ESTUDIO DE UNA VELA DE KITESURF, ANÁLISIS DE ACTUACIONES Y REDACCIÓN DEL MANUAL DE USO

INGENIERÍA AERONÁUTICA

PROYECTO FINAL DE CARRERA

Alex Domene Ochoa

23/09/2014

-Memoria del proyecto-

Directores:

Jordi Marcé Nogué

Luis Manuel Pérez Llera
Agradecimientos

Un proyecto final de carrera siempre suele ser sinónimo del fin de una etapa y el inicio de otra, una etapa compartida con mucha gente que me ha apoyado, motivado y ayudado a lo largo de toda la carrera.

En una primera instancia quiero agradecer todo el soporte por parte de mis padres, mi hermana y mi novia. Gracias por estar a mi lado ya sea a lo largo de la carrera, o a lo largo de la realización del proyecto y por darme soporte y cariño en los momentos difíciles.

En segundo lugar quiero agradecer a mis tutores por ayudarme a realizar este proyecto. A Jordi Marcé por resolverme todas las dudas relacionadas con el proyecto en cuestión y a Luis Manuel Pérez por brindarme la oportunidad de realizar un proyecto de mi agrado.

En tercer lugar, agradecer la colaboración a David Aberdeen, por exportar el modelo diseñado en Surfplan al formato deseado, thanks for your attention.

Y para finalizar, quiero dar las gracias a los amigos que he conocido durante la carrera, por apoyarme y estar siempre a mi lado.
Índice de contenidos

1 Objetivo del proyecto ... 1
2 Justificación del proyecto ... 2
3 Alcance del proyecto .. 3
4 Fundamentos teóricos generales ... 4
 4.1 Historia del kitesurf ... 4
 4.2 Modalidades de competición en el kitesurf .. 5
 4.3 Tipos de kites .. 6
 4.3.1 *Ram air traction kites o foil kites* .. 6
 4.3.2 *Leading edge inflatable (LEI) kites* ... 7
4.4 Elementos principales del kitesurf .. 10
 4.4.1 Partes de la cometa .. 10
 4.4.2 Partes del sistema de control .. 11
 4.4.3 Otras partes del equipo .. 13
4.5 La ventana de viento y rumbos de navegación ... 14
5 Mecánica de vuelo de la cometa .. 17
 5.1 Conceptos básicos ... 17
 5.2 Fuerzas generadas por el viento durante el vuelo de la cometa 18
 5.2.1 Fuerza aerodinámica: Sustentación y resistencia ... 18
 5.2.2 Momento aerodinámico ... 21
 5.3 Otras fuerzas generadas por la cometa .. 23
 5.3.1 Fuerza de gravedad ... 23
 5.3.2 Tensión de las líneas .. 23
 5.4 Ángulos de vuelo .. 24
 5.5 Ecuaciones de vuelo de un kite ... 25
 5.6 Vuelo en equilibrio de un kite ... 29
 5.7 Control de la potencia ejercida por el kite ... 32
 5.7.1 Control del área proyectada ... 32
 5.7.2 Control de la velocidad ... 32
6 Parámetros de diseño de una cometa de kitesurf .. 33
 6.1 Aspect ratio (AR) .. 33
 6.2 Perfil sustentador ... 33
 6.3 Ángulo de ataque incorporado .. 34
7 Diseño del kite para el estudio ... 36
 7.1 Elección de los parámetros ... 37
 7.1.1 Ajustes de tamaño y forma del kite ... 37
 7.1.2 Ajustes del ángulo de ataque .. 38
 7.1.3 Ajustes del perfil ... 39
 7.1.4 Ajustes de las costillas ... 39
 7.2 Preparación del modelo para la importación a Ansys 39
8 Fundamentos de mecánica estructural con elementos finitos 41
 8.1 El Método de los Elementos Finitos (FEM) ... 41
 8.2 El Análisis por Elementos Finitos (FEA) .. 43
 8.2.1 Preproceso .. 43
 8.2.2 Cálculo ... 43
 8.2.3 Postproceso ... 43
9 Fundamentos de aerodinámica con CFD .. 44
 9.1 Ecuaciones gobernantes para CFD .. 44
 9.1.1 Ecuación de continuidad: .. 45
 9.1.2 Ecuación de Navier-Stokes: ... 45
 9.1.3 Ecuación de la conservación de la energía: 45
 9.1.4 Ecuaciones adicionales para flujos turbulentos 46
 9.2 Análisis de un fluido mediante CFD .. 48
 9.2.1 El solver de CFX ... 48
 9.2.2 Modelos físicos ... 51
10 Análisis de la interacción fluido-estructura de la cometa 52
 10.1 Introducción a la interacción fluido-estructura (FSI) 52
 10.2 Proceso global del estudio FSI sobre el kite 54
 10.3 Hipótesis generales realizadas para el posterior estudio FSI 55
10.3.1 Hipótesis y simplificaciones geométricas y de materiales 55
10.3.2 Hipótesis y simplificaciones sobre las condiciones de vuelo 55
10.3.3 Simplificaciones e hipótesis sobre el problema FSI 56
10.4 Preprocesado: Preparación de los modelos geométricos 56
 10.4.1 Importación del modelo geométrico .. 56
 10.4.2 Preparación del modelo geométrico para el estudio CFD 56
 10.4.3 Preparación del modelo geométrico para el estudio estructural 57
10.5 Análisis CFD de la cometa .. 57
 10.5.1 Objetivo del análisis CFD ... 57
 10.5.2 Simplificaciones e Hipótesis del estudio CFD 58
 10.5.3 Pre-Procesado del análisis CFD .. 58
 10.5.4 Mallado del dominio fluido .. 63
 10.5.5 Configuración del dominio ... 69
 10.5.6 Condiciones de contorno del dominio fluido 70
 10.5.7 Solver de la simulación .. 72
 10.5.8 Post-procesado del análisis CFD .. 75
10.6 Análisis estructural de la cometa .. 76
 10.6.1 Objetivo del análisis estructural .. 76
 10.6.2 Simplificaciones e Hipótesis del estudio estructural 76
 10.6.3 Pre-procesado del análisis estructural ... 77
 10.6.4 Mallado del modelo estructural ... 80
 10.6.5 Definición de los contactos entre los elementos 83
 10.6.6 Definición de las condiciones de contorno 84
 10.6.7 Aplicación de las cargas ... 86
 10.6.8 Solver de la simulación estructural ... 88
 10.6.9 Post-procesado del análisis estructural 88
11 Análisis de resultados .. 89
 11.1 Análisis de los resultados del estudio CFD 89
 11.1.1 Estudio de las velocidades y presiones sobre distintos perfiles 2D.. 89
11.1.2	Estudio de la variación de las fuerzas aerodinámicas y el momento aerodinámico en función de la velocidad del viento	95
11.1.3	Estudio de las velocidades y presiones del dominio fluido alrededor de la cometa	99
11.2	Análisis de los resultados del estudio FSI	102
11.2.1	Estudio de los desplazamientos y las tensiones en la cometa	103
11.2.2	Estudio de los desplazamientos y las tensiones de la cometa en función de la velocidad del viento	119
12	Impacto medioambiental del proyecto	121
13	Planificación del proyecto	122
14	Presupuesto del desarrollo del proyecto	125
15	Manual de uso del kite	127
15.1	Montar y desmontar la cometa	127
15.2	Pilotaje, despegue y aterrizaje de la cometa	127
15.2.1	Despegue de la cometa	127
15.2.2	Aterrizaje de la cometa	129
15.2.3	Pilotaje de la cometa	130
15.3	Control de la potencia ejercida por la cometa	131
15.3.1	Control del área proyectada	131
15.3.2	Control de la velocidad	131
15.4	*Body Dragging* (Deslizamiento por el agua sin tabla)	132
15.5	*Water start*	133
15.6	Primeros bordos	133
15.7	Navegar en ceñida	133
15.8	Virajes	134
15.9	Saltos	134
15.10	Reglas de navegación	135
15.10.1	Reglas de sentido común en el agua	135
15.10.2	Reglas de navegación a vela tradicionales	135
15.10.3	Reglas de navegación aplicadas al kitesurf	135

15.10.4 Normas aplicadas exclusivamente al kitesurf ... 136

15.11 Revisiones y mantenimiento del material .. 136

16 Conclusiones ... 139

17 Bibliografía ... 142
Índice de figuras

Figura 1. Wipika Classic, la primera cometa producida en serie por los hermanos Legaignoux ... 4
Figura 2. Maniobra de la modalidad de freestyle ... 5
Figura 3. Competición de race de kitesurf .. 6
Figura 4. Kite tipo foil de la marca Ozone ... 7
Figura 5. Cometa tipo “C” de la marca Naish ... 8
Figura 6. Diferencia ilustrativa entre los tres tipos de kites .. 9
Figura 7. Cometa tipo delta de la marca F-One ... 9
Figura 8. Partes de una cometa de kitesurf .. 11
Figura 9. Partes de la barra de control ... 13
Figura 10. Arnés de cintura ... 13
Figura 11. A la izquierda, tabla tipo bidireccional para la modalidad de freestyle, a la derecha tabla para la modalidad de race ... 14
Figura 12. Vista lateral de la ventana de viento ... 15
Figura 13. Posiciones del kite en la ventana de viento ... 15
Figura 14. Zonas de potencia del kite .. 16
Figura 15. Ángulos de vuelo de un kite ... 24
Figura 16. Diagrama de fuerzas del kite .. 27
Figura 17. Diagrama de fuerzas en equilibrio ... 31
Figura 18. Interfaz del software Surfplan .. 36
Figura 19. Perfiles extraídos del modelo de Surfplan en SolidWorks 40
Figura 20. Diagrama para FEM ... 42
Figura 21. Proceso de resolución del solver de CFX .. 50
Figura 22. Proceso para el estudio FSI ... 54
Figura 23. Subprocesos del análisis FSI con Ansys ... 54
Figura 24. Modelo fluido para el estudio CFD ... 59
Figura 25. Medidas del dominio fluido en el plano YZ .. 60
Figura 26. Medidas del dominio fluido en el plano XY .. 61
Figura 27. Planos que definen el dominio fluido interior .. 62
Figura 28. Medidas del subdominio interior en el plano XY .. 63
Figura 29. Medidas del subdominio interior en el plano YZ .. 63
Figura 30. Sección del dominio fluido .. 65
Figura 31. Detalle del mallado alrededor de la cometa .. 66
Figura 32. Mallado del subdominio interior .. 67
Figura 33. Mallado del dominio fluido .. 68
Figura 34. Índice de calidad para los tipos de elementos ... 69
Figura 35. Entrada de flujo en el dominio... 70
Figura 36. Salida del fluido del dominio.. 70
Figura 37. Condición de flujo tangencial en las paredes exteriores del dominio 71
Figura 38. Condición de no deslizamiento en la superficie del kite............................ 71
Figura 39. Proceso de convergencia de los valores RMS de la solución.................. 74
Figura 40. Proceso de convergencia de los residuos de la convergencia.................. 74
Figura 41. Costillas y borde de ataque de la cometa... 78
Figura 42. Modelo de superficies del kite... 78
Figura 43. Detalle del mallado próximo al borde de ataque 81
Figura 44. Mallado del modelo estructural... 81
Figura 45. Índice de calidad del mallado estructural.. 83
Figura 46. Unión entre costilla y borde de ataque.. 83
Figura 47. Campo de presiones importado... 87
Figura 48. Detalle del campo de presiones importado... 87
Figura 49. Presión interior del borde de ataque y costillas... 88
Figura 50. Distribución de presiones sobre el perfil central.. 90
Figura 51. Distribución de velocidades sobre el perfil central.................................... 90
Figura 52. Detalle de la capa límite... 92
Figura 53. Distribución de presiones del perfil x=0,2 m... 92
Figura 54. Distribución de velocidades del perfil x=0,2 m.. 93
Figura 55. Campo de presiones de un perfil lateral.. 94
Figura 56. Campo de velocidades de un perfil lateral... 94
Figura 57. Cálculo de la fuerza de sustentación mediante el Function Calculator 95
Figura 58. Sistema de coordenadas localizado en el centro aerodinámico.................. 96
Figura 59. Cálculo del momento aerodinámico.. 96
Figura 60. Gráfico de las fuerzas y momentos en función de la velocidad del viento....... 97
Figura 61. Líneas de corriente del dominio fluido vistas desde la entrada.................. 99
Figura 62. Líneas de corriente vistas lateralmente.. 100
Figura 63. Campo de presiones en el borde de ataque... 100
Figura 64. Campo de presiones en el intradós del kite.. 101
Figura 65. Campo de presiones en el extradós del kite.. 102
Figura 66. Vista frontal de los desplazamientos en el kite (1ª condición)....................... 103
Figura 67. Vista del extradós de los desplazamientos del kite (1ª condición)............ 104
Figura 68. Vista del intradós de los desplazamientos del kite (1ª condición)............. 104
Figura 69. Vista trasera de los desplazamientos del kite (1ª condición)..................... 105
Figura 70. Vista frontal de las tensiones en el kite (1ª condición)............................... 106
Figura 71. Vista del extradós de las tensiones en el kite (1ª condición)....................... 107
Figura 72. Vista del intradós de las tensiones en el kite (1ª condición)....................... 107
Figura 73. Soporte fijo para la segunda condición de contorno ... 108
Figura 74. Vista frontal de los desplazamientos en el kite (2ª condición) 109
Figura 75. Vista del extradós de los desplazamientos del kite (2ª condición) 110
Figura 76. Dirección de los desplazamientos en la 2ª condición 111
Figura 77. Vista del extradós de las tensiones en el kite (2ª condición) 112
Figura 78. Vista del intradós de las tensiones en el kite (2ª condición) 112
Figura 79. Desplazamientos en el kite (3ª condición) ... 113
Figura 80. Dirección de los desplazamientos en la 3ª condición 114
Figura 81. Vista del extradós de las tensiones en el kite (3ª condición) 114
Figura 82. Vista del intradós de las tensiones en el kite (3ª condición) 115
Figura 83. Vista frontal de los desplazamientos en el kite (4ª condición) 116
Figura 84. Vista del extradós de los desplazamientos en el kite (4ª condición) 116
Figura 85. Dirección de los desplazamientos locales (4ª condición) 117
Figura 86. Vista del extradós de las tensiones en el kite (4ª condición) 118
Figura 87. Vista del intradós de las tensiones en el kite (4ª condición) 118
Figura 88. Localización del punto de desplazamiento máximo 119
Figura 89. Gráfico de los desplazamientos máximos en función de la velocidad del viento .. 120
Figura 90. Diagrama de Gantt del proyecto ... 123
Figura 91. Despegue asistido por un compañero ... 128
Figura 92. Esquema grafico del aterrizaje de un kite ... 130
Figura 93. Movimiento del kite en la ventana de viento .. 130
Figura 94. Técnica del body dragging .. 132
Figura 95. Esquema de cómo recuperar la tabla ... 132
Índice de tablas

Tabla 1. Rango de aspect ratio ... 33
Tabla 2. Rangos de CI y L/D recomendados ... 34
Tabla 3. Espesores relativos para los dos tipos de cometas 34
Tabla 4. Tipos de kite según el ángulo de ataque incorporado 35
Tabla 5. Tabla resumen de los parámetros y performances de un kite 35
Tabla 6. Valores de tamaños del kite .. 38
Tabla 7. Valores del ángulo de ataque en vuelo y del punto de arrastre efectivo 38
Tabla 8. Dimensiones del dominio fluido .. 61
Tabla 9. Dimensiones del subdominio interior 62
Tabla 10 Valores del as fuerzas aerodinámicas y el momento aerodinámico 97
Tabla 11. Desplazamientos máximos en función de la velocidad del viento 120
Tabla 12. Tareas planificadas para el proyecto 122
Tabla 13. Planificación y tiempo de ejecución del proyecto 124
Acrónimos y terminología

