla de monóxido de carbono e hidrógeno) que puede utilizarse como combustible para la generación de electricidad, materia prima para la fabricación de metanol y amoniaco, como agente reductor para la producción de acero en altos hornos o como combustible. En esta última aplicación compite con la valorización energética de los plásticos, pero ofrece algunas ventajas como el poder controlar el proceso de gasificación y prevenir las emisiones de la atmósfera. Si los gases están separados, el monóxido de carbono y el hidrógeno son apreciados como productos químicos intermedios, los cuales pueden tener entre dos y tres veces el valor como combustible de la mezcla.

Otra de las posibles clasificaciones de la gran variedad de procesos utilizables atiende al uso, o no, de agentes catalíticos. Los procesos meramente térmicos, que no emplean catalizador, tales como el cracking térmico, la pirólisis y la termólisis, se llevan a cabo, con o sin adición de oxígeno, a temperaturas de operación entre 400-800 °C bajo presión reducida o en atmósfera inerte, generalmente en un lecho fluidizado de arena. Para el aprovechamiento de los residuos plásticos también se pueden utilizar procesos catalíticos de refino tales como el cracking catalítico, hidrocracking o la hidrogenación. Los tratamientos en presencia de hidrógeno son, por el momento, los que parecen más desarrollados. En los procesos de cracking o hidrocracking catalítico, la transformación de los residuos tiene lugar en presencia de zeolitas, aluminosilicatos o catalizadores superácidos, originando como productos fracciones de hidrocarburos de diferente composición y uso. En el hidrocracking el cracking y la hidrogenación son complementarios, siendo la primera una reacción endotérmica y la segunda una reacción exotérmica. El excedente de calor que suele darse se controla mediante el uso de hidrógeno frío. Este hidrotratamiento puede separar muchos heteroátomos.

Las tecnologías de reciclado químico suelen generar cantidades relativamente pequeñas de residuos. Se generan algunas escorias de los materiales inertes presentes en los desechos.
plásticos y en las costras de lodo remanentes del tratamiento de las aguas residuales. Para algunos procesos existen criterios de aceptación concretos en relación con el contenido en cenizas del desecho con miras a reducir la generación de escorias. Los metales pesados presentes en los desechos plásticos, como los que se utilizan en los estabilizantes del PVC, terminan en la corriente de desechos [17].

![Diagrama de reciclaje terciario](image.png)

Fig.8.2.1.2.1. Reciclaje terciario

8.2.1.3. Recuperación energética.

La valorización energética es otro tipo de tratamiento térmico que se realiza a los plásticos muy degradados. Es una variante de la incineración, en la que la energía asociada al proceso de combustión es recuperada con fines energéticos. La valoración energética representa un proceso de recuperación de energía y las plantas donde se realiza se asemejan a una central térmica.

Los plásticos que no se pueden reciclar mecánicamente o químicamente todavía tienen un valor calorífico y se ha demostrado que se puede utilizar como combustible alternativo en procesos industriales y, finalmente como combustible en plantas térmicas con recuperación de energía, debidamente equipadas y mantenidas. De esta manera se reduce el volumen de residuos sólidos y se realiza una valorización energética. Los plásticos en general no son válidos para permanecer en vertederos porque contienen una gran cantidad de energía potencial.

La capacidad calorífica de los plásticos hidrocarbonados es comparable a la de los combustibles derivados del petróleo. Sin embargo la presencia de heteroátomos en las cadenas poliméricas disminuye la capacidad calorífica de las mismas. En el caso, por ejemplo del PVC queda reducida al 50% frente al valor que presentan las poliolefinas.
Una combustión a alta temperatura constante recuperará el máximo de energía del combustible y garantizará el fraccionamiento total de los compuestos orgánicos tóxicos. El método más eficaz de recuperación de energía (hasta el 85%) es la incineración de los desechos hasta producir vapor a alta presión para la generación de electricidad, vapor a baja presión para uso industrial y agua caliente para la calefacción de los hogares.

Se está ensayando el uso de residuos plásticos mezclados en tanto como hidrocarburos, aprovechando su poder reductor debido al contenido de hidrógeno, en plantas existentes dentro del sector del hierro y del acero, donde las propiedades químicas reductoras de los desechos plásticos se utilizan como complemento del coque en hornos siderúrgicos. Las posibilidades de utilización de desechos plásticos en hornos siderúrgicos quedan demostradas en las 100.000 toneladas que se utilizaron en esos procesos en Alemania en 1996. Su consecución ha requerido el desarrollo de sistemas de acondicionamiento, tratamiento y texturización de los residuos, la determinación del comportamiento de los mismos en el horno y de la calidad de los productos resultantes y el análisis de ciclo de vida. Los resultados de los ensayos han demostrado que esta opción es técnica y medioambientalmente favorable [18].

El papel que desempeñan los polímeros clorados en la formación de dioxinas en los incineradores de desechos ha sido tema de controversias. Se ha demostrado que la extracción de polímeros clorados de una mezcla de desechos no reduce proporcionalmente la formación de dioxina y que, incluso si se extrajera todo el PVC de la mezcla de desechos, el cloro remanente bastaría para formar dioxinas a niveles que hacen necesario el tratamiento de los gases de la combustión [19].

La incineración de desechos plásticos que contienen BFR (pirorretardantes bromados) es motivo de especial preocupación. Una de las principales razones de la controversia que actualmente rodea a los BFR es la posible formación de dioxinas y furanos durante la combustión tanto de los propios BFR como de los materiales que los contienen.

Dadas las limitaciones con las que se encuentra el reciclaje de plástico en general, se cree que la recuperación energética debe ser considerada como una opción complementaria. El uso de incineraciones cuidadosamente controladas para convertir los desechos post-consumo en energía aprovechable se practica en diversos países europeos como Alemania, Suecia, Suiza y Dinamarca donde estas técnicas son practicadas para suministrar a las comunidades locales electricidad y calefacción. Hasta un 10% de los requisitos de electricidad doméstica pueden ser generados por estas unidades y cada vez está siendo más considerada como una opción de recuperación aceptable.

8.2.2. Recuperación de catalizadores

La normativa de Seguridad e Higiene en los EEUU exige que los convertidores catalíticos sean extraídos después de su uso, mientras que en la UE la Directiva sobre los VFUs requiere también la extracción de los catalizadores para que sean sometidos a un proceso de reciclado.
De hecho, la necesidad de extraer los Metales del Grupo del Platino (MGP) de los catalizadores de los vehículos al final de su vida útil ha dado lugar a toda una nueva industria, que puede incrementarse con el incesante aumento de la presencia de catalizadores en vehículos de dos ruedas.

Los catalizadores de los automóviles son elementos perfectamente recuperables. En este proyecto, se considera la posibilidad de reciclado de los catalizadores de motocicletas. El interés de recuperar estos elementos es evidente por varios motivos:

- La cantidad de productos naturales, tales como los metales preciosos, disponibles en la naturaleza es limitada.

- La recuperación de los metales preciosos supone un ahorro económico debido sobretodo a su elevado valor en el mercado. Por lo tanto, es importante que no acaben en vertedero ya que pueden suponer una nueva fuente de ingresos.

- La posibilidad de que el acero se incorpore de nuevo en el ciclo de fabricación del substrato base.

El guardabarros compuesto básicamente de polipropileno puede representar algo más del 0,46% del peso de una MFU (un 3,20% del 15% de la motocicleta que actualmente no se recicla).

En el estudio no se pretende demostrar la viabilidad del reciclado de polipropileno. Es objeto del mismo el analizar las alternativas que se presentan, identificando puntos clave, y analizando los diferentes escenarios representativos de lo que podría ser el sistema logístico del reciclado del polipropileno procedente del guardabarros.

9.1. Propuesta del proceso de reciclado.

El proceso propuesto es el siguiente:

- **Separación**: se tendrá que realizar en los CATs con las herramientas adecuadas para que la operación sea rápida. El objetivo es obtener el material y por lo tanto no importa que el elemento se dañe en el proceso. Será importante obtener el material con el menor número de elementos extraños posibles.

- **Almacenamiento**: en estas mismas instalaciones se deberá disponer de un lugar expresamente dedicado al almacenaje de estos componentes, donde se almacenen para su posterior traslado al lugar donde se vaya a llevar a cabo su molido.

- **Molido**: en caso de que se decida que esta etapa es necesaria, bien para aumentar la eficiencia del transporte, bien como preparación para el proceso de lavado, se podrán utilizar los distintos métodos de trituración existentes.

- **Lavado**: el proceso de lavado minimizará los elementos externos que podrían influir negativamente en el reciclado.

- **Reciclado**: en este punto se pueden seguir varios caminos. Uno de ellos sería llevar el material obtenido a una planta, donde tras los procesos de extrusión y corte, se obtendría materia prima. Posteriormente, ésta pueda ser utilizada junto con materia virgen en la fabricación de algún producto, generalmente mediante un proceso de inyección en molde.

La clave para la generación de reciclados con unas buenas propiedades y por tanto un buen comportamiento a partir de diversos materiales usados en la motocicleta es la identificación explícita y la separación específica de cada tipo de plástico. Sin este pre-tratamiento, el reciclado sólo podrá usarse para aplicaciones de baja calidad y por tanto en mercados muy limitados. Los productos fabricados a partir de plásticos reciclados no suelen conseguir el
comportamiento técnico del material virgen. Para extender su uso, la mayor parte de las veces se mezclan con material virgen.

La Asociación Europea de Productores de Plástico (APME) ha publicado un estudio sobre la recuperación de materiales plásticos al final del ciclo de vida de los vehículos. Con el fin de evaluar las diferencias entre las opciones de recuperación, dicho estudio analiza y compara la ecoeficiencia de seis modalidades diferentes de gestión de residuos (reciclado mecánico, recuperación energética en altos hornos y fábricas de cemento, producción de gas sintético, incineración y vertederos) en siete componentes hechos a partir de diferentes tipos de plástico y que representan diferentes tamaños y pesos diferentes (parachoques, espuma de asientos, colectores de admisión, depósito del líquido limpiador, conductos de aire, faros y carcasas de retrovisores) [20].

Así se ha podido conocer cuales son las mejores opciones de reciclaje para cada uno de estos componentes, tanto desde el punto de vista medioambiental como económico.

Las conclusiones principales del estudio han sido las siguientes:

- El reciclado mecánico es el método seleccionado principalmente para componentes monomaterial, grandes y accesibles, suponiendo que no existe un deterioro significativo del material y la existencia de suficiente mercado para su reutilización.

- Para la mayoría de los componentes estudiados, el reciclado mecánico y la recuperación energética son los métodos más idóneos desde el punto de vista medioambiental y económico.

- Analizando todo el ciclo de vida de los componentes se demuestra que la fase de uso es la que contribuye a la mejora del impacto medioambiental. Por ello es más importante centrarse en la optimización de las piezas para esta fase que en la fase final del ciclo de vida.

- Los vertederos representan la opción de gestión de residuos menos ecoeficiente de todas las estudiadas.

El pre-tratamiento para el reciclado mecánico requiere el desmantelamiento de las piezas de plástico. Al contrario de otras opciones de recuperación, tanto el desmantelamiento como el pre-tratamiento son indispensables y constituyen los pasos del proceso que intensifican considerablemente el precio. La opción de reciclado mecánico muestra un comportamiento medioambiental más idóneo que la mayor parte del resto de las opciones, pero está asociada con un incremento considerable de los costes. El parámetro con mayor influencia sobre la ecoeficiencia del reciclado mecánico es el coste, especialmente el coste de desmantelamiento. Otros costes, principalmente los de procesado, son también importantes pero no existe una variación drástica. Es por todo esto que el reciclado mecánico sólo puede
competir con otras tecnologías de recuperación en el caso de piezas monomateriales grandes y fácilmente accesibles.

Las piezas grandes como los guardabarros de polipropileno son fáciles de desmontar y de procesar y por tanto ofrecen un buen comportamiento respecto al reciclado mecánico.

9.2. Estudio del sistema logístico del reciclado del guardabarros.

En este apartado se trata la cadena logística propuesta desde que un guardabarros todavía está en la motocicleta esperando ser desmontado hasta que se obtiene una granza con unas especificaciones determinadas, que podrá utilizar como materia prima un fabricante de plástico.

Para estudiar el sistema logístico del reciclado del guardabarros de motocicleta es necesario un análisis de cada una de sus partes y de todo el conjunto.

Los agentes y actividades que pueden intervenir en el sistema logístico del reciclado del guardabarros de polipropileno se presentan en la siguiente figura:
Además de las alternativas tecnológicas que se exponen para el reciclado de guardabarros de polipropileno, cada una de ellas presentará a su vez características diferentes debido a que la realización de actividades podrá ser llevada a cabo por distintos agentes o, lo que es más importante, en distintos lugares geográficos. Esto da lugar a una gran diversidad de alternativas, entre las que se trata de identificar las más relevantes.

El proceso que pueden seguir los guardabarros para su reciclado se puede resumir en las siguientes fases generales:

1. Generación de guardabarros inservibles.
2. Recogida.
3. Trituración y molido.
4. Lavado: para tratar de eliminar componentes distintos del polipropileno.

Fig.9.2.1. Sistema logístico del reciclado del guardabarros
5. Extrusión: obtención de una granza que sea utilizable como materia prima por fabricantes de productos plásticos.

Esta sucesión de procesos es válida para todos los casos, de forma que cualquier guardabarros reciclado pasaría por estas fases. No obstante, cada una de las fases admite muchas variantes, lo que configura una amplia gama de escenarios posibles de reciclado.

9.2.1. Generación de guardabarros

En cuanto a su origen, se pueden identificar para el reciclado dos tipos de guardabarros:

- los procedentes de MFUs;
- los procedentes de las reposiciones de guardabarros que se hacen a lo largo de la vida útil del automóvil.

Los primeros procederán de desguaces y los segundos de talleres.

Los guardabarros procedentes de desguace lo hacen de MFU, que a su vez pueden proceder de cuatro tipos de origen diferentes:

- particulares: el propietario de la motocicleta la da de baja y la lleva a uno de los desguace de motocicletas existentes o a un CAT;
- compañías de seguros: los vehículos accidentados que ya no son susceptibles de reparación;
- ayuntamientos: que recogen motocicletas abandonadas en la vía pública.

Las actividades asociadas a los guardabarros, tanto para el caso de un taller como de un desguace son: el desmontaje, la “limpieza” (eliminación de componentes perniciosos para el reciclado), la manipulación, el almacenaje y la recogida.

9.2.2. Separación, limpieza, almacenamiento y recogida.

Las actividades relativas a guardabarros en talleres tienen un carácter diferente al caso de los desguaces (por ejemplo, no se “limpián” los guardabarros).

TALLERES

1. Separación o desmontaje.

Los guardabarros serán extraídos como parte de la actividad natural del taller. Así pues, en los talleres el desmontaje de los guardabarros no constituirá una actividad añadida, sino que, por el funcionamiento normal del taller se van generando residuos entre, los que están los
guardabarros, cuya extracción se debe realizar como parte de la reparación.

2. Transporte interno y almacenamiento.

Cada guardabarros extraído será almacenado en contenedor. Pueden existir diferentes contenedores para los principales flujos extraídos. Para llevarlo hasta allí, en la mayoría de los concesionarios se hará manualmente. Dentro de los contenedores los guardabarros se depositarán a granel.

Es importante que los operarios distingan entre los distintos tipos de guardabarros por su composición. Por consiguiente, solo los guardabarros de polipropileno deben ir al contenedor y los demás deben ser depositados en otros contenedores correspondientes a su tipo de material. Estos guardabarros se almacenan una vez han sido extraídas sujeciones, tornillos, etc.

3. Recogida.

La recogida de los contenedores guardabarros se hará mediante camiones preparados para tal fin, de manera que incluso el mismo conductor podría manipular el contenedor y cargarlo en el camión. El uso de contenedores supondrá una pérdida de espacio útil en el camión pero facilita su carga y descarga. En el transporte de contenedores con guardabarros, lo indicado sería que el camión que se llevara los guardabarros fuera el mismo que trae los recambios al taller, de forma que se aproveche el viaje.

DESGUACES

En lo referente a las actividades que se pueden llevar a cabo en un desguace de motocicletas o un CAT para el reciclado de guardabarros, se consideran como más relevantes las siguientes:

1. Selección de guardabarros a extraer.

Los guardabarros de metal (procedentes de motos antiguas) no se pueden integrar en el sistema de reciclado en estudio y son identificables a simple vista. Los guardabarros formados por otros plásticos serían fáciles de separar con la simple observación del número del pictograma indicativo del tipo de material. Al PP le corresponderá el número 5. Pero desafortunadamente las piezas no siempre llegarán en un estado óptimo para que estas inscripciones se aprecien con claridad, de manera que deberían ser sometidas a un proceso identificativo.

