Resumen

En el presente estudio se analizan las implicaciones medioambientales y sanitarias que suponen los sistemas de refrigeración de instalaciones basadas en torres de refrigeración (TR) o condensadores evaporativos (CE).

Se presenta una descripción general de las torres de refrigeración y condensadores evaporativos: funcionamiento, tipología, componentes, mantenimiento, criterios de diseño, tratamientos, etc. Asimismo y considerando la relación directa que existe entre este tipo de instalaciones y los brotes epidémicos de legionelosis, se describen las características de la bacteria *Legionella ssp.* y los aspectos epidemiológicos y sanitarios asociados. Se explican de forma sucinta los brotes de legionelosis del barrio de la Barceloneta en Barcelona (2000), de Murcia (2001), de Mataró (2002) y del barrio de Santa Eulàlia en L'Hospitalet de Llobregat (2002).

Se detalla la legislación existente en materia de legionelosis y, en especial, los artículos referentes al control de las torres de refrigeración y condensadores evaporativos, catalogados por ley como instalaciones de alto riesgo.

El estudio se ha realizado en el municipio de l'Hospitalet de Llobregat, localidad en la que existe actualmente un control sistemático y preventivo de este tipo de instalaciones a través del servicio técnico del Negociat de Salut Pública de l'Ajuntament de L'Hospitalet. El presente estudio demuestra que el municipio ha experimentado un descenso notable del número de TR/CE y de actividades con estos tipos de instalaciones. En la mayoría de los casos, el descenso se debe a la sustitución de las TR/CE por sistemas alternativos basados en aerorefrigeración que no implican la generación de aerosoles a la atmósfera.

Finalmente, se exponen las consideraciones económicas reales que implican tener un condensador evaporativo en una empresa de L'Hospitalet y su posible sustitución por un equipo aeroenfriador. Este estudio refleja la viabilidad económica que supone este cambio, una vez recuperada la inversión inicial necesaria para comprar el equipo, debido a la reducción en los gastos que se derivan de su mantenimiento.
Sumario

RESUMEN ___________________________________________________ 1
SUMARIO ___________________________________________________ 3

1. INTRODUCCIÓN ........................................................................ 7
  1.1. Objetivos del proyecto ............................................................... 7
  1.2. Motivaciones ............................................................................ 7
  1.3. Alcance del proyecto ................................................................. 8

2. PRINCIPIOS BÁSICOS DE LOS CIRCUITOS DE REFRIGERACIÓN 9
  2.1. El agua como medio de refrigeración ........................................... 9
  2.2. Intercambio de calor en un circuito de refrigeración ....................... 9
  2.3. Tipos de circuito de refrigeración ............................................... 10
     2.3.1. Sistema de circuito abierto .................................................... 10
     2.3.2. Sistema de circuito cerrado .................................................. 10
     2.3.3. Sistema de circuito semiaabierto ........................................... 10
  2.4. Mecanismos de transferencia de calor ........................................ 10
     2.4.1. En intercambiadores de calor o baterías o radiadores .............. 11
     2.4.2. En torres de refrigeración o condensadores evaporativos .......... 11

3. TORRES DE REFRIGERACIÓN Y CONDENSADORES EVAPORATIVOS 13
  3.1. Funcionamiento de una torre de refrigeración .............................. 13
  3.2. Tipos de torres de refrigeración, descripción y características .......... 14
     3.2.1. Según el método de intercambio agua-aire .............................. 14
     3.2.2. Según el tipo de tiro ............................................................ 16
     3.2.3. Según el sentido del flujo de aire respecto al agua .................... 19
  3.3. Componentes de las torres de refrigeración .................................. 20
     3.3.1. Estructura soporte ............................................................... 20
     3.3.2. Carcasa ............................................................................. 20
     3.3.3. Difusor ............................................................................. 20
     3.3.4. Separadores de gotas .......................................................... 21
     3.3.5. Pulverizadores ................................................................. 22
     3.3.6. Relleno ............................................................................. 22
     3.3.7. Ventiladores ................................................................. 23
     3.3.8. Balsa de agua fría ............................................................. 23
  3.4. Mantenimiento de la eficiencia del sistema. Tratamiento de aguas ...... 23
| 3.4.1. | Evaporación y purga | 23 |
| 3.4.2. | Control del agua de recirculación | 24 |
| 3.4.2.1. | Incrustaciones | 24 |
| 3.4.2.2. | Depósitos de lodos y microorganismos | 25 |
| 3.4.2.3. | Corrosión | 28 |
| 3.5. | Evolución de los sistemas de refrigeración | 30 |
| 3.6. | Criterios de diseño de torres de refrigeración y condensadores evaporativos para minimizar el riesgo de proliferación de *Legionella* | 32 |
| 3.7. | Propuestas de tratamiento para combatir la *Legionella* en torres de refrigeración | 34 |
| 3.7.1. | Tratamiento químico | 34 |
| 3.7.2. | Tratamiento bactericida | 34 |
| 3.7.3. | Revisión, limpieza y desinfección | 34 |
| 4. | LEGIONELOSIS Y SISTEMAS DE REFRIGERACIÓN | 37 |
| 4.1. | Biología y ecología del agente causal *Legionella* spp. | 37 |
| 4.1.1. | Aspectos microbiológicos | 38 |
| 4.1.2. | Características ecológicas | 38 |
| 4.1.3. | Determinación y enumeración de *Legionella* | 40 |
| 4.1.4. | Distribución (Vía de entrada al organismo) | 42 |
| 4.1.5. | Mecanismo de patogenicidad | 42 |
| 4.1.6. | Población de riesgo | 43 |
| 4.1.7. | Transmisión e infección por *Legionella* | 44 |
| 4.2. | Importancia Sanitaria | 45 |
| 4.2.1. | Introducción | 45 |
| 4.2.2. | Tipos de enfermedades producidas por *Legionella* spp. | 45 |
| 4.2.3. | Síntomas de la enfermedad | 46 |
| 4.2.4. | Tratamiento de la enfermedad | 46 |
| 4.2.5. | Pronóstico y recuperación de la enfermedad | 46 |
| 4.2.6. | Epidemiología | 47 |
| 4.2.7. | Objetivos de salud y de disminución de riesgo para el año 2010 | 47 |
| 4.2.8. | Objetivos operacionales del Pla de salut 2002-2005 | 47 |
| 4.3. | Cadena epidemiológica de la enfermedad | 49 |
| 4.3.1. | Entrada en circuitos de agua | 49 |
| 4.3.2. | Multiplicación o amplificación | 49 |
| 4.3.3. | Dispersión | 49 |
| 4.3.4. | Inhalación | 50 |
| 4.4. | Sistemas de vigilancia epidemiológica | 50 |
| 4.4.1. | Consideraciones generales | 50 |
Problemática sanitaria y ambiental de las torres de refrigeración y condensadores evaporativos. 
Estudio y control de la legionelosis en L’Hospitalet de Llobregat.

4.4.2. Sistemas de información ................................................................. 51
4.4.3. Estudio epidemiológico ................................................................. 52
4.5. Instalaciones de riesgo ................................................................. 53
   4.5.1. Instalaciones de alto riesgo (Art. 2.2) ........................................... 53
   4.5.2. Instalaciones de bajo riesgo ....................................................... 53
   4.5.3. Instalaciones de riesgo en terapia respiratoria ......................... 54

5. BROTES EPIDÉMICOS ................................................................. 55
5.1. Actuaciones ante los brotes .......................................................... 58
   5.1.1. Estudio epidemiológico ............................................................. 58
   5.1.2. Estudio ambiental ................................................................. 58
   5.1.3. Diagnóstico microbiológico del/los caso/s ......................... 59
   5.1.4. Tratamiento de las instalaciones y corrección de defectos estructurales ..... 60
5.2. Brote de la Barceloneta (Barcelona) ........................................... 63
5.3. Brote de Murcia ................................................................. 65
5.4. Brote de Mataró ................................................................. 67
5.5. Brote de Santa Eulàlia (L’Hospitalet de Llobregat) .................... 69

6. LEGISLACIÓN RELACIONADA CON LA PREVENCIÓN DE LA 
   LEGIONELOSIS (ÁMBITOS AUTÓNOMO Y NACIONAL) ............ 73
6.1. Decret 352/2004 ..................................................................... 77

7. ESTUDIO DEL CENSO DE TORRES DE REFRIGERACIÓN Y 
   CONDENSADORES EVAPORATIVOS EN L’HOSPITALET DE 
   LLOBREGAT (BARCELONA) ..................................................... 83
   7.1. Evolución del censo municipal de las torres de refrigeración y 
        condensadores evaporativos ................................................. 83
   7.2. Control de la legionelosis en L’Hospitalet .................................. 86

8. CONSIDERACIONES ECONÓMICAS ........................................ 97
   8.1. Coste del mantenimiento de una torre de refrigeración............. 97
   8.2. Consideraciones económicas para torres de refrigeración en instalaciones 
        frigoríficas ............................................................................ 99
   8.3. Coste del mantenimiento de un sistema aerorefrigerador .......... 99
   8.4. Comparación económica entre dos sistemas de refrigeración: torre de 
        refrigeración y aerorefrigerador ........................................ 99

9. MEDIO AMBIENTE ................................................................. 105
9.1. Residuos ........................................................................................................ 105
9.2. Aguas ........................................................................................................... 106
9.3. Ruido ........................................................................................................... 107
9.4. Contaminación atmosférica ...................................................................... 108

CONCLUSIONES .......................................................................................... 109

BIBLIOGRAFÍA .......................................................................................... 111
1. Introducción

1.1. Objetivos del proyecto

Los objetivos fundamentales en los que se basa el proyecto son los siguientes:

- Exponer la problemática sanitaria y ambiental existente con las torres de refrigeración y condensadores evaporativos como una de las principales fuentes de legionelosis.

- Analizar el censo de actividades con torres de refrigeración y condensadores evaporativos del municipio de L'Hospitalet y su evolución temporal.

- Diagnosticar las implicaciones económicas generadas por un sistema de refrigeración basado en un condensador evaporativo y su posible sustitución por un equipo aerorefrigerador.

1.2. Motivaciones

Desde principios del año 2004 he podido trabajar junto al equipo de inspectores técnicos y demás profesionales que forman parte del Negociat de Salut Pública del Ajuntament de L'Hospitalet a través de una beca de colaboración entre la UPC y el citado ayuntamiento. Así he llegado a desarrollar, entre otras tareas, un seguimiento específico de control de las actividades catalogadas de riesgo de propagación de legionelosis. Esto me ha brindado la oportunidad de introducirme en buena parte de las industrias que se encuentran en la ciudad, y conocer en detalle las instalaciones que disponen de torres de refrigeración y condensadores evaporativos.

Por otra parte, la extensa y útil base bibliográfica que se dispone actualmente en referencia a la Legionella y la legionelosis permite entender mejor un problema sanitario de gran repercusión mediática. No obstante, existen aún temas importantes apenas considerados en la bibliografía, como los aspectos medioambientales a considerar desde los sistemas de refrigeración (residuos, aguas residuales, emisiones y ruido) o las implicaciones económicas que conllevan estos sistemas y su posible sustitución. El análisis de estos aspectos y otros relacionados, así como la importancia de los sistemas de refrigeración en la industria son motivos suficientes para iniciar y considerar un estudio de estas características.
1.3. Alcance del proyecto

Los frecuentes brotes de legionelosis detectados los últimos años ponen de manifiesto que existe una problemática de salud pública que implica directamente a los sistemas de refrigeración que utilizan agua como medio de enfriamiento: torres de refrigeración y condensadores evaporativos.

En este estudio se pretende analizar las implicaciones medioambientales, sanitarias y económicas que supone el uso de estos sistemas de refrigeración.

Se expone un estudio in situ de la existencia de estos equipos en L’Hospitalet de Llobregat así como la problemática que vienen generando año tras año; se analiza el censo de empresas que disponen de alguno de ellos, así como su evolución en los últimos cuatro años (2001-2004). También se explica el seguimiento y la metodología llevados a cabo durante el último brote detectado en este municipio, que corresponde al verano del año en curso.

Se concluye con un análisis económico de los gastos que implica tener una torre de refrigeración o condensador evaporativo y se hace una evaluación de una posible sustitución por un equipo aeroenfriador.
2. Principios básicos de los circuitos de refrigeración

2.1. El agua como medio de refrigeración

La mayor parte de las industrias utilizan agua como medio de refrigeración. Las principales razones para utilizar agua son su disponibilidad en la mayor parte de zonas industrializadas y su elevado calor específico.

El agua enfriada tiene principalmente dos aplicaciones:

- Refrigeración de maquinaria.
- Refrigeración de condensadores para instalaciones frigoríficas.

En los últimos años, debido a la menor disponibilidad del agua y a las restricciones ambientales, se han impuesto cambios en el diseño de los sistemas de refrigeración.

2.2. Intercambio de calor en un circuito de refrigeración

La transferencia de calor consiste en el intercambio de calor entre dos materiales, el más caliente es la fuente y el más frío es el receptor.

Normalmente, la fuente no entra en contacto directo con el receptor sino que la transferencia de calor se realiza a través de una superficie, en general metálica y conductor del calor. Tanto la superficie como el fluido y el material a enfriar están encerrados en un recipiente llamado intercambiador de calor.

En la mayoría de los intercambiadores de calor industriales, tanto la fuente como el receptor son líquidos. Por otra parte si la fuente es vapor de un gas, el intercambiador se denomina condensador.

El tipo más simple de intercambiador de calor está constituido por un tubo o tubería concéntrica situada en el interior de otro tubo de mayor tamaño que lo envuelve. Este tipo de intercambiador de calor se conoce como intercambiador de doble tubo.

Otro tipo de intercambiador de calor simple está constituido por una camisa que envuelve un reactor químico. El agua fría circula entre el espacio de las dos paredes del reactor, eliminando el calor producido en la reacción química.
Existen otros tipos de intercambiadores de calor más sofisticados que ofrecen más superficie de contacto y una transferencia de calor más eficaz, aumentando así el rendimiento del proceso; como son el intercambiador de placas o el intercambiador de espiral.

2.3. **Tipos de circuito de refrigeración**

Existen varios tipos de circuitos de refrigeración:

2.3.1. **Sistema de circuito abierto**

Es aquel en el que se toma el agua del medio natural, preferiblemente fría, se pasa a través de un intercambiador de calor donde se calienta, y finalmente se devuelve al medio natural.

Por ejemplo: central nuclear.

2.3.2. **Sistema de circuito cerrado**

Es aquel en el que fluido receptor resta confinado en un anillo estanco, se pasa a través de la fuente, calentándose, se pone en contacto con el intercambiador disipándose el calor y por último vuelve otra vez a efectuar el ciclo.

Por ejemplo: radiador del coche.

2.3.3. **Sistema de circuito semiabierto**

En éste, el que el agua caliente se enfriá al hacerla pasar a contracorriente a través del aire en una torre de refrigeración. El agua una vez realizada su función es recirculada. Debido a una pérdida de agua por evaporación, es necesario reponer agua para mantener el volumen del circuito.

Por ejemplo: circuito de climatización con torre de refrigeración o dispositivo similar.

2.4. **Mecanismos de transferencia de calor**

Una vez que el fluido receptor ha efectuado su función de enfriamiento de la fuente, el calor se debe disipar. Esto se realiza transfiriendo este calor al medio ambiente. Los procesos más habituales de transferencia de calor entre una fuente y un receptor, en los intercambiadores de calor, son la **conducción**, la **convección** y la **evaporación**.
2.4.1. **En intercambiadores de calor o baterías o radiadores**

El calor de la fuente traspasa a la superficie del intercambiador de calor por conducción y es eliminado de dicha superficie por contacto directo con el receptor frío por conducción.

2.4.2. **En torres de refrigeración o condensadores evaporativos**

Existen dos mecanismos de transferencia de calor por contacto íntimo:

- Por conducción entre el aire exterior y el agua o receptor caliente debido al proceso de intercambio de calor con la fuente. Este mecanismo supone aproximadamente entre un 15 y un 25 % del calor total disipado en estos dispositivos y provoca un calentamiento del aire.

- Por evaporación de parte del agua que cambia de fase y se transforma de fase líquida a vapor, que se elimina a la atmósfera junto con el aire exterior caliente. El resto de agua no evaporada se enfía. Este mecanismo supone un 75 - 85 % del calor total disipado y por cada kg. de agua evaporada se eliminan alrededor de 555 kcal.
3. Torres de refrigeración y condensadores evaporativos

Se trata de dispositivos semiabiertos, diseñados para enfriar el agua mediante su evaporación en contacto con el aire ambiente.

3.1. Funcionamiento de una torre de refrigeración

El enfriamiento se realiza por contacto aire-agua. El contacto entre el agua a enfriar y el aire ambiente que circula a contracorriente se realiza a través del relleno en el seno de la torre de refrigeración.

El contacto aire-agua depende del sistema de relleno que se utilice, y se realiza a través de una fina pulverización de gotas de agua en el aire, o bien a partir de una delgada película muy extendida de agua, o una mezcla de las dos. Se pretende que el contacto agua–aire sea lo más íntimo posible y en consecuencia se optimice el proceso de transferencia de calor y evaporación entre las dos fases.

El agua a la temperatura más elevada llega a la parte superior de la torre cayendo en cascada sobre el relleno en forma de pequeñas gotas pulverizadas finamente sobre un dispositivo formado por un nido de abeja, constituido por un material plástico, o un entramado de hilos de plástico (sistema de goteo). En este proceso se forman aerosoles que son partículas de agua de un tamaño comprendido entre 1 y 10 micras. Para minimizar su emisión a la atmósfera, las torres de refrigeración han de tener en su parte superior dispositivos separadores de gotas de alta eficacia, los cuales incorporan unas pestañas que agrupan el aerosol en pequeñas gotas haciendo caer de nuevo a la torre. Estas pestañas obligan al aire a efectuar cambios bruscos de dirección.

El principio básico de operación de las torres de refrigeración es la eliminación del calor del agua a través de la evaporación de una parte del caudal recirculado.

Un ejemplo de este proceso se produce cuando nos frotamos las manos con alcohol y sentimos una sensación de frío. Esta sensación es producto de la evaporación del alcohol, que para cambiar de fase ha captado el calor necesario de las manos.

En una torre de refrigeración, la evaporación se produce porque las pequeñas gotas de la superficie del agua son arrastradas por el aire y pasan del estado líquido al vapor. La masa de agua circundante desprende el calor necesario para que unas pocas gotas se evaporen. Al ceder este calor, la masa de agua no evaporada se enfria, mientras las gotas usan el
calor cedido para cambiar de fase. Por otra parte el aire circulante se calienta por conducción.

En resumen, una pequeña porción de agua se evapora para enfriar el resto y el aire sirve de vehículo al agua que se evapora para salir del sistema.

En una torre de refrigeración, este proceso se realiza de forma forzada, es decir, se hace evaporar cierta cantidad de agua poniéndola en contacto con el aire a través de un elemento de relleno que hace de superficie de contacto.

Es importante resaltar que una torre de refrigeración no puede enfriar el agua por debajo de la temperatura de bulbo húmedo del aire circundante. Por otro lado, una torre que trabajase con un aire de aportación al 100% de humedad relativa no podría enfriar prácticamente, y además el aerosol generado podría ser estable durante mucho tiempo dentro del aire, al no haber evaporación.

En condiciones normales de funcionamiento, las torres se diseñan con el fin de conseguir saltos térmicos del orden de 5 a 10°C. La temperatura de entrada del agua suele estar dentro del margen 25 - 45°C y la de salida entre 20 y 40°C. En el caso de aplicaciones especiales se fabrican torres que admiten temperatura de entrada superior a 65°C.

3.2. **Tipos de torres de refrigeración, descripción y características**

Las torres de refrigeración se pueden clasificar en diferentes grupos:

3.2.1. **Según el método de intercambio agua-aire**

- **Torres a circuito abierto:**

  El agua a refrigerar está en contacto directo con el aire dentro de la torre. El agua procedente de la fuente de calor se introduce a través de una conexión de entrada y es distribuida a través del relleno en forma pulverizada. Simultáneamente, el aire del ambiente es inducido o forzado a través de la torre, provocando que una pequeña porción del agua se evapore. Esta evaporación extrae calor del agua restante. El agua enfriada cae en la bandeja de la torre, desde donde es devuelta a la fuente de calor. El circuito es abierto dado que el agua que va a ser enfriada está en contacto con la atmósfera.
- Torre a circuito cerrado:

El agua a refrigerar pasa por el interior de un haz tubular (intercambiador de calor) situado dentro de la torre. El intercambiador es refrigerado por el agua recirculante de la torre. El aire es simultáneamente forzado o inducido a través del serpentín provocando que una porción del agua del circuito secundario se evapore. Esta evaporación absorbe calor del fluido que hay en el interior del serpentín. El agua del sistema secundario cae en la bandeja desde donde es bombeada sobre el serpentín de nuevo. Este es llamado circuito cerrado ya que el fluido a ser enfriado está en un circuito cerrado y no en contacto con la atmósfera.

Un condensador evaporativo funciona con el mismo principio exceptuando que hay un cambio de estado del vapor refrigerante el cual es condensado a líquido en el serpentín del intercambiador de calor. El calor se transmite desde el vapor, a través de las paredes...
de los tubos por conducción, hacia el agua que es continuamente rociada sobre la batería.

Fig. 3.2. Esquema de un condensador evaporativo
Fuente: DECSA.

De ahora en adelante, cuando en el texto se haga referencia a los condensadores evaporativos hay que sobrentender también que pueden tratarse de torres de refrigeración de circuito cerrado debido a la versatilidad que tiene este concepto dentro de la industria.

3.2.2. Según el tipo de tiro

- Torres de tiro natural:

La circulación del aire se efectúa de forma natural por convección.

Estas torres se emplean preferentemente en zonas cuyas condiciones climatológicas tienen una temperatura de bulbo húmedo baja (10-14°C como máximo). Otro requisito importante es que los caudales de agua a refrigerar sean muy grandes (entre 10.000 y 40.000 m³/h). Las dimensiones de estas torres varían entre 50 y 90 m de base y no superan los 100 m de altura. Un ejemplo de este tipo de instalación son las centrales energéticas.
- Torres de tiro mecánico:

Con el fin de reducir el tamaño y el costo de la inversión se diseñaron sistemas de impulsión del aire mediante ventiladores. Las torres de refrigeración de tiro mecánico, disponen de uno o más ventiladores. Otra ventaja de este sistema es la menor altura de bombeo necesaria para llevar, con la presión y el caudal dados, el agua hasta la parte superior del relleno, no viéndose afectado por la velocidad o la dirección del viento, como ocurre en las torres de tiro natural.