<table>
<thead>
<tr>
<th>Símbolo o palabra</th>
<th>Definición</th>
<th>Unidades S.I</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFD</td>
<td>Dinámica de fluidos computacional</td>
<td>-</td>
</tr>
<tr>
<td>FSI</td>
<td>Fluid-Structure Interaction</td>
<td>-</td>
</tr>
<tr>
<td>CAD</td>
<td>Diseño asistido por computador</td>
<td>-</td>
</tr>
<tr>
<td>CAE</td>
<td>Computer-aided engineering</td>
<td>-</td>
</tr>
<tr>
<td>LEI</td>
<td>Leading edge inflatable (borde de ataque hinchable)</td>
<td>-</td>
</tr>
<tr>
<td>UV</td>
<td>Radiación ultravioleta</td>
<td>-</td>
</tr>
<tr>
<td>PET</td>
<td>Polyethylene Terephthalate</td>
<td>-</td>
</tr>
<tr>
<td>PTU</td>
<td>Thermoplastic polyurethanes</td>
<td>-</td>
</tr>
<tr>
<td>UHMWPE</td>
<td>Ultra-high-molecular-weight polyethylene</td>
<td>-</td>
</tr>
<tr>
<td>b</td>
<td>Envergadura</td>
<td>m</td>
</tr>
<tr>
<td>c</td>
<td>Cuerda</td>
<td>m</td>
</tr>
<tr>
<td>AR</td>
<td>Aspect ratio</td>
<td>Adimensional</td>
</tr>
<tr>
<td>L</td>
<td>Sustentación</td>
<td>N</td>
</tr>
<tr>
<td>D</td>
<td>Resistencia</td>
<td>N</td>
</tr>
<tr>
<td>ρ</td>
<td>Densidad del aire</td>
<td>Kg/m3</td>
</tr>
<tr>
<td>C_L</td>
<td>Coeficiente de sustentación</td>
<td>Adimensional</td>
</tr>
<tr>
<td>C_D</td>
<td>Coeficiente de resistencia</td>
<td>Adimensional</td>
</tr>
<tr>
<td>$C_{D_{0}}$</td>
<td>Coeficiente de resistencia para sustentación nula</td>
<td>Adimensional</td>
</tr>
<tr>
<td>$C_{D_{i}}$</td>
<td>Coeficiente de resistencia inducida</td>
<td>Adimensional</td>
</tr>
<tr>
<td>$C_{L_{0}}$</td>
<td>Coeficiente de sustentación nula</td>
<td>Adimensional</td>
</tr>
<tr>
<td>A</td>
<td>Alargamiento</td>
<td>Adimensional</td>
</tr>
<tr>
<td>e</td>
<td>Factor de eficiencia</td>
<td>Adimensional</td>
</tr>
<tr>
<td>C_M</td>
<td>Coeficiente de momento aerodinámico</td>
<td>Adimensional</td>
</tr>
<tr>
<td>AC</td>
<td>Centro aerodinámico</td>
<td>-</td>
</tr>
<tr>
<td>CP</td>
<td>Centro de presiones</td>
<td>-</td>
</tr>
<tr>
<td>α</td>
<td>Ángulo de ataque</td>
<td>Rad o grados</td>
</tr>
<tr>
<td>CG</td>
<td>Centro de gravedad</td>
<td>-</td>
</tr>
<tr>
<td>S</td>
<td>Superficie de la cometa</td>
<td>m2</td>
</tr>
<tr>
<td>L/D</td>
<td>Eficiencia aerodinámica</td>
<td>Adimensional</td>
</tr>
<tr>
<td>Re</td>
<td>Número de Reynolds</td>
<td>Adimensional</td>
</tr>
<tr>
<td>IGS.</td>
<td>Initial Graphics Exchange Specification</td>
<td>-</td>
</tr>
<tr>
<td>SAT.</td>
<td>Standar ACIS text</td>
<td>-</td>
</tr>
<tr>
<td>RANS</td>
<td>Reynolds-Averaged Navier-Stokes</td>
<td>-</td>
</tr>
<tr>
<td>ISA</td>
<td>International Standard atmosphere</td>
<td>-</td>
</tr>
</tbody>
</table>
1 **Objeto del proyecto**

El objetivo principal de este proyecto es el estudio y desarrollo de un modelo de interacción fluido-estructura de una cometa de kitesurf mediante métodos computacionales, como son la dinámica de fluidos computacional (CFD) y el análisis por elementos finitos (FEA). De tal forma que se permita conocer el comportamiento fluidodinámico alrededor de la vela, así como su respuesta estructural ante las cargas aerodinámicas a las que se ve sometida. Con este proyecto se quiere demostrar que en el mundo del kitesurf es posible realizar estudios computacionales previos al diseño de prototipos, ahorrando tiempo y recursos a diferencia del método de diseño y construcción actual, el cual está basado en el prueba y error.

Además el proyecto pretende dar a conocer el kitesurf, elaborando un manual de uso y una guía de mantenimiento de este, mostrando los conceptos aerodinámicos básicos del vuelo de una cometa.
2 Justificación del proyecto

El kitesurf es un deporte que cada vez genera más adictos, pese a ser relativamente nuevo, está teniendo gran acogida por muchas razones. Es uno de los deportes náuticos más espectaculares que existen, de fácil aprendizaje, que solo necesita condiciones de viento y es apto para todas las edades. Todas estas condiciones sumadas a que la experiencia es fascinante, y la práctica de éste es difícilmente descriptible con palabras debido a la adrenalina que genera, lo han hecho crecer de forma espectacular en poco tiempo.

El kite cumple la función de aparejo de navegación y al mismo tiempo de ala de vuelo, siendo posible la ejecución de saltos de gran altura, rotaciones en vuelo, maniobras increíbles y deslizamientos a gran velocidad. Además, es un deporte que no daña el entorno ni tiene gastos adicionales como podrían ser forfaits o combustibles y con el que se está en contacto con la naturaleza y sus fuerzas, como son el viento y el mar.

Al ser un deporte tan joven, las empresas que diseñan y fabrican cometas para la práctica todavía se basan principalmente en el método de prueba y error. Con este método parten de diseños anteriores que son modificados y construidos en forma de prototipo. Estos prototipos se prueban y modifican hasta alcanzar una solución más o menos adecuada y deseada. La realización del método prueba y error puede ser muy costosa en aspectos económicos y de tiempo.

Con este proyecto se pretende demostrar la viabilidad de los métodos computacionales aplicado al diseño de las cometas de kitesurf, como ya se realiza en muchos otros campos ingenieriles relacionados con la aerodinámica y las estructuras. En muchos sectores en los que hasta ahora primaba la experimentación como validación de diseños, la introducción de esta metodología ha permitido reducir enormemente costes y tiempo, facilitando el proceso de diseño. Además, este proyecto pretende validar los métodos computacionales en aplicaciones donde la interacción fluido estructura es importante.

El proyecto realizado pretende colaborar aumentando el conocimiento de los kites y su comportamiento para poder perfeccionar su diseño y acercar a la gente a estos estudios. Las cometas de kitesurf a parte de un carácter lúdico también tienen muchas aplicaciones de futuro como son la generación de energía mediante el viento o el transporte marítimo.

Finalmente, como estudio académico, permite abordar y poner en práctica los conocimientos estudiados durante toda la carrera.
3 Alcance del proyecto

El estudio realizado en este proyecto está basado en un modelo que se ha intentado realizar lo más próximo a la realidad posible. Como todo modelo, contiene una serie de simplificaciones e hipótesis que facilitan el trabajo y el cálculo de la solución, siendo tarea del ingeniero la correcta elección y suposición de éstas. Por lo tanto, a continuación, se detalla el alcance de este proyecto teniendo en cuenta lo mencionado.

En análisis de la interacción entre el fluido y la estructura de la cometa es un análisis en una sola dirección (interacción débil), en el que se estudia la influencia del flujo de aire sobre la estructura del kite. Un estudio en las dos direcciones supondría una carga de trabajo y estudio muy grande, sin una garantía de resultados debido a la complicada geometría del modelo.

Se realizan dos tipos de estudio diferentes mediante los resultados obtenidos. Uno donde se evalúan las deformaciones y tensiones que sufre la tela en distintas condiciones de vuelo (que se simulan aplicando diferentes condiciones de contorno), y otro en el que se estudian las deformaciones y tensiones sobre la cometa dependiendo de la velocidad del viento que influye sobre la cometa. En este segundo, además, se analiza el coeficiente de sustentación en función de la velocidad del viento así como la fuerza de sustentación generada. Además, también se realizan una serie de estudios y análisis de los resultados obtenidos del CFD.

Como se justificará a lo largo del proyecto, únicamente la cometa (que incluye la tela, el borde de ataque y las costillas) es objeto de análisis en este proyecto. Quedan fuera de alcance del estudio las líneas, el arnés, la barra y los otros dispositivos usados en el deporte.

Para realizar el proyecto se han utilizado distintos softwares, tanto de CAD como de simulación. El modelado de la geometría se ha realizado mediante SurfPlan1, SolidWorks2 2013 y el módulo DesignModeler de Ansys 14.53. La simulación para el estudio CFD se ha hecho con CFX y para el estudio estructural con el módulo de Static Structural, ambos de Ansys.

1 Surfplan Hobby version 5.2. http://www.surfplan.com.au
3 Ansys 14.5. http://www.ansys.com/
4 Fundamentos teóricos generales

4.1 Historia del kitesurf

La historia del kitesurf empezó alrededor de los siglos XII, XIII y XIV donde algunas comunidades de pescadores de distintas civilizaciones como Indonesia, Polinesia y China utilizaban cometas de tracción para desplazar sus embarcaciones.

El kitesurf como actualmente se conoce es un deporte relativamente joven, pues apareció en las últimas décadas del siglo XX. En 1977 se realizó la primera patente registrada por Gijsbertus Adrianus, constaba de un sistema de navegación sobre una tabla de surf arrastrada por una especie de parapente.

El gran paso en la historia del kitesurf lo dieron los hermanos Legaignoux, que en 1984 inventaron en Francia las cometas de borde de ataque hinchable (LEI4). Estos fundaron la marca Wipika, que fue la primera en producir en serie y vender cometas de kitesurf. Tras años de investigación y pruebas, en 2004 solicitaron una nueva patente para la siguiente generación de LEI kites, llamándolos bow kites. Actualmente ya no existe esta marca.

![Figura 1. Wipika Classic, la primera cometa producida en serie por los hermanos Legaignoux](image)

Durante los últimos años las velas de kitesurf han ido evolucionando, proporcionando más seguridad en la práctica del deporte y adaptando los diferentes modelos según el estilo de navegación.

4 Leading Edge Inflatable
4.2 Modalidades de competición en el kitesurf

Existen muchas disciplinas de competición de kitesurf pese a ser un deporte relativamente nuevo. Las tres grandes modalidades en las que se realiza un circuito mundial con distintas pruebas son el freestyle, el race y las olas.

El freestyle o estilo libre consiste en realizar las maniobras y saltos radicales en potencia (donde el deportista recibe toda la fuerza de la cometa en sus brazos en lugar del arnés). En esta modalidad los riders (deportistas) compiten por mangas entre ellos, donde son puntuados por unos jueces.

![Figura 2. Maniobra de la modalidad de freestyle](image)

El race o las carreras derivan de las competiciones de otros deportes como la vela ligera o el windsurf. En estos eventos los deportistas compiten entre ellos en una regata, de una o varias mangas, donde realizan los tres rumbos posibles que se explicarán a posteriori.
Los campeonatos de olas son menos frecuentes y se desarrollan de forma parecida a las competiciones de surf.

Existen además otras disciplinas como el hangtime donde se puntúan los saltos más altos y de mayor tiempo de vuelo o los records de velocidad, donde el récord establecido hasta la fecha es de 56,62 nudos.

4.3 Tipos de kites

4.3.1 Ram air traction kites o foil kites

Son las primeras cometas de tracción que aparecieron en el mercado y provienen del diseño del parapente. Éstas poseen dos capas de paños (uno superior y uno inferior) divididas en varias celdas, que se hinchan mediante el viento que pasa a través de las válvulas frontales formando el perfil diseñado.

Tecnológicamente están más avanzadas que las que se explican a posteriori ya que heredan el conocimiento de los fabricantes de parapentes. Llevan un complejo sistema de bridas para controlarlas.

Proporcionan una gran tracción con vientos flojos pero su uso en el agua no es muy común debido a su difícil relanzamiento si.
4.3.2 Leading edge inflatable (LEI) kites

Son cometas con el borde de ataque inchable (LEI). Éste se llena de aire mediante una cámara y da forma al kite. Generalmente, va acompañado de costillas también hinchables que aportan rigidez a la vela. Fueron diseñadas con la finalidad de evitar que la cometa se hunda bajo el agua y sea más fácil relanzarla.

4.3.2.1 Kites tipo “C”

Estas cometas fueron las primeras del mercado diseñadas específicamente para la práctica del kitesurf. Su nombre tiene origen en la forma que adquieren en vuelo, que gracias a su borde de ataque y sus costillas hinchables mantienen la forma de “C”.

En los inicios eran cometas de únicamente dos líneas, pero pronto evolucionaron a las cuatro líneas actuales que muchas todavía poseen, aportando un mayor control de la vela y seguridad.

Las cuatro líneas van directamente conectadas a los bordes de ataque y de fuga, sin ningún sistema de bridaje. Esta característica junto con el diseño del ala la hacen idónea para la modalidad de freestyle. Son cometas de poca potencia porque la superficie alar proyectada es muy pequeña y consecuentemente con poco rango de viento. Sin embargo son muy rápidas y realizan los giros muy cerrados.
Los lóbulos de las cometas tipo “C” se caracterizan por ser convexos.

Muchas cometas tipo “C” incorporan una quinta línea conectada al borde de ataque. Esta presenta una tensión prácticamente nula, se instala por temas de seguridad y ayuda al relanzamiento desde el agua.

Presentan una alta resistencia aerodinámica, por lo que son cometas que ciñen poco, y por lo tanto no indicadas para la modalidad de race.

4.3.2.2 Kites tipo bow (planas)

Este diseño de cometas fue patentado por los hermanos Legaignoux de la empresa Wipika, pero la primera marca en comercializarlo fue Cabrinha.

Estas cometas se distinguen en vuelo por su forma, mucho más plana que las del tipo “C”. Esta característica les aporta un mayor rango de viento y un amplio depower (capacidad de despotenciar la cometa). El borde de fuga de estos kites es cóncavo, a diferencia del tipo explicado anteriormente.

Las cometas bow tienen un sistema debridaje en el borde de ataque. Estas bridas ayudan a mantener el perfil en vuelo de la cometa, sin ellas el perfil dejaría de tomar la forma plana a pesar de la rigidez del borde de ataque y tendería a curvarse.

Son cometas con una gran potencia debido a su gran superficie alar proyectada. Son más lentas en el giro que las “C” y las híbridas debido a que derrapan mucho por tener

5 http://www.cabrinhakites.com
poca superficie expuesta perpendicular a la superficie alar. Presentan menor resistencia aerodinámica que las anteriores, lo que las hace tener una mejor ceñida.

Figura 6. Diferencia ilustrativa entre los tres tipos de kites

4.3.2.3 Kites híbridos

Las cometas híbridas son la evolución lógica de sus antecesores, presentando beneficios de ambos explicados anteriormente. Sus perfiles pueden ser muy variados, diseñados específicamente para cualquiera de las disciplinas existentes en el deporte.

Todas las cometas híbridas presentan dos características. Poseen un sistema de bridaje en el borde de ataque para mantener su forma en vuelo y presentan un borde de fuga convexo (como las del tipo “C”).