2. Extracción de guardabarros.

Para el reciclado no interesa específicamente la pieza en sí, sino el material, por lo que no es relevante si está roto, rayado o cualquier percance que haya podido sufrir. Por tanto los métodos de extracción serán los más adecuados para que se produzca de la manera más rápida posible, al margen del daño que puedan sufrir.
3. Clasificación de guardabarros.

Esta actividad puede realizarse en diversas ocasiones, a continuación de las siguientes actividades, clasificando los guardabarros según el resultado de estas operaciones (grado de “limpieza” o presencia de componentes, agrupamiento de los guardabarros, forma de almacenaje).

Se realizarán las actividades necesarias para eliminar componentes que entorpecen, o incluso impiden, el reciclado del guardabarros: tornillos, anclajes, catadiópticos, etc.

5. Almacenaje de guardabarros.

Agrupación en paquetes que no se disgreguen en la manipulación ni en el transporte. Podría plantearse también el uso de contenedores, menos eficientes desde el punto de vista del transporte.

Se recomienda la dedicación de un área específica para el almacenaje de guardabarros. El almacenaje debe ser selectivo en función de las clasificaciones que se hayan realizado, ya que, de otro modo, se pierde la utilidad de tales actividades de clasificación. Es ésta una constante que se debe reproducir a lo largo de todo el sistema logístico del reciclado de guardabarros: si se realiza una clasificación, debe ser porque los objetos clasificados tienen tratamientos idóneos diferentes y tiene que ser respetada en actividades subsiguientes.

6. Recogida de guardabarros.

Un aspecto importante del transporte de guardabarros es su gran volumen comparado con su peso o, más exactamente, su baja densidad para el transporte. Se efectuará la recogida de contenedores o de los paquetes creados, mediante camiones equipados.

Los desguaces son instalaciones que se dedican íntimamente a la reutilización, que supone vertidos que se dejan de hacer, y contribuyen al objetivo de minimizar las partes de la motocicleta que terminan en vertedero. Estos guardabarros susceptibles de ser vendidos no entran, por tanto, en el proceso de reciclado que se está estudiando, dado que esta reutilización de los guardabarros es mucho más rentable que el reciclado. Por esta razón, a diferencia de lo que ocurre en los talleres, en los desguaces la extracción de guardabarros para el reciclado sí es una actividad añadida.

9.2.3. Reciclado de guardabarros.

Una premisa a observar permanentemente en este sistema logístico es que, debido a la baja relación valor/peso del material y a su baja densidad, se debe pretender compactar al máximo para el transporte. Esta compactación se consigue mediante cizallado, fragmentación,
trituración o molido, lo que recomienda acercar lo más posible estas actividades a las fuentes de guardabarros.

Pero es preciso considerar que, además de las alternativas tecnológicas que se manifiestan para el reciclado de guardabarros de polipropileno, cada una de ellas presenta a su vez características diferentes debido a que la realización de actividades puede ser llevada a cabo por diversos agentes o, lo que es más importante, en distintos lugares geográficos. Así, por ejemplo, el molido de guardabarros puede ser efectuado por un recuperador o fragmentador, un agente específico para esta tarea, un reciclador que realice además el lavado, un reciclador que además realice la extrusión, o, incluso un fabricante de productos de polipropileno.

En la figura siguiente se incluyen las principales actividades que se pueden desarrollar desde que los guardabarros salen de un desguace o taller hasta que se obtiene materia prima para fabricar productos plásticos, teniendo en cuenta que no todas ellas tienen porqué ser realizadas, y sin que la sucesión que se ha dispuesto para las mismas signifique el orden en que habrían de realizarse realmente.
En esta figura no se menciona explícitamente la actividad de transporte, puesto que se entiende que va a aparecer siempre entre la intervención de dos agentes diferentes, o incluso cuando un mismo agente utiliza dos instalaciones distantes geográficamente.

Los principales agentes implicados en esta parte del sistema logístico, una vez talleres y desguaces han finalizado sus tareas, son fundamentalmente de tres tipos:

- Fragmentadoras, que desempeñarán actividades de triturado y molido.
- Recicladores, que van a realizar procesos de extrusión, lavado, e incluso molido de material procedente de guardabarros.
- Transportistas, que van a desempeñar la tarea de llevar a cabo el flujo de materiales entre fragmentadores y recicladores, y otros agentes si los hubiese.

La necesidad de las distintas actividades y su realización mediante determinados medios van a
estar condicionadas por el estado en que se reciban los guardabarros de talleres y desguaces, que se puede sintetizar en tres tipos:

1. Guardabarros de polipropileno, sin ningún material extraño.
2. Guardabarros de polipropileno, con materiales extraños.
3. Guardabarros de polipropileno unidos a otras piezas.

En los dos últimos casos, por tanto, es necesaria otra actividad para facilitar la extracción de los materiales extraños y obtener unas condiciones adecuadas para el reciclado. Esta actividad de “limpieza”, junto con el resto, se describe a continuación:

- **“Limpieza”** o eliminación de componentes distintos del polipropileno, como tornillos y anclajes, catadiópticos de metacrilato u otras pequeñas piezas metálicas, no admisibles en ciertas formas de molido o incompatibles con el reciclado. Puede hacerse manualmente, en el cizallado, en la fragmentación o incluso en el lavado.

- **Clasificación o selección** del material, atendiendo a las características del mismo como consecuencia de la realización de cualquiera de las actividades que se están relacionando. Puede incluir la criba por composición, eliminando los de ABS, fibra de carbono, etc.

- **Fragmentación** de guardabarros en instalaciones convencionales con separación magnética. Gracias a su troceado en un molino de martillos, por ejemplo, el material obtenido se puede transportar más eficientemente que los guardabarros a granel. Con la separación magnética se eliminan componentes férricos. De esta forma se obtiene un material sin limitaciones respecto a la alimentación al molino.

- **Trituración** en equipos de menor precisión y que requieren condiciones menos exigentes para el material a triturar que los molinos de cuchillas convencionales. Facilitan una separación posterior de componentes con menos pérdidas y un transporte de material más eficiente (aumenta la densidad de transporte).

- **Separación** de material distinto del polipropileno. No es imprescindible realizarlo con el polietileno, ya que, aunque la presencia de este material disminuye el rendimiento del reciclado, no lo imposibilita. Puede ser realizada mediante diferentes procedimientos tanto manuales como automáticos, dependiendo del estado del material cuando llega de las fuentes y del tipo de componentes.

- **Molido** de polipropileno en diferentes presentaciones, para obtener una granza de unos 10 mm. de tamaño aproximadamente, lista para ser lavada y extrusionada por un reciclador. Existe una gran variedad de molinos según su tecnología de corte, potencia, movilidad, etc. que permiten triturar diversos tipos de material y cuya alimentación se
puede hacer de distintas formas, lo que conducirá a diferentes resultados.

- **Extrusión.** Método de conformación de termoplásticos en el cual se inyecta la resina termoplástico dentro de un cilindro calentado y al plástico fundido se le fuerza a pasar, mediante un tornillo giratorio a través de una abertura (o aberturas) que conduce a una matriz preparada adecuadamente para obtener configuraciones continuas. Después de su salida de la matriz, la pieza extruida debe enfriarse por debajo de su temperatura de transición vítrea para asegurar una estabilidad dimensional. El enfriamiento se realiza normalmente mediante un sistema de agua o de chorro de aire.

En general, el material que se obtenga va a depender del estado en origen de los guardabarros y de los procesos a los que se haya sometido.

Tomando como material obtenible el enviado al reciclador, si éste se hace cargo del molido, puede recibir una gran diversidad de tipos de materiales, de los que se relacionan una muestra representativa:

- Guardabarros de polipropileno “limpios”.
- Trozos (de cizallado) de polipropileno “limpios”.
- Triturado (p.ej. de molino desgarrador) de polipropileno “limpio”.
- Triturado (p.ej. de molino desgarrador) de polipropileno y otros componentes de estos guardabarros.
- Triturado (p.ej. de molino desgarrador) de polipropileno con carga de fibra de vidrio y con otros componentes.

Si el reciclador realiza únicamente el lavado y la extrusión, puede recibir:

- Granza sólo de polipropileno “limpio”.
- Granza de polipropileno y polietileno “limpio”.
- Granza de polipropileno “limpio”.
- Granza de polipropileno y polietileno “limpio”, con carga de ABS o fibra de carbono u otros componentes.
- Granza de polipropileno con carga de ABS, fibra de carbono u otros componentes.
9.3. Reciclado mecánico de Guardabarros

9.3.1. Materia prima de los guardabarros.

El polipropileno (PP) es una resina plástica que proviene de un hidrocarburo simple (propileno) formado por cadenas compuestas por átomos de hidrógeno y carbono y enlaces dobles. Sus propiedades físicas y mecánicas y su comportamiento en procesado dependen básicamente de su peso molecular y de la distribución del mismo, así como de la longitud y el número de ramificaciones. Una ventaja importante que ofrece el reciclado de las resinas poliolefínicas como el polipropileno es que se pueden separar del resto de los plásticos por densidad.

Su código de clasificación en el reciclaje es el 5 y la mayoría de él que se encuentra en el post-consumo está sin degradarse debido a que el PP rara vez es utilizado en sus límites de diseño. Su degradación no va relacionada con el tiempo que el material se encuentra expuesto siempre y cuando los estabilizadores se encuentren trabajando. En la mayoría de sus usos correspondientes a pared delgada, el estado del material casi se puede igualar al virgen.

Su punto de fusión se encuentra entre 165 a 177°C, siendo posible someter a este material a temperaturas de 120°C sin que se produzcan deformaciones. El PP ofrece una buena resistencia química a la humedad y al calor, baja densidad (0.900-0.910 g/cm³), buena dureza superficial y estabilidad dimensional. El PP posee una flexibilidad notable, lo que aconseja su uso en productos que requieran ser articulados. Debido al bajo precio del monómero, se trata de un material termoplástico comercialmente muy competitivo.

El propileno puede convertirse en polímeros de distintas propiedades si se varían las condiciones de fabricación (presión y temperatura) y, sobretodo, si se recurre a catalizadores muy específicos. Otra posibilidad de modificación del PP son la copolimerización, la mezcla con otros polímeros, la adición de materiales de relleno y refuerzo, o de otros aditivos; o bien, la reacción efectuada sobre el polímero ya terminado, por ejemplo la cloración que proporciona el PP clorado (PP-C).

El PP homopolímero está constituido por cadenas de PP compuestas de unidades sencillas repetidas. Es el más común de los polipropilenos y en Europa abarca más del 70% del mercado. Posee alta resistencia a alta temperaturas, buena resistencia a ácidos y bases por debajo de los 80°C, buena elongación y resistencia a la tensión, y existen pocos solventes que lo disuelvan a temperatura ambiente. A temperaturas bajas se vuelve quebradizo. Se utilizan ampliamente como materiales de protección y refuerzo en el transporte de mercancías. Se utilizan en la fabricación de sacos y se emplean directamente como bolsas y sobreenvolturas para mercancías blandas, debido a su lustre, satinado y buena tenacidad. En embalaje se utiliza también para precintar cajas y contenedores. También se aplican a la fabricación de película debido a las propiedades de resistencia a la tensión que brinda su fácil orientación.
Los copolímeros consisten en cadenas de PP compuestas de dos o más unidades químicas diferentes y repetidas, las cuales están en secuencias distintas y una de las cuales será propileno. Según como estén ordenados estos monómeros, se puede diferenciar entre copolímeros: al azar, alternados, en bloque y de injerto. Presenta una excelente resistencia a bajas temperaturas y es más flexible que el homopolímero, su resistencia al impacto es mayor, éste abarca el 25% del mercado del PP. Son dignos de mención los copolímeros de PP con otras olefinas, sobre todo con etileno que arrojan una cantidad próxima al 25% de la producción. Cuando aumenta el porcentaje de PE dentro del copolímero, disminuyen la cristalinidad, la rigidez y fragilidad y aumentan la flexibilidad, la resistencia al impacto y la elasticidad del plástico. En el comercio se encuentran copolímeros estadísticos con un porcentaje de etileno del 1-4 %, copolímeros de injerto o de bloque con un 5-30 % y los copolímeros etileno/propileno (EPM) con mayores porcentajes de etileno, que ya se consideran cauchos. También son muy elásticos los copolímeros de etileno/propileno-dieno (EPDM) que, gracias al dieno que incorporan (normalmente el 1,4-hexanodieno son susceptibles de la reticulación posterior [21][22][23].

En general homopolímeros y copolímeros tienen características similares, la principal diferencia reside en el mejor comportamiento a impacto del PP copolímero frente al mejor comportamiento del PP homopolímero a alta temperatura. El copolímero se usa pues, como alternativa al homopolímero cuando se precisa una mayor resistencia al impacto, más rigidez y cuando su aplicación se desarrollará a bajas temperaturas. Gracias a su buen índice de fluidez se utiliza en molduras, tableros y acumuladores de automóviles.

En el caso del guardabarros utilizado como modelo o de cualquiera de los otros componentes de PP evaluados, el material utilizado es un copolímero de impacto de propileno y etileno, concretamente Moplen EP300K de la empresa Basell.

La mayoría del reciclaje que se da en el PP tiene lugar en las mismas líneas de producción donde el material es molido y vuelto a colocar en el proceso, de hecho la mayor parte de los procesos que involucran inyección implican un agregado de material reciclado producto de las mismas líneas.

Los problemas que se encuentran en el reciclaje del polipropileno están en la dificultad que existe al intentar mantener consistente la calidad en las mezclas de homopolímeros, la variedad en estos produce variaciones cuando éste fluye durante el proceso de inyección. Cuando el polímero está altamente adicionado con aditivos, la consecuencia en las variaciones de fluidez así como de miscibilidad con otros tipos de PP es peor, esto se complica si se le suma que la fluidez de cada tipo de resina va relacionada con el proceso para el que fue creada, de modo que la fluidez de un material de inyección es distinta de la utilizada para un material de extrusión y ésta a su vez distinta de la de un material de soplado, etc. En cuanto a mezclas con PE, la cantidad máxima permisible de material diferente del PP a usar no debe rebasar el 10% y debido a que tiene una densidad muy similar a la del polietileno de baja densidad, se deben
utilizar procesos más complejos en su separación, como son los electrostáticos. El mayor problema del reciclaje de este polímero es su separación. Para obtener un producto de calidad similar a la de la resina virgen, es necesario separar el PP de los demás plásticos, separándolo por: aplicación, grado y tipo de producción. El gasto que supone este exhaustivo proceso de separado hace que muchas veces no sea rentable económicamente reciclar el producto frente a producirlo virgen. El reciclado del PP se da en proceso de extrusión y repeletizado, en una mezcla con resina virgen en proporciones menores al 30%. Adicionalmente hay que tomar en cuenta que el grado más común en el que se da el reciclaje de éste es en tonalidades negras y grisáceas.

Debido a la necesidad de encontrar mercados para el reciclaje del PP se están tratando de investigar métodos en los que su utilización pueda ser rentable. Este problema se reduce ligeramente mezclando el PP recuperado con material virgen. En la medida que se pueda asegurar la calidad del PP reciclado, se podrá también generar un mercado en que se sustente su recolección y reciclaje. La mayor cantidad de PP reciclado se da en el sector de la automoción debido a la cantidad y consistencia que ofrece éste y a las nuevas normativas surgidas en torno al tema de los VFU’s. No se utiliza demasiado en la industria del envasado y el empaquetamiento debido a las exigencias de ésta. Sin embargo si que su uso está extendido en el mundo de la motocicleta, en algunas partes de los electrodomésticos, en jardinería y en general en piezas de inyección que no requieran propiedades significativas. No se considera apto para piezas inyectadas de pared delgada, para juguetes, tubos, productos de moldeo por soplando, artículos del hogar y en general productos que requieran un buen acabado superficial.

9.3.2. Posibles métodos de separación

No todos los métodos de separación e identificación existentes pueden ser aplicados a los plásticos procedentes de las MFU’s debido a varias razones:

- Existen una gran variedad de formas y tamaños, lo cual implica una mayor dificultad a la hora de la identificación del plástico. Por ejemplo si debemos utilizar una sonda la orientación de la superficie y la distancia a la superficie con respecto a la sonda puede cambiar significativamente con cada componente.

- El espesor de pared medio de los componentes suele ser elevado. Por otra parte dichos componentes suelen ser opacos y a menudo contienen negro de carbono. El mayor espesor de las paredes y la opacidad, hace que la transmisión de energía a través del componente sea mucho más complicada. En especial el negro de carbono absorbe la radiación utilizada en las técnicas espectroscópicas de identificación tradicionales, haciendo más difícil la obtención de información del polímero base. Tampoco podrían utilizarse en este caso aquellas técnicas que consisten en el simple hecho de observar el grado de transmisión de la luz a través de la muestra.