Asimismo se describen dos tipos de tiro mecánico:

- Torres de tiro forzado.

El ventilador se coloca en la parte inferior e impulsa el aire a través del relleno.

Fig. 3.3. Sección de una torre de refrigeración de tiro forzado
Fuente: Guía para la prevención de la legionelosis en instalaciones de riesgo. Comunidad de Madrid.
• Torres de tiro inducido.

El equipo mecánico actúa como elemento aspirante ocasionando una depresión a la salida del relleno que facilita el paso del aire ambiente. Los ventiladores se sitúan en la parte superior de la torre.
3.2.3. **Según el sentido del flujo de aire respecto al agua**

- Torres con flujo cruzado.

Ambas corrientes se mueven en direcciones perpendiculares entrando el aire por el lateral del intercambiador de calor (o los dos), y saliendo por la parte superior de la torre. El agua entra por la parte superior y descarga por la parte inferior.

- Torres con flujo a contracorriente.

Los dos fluidos entran en la torre por los extremos opuestos. Mientras el agua cae por gravedad, el aire asciende.

Las ventajas de la operativa en contracorriente son:
- Mayor eficiencia, ya que están diseñadas para enfriar hasta 2°C por encima de la temperatura de bulbo húmedo.

- Velocidad del aire alta.

3.3. **Componentes de las torres de refrigeración**

Los componentes principales de las torres son:

3.3.1. **Estructura soporte**

Armazón que sirve de soporte a todos los demás componentes. Debe ser resistente y los materiales que se emplean son hormigón armado, poliéster o estructuras metálicas galvanizadas o acero inoxidable.

3.3.2. **Carcasa**

Elemento que recubre la estructura y que debe cumplir los requisitos de estanqueidad y opacidad para evitar que los rayos de sol favorezcan la formación de colonias de microorganismos. Los materiales usados habitualmente son hormigón armado, acero galvanizado, placas de poliéster o poliéster reforzado con fibra de vidrio, o acero inoxidable.

3.3.3. **Difusor**

Dispositivo situado en la parte superior de la torre que disminuye la presión estática que ha de vencer el aire, eliminando turbulencias originadas en la zona del ventilador, reduciendo el riesgo de recirculación y protegiendo a los equipos mecánicos y
humanos. Suelen estar constituidos por poliéster reforzado con fibra de vidrio u hormigón armado.

3.3.4. **Separadores de gotas**

Dispositivos de alta eficacia situados en la parte superior de las torres de refrigeración, que incorporan unas pestañas que agrupan el aerosol en pequeñas gotas haciéndolas caer de nuevo a la torre. Se evita así, que la velocidad del aire a la salida del relleno arrastre fuera el aerosol. Además se consigue un efecto secundario que consiste en la homogenización del flujo del aire a la salida del relleno, ya que la resistencia uniforme que ofrecen las pestañas, da lugar a una presión uniforme que actúa como amortiguador entre el relleno y el ventilador, manteniendo un flujo de aire prácticamente constante y uniforme a través del relleno. Están compuestos de láminas de múltiples pliegues en chapa galvanizada en caliente, en PVC o separadores en nido de abeja de plástico.

![Fig. 3.7. Separador de gotas](image)
3.3.5. Pulverizadores

Sistema de distribución del agua que divide lo más finamente posible las gotas de agua en toda la superficie del relleno laminar. Es el único sistema que no deja zonas sin mojar.

3.3.6. Relleno

Material de alta superficie específica, ligero, inerte, resistente y estable donde se produce el intercambio de calor entre el aire y el agua. Actualmente los materiales plásticos son los más utilizados en los rellenos y tienen una vida útil media de 10 años (polipropileno, PVC y poliestireno).
3.3.7. Ventiladores

Constituidos por una hélice de múltiples palas.

3.3.8. Balsa de agua fría

Recipiente donde se almacena el agua fría después de atravesar el relleno.

3.4. Mantenimiento de la eficiencia del sistema. Tratamiento de aguas

El mantenimiento de la eficiencia es de vital importancia para el rendimiento térmico y medio ambiental del sistema de enfriamiento. Al rendimiento de diseño el sistema de enfriamiento no solo asegurará el funcionamiento óptimo del proceso de enfriamiento, sino que utilizará los mínimos recursos en cuanto a agua como a energía. Además, el sistema funcionará de forma segura si es prevenida la contaminación bacteriológica incontrolada.

Los principales requisitos para el mantenimiento de la eficiencia del sistema son el control adecuado de la calidad del agua en circulación y un programa de mantenimiento para mantener el equipo limpio y en buenas condiciones. Para ello es necesario:

3.4.1. Evaporación y purga

En los equipos de enfriamiento evaporativo el enfriamiento es obtenido por evaporación de una pequeña parte del agua circulante según fluye a través de la unidad. Cuando este agua se evapora, se mantienen las impurezas inicialmente presentes en el agua. A menos que se extraiga una cantidad pequeña de agua del sistema (purga), la concentración de sólidos disuelto aumentará rápidamente y conducirá a la formación de incrustaciones, corrosión, o ambas. También, el agua necesita ser repuesta ya que se está perdiendo del sistema con la evaporación y la purga.

La cantidad total de agua de reposición, conocida como aporte, se define como:

\[ \text{Aporte} = \text{Pérdida por evaporación} + \text{Purga} \]

La pérdida por evaporación depende principalmente de la cantidad de calor que está siendo extraída y, en menor grado, de la humedad relativa del aire entrante. Una fórmula general es 0,44 L de agua evaporada por cada 1000 kJ de calor extraído.

La cantidad de purga está fijada por los ciclos diseñados de concentración del sistema. Éstos dependen de la calidad del agua de aporte y de las guías de diseño para la calidad del agua circulante.
Los ciclos de concentración son la relación de la concentración de los sólidos disueltos en el agua circulante comparada con la concentración de los sólidos disueltos en el agua de aporte. Una vez definidos los ciclos de concentración, la cantidad de purga a realizar puede ser calculada como:

\[
Caudal\ de\ purga = \frac{\text{Pérdidas} \times \text{Evaporación}}{\text{Ciclos de concentración} - 1}
\]

Como regla general se recomienda que para su diseño los ciclos de concentración estén entre 2 y 4. Por encima de los 4 ciclos, los ahorros de agua con cantidades más pequeñas de purga llegan a ser cada vez menores y de menor importancia. Los ciclos de concentración muy altos van asociados con un alto riesgo en el funcionamiento, pues cualquier pérdida de control conduce rápidamente al incrustamiento o a la corrosión indeseable dentro del sistema.

3.4.2. Control del agua de recirculación

Además de las impurezas presentes en el agua de aporte, cualquier impureza o partícula biológica del aire es transportada al interior de la torre e introducida al agua circulante. Por encima y sobre la necesidad de alimentar una cantidad pequeña de agua, un programa de tratamiento de agua específicamente diseñado para tratar la incrustación, la corrosión y el control biológico deberían ser comenzados cuando el sistema es instalado por primera vez y mantenido de una forma continua a partir de ese momento. Además debe existir un programa de supervisión in situ que asegure que el sistema de tratamiento de agua está manteniendo la calidad del agua dentro de las guías de control.

3.4.2.1. Incrustaciones

Un excesivo incrustamiento en la superficie del intercambiador dentro de una torre de refrigeración o condensador evaporativo reduce considerablemente la eficacia en la transmisión de calor. Esto puede dar lugar a temperaturas de enfriamiento más altas que las de diseño y una eventual desconexión del sistema. La formación de incrustaciones causa siempre un consumo de energía más alto, y afecta durante todo el año sin importar la carga del sistema. Mientras que la incrustación en sí misma no se considera como alimento para el crecimiento bacteriológico, una elevada incrustación proporciona un refugio para microorganismos y puede por lo tanto aumentar el riesgo de contaminación bacteriológica.

Dependiendo de la fuente principal de agua y del funcionamiento del sistema, la formación de incrustaciones puede ser prevenida con la combinación correcta de ablandamiento de
agua de aporte, el control de la purga y la dosificación de los productos químicos inhibidores de incrustaciones.

La formación de incrustaciones es independiente de los materiales de construcción de los componentes del sistema. Así, se conoce que la incrustación puede formarse tanto en el acero revestido, el acero inoxidable o los materiales orgánicos.

El calcio, los sulfatos, el magnesio, la sílice, la alcalinidad, los sólidos disueltos, el pH y la temperatura de contacto son todos los factores que intervienen en la formación de incrustaciones minerales. Normalmente las incrustaciones debidas al magnesio, los sulfatos y la sílice son poco significativas y no suelen darse, salvo casos excepcionales.

El carbonato cálcico es normalmente el principal responsable de las incrustaciones en los circuitos de refrigeración. La precipitación del carbonato cálcico tiene lugar cuando se altera el equilibrio entre el bicarbonato cálcico y el gas carbónico libre, ambos presentes en el agua de aportación. En el circuito de refrigeración, la aireación del agua en las torres provoca el arrastre a la atmósfera del gas carbónico, originando el desequilibrio causante de la precipitación del carbonato cálcico.

La temperatura tiene también un pronunciado efecto sobre la formación de las incrustaciones dado que la solubilidad del carbonato cálcico es inversamente proporcional a la temperatura y por tanto las zonas del circuito con temperatura más elevadas serán las más críticas a efectos de formar incrustaciones.

*Inhibidores de incrustación*

Los productos utilizados como inhibidores de incrustación son variados y numerosos, pero casi todos ellos, con excepción de los de tipo quelante o secuestrante, funcionan por algún tipo de mecanismo de superficie.

Los polímeros orgánicos secuestrantes, aportados con los productos de acondicionamiento que se dosifican al circuito y la corrección del pH del agua, permiten estabilizar las sales que precipitan dentro de los límites de concentración y temperatura de trabajo que se requieren evitando la formación de incrustaciones.

**3.4.2.2. Depósitos de lodos y microorganismos**

Las principales causas de acumulación de lodos en el circuito que provocan obstrucciones y favorecen el desarrollo bacteriano son la contaminación atmosférica y el entorno inmediato del equipo (presencia de materia orgánica, tierra, etc.). La formación de biocapas de microorganismos es un hecho que tiene lugar de manera natural en los sistemas de
recirculación de agua no tratados. Además, los microorganismos también pueden ser introducidos en el circuito a través del aire en la torre de refrigeración.

Para controlar las poblaciones microbianas es necesario tratar el agua de refrigeración. El crecimiento biológico en los circuitos de refrigeración sigue una evolución exponencial. Es por ello muy importante mantener la población de microorganismos por debajo de un nivel umbral para evitar problemas de difícil solución, o hasta incluso irreversibles. Se pretende asegurar unas condiciones en las que el crecimiento exponencial de los microorganismos sea casi imperceptible y se evite el problema del ensuciamiento biológico de los sistemas de refrigeración.

**Biocidas**

El mejor sistema para controlar la población de microorganismos es la dosificación de biocidas en los circuitos de refrigeración de agua. Hay muchos tipos, pero los más utilizados se pueden dividir en dos grandes grupos: los oxidantes y los no oxidantes. Su utilización permite controlar las poblaciones de microorganismos.

En función del tipo de instalación y de la contaminación biológica presente se utilizará un tipo de biocida u otro. En cada caso se deberá realizar un estudio para determinar el mejor tratamiento posible según el tipo de microorganismos presentes, el histórico de operación del sistema, el esquema hidráulico del sistema, la naturaleza del tratamiento antiincrustante y anticorrosivo, las características físico-químicas del agua, las restricciones medioambientales, la toxicidad del biocida para los manipuladores del mismo y su facilidad de aplicación, el coste y la facilidad de realizar un análisis del residual de biocida de forma fácil y rápida.

Los *biocidas oxidantes*, tal y como su nombre indica, oxidan la materia orgánica (material celular, enzimas, proteínas, etc.) y, por consiguiente, provocan la muerte de los microorganismos. Los más habituales son el cloro y el bromo y sus derivados.

El *cloro*, así como el resto de productos generadores de cloro, cuando se añade al agua genera una mezcla de ácido hipocloroso e ión hipoclorito. Su efectividad como biocida depende de la proporción de ácido hipocloroso presente. El pH del agua tratada es el que determina el grado de ionización del ácido hipocloroso hacia ión hipoclorito. A medida que el pH aumenta, cada vez menos ácido hipocloroso está disponible.

El rango de pH más adecuado para tratamiento en base a la aplicación de cloro está entre 6 - 7,5. Su aplicación se convierte en muy poco efectiva cuando el pH del
agua supera los 8,5. A pH’s más bajos el cloro no es demasiado práctico por el gran potencial corrosivo que tendría el agua circulante.

Como biocida oxidante, el cloro posee diversas ventajas:

- Bajo coste del producto.
- Amplio espectro de actuación.
- Bibliografía extensa con resultados aceptables en condiciones específicas.
- Fácilmente measurable.

aunque también tiene algunas limitaciones:

- Falta de efectividad a pH elevado.
- Se inactiva por la aireación de la torre y por la luz solar ultravioleta.
- Contribuye a la corrosión de los metales.
- El sistema de dosificación es costoso y requiere mantenimiento exhaustivo.
- Peligroso en su manipulación.
- Restricciones medioambientales especialmente en algunas cuencas (principalmente se limita el vertido de cloraminas y halometanos).

En el caso del cloro y sus derivados, normalmente se forman enlaces estables entre el nitrógeno de las proteínas y el cloro, llevando a la destrucción de los microorganismos.

Los **biocidas no oxidantes** son aquellos que interfieren en el metabolismo celular y/o en su estructura, provocando de esta manera la muerte de los microorganismos.

Existen muchos tipos (compuestos de amonio cuaternario, compuestos orgánicos con azufre, aldehídos, isotiazolonas, compuestos organobromados y guanadinas), pero en general todos cumplen los siguientes requisitos: son más estables y persistentes que los biocidas oxidantes y su actividad es independiente del pH.

Cada biocida de este tipo tiene su mecanismo de actuación particular, no pudiéndose generalizar un mecanismo de actuación para todo el grupo. Consideremos, por ejemplo, la actuación del amonio cuaternario.
Las sales de amonio cuaternario son biocidas catiónicos. Son sustancias desinfectantes que actúan especialmente en medio alcalino y a temperaturas elevadas. Estos compuestos son particularmente activos contra bacterias Gram positiva, ante las que muestran actividad a concentraciones extremadamente bajas. Su efecto sobre bacterias Gram negativas es menor y requiere concentraciones más elevadas. Su acción bioestática se atribuye a su carga positiva, que forma un enlace electrostático con las partes cargadas negativamente de la pared celular. Estos enlaces creados producen la lisis y la muerte de la célula. También producen la muerte de ésta mediante la desnaturalización de proteínas y distorsión de la permeabilidad de la pared celular, reduciéndose el flujo normal de sustancias vitales y nutrientes para la célula. Las sales de amonio cuaternario son por tanto efectivas contra la \textit{Legionella}.

Teniendo en cuenta que en un circuito de refrigeración en el agua hay más sustancias en disolución, ya que no solo se dosifican biocidas, hay que considerar las ventajas e inconvenientes de su utilización en este tipo de sistemas. Después de realizar ensayos con este tipo de sales en disoluciones con anticorrosivos/antincrustantes se ha observado que los amonios cuaternarios tienen una elevada tendencia a precipitar en presencia de estos aditivos que suelen contener aniones. Es por ello que en un sistema de refrigeración la utilización de una sal de amonio cuaternario es adecuada para realizar un tratamiento biológico, siempre y cuando no se realice un tratamiento anticorrosivo/antincrustante.

\textbf{3.4.2.3. Corrosión}

La corrosión se define como la destrucción de los metales en contacto con el agua del circuito por efectos químicos, electroquímicos y, occasionalmente, bacterianos.

El agente principal de la corrosión es el oxígeno disuelto en el agua que se aporta al circuito en la torre. La solubilidad del oxígeno en el agua es directamente proporcional a la presión e inversamente proporcional a la temperatura.

Las incrustaciones, los lodos y los depósitos de origen bacteriano crean zonas donde la circulación del líquido es insuficiente y por consiguiente se crean zonas con distinta concentración de oxígeno disuelto que también generan pilas de aireación diferencial.

Otro factor frecuente de corrosión es la presencia en el circuito de distintos metales (Fe, Cu, Zn, etc.) cuyo potencial de electrodo es distinto, lo cual crea una pila galvánica siendo el metal menos noble el ánodo que se corroe.
También en el caso de utilizar cloro como biocida para el mantenimiento de la torre, una cantidad de dosificación bastante elevada, conlleva problemas graves de corrosión en la instalación y sus proximidades como puede observarse en la siguiente fotografía.

Fig. 3.9. Ejemplo de corrosión en una torre de refrigeración
Fuente: Empresa 10 de L’Hospitalet de Llobregat.

Los problemas debidos a la corrosión son económicamente importantes, pues no sólo cabe considerar las toneladas de materiales a reponer, sino también las interrupciones en los procesos de producción, que pueden llegar a tener costes muy elevados. También debe considerarse el factor seguridad, que viene muy directamente afectado por los fenómenos de corrosión.

Las acumulaciones de microorganismos forman lodos que, debido a su naturaleza adherente, a menudo actúan como un agente de cimentación de otros materiales inorgánicos presentes en el sistema, tales como los productos de corrosión. Por otra parte, también cabe considerar el hecho de que el crecimiento biológico puede producir corrosiones graves en el metal e incluso perforaciones.
Hidrocarbúneros de dilución

Una prematura o rápida corrosión es perjudicial para los componentes del sistema de enfriamiento y puede acortar la vida del equipo considerablemente. Los subproductos de la corrosión, tales como óxidos de hierro, pueden además acrecentar el crecimiento bacteriológico. Por estas razones la corrosión dentro del sistema de enfriamiento se debe prevenir siempre. Para alcanzar esto, la calidad del agua de recirculación se debe mantener dentro de los límites señalados por el proveedor de los componentes del sistema y, en muchos casos, está indicada la dosificación de un inhibidor químico de la corrosión, asociado con dispersantes y secuestrantes.

Los inhibidores de corrosión se clasifican como anódicos, catódicos o mixtos, dependiendo de la reacción de corrosión que cada uno controla.

La elección del inhibidor adecuado viene condicionada por los parámetros de diseño del sistema de refrigeración y por la composición del agua.

3.5. Evolución de los sistemas de refrigeración

Entre los sistemas que se han utilizando dentro de la industria a lo largo de la historia, cabe destacar:

- **Agua desechada**: Esta solución pertenece al pasado, no sólo por razones técnicas (problema de incrustación y severos requisitos de filtrado), sino también por disposiciones legales que limitan cada vez más el consumo de agua de fuentes naturales (manantiales, ríos, lagos). De algún modo, y/o en algún caso, podría haber escasa disponibilidad de agua. Además, la creciente conciencia sobre la protección ecológica discrimina este tipo de enfriamiento debido a la polución termal que ocasiona en el curso del agua.

- **Torre de enfriamiento**: Este sistema se ha empleado durante mucho tiempo. Sin embargo los problemas de instalación, unidos a los altos costos de mantenimiento característicos de un "círculo abierto", han llevado a su sustitución sistemática por refrigeradores de agua industrial de circuito cerrado provistos de compresores de refrigeración. De hecho, algunos de los problemas más serios relacionados con la torre de enfriamiento, como incrustaciones, formación de algas, contaminación bacteriana y corrosión ácida, deben enfrentarse con trabajos de mantenimiento continuos y costosos.

- **Equipo frigorífico**: Los refrigeradores de agua y las plantas de refrigeración se han desarrollado como soluciones típicas a los problemas de los sistemas de enfriamiento
mencionados. Sin embargo, el uso de compresores de refrigeración para el enfriamiento de máquinas requiere un alto consumo de energía, lo que se traduce en elevados costos energéticos. A fin de reducir estos costos energéticos, los "sistemas de enfriamiento ambiental" (sistemas freecooling) se propusieron como alternativa para ahorrar energía durante las estaciones frías. Sin embargo, por razones técnicas, los equipos frigoríficos deben funcionar con una temperatura de agua refrigerante que no supere los 15-18° C, aún cuando la temperatura de aceite necesaria es de 40 a 50° C. Esto limita la posibilidad de ahorrar energía a un período del año extremadamente breve. Además, los refrigeradores de agua industriales y las plantas de refrigeración son maquinarias complejas y requieren personal altamente capacitado para realizar los trabajos de instalación y mantenimiento.

Sistema de enfriamiento seco (aerorefrigerador): Constituye la última tecnología para el intercambio térmico aire-agua. Se compone de una extensa superficie de cobre y aluminio provista de aletas y con ventiladores axiales de alta velocidad de circulación. Estos intercambiadores térmicos ofrecen gran fiabilidad y una buena función; son capaces de mantener la temperatura del agua a unos pocos grados sobre la temperatura ambiente. El gran desarrollo tecnológico llevado a cabo en su construcción, ha permitido una importante reducción en su precio. Son la solución perfecta para el enfriamiento de máquina; trabajan en circuito cerrado, lo que evita el consumo de agua y los complicados trabajos de mantenimiento característicos de las torres de enfriamiento; además, su consumo eléctrico representa una octava parte del consumo del equipo frigorífico con compresores de refrigeración. Sólo es necesaria una planta de distribución simple y económica, ya que los caños no se aislan y no se requieren conductos de aire debido a su instalación exterior. Por último, la total ausencia de mantenimiento hace que el enfriador seco represente la solución más fiable a largo plazo. En la tabla 3.1. se representa una comparación esquemática entre las soluciones indicadas.
3.6. **Criterios de diseño de torres de refrigeración y condensadores evaporativos para minimizar el riesgo de proliferación de *Legionella***

Los riesgos asociados al diseño de torres de refrigeración y condensadores evaporativos son:

- **Entrada y acumulación de nutrientes**: para la prevención del estancamiento del agua es recomendable que la balsa de agua fría esté dotada de fondo con pendiente adecuada y de válvula de desagüe por su parte inferior, y de este modo los equipos pueden ser vaciados y aislados fácilmente. Evitar las zonas de estancamiento de agua en los circuitos, como tuberías de bypass, equipos o aparatos de reserva, tuberías de fondo ciego y similares. Los equipos o aparatos de reserva, en caso de que hubieran, han de aislarse del sistema mediante válvulas de cierre hermético y han de estar equipados con una válvula de drenaje situada en el punto más bajo, para vaciarlos cuando estén en parada técnica.
- **Dificultad de limpieza de equipos**: la instalación debe situarse en un lugar accesible para su inspección y desinfección, poseer superficies lisas y tener fácil acceso al material de relleno para su limpieza. Los equipos han de estar dotados, en un lugar accesible, al menos de un dispositivo para realizar la toma de muestras del agua de recirculación.
- **Materiales resistentes**: los materiales han de resistir la acción agresiva del agua y de los desinfectantes con el fin de evitar los fenómenos de corrosión y de las altas...
temperaturas. Así mismo, deben evitarse los materiales particularmente favorables para el desarrollo de bacterias y hongos, como el cuero, la madera, la uralita, el hormigón y los derivados de la celulosa.