Dentro de este tipo de kites se encuentran las cometas tipo delta, patentadas por la marca F-One. Estas cometas presentan el borde de fuga más convexo, además de estar más estilizadas hacia el viento, tomando forma de ala delta como su nombre indica. Estas características benefician el relanzamiento desde el agua y su entrega de potencia, que es mayor pero predecible y de forma gradual.

Figura 7. Cometa tipo delta de la marca F-One

6 [http://www.f-onekites.com/]
4.4 Elementos principales del kitesurf

Este apartado se centra en la descripción de todos los elementos para la práctica del kitesurf, detallando especialmente las partes de la cometa y de su sistema de control.

4.4.1 Partes de la cometa

Se explicarán las partes de un LEI kite, que será el objeto de estudio posterior.

4.4.1.1 La tela o canopy

El material con el que se fabrican las cometas debe ser resistente a la corrosión en medios salinos, impermeable, resistente a impactos, elástico, resistente a la abrasión y ligero. Esta solución se encuentra en el Ripstop, un tejido de nylon diseñado durante la segunda guerra mundial para fabricar paracaídas.

La tela es la encargada de resistir y transmitir los esfuerzos cortantes a lo largo de la cometa, así como de producir las fuerzas aerodinámicas. Este tejido no permite que un corte en la tela se propague fácilmente en ella.

Un elemento muy importante de la tela es el barniz. Éste la hace hidrófuga e impermeable al aire, al mismo tiempo que la protege de los rayos UV y sobre todo evita una deformación del tejido en sentido diagonal al trenzado de las fibras.

4.4.1.2 El borde de ataque

Es la parte de la cometa que primero recibe el flujo de aire. Como ya se ha comentado, se estudian los kites de borde de ataque hinchable. Éste tiene una sección transversal circular. El exterior del borde de ataque es de Dacron, nombre comercial para un tipo de tejido de fibra de poliéster más denso y resistente que el Ripstop. El Dacron se engloba dentro de los plásticos PET.

El borde de ataque debe albergar la cámara de aire (bladder) hecho de Polyether TPU, un material agradable de trabajar puesto que se puede pegar, termosellar, estirar, cortar y realizar procesos de reparación de pinchazos, rajas y explosiones. Además, es importante destacar que la presión del aire no la aguanta el bladder, sino que lo hace el tubo de Dacron que lo rodea. La cámara de aire únicamente se limitará a rellenar la forma que tenga el interior del borde de ataque. Éste aporta rigidez, resistiendo los esfuerzos a flexión y torsión.
4.4.1.3 El borde de fuga

El borde de fuga es el borde de salida del viento que atraviesa el perfil. Es donde se produce la separación de la capa límite. Suele estar más reforzado que el resto de la tela de la cometa para resistir el flameo producido a lo largo de éste.

4.4.1.4 Las costillas

La inmensa mayoría de cometas llevan costillas para aumentar su rigidez y flotabilidad manteniendo así la forma en vuelo. Están fabricadas como el borde de ataque, la tela exterior es de Dacron, que alberga en su interior las cámaras de aire. Existen varios sistemas de hinchado. En algunas cometas se hinchan independientemente las costillas y el borde de ataque. Sin embargo hay otras que incorporan el sistema **one pump**, mediante el cual se hinchan todas las costillas y el borde de ataque a la vez.

![Figura 8. Partes de una cometa de kitesurf](image)

4.4.2 Partes del sistema de control

4.4.2.1 Las líneas

Las líneas son las cuerdas que controlan la cometa y transmiten la tracción al deportista. Como se ha comentado anteriormente, los kites puedes tener cuatro o cinco líneas.

Las líneas están fabricadas con Dynema o Spectra, que son los nombres comerciales para el UHMWPE\(^7\). Estas fibras tienen unas propiedades excelsas. Al mismo peso, son un 40% más resistentes que el Kevlar, ofrecen menos resistencia aerodinámica que otro tipo de líneas, tienen buena resistencia a la abrasión, son resistentes a los rayos ultravioletas, no absorben agua y flotan. Éstas suelen tener una extensión de entre 15 y 25 metros aproximadamente.

\(^7\) *Ultra-high-molecular-weight polyethylene*
Las dos líneas de dirección van conectadas al borde de fuga de la cometa (en el caso de las tipo “C”) o en la parte más cercana al borde de fuga de las costillas laterales o del borde de ataque, dependiendo del modelo. Estas líneas no llevan sistemas de bridaje. Se conectan por el otro extremo a ambos lados de la barra de control mediante unas prelíneas que salen de ésta.

Las líneas de potencia se conectan al borde de ataque, utilizando o no bridas, dependiendo del tipo de cometa que sea. Éstas son las encargadas de transmitir la mayor parte de fuerza al navegante mediante el arnés. Por el extremo contrario al kite se conectan ambas al cabo de freno, elemento que se explicará a continuación.

Los kites que llevan un sistema de bridaje con o sin poleas que permiten al usuario variar dos características de la cometa. La primera es su estructura, ya que el borde de ataque solo aporta un porcentaje de rigidez en vuelo, siendo la mayor parte soportada por el bridaje. La segunda característica que se puede variar es la presión en barra, que viene dada en relación a la distancia que exista en la balanza comprendida entre el centro de gravedad del bridaje principal (situado en las poleas), el centro de sustentación y el centro de gravedad de las líneas de dirección. Una presión alta en barra evita el pandeo de las líneas de dirección, consiguiendo una respuesta más directa y un mayor control en los giros, por contra, el esfuerzo en los brazos del piloto es mayor al navegar con esta configuración.

Algunas cometas tienen una quinta línea para temas relacionados con la seguridad y ayuda al relanzamiento. En el caso de las cometas tipo “C”, esta línea tiene una tensión muy pequeña, mientras que para los otros dos tipos la quinta línea tendrá una tensión y podrá ir conectada al sistema de bridaje.

4.4.2.2 La barra de control

La barra de control es el sistema que tiene el deportista para guiar la cometa como desea. Esta barra suele estar hecha de materiales compuestos que deben soportar elevados esfuerzos a flexión. Tienen una longitud de entre 45 y 65 cm, dependiendo del tamaño de la cometa.

Las líneas de control están conectadas una a cada lado de la barra y transmiten al kite el movimiento ejercido por el navegante al tirar de ésta hacia un lado u otro.

Las líneas de potencia van conectadas al cabo de freno, sistema por el cual se potencia o despotencia la cometa (depower). Éste no es más que un cabo (cuerda ancha), el cual trimándolo más o menos varía el ángulo de ataque de la cometa, permitiendo navegar con vientos más fuertes con una misma cometa. Este cabo va directamente atado al
chicken loop mediante una línea central (pasando a través de un agujero en el centro de la barra). El chicken loop es una especie de gancho donde se une la cometa al arnés, que con el finger, o dedo, queda fijada, ejerciendo la fuerza generada por el viento sobre la cintura del navegante.

Todas las barras incluyen un sistema de seguridad llamado quick release (suelta rápida), por el cual el rider es capaz de soltar la cometa de su arnés. Ésta queda atada exclusivamente por un leash (correa de seguridad), que une el arnés a una línea del kite. Si el kite posee quinta línea, el leash se conecta a ésta, sino, va conectado a una de las líneas de potencia. Al quedar únicamente conectada por una línea, la cometa deja de ejercer tracción y cae al agua.

Figura 9. Partes de la barra de control

4.4.3 Otras partes del equipo

4.4.3.1 El arnés

Junto a la barra de control, el arnés une a la persona con la cometa. Al conectar el arnés a las líneas de potencia, el kite transmite la mayor parte de la tracción a través de este, repartiendo la fuerza a lo largo del cuerpo, sin cargar toda en los brazos mediante la barra. Los arneses de cintura son los más populares, por la comodidad y eficacia a la hora de realizar saltos. Se debe tener en cuenta que los arneses deben soportar grandes esfuerzos ejercidos por la tracción del kite sin sufrir ningún tipo de desgarre o rotura.

Figura 10. Arnés de cintura
4.4.3.2 La tabla

Existen muchos tipos de tablas para la práctica del kitesurf. Para cada modalidad del deporte hay una tabla diferente. Están hechas de materiales compuestos o de madera. El estudio de las tablas así como su hidrodinámica y estructura podría albergar un proyecto entero, de tal manera que no son objeto de estudio de este proyecto.

![Tabla bidireccional y tabla para modalidad de race](image)

Figura 11. A la izquierda, tabla tipo bidireccional para la modalidad de freestyle, a la derecha tabla para la modalidad de race

4.4.3.3 Otros elementos de seguridad y protección

Existen otros elementos destinados a la seguridad y protección ante inclemencias para el deportista. Entre ellos se encuentran el traje de neopreno, el casco o el chaleco para impactos (que también proporciona flotabilidad).

4.5 La ventana de viento y rumbos de navegación

Conocer perfectamente el término de la ventana de viento es fundamental para el control de la potencia y de la seguridad por parte del usuario.

La ventana de viento se define relativamente al navegante. Es la región tridimensional del cielo que queda a sotavento del usuario donde la cometa puede volar. Ésta tiene forma de cúpula, y su área viene marcada por la longitud de las líneas del kite. Es muy importante conocer este término ya que la potencia del kite viene determinada por la posición donde se encuentra en la ventana de viento, definiendo las posiciones de despegue y aterrizaje del kite, así como la zona de potencia para navegar.

En la Figura 12 se puede ver la vista lateral de la ventana de viento, así como el ángulo que está forma respecto horizontal.
Normalmente, se suelen dar las posiciones del kite nombrándolas por la hora en la que se encuentran, como si la ventana del viento fuera medio reloj visto frontalmente. En la Figura 13 se ven las posiciones según las horas. Cuando el kite se encuentra volando encima de la cabeza del usuario, se dice que la cometa está en el zenit.

Cuando la cometa se encuentra en el zenit no genera fuerza, solamente se sustenta, es decir que sólo genera fuerza de sustentación verticalmente. Conforme el kite se acerca a las 3 o a las 9 cada vez gana más tracción el lugar de sustentación, generando más fuerza sobre el usuario.

Además de las posiciones ilustradas, se encuentran las distintas zonas de potencia mostradas en la Figura 14.
En azul se ve la zona del zenit, donde la cometa genera únicamente sustentación vertical. En los dos laterales de la ventana, en verde hay las zonas de despegue y aterrizaje.

La degradación de colores, de amarillo a rojo, indica de menos a más generación de potencia, y por lo tanto de tracción.

Cuando el rider se encuentra navegando, únicamente mueve la cometa por la mitad de la ventana de viento, dependiendo de la dirección de navegación.

Practicando kitesurf se puede navegar en los distintos rumbos existentes, que son tres:

- **Navegar al largo** (*downwind*): Se navega en dirección del viento. Es el primer rumbo que se aprende cuando se empieza en este deporte. Se debe tener en cuenta que se pierde terreno mediante este rumbo, con lo cual hay que conocer las condiciones climatológicas así como el entorno para navegar con seguridad.

- **Navegar a través** (*reach*): Este rumbo es perpendicular al viento, se vuelve al punto de origen y por lo tanto no se pierde terreno. En las playas donde el viento es de componente paralela a la orilla las cometas van hacia dentro del mar y vuelven a la arena de donde han partido.

- **Navegar en ceñida u orzar** (*Upwind*): es el rumbo de navegación que requiere más técnica. En éste, el kiter navega con un ángulo en contra del viento, para ganar terreno. El ángulo de ceñida depende de factores como son la técnica del piloto, el tipo de cometa y de tabla que se lleva, la intensidad del viento, el estado del mar...
5 Mecánica de vuelo de la cometa

En este apartado se estudiará el comportamiento de la cometa para situar el problema y entender las fuerzas que actúan sobre el kite y el deportista.

5.1 Conceptos básicos

Para comprender el vuelo de la cometa es importante definir las partes de la vela que están asociadas a los fenómenos aerodinámicos, así como la terminología utilizada en aeronáutica para referenciarlos. A continuación se presentan una serie de estos conceptos.

- **Extradós**: Es la parte superior de la vela o perfil aerodinámico. Va del borde de ataque al borde de salida.
- **Intradós**: Es la parte inferior de la vela o perfil. También va del borde de ataque al borde de salida. En este se encuentran las costillas.
- **Borde de ataque**: Definido anteriormente en las partes del kite como tal. Aerodinámicamente asume el concepto de que es lo primero que se encuentra el viento relativo cuando choca con un perfil aerodinámico.
- **Borde de salida**: También se ha definido anteriormente. Aerodinámicamente es lo último que está en contacto con el viento relativo de un perfil.
- **Superficie**: Es la superficie real de la vela estirada (sin hinchar) del intradós. La superficie proyectada es la proyección de esta sobre el plano horizontal cuando se encuentra en vuelo. La superficie proyectada siempre es menor que la real.
- **Envergadura (b)**: Es la distancia máxima desde un extremo al otro del ala. También se puede hablar de envergadura real o proyectada.
- **Cuerda (c)**: Es la distancia lineal entre el borde de ataque y de salida. Es paralela a la trayectoria del kite. En una cometa existen infinitas cuerdas.
- **Cuerda máxima**: suele ser la cuerda del perfil central.
- **Cuerda mínima**: es la de los extremos.
- **Cuerda media geométrica**: Ésta se calcula con la relación superficie/envergadura.
- **Cuerda media**: Se toma trazando líneas sobre la proyección de la superficie. Se halla equidistante entre la cuerda máxima y la mínima.
- **Alargamiento (AR)**: Es la relación que existe entre la envergadura y la superficie \(b^2/S\). Se realiza la misma diferenciación para la superficie entre envergadura real y proyectada. El alargamiento o *aspect ratio* es un parámetro importante en el diseño de un kite, como se verá posteriormente.
5.2 Fuerzas generadas por el viento durante el vuelo de la cometa

5.2.1 Fuerza aerodinámica: Sustentación y resistencia

Para realizar el diagrama de fuerzas del sistema, primero se debe ver qué fuerzas aparecen alrededor de la cometa y la causa de éstas.

Cuando un kite se encuentra en vuelo, aparece una fuerza aerodinámica intimamente ligada con la velocidad del viento y la diferencia de presión. Esta fuerza es la suma de todas las fuerzas aerodinámicas generadas en cada perfil.

La fuerza aerodinámica se descompone en dos direcciones, una paralela y otra perpendicular a la velocidad del viento relativa. En la dirección paralela se obtiene la fuerza de resistencia \(\text{(drag)} \) y en la dirección perpendicular la fuerza de sustentación \(\text{(lift)} \).

Para explicar este fenómeno se deben tener en cuenta varias teorías con sus supuestas hipótesis, la suma de las cuales genera dicha fuerza aerodinámica total.

En un primer término se encuentra la explicación mediante la ecuación de Bernoulli junto a sus suposiciones. De esta ecuación se deduce que se genera una presión mayor en el intradós que en el extradós, debido a la diferencia de velocidad con la que circulan las partículas. En el extradós del perfil, una partícula de aire circula a mayor velocidad que en el intradós, generando la diferencia de presiones y en consecuencia una fuerza neta de sustentación.