- En los componentes plásticos de las motocicletas son usados con bastante frecuencia
los recubrimientos, tanto por razones decorativas como funcionales. Algunos de ellos, especialmente los metálicos, interfieren también en la mayoría de las técnicas de análisis.

- En los plásticos se encuentran presentes muchos tipos de rellenos, refuerzos y combinaciones de aditivos que aportan todo un abanico de propiedades estéticas o funcionales. Esto significa que la identificación y el sistema de separación han de ser capaces de acomodar una diversidad de materiales mucho mayor que en el caso de otros objetos a reciclar.

Incluso si la pieza de plástico ha sido identificada para determinar el plástico primario con el cual ha sido fabricada, y clasificada en el grupo de piezas hechas de ese plástico, antes de la reducción de tamaño, en la mayoría de los casos se encontrarán diferentes tipos de materiales mezclados ya que prácticamente todas las piezas plásticas utilizadas en la construcción de motocicletas tienen alguna pieza de otro material sujeta a ellas. Por este motivo se procederá a una fragmentación que sea suficiente para liberar la mayoría de los diferentes materiales del plástico base, obteniendo como resultado una mezcla de pequeños trozos de diversos materiales que pueden incluir:

- El plástico primario que suele ser el material mayoritario
- Metales férricos
- Metales no férricos
- Papel, film de plástico propio de calcas y otros materiales de etiquetado
- Espumas
- Tejidos
- Cables y alambres
- Cauchos
- Otros plásticos
- Otros materiales

Estos materiales extraños deberán ser separados de los materiales base que se quieren recuperar y clasificados en flujos de material lo más puros posibles para conseguir también su reciclado. Para obtener estas separaciones se han desarrollado diversas tecnologías por parte de la industria del plástico, fabricantes de equipos, empresarios, etc.
9.3.2.1. Separación de pinturas y recubrimientos.

La pintura y los recubrimientos se usan frecuentemente en los plásticos de las motocicletas tanto por motivos funcionales como decorativos. Ambos representan un reto a la hora de identificar los plásticos para su posterior reciclaje. El hecho de no extraer estos recubrimientos podría causar una reducción de las propiedades en los plásticos reciclados que va desde la concentración de tensiones creada por las partículas del recubrimiento a la degradación del recubrimiento y la degradación química resultante del plástico durante su reprocesamiento. El nivel de la reducción potencial de propiedades depende de la combinación del tipo de substrato plástico, el tipo de recubrimiento y el espesor de dicho recubrimiento. Los residuos de pintura y recubrimientos pueden afectar también al aspecto y a las características superficiales del producto reciclado.

Así pues, la mejor opción será la retirada de pintura y de posibles recubrimientos de las piezas plásticas con el fin de conseguir las mejores propiedades mecánicas del material reciclado. No obstante, existen informes de una buena retención de las propiedades para algunas combinaciones recubrimiento/substrato bien compatibilizadas. La decisión de eliminar o compatibilizar el recubrimiento depende de la naturaleza del recubrimiento y de su interacción con el substrato.

Si tenemos en cuenta la gran variedad de polímeros existentes y esto lo multiplicamos por todos los posibles recubrimientos, el número de combinaciones diferentes recubrimiento/substrato sería sorprendentemente elevado. Es por tanto muy improbable encontrar una única técnica que sea óptima para todas las combinaciones.

El cromado de algunos plásticos ha sido recuperado durante años con un simple triturado, asistido en ocasiones por métodos criogénicos (para conseguir el proceso de liberación y prevenir que el cromado quede incrustado en el granulado plástico). Este método ha sido muy utilizado debido al valor del cromo y su fácil separación del plástico, usando imanes potentes, ya que algunos de los materiales que forman parte del cromado son ligeramente magnéticos.

Respecto a la pintura, el triturado fino de la mayoría de los plásticos puede conseguir una cantidad considerable de liberación, pero la completa separación de la pintura del plástico base es más complicada si no imposible.

La industria aerospacial ha desarrollado numerosas técnicas abrasivas para la eliminación de las pinturas en respuesta a los problemas medioambientales relacionados con los métodos que utilizaban disolventes. Estas técnicas, sin embargo, son más aplicables sobre piezas grandes y fácilmente desmontables que se manipulan manualmente. Algunas técnicas abrasivas continuas y automatizadas han sido investigadas como parte de un proyecto del American Plastics Council (APC), usando grandes escamas de plásticos recubiertos con el fin de encontrar una técnica seca de extracción del recubrimiento, pero con ninguna de las probadas se han obtenido resultados del todo satisfactorios. Sin embargo, en los estudios realizados por
el APC y por otras organizaciones algunos métodos de base agua y alta temperatura se han mostrado prometedores para algunos recubrimientos y substratos, por lo que se continúa investigando en torno a ellos. Un ambiente acuoso a una alta temperatura puede hidrolizar algunos recubrimientos, pero los substratos plásticos pueden ser también susceptibles de degradación, por lo que las condiciones de procesado deben ser controladas cuidadosamente. En el caso, por ejemplo, de los parachoques poliolefinicos, Toyota ha demostrado que los recubrimientos pueden cambiar suficientemente utilizando un proceso acuoso a temperatura elevada para compatibilizarlos con el plástico, con lo que la eliminación de la pintura no es necesaria. Bajo estas condiciones el plástico olefinico no parece degradarse, sin embargo este tipo de plásticos en particular son menos susceptibles de sufrir una degradación hidrolítica que otros termoplásticos. La empresa American Commodities, por ejemplo, utiliza un proceso húmedo para la recuperación de plásticos pintados, mientras que su compañera alemana Wipag, usa un proceso de trituración en seco para la eliminación de la pintura de piezas plásticas como por ejemplo los parachoques de vehículos por abrasión mecánica [24].

En base a todo esto, se estima que la extracción de la pintura de guardabarros de polipropileno podrá realizarse mediante la introducción de técnicas abrasivas contínuas y automatizadas, ya que se trata de piezas grandes y fácilmente desmontables, lo cual provocará la obtención de buenos resultados.

9.3.2.2. Reducción de tamaño.

La mayoría de las piezas plásticas que se pueden encontrar en las motocicletas llevan incorporados otros materiales que pueden ser: metales férricos o no férricos en forma de tornillos, tuercas, pernos, clips, abrazaderas, etc.; etiquetas o calcas metálicas, de papel o plástico; espumas aislantes; cableado eléctrico; cauchos y plásticos mezclados; etc. Normalmente no es económicamente factible la extracción de todos estos objetos manualmente, por lo que deben ser separados de forma automatizada si se pretende llevar a cabo un reciclado del plástico.

Antes de esta separación automatizada, debe llevarse a cabo una reducción de tamaño y una liberación de los materiales contaminantes.

La reducción de tamaño debe ser lo suficientemente intensa y vigorosa para causar esta liberación de las piezas ajenas al plástico, o para crear partículas en las cuales estos materiales contaminantes representen la mayor parte del volumen de partícula de manera que sus características puedan ser usadas para provocar la separación. Además, muchas de las técnicas de separación requieren que las partículas sean uniformes en tamaño y forma para un correcto funcionamiento.

En resumen, este paso de la reducción de tamaño tiene tres propósitos fundamentales:

- Generación de partículas que puedan ser más fácilmente manejables que partes más
voluminosas.

- Generación de partículas de tamaño y forma uniforme que puedan ser separadas con efectividad en los procesos posteriores.

- Liberación de materiales diferentes del plástico base.

Los procesos de reducción de tamaño suelen llevarse a cabo mediante las fragmentadoras y las granuladoras estándar. Los plásticos que forman parte de los componentes de las MFUs, sin embargo, tienen algunas características que hacen que existan algunos desafíos:

- Estos plásticos adquieren una gran variedad de formas y suelen formar parte de objetos de tamaño mayor.

- Algunas piezas plásticas contienen cantidades significativas de metales que pueden dañar los equipos tradicionales de reducción de tamaño para plásticos, como por ejemplo las granuladoras.

- También existen a menudo, otros materiales unidos íntimamente al substrato plástico, de manera que se requiere una liberación agresiva.

- Las piezas son más gruesas y los materiales más fuertes, lo cual hace la reducción de tamaño más difícil.

La tradicional reducción de tamaño de los plásticos implica granuladoras de alta velocidad con pantallas o parrillas fijas para controlar así el tamaño de partícula. Las cuchillas de las granuladoras pueden verse impedidas o incluso pueden resultar dañadas por materiales de dureza elevada como la mayoría de los metales. En algunos casos, incluso, las cuchillas rotatorias de alta velocidad pueden fallar catastróficamente causando daños importantes sobre el equipo.

Algunos fabricantes de granuladoras han desarrollado cuchillas más robustas que pueden acomodar una contaminación metálica limitada, pero no el rango completo de metales encontrados en algunos casos.

Los detectores de metal pueden ser colocados en línea antes de la granulación, pero ésta no es una técnica efectiva para la eliminación de metales procedentes de flujos con un contenido significativo de metales porque los mecanismos pueden rechazar algunos de los plásticos cada vez que se detecta un metal.

Las fragmentadoras y los molinos de martillos se encuentran en el otro extremo del espectro de reducción de tamaño en el mundo del reciclaje. Estos son utilizados por los recicladores de metal para reducir el tamaño de objetos tales como automóviles completos, y electrodomésticos de gran tamaño y en general están diseñados para llevar a cabo reducciones bastas de...
tamaño. Las fragmentadoras de corte operan a bajas velocidades y consisten en cuchillas circulares opuestas y apiladas con ganchos o dedos sobre dos superficies rotativas que agarran y rasgan los materiales de una sola pasada. El molino de martillos, sin embargo opera a una velocidad mucho mayor y golpea el material hasta que éste es lo bastante pequeño como para pasar por huecos existentes en pantallas o parrillas que suelen estar fijadas por debajo de las unidades.

Ninguna de estas técnicas será viable como única operación de reducción de tamaño para las MFUs. Algunos estudios han demostrado que las granuladoras convencionales no podrían acomodar cantidades significativas de metales así como que las fragmentadoras estándar no son efectivas en la producción de tamaños de partícula controlados ni en la liberación de los materiales extraños. También se ha demostrado que los molinos de martillos son demasiado ruidosos y poco efectivos en el control del tamaño de partícula generando una gran cantidad de partículas finas así como una serie de contaminantes que quedan incrustados en los plásticos.

Sin embargo una combinación de estas técnicas usada con un equipo de extracción de metales podría ser la mejor opción para el control del tamaño y la liberación de materiales extraños.

Como resultado de una investigación llevada a cabo dentro de un proyecto del APC, se concluyó que existen algunos tipos de equipos que proporcionan la reducción de tamaño y la liberación de material necesarias para objetos plásticos de gran tamaño que pueden contener cantidades significativas de metales. Estos equipos serían: trituradoras de cuatro árboles, trituradoras de dos árboles modificadas y molinos rotatorios [24].

Las trituradoras de cuatro árboles son las más comunes en Europa y normalmente tienen una pantalla extraíble para el control del tamaño. Este tipo de trituradoras pueden, como una trituradora estándar, acomodar materiales con alto contenido en metales, pero el diseño de los cuatro árboles le confiere además más oportunidades de corte y una eficiente función de recirculación que hace que el material pase por las cuchillas en múltiples ocasiones hasta que pueda pasar a través de los agujeros de la pantalla tamizadora, creándose así partículas con las características de tamaño deseadas y una liberación de materiales extraños similar a la conseguida con las granuladoras, pero con la capacidad de acomodar grandes cantidades de materiales duros.

Algunos fabricantes de trituradoras de dos árboles después de darse cuenta de la necesidad de generar partículas de tamaño menor y más controlado para algunas aplicaciones, han desarrollado cuchillas más estrechas y pantallas fijas que pueden colocarse bajo la trituradora con el fin de que el material pase por diferentes ciclos de corte hasta que pueda pasar a través de los huecos de la pantalla.

En un primer momento los molinos rotatorios se desarrollaron para ser utilizados con madera. El diseño típico emplea numerosos dientes montados en un eje horizontal rotatorio. Estos dientes dan pequeños mordiscos al material que es empujado al eje rotatorio a través de un émbolo
deslizante. El émbolo suele estar equipado con un sensor de carga para mantener una presión uniforme en la interfaz de corte y para indicar cuando el émbolo debe retroceder para permitir el paso de material adicional que llene la zona de molido.

Estas unidades operan a velocidades comprendidas entre las de las granuladoras y las de las fragmentadoras de corte, y pueden poseer varias pantallas con un amplio rango de tamaños para el control del tamaño de partícula. Este tipo de equipos pueden acomodar piezas bastante grandes y cantidades de metal moderadas, pero nunca tan elevadas como en el caso de las fragmentadoras.

Una vez se ha extraído la mayor parte del metal de estos flujos, pueden utilizarse, para obtener así una liberación más exhaustiva, técnicas de reducción de tamaño más tradicionales, como la granulación y el molido. Estos pasos reductores adicionales son sólo necesarios para flujos que contienen materiales extraños adheridos fuertemente y que por tanto requieren liberaciones agresivas. Alternativamente, o adicionalmente, pueden usarse técnicas húmedas y criogénicas para conseguir dicha liberación.

9.3.2.3. **Extracción de los metales férricos.**

Los materiales una vez han pasado por la reducción de tamaño y la liberación han de pasar por algún tipo de operación de extracción de metales férricos, como podría ser un tambor rotatorio, una transportadora de polea o una cinta magnética que contengan un imán potente (que suele ser una tierra rara permanente). Este tipo de equipos se ha utilizado con efectividad durante muchos años y han demostrado su habilidad para extraer esencialmente todos los componentes férricos en este tipo de flujos. Con imanes más potentes se podrían incluso extraer algunos grados de aceros inoxidable, la mayoría de los cuales exhiben un carácter magnético demasiado pequeño.

9.3.2.4. **Extracción de los metales no férricos.**

A pesar de que muchos metales son de naturaleza férrica, algunos metales duros, como los aceros inoxidable de alto grado, no son capturados por la mayoría de los imanes. Incluso materiales más blandos, como el bronce, el cinc y las piezas de aluminio pueden causar daños irreparables en los equipos de procesado de plásticos y es por tanto necesaria su extracción. Se han investigado una gran cantidad de métodos para la eliminación de estos componentes metálicos no férricos, como:

- **Corriente inducida** (eddy current). Se encuentra muy extendida en los programas de recolección de residuos mezclados de post-consumo, para la extracción de latas de aluminio en las instalaciones de recuperación de material. Funciona bien para objetos metálicos no férricos (que no sean aceros inoxidable), particularmente de aluminio, que posean un elevado área superficial. Esto se debe a que el campo opuesto generado en este tipo de objetos es suficiente para que exista una repulsión entre ellos mismos y la
fuente de generación, que suele estar emplazada al final de la cinta transportadora.

- **Electrostáticos.** Se han usado durante muchos años para la recuperación de materiales conductores de la electricidad procedentes de diferentes flujos. Se aplica una carga estática a las partículas finas antes de pasarlas al tambor y se dejan caer libremente desde el tambor y por encima de un separador de cuchillas. Las partículas no conductoras retienen su carga durante más tiempo, cayendo eventualmente en otra zona de recogida. El proceso funciona bien para residuos de materiales conductores que se encuentran presentes en materiales no conductores, especialmente si se aplican múltiples pasos. Por ejemplo, las máquinas de cuatro pasos se utilizan para la extracción de tapones de aluminio de los flujos de botellas de plástico para bebidas. En las pruebas, esta técnica era útil para concentrar flujos de plásticos y metales, pero no era capaz de extraer totalmente el metal del flujo de este tipo de mercancías una vez trituradas.