- **Formación de aerosoles**: con el fin de reducir la formación de aerosoles se equiparán las torres de refrigeración y dispositivos análogos de separadores de gotas de alta eficacia. La cantidad de agua arrastrada ha de ser inferior al 0,05% del caudal de agua en circulación en el aparato.

- **Exposición de individuos**: se debe ubicar la instalación alejada de los lugares de paso, a una distancia horizontal no inferior a 10 m, con una descarga de aire elevada a 2 m de altura y a sotavento de los lugares de paso. Las tomas de aire acondicionado y ventanas deben estar protegidas.

Las características del agua y de la instalación permiten prever el tipo de tratamiento que convendrá aplicar a una instalación determinada. Sin embargo, es el seguimiento posterior de la instalación el que permitirá definir el programa más indicado para la eficacia de los resultados y ajuste del costo operativo.

En un sistema totalmente abierto es imposible realizar un tratamiento externo completo. Debido a los grandes caudales de agua que puede implicar, el tratamiento químico se aplicará normalmente a niveles bajos para que resulte económicamente viable sin intentar reducir al 100% la corrosión potencial del agua bruta. La prevención de la formación de incrustaciones y el crecimiento microbiológico seguirán criterios similares. Los problemas derivados de depósitos de lodos se minimizarán a base de acondicionamiento o tratamiento dispersante, pero es fundamental diseñar correctamente el sistema hidráulico para evitar zonas de baja velocidad.

Por el contrario, un sistema completamente cerrado con pequeñas pérdidas y los pequeños aportes de agua correspondientes, hace económico y recomendable utilizar un agua de aporte de alta calidad y un tratamiento químico interno completo. Normalmente los sistemas cerrados se emplean en circuitos de refrigeración críticos para los que es aconsejable realizar un control de calidad permanente. Con un buen acondicionamiento de las aguas, los problemas de corrosión e incrustaciones son mínimos y al no haber contacto con la atmósfera es fácil evitar el crecimiento de microorganismos. En consecuencia, tampoco son de esperar problemas de depósitos. Es fundamental conseguir las menores pérdidas posibles de agua porque los problemas serán proporcionales al aporte de agua necesario.

Los sistemas semiabiertos, de los que forman parte las torres de refrigeración, constituyen el grupo más complejo y cuyo tratamiento de agua requiere un balance también más complejo entre efectividad y costo.
Cuando una parte de agua de refrigeración se evapora en la torre, la parte correspondiente de sólido en suspensión y sólidos disueltos queda retenida en la fase acuosa. Al aumentar la concentración, progresivamente, llega un momento en que algunas de las sales disueltas alcanzan su límite de solubilidad y empezarían a depositarse. La concentración de sólidos en suspensión iría, a su vez, aumentando. El contacto de agua con el aire arrastra además los sólidos flotando en el aire, que se irían añadiendo a los propios del agua. La forma de controlar el contenido en sólidos del agua circulante es el mantenimiento de una purga controlada. En tal caso hay que hacer un aporte de agua que compense la evaporación, el arrastre de gotas de agua por el aire, especialmente en condiciones de viento y purga.

3.7. Propuestas de tratamiento para combatir la *Legionella* en torres de refrigeración

3.7.1. Tratamiento químico

Se recomienda la utilización de un producto multifuncional que reúna propiedades anti-incrustantes, dispersantes y anticorrosivas, dosificado de forma continua y automática para asegurarse la prevención de problemas en los circuitos, tal y como se ha visto en el apartado 3.4.

3.7.2. Tratamiento bactericida

El biocida debe ser especialmente efectivo para destruir el biofilm o capas finas constituidas por limos y bacterias adheridas en las superficies mojadas de los circuitos de refrigeración, ya que reducen el rendimiento térmico del sistema, potencian el desarrollo de bacterias como la *Legionella* y que, con el tiempo, pueden evolucionar en organismos adaptados, resistentes a biocidas convencionales (ver apartado 3.4.).

3.7.3. Revisión, limpieza y desinfección

Para asegurar el buen estado de los equipos de refrigeración se debe limpiar y revisar todo el equipo de forma periódica, según la legislación vigente.

Debe realizarse un seguimiento de todo tipo de actuaciones a través de analíticas periódicas para controlar la correcta aplicación de las limpiezas, así como siempre que aparezcan indicios de un mal funcionamiento de los equipos de control preventivo. Documentar todos los procedimientos de operación y mantenimiento y guardar los informes de inspección.

Hay que revisar el estado de conservación y limpieza general, con la finalidad de detectar la presencia de sedimentos, incrustaciones, productos de la corrosión, lodos y cualquier otra
circunstancia que altere o pueda alterar el buen funcionamiento de la instalación. Si se detecta algún componente deteriorado, hay que repararlo o sustituirlo.

Hay que revisar también la calidad fisicoquímica y microbiológica del agua del sistema y determinar mensualmente los parámetros indicados en el RD. 865/2003.

Hay que efectuar la desinfección automática del agua del circuito de refrigeración, de forma que se garantice la inocuidad microbiológica, mediante la adición de biocidas de forma regular.

En cuanto a limpieza y desinfección se refiere, las torres de refrigeración de funcionamiento no estacional tendrán que someterse, siguiendo los protocolos, a una limpieza y desinfección general preventiva dos veces al año, como mínimo (preferentemente al inicio del otoño y de la primavera) y además en las siguientes circunstancias:

- Antes de la puesta en funcionamiento inicial de la instalación, con la finalidad de eliminar la contaminación que se haya producido durante la construcción.

- Antes de poner en funcionamiento la instalación cuando haya estado parada un mes o más tiempo.

- Antes de poner en funcionamiento la instalación, si con motivo de operaciones de mantenimiento o de obras de reforma se hubiese podido contaminar.

Gracias a la aplicación de un buen plan de mantenimiento, la contaminación por Legionella se puede mantener en un nivel que permite un control adecuado por parte del operador y dentro de los límites establecidos para el funcionamiento adecuado de las torres de refrigeración, la protección de las personas y la protección del entorno.
4. Legionelosis y sistemas de refrigeración


Fig. 4.1. y 4.2. *Legionella spp*
4.1.1. Aspectos microbiológicos

Bajo el nombre *Legionella spp.* se agrupan más de 42 especies de bacterias con 64 serogrupos distintos. De estas, unas veinte han sido aisladas en clínica humana. La más frecuente, *Legionella pneumophila*, con 15 serogrupos está asociada al 90% de casos de legionelosis, aunque solo los serogrupos 1, 4 y 6 son los que causan enfermedad y de estos, el serogrupo 1 (el cual tiene 50 subtipos) representa el 80% [1].

*Legionella* es un bacilo gram negativo, de 0,3 a 0,9 µm de ancho por 1,5 a 5 µm de largo. Son en su mayoría móviles gracias a uno o varios flagelos polares.

4.1.2. Características ecológicas

*Legionella spp.* está presente en el medio hídrico natural, ríos, lagos, charcas, tierra fangosa, etc, en cantidades variables según las condiciones ambientales. No se conocen casos en agua salada, ya que la elevada salinidad inhibe su crecimiento.

Desde el medio natural coloniza sistemas de agua industrial o sanitaria, donde encuentra las condiciones de temperatura, estancamiento y nutrientes necesarias para su amplificación.

La bacteria se presenta habitualmente en las formas de vida siguientes:

- Forma sesil: Las bacterias o colonias se adhieren a una superficie.
- Forma planctónica: La bacteria vive libre en el agua, sin protección.

Además se sabe que *Legionella* en el medio acuático natural es capaz de multiplicarse dentro de células de protozoos libres como amebas y ciliados. Esto explicaría la mayor virulencia de algunas cepas [1].

![Fig. 4.3. Legionella dentro de una ameba](image)
Para su multiplicación, *Legionella spp.* necesita temperaturas entre 20 y 45 ºC, agua estancada y nutrientes, en particular cisteína que le es imprescindible, hierro y zinc. La temperatura óptima de crecimiento se sitúa entre los 35 y 37 ºC, la multiplicación se detiene por debajo de 20 ºC, y sigue multiplicándose hasta los 45 ºC. A 50 ºC las bacterias son destruidas lentamente, a 60 ºC el tiempo de destrucción es de un minuto, mientras que a 70 ºC es prácticamente instantáneo.

![Fig. 4.4. Esquema de las posibilidades de desarrollo de Legionella a diferentes temperaturas y en diferentes instalaciones](image)

Fuente: *Instituto Nacional de Seguridad e Higiene en el Trabajo.*

Algunos materiales encontrados en circuitos de agua pueden favorecer su crecimiento, como son el caucho, la celulosa, etc.
Legionella spp. prolifera en el biofilm presente sobre las superficies de los circuitos, que le suministra nutrientes y protección contra la acción de los biocidas. Un factor muy importante en la limpieza y desinfección será por tanto la penetración y destrucción del biofilm (acumulación de bacterias y otros microorganismos depositados en forma de capas sobre superficies).

Fig. 4.5. Formación del biofilm

4.1.3. Determinación y enumeración de Legionella

La técnica analítica para determinar la presencia de Legionella spp. es un cultivo sobre el medio específico, BYCEEx, que se compone principalmente del aminoácido L-Cisteína, carbón activo, pirofosfato férrico, alfa-cetoglutarato y extracto de levadura en proporciones precisas para el desarrollo de la bacteria. El resultado se expresa en UFC/L (Unidades Formadoras de Colonias/Litro). El límite de detección con los métodos actuales es del orden de 25 a 100 UFC/L.

Ambos métodos obtained resultados en 3 - 15 días teniendo que esperar hasta el final de este período para la confirmación total.

El principio del método ISO-11731 se basa en una concentración inicial de la muestra por filtración en membrana o centrífugación. Para eliminar parte de la flora acompañante, a dos alícuotas de la muestra concentrada se les aplica un tratamiento ácido y un tratamiento térmico respectivamente. Tanto la muestra sin tratamiento como las tratadas son utilizadas para inocular sobre el medio selectivo GVPC. En aquellas muestras con presuntas altas concentraciones de *Legionella*, el mismo proceso se realiza a partir de la muestra sin concentrar.

La concentración por filtración se lleva a cabo mediante filtros de policarbonato, y se trabaja con un litro de muestra si es posible. En caso de muestras con alta turbidez, se trabaja preferiblemente mediante la centrifugación. La resuspensión de los microorganismos concentrados en la membrana (o *pellet* en caso de centrifugación) se realiza mediante la elución en 2-25 mL de solución salina estéril y posterior agitación o sonicación.

El tratamiento térmico consiste en aplicar a una alícuota de la muestra una temperatura de 50 ± 1°C durante 30 ± 2 min. Para realizar el tratamiento ácido, se aplica un tampón ácido pH 2,2 ± 0,2 durante 5 ± 0,5 minutos. Cada alícuota de la muestra (tratadas y sin tratar) es utilizada para inocular por separado entre 0,1 y 0,5 mL sobre placas del medio GVPC. La incubación de las placas se alarga hasta unos 10 días a 36 ± 1°C, en una atmósfera húmeda y preferiblemente enriquecida con un 2,5% de CO₂. Es recomendable examinar las placas cada 2-4 días durante la incubación, ya que a menudo el crecimiento de *Legionella* se ve enmascarado por el de otros microorganismos. Las colonias típicas de *Legionella* suelen ser de una coloración blanco azulada, pero en algunas ocasiones pueden presentar otras coloraciones. Muchas especies presentan autofluorescencia bajo luz ultravioleta, y en concreto *Legionella pneumophila* la presenta de color verde amarillento. Una vez detectadas las presuntas colonias de *Legionella*, hay que realizar confirmaciones sobre los medios BCYE y BCY-Cys (el mismo medio pero sin cisteína). La característica del género *Legionella* de no poder crecer en ausencia del aminoácido cisteína, hace que las colonias que presentaban la morfología característica sobre el medio GVPC, que crecen sobre BCYE y no crecen sobre BCYE-Cys sean consideradas como *Legionella* spp.

Para confirmar las diferentes especies del género, o bien los diferentes serogrupos de *Legionella pneumophila*, se utilizar métodos serológicos.

Finalmente, en el momento de expresar los resultados, hay que escoger el valor más alto obtenido a partir de los diferentes tratamientos y no hacer la media, así como tener en cuenta las concentraciones y diluciones que se han producido a lo largo del método.
4.1.4. Distribución (Vía de entrada al organismo)

*Legionella spp.*, penetra en el organismo mediante la inhalación de microgotas de agua de tamaño inferior a 5 µm, que contienen la bacteria. Estas pueden llegar hasta el nivel del alveolo pulmonar como puede observarse en la figura 4.6.

Este tamaño de gotas corresponde a lo que se denomina aerosol y tiene en el aire un comportamiento no gravitatorio, por el cual, no tiene tendencia a depositarse rápidamente, pudiendo permanecer en el aire durante largo tiempo en función de las corrientes y las condiciones de humedad ambiental.

![Figura 4.6. Tamaño de aerosoles que pueden alcanzar el nivel del alveolo pulmonar](www.energias.com)

4.1.5. Mecanismo de patogenicidad

El organismo humano mediante los cílios de las células del tracto respiratorio evita que la bacteria introducida por la boca y la nariz llegue al pulmón. Los cílios tienen una estructura similar a los pelos y mantienen el conducto respiratorio limpio de partículas, incluidas las bacterias.

Si *Legionella* penetra accidentalmente hasta el pulmón y los alveolos pulmonares, la última barrera defensiva del cuerpo humano son los macrófagos alveolares, que las destruyen mediante fagocitosis. A veces, *Legionella* al ser absorbida por un macrófago, se multiplica en el interior hasta provocar la ruptura celular y la liberación posterior de Legionellas. Este
ciclo se repite hasta llegar a concentraciones infecciosas. Este proceso sirve de mecanismo de supervivencia a la bacteria en condiciones desfavorables, como puede observarse en la figura 4.7.

Fig. 4.7. Entrada de Legionella al macrófago

Podría suponerse que una bacteria capaz de multiplicarse en un protozoo está a la vez capacitada para evadir la fagocitosis del macrófago alveolar, y por lo tanto es altamente perjudicial.

Aparentemente la enfermedad se manifiesta con menos probabilidad en casos de inhalación de aerosoles con bajas concentraciones de Legionella y en personas con el sistema inmunológico intacto. Esto conlleva una rebaja de la carga bacteriana, evitando la enfermedad, pero no la infección.

4.1.6. Población de riesgo

La legionelosis se describe fundamentalmente en personas mayores, fumadoras, con enfermedades pulmonares crónicas, en personas que toman corticoides y enfermos trasplantados. En niños, la enfermedad se presenta generalmente en inmunodeprimidos o en neonatos y está relacionada con los equipos de terapia respiratoria [2].
En determinadas áreas de un hospital se encuentran personas consideradas de alto riesgo de contraer la legionelosis, tales como pacientes inmunodeprimidos (pacientes organotrasplantados, pacientes con SIDA, entre otros), pacientes de más de 65 años y pacientes con una enfermedad crónica de base (diabetes, etc.).

Los factores predisponentes son la edad creciente, consumo excesivo de tabaco, consumo excesivo de alcohol, inmunodeficiencia y enfermedades respiratorias crónicas.

En la tabla 4.1 puede verse que el factor de riesgo más frecuente en Cataluña, entre 1997 y 2000, ha sido el de ser fumador de más de 10 cigarrillos (39%) seguido por la bronquitis crónica (25,4%), la diabetes (14%) y el cáncer (9,8%).

<table>
<thead>
<tr>
<th>Factores predisponentes</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fumador de más de 10 cigarrillos/día</td>
<td>39</td>
</tr>
<tr>
<td>Bronquitis crónica</td>
<td>25,4</td>
</tr>
<tr>
<td>Transplante renal</td>
<td>2</td>
</tr>
<tr>
<td>Diálisis renal</td>
<td>2,4</td>
</tr>
<tr>
<td>Diabetes</td>
<td>14</td>
</tr>
<tr>
<td>Cáncer</td>
<td>9,8</td>
</tr>
<tr>
<td>Glucocorticoides</td>
<td>9</td>
</tr>
<tr>
<td>Tratamiento con inmunodepresores</td>
<td>4,2</td>
</tr>
<tr>
<td>Radioterapia</td>
<td>2,4</td>
</tr>
<tr>
<td>Otros factores de inmunodepresión</td>
<td>6,2</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>114,2</strong></td>
</tr>
</tbody>
</table>

Nota: el total del porcentaje supera el valor de 100% debido a que algunos de los casos han presentado más de un factor que predispone

4.1.7. Transmisión e infección por *Legionella*:

1. No se ha descrito transmisión de persona a persona.

2. No se ha descrito contaminación por ingestión de agua.
3. No se transmite al ingerir alimentos.

4. No se transmite de animales a personas.

5. No se ha establecido la dosis mínima infectante y parece que la virulencia de la cepa, y el estado de inmunidad del paciente son factores determinantes.

Algunos estudios epidemiológicos apuntan a una correlación entre las concentraciones superiores a 1000 UFC/L en agua caliente sanitaria en hospitales y la aparición de casos.

Para torres de refrigeración las concentraciones serían del orden de $10^5$-$10^6$ UFC/L.

4.2. Importancia Sanitaria

4.2.1. Introducción

*Legionella* fue descubierta con motivo de la investigación llevada a cabo a raíz de un brote registrado en un hotel de Philadelphia en 1976, y que afectó a 182 personas excombatientes de la Legión Americana, de las cuales 34 murieron, que asistían a su convención anual [3]. Un año después el científico Mc Dade consigue aislar el microorganismo a partir de las muestras de las necropsias practicadas a los pacientes que habían muerto en el brote. La bacteria agente causal del brote se denominó *Legionella pneumophila* [4], y la enfermedad que causa, enfermedad del legionario.

4.2.2. Tipos de enfermedades producidas por *Legionella spp.*

*Legionella spp.* es la responsable de dos tipos de patologías; la *legionelosis* o la enfermedad del legionario y la fiebre de Pontiac.

- La legionelosis es un neumonía grave (puede causar la muerte del paciente) que presenta un tiempo de incubación de 2 a 10 días, y con mayor frecuencia de 5 a 6 días. La enfermedad pulmonar es clínicamente indistinguible de otras neumonías típicas por lo que el diagnóstico debe realizarse mediante pruebas de laboratorio. A partir de la segunda mitad de los años 90 se dispone de un nuevo test para el diagnóstico de la enfermedad del legionario [5]. Se trata de una prueba que detecta el antígeno soluble de *Legionella* en orina (AUL) en un máximo de 2 o 3 horas [6]. Es una prueba simple, con muy buena sensibilidad (fundamentalmente para *Legionella pneumophila* serogrupo 1) y especificidad.

- La fiebre de Pontiac es una enfermedad leve y cursa sin neumonía. La clínica es de fiebre, con afectación del estado general y artromialgias. En la mayoría de casos no se
llega al diagnóstico etiológico de esta forma clínica, por su carácter leve y autolimitado en el tiempo. El período de incubación puede oscilar entre 5 y 66 horas; habitualmente es de 24 a 48 horas [7].

4.2.3. Síntomas de la enfermedad

El período de incubación es el tiempo que tardan en aparecer los síntomas de la enfermedad después de la exposición.

- La legionelosis se manifiesta durante varios días con un malestar general y cansancio. La mayoría de los pacientes sufren un resfrío como signo de la infección pulmonar, dolor de cabeza, dolor muscular, entre otros. Algunos pacientes desarrollan fiebres de más de 39,5°C. Otros pacientes pueden mostrar síntomas gastrointestinales, el más común y distintivo es la diarrea. Otros síntomas serían náuseas, vómitos y molestias intestinales.

- La fiebre de Pontiac es similar a un síndrome gripal, no se acompaña con neumonía y no pone en peligro la vida del paciente.

4.2.4. Tratamiento de la enfermedad

La legionelosis precisa de un tratamiento antibiótico específico, mientras que la fiebre de Pontiac se cura sin tratamiento en 2-5 días.

La localización intracelular de la bacteria es muy importante para su tratamiento. Muchos antibióticos efectivos frente a la neumonía son ineffectivos frente a Legionella porque no pueden penetrar las células del tracto respiratorio, o los macrófagos de los alveolos pulmonares.

Las dos clases de antibióticos más potentes frente a Legionella son las fluoroquinolonas (ciprofloxacina, levofloxacina, moxifloxacín y trovofloxacina) y los macrólidos (azitromicina y claritromicina). Otros agentes que muestran ser efectivos incluyen tetraciclinas, doxiciclina, minociclina, etc.

4.2.5. Pronóstico y recuperación de la enfermedad

Si el paciente es tratado con los antibióticos apropiados la recuperación es buena, especialmente en pacientes no inmunodeprimidos. Para pacientes cuyo sistema inmunológico está debilitado, la recuperación hospitalaria es más larga, con posibles complicaciones e incluso resultado de muerte. La legionelosis tiene una letalidad del orden del 20% y es superior en enfermos hospitalizados y pacientes inmunodeprimidos [7].
Después de sufrir legionelosis no es común tener secuelas graves, la recuperación completa se estima en el plazo máximo de un año, en el caso de no fumadores.

Las personas que han contraído la legionelosis tienen muy pocas posibilidades de recaída debido a algún tipo de mecanismo de inmunidad todavía no determinado.