A continuación se demuestra este razonamiento mediante la ecuación de Bernoulli.

\[
P = P_0 + \frac{1}{2} \rho v^2 = ct
\]

Donde:

- \(P \) es la presión absoluta
- \(P_0 \) es la presión estática
- \(\frac{1}{2} \rho v^2 \) es la presión dinámica, que tienen en cuenta la densidad y la velocidad del flujo

\[
P_{\text{extradós}} = P_{0\text{extradós}} + \frac{1}{2} \rho v^2_{\text{extradós}}
\]

\[
P_{\text{intradós}} = P_{0\text{intradós}} + \frac{1}{2} \rho v^2_{\text{intradós}}
\]
Como la presión debe mantenerse constante se pueden igualar las presiones totales.

\[P_{\text{extradós}} + \frac{1}{2} \rho v_{\text{extradós}}^2 = P_{\text{intradós}} + \frac{1}{2} \rho v_{\text{intradós}}^2 \]

Esta teoría dice que las partículas de fluido que llegan al borde de ataque deben salir a la vez por el borde de fuga, siguiendo una línea de corriente por el extradós y otra por el intradós. Pero como el camino a recorrer es más largo por la parte superior, la velocidad debe ser mayor que por la parte inferior. De lo que se deduce lo siguiente:

\[P_{\text{extradós}} \leq P_{\text{intradós}} \]

La presión estática en el extradós es menor que en el intradós como se ha comentado anteriormente. Se debe tener en cuenta que la presión dinámica, el término de velocidad por densidad, actúa únicamente en la dirección del flujo, y por lo tanto, la única presión que ejerce sobre el perfil es la estática. Esta teoría por sí sola no es válida porque las partículas de aire no llegan a la vez al borde de salida.

La verdadera razón por la que se genera una fuerza de sustentación es porque aparece una circulación alrededor del perfil. Según la teoría de Kutta-Yukovski, ésta es una condición necesaria para que exista sustentación. Esta teoría aplica las ecuaciones de Newton para los fluidos (Navier-Stokes) en un perfil aerodinámico (2D). De ella se deduce tras hacer una serie de suposiciones y simplificaciones que la fuerza de sustentación es:

\[L = -\rho v \Gamma \]

Donde:

- \(\rho \) es la densidad del aire a nivel del mar
- \(v \) es la velocidad del aire
- \(\Gamma \) es la circulación alrededor del perfil

Esta circulación aparece debido a que existen dos puntos de remanso en el perfil. Uno en el borde de ataque, y el otro en el borde de salida. Los perfiles aerodinámicos tienen el borde de salida afilado. Kutta estableció que para que el campo de velocidades no posea una singularidad en ese punto, las velocidades del fluido en el extradós e intradós deben ser iguales al abandonar el perfil. Esto se traduce en que se anule la velocidad en el borde de salida, es decir que exista dicho punto de remanso. Con esta hipótesis, conocida como Condición de Kutta, el problema de la sustentación de un perfil queda determinado.
La circulación hace que se genere una mayor velocidad sobre la superficie del extradós, así como una velocidad menor en la superficie del intradós.

Ahora sí, se puede decir que la velocidad en el intradós es menor que en el extradós, por lo que aplicando esta conclusión en la ecuación de Bernoulli se crea una diferencia de presiones entre ambas caras del perfil que da como resultado la fuerza de sustentación.

Además, hay que tener en cuenta los esfuerzos viscosos que se presentan en la teoría de la capa límite. De forma simplificada esta teoría dice que en fluidos de poca viscosidad (como el aire) las fuerzas viscosas solo se encuentran presentes en una capa delgada adyacente a la superficie del cuerpo. Fuera de esta capa, pueden despreciarse los efectos viscosos y la corriente se puede describir con gran aproximación, mediante las ecuaciones del fluido no viscoso, como se ha hecho hasta ahora. Esta teoría la postuló Ludwig Prandtl.

De la teoría de la capa límite también se deduce la aparición de la fuerza de resistencia, que hasta el momento, con la teoría de Kutta-Yukovski era nula. Esta resistencia se diferencia entre la de fricción y la de forma. La resistencia de fricción se debe al rozamiento que existe en la capa límite, y la de forma (o de presión) se debe al propio cuerpo de la cometa, que ejerce una resistencia obstaculizando el viento.

Existe también una resistencia debido a la sustentación generada por un ala de envergadura infinita llamada resistencia inducida. Ésta se genera en ambos extremos del ala, debido a la aparición de unos torbellinos generados por la diferencia de presiones entre el intradós y extradós. En el caso de las cometas, esta resistencia suele ser pequeña, pues por su propia forma (mediante los tips a ambos extremos del kite) se inducen pocos torbellinos.

Un último factor que incrementa la sustentación y la resistencia es el ángulo de ataque con el que vuela la cometa. A mayor ángulo de ataque, mayor sustentación y mayor resistencia. Los ángulos de ataque no pueden ser muy grandes porque el kite puede entrar en pérdida al igual que un avión.

De esta forma obtenemos las ecuaciones para la sustentación y la resistencia de un perfil:

\[L = \frac{1}{2} \rho S C_L v^2 \]

Donde:

- \(L \) es la fuerza de sustentación
○ ρ es la densidad del aire a nivel del mar
○ C_L es el coeficiente de sustentación
○ v es la velocidad del flujo
○ S es una superficie característica del ala

$$D = \frac{1}{2} \rho SC_D v^2$$

Donde:
○ D es la fuerza de resistencia
○ C_D es el coeficiente de sustentación

Mediante el coeficiente de sustentación se tiene en cuenta la resistencia inducida.

$$C_D = C_{D0} + C_{Di} = C_{D0} + \frac{C_{I0}}{\pi Ae}$$

Donde:
○ C_{D0} es el coeficiente de resistencia para sustentación nula. Este coeficiente tiene que ver con la resistencia del perfil (de forma y de fricción).
○ C_{Di} es el coeficiente de resistencia inducida. Este coeficiente depende del C_{I0} (coeficiente de sustentación nula), del alargamiento (A) y del factor de eficiencia (e), que depende de la forma en planta.

5.2.2 Momento aerodinámico

Este momento hace que el kite gire alrededor de su nariz o borde de ataque. El momento aerodinámico es negativo para las superficies sustentadoras tradicionales, como es el caso del perfil de una cometa. El punto a lo largo de la cuerda donde el momento aerodinámico es constante para todos los ángulos de ataque se llama centro aerodinámico.

Los experimentos realizados a lo largo de la historia han demostrado que para la mayoría de superficies sustentadoras subsónicas el momento es constante en el punto un cuarto de la cuerda desde el borde de ataque para ángulos de ataque entre -5 y 20 grados (el rango más importante para aviones y kites). El momento aerodinámico es proporcional al coeficiente de momento C_M y a la cuerda del perfil, tal y como se expresa en la siguiente ecuación.

$$M = \frac{1}{2} \rho C_M v^2 Sc$$
Para el estudio de la influencia de estas dos fuerzas y del momento sobre la cometa existen dos modelos diferentes.

5.2.2.1 El modelo del centro aerodinámico

En este modelo, las fuerzas de sustentación y resistencia y el momento aerodinámico se localizan en el centro aerodinámico. El momento negativo (para el caso estudiado) hace rotar la cometa por encima del borde de ataque. En este punto el momento aerodinámico es constante para cualquier ángulo de ataque.

5.2.2.2 El modelo del centro de presiones

En este modelo tan solo actúan la fuerza de sustentación y de resistencia en un único punto de la cuerda llamado centro de presión. El centro de presiones es aquel punto de la cuerda donde el momento aerodinámico se anula. Este punto no coincide necesariamente con el centro aerodinámico. El CP no es un punto fijo, ya que dichas fuerzas varían durante el vuelo de la cometa.

La resultante de las fuerzas aerodinámicas genera un momento alrededor del centro aerodinámico (teniendo en cuenta el modelo explicado anteriormente). Como el momento aerodinámico es constante, el centro de presiones se encuentra cerca del centro aerodinámico cuando dicha fuerza resultante es grande (para ángulos de ataque grandes). Para una resultante de fuerzas aerodinámicas pequeña el centro de presiones se encuentra alejado del centro aerodinámico.

Para los perfiles tradicionales el centro de presiones se encuentra detrás del centro aerodinámico, mientras que para perfiles reflejos se encuentra por delante del centro aerodinámico.

Para ambos modelos, la posición del centro de presiones se halla mediante la siguiente expresión:

\[CP = AC - \frac{C_M}{C_L \cdot \cos(\alpha) + C_D \cdot \sin(\alpha)} \]

Donde:

- CP es la posición del centro de presiones teniendo en cuenta que la unidad es igual a la cuerda del perfil.
- AC es la posición del centro aerodinámico, para un kite es 0,25c (donde c es la cuerda).
- \(C_M, C_L \) y \(C_D \) son los coeficientes de momento, sustentación y resistencia respectivamente.
○ α es el ángulo de ataque.

Para ángulos de ataque pequeños se obtiene la siguiente expresión aproximada:

$$CP = AC - \frac{C_M}{C_L}$$

5.2.2.3 Punto de arrastre

El centro de presiones es un punto muy importante para el diseño de un kite porque es donde se debe encontrar el punto de arrastre efectivo. Es el punto ideal donde una cometa de recreo (cometa de dos líneas) debe tener anclada su única línea o su sistema de bridaje.

Como el centro de presiones varía durante el vuelo, el punto de arrastre debe variar de acuerdo con éste.

5.3 Otras fuerzas generadas por la cometa

5.3.1 Fuerza de gravedad

El peso del kite está centrado en el centro de gravedad del cuerpo. La fuerza de sustentación debe ser mayor que el peso de éste para que vuele, aunque por sí sólo, es un cuerpo no balanceado, y por lo tanto no volaría de no ser por poseer alguno de los dos dispositivos siguientes:

- Un sistema de empuje que mueva la cometa hacia delante para balancear la fuerza de resistencia y algún mecanismo para balancear el momento aerodinámico (como la cola para el caso de los aviones).
- Un sistema de líneas atadas en el lugar apropiado para balancear la fuerza de resistencia y el momento. Evidentemente este es el modelo utilizado para las cometas de kitesurf.

5.3.2 Tensión de las líneas

La tensión de las líneas del kite actúa de manera similar a la fuerza propulsiva en los aviones. Pero mientras que la fuerza propulsiva de éstos es una fuerza activa, la tensión de las líneas es una fuerza estática.

La tensión de las líneas está íntimamente ligada al punto de arrastre de la cometa. Las cometas actuales tienen un sistema de cuatro o cinco líneas que permite una configuración dinámica controlable, donde el punto de arrastre se puede reajustar dinámicamente durante el vuelo y es manipulado por el piloto.
5.4 Ángulos de vuelo

Para un estudio aerodinámico es importante conocer la relación y la definición que hay de los ángulos que adquiere el perfil central de la cometa. Si se plantearan las ecuaciones de la mecánica de vuelo para las actuaciones longitudinales de un kite se podría ver que el piloto solamente tiene un parámetro de control en el plano vertical de éste, el ángulo de ataque de la cometa. Esto sucede de forma parecida a un parapente, y es que, en los inicios de este deporte, se intentó navegar con parapentes y derivados de estos. En la Figura 15 se definen los ángulos de vuelo que podría tener el perfil central de una cometa.

![Figura 15. Ángulos de vuelo de un kite](image)

- El ángulo de ataque (α) o incidencia es aquel que forman la trayectoria de vuelo con la cuerda del perfil, es decir entre la dirección del viento relativo y la cuerda del perfil. Este ángulo varía constantemente durante el vuelo de una cometa.
- El ángulo de calado o incidencia es el que forma el horizonte con la cuerda del perfil. Este ángulo queda definido con la construcción de la cometa, aunque puede variar ya que el piloto puede deformar la geometría de la vela.
- El ángulo de planeo es el comprendido entre la trayectoria de vuelo y el horizonte.
- El centro de presiones (CP) es el punto donde se concentran las fuerzas aerodinámicas de resistencia y sustentación y el momento aerodinámico respecto al centro aerodinámico se anula.
5.5 Ecuaciones de vuelo de un kite

En este apartado se presentan las ecuaciones que rigen el movimiento de la cometa, modelizada como un sólido rígido. Se ha decidido modelizarla de tal forma para tener un primer enfoque de la cinemática y dinámica de ésta, y así poder establecer una primera aproximación al problema.

Las fuerzas y momentos generales que actúan sobre la cometa siguen la segunda ley de Newton, que expresada en un sistema de referencia centrado en la tierra se expresa como:

\[m \dot{A}_{E,cg} = F_{ext} \]
\[\frac{dB_{cg}^E}{dt} = M_{ext, cg} \]

Donde:

- \(m \) es la masa de la cometa
- \(A_{E,CG} \) es la aceleración inercial de translación respecto los ejes tierra el centro de gravedad expresada en los ejes tierra.\(^8\)
- \(\frac{dB_{cg}^E}{dt} \) es la derivada del momento de inercia angular respecto el centro de gravedad expresada en los ejes tierra.
- \(F_{ext} \) y \(M_{ext, cg} \) son las fuerzas y momentos exteriores aplicados sobre la cometa.

En la mecánica de vuelo las ecuaciones del movimiento se suelen expresar en un sistema de referencia fijo centrado en el cuerpo, los llamados ejes body.\(^9\)

La aceleración inercial de traslación en los ejes del cuerpo se puede expresar como:

\[A_{E,CG}^b = \frac{dV_{E,CG}^b}{dt} + \Omega_{b,E}^b \times V_{E,CG}^b = \begin{bmatrix} \dot{u}_k \\ \dot{v}_k \\ \dot{w}_k \\ \end{bmatrix} + \begin{bmatrix} p \\ q \\ r \\ \end{bmatrix} \times \begin{bmatrix} u_k \\ v_k \\ w_k \\ \end{bmatrix} = \begin{bmatrix} \ddot{u}_k + qw_k - rv_k \\ \ddot{v}_k + ru_k - pw_k \\ \ddot{w}_k + pv_k - qu_k \\ \end{bmatrix} \]

\(^8\) Los ejes tierra son los que forman el sistema de referencia normal a la tierra. Este sistema de referencia es un sistema de ejes ortogonal que sigue la regla de la mano derecha con el origen fijado en el centro de la tierra. El plano \(X_t Y_t\) es tangente a la superficie terrestre, y el eje \(X_t\) indica directamente al norte. Considerando la tierra una esfera, el eje \(Z_t\) apunta al centro de la tierra.

\(^9\) El sistema de ejes cuerpo es un sistema de ejes ortogonal que sigue la regla de la mano derecha centrado en un punto de referencia de la cometa. Usualmente, y en este caso, el punto de referencia es el centro de masas del cuerpo. El eje \(X_b\) se encuentra en el plano de simetría de la cometa y apunta hacia el borde de ataque. El eje \(Z_b\) también está situado en el plano de simetría y apunta hacia abajo. El eje \(Y_b\) es perpendicular al plano de simetría y apunta hacia la derecha.
Donde:

- \[
\begin{bmatrix}
u_k' \\
v_k' \\
w_k'
\end{bmatrix}
\]
son las componentes expresadas en los ejes cuerpo de la velocidad cinemática.

- La velocidad cinemática\(^{10}\) es: \(V_{k,cg} = V_{k,E} = \frac{d\Omega_k^b}{dt}\)

- \(\Omega_{b,E}^b\) es la velocidad de rotación del cuerpo en los ejes body.

- \[
\begin{bmatrix}
p \\
q \\
r
\end{bmatrix}
\]
son las componentes de la velocidad de rotación en el sistema de referencia ejes cuerpo. Estas componentes se consiguen de aplicar la matriz de transformación de coordenadas de los ejes tierra a los ejes cuerpo. Para ver la matriz de transformación consultar el anexo 1 del proyecto.

La derivada del momento de inercia en los ejes cuerpo se puede expresar como:

\[
\left(\frac{dI_{cg}^b}{dt}\right)^b = \frac{dI_{cg}^b}{dt} + \Omega_{b,E}^b \times I_{cg}^b = \Pi_{cg}^b \frac{d\Omega_{b,E}^b}{dt} + \frac{d\Pi_{cg}^b}{dt} \Omega_{b,E}^b + \Omega_{b,E}^b \times (\Pi_{cg}^b \times \Omega_{b,E}^b)
\]

Donde:

- \(\Pi_{cg}^b\) es el tensor de inercia del cuerpo: \(\Pi_{cg}^b = \begin{bmatrix} I_{xx} & -J_{xy} & -J_{xz} \\ -J_{yx} & I_{yy} & -J_{yz} \\ -J_{zx} & -J_{zy} & I_{zz} \end{bmatrix}\)

- \(I_{xx}, I_{yy}, I_{zz}\) son los momentos de inercia del cuerpo.