- **Clasificación por aire.** Estos sistemas han sido evaluados por su capacidad de separar metales de plásticos basándose en la diferencia significativa de sus densidades. Son técnicas que están basadas en la diferencia de velocidades de las partículas en el aire, lo cual depende tanto de factores de forma como de sus densidades. Piezas metálicas delgadas y planas pueden mediante esta técnica recaer en fracciones ligeras formadas por trozos de plásticos. La clasificación por aire es ideal para producir el enriquecimiento de ambos flujos, el plástico y el metálico, pero no es útil para llevar cabo la extracción total del metal sin que se produzca una pérdida significativa de la cantidad de plástico. Es, sin embargo, una técnica utilizada muy efectivamente para extraer otros materiales extraños contaminantes. Las técnicas modernas utilizan equipos donde la fuerza del aire está más controlada. Se han evaluado multitud de clasificadores de aire para la extracción de las fracciones ligeras, que pueden contener materiales como espumas, films, materiales de etiquetado, partículas finas y sucias (incluyendo la propia suciedad). Todos estos equipos tienen, sin embargo, en común que el material queda sometido a una corriente de aire de velocidad controlada. Las fracciones ligeras y pesadas vendrán determinadas primariamente por la velocidad del flujo de aire, que puede ser ajustado mediante una simple obstrucción en el conducto del aire. Normalmente se ajusta en el punto donde los trozos de plástico rígido justo empiezan a parecer en la fracción ligera. Generalmente es preferible perder una pequeña cantidad de producto en un intento de extraer tantos materiales extraños como sea posible. Algunos experimentos han demostrado que la aplicación de pasos múltiples sobre este tipo de equipos pueden dar como resultado una mejor separación y un mejor grado de recuperación. Con un solo paso, normalmente no se consigue una separación completa ya que los materiales enredados entre ellos o atrapados físicamente los unos por los otros, debido a las cargas estáticas existentes. Esto ocurre especialmente con las espumas que tienden a mantener un nivel bastante elevado de cargas estáticas.
• **Técnicas de flotación-hundimiento.** Debido a que ninguna de las técnicas secas era completamente satisfactoria para la total extracción de metales, se comenzó una exploración de las técnicas húmedas. La metodología más simple consiste en hacer que el plástico flote de manera que pueda ser retirado fácilmente del metal usando baños de densidades. Pero esto requiere un medio de densidad bastante elevada, dependiendo de la densidad del plástico base.

• **Técnicas usadas en minería.** Se basan sólo en la densidad del agua. La separación tiene lugar sometiendo el material a una corriente de agua de velocidad controlada. En este método el material pasa a través de una serie de cámaras donde el agua se mueve en sentido ascendente y descendente con movimientos cíclicos. El utillaje contiene diafragmas de caucho que se mueven hacia dentro y hacia fuera mecánicamente. Estos movimientos hacia dentro y hacia fuera hacen que el nivel de agua que se encuentra dentro de la caja suba y baje, lo cual aumenta por turnos la fuerza del agua, provocando que aquellos materiales ligeramente más densos que el agua (como muchos plásticos) floten sobre los materiales mucho más densos que el agua como es el caso de los metales, alambres, cristales, etc. Tanto el valor como la amplitud de la pulsación pueden ajustarse.

• **Decantación y separadores de corrientes ascendentes.** Como el anterior, se trata de un método basado en la densidad del agua donde se somete el material a una corriente de agua a velocidad controlada. En este caso sin embargo, la velocidad del agua es constante y sigue una única dirección. Este separador ha sido utilizado en la industria del reciclaje de metales para extraer materiales más ligeros de flujos de metales no férricos. En este caso, el material objeto es el metal más que el plástico.

9.3.2.5. **Separación plástico-plástico.**

Métodos por densidad.

Estas técnicas se basan en el hecho que el plástico objeto suele tener una densidad diferente a la de los materiales ajenos, incluyendo otros plásticos. Dicho plástico puede ser separado de materiales indeseables con densidades diferentes, colocándolo en un medio con una densidad adecuada. Si el medio elegido posee una densidad que se encuentra entre las de los dos tipos de plástico a separar, teniendo estos una diferencia de densidades significativa, la separación se producirá simplemente colocando los plásticos en un recipiente que contenga dicho medio. El material menos denso que el medio flotará mientras que el más denso se hundirá. Las separaciones por densidad más simples utilizan tanques de hundimiento y flotación y se han utilizado en el reciclaje de botellas de plástico para bebidas desde hace años usando en muchas ocasiones sólo agua.

En el caso del PP de los guardabarros su densidad es inferior a la del agua (0,9 g/cm³). Así pues, para que el plástico que interesa flote y así lo podamos extraer más fácilmente, la
densidad del medio usado en el tanque debería ser mayor que la del plástico objeto. Esto se consigue usando agua, o incluso si existe una diferencia notable entre las densidades de los plásticos a separar es frecuente añadir al agua un modificador o usar un líquido diferente con el fin de crear un medio más denso y asegurar la flotación del PP. Las soluciones salinas obtenidas usando cloruro de calcio o de sodio pueden alcanzar aproximadamente una gravedad específica de 1.2, la cual suele ser suficiente para la mayoría de las separaciones. También sería posible una sal de mayor densidad u otra solución de las muchas utilizadas frecuentemente por otras industrias. El mayor inconveniente de usar medios densos hace referencia al tema económico y medioambiental asociado a las pérdidas del medio y a la contaminación residual del medio en el plástico recuperado. Una solución para este último problema podría ser un lavado adecuado.

Asumiendo que los problemas de manipulación del medio y de contaminación se pueden solucionar, los plásticos reciclados todavía representan un reto como flujo de suministro, ya que los valores de las densidades de muchos tipos de plásticos, especialmente si consideramos los aditivos, pigmentos, rellenos y refuerzos usados en la mayoría de los casos. Así pues, esta separación plástico-plástico es suficiente sólo para flujos de material que contienen algunos plásticos diferentes con diferencias notables de densidades.

Estos sistemas de hundimiento y flotación pueden encontrarse en numerosas configuraciones desde tanques simples con agitadores para estimular el movimiento del producto y su mojado, hasta sistemas donde el material atraviesa caminos complejos para incrementar el tiempo de residencia del plástico en el medio y los clasificadores en hélice inclinados que transportan la fracción de material pesado desde el fondo del tanque y la deshidratan en el mismo paso. En todos los casos, la fracción ligera flotante es extraída por la parte alta del sistema mientras que la fracción pesada que se encuentra hundida se extrae por el fondo del tanque. Las dos fracciones extraídas se deshidratan normalmente antes de continuar con las siguientes operaciones, sobretodo si la densidad del medio cambia de una operación a otra.

Los sistemas de separación por densidad pueden tener algunos inconvenientes incluso cuando se trata de flujos de entrada simples. Algunas partículas con huecos pueden no tener la densidad intrínseca de su material, a menos que el medio desplace el aire de las porosidades. Este es un problema mayoritario cuando se trata de materiales en forma de espuma ya que la densidad de las piezas estructurales de espuma puede variar drásticamente, incluso en la misma pieza, debido a las variaciones en el nivel de espumado. En muestras de secciones gruesas y delgadas tomadas de la misma pieza, se han medido valores de densidad de gravedad específica desde por debajo de 1.0 hasta por encima de 1.2 respectivamente. Obviamente, el rango de las densidades debería ser relativamente amplio para acomodar a este material, permitiendo eso que un mayor número de posibles materiales extraños queden extraídos con el flujo del producto objeto.

Los hidrociclones suelen utilizarse para alcanzar la efectividad de las separaciones por
densidad. Estos pueden proporcionar una gran fuerza conductora (centrífuga) a la separación, consiguiendo una mayor mojabilidad del material e incrementando la eficiencia. Estos equipos, que han demostrado ser efectivos en algunos sistemas de reciclado de plásticos relativamente simples, están todavía bajo estudio con respecto a los plásticos pertenecientes a artículos más complejos, como es el caso de las motocicletas.

En cuanto a sofisticación, el siguiente paso en los sistemas de separación por densidad en un medio líquido es la centrifugación. Este método somete las partículas a grandes fuerzas, mayores incluso que las de los hidrociclones, lo cual produce separaciones más eficaces. El mayor inconveniente del uso de la centrifugación para estas aplicaciones es su elevado coste.

Algunos de los factores que afectan el comportamiento de un determinado material en la separación por medio líquido incluyen su mojabilidad, la variabilidad en su densidad (debido a porosidad, rellenos, pigmentos, otros aditivos, etc.), el factor forma de las partículas de tamaño reducido y su nivel de liberación de otros materiales. Incluso burbujas de aire en la superficie, que pueden ir adheridas a los plásticos como consecuencia de un mojado pobre, contaminantes superficiales, agujeros, rebabas, etc., pueden hacer que determinados trozos de material floten en una solución menos densa que la masa del material.

Separaciones que no utilizan la densidad.

Algunos ejemplos son:

- **Flotación por espuma** (procede de la industria minera). Se le conoce más como flotación por aire y depende de las diferencias químicas de la superficie de los diferentes tipos de plásticos, las cuales son frecuentes ya que los plásticos difieren en la estructura química. Algunos de los problemas prácticos con esta técnica son: los recubrimientos como las pinturas y los metales que cubren la superficie del plástico que nos interesa; la suciedad, grasa y otros residuos acumulados durante su uso y manipulación; y los agentes activos de superficie para encontrar un polímero específico, que crearán burbujas de aire que se adosarán sólo al polímero objeto de la recuperación, flotando por encima de otros materiales en la mezcla.

- **Separadores triboeléctricos.** Estos equipos también dependen de las diferencias de superficie entre plásticos, de ahí la cantidad de problemas existentes con los recubrimientos y la suciedad de los materiales. La humedad y la mojabilidad de la superficie pueden modificar el funcionamiento de esta técnica.

- **Clasificación manual.**

9.3.3. **Posibles métodos de identificación**

Más allá de las diferencias en cuestiones técnicas, existen algunos factores que hacen factible
en el caso de las MFUs el uso de unos métodos más manuales y lentos:

- Dado que dichos componentes serán manipulados manualmente en las instalaciones de desmantelamiento existentes, podría incorporarse en el proceso un dispositivo de identificación manual.

- En la mayoría de los casos el valor de los plásticos usados en la fabricación de motocicletas será superior al valor de los plásticos usados en otros sectores como el de embalaje y envases.

- El peso medio de los componentes utilizados será también mayor que en el sector embalaje. Así pues en términos generales, podría decirse que cada identificación y separación que se lleva a cabo tendrán como resultado un valor superior que en el sector envases, debido a que la cantidad de plástico separada será mayor.

Todos estos factores sugieren que para los componentes de MFU's podría ser económicamente factible una técnica de identificación más lenta y manual. También hay que tener en cuenta que una técnica automatizada tardaría mucho más tiempo en poder ser desarrollada y por tanto puesta en marcha.

Actualmente existen tres tipos de equipos manuales a nivel mundial: de mano, portátiles y de sobremesa. Como podría esperarse los mecanismos de mano no son capaces de identificar todo el espectro de polímeros, pero pueden ser muy útiles en determinadas circunstancias. Las unidades de sobremesa son normalmente instrumentos de laboratorio modificados que han sido adaptados para facilitar una rápida identificación de los plásticos. Las unidades portátiles intentan llenar el hueco existente entre las unidades de mano y las de sobremesa, de una forma similar a como los ordenadores portátiles hacen entre las PDAs y los ordenadores de sobremesa.

Las características más deseadas que se requiere del aparato de identificación empleado serán:

- Identificación precisa (menos del 1% de error)
- Habilidad para identificar gran variedad de plásticos en cualquier color
- Tiempos de respuesta cortos (menos de cinco segundos)
- Fuerte y portátil con el fin de ser utilizado en un ambiente de reciclaje
- Económico para que se dé un uso generalizado por parte de los recicladores
- Fácil de usar por gente no especializada
Con anterioridad a 1994 no existían aparatos que cumplieran estas características deseadas. De hecho, el tiempo de espera para la identificación de un determinado tipo de plástico por parte de un espectroscopista experimentado era muy elevado, ya que el proceso debía realizarse sobre una muestra debidamente preparada y dicha preparación de muestra era generalmente tediosa y destructiva.

Para la identificación de los diferentes plásticos que puedan encontrarse en el flujo proveniente de las MFU's, podrá llevarse a cabo en primer lugar basándose, si es posible, en los números identificativos grabados en los componentes, y si no lo es mediante cualquiera de las técnicas de identificación citadas con anterioridad. Los equipos podrán ser uno de los tres tipos de equipos manuales explicados, siempre y cuando cumplan las características especificadas.

9.3.4. Sistemas de lavado.

Esta operación tiene como utilidad la extracción de algún contaminante de superficie remanente, como suciedad, grasa, adhesivos o calcas y etiquetas. Su efectividad puede variar ampliamente dependiendo de su configuración, y su nivel de importancia modificarse en función de la limpieza del flujo suministrado. Los materiales suelen someterse a un proceso de limpieza con agua y detergentes de baja espuma, secándose a continuación con el fin de eliminar la humedad. Algunas variables relacionadas con la efectividad del lavado serían por ejemplo el tiempo de residencia, la temperatura, el grado de agitación, y el medio químico. Esta operación es mucho más importante en la recuperación de plásticos procedentes del sector del envasado, ya que los residuos superficiales en este campo (tales como comida, etc.) serán mucho más frecuentes que en piezas pertenecientes a otros campos como por ejemplo las MFU's.
10. Reciclado de catalizadores.

10.1. Contaminación y proceso de reducción de emisiones.

La evolución de los motores de dos y cuatro tiempos ha estado marcada principalmente por la emisión de contaminantes y el consumo de combustible. La preocupación por la contaminación atmosférica ha crecido en los últimos años, hasta convertirse en la actualidad en un asunto prioritario en el desarrollo de los motores.

Los efectos de estas emisiones son muy preocupantes en las grandes aglomeraciones donde se concentran muchos vehículos. El crecimiento que ha experimentado el parque de vehículos de los países desarrollados en los últimos años ha provocado en las ciudades una acumulación de emisiones, agravada por la disminución de las lluvias. Del total de las emisiones contaminantes atmosféricas de un país, se puede responsabilizar a los automóviles en un 10-15%, mientras que en las ciudades este porcentaje sube hasta el 50% [25].

Las emisiones de contaminantes en una motocicleta se producen a través del depósito, los carburadores, el cártar y el escape.

El combustible evaporado en el depósito y los carburadores supone aproximadamente el 20% de las emisiones de hidrocarburos sin quemar. El movimiento de la gasolina dentro del mismo produce gases que, ayudados por la volatilidad de este combustible, salen al exterior sin quemar durante la operación de repostaje, constituyendo una fuente de emisión de hidrocarburos sin quemar. Lo mismo ocurre en los carburadores, pero en ellos la comunicación con el exterior es constante mediante los respiraderos.

Los gases que salen del motor por el tubo de escape constituyen la mayor fuente de emisiones contaminantes de una motocicleta, y para reducirlos se dedican gran parte de los esfuerzos que se realizan en investigación. Las otras dos fuentes de emisión de contaminantes son menos importantes, ya que la cantidad emitida a través de ellas es mucho menor. Estos gases contienen emisiones contaminantes compuestas principalmente por hidrocarburos sin quemar,
monóxido de carbono, óxidos de nitrógeno, etc.... estas emisiones contaminantes suponen alrededor de un 1% de los gases que salen por el tubo de escape. Los gases emitidos por un motor de combustión interna de gasolina son, principalmente, de dos tipos: inofensivos y contaminantes. Los primeros están formados, fundamentalmente, por Nitrógeno, Oxígeno, Dióxido de Carbono, vapor de agua e Hidrógeno. Los segundos o contaminantes están formados, fundamentalmente, por el Monóxido de Carbono, Hidrocarburos, Oxidos de Nitrógeno y Plomo [26][27].

Gases inofensivos:

- **Nitrógeno**: es un gas inerte que se encuentra presente en el aire que respiramos en una concentración del 79%. Debido a las altas temperaturas existentes en el motor, el Nitrógeno se oxida formando pequeñas cantidades de Oxidos de Nitrógeno, aunque sea un gas inerte a temperatura ambiente.

- **Oxígeno**: es uno de los elementos indispensables para la combustión y se encuentra presente en el aire en una concentración del 21%. Si su mezcla es demasiado rica o demasiado pobre, el Oxígeno no podrá oxidar todos los enlaces de Hidrocarburos y será expulsado con el resto de los gases de escape.

- **Vapor de agua**: se produce como consecuencia de la combustión, mediante la oxidación del Hidrógeno, y se libera junto con los gases de escape.

- **Dióxido de Carbono (CO2)**: se produce por la combustión completa del Carbono. No resulta nocivo para los seres vivos y constituye una fuente de alimentación para las plantas verdes, gracias a la fotosíntesis. Se produce como consecuencia lógica de la combustión de combustibles fósiles, es decir, cuanto mayor es su concentración, mejor es la combustión. Sin embargo, un incremento desmesurado de la concentración de Dióxido de Carbono en la atmósfera puede producir variaciones climáticas a gran escala (es el gas que contribuye de forma más importante al llamado efecto invernadero). Los catalizadores no reducen las emisiones de CO₂ de los vehículos. Estas sólo pueden ser reducidas usando menos combustible, es decir procesos de combustión de combustible más eficientes o usando combustibles que contengan una cantidad menor o incluso nula de carbono.

Los contaminantes encontrados en el tubo de escape de los vehículos incluyen:

- **Monóxido de carbono (CO)**. La cantidad de esta substancia que produce el motor está relacionada con la proporción de aire contenida en la mezcla aire/gasolina: cuanto mayor sea esta cantidad, menor es la emisión de este contaminante, ya que la falta de oxígeno en la combustión hace que ésta no se produzca completamente y se forme Monóxido de Carbono en lugar de Dióxido de Carbono. En un vehículo, la aparición de mayores concentraciones en el escape de CO indican la existencia de una mezcla inicial
rica o falta de oxígeno.