4.2.6. Epidemiología

Aunque la legionelosis es normalmente una infección de baja incidencia, se considera una enfermedad de importancia sanitaria debido a:

- La aparición de brotes en ocasiones con elevado número de afectados asociados a edificios u otras instalaciones.
- La importante tasa de mortalidad.
- La frecuente notificación de casos en turistas.

4.2.7. Objetivos de salud y de disminución de riesgo para el año 2010

Según el Pla de Salut del 2002-2005, del Departament de Sanitat de la Generalitat de Catalunya, de aquí al año 2010:

- Hay que reducir la incidencia de la legionelosis en un 30%.
- Hay que reducir el número de brotes de legionelosis en un 50%.
- La letalidad de la Legionella debe ser inferior al 10%.

Los casos esporádicos y los brotes epidémicos de legionelosis son un problema de salud pública susceptible de reducción mediante la realización de actividades de diagnóstico de los enfermos, caracterización de las cepas implicadas y control de las fuentes ambientales de infección [8].

4.2.8. Objetivos operacionales del Pla de salut 2002-2005

Según se recomienda en el Pla de Salut del 2002-2005, del Departament de Sanitat de la Generalitat de Catalunya, de aquí al año 2005:

- El 95% de los servicios de urgencias hospitalarias deben realizar las pruebas de determinación de antígeno en orina.
- El 90% de los servicios de urgencia hospitalaria deben disponer de protocolos para la obtención de muestra respiratoria adecuada de todos los enfermos con sospecha clínica o epidemiológica de neumonía por *Legionella*.

- El 90% de las cepas de *Legionella* procedentes de enfermos con neumonía por *Legionella* que formen parte de un brote deben practicárseles epidemiología molecular conjuntamente con las cepas ambientales identificadas.

- El 100% de las torres de refrigeración y condensadores evaporativos deben estar censados en los ayuntamientos.

- El 100% de las torres de refrigeración y condensadores evaporativos censados en los ayuntamientos deben disponer de programa de mantenimiento, limpieza y desinfección.

- El 100% de las torres de refrigeración y condensadores evaporativos deben realizar análisis periódicos de concentración de aerobios totales y de concentración de *Legionella* en laboratorios acreditados por la Direcció General de Salut Pública y con la frecuencia que se determine reglamentariamente.

- El 100% de las torres de refrigeración deben aplicar las medidas de mantenimiento, limpieza y desinfección en función de los niveles de contaminación detectados en los análisis microbiológicos.

- El 100% de las empresas que realizan trabajos de mantenimiento, limpieza y desinfección de las torres de refrigeración y condensadores evaporativos deben estar registradas en la Direcció General de Salut Pública.

- El 100% de los trabajadores de las empresas de mantenimiento, limpieza y desinfección deben recibir formación por parte de empresas debidamente acreditadas por la Direcció General de Salut Pública.

- El 100% de las torres de refrigeración y condensadores evaporativos deben pasar una revisión periódica a cargo de empresas de revisión debidamente autorizadas por la Direcció General de Salut Pública.

Exceptuando los tres primeros puntos, el resto ya son de obligado cumplimiento según la legislación vigente.
4.3. Cadena epidemiológica de la enfermedad

Desde su reservorio natural, *Legionella spp.* puede penetrar y colonizar circuitos de agua, donde las condiciones de temperatura, estancamiento y nutrientes favorecen su amplificación y en los que la formación de aerosoles permite su dispersión en el medio, donde pueden contaminar por inhalación a personas susceptibles.

Los puntos esenciales de la cadena epidemiológica son pues:

1. **ENTRADA EN UN CIRCUITO DE AGUA.**
2. **MULTIPLICACIÓN** cuando las condiciones son favorables.
3. **DISPERSIÓN EN EL MEDIO,** en forma de aerosoles de tamaño inferior a 5µ.
4. **INHALACIÓN** del aerosol, en una cantidad suficiente y por una persona susceptible.

La prevención de la legionelosis se basará pues en cortar esta cadena en el máximo número de puntos posibles.

4.3.1. **Entrada en circuitos de agua**

*Legionella spp.* puede entrar en circuitos, a través del agua de aportación, y en algunos casos a través de aerosoles contaminados de otras instalaciones. En el primer caso, llega en concentraciones muy bajas, a menudo por debajo del límite de detección de los métodos analíticos habituales.

4.3.2. **Multiplicación o amplificación**

Una vez dentro del circuito, si este reune condiciones de temperatura, nutrientes, estancamiento y falta de biocidas, la bacteria se multiplicará, llegando a concentraciones elevadas.

Las condiciones favorables para la multiplicación de la legionela son temperaturas que oscilan entre 35-37ºC y la presencia de nutrientes orgánicos junto con las trazas de hierro, tal y como se ha explicado en el apartado 4.1.2.

4.3.3. **Dispersión**

En algunos circuitos o instalaciones se generar aerosoles. Estos aerosoles contendrán la bacteria y permitirán dispersarla convirtiéndose en un riesgo para la salud. Los dispositivos de riesgo de dispersión de *Legionella* son esencialmente sistemas en los que se pulveriza agua, principalmente torres de refrigeración, condensadores evaporativos y duchas,
aunque también emiten aerosoles otros sistemas como son aspersores de riego, fuentes ornamentales, sistemas contra incendios, equipos de refrigeración por aerosolización al aire libre, etc.

La dispersión de gotas permanece en el aire tanto más tiempo cuanto más pequeño sea el tamaño de las mismas (porque disminuye la velocidad terminal de sedimentación), más baja la temperatura seca del aire y más baja la velocidad del viento. La bacteria puede ser transportada por el aire a distancias superiores a 1 kilómetro y mantenerlas vivas durante más de 2 horas.

4.3.4. Inhalación

Si el aerosol dispersado contiene la bacteria y es respirado por una persona susceptible, este puede llegar hasta los alveolos pulmonares de la misma y causar la enfermedad. Una vez allí, y en función de una serie de factores complejos, puede desarrollar la forma leve de la enfermedad, Fiebre de Pontiac, o la forma grave, neumonía por *Legionella*.

Los factores que influyen en el desarrollo o no de la enfermedad, son la virulencia de la cepa, la concentración de *Legionella* en el aerosol inhalado, el tiempo de exposición y una serie de factores del propio paciente entre los que cabe destacar el sexo (ataca más a hombres que a mujeres), la edad (los más afectados son gente de mediana edad, entorno a los 45 años, mientras que los niños lo son raramente), el consumo de tabaco, el consumo de alcohol, la existencia de una patología crónica de base o inmunodeficiencia o inmunosupresión.

4.4. Sistemas de vigilancia epidemiológica

4.4.1. Consideraciones generales

En España la vigilancia epidemiológica de la legionelosis se lleva a cabo mediante la Red Nacional de Vigilancia Epidemiológica, y en otros sistemas y fuentes de información complementarios.

El Centro Nacional de Epidemiología (CNE) es el organismo encargado de coordinar la Red Nacional de Vigilancia Epidemiológica mediante:

1) La notificación de casos de legionelosis, ya que se considera una enfermedad de *declaración obligatoria* (EDO) en Cataluña desde 1987 [9] y en España desde 1996 [10]. La declaración es semanal y corresponde a los médicos en ejercicio, tanto del sector público como privado y de cualquier nivel asistencial, ante la sospecha de un caso.
2) La notificación, obligatoria y urgente, de situaciones epidémicas y brotes por parte de los responsables del estudio epidemiológico de la Comunidad Autónoma afectada.

3) El Sistema de Información Microbiológica (SIM) se basa en la notificación, por parte de los laboratorios de microbiología clínica de los hospitales, de los casos de *Legionella* identificados.

La notificación de casos de legionelosis en viajeros en Europa se comunica al organismo europeo European Working Group for Legionella Infections (EWGLI 1986), con ubicación en Londres, que se encarga de coordinar los estudios epidemiológicos para mejorar la eficiencia del sistema de prevención y favorecer el intercambio de información entre distintos países. EWGLI se encarga asimismo de notificar a las autoridades sanitarias españolas, los casos detectados en Europa en viajeros procedentes de España, para su inclusión en los estudios epidemiológicos realizados en el país de origen.

4.4.2. **Sistemas de información**

El objetivo de los sistemas de información es conocer la evolución, la incidencia y los posibles cambios de patrón de presentación de la enfermedad, mediante la detección de casos esporádicos, brotes y casos relacionados.

A continuación se describen dichos sistemas.

I. Boletín Epidemiológico Semanal (BES) con los datos de diagnóstico microbiológico de enfermedades infecciosas declaradas en los distintos hospitales y los resultados de diagnóstico de neumonías realizados en el Centro Nacional de Microbiología, Virología e Inmunología Sanitarias (CNMVIS).

II. Butlletí Epidemiològic de Catalunya (BEC) del Departament de Sanitat i Seguretat Social de la Generalitat de Catalunya.

III. Publicaciones científicas, fundamentalmente sobre brotes.

IV. Informes recibidos a través de las Direcciones de Salud de algunas Comunidades Autónomas.

V. Casos notificados a través de la red europea de notificación de casos de legionelosis asociados a viajeros (EWGLI).

VI. Laboratorios oficiales:

   a. El Laboratorio Nacional de Referencia de *Legionella* ubicado en el CNMVIS y que presta servicio para identificación y tipificación de las cepas,
realizando pruebas de epidemiología molecular con el fin de comparar muestras ambientales y clínicas, y poder así, determinar los focos de infección.

b. El National Bacteriological Laboratory ubicado en Estocolmo, Suecia, y que presta servicio a la red europea.

4.4.3. Estudio epidemiológico

La notificación de casos de legionelosis desencadena una serie de estudios epidemiológicos, microbiológicos y ambientales, competencia de la autoridad sanitaria. La finalidad de este tipo de estudios es establecer la posible relación entre casos y detectar una fuente común de infección.

Las autoridades sanitarias, para localizar el foco de la infección, recogen muestras ambientales y las comparan con las muestras de los pacientes. Durante este proceso, que puede ser largo, se toman medidas de precaución como son la desinfección preventiva de instalaciones sospechosas, o incluso la clausura temporal de las mismas.

Desde el punto de vista epidemiológico, se definen las siguientes situaciones:

1) Casos agrupados: 2 o más casos aparecidos en menos de 6 meses en personas que hayan frecuentado un mismo lugar (1 de ellos por lo menos confirmado).

2) Casos relacionados: 2 o más casos aparecidos en un intervalo superior a 6 meses en personas que hayan frecuentado un mismo lugar (1 de ellos por lo menos confirmado).

3) Casos aislados: Identificación de un caso sin relación epidemiológica con ningún otro.

4) Casos nosocomiales (enfermedad adquirida durante la estancia en un centro hospitalario).
   - Un caso se considera nosocomial probable si el paciente ha estado ingresado en el centro al menos 1 día durante los diez anteriores a la aparición de los primeros síntomas.
   - Un caso se considera nosocomial confirmado si el paciente lleva ingresado 10 o más días en el momento de la aparición de los primeros síntomas.

5) Brote epidémico: 2 o más casos relacionados epidemiológicamente.
- Brote comunitario relacionado con edificios de uso colectivo: cuando los enfermos han residido, visitado o trabajado, en un edificio en los 10 días anteriores a la fecha de inicio de los síntomas.

- Brote comunitario no relacionado con edificios de uso colectivo: cuando los casos aunque están interrelacionados en el tiempo y el espacio, no se pueden relacionar con ningún edificio de uso colectivo.

- Brote hospitalario.

4.5. **Instalaciones de riesgo**

Como consecuencia de la cadena epidemiológica de la enfermedad, pueden considerarse instalaciones de riesgo, según el Art. 2 del Decreto 352/2004 de la Generalitat de Cataluña, aquellas que utilicen agua en su funcionamiento y generen aerosoles que puedan ser respirados por personas, y que se encuentren ubicadas en el interior o exterior de edificios de uso colectivo o instalaciones industriales que puedan ser susceptibles de convertirse en focos de propagación de la legionela.

4.5.1. **Instalaciones de alto riesgo (Art. 2.2)**

a) Torres de refrigeración y condensadores evaporativos (afectan el ambiente exterior de los edificios).

b) Centrales humidificadoras industriales que generen aerosoles (afectan al interior de los edificios).

c) Sistemas de agua sanitaria caliente sanitaria con acumulador y circuito de retorno.

d) Instalaciones termales.

e) Sistemas de agua climatizada con agitación constante y recirculación, con chorros de alta velocidad o inyección de aire (balnearios, jacuzzis, piscinas, vasos o bañeras terapeúticas, bañeras de hidromasaje, tratamientos con chorros a presión y otros.

4.5.2. **Instalaciones de bajo riesgo**

a) Humectadores.

b) Fuentes ornamentales.

c) Sistemas urbanos de riego por aspersión.
d) Elementos de refrigeración por aerosoles al aire libre.

e) Sistemas de agua contra incendios.

f) Sistemas de agua de instalaciones interiores de edificios, no previstos en el Artículo 2.2 c).

g) Otros aparatos que acumulen agua y puedan producir aerosoles.

4.5.3. Instalaciones de riesgo en terapia respiratoria

- Equipos médicos que entran en contacto con las vías respiratorias (equipos de terapia respiratoria, respiradores, nebulizadores, etc.).
5. Brotes epidémicos

Desde 1976, año en que se produjo el primer brote epidémico de legionelosis, hasta la actualidad, se han descrito un gran número de brotes epidémicos en el mundo. Estos brotes se han originado mayoritariamente en instalaciones de agua sanitaria y torres de refrigeración o condensadores evaporativos.

Aunque el conocimiento de la legionelosis, para la población, se basa en brotes epidémicos debido a la gran repercusión mediática y considerable alarma social que provocan, la enfermedad se presenta fundamentalmente como casos esporádicos, es decir, no relacionados con ningún otro enfermo o brote epidémico identificado. Según datos del Departament de Sanitat de la Generalitat de Catalunya, en las comarcas de Barcelona, excluyendo la ciudad, desde el año 1992 al 2000, el 89,6% de los 492 enfermos confirmados se han presentado como casos esporádicos.

La progresiva incorporación de la técnica AUL a los laboratorios de microbiología convierte la enfermedad del legionario en una infección mucho más frecuente de lo que realmente se suponía, llegándose a detectar muchos casos que probablemente hasta entonces habían quedado como neumonías sin etiquetar.


En Cataluña, como puede observarse en la figura 5.1, la incidencia de la enfermedad del legionario fue de 3,6 por cada 100.000 habitantes en 2001 (223 casos declarados), mientras que en 1989 se habían declarado solamente 15 casos (incidencia inferior al 0,1/10⁵). Esta incidencia (en España 1,09 por 100.000 habitantes en 1999; 400 casos declarados aproximadamente, de los cuales más de la mitad corresponden a la comunidad catalana) es la más elevada declarada en Europa [7].

Fig. 5.1. Morbidad declarada al sistema EDO para legionelosis
La consideración de brote epidémico, en la práctica, no es siempre fácil de establecer. Cuando hay una relación con una instalación en menos de 6 meses, tal y como se dice en el protocolo de Cataluña, la sospecha es clara. Cuando no es así, la relación en el tiempo y en el espacio que se considera brote epidémico no es tan fácil de establecer. Desde el Departament de Sanitat, se sospecha de forma clara la existencia de un brote epidémico si entre el inicio de los síntomas de los casos hay menos de un mes de tiempo, y entre el lugar de residencia u otra actividad menos de 2 kilómetros de distancia.

![Gráfico de distribución de los brotes de legionelosis notificados. Cataluña 1990-2001](image)

**Fig. 5.2. Distribución de los brotes de legionelosis notificados. Cataluña 1990-2001**


De acuerdo a la información que se dispone de la vigilancia epidemiológica, la incidencia de la enfermedad en el año 2001 en EE.UU. y Europa eran de 0,4 y 0,6 casos por 100.000 habitantes. Dentro de Europa, Francia tenía una incidencia de 1,4 casos. En España, en 2002 era de 3,7. En Cataluña 7,6 y en las comarcas de Barcelona (sin la ciudad) de 10,0 (5,7 y 6,5 respectivamente si no contamos el brote epidémico de Mataró).

En Cataluña la incidencia de la enfermedad ha pasado de 0,2 en el año 1992 a 7,6 en 2002 (5,7 sin el brote de Mataró), con un aumento muy ligado al uso iniciado en el año 1995, ahora generalizado, del antígeno urinario como técnica diagnóstica. [12].

Para el conjunto de España solo se disponen de datos desde 1997, ya que antes no se consideraba una EDO, y se observa igualmente un aumento progresivo.
Del mismo modo se ha registrado un gran aumento en el número de brotes epidémicos, pasando de 1 ó 2 brotes epidémicos comunitarios a principios de los años 90 hasta 19 en 2002. En el caso de brotes epidémicos de origen nosocomial o en edificios de uso colectivo la evolución es más irregular. Una situación similar se da cuando se comprueba el número de enfermos detectados en brotes epidémicos.

En España la distribución territorial es muy irregular, condicionada por la variabilidad entre comunidades autónomas en cuanto a la urbanización e industrialización. Igualmente, puede influir la disponibilidad de técnicas diagnósticas, especialmente el antígeno urinario, y el interés de clínicos y epidemiólogos por el tema. La mayoría de los 68 brotes epidémicos se han presentado en el ámbito comunitario seguido del nosocomial (47 % y 28 % respectivamente entre 1989 y 2001).

El brote epidémico de Alcalá de Henares de 1996, con 224 enfermos de los que murieron 9, supuso el inicio de una serie de actuaciones normativas en relación a las torres de refrigeración. En España los últimos grandes brotes epidémicos han sido causados por torres de refrigeración:

En el barrio de la Barceloneta, de Barcelona, el año 2000 se produjeron 54 enfermos confirmados, de los que fueron hospitalizados el 98 % y murieron el 5,6 %. 

En Murcia en 2001 el brote se originó en la torre de un hospital y aparecieron 449 casos confirmados, de los que el 74 % ingresaron y la letalidad fue del 1,1 %. Es el mayor brote conocido en todo el mundo.

En 2002, en Mataró el brote epidémico mayor de Cataluña, causado por una torre de una fábrica de hielo, acabó con 113 casos confirmados, de los que el 73,5 % ingresó y falleció el 1,8 %.

En estos brotes se observa una tendencia a la detección más rápida del problema, cuando el porcentaje de casos detectados es menor (del 96% en la Barceloneta hasta un 74% en Murcia y 46% en Mataró). Este hecho implica que se produzca una situación de alerta en los centros hospitalarios donde pueden ir los nuevos enfermos, lo que hace que el diagnóstico y tratamiento de los posibles enfermos se haga de forma más rápida y correcta. Como consecuencia del correcto diagnóstico y tratamiento la letalidad disminuye. En el brote de la Barceloneta la letalidad fue 5,6 %, bajando a 1,1 % y 1,8 % en Murcia y Mataró.

Un aspecto difícil de mejorar es el bajo porcentaje de enfermos de los brotes de los que se puede disponer de cultivo positivo. En Murcia solo era el 4,2 % y en Mataró el 8,8% de los enfermos. Este hecho, que a nivel diagnóstico de los enfermos no tiene trascendencia al disponer del antígeno urinario, es muy importante a nivel de salud pública por dificultar en
gran medida la comparación con las muestras de *Legionella* que se puedan encontrar en la investigación ambiental y, por tanto, ayudar a la confirmación del origen del brote.

5.1. **Actuaciones ante los brotes**

La notificación de casos de legionelosis asociados a una instalación desencadena una serie de estudios epidemiológicos, microbiológicos y ambientales, competencia de la autoridad sanitaria. A la hora de investigar un brote de legionelosis deben considerarse una serie de factores muy importantes con el fin de orientar las actuaciones a llevar a cabo: número y forma de presentación de los casos, tipo de instalación o edificio implicado, que determinará el número de personas susceptibles, y la cantidad y calidad de las especies de *Legionella* halladas, y de este modo establecer la posible relación entre los casos y detectar una fuente de infección común, con objeto de adoptar las medidas adecuadas. La investigación constará de las siguientes etapas:

5.1.1. **Estudio epidemiológico**

Se procederá a realizar un primer estudio descriptivo según las variables de persona, lugar y tiempo, y a identificar y confirmar los casos por el laboratorio. De cada paciente, se rellena una encuesta epidemiológica recogiendo datos de filiación, datos clínicos, factores de riesgo personal para adquirir la enfermedad y antecedentes epidemiológicos de los 10 días previos al inicio de los síntomas. A partir de aquí, se formularán hipótesis que se intentarán verificar, si es posible, con un estudio analítico de casos y controles.

Cuando se detecte un brote se procederá a su notificación urgente a la Red Nacional de Vigilancia Epidemiológica. Tras un periodo de tres meses después de la finalización del brote se remitirá un informe con datos complementarios que recoja la información final de la investigación llevada a cabo.

5.1.2. **Estudio ambiental**

Comprende las siguientes actuaciones:

- **Inspección de las instalaciones.**

  Se seleccionan las fuentes ambientales de riesgo comunitario ubicadas en las zonas de estudio y se establece un orden de prioridad en la investigación y recogida de muestras: en primer lugar, las torres de refrigeración y los condensadores evaporativos, a continuación las fuentes ornamentales y el riego por aspersión y la limpieza viaria, y por último, la red de abastecimiento de agua.
Siempre que se sospechen o notifiquen casos relacionados o agrupados/brote asociados con una determinada instalación/edificio se realizará una inspección de la misma. Esta consistirá en una revisión a fondo de las instalaciones intentando realizar una identificación y valoración de los puntos críticos, con el fin de detectar posibles defectos estructurales, mal funcionamiento o mantenimiento defectuoso de las instalaciones.

- **Toma de muestras ambientales.** La toma de muestra se debe realizar en instalaciones/edificios en los que exista evidencia de asociación con casos de legionelosis y tiene por objeto detectar la presencia de *Legionella*, lo cual determina las posibles fuentes de infección.

La toma de muestras de agua deberá ser diseñada cuidadosamente en cada edificio o instalación, basándose en los datos derivados del estudio epidemiológico y de la inspección, para no dejar ningún punto importante sin estudiar, ni realizar análisis innecesarios, por tanto, es importante la identificación previa de los puntos críticos.

Las muestras deberán recogerse en envases estériles con cierre hermético y embalajes adecuados para evitar que se rompan o se vierta su contenido en el transporte.

La toma de muestras de agua de una instalación o edificio se realizará siempre antes de proceder a su tratamiento.