- \(J_{xy}, J_{yx}, J_{yz}, J_{zx}, J_{zy}\) son sus simétricos que son los productos de inercia del cuerpo.

Las aceleraciones de traslación y angular vienen dadas por las fuerzas y los momentos externos.

A continuación se definen las fuerzas exteriores y los momentos exteriores que se aplicarían en las ecuaciones presentadas anteriormente.

Existen tres tipos de fuerzas exteriores que actúan sobre una cometa:

- Las fuerzas aerodinámicas.
- Las fuerzas de tracción ejercidas por las líneas.
- La fuerza de gravedad.

Las fuerzas aerodinámicas y la fuerza de gravedad son fuerzas distribuidas sobre el cuerpo por naturaleza, es decir que no son fuerzas puntuales. Estas fuerzas pueden ser

\(^{10}\) La velocidad cinemática es la velocidad del kite relativa al sistema de referencia tierra. Un sistema de GPS mide la velocidad cinemática.
 remplazadas por fuerzas puntuales actuando en puntos particulares simplificando así las ecuaciones del movimiento. Las fuerzas de tensión generadas por las líneas son fuerzas puntuales que actúan sobre los puntos de anclaje (ta). La fuerza aerodinámica resultante (R), la fuerza resultante de la tracción (T) y el peso (W) se muestran en la Figura 16.

Figura 16. Diagrama de fuerzas del kite

La dirección de la sustentación (L) se define perpendicular a la dirección de la velocidad aerodinámica (Vₐ) y la dirección de la resistencia (D) se define tangencial y opuesta a la dirección de la velocidad aerodinámica. La velocidad aerodinámica es la resultante de la velocidad del viento (Vₚ) y la velocidad cinemática (Vₖ).

La tensión de las líneas (T), la resultante de las fuerzas aerodinámicas (R) y el peso (W) están en equilibrio cuando el kite no se encuentra acelerado. Esta será la suposición principal realizada en el estudio fluido-dinámico que se realizará a posteriori en el apartado 10.

La resultante de las fuerzas aerodinámicas en los ejes cuerpo se presenta como:

\[
R^b = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}
\]
Si los ejes cuerpo se alinean con la velocidad aerodinámica y el vuelo es simétrico (por ejemplo en la posición del zenit, como sucede en el estudio realizado) la resultante de las fuerzas aerodinámicas es:

\[
R^b = \begin{bmatrix} -D \\ 0 \\ -L \end{bmatrix}
\]

La tensión ejercida por las líneas es:

\[
T^b_t = \begin{bmatrix} F \\ G \\ H \end{bmatrix}
\]

El vector de la gravedad en el sistema de referencia de ejes cuerpo es:

\[
W^b_G = m \cdot T^E_{bE} \cdot g^E_G = m \cdot g
\begin{bmatrix} -\sin\theta \\ \sin\phi\cos\theta \\ \cos\phi\cos\theta \end{bmatrix}
\]

Donde:

- \(T^E_{bE}\) es la matriz de transformación de coordenadas, de los ejes tierra a los ejes cuerpo.
- \(\theta\) es el ángulo de cabeceo de la cometa y \(\phi\) es el ángulo de balanceo de la cometa. Estos ángulos están definidos en el anexo 1 del proyecto.
- \(g\) es el valor de la gravedad.

Todas estas fuerzas externas generan momentos alrededor del centro de gravedad. El momento aerodinámico en el sistema de ejes cuerpo se define como:

\[
M^b_{aero,cg} = \begin{bmatrix} L \\ M \\ N \end{bmatrix}
\]

El momento que ejercen las líneas en el sistema de ejes cuerpo es:

\[
M^b_{lines,cg} = \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = r_{ta} \times T^b_t
\]

Donde:

- \(r_{ta}\) es la posición del punto de anclaje de las líneas relativamente al centro de gravedad en el sistema de ejes cuerpo.
5.6 Vuelo en equilibrio de un kite

Durante el vuelo de un kite en equilibrio todas las fuerzas y momentos sobre éste se deben anular entre ellas, es decir no debe haber aceleración. Esto significa:

- La sustentación debe ser mayor que el peso de la cometa, de tal forma que la fuerza resultante de ambas crea una tensión en las líneas que genera una fuerza propulsiva debido a la inclinación de las líneas que mueven el kite hacia adelante. Esta fuerza propulsiva es igual a:

 \[T = (L - W) \cdot \tan(\alpha) \]

 Donde:

 - \(T \) es la fuerza propulsiva
 - \(W \) es el peso
 - \(\alpha \) es el ángulo de ataque

- Utilizando el modelo de estudio del centro aerodinámico, la tensión de las líneas y el peso del kite deben ser equilibrados con el momento aerodinámico alrededor del punto un cuarto de la cuerda.

- Usando el modelo de estudio del centro de presiones, la diferencia de la fuerza de sustentación en dicho centro y el peso del kite en el centro de gravedad es una fuerza resultante un poco menor a la de sustentación. Dicha fuerza resultante pues se encuentra muy próxima al centro de presiones, en un punto que se nombra “CPg”. Si el centro de presiones se encuentra por delante del centro de gravedad, el “CPg” está un poco por detrás del centro de presiones. Si el centro de presiones esta por detrás del centro de gravedad, el “CPg” está por delante del centro de presiones.

- Si el kite se encuentra en equilibrio longitudinalmente el punto de arrastre efectivo debe estar alrededor del punto llamado anteriormente como “CPg”. Para los kites modernos, de cuatro o cinco líneas, el punto de arrastre puede ser reajustado automáticamente o manualmente. Cuando la cometa está volando, el centro de presiones varía de posición y a la vez, la misma cometa cambia la posición del punto de arrastre para mantener el equilibrio longitudinal. Variando el punto de arrastre, el ángulo de ataque de la cometa cambiará más o menos dependiendo de la forma de ésta.

Se debe tener en cuenta en el diseño del kite que, durante la trayectoria de vuelo, los cambios en la dirección del viento generan un incremento en el ángulo de ataque debido a una disminución en porcentaje de cuerda del centro
de presiones. Por lo tanto, se debe vigilar que la cometa no entre en pérdida después de su reajuste automático debido a elevados ángulos de ataque.

Para los kites tipo LEI este fenómeno les da una buena performance ya que acelera el incremento de sustentación durante el aumento del ángulo de ataque, y decelera la pérdida de sustentación durante la disminución del ángulo de ataque. Esto sucede para los siguientes rangos:

- Para ángulos de ataque entre -5 y 20 grados: El ángulo de ataque aumenta durante la trayectoria de vuelo. El CP se mueve hacia el borde de ataque. El punto de arrastre sigue al CP hacia el borde de ataque. Esto hace que el ángulo de ataque todavía incremente más, proporcionando todavía más sustentación.
- Para ángulos de ataque superiores a 20 grados: Aunque el ángulo de ataque aumente durante la trayectoria de vuelo, el perfil puede entrar en pérdida. Entonces el CP se mueve hacia el borde de fuga. El punto de arrastre sigue al CP hacia el borde de salida. Con lo cual el ángulo de ataque y la pérdida de sustentación disminuye.

En conclusión, un LEI kite amplifica el aumento de la sustentación y sostiene el pico de ésta. Este efecto se llama Sled Boosting, y es la razón por la que se prefieren este tipo de cometas antes que las del tipo foil para realizar saltos y maniobras.

Además, con este tipo de kites el usuario puede cambiar el punto de arrastre efectivo ajustando la longitud de las líneas de potencia y de dirección. Esto es lo que verdaderamente hace el depower. Para cualquier posición del CP, se pueden ajustar las líneas delanteras y traseras de tal forma que el kite vuele con mayores o menores ángulos de ataque, dependiendo de lo que interese.

- El kite parará el vuelo cuando su fuerza propulsiva sea igual a la suma de todas las fuerzas de resistencia. La sustentación, el peso y la resistencia del kite determinan la ventana de viento y el rango de ángulos de ataque a los que puede volar el kite dentro de la ventana de viento.

Para entender cómo se transmite la fuerza propulsiva generada por la cometa sobre el usuario se muestra el diagrama de fuerzas de la Figura 17.
Para alcanzar la situación estacionaria tiene que haber equilibrio entre las fuerzas y los momentos que actúan en el sistema para cada eje. El análisis se realiza en los ejes cuerpo de la persona. El origen del sistema de referencia se encuentra en el centro de gravedad de la persona, donde se considera que las líneas ejercen la tracción.

Las fuerzas que aparecen en la cometa se transmiten al navegante mediante las líneas, que ejercen sobre su centro de gravedad una tensión no nula en ninguno de los tres ejes “XYZ”.

Además, se supone que todas las fuerzas que actúan sobre él lo hacen en un mismo punto, el centro de gravedad. Ésta es una simplificación para evitar entrar en detalle con los momentos.

De este modo, en el eje “X” se equilibran la proyección de la tensión de las líneas (T) en dicho eje con la resistencia que ejerce la tabla (D_t).

En el eje “Y” se equilibra el peso de la persona (W) con la fuerza de flotación de la tabla (F_f) más la componente de la tensión en este eje.

Finalmente, en el eje “Z” se debe equilibrar la componente de la tensión que realizan las líneas e inducen a la persona a desplazarse sobre el eje “Z” con la fuerza realizada por las aletas de la tabla y por la propia tabla. De esta forma se avanza a través, es decir, perpendicular al viento.
5.7 Control de la potencia ejercida por el kite

En el kitesurf existen dos formas de controlar la potencia que la cometa ejerce. Un método que comparte con todas las embarcaciones que navegan a vela y otro que es exclusivo de este deporte.

La sustentación es proporcional al área de la vela proyectada y al cuadrado de la velocidad del viento aparente (la velocidad relativa que ve la cometa). Por eso, para tener un control de la potencia se debe tener un control del área proyectada y de la velocidad de vuelo del kite.

5.7.1 Control del área proyectada

El control de la superficie proyectada es el método más utilizado en vela ligera (también windsurf) para reducir la potencia de la vela. En el kitesurf, este método es equivalente a despotenciar la cometa acortando las líneas de potencia, o lo que es lo mismo, ajustando el cabo de freno. Esta acción cambia el ángulo de ataque, y por lo tanto la superficie proyectada de la vela. La forma más común de despotenciar una cometa de kitesurf es alejar la barra del propio arnés. Para conseguir más potencia, justo al contrario, se debe tirar de la barra hacia el cuerpo.

La gran ventaja de este método es que permite aumentar el rango de viento de la cometa, proporcionando al usuario más comodidad y tranquilidad en situaciones en las que se navega en la parte alta de dicho rango.

5.7.2 Control de la velocidad

Este método permite incrementar o disminuir a potencia de la vela controlando la velocidad de vuelo de ésta. Este método es exclusivo para la navegación con kite.

La mejor forma de controlar la potencia que ejerce la cometa es controlando su velocidad porque ésta es proporcional a la velocidad relativa al cuadrado. Este método simplemente se basa en conseguir mayor velocidad relativa para proporcionar más potencia. Es por eso que cuando el kite vuela a través de la ventana de viento genera mucha más fuerza que cuando se encuentra por ejemplo en el zenit.

Por lo tanto para conseguir más viento aparente (velocidad relativa mayor) y en consecuencia más potencia, se debe volar la cometa describiendo una onda sinusoidal en el cielo. De esta manera, la velocidad relativa será la suma de la velocidad del viento más la velocidad con la que la cometa se mueve arriba y abajo.
6 Parámetros de diseño de una cometa de kitesurf

6.1 Aspect ratio (AR)

La relación de aspecto (AR) viene dada por la siguiente ecuación:

\[
AR = \frac{b^2}{S}
\]

Donde:
- \(b\) es la envergadura
- \(S\) es el área de la cometa

El AR determina en gran parte la forma de la cometa, siendo el parámetro de diseño más visible para el usuario. Elevados AR tienen menos resistencia inducida (efectos causados por los vórtices de punta de ala). La resistencia inducida es inversamente proporcional al AR.

Por lo tanto, en una situación estacionaria, un kite con un bajo AR puede generar la misma fuerza de arrastre que un kite de alto AR (con las mismas características). Será cuando se necesite mover el kite con más energía (para saltar o realizar maniobras), que la cometa de alto AR podrá acelerar más rápidamente para realizar dichas maniobras.

Como regla, un kite con un aspect ratio mayor tiene una ventada de potencia mayor (diferencia entre máxima y mínima potencia). En la Tabla 1 se puede ver el rango recomendado de AR para los dos tipos de kites más generales.

<table>
<thead>
<tr>
<th>Tipo de kite</th>
<th>AR muy bajo</th>
<th>AR bajo</th>
<th>AR Moderado</th>
<th>AR elevado</th>
<th>AR muy elevado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foil</td>
<td>2,5<</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5,5></td>
</tr>
<tr>
<td>LEI</td>
<td>3<</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7></td>
</tr>
</tbody>
</table>

Tabla 1. Rango de aspect ratio

6.2 Perfil sustentador

Los perfiles proporcionan sustentación pero también generan resistencia, como ya se ha visto anteriormente. Un perfil que proporciona la mayor sustentación en un caso estacionario, dará la mayor tracción en la ventana del viento. Este tipo de perfil suele llamarse tractor airfoil, por su gran capacidad de arrastre.

Un perfil con el mayor ratio sustentación/resistencia acelerará más rápido y generará mayor tracción a través de la zona de potencia de la ventana de viento. A este tipo de
perfil se le suele llamar *speed airfoil* ya que vuela muy rápido a través de la zona de potencia y genera una gran tracción cuando lo hace.

La Tabla 2 muestra los rangos recomendados de coeficiente de sustentación (Cl) para un ángulo de ataque de 5 grados y del ratio sustentación/resistencia (L/D):

<table>
<thead>
<tr>
<th></th>
<th>Muy bajo</th>
<th>Bajo</th>
<th>Moderado</th>
<th>Elevado</th>
<th>Muy elevado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl (α=5)</td>
<td>0,5<</td>
<td>0,7</td>
<td>0,9</td>
<td>1</td>
<td>(tractor) 1,1></td>
</tr>
<tr>
<td>L/D</td>
<td>40<</td>
<td>50</td>
<td>70</td>
<td>90</td>
<td>(speed) 110></td>
</tr>
</tbody>
</table>

Tabla 2. Rangos de Cl y L/D recomendados

Se debe tener en cuenta que en la Tabla 2 los ratios L/D se han calculado sin incluir la resistencia inducida. En realidad los ratios L/D se verían reducidos por un factor de 7 u 8.

En el mundo de los kites, el estudio de perfiles no es muy preciso ni completo por el momento. Normalmente se usa una regla sencilla y poco precisa que consiste en aumentar el espesor y la curvatura del perfil si se quiere tener más sustentación y más ratio L/D. Si se quiere conseguir una cometa con mayor velocidad lo que se hace es reducir el espesor y la curvatura.

En la Tabla 3 se muestran los espesores relativos a la cuerda del perfil para los dos tipos de kites:

<table>
<thead>
<tr>
<th>Tipo de kite</th>
<th>Perfil delgado</th>
<th>Perfil moderado</th>
<th>Perfil grueso</th>
<th>Perfil muy grueso</th>
<th>Perfil máximo grosor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foil</td>
<td>(speed) 14%<</td>
<td>15%</td>
<td>16%</td>
<td>17%</td>
<td>(tractor) 18%></td>
</tr>
<tr>
<td>LEI</td>
<td>(speed) 8-9%</td>
<td>10%</td>
<td>11%</td>
<td>12%</td>
<td>(tractor) 13%></td>
</tr>
</tbody>
</table>

Tabla 3. Espesores relativos para los dos tipos de cometas

6.3 Ángulo de ataque incorporado

Una cometa consigue más sustentación para ángulos de ataque mayores, ya que tiene más superficie proyectada hacia el viento.