Pero el dosado no se puede establecer únicamente buscando una menor emisión de contaminantes, sino que tiene que ser fruto de un compromiso entre el rendimiento del motor y la emisión del resto de substancias contaminantes, las cuales se ven afectadas de diferente manera por el dosado.

Las situaciones en las que los gases de escape de un motor contienen una mayor proporción de monóxido de carbono se producen cuando el motor está frío o cuando ha dejado de actuar como propulsor para convertirse en freno, es decir, en las retenciones. Si se quiere arrancar el motor cuando está frío, hasta enriquecer la mezcla para que llegue a la cámara de combustión la suficiente cantidad de gasolina pulverizada como para que la mezcla se inflame. Por lo tanto, durante la utilización del circuito de arranque, el enriquecimiento de la mezcla implica una escasez de oxígeno que favorece la formación de "CO". Cuando el motor está funcionando a un régimen determinado y se cierra el acelerador, la gasolina acumulada en las paredes de la admisión se evapora, produciéndose una mezcla muy rica en gasolina y pobre en oxígeno, lo cual favorece las emisiones de CO.

La acumulación de estos gases en un recinto cerrado, como por ejemplo un garaje pequeño, puede provocar sueño, falta de coordinación, parálisis e incluso la muerte, dependiendo de la concentración de los mismos. En concentraciones altas y tiempos largos de exposición puede provocar en la sangre la transformación irreversible de la Hemoglobina, molécula encargada de transportar el oxígeno desde los pulmones a las células del organismo, en Carboxihemoglobina, incapaz de cumplir esa función. Por eso, concentraciones superiores de CO al 0,3 % en volumen resultan mortales. Por esta razón, se debe tener cuidado, facilitando la ventilación necesaria del local en el que se trabaja en la moto, sobretodo si ésta permanece mucho tiempo arrancada.

- **Óxidos de nitrógeno (NOx)**. Están presentes en los gases de escape de los motores. Dentro de ellos el que se presenta en mayor cantidad es el monóxido de nitrógeno, cuya fórmula química es NO, aunque también aparecen otros óxidos, por lo que es bastante habitual designarlos como "NOx", de modo que no se particulariza en ninguno. La formación de estas emisiones está favorecida por las altas temperaturas durante la combustión, momento en el cual el oxígeno y el nitrógeno se combinan para formar ácido nítrico. Instantes después a la combustión, en la carrera de expansión, este óxido se descompone otra vez en oxígeno y nitrógeno; pero esta reacción es más lenta que la de formación del óxido y, cuando la carrera de expansión ha finalizado, la mayor parte del óxido nítrico no se ha descompuesto. De esta manera sale a la atmósfera, donde vuelve a reaccionar con el oxígeno formando dióxido de nitrógeno.

La disminución de la temperatura de combustión favorece la reducción en las emisiones de óxidos de nitrógeno, pero empeora el rendimiento del motor. Esta disminución de
temperatura se puede conseguir atrasando el punto en el que salta la chispa en la bujía. También se pueden reducir las emisiones mediante un sistema de recirculación de los gases de escape que los enfria y los introduce de nuevo en el motor para bajar la temperatura de la combustión; pero estos sistemas disminuyen el rendimiento del motor y aumentan el consumo de combustible, y, por estas razones, no es utilizado en motores de motocicletas.

Algunos de estos óxidos son tóxicos, pero no suponen un peligro para las personas pues se encuentran en concentraciones bajas. Reaccionan con los hidrocarburos a la luz del sol para formar ozono. Los óxidos pueden incrementar las enfermedades respiratorias irritando las mucosas, mientras que el ozono causa dificultades la respirar y daña las plantas. En combinación con los Hidrocarburos contenidos en el smog y con la humedad del aire producen Acidos Nitrosos, que posteriormente caen sobre la tierra en forma de lluvia ácida y contaminan grandes áreas, algunas veces situadas a cientos de kilómetros del lugar de origen de la contaminación.

- **Hidrocarburos (HC):** El contenido de las emisiones contaminantes en estos compuestos proviene del combustible que ha pasado por la cámara de combustión sin quemarse y del evaporado previamente. En los motores de dos tiempos, el porcentaje de estos compuestos en las emisiones es más alto que en los de cuatro tiempos. Ello es debido al barrido que en el dos tiempos se realiza con los gases frescos de admisión: parte de ellos salen por el escape sin haber sufrido el proceso de combustión y esto se ve agravado por la combustión parcial del aceite mezclado con la gasolina. En los motores de cuatro tiempos también se producen emisiones de hidrocarburos sin quemar, pero en una proporción más pequeña, ya que el tiempo que permanecen abiertas simultáneamente las válvulas de admisión y escape es mucho menor. Este tipo de emisiones disminuyen cuando la mezcla se empobrece, es decir, cuando el dosado de la mezcla aire/gasolina es menor. Dependiendo de su estructura molecular, presentan diferentes efectos nocivos. El Benceno, por ejemplo, es venenoso por sí mismo, y la exposición a este gas provoca irritaciones de piel, ojos y conductos respiratorios; si el nivel es muy alto, provocará depresiones, mareos, dolores de cabeza y náuseas. El Benceno es uno de los múltiples causantes de cáncer. Su presencia se debe a los componentes incomestibles de la mezcla o a las reacciones intermedias del proceso de combustión, las cuales son también responsables de la producción de Aldehídos y Fenoles. La presencia simultánea de Hidrocarburos, Oxidos de Nitrógeno, rayos ultravioleta y la estratificación atmosférica conduce a la formación del smog fotoquímico, de consecuencias muy graves para la salud de los seres vivos.

- **Plomo:** es el metal más peligroso contenido en los aditivos del combustible. Inhalado puede provocar la formación de coágulos o trombos en la sangre, de gravísimas consecuencias patológicas. Se encuentra presente en las gasolinas en forma de Tetra-etilo de Plomo y se utiliza en su producción para elevar su índice de octano y, también,
en motorizaciones antiguas como lubricante de los asientos de válvulas. En las gasolinas sin Plomo se ha sustituido este metal por otros componentes menos contaminantes que también proporcionan un alto índice de octano.

Para reducir las emisiones de todas estas sustancias se utilizan diversos sistemas, siendo los más usados los catalizadores y los sistemas de inyección de aire en el escape [28].

- **Catalizadores.** Reciben este nombre porque provocan unas reacciones catalíticas que eliminan las emisiones nocivas contenidas en los gases de escape. Cuando los gases generados por el motor pasan a través del catalizador, los hidrocarburos, el monóxido de carbono y los óxidos de nitrógeno se transforman en agua, nitrógeno y dióxido de carbono.

Los motores equipados con estos sistemas utilizan gasolina sin plomo para evitar que este elemento envenene los metales nobles que utiliza el catalizador, a la vez que evitan las emisiones de este metal pesado. Este tipo de gasolina no contiene aditivos con plomo, y en su defecto utilizan otras sustancias para elevar el octanaje.

Dependiendo del tipo de emisiones que se pretenda eliminar, se puede utilizar catalizadores de oxidación, de reducción o de tres vías.

- **De oxidación.** Producen un efecto similar a la inyección de aire en el sistema de escape del motor, ya que eliminan el monóxido de carbono y los hidrocarburos sin quemar mediante una reacción de oxidación. Su composición es muy heterogénea, estando compuestos por mezclas de varias sustancias entre las que se encuentran metales nobles tales como platino, paladio, iridio, rodio, ... Para aumentar su eficacia se construyen utilizando formas que ofrecen la mayor superficie posible de contacto con los gases de escape.

- **De reducción:** se encargan de eliminar las emisiones de óxidos de nitrógeno. Para su buen funcionamiento se ha de utilizar una mezcla rica, ya que el contenido de oxígeno de los gases de escape es menor en este caso. Esto permite reducir la emisión de óxidos de nitrógeno, pero provoca la aparición de monóxidos de carbono e hidrocarburos sin quemar, y por ello se suele intercalar un catalizador de oxidación entre el motor y el de reducción. En su construcción se utiliza el rodio o el rutenio como metales nobles encargados de producir la reacción de reducción. No se emplean de forma aislada.

- **De tres vías:** reciben este nombre porque eliminan las tres emisiones contaminantes. En su funcionamiento intervienen simultáneamente catalizadores que actúan sobre los tres tipos de emisiones, de tal manera que el oxígeno procedente de la reducción de los óxidos de nitrógeno favorece la oxidación del monóxido de carbono y de los hidrocarburos sin quemar. Su forma es similar a la de
los otros tipos de catalizadores, en ella se puede observar una red de celdillas cuya finalidad es aumentar la superficie de contacto con los gases de escape. Para conseguir un funcionamiento óptimo de este tipo de catalizadores es necesario que el motor trabaje con mezclas estequiométricas, es decir, con el oxígeno exacto para reaccionar con el combustible, y una gran exactitud en el dosado. Estos dos requerimientos sólo los puede cumplir un sistema de alimentación con toma y proceso de datos electrónico, es decir, una inyección electrónica. El dosado será más preciso cuanto mayor sea el número de datos que llegan a la unidad electrónica de control, pero los mejores resultados se obtienen con una sonda que mide la concentración de oxígeno en los gases de escape. Esta sonda recibe el nombre de “lambda”, y envía una señal a la unidad de control para que ésta varie la cantidad de gasolina inyectada en el motor, formando un bucle cerrado que asegura el ajuste instantáneo del dosado a las condiciones estequiométricas. El control de las emisiones obtenido mediante este sistema es muy superior al que carece de sonda lambda, y consigue una mayor duración del catalizador.

La duración de los catalizadores depende del uso y mantenimiento que se haga del motor: si éstos son correctos, están diseñados para tener una vida útil, al menos igual a la del vehículo del que forman parte. Una vez finalizada su vida útil, estos elementos se reciclan, ya que contienen metales nobles cuyo coste es elevado, rebajándose así el coste de mantenimiento de estos sistemas anticontaminación.

Comenzó a emplearse de manera generalizada en automóviles en 1993, a raíz de la publicación de la Directiva 91/441/CEE y ha sido uno de los factores que más ha contribuido a la disminución de la contaminación atmosférica procedente del transporte. El catalizador oxida el CO y los hidrocarburos a CO$_2$ y reduce los NOX a N$_2$. Estas reacciones se originan por la presencia en el catalizador de metales pesados, generalmente platino, paladio y rodio. Éstos incrementan la superficie de reacción acelerando los procesos anteriormente indicados. El catalizador de tres vías es utilizado en todos los vehículos de gasolina que se venden en la actualidad y que no incorporan tecnologías más avanzadas.

- **Sistemas de inyección de aire en el escape.** Los sistemas de inyección de aire utilizan las fluctuaciones de presión en el sistema de escape para hacer circular aire filtrado a través de unos tubos, e inyectarlo en el escape cerca de la salida de la cámara de combustión. La gran ventaja de este sistema es que es más barato que un catalizador, sin embargo su inconveniente es un peor rendimiento que los catalizadores, los cuales eliminan una mayor cantidad de emisiones contaminantes.

Las principales emisiones de motocicletas con motores de dos tiempos son de hidrocarburos, CO y materia particulada. Las emisiones de NOx suelen ser muy bajas debido al efecto de la elevada cantidad de gas de combustión residual retenido en la cámara de combustión. Sin
embargo, los motores de cuatro tiempos emiten principalmente hidrocarburos, CO, y también NOx como resultado de una combustión del combustible más eficiente.

Las motocicletas más recientes para en mercado europeo con motores de cuatro tiempos, usan sistemas de inyección de aire y/o catalizadores de oxidación o bien catalizadores de tres vías además de trabajar cada vez más cerca de mezclas estequiométricas ideales. Para motores de dos tiempos se trabaja sobretodo en los catalizadores de oxidación y en el uso de aceites sintéticos, los cuales muestran una combustión mejorada y por tanto una mejor eficiencia y una reducción de las emisiones de material particulado. Con el fin de cumplir con reducciones de emisiones más severas esperadas para 2006, la industria espera el uso de catalizadores para todas las motocicletas sin importar el tipo de motor.

10.2. Normativa europea de control de emisiones

La problemática de los gases de escape generados por los vehículos de motor ha sido controlada y legislada en Europa, principalmente por la Directiva de la Comunidad Europea 70/220 CE y sus posteriores modificaciones.

A continuación exponemos por orden cronológico toda la reglamentación existente referente tanto al tema de emisiones de vehículos, como a la homologación de catalizadores, como a la Inspección Técnica de Vehículos (ITV) [29].

1. **Directiva base**: Directiva 70/220/CEE del consejo, de 20 de marzo de 1970, relativa a la aproximación de las legislaciones de los Estados Miembros en materia de medidas que deben adoptarse contra la contaminación del aire causada por los gases procedentes de los motores de explosión con los que están equipados los vehículos a motor.

2. **Euro I**: Directiva 91/441/CEE del Consejo, de 26 de junio de 1991, por la que se modifica la Directiva 70/220/CEE relativa a la aproximación de las legislaciones de los estados miembros sobre medidas contra la contaminación atmosférica provocada por los gases de escape de los vehículos de motor.

3. **Directiva 93/59/CEE del Consejo del 28 de junio** por la que se modifica la directiva 70/220/CEE relativa a la aproximación de las legislaciones de los Estados Miembros en materia de medidas contra la contaminación atmosférica causada por las emisiones de los vehículos de motor.

4. **Euro II**: Directiva 94/12/CE del Parlamento Europeo y del Consejo, de 23 de marzo de 1994, relativa a las medidas que deben adoptarse contra la contaminación atmosférica causada por las emisiones de los vehículos de motor y por la que se modifica la Directiva 70/220/CEE

5. **Directiva 96/44/CE de la Comisión de 1 de julio de 1996** por la que se adapta al
progreso técnico la Directiva 70/220/CEE del Consejo relativa a la aproximación de las legislaciones de los Estados Miembros en materia de medidas contra la contaminación atmosférica causada por las emisiones de los vehículos de motor

6. Directiva 96/69/CE del Parlamento Europeo y del Consejo de 8 de octubre de 1996 por la que se modifica la Directiva 70/220/CEE relativa a la aproximación de las legislaciones de los Estados Miembros en materia de medidas contra la contaminación atmosférica causada por las emisiones de los vehículos de motor.

7. Reglamento No. 103 de Naciones Unidas, de 23 de febrero de 1997

8. Adhesión al reglamento R-103: Decisión 97/836/CE del Consejo de 27 de noviembre de 1997 relativa a la adhesión de la Comunidad Europea al Acuerdo de la Comisión Económica para Europa de las Naciones Unidas sobre la adopción de prescripciones técnicas uniformes aplicables a los vehículos de ruedas y los equipos y piezas que puedan montarse o utilizarse en éstos, y sobre las condiciones de reconocimiento recíproco de las homologaciones concedidas conforme a dichas prescripciones.

9. Homologación de catalizadores para recambio: Directiva 98/77/CE de la Comisión de 2 de octubre de 1998 por la que se adapta al progreso técnico la Directiva 70/220/CEE del Consejo relativa a la aproximación de las legislaciones de los Estados Miembros en materia de medidas que deben tomarse contra la contaminación del aire causada por las emisiones de los vehículos de motor.

10. Euro III y Euro IV: Directiva 98/69/CE del Parlamento Europeo y del Consejo de 13 de octubre de 1998 relativa a las medidas que deben adoptarse contra la contaminación atmosférica causada por las emisiones de los vehículos de motor y por la que se modifica la Directiva 70/220/CEE del Consejo.

Tras el reglamento R-103 de Naciones Unidas y de la Directiva 98/77/CE, válidas para homologación de catalizadores para recambio en vehículos homologados sin DAB (sistema diagnóstico a bordo) y que están enmarcadas dentro de EURO 1 y EURO 2, el Parlamento Europeo y el Consejo de la Unión Europea adoptaron una nueva Directiva para la homologación de catalizadores para recambio en vehículos homologados con dicho sistema (enmarcadas dentro de EURO 3 y EURO 4).

11. Directiva 1999/102/CE de la Comisión, de 15 de diciembre de 1999, por la que se adapta al progreso técnico la Directiva 70/220/CEE del Consejo relativa a las medidas contra la contaminación atmosférica causada por las emisiones de los vehículos de motor.

12. Directiva 2001/1/CE del Parlamento Europeo y del Consejo, de 22 de enero de 2001, por la que se modifica la Directiva 70/220/CEE del Consejo, sobre medidas contra la
contaminación atmosférica causada por las emisiones de los vehículos de motor.