Si la primera toma de muestra rinde resultados negativos para aislamiento de *Legionella*, se recomienda realizar nuevas tomas de muestras. En edificios que hayan sido sometidos a tratamiento de desinfección, deberán dejar pasar al menos 15 días desde el tratamiento para realizar una toma de muestra.

En el ámbito hospitalario se deberá realizar, además, el estudio de los equipos de terapia personal y humidificadores.

### 5.1.3. **Diagnóstico microbiológico del/los caso/s**

Es indispensable realizar las pruebas diagnósticas a los afectados para confirmar los casos y obtener muestras para poder comparar, mediante la aplicación de métodos de tipificación, las cepas de enfermos con las cepas ambientales aisladas en caso que las muestras sean positivas. Para poder asegurar que un equipo (torre de refrigeración, condensador) contaminado con *Legionella* ha sido causa de un brote epidémico, además del estudio
epidemiológico que relacione la exposición con los casos, es necesario identificar la misma cepa de *Legionella* en las muestras de los pacientes y en las muestras ambientales.

Se considera caso confirmado toda persona que presente un cuadro clínico de neumonía, con residencia o alguna actividad en un radio de al menos 2 kilómetros [13], durante los 10 días previos al inicio de los síntomas, y con alguna de las siguientes pruebas de laboratorio positivas:

a) aislamiento de *Legionella* en las secreciones respiratorias, tejido pulmonar, líquido pleural, sangre u otras zonas normalmente estériles.

b) detección en el tejido afectado o secreciones respiratorias de *Legionella* (por inmunofluorescencia directa).

c) detección del antígeno de *Legionella pneumophila* en orina.

d) seroconversión ante *Legionella pneumophila* por inmunofluorescencia indirecta, siempre que las diluciones del segundo título sean mayores o igual a 1/128.

5.1.4. **Tratamiento de las instalaciones y corrección de defectos estructurales**

En referencia a la investigación e instauración de medidas de control, se diferencian diversas estrategias:

- Si se trata de un caso nosocomial confirmado, después de la recogida de muestras se tratará la red y se corregirán los defectos de infraestructura, si los hay.

- En cualquier otra situación de vinculación nosocomial no confirmada, se hará la inspección y, si se requiere, se recogerán y se analizarán muestras ambientales antes de decidir las medidas de control que habrá que aplicar.

- Si es un caso probable de infección nosocomial y se hace analítica de muestras ambientales, se pueden producir dos situaciones: que sean positivas y el serogrupo coincida con el del enfermo y entonces se actuará como si se tratara de un caso nosocomial confirmado, o que sean negativas o de un serogrupo no coincidente, con lo que se vigilará activamente para detectar otros casos posibles. En cualquier situación habrá que determinar medidas preventivas generales.

- En casos esporádicos en otros edificios de uso colectivo, solo se tratará la red en el caso que los técnicos de salud pública hayan decidido tomar muestras ambientales
• En casos esporádicos no vinculados a edificios de uso colectivo, se investigará la existencia de otros casos asociados en tiempo o espacio y si no hay, se recomienda mantener una vigilancia activa para detectar otros casos posibles.

Cuando se trata de un brote epidémico ligado a un edificio de uso colectivo, sea o no nosocomial, después de la recogida de muestras se tratará la red y se corregirán los defectos de infraestructura, si los hay. En el caso de brotes comunitarios, no ligados a edificios de uso colectivo, si mediante el estudio epidemiológico y microbiológico se puede determinar el origen del brote, se aplicarán, si es factible, las medidas de tratamiento ambiental en la instalación implicada. Cuando no se llegue a determinar el origen común de casos asociados en el tiempo y en el espacio, se recomendará mantener las instalaciones de riesgo térmico en las mejores condiciones de cloración, temperatura y limpieza para prevenir el depósito, crecimiento y difusión de la *Legionella*.

Las medidas de control a aplicar pueden ser de 3 tipos:

• **Tratamiento propiamente dicho o desinfección.** Tendrá como finalidad eliminar la contaminación por la bacteria. La desinfección debería abordarse aún en ausencia de resultados microbiológicos, tanto de los enfermos como de las muestras ambientales, dado que el tiempo necesario para contar con los mismos es largo. Cuando se decida llevar a cabo este tratamiento deberá escogerse un procedimiento que afecte lo menos posible a la vida diaria de la institución. Esto es especialmente importante en hoteles u hospitales que continúen con su funcionamiento habitual.

Este tratamiento, en instalaciones/edificios, consta de dos fases: un primer tratamiento de choque, seguido de un tratamiento continuado.

El tratamiento de equipos de terapia respiratoria y humidificadores, utilizados en los hospitales, deberá garantizar la esterilización total de los mismos y la utilización de agua estéril en su funcionamiento.

• **Reformas en estructura.** La inspección podría dar como resultado la exigencia de corregir defectos de la instalación, tales como, eliminación de tramos ciegos en la red de tuberías tanto de agua caliente como fría; supresión de depósitos adicionales o de conexiones con alijibes, pozos, etc.; sustitución de tuberías en mal estado; cambio de ubicación de torres de refrigeración para evitar que el aerosol vierta en
zonas de circulación de personas; reposición de duchas, grifos u otros elementos terminales de la red, etc.

- **Paralización total o parcial de la instalación.** En casos extremos, ante la presencia de un elevado número de casos asociados a instalaciones muy sucias, contaminadas por *Legionella*, obsoletas, o con un mantenimiento defectuoso, se podrá recomendar el cierre de dicha instalación, hasta que se corrijan los defectos encontrados.

Una vez realizadas las medidas de control, hay que vigilar con continuidad para comprobar que la instalación implicada se ha limpiado adecuadamente y que los defectos detectados en la inspección se han corregido, con la finalidad de prevenir nuevos casos. Estas actuaciones postratamiento consistirán en:

- vigilancia epidemiológica activa, para detectar de manera precoz posibles nuevos casos asociados con la instalación.

- inspección, en los edificios o instalaciones en los que se conoce asociación con casos previos de legionelosis, las inspecciones serán preceptivas y se han de hacer de forma periódica.

- toma de muestras postratamiento, con la misma periodicidad que las inspecciones, en los puntos que anteriormente habían resultado positivos, con la finalidad de determinar la eficacia del tratamiento. Se debe esperar al menos 15 días después de haber realizado el tratamiento.

Las medidas preventivas generales se basan en el buen funcionamiento de las instalaciones, por esto es fundamental que estas estén bien diseñadas y que la instalación y el mantenimiento sean los adecuados. Todas estas medidas son especialmente importantes en equipos con funcionamiento estacional, que permanecen cerrados unos cuantos meses al año y se producen estancamientos en algunas partes de las tuberías.

Veremos ahora, de modo cronológico y práctico, las actuaciones llevadas a cabo en los brotes de especial relevancia que han tenido lugar en nuestra geografía más cercana.
5.2. Brote de la Barceloneta (Barcelona)

Las primeras informaciones se inician el 13 de noviembre de 2000, cuando el Hospital del Mar notifica al Servei d’Epidemiologia de l’Institut Municipal de Salut Pública la existencia de 5 pacientes ingresados con sintomatología neumónica e identificación del antígeno de *Legionella pneumophila* en muestras de orina. A partir de entonces y hasta el 24 del mismo, se confirman 42 casos más en el mismo centro mediante el test de AUL, lo que supuso un total de 47 ingresos.

Se consideran casos asociados a este brote a los pacientes con sintomatología clínica de neumonía y presencia de antígeno de *Legionella pneumophila* en una muestra de orina, que presentasen inicio de síntomas entre los días 15 de octubre y 15 de noviembre de 2000, y que viviesen o hubiesen estado en el barrio de la Barceloneta en este mismo período.

Se inspeccionaron un total de 86 instalaciones y se recogieron muestras ambientales de 38 puntos de control, con un total de 82 muestras obtenidas (45 de agua y 37 de escobillones), abarcando una zona de inspección rectangular aproximadamente de entre 1000 y 1500 metros.

Las inspecciones realizadas en el barrio de la Barceloneta y zonas limítrofes permitieron la identificación de 7 instalaciones, con un total de 17 torres de refrigeración, susceptibles de vincularse al brote. En el resto de instalaciones revisadas no se identificaron focos potenciales que pudieran relacionarse con la aparición de los casos.

De los 47 pacientes identificados, 44 presentaron una evolución clínica favorable, 6 de ellos fueron ingresados en la UCI y 3 murieron con lo que la letalidad del brote fue de un 6%.

La aparición de los síntomas se produjo, en todos los casos notificados, entre los días 31 de octubre y el 11 de noviembre de 2000. Luego asumiendo un periodo de incubación máximo de 10 días y uno mínimo de 2 días, la exposición al foco se habría producido entre los días 21 de octubre y 9 de noviembre.

43 de los pacientes eran residentes del barrio y 4 de ellos, que no vivían, estuvieron en algún momento entre los días 20 de octubre y 5 de noviembre. A partir del día 16 de noviembre dejan de identificarse nuevos casos y la inclusión de pacientes en el brote se llevó a cabo de forma retrospectiva, mediante la detección en el test de AUL en pacientes ingresados con sintomatología neumónica.

En la tabla 5.1. se presentan características epidemiológicas de los enfermos.
En un 75% de los afectados se identificaron antecedentes patológicos o posibles factores de riesgo asociados con la enfermedad: un 25% de ellos presentó un solo factor, el 30% presentaron 2, el 15% 3 factores y en uno de los pacientes se identificaron 4.

Se apreció que los casos se distribuían con un gradiente decreciente en la dirección sur-este del barrio, es decir, la parte más alejada de donde se ubicaban las torres de refrigeración identificadas.

Del conjunto de afectados del brote, se identificaron 8 cultivos positivos a *Legionella pneumophila* serogrupo 1.

De todas las muestras recogidas para su análisis medioambiental, se obtuvieron resultados microbiológicos positivos de 7 torres de refrigeración en uso, correspondientes a 6 puntos de control (en uno de ellos resultaron positivas las dos torres).
En la muestra procedente de la única torre de refrigeración ubicada en el barrio de la Barceloneta se identificó *Legionella pneumophila* serogrupo 1. La secuencia de material genómico de esta cepa coincide con el identificado en la cepa clínica de los enfermos, y por tanto se establece que este fue el foco originario del brote.

### 5.3. Brote de Murcia

En la ciudad de Murcia durante los días 7 y 8 de julio de 2001 los Servicios de Urgencias de los Hospitales Morales Meseguer y Virgen de la Arrixaca se vieron colapsados por la afluencia de enfermos con neumonía, lo que motivó la notificación de la situación a la Consejería de Sanidad y Consumo de la Región.

Se encontraron 126 instalaciones con riesgo: 70 torres de refrigeración y similares, 35 fuentes ornamentales, 1 obra con movimiento de tierra y 20 sistemas con circuito cerrado aire-agua, que se distribuyen por categorías de riesgo.

De forma inmediata se clausuraron las fuentes ornamentales, el baldeo de las calles y riegos por aspersión de parques y la obra.

La existencia de unos días/semanas con una temperatura adecuada para el crecimiento del germen, unidas al golpe de calor de los días anteriores al inicio del supuesto período de emisión, pudieron ser el desencadenante de la puesta en marcha de torres de refrigeración inactivas desde la temporada anterior.
Se realizaron un total de 486 inspecciones y 1040 toma de muestras, ordenando la limpieza y desinfección de Torres de refrigeración y similares y su clausura en caso que no reunieran los criterios mínimos, hasta que los cumplieran. Se realizaron toma de muestras de agua en llave de purga de las Torres, en la propia balsa, previa y posterior a la limpieza y desinfección ordenada.

Las instalaciones con mayor porcentaje de positividad fueron Torres de refrigeración (38,98%), agua caliente sanitaria (ACS) (24,81%). De 30 Torres de refrigeración positivas, 14 habían sido negativas antes de la limpieza y desinfección, lo que pone de manifiesto la variabilidad de los resultados analíticos y/o la ineficacia de la limpieza y desinfección de Torres de refrigeración realizadas por empresas que utilizaban un 38,89% de productos químicos no inscritos en el Registro Sanitario de Plaguicidas para ése uso, un 88,9% de los mismos no estaban inscritos en ese registro para ningún uso, además un 86% de las empresas que realizaban los tratamientos no estaban inscritas en el Registro de Establecimientos y Servicios Plaguicidas (RESPLA) [14].

La primera desinfección no erradico la contaminación en su totalidad. Un 31,25% de las instalaciones permanecían contaminadas. Después de la segunda medida de intervención aún se mantuvo la contaminación en un 20%, no realizándose más intervenciones de comprobación en algunas de ellas por clausura de las instalaciones debido al cambio de climatología.

El estudio epidemiológico descriptivo determina por características espaciotemporales, curva epidémica y patrón geográfico, que se trata de un brote por fuente común y probablemente única, situado en la parte norte del casco urbano de Murcia; los resultados microbiológicos de todos los enfermos son idénticos.

El estudio caso-control refleja una asociación estadísticamente significativa con alta consistencia, entre pasar cerca del hospital de la zona norte y enfermar de legionelosis, riesgo entre 5 y 24 veces mayor. La única cepa procedente de muestras ambientales coincidente completamente con la cepa aislada de los enfermos, se tomó en una torre de refrigeración de dicho hospital.

Las Torres del Hospital Morales Meseguer fueron calificadas por la inspección medioambiental como uno de los posibles focos por su mal estado de mantenimiento, su tamaño y ubicación. En el mismo periodo existe un brote nosocomial en el hospital.

Las características de este brote en una ciudad como Murcia, de 367.189 habitantes [15], por su magnitud (“800 enfermos, 449 infectados por la bacteria y 5 muertos” [16]), carácter explosivo, que puso en jaque a los servicios asistenciales y de gran repercusión en la población (la Sección de Sanidad Ambiental, de la Consejería de Sanidad y consumo de la
Región de Murcia, recibió 700 llamadas telefónicas en 5 días), con un sinnúmero de noticias en el periódico local (316 en el año 2001 y 48 en el primer trimestre del año 2002), desencadenó, incluso, la toma de decisiones políticas a nivel estatal (RD. 909/2001), hacen que aún hoy día sea considerado el brote de legionelosis más importante que se ha producido a nivel mundial.

5.4. Brote de Mataró

Durante el verano del año 2002, se produjo en Mataró un brote de legionelosis que afectó 113 personas (tasa de incidencia de 399,9 casos/10^5 habitantes), 83 de las cuales requirieron hospitalización y 2 murieron. Este es el brote de legionelosis con un mayor número de afectados que se ha producido en Cataluña. En el momento en que se declaró el brote, se conocían tan solo dos casos que simplemente tenían en común el hecho de residir en un mismo barrio de la localidad: el barrio de Cerdanyola. Se inició la investigación y fueron apareciendo casos relacionados. A partir de aquí se llevó a cabo la investigación epidemiológica y ambiental de forma coordinada entre Epidemiología i Sanejament Ambiental de la Delegación Territorial de Sanitat en Barcelona conjuntamente con Promoció i Protecció de la Salut de l'Ajuntament de Mataró, hasta que se llegó a encontrar la fuente de infección del brote, una torre de refrigeración situada en el barrio donde residían los afectados.

El primer caso inició síntomas el 15 de julio y el último el 25 de agosto. La aparición de enfermos fue rápida en los primeros días de agosto, de forma que en el momento de detectar el brote epidémico, el 9 de agosto, aunque el número de casos que habían acudido al hospital y se habían diagnosticado era sólo de 9, ya presentaban síntomas 52 personas (46% del total).

Nota: la flecha indica el día de detección del brote epidémico

Fig. 5.3. Curva epidémica según fecha de inicio de los síntomas
Fuente: Informe elaborat pel Grup de Treball per a la Investigació del Brot de Legionel·losi a Mataró.
Todos los casos se concentraban, por su domicilio o actividad en los 10 días anteriores al inicio de los síntomas, en el barrio de Cerdanyola. El 74% de los enfermos residían a menos de 500 m de la torre de refrigeración considerada la fuente de infección del brote.

La media de edad de los 113 enfermos era de 61 años. El 64,6% hombres, con una media de edad de 55,5 años y el 35,4% mujeres, con una media de edad de 66,8 años.

En la tabla 5.2 se presentan características de los enfermos, según si el inicio de los síntomas fuese antes o después del día 9 de agosto, momento de la detección y información a la comunidad de la existencia de brote epidémico.

<table>
<thead>
<tr>
<th></th>
<th>TOTAL</th>
<th>ANTES del 9/8</th>
<th>DESPUÉS del 9/8</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Número de casos</strong></td>
<td>113</td>
<td>52</td>
<td>61</td>
</tr>
<tr>
<td><strong>Edad (media en años)</strong></td>
<td>61</td>
<td>63,5</td>
<td>58</td>
</tr>
<tr>
<td><strong>Hombres (%)</strong></td>
<td>64,6</td>
<td>51,9</td>
<td>75,4</td>
</tr>
<tr>
<td><strong>Fumadores (%)</strong></td>
<td>40,7</td>
<td>32,7</td>
<td>47,5</td>
</tr>
<tr>
<td><strong>Diabetes (%)</strong></td>
<td>24,8</td>
<td>28,8</td>
<td>22,8</td>
</tr>
<tr>
<td><strong>Letalidad (%)</strong></td>
<td>1,8</td>
<td>0</td>
<td>3,3</td>
</tr>
<tr>
<td><strong>Hospitalización (%)</strong></td>
<td>73,5</td>
<td>86,5</td>
<td>62,3</td>
</tr>
</tbody>
</table>

Tabla 5.2. Características de los enfermos según su inicio de síntomas, antes o después del día de la detección y información a la comunidad del brote epidémico
Fuente: Informe elaborat pel Grup de Treball per a la Investigació del Brot de Legionel· losi a Mataró.

Destaca que en la primera fase del brote el porcentaje de hombres fue inferior, 51,9% vs. 75,4%; la proporción de hospitalizados fue superior en la primera fase (86,5% vs. 62,3%). La media de edad es superior en la primera fase del brote, 63,5 años vs. 58 años. El 73,5% de los enfermos fueron hospitalizados, con una estancia media de 6 días. Murieron 2 pacientes, lo que representa una tasa de letalidad del 1,8%, un valor muy bajo gracias a la rápida detección del brote, alerta asistencial, disponibilidad del test de diagnóstico e instauración rápida de un tratamiento eficaz.
Se localizaron e investigaron 13 torres de refrigeración y condensadores evaporativos; de ellas, dos dieron positivo a *Legionella pneumophila* sg 1, tres a *Legionella pneumophila* sg 2-14 y ocho negativas. La muestra correspondiente a una fábrica de hielo fue positiva para *Legionella pneumophila* sg 1 (2x10^5 ufc/L).

La responsabilidad de la torre de refrigeración de la fábrica de hielo en este brote es evidente. A las 48 horas de la toma de muestras de la torre se obtuvo un crecimiento muy abundante de *Legionella pneumophila* serogrupo 1. Los perfiles de DNA de las cepas ambientales coincidían totalmente con los de las cepas clínicas aisladas en los enfermos, y eran diferentes del las correspondientes a las cepas aisladas de otras posibles fuentes de infección cercanas. A los 9 días de clausurar la torre dejaron de aparecer nuevos casos de neumonía por *Legionella*, criterio temporal que, unido al resto de evidencias, obligan a considerar esta torre de refrigeración como el origen definitivo del brote.

### 5.5. Brote de Santa Eulàlia (L’Hospitalet de Llobregat)

A finales de agosto y principios de septiembre de 2002, desde la Unitat de Vigilància Epidemiològica Regió Costa de Ponent de la Delegació Territorial a Barcelona del Departament de Sanitat i Seguretat Social de la Generalitat de Catalunya se comunicó al Ajuntament de L'Hospitalet la existencia de tres afectados por legionelosis en el barrio de Santa Eulàlia.

A raíz de esto se decidió poner en marcha un dispositivo de actuaciones para controlar este brote de legionelosis según el *Protocol d’actuacions en cas de brot de legionel·losi*, elaborado por el Ajuntament de L'Hospitalet. Una de las actuaciones más importantes fue la planificación y coordinación de las inspecciones de las instalaciones con torre de refrigeración/condensadores evaporativos del censo municipal. Esta actuación se hizo conjuntamente con el Departament de Sanejament Ambiental de la Generalitat de Catalunya.

Se estableció un radio de actuación de 1600 metros desde el domicilio de los casos y se procedió a hacer la inspección de las actividades con torre de refrigeración/condensador evaporativo incluidos en este radio. Se inspeccionaron un total de 11 actividades.

En todas estas inspecciones se requirió a las actividades un aumento de las dosis en continuo de biocida y la aplicación de un tratamiento de desinfección de choque siguiendo los criterios establecidos para situaciones de brotes epidemiológicos que establece el anexo 4C del *Real Decreto 909/01, de 27 de julio, por el que se establecen las condiciones higiénico sanitarias para la prevención y control de la legionelosis.*
Paralelamente, desde el Ayuntamiento de L'Hospitalet se siguen diferentes estrategias para completar el censo de actividades con torres de refrigeración y condensadores evaporativos. Así, se realiza una visualización aérea del municipio mediante helicóptero durante dos días, inspecciones de diferentes establecimientos sospechosos de tener torre de refrigeración, envío de cartas dirigidas a un número importante de actividades del municipio (aproximadamente unas 3.000) para comunicar la obligatoriedad de informar al Ajuntament de la existencia de torres de refrigeración, etc.

Gracias a esto se descubrieron un total de seis empresas no inscritas en el censo de actividades y que fueron inspeccionadas posteriormente, dando prioridad a las empresas más cercanas a la zona de Santa Eulàlia.

En este caso, se siguió el mismo protocolo de actuación anterior (aumento de la dosis de desinfección en continuo y requerimiento de desinfección de choque según RD. 909/01).

El día 4 de octubre de 2002 se inspecciona una empresa dedicada a la fabricación de cubitos de hielo y que tenía dos torres de refrigeración en el interior de su nave industrial. Estas torres funcionaban durante 8 horas al día de lunes a viernes. Se tomaron dos muestras de las mismas y se hicieron una serie de requerimientos en el acta de inspección que esta empresa tendría que hacer de forma urgente. Estos requerimientos fueron:

a) En el término de una semana, presentar la documentación específica que requería el anexo 1 del Decreto 152/02 ante el Departament d’Activitats Reglades de l’Ajuntament de L’Hospitalet ya que esta empresa no figuraba en el censo de actividades con torre de refrigeración.

b) En el término máximo de una semana, hacer una desinfección de choque de las torres de refrigeración siguiendo los criterios establecidos en el anexo 4.C del Real Decreto 909/01.