Cada cometa tiene un ángulo de ataque incorporado neutral para el centro del kite y para las puntas cuando se encuentra en vuelo estacionario en el zenit. El rango de este ángulo suele variar entre los 0 y los 5 grados. El ángulo de ataque incorporado es el ángulo de calado explicado anteriormente.

Cambiando el ángulo de ataque incorporado también se cambia el ángulo de la ventana de viento, de tal manera que los dos se amplífan el uno al otro como queda comprobado experimentalmente.
Con la experiencia en el diseño de kites se ha llegado a la conclusión de que la sustentación y en consecuencia la tracción de la cometa en la ventana de viento es proporcional al ángulo de ataque, y que el ratio L/D es inversamente proporcional al ángulo de ataque. Dichos ángulos están directamente influenciados por el ángulo de ataque incorporado como ya se ha visto. A lo largo de los años pues, se ha llegado a las siguientes conclusiones experimentales:

- Un kite con pequeño ángulo de ataque incorporado del perfil central tiene una mayor ventana de viento y en consecuencia puede orzar (ganar terreno al viento) más fácilmente. Esta facilidad en orzar puede provocar una entrada en pérdida más fácil. Este tipo de kites deben tener un control instantáneo del ángulo de ataque.
- Un kite con mayor ángulo de ataque incorporado tiene una menor ventana de viento, pero genera más tracción en ésta y es difícil que entre en pérdida.
- Debido a los torbellinos de punta de ala y a los efectos de chorros de aire ascendentes (upwash) alrededor de las puntas del kite, el ángulo de ataque incorporado de las puntas de la cometa puede ser uno o dos grados mayor que el del centro.
- En los LEI kites el ángulo de ataque de las puntas es diferente al del centro, por lo tanto, el ángulo de ataque incorporado de las puntas puede ser diseñado independientemente del ángulo incorporado del perfil central.

En la Tabla 4 vemos el tipo de kite según su ángulo de ataque incorporado:

<table>
<thead>
<tr>
<th>α en grados</th>
<th>0</th>
<th>1</th>
<th>2-3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de kite</td>
<td>Race</td>
<td>Velocidad</td>
<td>Polivalente</td>
<td>Olas</td>
<td>Grandes saltos</td>
</tr>
</tbody>
</table>

Tabla 4. Tipos de kite según el ángulo de ataque incorporado

La Tabla 5 muestra un resumen de las características y performances principales en función de los parámetros de diseño del kite:

<table>
<thead>
<tr>
<th></th>
<th>Bajo</th>
<th>Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>Ventana de potencia menor</td>
<td>Ventana de potencia mayor</td>
</tr>
<tr>
<td>Sustentación</td>
<td>Menor tracción en la ventana de viento</td>
<td>Mayor tracción en la ventana de viento</td>
</tr>
<tr>
<td>L/D Ratio</td>
<td>Kite lento</td>
<td>Kite rápido</td>
</tr>
<tr>
<td>Ángulo de ataque incorporado</td>
<td>Mayor ventana de viento</td>
<td>Menor ventana de viento</td>
</tr>
<tr>
<td></td>
<td>Menor ángulo de ataque en la ventana de viento</td>
<td>Mayor ángulo de ataque en la ventana de viento</td>
</tr>
<tr>
<td></td>
<td>Orza fácilmente</td>
<td>Peor en orzar</td>
</tr>
<tr>
<td></td>
<td>Kite rápido</td>
<td>Kite lento</td>
</tr>
</tbody>
</table>

Tabla 5. Tabla resumen de los parámetros y performances de un kite
7 Diseño del kite para el estudio

Para el estudio aerodinámico-estructural se utilizará un kite diseñado mediante el software Surfplan. Este programa está hecho primordialmente para diseñar cometas con el borde de ataque hinchable, permitiendo realizar C-kites, bow kites e incluso cometas tipo foil con todo su complejo sistema de bridaje.

El programa proporciona una interfaz gráfica sencilla y a la vez profesional mediante una serie de paneles de alta calidad en los que elegir los parámetros de diseño más característicos de una cometa. Es por eso que es uno de los softwares más utilizados por fabricantes de cometas.

La versión utilizada del software es una versión de prueba del 2005 descargable gratuitamente desde su página web.

Los requisitos principales del modelo han sido los siguientes:

- Diseño tipo C-kite, sin sistema de bridaje y con cuatro líneas de control.
- Tamaño convencional de cometa de 10 m².
- Materiales convencionales utilizados en la mayoría de modelos existentes.
- Parámetros de diseño convencionales, con los cuales ya existen cometas que funcionan sin problemas.
• Sin complicaciones geométricas en cuanto al borde de ataque, de salida, costillas y puntas del ala.

7.1 Elección de los parámetros

7.1.1 Ajustes de tamaño y forma del kite

Los primeros parámetros a elegir son el tamaño del kite (el área de la cometa plana cuando está sin hinchar) y el aspect ratio (AR).

Para el modelo de estudio se ha elegido un tamaño de cometa de $S_{kite}=10 \text{ m}^2$ y un AR=5.

Con estos valores el programa determina la envergadura del ala $b=7,071 \text{ m}$ y la longitud de la cuerda del perfil central $c=1,769 \text{ m}$.

El siguiente parámetro a elegir es la cuerda del perfil de la punta, ésta se da con el porcentaje de la cuerda central. Se escoge una cuerda de $c_{tip}=40\% c=0,708 \text{ m}$.

El número de paneles con el que se diseña la cometa es de 20, número que suaviza bastante bien la superficie de la tela.

La separación de las costillas se escoge proporcional a la cuerda. Secciones con mayor cuerda tienen las costillas más separadas.

La forma en planta del kite es elíptica, ya que es la que genera la mínima resistencia inducida. Como se trata de una cometa tipo C el borde de fuga es convexo.

Por último, en cuanto a la forma de la cometa se debe mencionar que las puntas de ala son de tipo recto.

En la Tabla 6 se muestran los valores de tamaño más importantes calculados por el software en función de los parámetros añadidos anteriormente.

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie del kite (m2)</td>
<td>10</td>
</tr>
<tr>
<td>Envergadura (m)</td>
<td>7,071</td>
</tr>
<tr>
<td>AR</td>
<td>5</td>
</tr>
<tr>
<td>Área proyectada (m2)</td>
<td>6,163</td>
</tr>
<tr>
<td>Envergadura proyectada (m)</td>
<td>3,791</td>
</tr>
<tr>
<td>AR proyectado</td>
<td>2,332</td>
</tr>
</tbody>
</table>
Área ajustada \((S_{kite}/1,36)\) \((m^2)\) & 7,353
Área de la superficie superior \((m^2)\) & 10,388
Longitud del borde de ataque \((m)\) & 7,258
Longitud del borde de salida \((m)\) & 7,033

Tabla 6. Valores de tamaños del kite

7.1.2 **Ajustes del ángulo de ataque**

El primer parámetro a escoger en este menú es el punto de alineamiento del perfil, que sirve para mover el centro o las puntas de la cometa hacia delante o hacia detrás. Para el centro se escoge un 33% y para las puntas un 0%.

El ángulo de ataque incorporado se escoge para que sea un kite polivalente. Éste es de 2 grados en perfil central y de 4 grados en las puntas, ya que de esta forma se contrarrestan los efectos generados por los torbellinos de punta de ala y las corrientes ascendentes.

El punto de rotación del ángulo de ataque se determina en el 33% de la cuerda, igual que el punto de alineamiento del perfil. Es el punto alrededor del cual el kite rota, es decir alrededor del centro de gravedad.

Los anteriores parámetros determinan el ángulo de ataque en vuelo cuando el kite se encuentra verticalmente por encima de la cabeza del usuario y cuando se encuentra en la ventana de viento (por encima de la cabeza, a 85 grados). También determinan el punto de arrastre efectivo (en % de cuerda).

Estos parámetros son calculados para tres situaciones distintas, cuando el kite se encuentra totalmente despotenciado (las líneas traseras no tienen tensión), cuando está a media potencia (misma tensión en líneas traseras y delanteras) y cuando se encuentra totalmente potenciado (líneas delanteras sin tensión). En la Tabla 7 se muestran dichos parámetros.

Tabla 7. Valores del ángulo de ataque en vuelo y del punto de arrastre efectivo

<table>
<thead>
<tr>
<th></th>
<th>Despotenciado</th>
<th>Medio potenciado</th>
<th>Totalmente potenciado</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha) vertical (grados)</td>
<td>-0,016</td>
<td>6,126</td>
<td>15,893</td>
</tr>
<tr>
<td>(\alpha) ventana de viento (grados)</td>
<td>4,984</td>
<td>11,126</td>
<td>20,893</td>
</tr>
<tr>
<td>Punto de arrastre efectivo (%)</td>
<td>37,96</td>
<td>53,129</td>
<td>77,879</td>
</tr>
</tbody>
</table>

Para calcular los ángulos de ataque en vuelo y el punto de arrastre anteriormente se debe dar el centro de presiones y el ángulo de la ventana de viento que se introducen en este mismo menú.
El CP está situado al 38% de la cuerda, y el ángulo de la ventana de viento es de 85 grados.

7.1.3 Ajustes del perfil

Para el diseño del perfil alar se utiliza el proporcionado por el programa, realizándole una serie de modificaciones que se permiten hacer.

Para empezar se elige el perfil para cometas con el borde de ataque hinchable. Se suavizan los perfiles y se le da el mismo perfil para las puntas de la cometa.

Todos los parámetros se dejan como vienen por defecto excepto el tamaño (sección) del borde de ataque. Este se le da un valor del 10% del tamaño de la cuerda en cada sección de la cometa. Para el centro del kite, el tubo del borde de ataque tiene un diámetro de 17,7 cm, mientras que en la punta un diámetro de 7,1 cm.

7.1.4 Ajustes de las costillas

En este menú se elige dónde se unen las costillas, el tamaño de éstas, el número de segmentos que las forman...

En el modelo diseñado se ha elegido una configuración de 7 costillas (contando las dos de las puntas). Éstas tienen un diámetro máximo de 142 mm, excepto las de las puntas que tienen un diámetro máximo de 42 mm.

En el anexo 2 se puede ver todos los parámetros entrados en el software Surfplan.

7.2 Preparación del modelo para la importación a Ansys

Como la versión utilizada para el proyecto es de prueba no es posible exportar el modelo a un formato compatible con el software de simulación Ansys. Es por eso que se contacta con el desarrollador del software, que colabora amablemente exportando el modelo a formato “.IGS”\(^\text{11}\), válido para trabajar en Ansys.

El primer paso que se realiza en Ansys es tratar de importar el modelo para trabajarlo con el Design Modeler, la plataforma del software para tratar y crear modelos geométricos. Al importar el sólido en el formato recibido aparecen una serie de problemas en la preparación de la geometría para el estudio fluido-estructural. Tras intentar solucionarlos repetidamente se decide tomar una ruta diferente. Esta serie de problemas vienen determinados seguramente por errores en el diseño causados.

\(^\text{11}\) El formato .IGS o .IGES (Initial Graphics Exchange Specification) es un formato de archivo informático que define un formato neutral de datos que permite el intercambio digital de información entre sistemas de diseño asistido por computadora (CAD).
posiblemente por la transferencia de formatos entre diversos softwares. Aparecen errores geométricos como líneas que intersecan y no deben, perfiles que deben estar juntos y no lo están...

Para reparar la geometría se decide rediseñar el modelo mediante el software de dibujo SolidWorks 2013. No se modifica ningún parámetro de la cometa, simplemente se redibuja todo encima del antiguo, procurando solucionar todos los problemas con posibles intersecciones o perfiles que no estén conectados.

Se empieza realizando un croquis 3D, mediante el comando convertir entidades se extrae la curva que une el borde de ataque con la tela de la cometa. Después se realiza el mismo procedimiento y se extraen una serie de perfiles aerodinámicos que conforman todo el kite. Mediante el comando recubrir superficie se recubre toda la tela, siguiendo la curva extraída del borde de ataque. Una vez se tiene la tela dibujada, se realiza un procedimiento similar para recubrir el borde de ataque, extrayendo diferentes circunferencias de este y rellenando la superficie para conformarlo. El procedimiento de extraer perfiles se puede ver en la Figura 19. Las costillas se realizan de la misma manera. Finalmente se cosen todas las superficies y se les da un espesor de 1mm.

Tras exportar el sólido en formato “.IGS” e importarlo al Design Modeler de Ansys siguen apareciendo una serie de errores de los que se desconoce la procedencia. Es por eso que se trata de exportar en distintos formatos desde Solid Works que sean compatibles con Ansys. Finalmente, el formato que importa el sólido sin problemas y sin errores, con el cual se trabaja, es el formato “.SAT”12.

12 .SAT (Standar ACIS text) es un formato de archivo informático tipo CAD para ACIS, que es un núcleo geométrico de modelado tridimensional que provee la funcionalidad necesaria para modelar en 3D.
8 Fundamentos de mecánica estructural con elementos finitos

Los problemas de mecánica estructural se definen por:

- Un conjunto de ecuaciones diferenciales con las variables estudiadas
 - Ecuaciones de equilibrio
 - Ecuaciones de conservación y de balance
 - Ecuaciones constitutivas y de estado
- Unas condiciones de contorno y unas condiciones iniciales
- Unas cargas aplicadas sobre el sistema

Se puede hallar el valor de las variables (desplazamientos, deformaciones, tensiones...) mediante cálculos analíticos resolviendo los sistemas de ecuaciones. Sin embargo, este método conlleva un elevado grado de complejidad matemática y con ella un elevado tiempo de resolución. La dificultad de los problemas aumenta a medida que incrementa la complejidad geométrica del modelo a estudiar.

Por esta razón, en el campo de la ingeniería, donde prevalece una solución rápida y próxima a la real frente a una solución lenta y exacta, se estudian los problemas mediante métodos numéricos.

8.1 El Método de los Elementos Finitos (FEM)

El Método de los Elementos Finitos es un método numérico general para la aproximación de ecuaciones diferenciales parciales usado en la mayor parte de problemas ingenieriles.

Este método permite encontrar una solución numérica aproximada sobre un cuerpo, estructura o dominio dividiéndolo en un número de sub-dominios llamados elementos finitos. Los elementos finitos están definidos por nodos que forman una malla donde se realizan los cálculos. El conjunto de relaciones entre el valor de una determinada variable entre los nodos se puede escribir en forma de sistema de ecuaciones linealizadas, cuya matriz se llama matriz de rigidez del sistema. Esta relación es la siguiente:

\[
[K] \cdot \{d\} = \{f\}
\]

Donde:

- \([K]\) es la matriz de rigidez, que proporciona la información geométrica y del material
• $\{d\}$ es el vector de desplazamientos en los nodos, incógnita de la ecuación
• $\{f\}$ es el vector de fuerzas nodales equivalentes

Para llegar a las ecuaciones discretizadas, que son las que se resuelven computacionalmente se debe seguir el diagrama que se muestra en la Figura 20.

La forma fuerte del problema se realiza mediante las ecuaciones diferenciales que describen el modelo y sus condiciones de contorno. El estudio a realizar de la cometa es el caso del problema elástico, donde las ecuaciones diferenciales se obtienen de las siguientes condiciones:

• Se debe cumplir la ecuación de equilibrio: $\nabla \cdot \sigma + b = 0$
 - Donde σ son las fuerzas internas y b las fuerzas externas.

• Se debe satisfacer la ecuación constitutiva, es decir la ley de Hooke: $\sigma = E \cdot \varepsilon$
 - Donde E es el módulo de Young y ε son las deformaciones.

• El campo de desplazamientos debe ser compatible, es decir se deben cumplir las condiciones de frontera.