13. Directiva 2001/100/CE del Parlamento Europeo y del Consejo, de 7 de diciembre de 2001, por la que se modifica la Directiva 70/220/CEE del Consejo relativa a la aproximación de las legislaciones de los Estados miembros en materia de medidas contra la contaminación atmosférica causada por las emisiones de los vehículos de motor.

14. Directiva 2002/80/CE de la Comisión, de 3 de octubre de 2002, por la que se adapta al progreso técnico la Directiva 70/220/CEE del Consejo relativa a las medidas que deben adoptarse contra la contaminación atmosférica causada por las emisiones de los vehículos de motor.

Así mismo Naciones Unidas acaba de publicar un suplemento al reglamento R-103 para la homologación de catalizadores para recambio en vehículos con OBD.

15. Suplemento 2 al Reglamento R-103 de Naciones Unidas, de 7 de junio de 2005. Tras este suplemento el Reglamento R-103 ya es válido para homologar catalizadores de recambio sin y con DAB.

Directivas Comunitarias referentes a la inspección técnica de vehículos:

1. Directiva 96/96/CE del Consejo de 20 de diciembre de 1996 sobre la aproximación de las legislaciones de los Estados Miembros relativas a la inspección técnica de los vehículos a motor y de sus remolques

2. Directiva 1999/52/CE de la Comisión, de 26 de mayo de 1999, por la que se adapta al progreso técnico la Directiva 96/96/CE del Consejo sobre la aproximación de las legislaciones de los estados miembros relativas a la inspección técnica de los vehículos de motor y de sus remolques.

3. Directiva 2001/9/CE de la Comisión, de 12 de febrero de 2001, por el que se adapta al progreso técnico la Directiva 96/96/CE del Consejo sobre la aproximación de las legislaciones de los estados miembros relativas a la inspección técnica de los vehículos a motor y de sus remolques.

Con relación a los vehículos de dos ruedas, la normativa europea ha sido aplicada en función de sus fechas de matriculación y por tanto de fabricación, de forma que puedan adaptar sus dispositivos de reducción de emisiones gradualmente. En el siguiente cuadro se puede ver como ha evolucionado la normativa referente a este tipo de vehículos:
<table>
<thead>
<tr>
<th>TIPO DE VEHÍCULO</th>
<th>COMBUSTIBLE</th>
<th>NORMA</th>
<th>MATRICULACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motocicletas</td>
<td>Gasolina</td>
<td>Convencional</td>
<td>1.998 y anteriores</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Euro 1</td>
<td>1.999 – 2.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Euro 2</td>
<td>2.003 – 2.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Euro 3</td>
<td>2.006 y posteriores</td>
</tr>
<tr>
<td>Ciclomotores</td>
<td>Gasolina</td>
<td>Convencional</td>
<td>1.996 y anteriores</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Euro 1</td>
<td>1.997 – 2.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Euro 2</td>
<td>2.002 – 2.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Euro 3</td>
<td>2.006 y posteriores</td>
</tr>
</tbody>
</table>

Tabla 10.2.1. Evolución de la normativa de reducción de emisiones de motocicletas

El proceso de reducción de emisiones para los vehículos motorizados de dos ruedas empezó de forma relativamente reciente. El primer estadio, Euro 1, fue introducido en 1999, seguido de Euro 2 en 2003. El tercer paso, Euro 3, también se ha hecho ya efectivo, desde Enero de 2006. El salto realizado entre Euro 0 y Euro 3 ha sido considerable, habiéndose reducido el 94% de las emisiones de monóxido de carbono e hidrocarburos, y el 50% de las de óxidos de nitrógeno. Esta drástica reducción de los valores límite ha ido unida a requerimientos más exigentes para pruebas de emisiones.

Este proceso de reducción de emisiones ha supuesto un gran reto para la industria de fabricación de motocicletas ya que se debía conjugar la reducción de emisiones con el mantenimiento de las características esenciales de dichos vehículos. Dicho proceso ha sido sobretodo sustentado por una serie de innovaciones: catalizadores de oxidación de dos vías, sistemas de inyección de aire, catalizadores de tres vías con sensor de control de oxígeno (sonda Lambda), funcionamiento electrónico del motor, y la inyección de combustible. Estos sistemas suelen utilizarse combinados entre ellos de forma que la emisión de gases contaminantes quede minimizada lo máximo posible.

Una comparativa entre las emisiones de vehículos motorizados de dos ruedas y las de los automóviles, indica que Euro 3 para motocicletas (año 2006) es comparable a Euro 3 para coches (año 2000) y que incluso el total de los tres contaminantes emitidos es un poco menor en el caso de las motocicletas. De hecho los valores límite para las motocicletas son muy similares a los de los automóviles a pesar de haber tenido un periodo de tiempo menor entre estadios. Si se comparan también las emisiones de CO₂, el cual contribuye al efecto invernadero, se comprueba que la media de emisiones de coches está por encima del valor más elevado obtenido para motocicletas. Lo mismo sucede con el consumo de combustible, comprobándose que la media consumida por los coches es siempre superior al consumo máximo de las motocicletas.
Es importante realizar una estimación de la evolución de la situación a plazo medio. La Comisión Europea designó al Laboratory of Applied Thermodynamics (LAT) de la Universidad Aristóteles de Tesalónica, como experto independiente para el estudio de la emisión de contaminantes por parte de los vehículos motorizados de dos ruedas. El LAT calculó dichas emisiones desde 1999 hasta el 2012 y concluyó que las emisiones provenientes del escape de los vehículos de dos ruedas muestran una buena y a menudo mejor tendencia comparada con las emisiones totales de los vehículos de transporte. Es decir que su contribución a la contaminación causada por la totalidad de los medios de transporte es muy baja y decrecerá durante los próximos años [30].

Para complementar los progresos conseguidos por la industria de la motocicleta, los fabricantes planifican el desarrollo de nuevos productos que respeten los valores límite de emisiones durante su vida útil. Una nueva directiva, en la cual los fabricantes han contribuido en gran medida, enmarcará este futuro progreso y armonizará las fechas de entrada en vigor sobre modelos antiguos y nuevos. Se espera que sea en 2006 cuando se produzca su presentación por parte de la Comisión.

10.3. Los catalizadores en las motocicletas.

Los catalizadores comenzaron a incorporarse en las motocicletas alrededor del año 99 debido a la reducción de los límites de emisión permitidos para dichos contaminantes. El catalizador tiene como misión disminuir los elementos polucionantes contenidos en los gases de escape de un vehículo mediante la técnica de la catálisis. Se trata de un dispositivo instalado en el tubo de escape, cerca del motor, ya que ahí los gases mantienen una temperatura elevada. Esta energía calorífica pasa al catalizador y eleva su propia temperatura, circunstancia indispensable para que este dispositivo tenga un óptimo rendimiento, que se alcanza entre los 400 y 700 grados centígrados.

Los catalizadores usados para tratar los gases de los vehículos de dos ruedas generalmente están compuestos por una fina capa de recubrimiento de metales del grupo del platino (MGP) y un compuesto de materiales inorgánicos, principalmente óxidos, aplicados a la superficie de un soporte metálico o cerámico catalíticamente inactivo con forma de panal. El platino (Pt), paladio (Pd) y el rodio (Rh), individualmente o en combinación, son los metales activos catalíticos localizados en la fina capa donde tienen lugar las reacciones catalíticas. Estos metales preciosos actúan como elementos activos catalizadores, es decir, inician y aceleran las reacciones químicas entre otras sustancias con las cuales entran en contacto, sin participar ellos mismos en estas reacciones. Las reacciones catalíticas que tienen lugar son exotérmicas, lo cual incrementa la temperatura, ya elevada, de los gases del escape. Esta es una de las propiedades que hacen que los MGP sean ideales para esta aplicación, ya que otros metales pueden tener también excelentes propiedades catalíticas, pero muchos de ellos no serían capaces de operar con tan alta eficiencia en el rango de temperaturas del escape con una
durabilidad suficiente para la vida útil del vehículo.

Para conseguir el máximo de exposición de los metales catalíticamente activos con los gases del escape, los metales se dispersan finamente sobre un gran área superficial construida a base de óxidos cerámicos refractarios. Esta estructura suele recibir el nombre de capa catalítica activa o de "washcoat". El washcoat está formado además por una serie de óxidos porosos de base metálica (Al, Ce, Zr) del tipo γ-Al_2O_3 (alúmina) y otros compuestos secundarios como CaO y MgO, así como elementos pertenecientes a las tierras raras, como el La_2O_3. Estos compuestos actúan como promotores o estabilizadores en el washcoat, incrementando la actividad catalítica o estabilizando la estructura del catalizador. La selección de los MGP y de la composición del washcoat es función de la reducción de emisiones deseada, de la temperatura de operación del catalizador, etc. [31]

El papel del substrato es el de proporcionar un área superficial elevada, inerte, térmicamente estable y geométrica a la capa catalítica de manera que ésta quede adherida efectivamente y expuesta a los gases del escape. Los substratos pueden estar compuestos de materiales metálicos o cerámicos. En general la mayor parte de los catalizadores diseñados para aplicaciones dentro de la industria de las dos ruedas emplean substratos metálicos. La selección de la forma adecuada del substrato es función de la reducción de emisiones requerida y de parámetros específicos como las restricciones de tamaño y posición. Suelen emplearse unidades catalíticas en forma de panal, similares a las utilizadas en la industria de la automoción. El hecho de incorporar un nuevo componente al escape hace que se deba prestar especial atención a evitar ningún posible impacto sobre el comportamiento del vehículo. Así pues, deben llevarse a cabo determinadas modificaciones de diseño para eliminar o en su defecto minimizar posibles pérdidas de potencia, áreas localizadas de elevada temperatura, etc. Sin embargo estas estructuras de panal con su gran área superficial, permiten cantidades máximas de materiales catalíticamente activos, lo cual mejorará la exposición de los gases de escape y por tanto la eficiencia.

Los substratos metálicos están formados por láminas muy finas de acero coarrugadas y enrolladas de forma concéntrica. Alternando láminas coarrugadas y planas se crea una estructura de múltiples canales que puede ser recubierta con el washcoat. Esta estructura está rodeada de una banda de protección de acero inoxidable (normalmente austenítico). Este tipo de monolitos ofrecen más resistencia térmica y mecánica que los monolitos cerámicos. Además cuentan con una mayor resistencia al choque térmico, por lo que dispondrán de una vida más larga. La contrapresión creada por el monolito metálico es más baja que en el monolito cerámico, debido a paredes de substrato más delgadas que previenen de posibles fallos en el funcionamiento del vehículo. Además, el substrato metálico es completamente reciclable, y el hecho de ser todo metálico aumenta la facilidad de dicho reciclaje, una ventaja más en la protección del medio ambiente. Disponen también de una baja susceptibilidad a las vibraciones, por lo que pueden ser montados más cerca del motor. [32]
Fig. 10.3.1. Estructura de catalizadores de substrato metálico.

En el caso de los substratos cerámicos, exteriormente el catalizador es un recipiente de acero inoxidable. En su interior contiene un soporte cerámico, el cual suele estar compuesto por óxido de aluminio, silicatos y óxidos de magnesio con características similares a la roca. El soporte tiene forma cilíndrica, con una estructura de múltiples celdillas en forma de panal. Sobre dicho soporte será aplicada la resina que contendrá los MGP.

Fig. 10.3.2. Estructura de catalizadores de substrato cerámico.

La unidad catalítica debe tener una forma que será incorporada dentro del sistema de escape (normalmente soldada concéntricamente a éste) o alternativamente una parte existente del escape puede ser usada como substrato aplicando sobre ella la capa catalítica. La ventaja de la aplicación de esta capa catalítica sobre una de las partes del escape es que provoca un
impacto mínimo en el diseño existente, en la supresión del ruido y la dinámica del gas. Si
embargo el limitado área superficial disponible para este recubrimiento es insuficiente para la
consecución de la reducción de emisiones requerida, pero sí pueden actuar como complemento
para la consecución de dicha reducción. Así por ejemplo, el catalizador contenido en la GPR
50cc Rac., por ejemplo, se encuentra localizado dentro del subconjunto cono-precatalizador,
que a su vez podemos encontrar en el conjunto tubo de escape. Los gases procedentes del
motor pasarán entonces por los conos precatalizados en primer lugar y a continuación por el
catalizador. Los dos semiconos, el interior y el exterior son de acero inoxidable AISI 409 y todo
el interior de los mismos se encuentra también precatalizado con pequeñas cantidades de los
mismos metales: platino, paladio y rodio.

Existen también tubos metálicos recubiertos de platino, rodio y/o paladio que pueden ser
utilizados como catalizadores o precatalizadores y cuya efectividad es menor. Las paredes del
tubo suelen tener multitud de orificios, de forma que se proporcione una superficie máxima de
catalizador para el flujo de gases de escape, mientras que además se minimiza la cantidad de
catalizador requerida.

10.4. Posible proceso de reciclado.

10.4.1. Información previa

En las motocicletas los catalizadores se encuentran soldados al interior del tubo de escape, es
por ello que en el taller no suelen realizarse sustituciones únicamente del catalizador, sino que
se realizará la sustitución del escape completo. Dado que el catalizador se fabrica con una
durabilidad suficiente para la vida útil del vehículo, en principio el proceso de sustitución sólo
debería tener lugar si el escape resultara dañado gravemente debido a un accidente, golpe o
caida. En la práctica, no es así, ya que los propietarios de motocicletas suelen además realizar
cambios de unos escapes por otros que les proporcionen mayores prestaciones ya sean de
velocidad, potencia o estética a sus vehículos. Estos escapes sustituidos que no se encuentran
dañados serán vendidos como recambios en los propios desguaces de motocicletas existentes,
o en las tiendas de recambios. Así pues, en la actualidad sólo son susceptibles de ser
reciclados los catalizadores de motocicletas cuyos escapes estén perjudicados de forma
irreversible.

Este podría cambiar en un futuro cercano, ya que la normativa es cada vez más exigente con
las emisiones contaminantes de las motocicletas, lo cual está generando una mayor presencia
del catalizador en los vehículos nuevos de dos ruedas y un aumento del control y de las
inspecciones técnicas de estos, de forma que los escapes que consten de este dispositivo
anticontaminación no podrán ser sustituidos por otros que no lo posean con el fin de dotar a la
moto de mayor potencia. Ya se están realizando estudios sobre los pasos necesarios para
reforzar la legislación existente que hace ilegal para los propietarios de motocicletas la
Propuesta para la gestión de motocicletas al fin de su vida útil y análisis de alternativas para el aumento de su tasa de reciclado

Manipulación de piezas originales de sus motocicletas. ADEME (Agencia para el Medioambiente y la Gestión de Energías) es una agencia gubernamental francesa que ha medido los efectos de este trucaje de las motos. ADEME informa que en los casos en que el propietario/operador extrae el convertidor catalítico de la motocicleta las emisiones de CO pueden multiplicarse por 3 mientras que las de HC+NOx lo harán por 4 [33]. Así pues, es muy probable que un plazo no demasiado largo, se endurezcan los controles para evitar dicha manipulación.

10.4.2. Posible proceso de reciclado.

A la planta de reciclado llegará el tubo de escape entero, la parte que quede de él siempre y cuando conserve en su interior el catalizador, o sólo el catalizador si la separación se ha llevado a cabo en la instalación de recogida. Las posibles fuentes serán los desguaces, talleres o particulares. Los centros de reciclado de catalizadores, ya sea directamente o través de agentes subsidiarios seguirán los siguientes pasos:

- **Recogida de la fuente.** La fuente de los convertidores catalíticos fuera de servicio que llegarán al centro de recogida puede ser: un taller, una tienda de recambios, un CAT, un desguace de motocicletas, una fragmentadora de residuos férricos y no férricos o un punto de recogida de residuos.

 Los centros de recogida (ya sean especializados en catalizadores usados, en componentes provenientes de la automoción o en residuos en general) se encargan generalmente de desplazarse a todas estas posibles fuentes de catalizadores, recogerlos y llevarlos a sus propias instalaciones para acumular cantidades mayores. Estas cantidades serán probablemente vendidas a centros de recogida a gran escala o directamente a los refinadores de MGP para su recuperación.

 Otra posibilidad es que la misma empresa donde se realizará el refino, se dedique a la recogida en algunas áreas y confíe este trabajo a otras empresas con las que puede tener acuerdos, en otras.

- **Separación del resto del escape.** Normalmente, los escapes se abrirán cortándolos en un proceso compacto separando el catalizador propiamente dicho (ya sea metálico o cerámico) del resto del escape. Las fracciones típicamente separadas por el desmontaje son: aceros, aceros inoxidables, fibra cerámica y el substrato cerámico o metálico que contendrá los metales preciosos. Las partes que no contienen los MGP pueden normalmente generar renta suficiente para pagar este paso del proceso. A partir de aquí, el proceso dependerá del tipo de substrato del catalizador.