Estas torres de refrigeración se controlaban en continuo a través de un producto bactericida y algicida llamado Albaphos KL. No obstante, se comprobó posteriormente que este producto no figuraba en el registro de biocidas autorizados por el Ministerio de Sanidad y Consumo.

Los resultados de la inspección fueron significativos ya que se había encontrado en una de las torres de refrigeración unas cantidades muy altas de *Legionella pneumophila* serogrupo 1 (1 x 10^6 ufc/L).

El día 9 de octubre de 2002 se hizo una desinfección de choque de las torres de refrigeración de esta empresa siguiendo los criterios del anexo 4 C del RD. 909/01.
El día 21 de octubre de 2002, por parte de la empresa se presenta la ficha técnica de notificación de instalación de torre de refrigeración por el Registre General de l’Ajuntament.

El día 24 de octubre de 2002 se vuelve a hacer una inspección de control con toma de muestras de las torres de refrigeración de esta actividad para comprobar la eficacia del tratamiento de choque de las torres de refrigeración ya que habían pasado justo los quince días que establecen los protocolos.

Se requiere por acta que la empresa utilice un producto biocida autorizado por el Ministerio de Sanidad y Consumo para controlar las torres de refrigeración. Durante la inspección se comprueba que la empresa estaba instalando una bomba dosificadora de hipoclorito sódico para mantener una dosificación en continuo de 2 ppm de cloro libre.

Los resultados analíticos de la inspección de fecha 24/10/02 indican que las altas cantidades de *Legionella pneumophila* sg 1 habían sido eliminadas con el tratamiento de choque aplicado. Así pues, esta vez no se detecta *Legionella pneumophila* (Resultado: < $2.5 \times 10^1$).

A finales de noviembre y durante la primera semana de diciembre de 2002, desde la *Unitat de Vigilància Epidemiològica Regió Costa de Ponent de la Delegació Territorial a Barcelona del Departament de Sanitat i Seguretat Social de la Generalitat de Catalunya* se comunicó al Ajuntament de L’Hospitalet que se estaba produciendo un aumento importante de casos, todos relacionados directamente con el barrio de Santa Eulàlia.

Por este motivo, el día 4 de diciembre de 2002 se vuelve a inspeccionar la empresa de fabricación de hielos.

Se toma muestra de agua de las torres de refrigeración, se comprueba que las torres de refrigeración han estado funcionando con normalidad y se informa al gerente de la empresa de la existencia de casos de legionelosis en el barrio de Santa Eulàlia y que algunos de los afectados están muy cerca de su instalación. En el acta se comunicó que se dictarían las correspondientes medidas correctoras en función de los resultados obtenidos.

El día 5 de diciembre de 2002 y ante las evidencias de proximidad entre los casos y la empresa, se comunicó al gerente una resolución firmada por el Director General de Salut Pública de la Generalitat de Catalunya para acordar la *suspensión de funcionamiento de las dos torres de refrigeración*. Esta decisión se tomó como medida de prevención y se considera totalmente acertada a la vista de los resultados analíticos obtenidos de la última inspección y posteriores confirmaciones, además de evitar un aumento importante de los casos.
Los resultados de la inspección de fecha 4/12/02 confirman una contaminación muy notable de una de las torres de refrigeración, con una cantidad aún superior a la registrada en la primera inspección, dos meses antes. Así la cantidad encontrada fue de $3 \times 10^6$ ufc/L de *Legionella pneumophila* serogrupo 1.

El día 7 de diciembre de 2002 se confirmó que las torres de refrigeración estaban fuera de servicio, ya que se habían retirado las bombas utilizadas para su funcionamiento y los tubos de entrada de agua en la torre estaban desconectados.

El día 3 de enero de 2003 se vuelve a inspeccionar esta empresa comprobando que ya no se utilizan las torres de refrigeración para la fabricación de cubitos de hielo. La fabricación de este producto se realiza actualmente con maquinaria de refrigeración con ventilador y circuito cerrado con gas.

Como conclusión a todos los resultados que se disponen, puede afirmarse que esta torre de refrigeración había provocado de forma directa el brote afectando a un total de 10 personas, una de las cuales falleció.
6. Legislación relacionada con la prevención de la Legionelosis (ámbitos autonómico y nacional)

Como hemos dicho anteriormente, la legionelosis es una enfermedad causada por la bacteria de la legionela, que se puede presentar de forma esporádica o en forma de brotes epidémicos que pueden afectar a grupos de personas de la comunidad.

En su hábitat natural, la bacteria puede colonizar los sistemas de agua caliente y fría de los edificios u otros sistemas que requieran agua para su funcionamiento. Si la instalación dispone de algún sistema que produzca aerosoles, las gotas de agua que contienen la bacteria pueden ser inhaladas y provocar la legionelosis en grupos específicos de riesgo.

Para afrontar este riesgo sanitario, el Gobierno de la Generalitat de Cataluña adoptó una primera iniciativa normativa, el Decreto 417/2000, de 27 de diciembre (DOGC número 3304, de 12/01/2001), con medidas específicas de control de torres de refrigeración y condensadores evaporativos, instalaciones origen de la mayoría de brotes comunitarios.

Ante la preocupación creciente entorno a la necesidad de prevenir la Legionella, el Ministerio de Sanidad y Consumo aprobó el Real Decreto 909/2001, de 27 de julio, por el cual se establecían los criterios higiénico-sanitarios para la prevención y control de la legionelosis, y se ampliaba el ámbito de aplicación. Este Real Decreto tuvo la consideración de norma básica, y tuvo su aplicación en todos los aparatos que acumularan agua y pudieran producir aerosoles.

Posteriormente, se aprobó el Decreto 152/2002, de 28 de mayo, por el que se establecían las condiciones higiénico-sanitarias para la prevención y control de la legionelosis (DOGC número 3652, de 07/06/2002), que introdujo un conjunto de medidas y acciones encaminadas a minimizar la aparición de brotes de Legionella mediante el establecimiento de condiciones higiénico-sanitarias a cumplir por los sistemas y aparatos que contengan agua y sean susceptibles de producir aerosoles, los cuales se han identificado como vehículos de este microorganismo en el medio, y de medidas preventivas eficaces contrastadas. Este decreto deroga al anterior Decreto 417/2000.

El avance de los conocimientos científico-técnicos y la experiencia acumulada desde que el Decreto 152/2002, precitado, entrara en vigor aconsejan revisar la efectividad de las medidas de control de las instalaciones de riesgo de generar brotes de legionelosis. Por otra parte, debe adecuarse la normativa vigente en las previsiones del Real Decreto 865/2003, de 4 de julio, por el que se establecen los criterios higiénico-sanitarios para la prevención y control de la legionelosis (ANEXO 1) (que surgió de las recomendaciones de
Orden SCO/317/2003, de 7 de febrero, por la que se regula el procedimiento para la 
homologación de los cursos de formación del personal que realiza las operaciones de 
mantenimiento higiénico-sanitario de las instalaciones, ambas normas de carácter básico 
de acuerdo con el artículo 149.1.16 de la Constitución.

Las modificaciones normativas del Decret 352/2004, de 27 de julio, se orientan, 
esencialmente, a incrementar las medidas preventivas y de control en las instalaciones que 
llenan asociado un riesgo más elevado de constituir un foco de legionelosis (DOGC número 
4185, de 29/07/2004) (ANEXO 2). Así, por un lado, se establecen, para verificar la eficacia 
de las medidas de autocontrol a las que están sujetas aquellas instalaciones, frecuencias 
de muestreo para las torres de refrigeración y los condensadores evaporativos, y para el 
caso que se constate que las condiciones de las instalaciones no sean las deseables, las 
actuaciones preventivas que sus titulares están obligados a llevar a cabo. Por otro lado, se 
incrementa la periodicidad mínima en la revisión obligatoria de las torres de refrigeración y 
los condensadores evaporativos, que pasa a ser anual.

Otros aspectos a destacar son la introducción de una mayor regulación de los requisitos de 
autorización de las entidades y servicios de revisión periódica, encaminada a garantizar la 
competencia técnica y la disponibilidad de recursos suficientes e idóneos para la realización 
de las funciones para las que obtienen la autorización, como también la revisión de los 
contenidos del programa del curso de formación del personal encargado de las tareas de 
mantenimiento higiénico-sanitario de instalaciones de riesgo frente a la Legionella y de su 
tratamiento.

Finalmente, la entrada en vigor de la Ley 7/2003, de 25 de abril, de protección de la salud, 
hace necesario adecuar el régimen de infracción y sanciones a las previsiones de esta 
norma legal.

El objetivo final de todas estas normas es la prevención de la legionelosis. Para conseguir 
este objetivo, tanto la legislación catalana como la estatal establecen un orden de 
obligaciones y responsabilidades de los titulares de las instalaciones de riesgo y de otros 
profesionales o empresarios ligados a la gestión de estas instalaciones: empresas de 
tratamiento, formadores, instaladores, fabricantes, personal de mantenimiento, empresas 
de revisión, etc.

Las acciones que se contemplan se pueden agrupar en tres grandes grupos: acciones 
preventivas, acciones en caso de brote y acciones punitivas.

**Acciones preventivas:** quizá engloba a las más importantes de los tres grupos.
- Adecuación de las instalaciones a unas exigencias de diseño.
- Planes de autocontrol de las empresas.
- Mantenimiento, tratamiento del agua y control analítico.
- Formación del personal que lleva a cabo los tratamientos.
- Obligatoriedad de solicitar una revisión de la instalación.
- Notificación a la autoridad sanitaria competente de la existencia, características y ubicación de las torres de refrigeración.

**Acciones en caso de brote:** encaminadas a facilitar la detección y el saneamiento de la fuente ambiental que ha sido causa del brote. Se regula principalmente aquello que puede hacer la inspección sanitaria.

- Medidas correctoras, como la desinfección de choque.
- Reformas estructurales.
- Toma de muestras.
- Medidas cautelares, etc.

**Acciones punitivas:** recogen y tipifican las infracciones de las obligaciones establecidas en la propia norma y las sanciones que le corresponden dentro del marco de la Ley 14/1986, General de Sanidad. De este modo se dota a la administración sanitaria de una herramienta imprescindible de cara al logro de su objetivo.

Se tipifican como infracciones sanitarias las siguientes:

a. **Infracciones leves.**

1. Las simples irregularidades en la observación de la normativa sanitaria vigente, sin trascendencia directa para la salud pública.

2. Las cometidas por simple negligencia, siempre que la alteración o riesgo sanitarios producidos fueren de escasa entidad.

3. Las que, en razón de los criterios contemplados en este artículo, merezcan la calificación de leves o no proceda su calificación como faltas graves o muy graves.
b. Infracciones graves.

1. Las que reciban expresamente dicha calificación en la normativa especial aplicable en cada caso.

2. Las que se produzcan por falta de controles y precauciones exigibles en la actividad, servicio o instalación de que se trate.

3. Las que sean concurrentes con otras infracciones sanitarias leves, o hayan servido para facilitarlas o encubrirlas.

4. El incumplimiento de los requerimientos específicos que formulen las autoridades sanitarias, siempre que se produzcan por primera vez.

5. La resistencia a suministrar datos, facilitar información o prestar colaboración a las autoridades sanitarias o a sus agentes.

6. Las que, en razón de los elementos contemplados en este artículo, merezcan la calificación de graves o no proceda su calificación como faltas leves o muy graves.

7. La reincidencia en la comisión de infracciones leves, en los últimos tres meses.

c. Infracciones muy graves.

1. Las que reciban expresamente dicha calificación en la normativa especial aplicable en cada caso.

2. Las que se realicen de forma consciente y deliberada, siempre que se produzca un daño grave.

3. Las que sean concurrentes con otras infracciones sanitarias graves, o hayan servido para facilitar o encubrir su comisión.

4. El incumplimiento reiterado de los requerimientos específicos que formulen las autoridades sanitarias.

5. La negativa absoluta a facilitar información o prestar colaboración a los servicios de control e inspección.

6. La resistencia, coacción, amenaza, represalia, desacato o cualquier otra forma de presión ejercida sobre las autoridades sanitarias o sus agentes.
7. Las que, en razón de los elementos contemplados en este artículo y de su grado de concurrencia, merezcan la calificación de muy graves o no proceda su calificación como faltas leves o graves.

8. La reincidencia en la comisión de faltas graves en los últimos cinco años.

Las infracciones en materia sanidad serán sancionadas con multas de acuerdo con la siguiente graduación:

1. Infracciones leves, hasta 3005 euros.

2. Infracciones graves, desde 3005 a 15025 euros, pudiendo rebasar dicha cantidad hasta alcanzar el quíntuplo del valor de los productos o servicios objeto de la infracción.

3. Infracciones muy graves, desde 15025 a 601012 euros, pudiendo rebasar dicha cantidad hasta alcanzar el quíntuplo del valor de los productos o servicios objeto de la infracción.

6.1. Decreto 352/2004

Puesto que el Decreto 352/2004 ha entrado en vigor recientemente, a continuación se expondrán las ideas fundamentales que se recogen en los diferentes artículos que lo componen, y que no se han mencionado con anterioridad, en referencia preferentemente a instalaciones consideradas de alto riesgo y que afectan al exterior de los edificios (Art. 2.2 a).

1. Obligaciones y responsabilidades de las partes

1.1. Titulares de instalaciones de riesgo:

1.1.a. Los titulares de instalaciones de alto y bajo riesgo (Art. 2.2 y 2.3) deben:

a) Disponer de la documentación que acredite la formación del personal de mantenimiento encargado de realizar tratamientos en instalaciones para la prevención de legionelosis, según el artículo 8.3.

b) Corregir cualquier irregularidad detectada en la instalación y comprobarlo posteriormente.
1.1.b. **Los titulares de instalaciones de alto riesgo** comprendidas en el Art. 2.2 deben asegurarse que en su instalación se realizan las pertinentes actividades de mantenimiento higiénico-sanitario, limpieza y desinfección, y por tanto, según el Art. 6, se debe:

a) Elaborar un plano actualizado de la instalación que incluya todos sus componentes.

b) Aplicar el programa de mantenimiento.

c) Disponer de un registro de las operaciones de mantenimiento tal como describe el Art. 7.

d) Aplicar programas de limpieza y desinfección preventiva y/o en continuo en las instalaciones.

e) Aplicar un programa de tratamiento de agua.

f) Elaborar un plan de autocontrol para verificar la eficacia de los programas de mantenimiento, limpieza y desinfección.

g) Efectuar las revisiones periódicas obligatorias por entidades o servicios autorizados: (Art. 15.1).

   • Anualmente para instalaciones incluidas en el Art. 2.2 a): Torres de refrigeración y condensadores evaporativos.

   • Biaualmente para instalaciones incluidas en el Art. 2.2 b): centrales humidificadoras industriales que generan aerosoles.

   • Cada 4 años para los demás dispositivos incluidos en el Art. 2.2.

Los certificados de revisión emitidos a los titulares de torres de refrigeración y condensadores evaporativos de conformidad con lo previsto en el artículo 21 del Decreto 152/2002, de 28 de mayo, mantienen su validez hasta la expiración de su término de vigencia de dos años (Disposición transitória segunda).

Las actividades sujetas a autorización y/o licencia ambiental que se pretendan implantar a partir de la entrada en vigor de este Decreto y que dispongan de instalaciones previstas en el artículo 2.2 a) han de integrar en el expediente correspondiente la documentación que acredite el cumplimiento de las condiciones establecidas en este Decreto (Disposición adicional tercera) y se requerirá un informe del Departament de Salut (Disposición adicional cuarta).
1.1.c. **Los titulares de torres de refrigeración y condensadores evaporativos** (Art. 2.2 a.) deben:

a) **Notificar** al ayuntamiento del municipio donde estén ubicadas (Art. 4):

- La **puesta en marcha** de la instalación y sus características, antes de su puesta en marcha.

- Cualquier **modificación** que afecte al sistema con su correspondiente ficha técnica.

- El **cese** definitivo de la actividad de la instalación, en el término de un mes.

b) Liberar a la atmósfera una cantidad de aerosol inferior al 0,05% del caudal de agua en circulación en el dispositivo (Art. 5.2).

1.2. **Las empresas que realicen tratamientos de mantenimiento de prevención y control de la legionelosis a terceros en instalaciones incluidas en el Art. 2 deben:** (Art. 11).

estar inscritas en el Registro oficial de establecimientos y servicios plaguicidas (ROESP), del Departament de Salut que corresponda según el domicilio social de la entidad.

1.3. **El personal encargado de realizar tratamientos de desinfección y limpieza en estas instalaciones debe estar cualificado, habiendo superado:**

a) Un curso teórico-práctico de 25 horas de duración. Esta formación la podrá impartir la empresa titular de la instalación de riesgo a su propio personal o bien una entidad o un servicio externo (Art. 8.1). El curso debe de estar homologado por el «Institut d’Estudis de la Salut».

b) Cada cinco años, se debe realizar un curso de adecuación a los avances científicos y técnicos de los contenidos del programa formativo establecido en el Decreto, de una duración mínima de 10 horas, que ha de incluir la actualización de sus conocimientos sobre legislación vigente en materia de prevención de legionelosis y de salud laboral, identificación de los puntos críticos y elaboración de programas de control.

1.4. **Las empresas y entidades o servicios externos que imparten formación para realizar tratamientos de prevención de la legionelosis en instalaciones de riesgo deben:**

a) Presentar al «Institut d’Estudis de la Salut» la solicitud de homologación de cursos de formación conforme al programa establecido en el anexo 3 y los requisitos del Art. 9.
b) Expedir certificados individuales de formación.

1.5. Las entidades o servicios de revisión

Las instalaciones de alto riesgo incluidas en el Art. 2.2 están sujetas a una revisión periódica por parte de entidades públicas o privadas, o servicios autorizados.

La revisión periódica se realizará sobre:

- Instalaciones.
- Programas de autocontrol.
- Registro de las operaciones de mantenimiento.

Las condiciones que han de cumplir las entidades o servicios de revisión son, según los Artículos 16 y 22, las siguientes:

a) Tener la sede social en cualquiera de los estados de la Unión Europea.

b) Solicitar autorización a la Dirección General de Salud Pública.

c) Disponer de los medios materiales necesarios para desempeñar la actividad.

d) Disponer de una persona responsable con formación universitaria de grado superior o medio en ciencias de la salud, experimentales o ingeniería y que no tenga intereses de ningún tipo con las empresas a revisar.

e) Garantizar el servicio solicitado por la empresa demandante.

f) Extender un certificado de revisión que acredite la realización de una revisión periódica por triplicado.

g) Conservar información sobre los resultados de las operaciones realizadas durante un período de 10 años.

h) Comunicar a los servicios de inspección del ayuntamiento que corresponda, que la persona titular de una instalación no ha corregido las deficiencias anteriormente detectadas en el plazo establecido.

i) Remitir semestralmente un listado con las instalaciones revisadas al Departament de Salut.
En caso de brote epidémico la revisión será competencia del Departament de Salut, en colaboración con los ayuntamientos, pudiendo realizar revisiones aleatorias. (Art. 27.3).

1.6. Laboratorios de análisis de Legionella:

"...Los laboratorios que lleven a cabo este tipo de análisis deberán disponer de un sistema interno de control de la calidad y acreditar que participan en ejercicios interlaboratorios." (Art. 29).
7. **Estudio del censo de torres de refrigeración y condensadores evaporativos en L’Hospitalet de Llobregat (Barcelona)**

Las torres de refrigeración y los condensadores evaporativos están considerados instalaciones de alto riesgo según el artículo 2.2 del Decreto 352/04 y el Real Decreto 865/03. Como hemos mencionado en el capítulo 5, algunos de los brotes más importantes ocurridos en España han estado provocados por la presencia de *Legionella pneumophila* en los aerosoles emitidos por estos tipos de sistemas de refrigeración.

En el municipio de L’Hospitalet de Llobregat se han registrado brotes de legionelosis en los últimos 4 años (2001-2004). En todos ellos se iniciaron investigaciones epidemiológicas, ambientales y analíticas pero sólo en el brote de Santa Eulàlia (2002) se determinaron las causas exactas de su origen y se determinó la suspensión de la torre causante del brote que tuvo como peor consecuencia la muerte de una persona.

Las investigaciones ambientales de los brotes de legionelosis en este municipio se han llevado a cabo por técnicos del Departament de Sanejament Ambiental de la Generalitat de Catalunya y por técnicos del Negociat de Salut Pública del Ajuntament de L'Hospitalet, junto a los cuales el que realiza este estudio ha tenido el placer de trabajar, gracias a un convenio entre la UPC y dicho Ajuntament. En estas inspecciones se considera fundamental iniciar un control y seguimiento de las torres de refrigeración y condensadores evaporativos a partir de un censo municipal de estos dispositivos.

7.1. **Evolución del censo municipal de las torres de refrigeración y condensadores evaporativos**

L’Hospitalet de Llobregat es un municipio de 253.873 habitantes que pertenece a la comarca del Barcelonés, limítrofe al norte con Esplugues de Llobregat y Cornellà de Llobregat, al este y sur con Barcelona y al oeste con el Prat de Llobregat. Su superficie es de 12,5 km² y tiene una densidad de población 20.310 hab./km²[19].

Aunque este ha sido un municipio tradicionalmente agrícola, a finales del siglo XVIII empezaron a instalarse las primeras fábricas textiles aprovechando que existía una amplia disponibilidad de suelo industrial y estaba bien comunicado con Barcelona. Pero no fue hasta principios del siglo XX cuando la ciudad experimentó un gran desarrollo industrial y,
en consecuencia, un espectacular crecimiento demográfico. A finales de 2003, L'Hospitalet cuenta con un importante tejido industrial en el que se cuentan 1793 actividades [19].

La aparición de las primeras legislaciones para el control de legionelosis en los años 2000 y 2001 obligaba a las empresas con torres de refrigeración y condensadores evaporativos a registrarse y comunicar su existencia en los ayuntamientos. Es por ello que surgió la necesidad de crear rigurosamente un censo de este tipo de dispositivos de refrigeración en L'Hospitalet, cuyo control es realizado por el departamento encargado de proporcionar las licencias de actividad (Departament d'Activitats Reglades) e inmediatamente éste comunica esta información al departamento que ha de realizar las correspondientes inspecciones y analíticas (Negociat de Salut Pública, Inspección y Laboratorio respectivamente).