• Se debe satisfacer la ecuación que relaciona la deformación y el desplazamiento:
 \[\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right)\]
 - Donde u son los desplazamientos.

La forma débil del problema se basa en la formulación integral del problema. Se obtiene transformando la ecuación diferencial de la forma fuerte en su correspondiente ecuación integral. Para realizar este proceso se utiliza el principio de los trabajos virtuales, quedando la ecuación integral de la siguiente forma:

$$\iiint_V \delta \varepsilon^T \sigma \, dV = \iiint_V \delta \mathbf{a}^T \mathbf{f}^B \, dV + \iiint_S \delta \mathbf{a}^T \mathbf{f}^S \, dS + \sum \delta \mathbf{a}^T \mathbf{r}_j$$

Donde $\sum \delta \mathbf{a}^T \mathbf{r}_j$ es el principio de los trabajos virtuales.
La aproximación de funciones consiste en discretizar el sistema mediante las ecuaciones de rigidez, es decir, se discretiza aproximando una serie de funciones al sistema. Este proceso consiste en dos etapas:

- Construcción de aproximaciones del dominio de dimensión finita
- Discretización de la ecuación de los trabajos virtuales para la generación del sistema de ecuaciones

8.2 El Análisis por Elementos Finitos (FEA)

El Análisis por Elementos Finitos (FEA) es la simulación por ordenador que permite resolver las ecuaciones diferenciales de problemas geométricamente complejos mediante el Método de los Elementos Finitos.

Existen dos maneras de resolver los problemas, la primera y la utilizada en este proyecto es utilizando un software comercial y la segunda es desarrollando un código propio de análisis computacional.

Todos los análisis por FEA tienen las siguientes etapas.

8.2.1 Preproceso

En esta etapa se define la geometría mediante un módulo de diseño CAD, importándolo al software de simulación. Una vez definida la geometría se genera la malla, paso de gran relevancia, pues dependiendo de la malla escogida se obtienen valores más o menos próximos a la solución teórica.

Se asignan las propiedades de los materiales que forman el sistema y, por último, se definen las condiciones de frontera, es decir, se definen las condiciones de contorno y la aplicación de las cargas.

8.2.2 Cálculo

En la resolución del problema discreto se generan las “N” ecuaciones y “N” incógnitas, que son resueltas mediante un solver directo o indirecto, que utiliza algoritmos para resolver los sistemas lineales de ecuaciones.

8.2.3 Postproceso

Consiste en la obtención y el análisis de los resultados. Se puede obtener mapas de desplazamientos en los nodos, mapas de tensión, la deformada y otros resultados numéricos.
9 Fundamentos de aerodinámica con CFD

La dinámica de fluidos computacionales (CFD) es la ciencia que predice el flujo de fluidos, la transferencia de calor y masa y las reacciones químicas.

Los estudios por CFD integran tres disciplinas, una rama física que se basa en la mecánica de fluidos clásica, otra rama matemática y otra que envuelve las ciencias de computación.

Las características del movimiento de un fluido generalmente se pueden describir mediante ecuaciones matemáticas fundamentales, en forma de ecuaciones con derivadas parciales, las cuales describen un proceso de interés.

Los elementos principales del CFD son:

- Las variables del campo que se aproximan por un número finito de valores en los nodos, es decir la discretización del flujo.
- Las ecuaciones de movimiento discretizadas en los nodos. De las ecuaciones integrales (continuas) se obtienen las ecuaciones algebraicas (discretas).
- Los valores de las variables en los nodos, que se encuentran resolviendo las ecuaciones algebraicas.

9.1 Ecuaciones gobernantes para CFD

La dinámica de fluidos computacional se basa en las ecuaciones que gobiernan la dinámica de fluidos. Éstas representan estados matemáticos de la conservación de las leyes de la física. Las leyes físicas adoptadas en este apartado son las siguientes:

- La masa se conserva para un fluído.
- La segunda ley de Newton, la variación del momento es igual a la suma de fuerzas actuando sobre el fluido (ecuaciones de Navier-Stokes).
- Primer principio de la termodinámica, la variación de energía es igual a la suma del calor añadido del trabajo realizado sobre el fluido.

Las ecuaciones Navier-Stokes rigen el comportamiento de un fluido en movimiento, y se adaptan a cada análisis concreto, teniendo en cuenta la compresibilidad del fluido, su viscosidad, la turbulencia... Además, deben satisfacer la ecuación de continuidad.

Como este proyecto no tiene como objetivo trabajar con las ecuaciones de Navier-Stokes no se discutirá la descomposición y simplificación de los términos de dicha
ecuación. Así pues, se expondrán las ecuaciones generales que rigen la dinámica de fluidos, considerando la densidad y la viscosidad variable en función de la temperatura.

9.1.1 Ecuación de continuidad:

La ecuación de continuidad dice que la suma de la masa entrante y la saliente de un volumen de control por unidad de volumen y de tiempo es igual a la variación de la densidad por unidad de tiempo.

\[
\frac{\partial \rho}{\partial t} + \text{div}(\rho \vec{v}) = \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho u) + \frac{\partial}{\partial y}(\rho v) + \frac{\partial}{\partial z}(\rho w) = 0
\]

Donde:

- \(\rho \) es la densidad del fluido y \(u, v, w \) son las componentes de la velocidad del fluido.

9.1.2 Ecuación de Navier-Stokes:

Es la ecuación de conservación de cantidad de movimiento. Se obtiene de la ecuación fundamental de la mecánica, la cual dice que la suma de las fuerzas aplicadas es igual al producto de la masa por la aceleración.

\[
\rho \frac{Du}{Dt} = f_{mx} - \frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left[\mu \left(\frac{2}{3} \nabla \cdot \vec{v} \right) \right] + \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right] + \frac{\partial}{\partial z} \left[\mu \left(\frac{\partial w}{\partial z} + \frac{\partial u}{\partial y} \right) \right]
\]

\[
\rho \frac{Dv}{Dt} = f_{my} - \frac{\partial p}{\partial y} + \frac{\partial}{\partial y} \left[\mu \left(\frac{2}{3} \nabla \cdot \vec{v} \right) \right] + \frac{\partial}{\partial z} \left[\mu \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \right] + \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \right]
\]

\[
\rho \frac{Dw}{Dt} = f_{mz} - \frac{\partial p}{\partial z} + \frac{\partial}{\partial z} \left[\mu \left(\frac{2}{3} \nabla \cdot \vec{v} \right) \right] + \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) \right] + \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \right]
\]

9.1.3 Ecuación de la conservación de la energía:

Basada en la primera ley de la termodinámica. Dice que la variación de la energía en un sistema fluido (energía interna más energía cinética) es igual al trabajo realizado por todas las fuerzas externas más el calor recibido por conducción y/o radiación.

\[
\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) = - \frac{\partial p}{\partial x} + \rho g_x + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z}
\]

\[
\rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right) = - \frac{\partial p}{\partial y} + \rho g_y + \frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{yz}}{\partial z}
\]

\[
\rho \left(\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right) = - \frac{\partial p}{\partial z} + \rho g_z + \frac{\partial \tau_{zx}}{\partial x} + \frac{\partial \tau_{zy}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z}
\]
La mayoría de flujos en ingeniería son turbulentos, siendo de vital importancia la influencia de esta turbulencia en los problemas a resolver.

La turbulencia depende del ratio entre las fuerzas inerciales y las fuerzas viscosas, el cual viene representado por el número de Reynolds (Re). A bajos números de Re, las fuerzas inerciales son menores que las viscosas. Las perturbaciones en el flujo se disipan y éste suele permanecer laminar. Para Re altos, las fuerzas inerciales son suficientemente grandes para amplificar las perturbaciones en un flujo, procediendo al desarrollo del flujo turbulento.

La turbulencia está asociada a la existencia de fluctuaciones aleatorias en el fluido. Aunque las ecuaciones de conservación permanecen aplicables, la variable dependiente, como puede ser la distribución de la velocidad transitoria, debe ser interpretada como una velocidad instantánea. Un fenómeno que es imposible de predecir como por ejemplo sucede con la fluctuación de la velocidad con el tiempo.

A pesar de eso se puede descomponer la velocidad en un valor estacionario y un valor fluctuante como:

\[u(t) = \bar{u} + u'(t) \]

Así como cualquier propiedad.

Para resolver el problema de la turbulencia se suele usar el modelo \(k-\varepsilon \) que añade dos ecuaciones al sistema. Tras trabajar con las ecuaciones RANS (Reynolds-Averaged Navier-Stokes) y el modelo definido por Launder y Spalding para la turbulencia (modelo \(k-\varepsilon \)) se llega a las dos ecuaciones con las que se trabaja además de las presentadas anteriormente.

La energía cinética turbulenta (k) se define como:

\[k = \frac{1}{2} u_i' u_i' \]

Y la disipación de energía turbulenta (\(\varepsilon \)) se define como:

\[\varepsilon = \nu_T \frac{1}{\partial x_i} \left(\frac{\partial u_i'}{\partial x_j} \right) \]
Donde:

- $i,j=1,2,3$.
- La viscosidad de los torbellinos $\nu_T = \frac{\mu_T}{\rho}$
- La viscosidad local turbulenta $\mu_T = \frac{C_\mu \rho k^2}{\varepsilon}$

Las dos ecuaciones del modelo k-ε se presentan a continuación:

$$\frac{\partial k}{\partial t} + u \frac{\partial k}{\partial x} + v \frac{\partial k}{\partial y} = \frac{\partial}{\partial x} \left(\nu_T \frac{\partial k}{\partial x} \right) + \frac{\partial}{\partial y} \left(\nu_T \frac{\partial k}{\partial y} \right) + P - D$$

$$\frac{\partial \varepsilon}{\partial t} + u \frac{\partial \varepsilon}{\partial x} + v \frac{\partial \varepsilon}{\partial y} = \frac{\partial}{\partial x} \left(\nu_T \frac{\partial \varepsilon}{\partial x} \right) + \frac{\partial}{\partial y} \left(\nu_T \frac{\partial \varepsilon}{\partial y} \right) + \frac{\varepsilon}{k} \left(C_{\varepsilon_1} P - C_{\varepsilon_2} D \right)$$

Donde:

- El término de producción $P = 2\nu_T \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right] + \nu_T \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2$

Y el término de destrucción D viene dado por ε. El significado físico de las ecuaciones anteriores es el siguiente:

- La tasa de cambio y la advección de k o ε es igual a la difusión combinada con la tasa de producción y destrucción de k o ε.

La ecuación contiene cinco constantes ajustables que según Launder and Spalding asumen los siguientes valores:

- $C_\mu = 0,09$, $\sigma_k = 1,0$, $\sigma_\varepsilon = 1,3$, $C_{\varepsilon_1} = 1,44$, $C_{\varepsilon_2} = 1,92$

Para la resolución de estas ecuaciones y su tratamiento se utilizan códigos creados para distintos tipos de problemas o programas comerciales, que permiten resolver las ecuaciones mediante métodos numéricos.

Actualmente el desarrollo de máquinas cada vez más potentes, ha desviado la mayoría de los estudios hasta esta rama de la dinámica de fluidos computacional, ya que permite resolver problemas geométricamente muy complejos con resultados muy precisos.

El estudio del kite se ha realizado mediante el módulo CFX del programa comercial ANSYS, igual que para el estudio mecánico. Este programa permite trabajar con la geometría compleja de la cometa, y al mismo tiempo permite estudiar la interacción entre el fluido y la estructura.
9.2 Análisis de un fluido mediante CFD

En este apartado se explican las etapas para resolver cualquier problema de forma general mediante CFD. Los pasos son los siguientes:

- **Definir los objetivos de la simulación:** Se debe saber qué resultados buscamos y con qué precisión, para poder realizar las simplificaciones adecuadas y escoger los modelos físicos correspondientes.
- **Identificar el dominio:** Se debe saber cómo aislar la pieza del sistema físico completo, dónde están los límites del dominio computacional y conocer las condiciones de frontera de estos límites.
- **Crear un modelo sólido del dominio:** Se puede extraer la región del fluido de una parte sólida o crear desde cero. Se debe simplificar la geometría lo máximo posible en función de la precisión que se desee obtener.
- **Diseño y creación de la malla:** Se debe escoger el grado de resolución de la malla en cada región el dominio, prediciendo las regiones de gradientes altos. También se elige el tipo de malla más apropiado, teniendo en cuenta la potencia de cálculo de la que se dispone.
- **Configuración del solver:** Se definen las propiedades del material, se seleccionan los modelos físicos (de turbulencia, de combustión...), se prescriben las condiciones de contorno en todas las zonas de la frontera, se proporcionan los valores iniciales o de una solución anterior y se establecen los controles del solver.
- **Cálculo de la solución:** Las ecuaciones de conservación discretizadas se resuelven iterativamente hasta la convergencia. Esta se consigue cuando los cambios en las variables de una iteración a la siguiente son insignificantes y cuando se llega a la conservación general de la propiedad.
- **Examen y análisis de los resultados:** Se revisa la solución mediante las herramientas de visualización y de información numérica.
- **Consideración de una revisión del modelo:** Mediante el análisis de los resultados se puede variar el modelo, ya sean modelos físicos, condiciones de frontera, mallado...

9.2.1 El solver de CFX

Existen dos tipos de solver, el basado en la presión y el basado en la densidad. El solver utilizado en el proyecto es el basado en la presión, donde el campo de velocidades se obtiene de la ecuación de momentos, que se resuelve ensayando una presión y la ecuación de la energía, que se resuelve secuencialmente.
El solver de CFX es acoplado, resuelve las ecuaciones como un solo sistema de ecuaciones, usando una discretización implícita de las ecuaciones en cada incremento de tiempo. Para problemas estacionarios, el parámetro de incremento de tiempo se comporta como un parámetro de aceleración, que guía las soluciones aproximadas hacia la solución estacionaria.

La solución de cada grupo de ecuaciones de campo que se muestra en el diagrama de la Figura 21 consiste en dos operaciones numéricas, una para cada incremento de tiempo:

- Generación de los coeficientes: Las ecuaciones son linealizadas y ensambladas en la matriz solución.
- Resolución de ecuaciones: Las ecuaciones lineales son resultas utilizando el método Algebraic Multigrid.

Cuando se solucionan las ecuaciones, la iteración de incremento (externa) de tiempo se controla mediante la escala de tiempo física, para análisis estacionarios y transitorios respectivamente. Únicamente una iteración interna (de linearización) se realiza para cada iteración externa en el caso de análisis estacionario, mientras que para el transitorio se realizan múltiples iteraciones internas para cada incremento de tiempo.
Figura 21. Proceso de resolución del solver de CFX
9.2.2 Modelos físicos

Como se ha comentado en el análisis de un fluido con CFD, en la configuración del solver se debe elegir un modelo físico. En este proyecto es importante la elección del modelo de turbulencia, otros modelos físicos como podrían ser modelos de combustión no se necesitan para el estudio a desarrollar.

El modelo de turbulencia escogido en este estudio es el modelo k-ε. Éste es uno de los más comunes en la industria aeronáutica pues acostumbra a funcionar bien en la mayoría de casos, excepto en aquellos que existen gradientes de presión muy pronunciados. Como el vuelo de la cometa no genera velocidades muy elevadas ni existen perfiles aerales con estrechamientos bruscos que generen gradientes de presión elevados, se da por valido este modelo de turbulencia.

El modelo k-ε aporta dos ecuaciones de transporte extra que representan las propiedades turbulentas del flujo. La primera variable k, es la energía cinética de turbulencia y determina dicha energía, la segunda variable ε es la disipación turbulenta que dicta la escala de turbulencia. Las ecuaciones aportadas en este modelo se presentan en el apartado anterior.
10 Análisis de la interacción fluido-estructura de la cometa

El análisis de la interacción entre el fluido y la estructura del kite es principalmente el cuerpo y la razón de este proyecto. En este apartado se estudiará cómo influye un flujo de aire sobre la tela de la cometa bajo diferentes condiciones de contorno y cargas aplicadas sobre esta.