 En España existen pocas plantas que se dediquen al reciclado de catalizadores, pero sí existe un mayor número de empresas que se dedican a su recogida con la finalidad de
Enviarlos a plantas de este tipo dentro o fuera de España. El desmontaje inicial puede entonces ser desarrollado por las empresas de recogida, de manera que reducirá enormemente los costes de envío, eliminando la mayoría de los materiales extraños.

- **Clasificación.** Existen dos tipos de catalizadores según el tipo de substrato. Cada uno de ellos sigue un proceso diferente de reciclado, por lo que una vez llegados los escapes a la planta de reciclado deberán ser clasificados en función de si pertenecen a un grupo o a otro.

A partir de aquí, cada uno de estos flujos podría incorporarse a los correspondientes flujos de recuperación de los MGP presentes en los catalizadores para automóviles que se llevan a cabo en la actualidad.

- **Separación de la cubierta metálica de la parte cerámica en el caso de catalizadores cerámicos.** Este tipo de operaciones se llevan a cabo, la mayoría de las veces, mediante algún tipo de proceso de corte hidráulico (cizalladora de mandíbulas). Otros procesos alternativos incluyen un quemador de plasma, un soplete o una sierra mecánica (de disco). En este paso, la parte cerámica suele romperse, generándose polvo. Sea cual sea el método empleado, es importante que se realice correctamente y de forma segura la recogida del polvo cerámico que contendrá los MGP. Generalmente en los lugares en que se dedican a este trabajo, están equipados con sistemas de extracción de polvo muy eficientes, de manera que el polvo recogido llegue también a los refinadores de metales preciosos.

- **Fragmentación de los convertidores de substrato metálico,** que se encuentran recubiertos de una fina capa de óxidos metálicos, generando así una fracción de material que contendrá los MGP. Dicha fragmentación se consigue pasándolos por uno o más tipos diferentes de fragmentadoras, trituradoras, molinos de martillos, etc. Debido al alto grado de deformación de las láminas metálicas que forman el substrato, causada por la energía mecánica aplicada, una gran parte del washcoat puede desprenderse, por lo que deberá ser recogido y separado mediante clasificadores de aire. Estas operaciones de fragmentación pueden encontrarse formando parte de una línea totalmente automatizada, consiguiéndose un alto rendimiento de recuperación del washcoat. En el caso de los catalizadores que van acompañados de conos precatalizados en el tubo de escape, pueden también extraerse dichos componentes para ser introducidos en este proceso, ya que se trata también de piezas de acero inoxidable recubiertas de MGP en bajas concentraciones.

En la mayor parte de los casos (dependiendo del material usado) la fracción metálica restante puede ser separada magnéticamente. La carcasa externa suele ser de acero inoxidable austenítico mientras que las láminas coarrugadas que conforman el substrato serán de acero ferrítico. Se llevará entonces a cabo una separación de la chatarra magnética y la no-magnética mediante los procedimientos normales. Una vez
separadas de la fracción austenítica las láminas metálicas del substrato todavía llevarán adherido washcoat residual. En una etapa posterior se separa el residuo que contiene los MGP de las partes de acero mediante una unidad de separación mecánica. Se puede utilizar, por ejemplo, un molino de martillos de manera que las partículas de washcoat salten de las lámina metálicas al se estas golpeadas. La separación final de ambas se producirá mediante métodos de separación por aire, después de lo cual se unirán las dos fracciones de wascoat obtenidas para pasar a la siguiente etapa del proceso [34].

- **Pesado y muestreo de la parte cerámica y del washcoat.** El material ha de ser pesado y muestreado (preparación de la muestra) comprobándose así que se generan pesos y contenidos de humedad correctos y muestras representativas para proceder a los ensayos. Unos procedimientos adecuados de pesado y muestreo asegurarán una determinación fiable del contenido en metales preciosos del material. En muchas de estas empresas el pago al suministrador se realiza según el rendimiento del material suministrado. Así pues, si la muestra no fuese representativa, el proveedor no podría recibir el pago merecido. Por todo esto, generalmente el cliente tendrá el derecho de controlar y de exigir una detallada descripción de los procesos de pesado y muestreo. En los procedimientos de muestreo lo ideal es la combinación de métodos tradicionales y nuevas tecnologías, automatizándolos lo máximo posible de manera que quede minimizada la intervención humana ya que ésta puede afectar el resultado.

Tanto en el caso del substrato cerámico como en el del washcoat, después de esta separación, el material es triturado (con un triturador de bolas, molino de martillo, etc.) y cribado hasta alcanzar un tamaño menor o igual a unos 5 mm. Del lote obtenido el 90-98% será la fracción principal almacenada que será sometida al refinado. El resto (2-10%) vuelve a someterse a una reducción de tamaño hasta que éste llega obtener un polvo fino (<1mm). Los flujos de polvo generados durante la trituración y el muestreo son re-inyectados en el flujo principal para que pasen a formar parte de la muestra primaria. Después de la homogeneización final en un mezclador se procede a dosificar exactamente la misma cantidad de muestra primaria en pequeñas bolsas selladas, mediante un divisor de tubo rotatorio. Un lote de muestras se envía al laboratorio analítico donde la combinación de instrumentación avanzada y ensayos convencionales al fuego, contribuirán a una identificación precisa de los metales contenidos en la muestra. Otro de los lotes es enviado al cliente junto con un certificado y por último un tercer lote es guardado como reserva.

Fundamentalmente, el principio de muestreo involucra “reducción” de grandes cantidades de materiales que contienen metales preciosos (tanto como varias toneladas) a pequeñas cantidades (tan pequeñas como unos cuantos gramos). Las muestras por lo tanto son extraídas del análisis de diferentes fracciones y/o diferentes etapas del sub-lote resultante. El procedimiento de muestreo convierte los materiales
residuales que contienen el metal precioso en una masa homogénea de tal forma que las moléculas de los metales preciosos y el resto de sus constituyentes sean distribuidos de idéntica forma. Los resultados del ensayado de la masa homogénea representarán un porcentaje preciso del contenido de metales preciosos en la matriz global.

- **Ensayado de muestras.** Las muestras representativas son ensayadas por el laboratorio de la empresa de refinado, así como por el laboratorio propio del cliente o uno designado por él. Los ensayos resultantes de los dos laboratorios pueden ser intercambiados y comparados, llegándose a un acuerdo intermedio o, si las diferencias son demasiado significativas, realizando un tercer ensayo por parte de un laboratorio independiente.

 Los principales ensayos realizados son:

 o Determinación de la humedad mediante secado o calcinación

 o Determinación de la composición de la muestra

Los ensayos pueden llevarse a cabo mediante una gran variedad de técnicas que posiblemente llevarán a la obtención de resultados similares. Es habitual, por ejemplo, un ensayo al fuego (recogida sobre Pb) seguido de una separación del Pb mediante copelación. Se realiza una disolución del residuo de Pt, Pd, Rh mediante agua regia (HBr/Br2). Finalmente se realiza la determinación de trazas de metales preciosos por espectroscopía.[35]

- **Fundido y refinado.** Existen diferentes procedimientos para la recuperación de los metales preciosos aplicables a los convertidores catalíticos. Los principales son: los basados en procesos pirometalúrgicos y los que lo hacen en procesos hidrometalúrgicos. Las alternativas pirometalúrgicas suelen ser aplicadas a flujos de material de concentraciones elevadas en MGP, e implican altas temperaturas como la calcinación y el fundido. La hidrometalurgia, sin embargo, se utiliza en flujos menos concentrados y consiste en una combinación de procesos químicos como la lixiviación, las extracciones mediante disolventes, la precipitación y el electrorefinado. No obstante, en numerosos casos se emplean los procesos correspondientes a ambos métodos combinados entre sí, tanto en la concentración de los metales preciosos como en su separación. Una buena opción, utilizada por muchas de las empresas dedicadas a este trabajo son los procesos basados en la metalurgia compleja del plomo, cobre y níquel, usando estos metales base como colectores de metales preciosos y otros metales denominados “impurezas”, como antimonio, bismuto, selenio, telurio e indio.

 Las operaciones de reciclado propuestas, vendrán definidas por dos procesos principales: [36]
- **Operaciones de Metales Preciosos.** En lo referente a los convertidores catalíticos gastados, la ruta del Cu será la preferida, por lo que los metales preciosos serán recogidos sobre Cu. Las principales operaciones de este tipo se llevarán a cabo en: el fundidor, la planta de lixiviación del Cu y la de electrorefinado y la refinería de metales preciosos.

En primer lugar se procederá a la alimentación del **fundidor** mediante plomo, cobre y los materiales complejos que contienen los metales preciosos. El papel del fundidor es separar la escoria de plomo y el cobre impuro. El baño del fundido suele utilizar una técnica de combustión de lanza sumergida, lo cual implica aire inyectado, oxígeno y combustible por debajo del baño líquido de escoria. La carga se funde y desescoria separando los metales preciosos en lingotes de cobre, de la mayoría de los otros metales concentrados en una escoria de plomo, tratada más exhaustivamente en lo que podríamos llamar Operaciones de los Metales Base.

Los lingotes de Cu serán enviados a la planta de lixiviación y electrorefinado. El proceso de *lixiviación* es una extracción sólido-líquido y consiste en la separación de metales valiosos normalmente mediante un ácido o bien a veces con un alcalino. La lixiviación dispondrá ciertos elementos en disolución y otros los mantendrá insolubles, los cuales se filtrarán posteriormente. La torta del filtro probablemente se deberá volver a lavar con el objetivo de liberarla de impurezas indeseadas, como es el caso de ciertos componentes insolubles que cristalizan y permanecen en la parte insoluble hasta que desaparezcan al limpiar. La disolución normalmente debe purificarse mediante la adición de polvo de zinc o de aluminio, o bien cambiando el pH o la temperatura, mientras que el precipitado se filtra.

En el **electrorefinado o refinado electrolítico**, el cobre obtenido se utiliza como ánodo de una célula electrolítica que utiliza como electrolito el sulfato de cobre. De ese modo, el cobre puro se deposita en el cátodo mientras que los metales preciosos caen al fondo de la célula y se recogen en forma de lodos. Estos lodos serán enviados a la refinería de metales preciosos.

El lodo de metales preciosos se trata **químicamente** para recuperar los distintos metales. Los MGP pueden recuperarse disolviéndolos en plomo fundido, que tras la copelación se trata con ácido nítrico y deja un residuo que contendrá el Pt, Pd y Rh. Estos metales serán separados selectivamente por precipitación. A continuación, los precipitados de metales preciosos se incinerarán y purificarán con los solventes adecuados las veces necesarias hasta recoger los MGP en forma de esponja.

- **Operaciones de Metales Base.** Sus principales pasos son el horno de plomo, el refinado del plomo y el refinado de metales especiales.

El **horno de plomo** reduce la escoria de plomo oxidada procedente del fundidor junto
a la materia prima terciaria de alto contenido en plomo y los transforma en lingotes de plomo impuro, con níquel, cobre y escoria agotada. La mata de cobre es devuelta al fundidor. Después de extraer el speiss de níquel (mezcla de arseniuros y antimoníuros de níquel producidos en el proceso pirometalúrgico) mediante lixiviación, el residuo de metales preciosos restante es enviado al horno de copelación de la refinería. Los metales no preciosos son devueltos al horno de plomo, mientras que los metales preciosos serán incorporados al flujo de refinado correspondiente. La escoria agotada del horno se utiliza en el mundo de la construcción ya que está físicamente calibrada para su uso en la industria del hormigón o como sustancia para la fortificación de diques.

Los lingotes de plomo impuro que incluyen la mayor parte de los metales no preciosos serán tratados en las refinerías de plomo. Este proceso de purificación del plomo generará residuos metálicos especiales. Estos son, junto a otros flujos metálicos obtenidos de las Operaciones de Metales Preciosos, refinados más a fondo hasta convertirse en metales puros y sales metálicas en refinerías de metales para producir indio, selenio, telurio y antimonio de calidad.

El proceso de reciclado propuesto para catalizadores de motocicletas es sólo una de las posibilidades existentes. La mayor parte de los pasos seguidos, excepto la separación del escape, podrían también ser válidos para los convertidores catalíticos de los automóviles. Sería pues un proceso adecuado para su aplicación en plantas de reciclado de catalizadores de vehículos (incluyendo los de motocicleta). Estas plantas podrían incluir todos los pasos desde la recepción de los escapes (o los catalizadores si la separación escape-catalizador se ha realizado en la instalación de recogida) al refinado y separación de los MGP.

Sin embargo, en la actualidad los catalizadores suelen pasar por diferentes plantas dedicadas a diferentes procesos dentro del reciclado. Muchas de las empresas dedicadas al refinado de metales preciosos, por ejemplo, reciben materia prima para incorporar al flujo de refinado, que proviene de diferentes fuentes que pueden ser catalizadores agotados, convertidores catalíticos, catalizadores industriales, material eléctrico y electrónico, etc.. Cada uno de estos seguirá unos pasos iniciales diferentes y entrará en un punto distinto en el proceso de refinado. La elección del punto óptimo de entrada en este flujo es el resultado de la optimización de la contribución de varios parámetros sobre el coste, el rendimiento y el tiempo, tales como los constituyentes exactos del material, su forma física (importante para la manipulación y el procesado), la capacidad del equipo, etc.. Dado que estos otros flujos contendrán también otros metales preciosos como Ag, Au, Ru, Ir, etc., los procesos finales de separación de los metales pueden diferir también de los planteados en esta propuesta.
10.5. Análisis económico de un proceso viable.

10.5.1. Valor intrínseco medio del catalizador.

Los precios de los MGP responden principalmente a factores de oferta y demanda, como ocurre con otros metales no preciosos. Sin embargo, dado que la oferta de éstos es muy limitada, los precios son mucho más volátiles que los de otros metales industriales. Los factores clave que pueden influir en estos precios son las políticas de los principales países productores particularmente Sudáfrica y la Federación de Rusia; el tamaño de las reservas mineras y la situación económica en los principales países consumidores, como Japón, Estados Unidos y Europa. Los precios de otros metales preciosos también pueden jugar un papel importante en el mecanismo de fijación de precios, ya que puede haber efectos de sustitución entre ellos.

El principal precio de referencia internacional para los MGP es el London Fix. La cotización se realiza dos veces al día y la mayoría de los tratos se basan en este precio. El precio de referencia (fixing) se transmite por las agencias de prensa internacional y se usa como referencia por los industriales y productores de todo el mundo.

Los valores en el mercado del platino, el rodio y el paladio a fecha de 11 de Mayo de 2006 son:

<table>
<thead>
<tr>
<th></th>
<th>PLATINO</th>
<th>PALADIO</th>
<th>RODIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>322.233,67 € / Kg.</td>
<td>9.860,30 € / Kg.</td>
<td>127.132,79 € / Kg.</td>
</tr>
</tbody>
</table>

|Tabla.10.5.1.1. Valores de MGP en el mercado|

Volviendo a la GPR 50cc Racing, sabemos que el catalizador de ésta es de substrato metálico como la mayoría de las unidades para motocicleta. Sus características técnicas son:

<table>
<thead>
<tr>
<th>Nº celdas / pulg²</th>
<th>Espesor de pared (mm)</th>
<th>Dimensiones Ø mm x mm</th>
<th>Volumen (litros)</th>
<th>Carga en MGP g / pie³</th>
<th>Proporción de MGP Pt / Pd / Rh</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.065</td>
<td>62 x 80</td>
<td>0.241</td>
<td>35</td>
<td>5 / 5 / 1</td>
</tr>
</tbody>
</table>

|Tabla.10.5.1.2. Características técnicas del catalizador estudiado.|

La carga de MGP en catalizadores para motocicletas suele oscilar entre 10-50 g / pie³, el convertidor de la motocicleta escogida posee una carga intermedia (35 g / pie³), por lo que se considera adecuado tomarlo como modelo.
Las cantidades que el catalizador contiene de estos metales pueden ser calculadas de la forma siguiente:

- Sabiendo que la carga en MGP es de 1,24 g / l³ y el volumen del catalizador es de 0,241 litros, es fácil encontrar el peso en gramos de MGP presentes:

 \[1,24 \text{ g l}^{-1} \times 0,241 \text{ l} = 0,3 \text{ gramos de MGP} \]

- Teniendo en cuenta la proporción de cada metal, las cantidades de cada uno de estos metales serán:

<table>
<thead>
<tr>
<th>Metal</th>
<th>Cantidad (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platino</td>
<td>0,136</td>
</tr>
<tr>
<td>Paladio</td>
<td>0,136</td>
</tr>
<tr>
<td>Rodio</td>
<td>0,027</td>
</tr>
</tbody>
</table>

Con esto se podría estimar que el valor intrínseco medio del catalizador sólo en lo que se refiere a su pequeño contenido (0,3 g) en metales preciosos es de:

- Platino: 4,38 €
- Paladio: 1,34 €
- Rodio: 3,43 €

TOTAL. 9,15 €

aunque siempre se debe tener en cuenta que se trata de valores aproximados.