Desde el ayuntamiento se han llevado a cabo diferentes estrategias con la finalidad de completar el censo de las actividades con torre de refrigeración y condensadores evaporativos puesto que no existía un conocimiento preciso de este tipo de instalaciones. Entre las estrategias seguidas cabe destacar:

a) Envío de cartas en las que se informaba de la obligación, según el Decret 417/2000, de inscripción en el censo municipal a todas las actividades industriales con licencia municipal (Mayo 2001).

b) Realización de inspecciones, incluida la inspección aérea de la ciudad con toma de fotografías desde un helicóptero y estudio termográfico. En 2002 se realizaron un total de 459 inspecciones con el fin de encontrar torres de refrigeración/condensadores evaporativos no censados [20]. Elaboración, difusión y envío del tríptico informativo Plan de actuaciones para la prevención y control de la legionelosis, por el Ajuntament de L’Hospitalet y el Departament de Sanitat i Seguretat Social de la Generalitat de Catalunya (2003).

Con la puesta en funcionamiento de estas actuaciones y la difusión que han hecho diversos medios de comunicación acerca de las actividades de control realizadas por el Ajuntament, se ha logrado disponer de un censo bastante exhaustivo, sino completo, del número de actividades con torres de refrigeración y condensadores evaporativos en el municipio.

El tipo de actividades con sistemas de refrigeración basados en estos dispositivos es muy diverso en L'Hospitalet, predominando las actividades industriales de la transformación del caucho y materiales plásticos, seguidos por las de telecomunicaciones, las de industria química, comercio y centros sanitarios y las de metalurgia y fabricación de productos metálicos como puede observarse en la figura 7.1. En la tabla 7.1. se describen la totalidad de actividades existentes en Junio de 2004 con este tipo de instalaciones, clasificadas según la Classificació Catalana d'Activitats Econòmiques (CCAE).
### Tabla 7.1. Clasificación de las actividades con torres de refrigeración y condensadores evaporativos


<table>
<thead>
<tr>
<th>CCAE</th>
<th>Actividad</th>
<th># Empresas</th>
<th># TR-CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Industria Química (Fabricación)</td>
<td>2-15 (2)</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>Transformación del caucho y materias plásticas</td>
<td>3-20-25-30 (4)</td>
<td>7</td>
</tr>
<tr>
<td>27-28</td>
<td>Metalurgia y fabricación de productos metálicos</td>
<td>1-21-29 (3)</td>
<td>3</td>
</tr>
<tr>
<td>52</td>
<td>Comercio</td>
<td>7-8 (2)</td>
<td>4</td>
</tr>
<tr>
<td>63</td>
<td>Depósito y almacén frigorífico</td>
<td>5 (1)</td>
<td>1</td>
</tr>
<tr>
<td>64.200</td>
<td>Telecomunicaciones</td>
<td>22-23-24-31 (4)</td>
<td>5</td>
</tr>
<tr>
<td>66.011</td>
<td>Entidades de seguros privados</td>
<td>17 (1)</td>
<td>1</td>
</tr>
<tr>
<td>85.1</td>
<td>Sanitaria</td>
<td>4-10 (2)</td>
<td>4</td>
</tr>
<tr>
<td>92.7</td>
<td>Actividades recreativas diversas</td>
<td>32-33 (2)</td>
<td>2</td>
</tr>
<tr>
<td>93.030</td>
<td>Pompas fúnebres y actividades relacionadas</td>
<td>9 (1)</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 7.1. Distribución por sectores de torres de refrigeración y condensadores evaporativos

Evaluando el censo de torres de refrigeración y condensadores evaporativos existente en junio de 2004 y el censo de noviembre de 2002 (entorno a 1 año y medio) podemos constatar una disminución significativa de este tipo de instalaciones, pasando de 50 (40 TR y 10 CE) a finales de 2002, a 32 (25 TR y 7 CE) a mediados de 2004. Así pues, en este periodo de tiempo se ha producido una pérdida del 38% de las torres de refrigeración y/o condensadores evaporativos censados en el municipio. La reducción también ha sido notable en cuanto al número de actividades con este tipo de instalaciones ya que en noviembre de 2002 existían 30 actividades y a julio de 2004 hay censadas 22 actividades.

7.2. Control de la legionelosis en L'Hospitalet

Una vez elaborado el censo de torres de refrigeración/condensadores evaporativos, desde la Direcció General de Salut Pública del Departament de Sanitat i Seguretat Social de la Generalitat de Catalunya se determinó, en octubre de 2002, que la desinfección de mantenimiento de estas instalaciones se hiciese por cloración mediante dosificador automático en continuo, registrándose automáticamente los niveles de desinfectante residual existentes en cada momento ante la necesidad de evitar más brotes en el municipio y para controlar dichos niveles. Esta actuación se contempla ya en el vigente Decret 352/2004, Art. 27.6.
El Negociat de Salut Pública de l'Ajuntament de L'Hospitalet inició en el año 2003 un programa específico de control de las actividades catalogadas de riesgo de propagación de legionelosis dada la experiencia acumulada en este campo en los dos años anteriores, fomentada por la aparición de sucesivos brotes. Así, se realizaron una serie de actuaciones que se reflejan en la tabla 7.2. y se estableció una planificación periódica de las inspecciones y análisis de las actividades con torres de refrigeración/condensadores evaporativos (tal y como se muestra en la tabla 7.3.), los sistemas de agua caliente sanitaria de los centros de uso colectivo que dispongan de duchas, las bañeras de hidromasaje y las fuentes ornamentales, lo que comporta que en la actualidad se disponga de un conocimiento muy exhaustivo de las actividades que pueden generar un brote de legionelosis en el municipio.

<table>
<thead>
<tr>
<th>Actuaciones en 2003</th>
<th>Número</th>
</tr>
</thead>
<tbody>
<tr>
<td>En torres de refrigeración o condensadores evaporativos de empresas del municipio</td>
<td></td>
</tr>
<tr>
<td>Inspecciones realizadas</td>
<td>81</td>
</tr>
<tr>
<td>Muestras</td>
<td>90</td>
</tr>
<tr>
<td>En instalaciones deportivas dependientes del Àrea d'Esports de l'Ajuntament</td>
<td></td>
</tr>
<tr>
<td>Inspecciones realizadas</td>
<td>39</td>
</tr>
<tr>
<td>Muestras</td>
<td>80</td>
</tr>
<tr>
<td>En instalaciones deportivas dependientes del Àrea d'Ensenyament de l'Ajuntament</td>
<td></td>
</tr>
<tr>
<td>Inspecciones realizadas</td>
<td>28</td>
</tr>
<tr>
<td>Muestras</td>
<td>24</td>
</tr>
<tr>
<td>En las fuentes ornamentales del municipio</td>
<td></td>
</tr>
<tr>
<td>Inspecciones realizadas</td>
<td>1</td>
</tr>
<tr>
<td>Muestras</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 7.2. Control de legionelosis en instalaciones de L'Hospitalet de Llobregat (2003)
<table>
<thead>
<tr>
<th>Tipo de TR/CE</th>
<th>Empresas (a fecha 06/04)</th>
<th>Inspecciones anuales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funcionamiento estacional</td>
<td>4 - 8 - 17- 32 – 33 (5)</td>
<td>2 (en los 3-4 meses de funcionamiento de la actividad)</td>
</tr>
<tr>
<td>Asociadas a centros hospitalarios y servicios funerarios</td>
<td>9 – 10 (2)</td>
<td>4 (trimestrales)</td>
</tr>
<tr>
<td>Asociadas a centros de telefonía</td>
<td>22 – 23 – 24 – 31 (4)</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabla 7.3. Planificación de inspecciones de torres de refrig. y condensadores evap.

Este programa de control ha implicado la redacción de diversos documentos de trabajo entre los que destacan el Protocolo de actuaciones para la prevención y el control de la legionelosis en L’Hospitalet de Llobregat y los Procedimientos normalizados de trabajo para llevar a cabo las inspecciones y las analíticas de determinación de Legionella.

Después de un año de aplicación de este programa se puede concluir que las inspecciones sistemáticas realizadas en el municipio han contribuido a que las empresas con torres de refrigeración/condensadores evaporativos tengan un mayor control sobre este tipo de dispositivos, concienciando a sus propietarios de la responsabilidad que supone el tener un aparato de estas características en sus instalaciones y del problema para la salud pública que puede representar la instalación en el caso de no ser controlada tal y como determina la legislación vigente, y en algunos casos han acelerado los cambios a sistemas alternativos y a la aplicación de medidas correctoras. Se observa un ligero descenso en cuanto a presencia de Legionella en muestras tomadas en torres de refrigeración y condensadores evaporativos se refiere; mientras que en 2002 de las 75 muestras, 12 (16%) presentaban Legionella, en 2003 de 90 muestras recogidas se detectó la presencia de la bacteria en 14 (15,5%).

Se adjunta el ANEXO 3, Mapa de situación de las torres de refrigeración y condensadores evaporativos en L’Hospitalet de Llobregat.

Desde la Unitat de Vigilància Epidemiològica se informa al Negociat de Salut Pública en fecha 1/07/04 que existe una persona (caso 1) afectada de legionelosis. Este día se procede a inspeccionar la empresa 33 (1 torre de refrigeración) debido a la proximidad con el domicilio del afectado. Se requiere una desinfección de choque 4C que se realiza al día siguiente.

El 5/07/04 se comunican tres nuevos casos de legionelosis (casos 2, 3 y 4) en el municipio. Por la situación de la mayoría de los casos se piensa que podrían tener relación con el brote declarado en el mes de febrero de 2004, que implicaba a empresas de los municipios de Cornellà y L’Hospitalet y del que no se determinó el causante debido a que no se disponían de las cepas de los afectados.

Se inspecciona la empresa 32 (1 torre de refrigeración) (5/07/04). Según el libro de control de la torre de refrigeración, ésta fue puesta en marcha el 30/06/04, mientras que la desinfección y limpieza de la misma se hizo, según certificado, el día 1/07/04. En la inspección se comprueba que hay dos equipos frigoríficos en el terrado para sustituir la torre de refrigeración.

También en la misma fecha se toman muestras de las fuentes ornamentales de las plazas Mestre Clavé y Mossèn Homar para determinar si existe presencia de Legionella y se comunica a la Responsable del Servei de Manteniment i Espai Públic i Cartografia la paralización de las tres fuentes ornamentales cercanas a la zona de los afectados.

El 7/07/04 se comunican tres nuevos casos de legionelosis en L’Hospitalet (casos 5, 6 y 7). Se comunica la presencia de Legionella serogrupos 2-24 en la empresa 29 (1 torre de refrigeración), de la que se tomó muestra en la inspección de fecha 22/06/04, y se requiere una desinfección de choque según anexo 4C.

El 8/07/04 se reúnen miembros del Negociat de Salut Pública (Ajuntament de L’Hospitalet) y Sanejament Ambiental (Generalitat de Catalunya) para tratar la estrategia a seguir para controlar el brote. Se hace un análisis de la situación de las 21 torres de refrigeración/condensadores evaporativos, de las que 15 empresas, incluidas en un radio de 750 metros respecto a los domicilios de los 7 casos. Gracias al programa sistemático de control de torres se pueden plantear mejor las estrategias a seguir y las actuaciones a llevar a cabo. Las actividades que se evalúan son las que figuran en la tabla 7.4.:
También se consideran dos actividades de Cornellà: **empresa A** y **empresa B**. Se comenta hacer un seguimiento y control exhaustivo de la **empresa B** ya que en las inspecciones realizadas desde febrero se han encontrado siempre niveles de *Legionella* y se acuerda:
• Cerrar ese mismo día de forma cautelar la **torre de refrigeración de la empresa 32** (resolución firmada por el Director General de Salut Pública de la Generalitat de Catalunya) debido a las irregularidades observadas en la última inspección. Ordenar su parada, sin que se vacíe el agua de la bandeja, y precintarla (llaves de purga, tapa de registro de la torre, correas de transmisión, cuadro eléctrico, etc.). Volver a inspeccionar la instalación realizando toma de muestras el 15/07/04.

• Esperar resultados de las analíticas de las muestras de las **empresas 21, 25 y 33**.

8. Inspeccionar los dispositivos de refrigeración de las **empresas 1** (1 **torre de refrigeración**), **2** (2 **torres de refrigeración**), **7** (3 **condensadores evaporativos**) y **15** (2 **torres de refrigeración**).

El 8/07/04 se notifica otro caso (**caso 8**). También se comunica que el **caso 5** se excluye de los considerados en el brote. Ese mismo día se inspeccionan las **empresas 7** y **15**.

El 9/07/04 se comunica que el **caso 7** se excluye de los considerados en el brote. Ese mismo día se inspeccionan las **empresas 1** y **2**.

El 13/07/04 se envía los resultados negativos de *Legionella* a la **empresa 25**.

El 14/07/04 se notifica otro caso (**caso 9**) lo que implica que se contabilicen un total de 7 afectados por el mismo brote de legionelosis. También se envía los resultados negativos de *Legionella* a las **empresas 33** y **21**. Los resultados de la primera empresa demuestran contaminación por bacterias aerobias por lo que se le requiere comprobar la eficacia de la dosis y tipos de biocida utilizado y a realizar un nuevo muestreo de *Legionella*.

El 15/07/04 se realiza una nueva reunión entre el Negociat de Salut Pública (Ajuntament de L’Hospitalet) y Sanejament Ambiental (Generalitat de Catalunya) para tratar la estrategia a seguir para controlar el brote llegando a los siguientes acuerdos:

• Confirmar las fechas de desinfección de choque de las **empresas 1, 2, 15 y 29**.

• Esperar a saber si hay muestra de pacientes para ir a tomar muestra a la **empresa 32** en la semana del 19 al 23 de julio. Si no hubiese, posponer la recogida a la semana del 9 al 13 de agosto.

• Esperar resultados de las muestras de las **empresas 1, 2, 7 y 15**.

• Las muestras anteriores de la **empresa A** era no determinable por la cantidad de flora adjunta de la muestra, por tanto se requerirá desinfección 4C.
El 16/07/04 la **empresa 1** comunica que hizo la desinfección de choque el día 12/07/04. Informa que la torre no se ha puesto en marcha ya que hay una avería en la máquina que necesita la torre. Informa que tiene pendiente cambiar la bomba de suministro de cloro. Por esto se deberá tomar una nueva muestra unos quince días después de poner en marcha la torre.

La **empresa 29** comunica que realizará la desinfección ese mismo día y que enviará el albarán de realización el próximo 19 de julio. Por esto deberá tomarse una nueva muestra.

Se informa al Negociat de Salut Pública, desde Sanejament Ambiental que la muestra actual de la **empresa A** está dando negativo. Si en el término de 10 días ha dado negativo no requerirán desinfección 4C.

Ese mismo día se informa desde la Unitat de Vigilància Epidemiològica que no hay nuevos casos. Por esto no será necesario repetir la toma de muestras de aquellas empresas que hayan dado negativo y se les haya requerido una desinfección 4C. Se acuerda esperar al análisis de la muestra de los pacientes para repetir o no la toma de muestras a la **empresa 32** y realizar una reunión de coordinación a finales de la próxima semana.

Se toma muestra del agua de riego de los **aspersores situados en Av. del Carrilet esquina con Riera dels Frares**, determinándose unos valores de cloro libre de 0,18 ppm y de cloro total de 0,27 ppm.

El día 19/07/04 concluyen les analíticas negativas de las **empresas 2, 7, 15, 32** y un **gimnasio** de la zona. La **empresa 29** confirma que hizo la desinfección anexo 4C el pasado 16/07/04 y la **empresa 2** el día 17/07/04.

El 20/07/04 la **empresa 15** comunica que realizará la desinfección de choque anexo 4C el día 9/07/04.

El 22/07/04 se hace una reunión de coordinación entre el Negociat de Salut Pública y el Departament de Sanejament de la Generalitat acordándose:

- **Empresa 1**: Abrir expediente sancionador por tener la torre en funcionamiento con la bomba dosificadora averiada. Tomar nueva muestra el 30 de julio. Requerir desinfección 4B después de las vacaciones (30/08/04) si la torre se para. Requerir una revisión por una Entidad Colaboradora de la Administración (ECA) sobre el estado de la torre y de todos sus componentes.
Empresa 32: Telefonear al titular por si aún pretende desmantelar la torre de forma inmediata. En caso positivo tendrá que presentar un escrito ante el Director de Serveis Territorials de Barcelona entre el día de la fecha o el siguiente. La Generalitat hará la autorización de desmantelamiento habiendo tomado muestra previamente, y que será enviada al Negociat de Salut Pública. Una vez se haya recibido se irá a tomar muestra y se volverá a precintar. En el acta tendrá que hacerse constar que el titular deberá avisar al Negociat de Salut Pública para estar presente en el momento del desmantelamiento de la torre para levantar un acta.

El 22/07/04 se comunica personalmente el resultado positivo de Legionella serogrupos 1 y 2-14 a la empresa 1. Se requiere desinfección 4B después de la finalización de vacaciones (30/08/04), revisión por una ECA, nueva analítica después de la desinfección 4B y mantenimiento correcto del libro de registro.

El Departament de Sanejament Ambiental comunica al Negociat de Salut Pública que el resultado de empresa B es no determinable.

El 23/07/04 la empresa 29 comunica que parará la torre por vacaciones el mes de agosto y que realizarán una limpieza y desinfección 4B el 30 de agosto.

El 30/07/04 se toma una nueva muestra de la empresa 1. En la inspección se comprueba que han cambiado el lector de la bomba dosificadora, que ahora determina en ppm. La torre se parará durante el mes de agosto.

Llega la resolución para la empresa 32 conforme pueden desmantelar la torre, habiendo tomado muestra previamente.

El 02/08/04 se desprecinta la torre y se toma muestra de la empresa 32. Se requiere que comunique el día y la fecha del desmantelamiento para que inspectores técnicos del Negociat de Salut Pública puedan estar presentes y levantar acta. Se informa que no puede ponerse en marcha la torre.

El 12/08/04 se procede a desmantelamiento de la torre de refrigeración de la empresa 32 en presencia de inspectores técnicos del Negociat de Salut Pública y se explica al responsable de la instalación de los procedimientos a seguir para darla de baja ante el Ayuntamiento. Al día siguiente, una vez realizado el trámite pertinente, se hace efectiva esta baja.

Se obtienen los resultados negativos de la muestra de la empresa 32, tomada el 2/08/04, la de la muestra de la empresa 1, de 29/07/04 y la de los aspersores de Av. Carrilet/Riera dels Frares.
Veamos en la tabla 7.5., a modo de resumen, las inspecciones realizadas a las empresas implicadas en el brote.

<table>
<thead>
<tr>
<th>Empresa</th>
<th>Fecha inspección</th>
<th>Resultado analítico</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>09/07/04</td>
<td>L.p: 9x10⁵ ufc/L; Sg: 1 y 2-14</td>
</tr>
<tr>
<td></td>
<td>29/07/04</td>
<td>Negativo</td>
</tr>
<tr>
<td>2</td>
<td>09/07/04</td>
<td>Negativo</td>
</tr>
<tr>
<td>3</td>
<td>02/06/04</td>
<td>Negativo</td>
</tr>
<tr>
<td>4</td>
<td>22/06/04</td>
<td>Negativo</td>
</tr>
<tr>
<td>7</td>
<td>08/07/04</td>
<td>Negativo</td>
</tr>
<tr>
<td>8</td>
<td>15/06/04</td>
<td>Negativo</td>
</tr>
<tr>
<td>15</td>
<td>08/07/04</td>
<td>Negativo</td>
</tr>
<tr>
<td>21</td>
<td>02/07/04</td>
<td>Negativo</td>
</tr>
<tr>
<td>22</td>
<td>24/05/04</td>
<td>Negativo</td>
</tr>
<tr>
<td>24</td>
<td>27/04/04</td>
<td>Negativo</td>
</tr>
<tr>
<td>25</td>
<td>29/06/04</td>
<td>Negativo</td>
</tr>
<tr>
<td>29</td>
<td>22/06/04</td>
<td>L.p: 1,4x10³ ufc/L; Sg: 2-14</td>
</tr>
<tr>
<td>30</td>
<td>21/06/04</td>
<td>Negativo</td>
</tr>
<tr>
<td>32</td>
<td>05/07/04</td>
<td>Negativo</td>
</tr>
<tr>
<td></td>
<td>02/08/04</td>
<td>Negativo</td>
</tr>
<tr>
<td>33</td>
<td>01/07/04</td>
<td>Negativo (contaminación por bacterias aerobias)</td>
</tr>
</tbody>
</table>

Tabla 7.5. Inspecciones y resultados analíticos de TR/CE implicados en el brote
Fuente: Negociat de Salut Pública. Ajuntament de L’Hospital de Llobregat.

El 19/08/04 desde la Generalitat se comunica que hay otra persona afectada de Legionella (caso 10). No obstante, inició síntomas el 22/07/04, con lo que el número de afectados por el brote pasa a ser 8. Se considera hacer las inspecciones de la empresa 4 (1 torre de
refrigeración) y de la empresa 33 (1 torre de refrigeración) la semana del 23-27/08/04 debido a la proximidad que con el domicilio del afectado, aunque ya se habían inspeccionado el 22/06/04 y el 1/07/04 respectivamente.

A fecha 30/08/04 no se ha comunicado la existencia de ningún otro afectado por legionelosis en L’Hospitalet, y en la tabla 7.6., se presenta el estado de las instalaciones implicadas.