Este elevado valor de los MGP en el mercado los hace susceptibles de ser recuperados a partir de los residuos que los contienen.

10.5.2. Cálculo aproximado del número de catalizadores para desguace.

Según el proceso de reciclado propuesto, a la planta de reciclado llegará el tubo de escape entero, la parte que quede de él (siempre y cuando conserve en su interior el catalizador), o sólo el catalizador si la separación se ha llevado a cabo en la instalación de recogida. El escape se va a recoger principalmente para reciclar los metales preciosos, a pesar de que el resto de los materiales que lo conforman se aprovechen para ser incorporados de nuevo en el flujo de la materia prima (en el caso del acero) y como materiales para la construcción (en el caso de la cerámica). Por ello, es importante remarcar que el estado del escape (en el caso de que llegue sin separar al centro de reciclado) y de la carcasa no va a influir en el precio que se va a pagar por el mismo.

Puesto que los catalizadores van alojados en el mismo tubo de escape, para evitar movimientos y por tanto posibles vibraciones que acortarían considerablemente su vida útil (posible desprendimiento del washcoat) se encuentran soldados a éste. Partiendo del caso en que el escape está deteriorado y no es posible su venta como recambio, no será importante dañarlo al
separarlo del resto de la moto y del catalizador, consiguiendo tiempos de separación muy pequeños.

Los catalizadores que llegan a las empresas procederán, prácticamente en su totalidad, de motocicletas siniestradas o retiradas del servicio por su edad y el deterioro de sus componentes. Son por tanto, motocicletas dadas de baja.

Tomando datos estadísticos de la DGT se ha realizado una estimación del número de bajas de los próximos años, analizando la relación existente entre las bajas de motocicletas y el número de matriculaciones que se realizan cada año. Para ello, ha sido necesario comparar los datos sobre el parque anual, las matriculaciones y el número de bajas de motocicletas para los años 1987 a 2004, datos que se presentan a continuación.

<table>
<thead>
<tr>
<th>AÑO</th>
<th>PARQUE</th>
<th>MATRICULACIONES</th>
<th>BAJAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº MOTOCICLETAS</td>
<td>Nº MOTOCICLETAS</td>
<td>Nº MOTOCICLETAS</td>
</tr>
<tr>
<td>1.987</td>
<td>821.326</td>
<td>60.792</td>
<td>17.561</td>
</tr>
<tr>
<td>1.988</td>
<td>885.400</td>
<td>80.550</td>
<td>16.077</td>
</tr>
<tr>
<td>1.989</td>
<td>975.778</td>
<td>107.673</td>
<td>17.936</td>
</tr>
<tr>
<td>1.990</td>
<td>1.073.457</td>
<td>118.525</td>
<td>20.753</td>
</tr>
<tr>
<td>1.991</td>
<td>1.174.420</td>
<td>118.788</td>
<td>20.875</td>
</tr>
<tr>
<td>1.992</td>
<td>1.251.879</td>
<td>100.596</td>
<td>23.557</td>
</tr>
<tr>
<td>1.993</td>
<td>1.278.695</td>
<td>50.734</td>
<td>24.086</td>
</tr>
<tr>
<td>1.994</td>
<td>1.287.850</td>
<td>35.150</td>
<td>24.219</td>
</tr>
<tr>
<td>1.995</td>
<td>1.301.180</td>
<td>34.684</td>
<td>22.893</td>
</tr>
<tr>
<td>1.996</td>
<td>1.308.208</td>
<td>31.217</td>
<td>23.497</td>
</tr>
<tr>
<td>1.997</td>
<td>1.326.333</td>
<td>41.872</td>
<td>23.097</td>
</tr>
<tr>
<td>1.998</td>
<td>1.361.155</td>
<td>56.152</td>
<td>23.613</td>
</tr>
<tr>
<td>1.999</td>
<td>1.403.771</td>
<td>68.670</td>
<td>26.114</td>
</tr>
<tr>
<td>2.000</td>
<td>1.445.644</td>
<td>72.075</td>
<td>28.953</td>
</tr>
<tr>
<td>2.001</td>
<td>1.483.442</td>
<td>64.196</td>
<td>29.224</td>
</tr>
<tr>
<td>2.002</td>
<td>1.517.208</td>
<td>63.416</td>
<td>30.726</td>
</tr>
<tr>
<td>2.003</td>
<td>1.513.526</td>
<td>77.496</td>
<td>31.142</td>
</tr>
<tr>
<td>2.004</td>
<td>1.612.082</td>
<td>123.195</td>
<td>23.919</td>
</tr>
</tbody>
</table>

Tabla.10.5.2.1. Parque, matriculaciones y bajas de motocicletas durante los últimos años
(estos datos no incluyen los correspondientes a ciclomotores)

Con esta información de base se ha estimado que el incremento del número de matriculaciones es de un 8,31 % anual. Este valor se ha obtenido calculando la media aritmética de los crecimientos anuales de los dieciocho últimos años eliminando los valores extremos. A su vez, el número de bajas anuales es el 38,67 % del número de matriculaciones realizadas ese mismo año. Este valor se ha obtenido mediante el cálculo de la media aritmética del número de motocicletas que se dan de baja cada año en relación con las matriculaciones de los últimos dieciocho años, eliminando, también, los valores extremos.
En la siguiente tabla se presenta la evolución de la vida media de las motocicletas que causaron baja en un año determinado.

<table>
<thead>
<tr>
<th>AÑO DE BAJA</th>
<th>VIDA MEDIA (años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.980</td>
<td>17,00</td>
</tr>
<tr>
<td>1.990</td>
<td>18,00</td>
</tr>
<tr>
<td>1.995</td>
<td>16,69</td>
</tr>
<tr>
<td>1.996</td>
<td>16,55</td>
</tr>
<tr>
<td>1.997</td>
<td>16,32</td>
</tr>
<tr>
<td>1.998</td>
<td>16,08</td>
</tr>
<tr>
<td>1.999</td>
<td>15,26</td>
</tr>
<tr>
<td>2.000</td>
<td>15,09</td>
</tr>
<tr>
<td>2.001</td>
<td>14,99</td>
</tr>
<tr>
<td>2.002</td>
<td>14,71</td>
</tr>
<tr>
<td>2.003</td>
<td>14,50</td>
</tr>
<tr>
<td>2.004</td>
<td>15,08</td>
</tr>
</tbody>
</table>

Tabla 10.5.2.2. Evolución de la vida media de las motocicletas

Se aprecia que la edad media de las motocicletas es cada vez menor, tendencia que es previsible que continúe dada la coyuntura económica actual de España. Por este motivo se ha considerado oportuno incrementar el porcentaje anterior en un 1 por 100 cada año. Así, en el periodo considerado, la relación bajas-matriculaciones pasará del 38,67 % en el año 2005 al 48,67 % en el año 2015. Este cálculo da como resultado los siguientes valores estimados de matriculaciones y bajas anuales para los años 2005 a 2015.

<table>
<thead>
<tr>
<th>AÑOS</th>
<th>MATRICULACIONES</th>
<th>BAJAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>133.433</td>
<td>51.598</td>
</tr>
<tr>
<td>2006</td>
<td>144.521</td>
<td>57.331</td>
</tr>
<tr>
<td>2007</td>
<td>156.530</td>
<td>63.661</td>
</tr>
<tr>
<td>2008</td>
<td>169.538</td>
<td>70.647</td>
</tr>
<tr>
<td>2009</td>
<td>183.627</td>
<td>78.354</td>
</tr>
<tr>
<td>2010</td>
<td>198.886</td>
<td>86.854</td>
</tr>
<tr>
<td>2011</td>
<td>215.414</td>
<td>96.225</td>
</tr>
<tr>
<td>2012</td>
<td>233.314</td>
<td>106.555</td>
</tr>
<tr>
<td>2013</td>
<td>252.703</td>
<td>117.936</td>
</tr>
<tr>
<td>2014</td>
<td>273.702</td>
<td>130.474</td>
</tr>
<tr>
<td>2015</td>
<td>296.447</td>
<td>144.281</td>
</tr>
</tbody>
</table>

Tabla 10.5.2.3. Estimación del número de matriculaciones y bajas de motocicletas para los años 2005 - 2015

Estas estimaciones contemplan una evolución basada en datos históricos existentes y no tiene en cuenta las consecuencias de factores puntuales como cambios en las normativas, o posibles
incrementos o rebajas del precio de los seguros, que pueden influir de forma notable en el aumento o reducción del número de matriculaciones o bajas.

Los catalizadores empezaron a aplicarse al sector de las dos ruedas en torno a 1.999. Si se considera el promedio de la vida media de las motocicletas que han causado baja en los últimos años (Tabla. 10.5.2.2.), se concluye que la vida media de una motocicleta es de 16 años. Teniendo esto en cuenta, las motocicletas matriculadas en 1.999 llegarán a su fin de vida útil en el año 2.015. No obstante, existen una serie de factores que no se han tenido en cuenta, tales como:

- En estos datos no están incluidos los valores correspondientes a los ciclomotores cuya presencia en el parque vehicular español y número de matriculaciones anual es muy superior al de las motocicletas y que también pueden utilizar catalizador para reducir los contaminantes emitidos (parque en 2004: 2.242.046 ciclomotores)

- Por otra parte se ha de tener en cuenta que existirán también motocicletas que lleguen a su fin de vida útil sin haberse dado de baja (abandono), así como motocicletas procedentes de otros países, cuyos escapes no puedan ser utilizados como recambios.

- No se han contemplado posibles stocks de motocicletas o escapes existentes en los desguaces en funcionamiento.

- No sólo llegarán a los centros de reciclado catalizadores pertenecientes a motocicletas retiradas por su edad y avanzado deterioro, sino que también pueden hacerlo de motocicletas siniestradas o accidentadas cuyos escapes hayan quedado inservibles, e incluso sólo los escapes dañados.

- Hay que tener en cuenta que a partir del año 2006 se espera una nueva normativa más exigente que la actual y que para adecuarse a ella es muy probable que se incorporen catalizadores en prácticamente todos los vehículos motorizados de dos ruedas, incluso en aquellos que para cumplir la Euro 2 no los necesitaban.

Todas estas circunstancias se estima que podrían generar un aumento considerable de los valores de MFUs generadas y por tanto de posibles catalizadores a reciclar. Sin embargo, no todas las motocicletas procedentes de este año contarán con catalizadores como sistema de reducción de emisiones. Por tanto, considerando una compensación de estos dos factores, se asume el valor de bajas hallado para el año 2.015 (144.281), como el número de catalizadores potencialmente reciclables en desguace. Se deduce así que para los desguaces en España el reciclado de los catalizadores de motocicletas en 2.015 puede generar unos ingresos aproximados, sólo en lo que a los metales preciosos de refiere, de:

\[
9,15 \text{ € / catalizador} \times 144.281 \text{ catalizadores} = 1.320.171 \text{ €}
\]

La separación del catalizador es una operación sencilla que requiere poco tiempo. Además
dado que la mayoría de las motocicletas utilizan substratos metálicos que pueden agregarse a la fracción metálica para ser reciclados refundiéndose, se obtiene un ingreso adicional. Por otro lado, la existencia de empresas dedicadas al reciclado de los convertidores catalíticos de automóviles y la posible incorporación del flujo de catalizadores resultantes de la MFUs, supone la no-necesidad de grandes inversiones para la ejecución de estas operaciones. Por todos estos motivos se concluye que la separación de catalizadores para su posterior reciclado es una operación rentable.
Conclusiones

El parque español de motocicletas ha experimentado en los últimos diez años un incremento continuo en consonancia con la bonanza económica experimentada. Entre 1994 con un parque de 1.287.850 motocicletas y 2.077.500 ciclomotores y el año 2004 con un parque de 1.612.082 motocicletas y 2.242.046 ciclomotores, el crecimiento ha sido del 25 % y del 8% respectivamente.

Consecuencia de este crecimiento junto al efecto multiplicador de las matriculaciones de motocicletas que ha tenido la equiparación del permiso de conducir B al A1 que entró en vigor el 19 de octubre de 2004, se prevé que en los próximos años aumenten de forma significativa las bajas de estos vehículos. Esto significaría un aumento en peso de la cifra de residuos generados.

Por otra parte el creciente interés en la reducción de los residuos presentes en vertedero ha desembocado en la creación de numerosas normativas que regulan la gestión de los residuos especiales, tales como equipos eléctricos y electrónicos, neumáticos y vehículos al fin de su vida útil. Los vehículos motorizados de dos ruedas, sin embargo, no han sido incluidos en ninguna de estas normativas, pero esta situación de aumento progresivo de las exigencias medioambientales hace prever que en un futuro próximo pasen a ser regulados legislativamente.

Dada la similitud entre los flujos de residuos generados por vehículos de dos y cuatro ruedas y estudiando el actual sistema de reciclado de los automóviles fuera de uso y su normativa, es posible la creación de una propuesta de gestión para motocicletas una vez alcanzado su fin de vida útil. Las fases seguidas serían muy similares (recogida, descontaminación, desmontaje, almacenamiento, fragmentación,…), eliminándose alguna etapa como la compactación, que no se considera necesaria debido a un volumen mucho menor que el del VFU.

Por otra parte la industria de la motocicleta, al igual que la de la automoción, pone cada vez más énfasis en aquellos materiales relacionados con la parte de la actividad de reciclaje actualmente considerada como emergente (plásticos, cauchos, etc.), donde se encuentran las mayores dificultades para el reciclaje y en presencia de substancias contaminantes que conducen a actividades de descontaminación o se enfrentan a futuras restricciones de uso o incluso prohibición.

En la actualidad, de las MFUs, sólo se recicla el 85 % en peso, procedente de las partes metálicas. La separación de plásticos de composiciones diferentes y de otros componentes no metálicos representa una de las posibilidades a la hora de conseguir objetivos de reciclaje crecientes. La cada vez mayor incorporación en las motocicletas de grandes superficies de recubrimiento fronto-laterales, denominadas carenados, fabricados con plásticos que generalmente son polipropilenos, parece una de las opciones más adecuadas a la hora de
plantear alternativas para el aumento de la tasa de reciclado. Todos estos componentes externos y por tanto fácilmente extraíbles, siguen como técnica más ecoeficiente la del reciclaje mecánico y representarán aproximadamente un 25 % en peso del total no reciclado.

Otro factor a tener en cuenta y que es también consecuencia del endurecimiento en las restricciones medioambientales a escala mundial, es la progresiva reducción de emisiones que se está llevando a cabo. El sector de las dos ruedas es uno de los más afectados y los métodos para crear una eficiente disminución del nivel de contaminantes emitidos están cada vez más presentes en el parque motociclístico. Uno de estos métodos es el uso de los llamados catalizadores, que son dispositivos que provocan reacciones catalíticas que eliminan las emisiones nocivas contenidas en los gases de escape. El reciclaje de estos componentes supondría también un incremento en la tasa de reciclado y también la recuperación de los metales preciosos que los forman. Además la previsión de nuevas normas anticontaminación hace pensar en una futura presencia del catalizador casi en la totalidad de las motocicletas. Esto unido a la posible integración de estos dispositivos en el flujo de reciclado existente de los convertidores catalíticos de automóviles, y al elevado valor de los MGP en el mercado, pronostica la rentabilidad económica de estos procesos. Aunque es importante resaltar que el mayor beneficio obtenido de esta gestión y de la gestión de las MFUs en general, es el respeto al medio ambiente y la colaboración eficaz con un desarrollo sostenible.
Agradecimientos

Quisiera expresar mi más sincero agradecimiento a todo el personal de la empresa Nacional Motor SAU - Derbi, y muy especialmente por su inestimable colaboración en la realización de este proyecto a:

- Joan Font
- Eva García
- Rosa Mª García
- Juan Carlos Ortiz
- Josep Pascual
- Florenci Torres

También quisiera dar las gracias al director de este proyecto Andrés Espuelas por darme la oportunidad de desarrollarlo y al ponente Antonio Herrero, por el asesoramiento y apoyo mostrados durante la realización del mismo.

Finalmente quisiera agradecer la paciencia y los buenos consejos de Bartolomé, mis padres, mi hermana Isabel y todas mis amigas.
Bibliografía

Referencias bibliográficas

[7] Referencia [4], p.12-20

[23] Referencia [11], p. 84-87

[27] Referencia [25], p. 284-285

[33] Referencia [1], p. 3.

Bibliografía complementaria

La siguiente bibliografía fue ambién consultada y aunque no ha sido citada se considera útil para la elaboración del proyecto.