<table>
<thead>
<tr>
<th>Empresa</th>
<th>Biocida utilizado</th>
<th>Fecha ECA</th>
<th>Actuaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hipoclorito sódico al 15%</td>
<td>24/11/03</td>
<td>- Desinfección choque 4C (12/07/04).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Expediente sancionador por tener en funcionamiento la TR con la bomba dosificadora averiada.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Se requiere evaluación del estado de la TR y sus componentes por una ECA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– TR parada en agosto.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– Limpieza y desinfección 4B (30/08/04).</td>
</tr>
</tbody>
</table>
| 2       | Hipoclorito sódico al 15%  
CINCA-334 (anticorrosivo y desincrustante) | 04/06/04    | - Desinfección choque 4C (17/07/04).                                         |
| 3       | Hipoclorito sódico al 15% | 18/07/03    | - Estado y mantenimiento adecuados.                                          |
| 4       | PAB17 (sulfato de tetrahidroximetilfosfonio 10%)  
PAB 10 (anticorrosivo y desincrustante) | 16/05/03    | - Programada inspección.                                                    |
| 7       | Hipoclorito sódico al 15% | 23/06/03    | - Estado y mantenimiento adecuados.                                          |
| 8       | Mirecide RB/6  
Panevap-IC (desincrustante) | 10/11/03    | - Estado y mantenimiento adecuados.                                          |
| 15      | Stenco B-25  
Stenco C-704 (desincrustante) | 06/06/03    | - Desinfección choque 4C (09/07/04).                                         |
| 21      | Hipoclorito sódico al 15%  
NALCO 7330  
HM AGUAS TR (anticorrosivo) | 26/09/03    | - Estado y mantenimiento adecuados.                                          |
<table>
<thead>
<tr>
<th></th>
<th>Producto</th>
<th>Fecha</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>NDT-17 (sulfato de tetrahidroximetilfosfonio 10%) Nalco 77345 (ZnCl₂ y H₃PO₄, anticorrosivo y desincrustante)</td>
<td>16/10/03</td>
<td>- Estado y mantenimiento adecuados.</td>
</tr>
<tr>
<td>24</td>
<td>NDT-17 (sulfato de tetrahidroximetilfosfonio 10%) Nalco 77345 (ZnCl₂ y H₃PO₄, anticorrosivo y desincrustante)</td>
<td>16/10/03</td>
<td>- Estado y mantenimiento adecuados.</td>
</tr>
<tr>
<td>29</td>
<td>Adiclene 1352 y ADIC-516</td>
<td>04/07/03</td>
<td>- Desinfección choque 4C (16/07/04).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- TR parada en agosto.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Limpieza y desinfección 4B (30/08/04).</td>
</tr>
<tr>
<td>30</td>
<td>Actinio-108 y Activex-2009</td>
<td>06/11/03</td>
<td>- Estado y mantenimiento adecuados.</td>
</tr>
<tr>
<td>32</td>
<td>Rainer Water CP90 (algicida-bactericida-fungicida) y Rainer Water 10 (desincrustante)</td>
<td>05/09/03</td>
<td>- Cierre de la TR debido a las irregularidades observadas (08/07/04).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Toma de nueva muestra (02/08/04).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Desmantelación de la TR (12/08/04).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– Baja en el censo el 13/08/04.</td>
</tr>
<tr>
<td>33</td>
<td>Drew 14-127-M y Rainer Water 10 (desincrustante)</td>
<td>03/05/04</td>
<td>- Desinfección choque 4C (02/07/04).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– Programada inspección.</td>
</tr>
</tbody>
</table>

**Tabla 7.6. Estado y actuaciones en TR/CE implicados en el brote**

**Fuente:** Negociat de Salut Pública. Ajuntament de L'Hospitalet de Llobregat.
8. Consideraciones económicas

8.1. Coste del mantenimiento de una torre de refrigeración

Para asegurar el mantenimiento de las torres de refrigeración se requiere, según la legislación vigente, la realización de un conjunto de actuaciones que además de velar por el buen funcionamiento y control de la instalación, garantizan una serie de gastos anuales que deben asumirse si se quiere evitar cometer algún incumplimiento.

Analizamos estos gastos basándonos en el caso de BILCAM S.A., una empresa que tiene censada una torre de refrigeración cerrada para la refrigeración de maquinaria, con una potencia frigorífica aproximada de 800 kW, situada en L’Hospitalet de Llobregat y que se dedica a la transformación de plásticos. Esta empresa tiene contratada a una empresa para la realización de los servicios necesarios para la implantación del sistema preventivo contra la legionelosis. Según lo previsto en la legislación realizan las actuaciones que se detallan en la tabla 8.1., con el coste especificado sin incluir el IVA (16%).

<table>
<thead>
<tr>
<th>Actuación</th>
<th>Importe (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mantenimiento preventivo y del libro de registro del condensador evaporativo.</td>
<td>sin cargo</td>
</tr>
<tr>
<td>Controles analíticos mensuales del agua de aporte y del circuito de refrigeración.</td>
<td>360,61</td>
</tr>
<tr>
<td>2 operaciones de limpieza y desinfección, con los correspondientes certificados de empresa, productos y personal.</td>
<td>721,21</td>
</tr>
<tr>
<td>4 análisis trimestrales, específicos de <em>Legionella</em>, por laboratorio externo homologado.</td>
<td>186,44</td>
</tr>
<tr>
<td>Desinfección anual de la red general de agua potable sanitaria fría por hipercloración, así como los análisis de <em>Legionella</em>, por laboratorio externo homologado.</td>
<td>360</td>
</tr>
<tr>
<td>Productos necesarios para el tratamiento: AQUICIR CR-25 AQUICIDE</td>
<td>540,90  564,95</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2734,11</td>
</tr>
</tbody>
</table>

Tabla 8.1. Presupuesto para el mantenimiento de la torre de refrigeración (año 2004)
Fuente: EMINFOR.
Además de todas estas actuaciones, todas estas instalaciones deben pasar, según el Decreto 352/2004, una revisión anual por parte de una ECA que en el caso que nos concierne tuvo un coste de 204 € (sin IVA).

A estos gastos de mantenimiento hay que añadir el del biocida, que en este caso es Hipoclorito Sódico 150. Éste es suministrado en bidones de 32 Kg., de los que se consume una media de 8 bidones anuales, a un precio de 8,51 €/bidón (sin IVA.), es decir 68,08 €. También se emplean alrededor de 3000 Kg. anuales de Sal Vacuum Pastillas 6/15, lo que supone un coste de 717,2 € (sin IVA).

También debe sumarse el gasto de consumibles que representa el registro continuo de la dosificación del biocida: 4 cajas de papel plegado de 10 unidades, a 45€/caja, y 3 cartuchos de tinta, a 100€ cada uno, lo que implican 480 € (sin IVA) más. A esto añadiremos una revisión anual del aparato registrador automático: 72 € (sin IVA).

En la tabla 8.2. veremos el conjunto de gastos anuales esenciales para la torre de refrigeración.

<table>
<thead>
<tr>
<th>Actuación</th>
<th>Importe (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mantenimiento del condensador evaporativo (total tabla 8.1)</td>
<td>2734,11</td>
</tr>
<tr>
<td>Revisión ECA</td>
<td>204</td>
</tr>
<tr>
<td>Biocida y sal</td>
<td>785,28</td>
</tr>
<tr>
<td>Consumibles</td>
<td>480</td>
</tr>
<tr>
<td>Revisión del aparato registrador automático</td>
<td>72</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4275,39</td>
</tr>
<tr>
<td>TOTAL (IVA. incluido)</td>
<td>4959,45</td>
</tr>
</tbody>
</table>

Tabla 8.2. Gastos anuales de la torre de refrigeración (año 2004)

A estos 4959,45 € deberíamos añadir como mínimo un 15% más en concepto de posibles averías que puedan surgir en la instalación, así como posibles requerimientos de desinfecciones por parte de la Administración, en caso de aparición de brotes de legionelosis, lo que implica ya un gasto anual que se sitúa entre los 5500 - 6000 €.
Tampoco se incluyen los excesos de electricidad debidos al efecto Fouling (ensuciamiento), es decir por el aislamiento térmico debido a las incrustaciones y al biofilm que provoca que el compresor de la instalación frigorífica consuma hasta un 30% más de lo usual (el coste es de 0,06 €/kWh), ni los gastos de consumo de agua, debido al aporte (1 €/m³).

8.2. Consideraciones económicas para torres de refrigeración en instalaciones frigoríficas

En el caso de torres de refrigeración para equipos frigoríficos de aire acondicionado o de refrigeración, el sobrecoste indicado de mantenimiento se ve compensado por la mejora de rendimiento que se introduce con la torre. Éste es del orden de un 2% por cada grado de caída de temperatura y algo más elevado para condensadores evaporativos.

8.3. Coste del mantenimiento de un sistema aerorefrigerador

Para el mantenimiento de este tipo de instalaciones, al contrario de las torres de refrigeración, no es necesario ningún tratamiento específico para evitar la multiplicación de la Legionella puesto que carece de su hábitat natural para multiplicarse.

Así pues, el coste que pueden generar es el derivado de las posibles averías y operaciones de mantenimiento que se puedan producir en el equipo aerorefrigerador.

Estos costes pueden suponerse alrededor de un 10-15% del coste del equipo.

8.4. Comparación económica entre dos sistemas de refrigeración: torre de refrigeración y aerorefrigerador

A continuación se realiza un estudio comparativo, desde el punto de vista económico, para la sustitución de la torre de refrigeración existente.

El posible cambio de sistema de refrigeración deriva de la problemática creada por la constante aparición de casos de legionelosis que ponen en alerta a la Salud Pública y que implican un control constante por parte de la Administración y una responsabilidad que va en aumento por parte de los propietarios de la instalación.

Para el caso de BILCAM S.A. se estudian una serie de propuestas dado que el condensador que disponen presenta una corrosión muy elevada y requiere una sustitución próxima.

Actualmente el equipo con el que se trabaja tiene las siguientes especificaciones técnicas:
- caudal de agua a enfriar: 86 m³/h
- temperatura de entrada del agua: 45ºC
- temperatura de salida del agua: 37ºC.

Según estos datos, la potencia frigorífica necesaria para enfriar este agua, aplicando la ecuación \( P_F = m \times \Delta T \times c_w \), es de aproximadamente 800 kW.

En la tabla 8.3. se especifica las características técnicas y coste total para 2 posibles torres de refrigeración.

<table>
<thead>
<tr>
<th></th>
<th>RMC 100</th>
<th>RMC 210</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Caudal de agua a enfriar (m³/h)</strong></td>
<td>42</td>
<td>72</td>
</tr>
<tr>
<td>*<em>Calor específico del agua (kJ/(Kg.<em>K))</em></em></td>
<td>4,186</td>
<td>4,186</td>
</tr>
<tr>
<td><strong>T entrada agua (ºC)</strong></td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td><strong>T salida agua (ºC)</strong></td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td><strong>Aparatos necesarios</strong></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td><strong>Nº ventiladores</strong></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><strong>Potencia ventiladores (kW)</strong></td>
<td>7,5</td>
<td>15</td>
</tr>
<tr>
<td><strong>Potencia total ventiladores (kW)</strong></td>
<td>7,5</td>
<td>15</td>
</tr>
<tr>
<td><strong>Coste unidad (€)</strong></td>
<td>14850</td>
<td>18030</td>
</tr>
<tr>
<td><strong>Coste total (€)</strong></td>
<td><strong>29.700</strong></td>
<td><strong>18.030</strong></td>
</tr>
</tbody>
</table>

Tabla 8.3. Presupuestos de torres de refrigeración
Fuente: Técnicas evaporativas S.L.

De las 2 opciones posibles, ambas cumplen los requisitos de temperatura, tanto para la salida como para la entrada, pero con el modelo RMC 210 no se puede asegurar la
refrigeración de la totalidad del caudal de la planta. Por lo tanto, el equipo elegido será el modelo RMC 100, teniendo en cuenta que serían necesarias 2 unidades para conseguir la refrigeración del caudal establecido.

En la tabla 8.4. se disponen de 3 modelos de aerorefrigerador con sus correspondientes especificaciones técnicas y costes de equipo.

<table>
<thead>
<tr>
<th></th>
<th>EL-368/D</th>
<th>EL-2510A</th>
<th>VHD 2590 /4V</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Caudal de agua a enfriar (m³/h)</strong></td>
<td>43</td>
<td>72</td>
<td>72,1</td>
</tr>
<tr>
<td><strong>Calor específico del agua (kJ/(Kg*K))</strong></td>
<td>4,186</td>
<td>4,186</td>
<td>4,186</td>
</tr>
<tr>
<td><strong>T entrada agua (°C)</strong></td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td><strong>T salida agua (°C)</strong></td>
<td>35</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td><strong>Rendimiento frigorífico (kW)</strong></td>
<td>405</td>
<td>661</td>
<td>661</td>
</tr>
<tr>
<td><strong>Aparatos necesarios</strong></td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><strong>Rendimiento frigorífico total (kW)</strong></td>
<td>810</td>
<td>661</td>
<td>661</td>
</tr>
<tr>
<td><strong>Nº ventiladores</strong></td>
<td>12</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td><strong>Potencia ventilador (kW)</strong></td>
<td>1,4</td>
<td>2,2</td>
<td>3,3</td>
</tr>
<tr>
<td><strong>Potencia total ventiladores (kW)</strong></td>
<td>16,8</td>
<td>22</td>
<td>33</td>
</tr>
<tr>
<td><strong>Coste unidad (€)</strong></td>
<td>21400</td>
<td>23737</td>
<td>33824</td>
</tr>
<tr>
<td><strong>Coste total (€)</strong></td>
<td><strong>42.800</strong></td>
<td><strong>23.737</strong></td>
<td><strong>33.824</strong></td>
</tr>
</tbody>
</table>

Tabla 8.4. Presupuestos de aeroenfriadores
Fuente: TECHNOFRIGO. LGL REFRIGERATION SPAIN S.A.. EQUIFAB

De las 3 opciones posibles, se observa que en el caso del modelo EL-368/D es necesaria la instalación de 2 equipos para conseguir la potencia frigorífica que requiere la refrigeración
del caudal de la empresa, obteniendo el agua a la salida a una temperatura 2ºC por debajo de las necesidades de la planta, con lo cual se mejora sustancialmente el proceso.

Una vez seleccionados los 2 equipos que alcanzan las especificaciones requeridas por el proceso de la empresa, se debe analizar en profundidad cuál de las dos posibilidades goza de una mayor viabilidad económica a medio plazo.

Para realizar esta comparación, se estudia el VAN de ambos casos para determinar el tiempo a partir del cual resulta más ventajoso económicamente el disponer de uno u otro equipo.

En el caso de la torre de refrigeración, mediante la tabla 8.5. se puede observar que la inversión inicial es de 30.000 € aproximadamente, pero por otro lado se deben asumir unos costes anuales de mantenimiento y funcionamiento de 6.000 €.

<table>
<thead>
<tr>
<th>Años</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>inversión inicial (€)</td>
<td>29700</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>costes anuales (€)</td>
<td>0</td>
<td>6000</td>
<td>6000</td>
<td>6000</td>
<td>6000</td>
</tr>
<tr>
<td>balance anual (€)</td>
<td>-29700</td>
<td>-35154</td>
<td>-40113</td>
<td>-44621</td>
<td>-48700</td>
</tr>
</tbody>
</table>

Tabla 8.5. Balance económico instalación torre de refrigeración

Por otro lado, la tabla 8.6. muestra que para el aerorefrigerador se debe realizar una inversión inicial superior a la del caso anterior, pero por el contrario, el coste anual de mantenimiento se reduce en gran medida lo que hace más atractiva esta opción.

<table>
<thead>
<tr>
<th>Años</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>inversión inicial (€)</td>
<td>42800</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>costes anuales (€)</td>
<td>0</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>balance anual (€)</td>
<td>-42800</td>
<td>-43709</td>
<td>-44535</td>
<td>-45286</td>
<td>-45900</td>
</tr>
</tbody>
</table>

Tabla 8.6. Balance económico instalación aerorefrigerador
Observando los resultados obtenidos en ambos estudios, se observa que pese a la menor inversión en el caso de la torre de refrigeración se deben tener en cuenta los importantes costes anuales derivados del mantenimiento de la misma. Contrariamente, en el caso del aerorefrigerador es necesaria una inversión superior, mientras que los gastos anuales son una sexta parte de los que implica la torre de refrigeración.

Desde el punto de vista económico, se concluye que en el caso del aerorefrigerador obtenemos una rentabilidad mayor que para la torre a partir del cuarto año, ahorrando, desde entonces y hasta la restante fase de explotación del equipo, un importante activo económico para la empresa, lo cual aconseja la elección del sistema de aerorefrigeración frente a un sistema basado en torre de refrigeración, cuando las pretensiones son la refrigeración de la maquinaria.

Fig. 8.1. Aeroenfríador EL-368/D
Fuente: Equifab.
9. Medio Ambiente

Este capítulo pretende evaluar la incidencia ambiental que implican las torres de refrigeración y condensadores evaporativos, frente a los nuevos sistemas de aerorefrigeração, de suma importancia en el ámbito industrial debido a la repercusión que tiene sobre el medio, avalando la elección de los aerorefrigeradores.

A la hora de enfocar este estudio, nos centraremos en las 4 incidencias ambientales principales: residuos, aguas, contaminación acústica y contaminación atmosférica.

9.1. Residuos

Entre los residuos que genera una torre de refrigeración o condensador evaporativo se encuentran por orden de mayor a menor importancia:

- Bidones de biocida

Una vez se agota el biocida dosificado en el mantenimiento continuo de la torre, los bidones que contienen el producto generan un residuo de tamaño considerable, que requiere de un espacio adicional para su almacenamiento hasta el momento en que se hace la gestión. Debido al elevado consumo de biocida, este es quizás el principal residuo generado por un dispositivo de refrigeración de este tipo, y también el que más puede apreciarse. Como podemos ver en la siguiente fotografía, tomada en una inspección realizada, los bidones son amontonados durante varios meses causando gran impacto visual en la zona.

![Fig. 9.1. Acumulación de bidones](image)

Fuente: Empresa 10 de L’Hospitalet de Llobregat.
• Componentes de la torre de refrigeración o condensador evaporativo

El mantenimiento de estos aparatos requiere que algunos de sus componentes sean cambiados, por estar deteriorados debidos a su uso o averiados. Es por ello que se debe disponer de los recambios más indispensables para en el caso de necesitar hacer uso de alguno de ellos, poderlo hacer sin tener que parar la instalación más tiempo del indispensable o llegar a incumplir la legislación en caso de mantenerla en funcionamiento con algún componente averiado.

• Fango de la bandeja

Como se ha mencionado en el apartado 3.4.2.2., existe acumulación de lodos en el fondo de la bandeja de la torre o condensador fomentando el crecimiento de las bacterias. Es por ello que con una frecuencia mensual, al menos, la bandeja debe ser limpiada y estos lodos eliminados.

Para el caso de los aerorefrigeradores, no se genera ningún tipo de residuo en su funcionamiento, exceptuando los recambios de componentes de este tipo de maquinaria. Este aspecto favorece su instalación teniendo en cuenta las exigentes normativas en cuanto a gestión de residuos se refiere.

9.2. Aguas

• Aguas residuales

Tanto la cantidad de agua de la purga como el agua de la torre, en caso de tenerse que vaciar, deben cumplir los parámetros legislados para el control de vertidos.
• **Consumo de agua**

Como hemos explicado en el apartado 3.4.1. estos dispositivos requieren de un aporte de agua para paliar las pérdidas por evaporación y purga, y es un valor que depende por tanto de cada instalación, principalmente de la cantidad de calor extraído.

Para hacernos una idea, una torre de refrigeración que disipa 1.000.000 kcal/h consume una cantidad de agua entorno a los 8 m³/h.

Por lo que hace referencia a los aerorefrigeradores, al tratarse de un sistema que basa su principio de refrigeración en la utilización del aire, se obvia cualquier tipo de problemática sobre los aspectos medioambientales del agua.

**9.3. Ruido**

Este es otro parámetro a considerar a la hora de evaluar la incidencia ambiental de estos dispositivos. Según el catálogo de la serie TEVA, en una torre de refrigeración con una capacidad de enfriamiento de 700 kW se puede observar un nivel sonoro, a 5 m, de unos
68 dB(A) aproximadamente. Por otro lado, según el catálogo de la serie CVA, en una condensador evaporativo con una potencial nominal de 700 kW, utilizando NH₃, se puede observar un nivel sonoro, a 5 m, de unos 75 dB(A) aproximadamente, lo que representa un incremento en 7 unidades dB(A) respecto a la torre.

Para el caso de los aeroenfriadores, uno de potencia 700 kW tiene un nivel sonoro, a 10 m, de unos 64 dB(A), según Equifab.

9.4. Contaminación atmosférica

Los aerosoles que emiten a la atmósfera estas instalaciones pueden tener dos tipos de incidencias sobre las personas. En el caso de que haya multiplicación de *Legionella* en su interior, esta será dispersada a través de los aerosoles provocando una contaminación bacteriana. También es posible, en el caso de que se utilice como biocida el cloro, provocar una contaminación química si las concentraciones de cloro son elevadas, pudiendo favorecer la corrosión por cloruros o incluso creando un ambiente irritante para las mucosas de las personas.

En referencia a los aerorefrigeradores, el único inconveniente que se puede encontrar es el aumento de la temperatura ambiental, en las proximidades del sistema, debido a la emisión de aire caliente.
Conclusiones

1. La erradicación o franca disminución de los brotes es deseable, posible, y debe ser un objetivo. Es fundamental diagnosticar la enfermedad; hay que declararla sistemáticamente a las autoridades sanitarias y deben estudiarse todos los casos con el fin de descubrir reservorios potenciales. Éstos deberían reducirse con el tiempo en número y potencial contaminante, a causa del control existente en la actualidad.

2. El estudio del último brote de legionelosis en L’Hospitalet de Llobregat (verano 2004) demuestra el elevado número de actuaciones e inspecciones a realizar, mayoritariamente centradas en el control de las torres de refrigeración y condensadores evaporativos.

3. El censo de torres de refrigeración y condensadores evaporativos de L’Hospitalet de Llobregat está experimentando una disminución significativa; tanto es así, que en septiembre de 2004 se cuenta con una cantidad de este tipo de instalaciones que supone una pérdida de casi el 40% de las censadas inicialmente en 2001.

4. La sustitución de torres de refrigeración y condensadores evaporativos por equipos aerorefrigeradores supone:

   a) Eliminación del hábitat de la *Legionella* y, en consecuencia, desaparición de la problemática sanitaria generada por la legionelosis.

   b) Reducción de la incidencia ambiental, especialmente a nivel de generación de residuos y usos del agua (consumo, posibles vertidos, etc.).

   c) Recuperación económica de la inversión inicial por la diferencia importante existente en los costes anuales de mantenimiento y funcionamiento.
Bibliografía

Referencias bibliográficas