10.1 Introducción a la interacción fluido-estructura (FSI)

El estudio de la interacción fluido-estructura comprende el comportamiento de las estructuras móviles y/o deformables con la interacción de un flujo fluido alrededor y/o interior de éstas.

Todos los cuerpos se encuentran inmersos en un fluido, ya sea gas o líquido. Según el caso de estudio puede ser más o menos importante tenerlo en cuenta, dependiendo de diversos factores. Por ejemplo, en componentes estáticos, no se suele tener en cuenta esta interacción a no ser que la funcionalidad de estos dependa especialmente de la presión atmosférica y los cambios en ésta.

Sin embargo, muchos cuerpos de estudio ingenieril, como sucede en el mundo de la aeronáutica, dependen de la interacción fluido-estructura para su análisis y solución.

En el campo de la aeronáutica la estructura de la aeronave debe soportar las fuerzas aerodinámicas que ejerce el flujo de viento sobre las superficies externas de una aeronave. Debido a la continua búsqueda en el diseño de estructuras cada vez más ligeras, con factores de seguridad menores y espesores más reducidos, se realiza la importancia del estudio de las presiones que el flujo de aire produce en las superficies de la aeronave y el conocimiento de las deformaciones a las cuales se ven sometidas. Estos estudios son importantes por dos razones. La primera es verificar que la estructura soporte las cargas aerodinámicas a las que la aeronave se ve sometida. La segunda es que las modificaciones en el flujo debido a cambios en la estructura no modifiquen el comportamiento aerodinámico de la aeronave. Está segunda razón no sucede tan a menudo ya que muchas veces se pueden hacer aproximaciones de pequeñas deformaciones, que sólo intervienen en el campo estructural pero que no modifican el fluido y por lo tanto la aerodinámica.

En el estudio de una vela de kitesurf es obvio que la interacción fluido-estructura tiene una gran importancia, pues las cometas se caracterizan por tener una estructura flexible pese a tener rigidizadores como el borde de ataque o las costillas.
Existen dos tipos de interacción fluido-estructura, la interacción en una sola dirección (one way interaction) o la interacción en ambas direcciones (two way interaction).

El primer tipo de interacción (one way) existe cuando un solo elemento tiene influencia sobre el otro, pero no en sentido contrario. El caso más usual suele ser un flujo que produce cargas aerodinámicas que generan deformaciones sobre la estructura, pero que dichas deformaciones no afectan a efectos notables al flujo. Este hecho sucede cuando las deformaciones producidas por las cargas son pequeñas u ocurren en zonas donde éstas no influyen a la trayectoria del fluido. Esto ocurre mayormente en estructuras rígidas.

La interacción en los dos sentidos sucede cuando las deformaciones causadas por el flujo afectan al comportamiento de éste. Los cambios en el estado tensional de la estructura provocan deformaciones que generan cambios en el campo de velocidades del fluido y en su trayectoria, de tal manera que al final se llega a un equilibrio entre ambas interacciones. Esto se resuelve mediante cálculos iterativos o mediante un código acoplado aeroelástico.

Este proyecto abarca hasta la interacción en una sola dirección, es decir se evalúa como el flujo de aire alrededor de la vela de kitesurf (en condición de equilibrio) afecta a su estructura, mediante las cargas aerodinámicas que generan las deformaciones. En este primer caso se considera que la influencia de las deformaciones sobre el campo de presiones sobre la superficie de la cometa es despreciable.

El estudio de la doble iteración queda para proyectos posteriores que se quieran realizar, pues puede comprender perfectamente otro proyecto final de carrera con el contenido que esto supone. En este estudio se debería evaluar la influencia que tiene la modificación de la geometría de la cometa sobre el flujo de aire, y por lo tanto, del campo de presiones que ejerce las cargas aerodinámicas.

En este proyecto se estudiará cómo afecta un flujo estacionario de 10 m/s de aire a nivel del mar sobre la estructura del kite cuando se le aplican diferentes cargas. Una carga, que será la misma en todos los casos, es la presión importada del estudio CFD, la cual provocará unas fuerzas y unas deformaciones alrededor de la cometa. Las otras cargas aplicadas jugarán con los soportes y las fuerzas que se le aplican a la cometa simulando las líneas del kite.

Se debe recalcar que el estudio realizado es estacionario, por lo que se estudia un flujo que no varía a lo largo del tiempo en un momento determinado, como si se tomará una fotografía de lo que sucede en un instante, ya que en la realidad estas condiciones estacionarias son imposibles de conseguir.
10.2 Proceso global del estudio FSI sobre el kite

El esquema general a seguir para el estudio fluido-estructural de la cometa de kitesurf consta de tres grandes bloques, cada uno con su herramienta de CAE apropiada:

Cada bloque mostrado en el esquema de la Figura 22 se desarrolla de manera independiente, pero cada uno necesita la información y los resultados obtenidos del bloque anterior para su procesado.

Sobre el primer bloque se ha hablado en el apartado 7. En él se ha visto la creación del modelo mediante los softwares Surf Plan y Solid Works.

En los siguientes apartados se tratarán los dos bloques posteriores, de los cuales el esquema general del trabajo desarrollado es el que se muestra en el esquema de la Figura 23.

Figura 22. Proceso para el estudio FSI

Figura 23. Subprocesos del análisis FSI con Ansys
El estudio realizado con Ansys básicamente se basa en tres partes.

La primera parte consiste en importar el modelo diseñado anteriormente con las herramientas de CAD y su preparación para los posteriores análisis, tanto de fluidos como estructural.

El segundo y el tercer bloque consisten en los análisis CFD y estructural respectivamente, los cuales se desarrollarán en los siguientes apartados.

10.3 Hipótesis generales realizadas para el posterior estudio FSI

El estudio fluido-estructural de una geometría tan compleja como es una cometa de kitesurf, puede llegar a ser un problema muy complicado de resolver, incluso numéricamente, ya sea por la complejidad de sus elementos como por la de su geometría. Por lo tanto, es necesario realizar una serie de hipótesis y simplificaciones presentadas a continuación.

10.3.1 Hipótesis y simplificaciones geométricas y de materiales

El modelo realizado geométricamente es lo más parecido a la realidad pero contiene una serie de simplificaciones realizadas:

- Las líneas no son diseñadas pues serán modeladas por distintas condiciones de contorno, ya sea por restricciones de movimientos, uso de fuerzas... Se ha decidido prescindir de éstas porque su estado tensional y su deformación es realizable mediante cálculos analíticos ya que todos los segmentos trabajan a tracción, y su omisión simplifica la geometría considerablemente.
- No se diseña el interior de las costillas y borde de ataque con sus correspondientes cámaras de aire, con lo que se considera que la presión interior de estos la recibe toda la tela exterior.

10.3.2 Hipótesis y simplificaciones sobre las condiciones de vuelo

Como es un estudio estacionario, lo más próximo a este estado es cuando la cometa se encuentra en la posición del zenit. También se realiza la hipótesis que la resultante de las fuerzas y momentos sobre la cometa son nulos, y por lo tanto no existe ninguna aceleración sobre ésta.

Se considera un flujo constante de aire a nivel del mar, con las condiciones según el modelo de atmósfera ISA detalladas en el apartado 10.5.5.1.
10.3.3 Simplificaciones e hipótesis sobre el problema FSI

La interacción fluido-estructura estudiada en este proyecto es en una sola dirección, por lo tanto se considera que las deformaciones debidas a la aplicación del campo de presiones generado por el flujo de aire tienen una influencia despreciable sobre el campo fluido. Obviamente es un problema donde es importante realizar la doble iteración ya que las deformaciones que sufre la estructura de la cometa son grandes. Por razones de complejidad y tiempo no se ha podido realizar en este proyecto.

10.4 Preprocesado: Preparación de los modelos geométricos

10.4.1 Importación del modelo geométrico

Como ya se ha hablado en el apartado 7.2 el modelo diseñado con Surf Plan se arregla mediante SolidWorks y se importa en formato “.SAT” a Ansys. En el Workbench, lugar general de trabajo del software, se abre un sistema de análisis de CFX, el cual contiene el módulo de geometría donde se importa el archivo. El módulo de geometría de Ansys es denominado Design Modeler.

10.4.2 Preparación del modelo geométrico para el estudio CFD

Para realizar el análisis fluido se necesita un cuerpo sólido. Ansys trabaja con tres tipos de cuerpos: sólidos, superficies y líneas. El sólido que se necesita para el estudio es el negativo de la cometa, es decir el dominio de aire que la envuelve.

Para conseguir el negativo sería ideal tener el sólido como un elemento de superficie y extraerlo del dominio fluido. Pero Ansys no deja realizar esta opción, ya que no permite operaciones booleanas de resta entre una superficie y un sólido.

Por lo tanto, se realiza la extracción del cuerpo sólido de la cometa de un prisma regular que se dibuja mediante la operación de crear una caja. Una vez creada la caja que simulará el fluido se substrae el cuerpo sólido de la cometa, consiguiendo así el negativo.

El sistema de ejes que se utiliza es el que viene por defecto en el Design Modeler ya que los casos que se estudiarán serán con un mismo ángulo de ataque y por lo tanto no habrá que cambiar el dominio fluido. Este sistema de ejes tiene:

- El eje “Z” en dirección contraria a la dirección del fluido.
- El eje “Y” apunta hacia arriba del kite, perpendicular a la dirección del flujo.
- El eje “X” lo forma el triángulo directo, y apunta hacia la derecha del kite viéndolo desde delante.

Adicionalmente se utiliza la herramienta de reparar ejes, para el posterior estudio CFD, y no tener problemas con el reado de la superficie. Esta herramienta junta posibles discontinuidades de hasta 1mm, tal y como se ha definido.

En el apartado del análisis CFD se detallará con exactitud cómo se ha diseñado el dominio fluido y que medidas tiene.

10.4.3 Preparación del modelo geométrico para el estudio estructural

Para el estudio estructural se necesitará el modelo de superficies del cuerpo sólido que forma la cometa. Para ello se extrae la superficie del reado de la tela mediante el comando *surfaces from faces*. Se elige la cara del reado ya que es la que queda conectada con el borde de ataque y la que no dará problemas para el estudio estructural por falta de unión entre elementos. Ésta es la hipótesis principal que se realiza en este apartado.

Se extraen las superficies del borde de ataque y de las costillas de la misma manera que se ha realizado con la tela de la cometa. Las posibles separaciones que existan entre los cuerpos se arreglarán posteriormente en el estudio estructural definiendo los contactos entre superficies. Además, debida a la extracción de superficies se deberán realizar algunas modificaciones de la geometría por problemas aparecidos en el estudio estructural. Estas modificaciones serán explicadas en el apartado 10.6.3.1.

10.5 Análisis CFD de la cometa

10.5.1 Objetivo del análisis CFD

El principal objetivo del análisis fluido dinámico del kite es obtener la distribución de presiones que hay alrededor de éste para luego poder exportarlas al análisis estructural.

Además, este análisis nos muestra el comportamiento aerodinámico con unas condiciones de vuelo determinadas. Con él se puede hacer todo tipo de estudios relacionados con el fluido y el diseño de la cometa. Por ejemplo, se puede buscar el centro de presiones, punto muy importante para jugar con el anclaje de las líneas, se pueden ver las fuerzas de sustentación y arrastre que aparecen...

Finalmente, este estudio nos da una guía para saber cómo será el comportamiento estructural dependiendo del gradiente de presiones a lo largo de la cometa.
10.5.2 Simplificaciones e Hipótesis del estudio CFD

En este apartado se han tenido que realizar diversas hipótesis para garantizar unos resultados aceptables junto a un tiempo de diseño y simulación correcto:

- La superficie de la cometa se diseña completamente lisa y en un estado pretensado, es decir con la tela completamente estirada e hinchada como cuando se encuentra dentro de la ventana de viento.
- No se incluye en la simulación los efectos de las líneas, del piloto ni de la tabla. Estos contribuirían al aumento de la resistencia aerodinámica sobre el sistema de la cometa. Para ser diseñados supondría mallar un dominio fluido mucho mayor, para tener en cuenta elementos de diámetro prácticamente despreciable a efectos aerodinámicos.
- El tamaño del dominio fluido se diseña suponiendo que en las paredes se obtienen las condiciones que habría en el infinito. Para ello se supone un error en la velocidad de las paredes de manera que haya un buen compromiso entre precisión y tiempo de simulación.
- El espesor de la tela es de 1 mm debido a que espesores menores podrían dar muchos problemas con el mallado, ya que se necesitarían elementos muy pequeños y el tiempo de simulación aumentaría demasiado.
- El flujo de aire estudiado es incompresible ya los números de Reynolds que se alcanzan son pequeños.

10.5.3 Pre-Procesado del análisis CFD

10.5.3.1 Importación y preparación del modelo para el estudio CFD

El proceso de importación y preparación del modelo del kite para el estudio fluido dinámico ya se ha explicado anteriormente en el apartado 10.4.2. Para realizar el análisis CFD, sin embargo, se necesita obtener el negativo del modelo diseñado en CAD del kite. Este negativo contendrá el dominio fluido, que es el volumen de aire que envuelve a la cometa y que se definirá en el apartado que prosigue.

10.5.3.2 Dimensionado del dominio fluido

Un buen dimensionado del aire que envuelve a la cometa es clave para obtener unos buenos resultados del análisis fluido. Es por eso que se debe realizar un estudio para asegurar que las paredes exteriores del dominio fluido están lo suficientemente alejadas como para no interferir en el flujo, y por lo tanto, en los resultados. La influencia
El error permitido en las paredes exteriores del dominio fluido es de ±0,5% la velocidad de entrada del flujo. En el anexo 3 del proyecto se puede consultar el procedimiento seguido para conseguir el tamaño del dominio fluido conforme a este error.

Respecto a la pared posterior del dominio se debe recalcar que ha sido diseñada teniendo en cuenta que en ésta, la presión relativa es 0, y no teniendo en cuenta el error...
permitido en la velocidad, ya que por efectos de la estela turbulenta conseguir una velocidad dentro del error permitido supondría alargar mucho el prisma que forma el dominio fluido. Este error mayor, que se da por bueno, afectaría de manera más notoria en un estudio aerodinámico de la cometa, despreciando parte de la resistencia aerodinámica. Sin embargo, el gradiente de presiones de la cometa no se ve tan afectado como dicha resistencia. Por lo tanto, debido al coste computacional que supondría se acepta el planteamiento.

El sistema de coordenadas que se toma para definir el prisma es el que se ve en la Figura 25 y la Figura 26.

![Figura 25. Medidas del dominio fluido en el plano YZ](image_url)
Las dimensiones definitivas del prisma rectangular que forma el dominio fluido son las que se muestran en la Tabla 8.

<table>
<thead>
<tr>
<th>Dimensión del dominio</th>
<th>Tamaño (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>7</td>
</tr>
<tr>
<td>Y1</td>
<td>8</td>
</tr>
<tr>
<td>Y2</td>
<td>6</td>
</tr>
<tr>
<td>Z1</td>
<td>4</td>
</tr>
<tr>
<td>Z2</td>
<td>34</td>
</tr>
</tbody>
</table>

Tabla 8. Dimensiones del dominio fluido

Además, se ha decidido realizar otro subdominio interior por razones de optimización computacional. Se diseña otro prisma interior para diferenciar dos mallados, uno más preciso (interior) y uno con elementos de malla mayores (exterior).

Este subdominio interior se define mediante la creación de una serie de planos en el espacio con los que se aplica la herramienta slide, que genera un elemento sólido de ese plano. Los cortes que forman los planos definidos generan el subdominio interior.

El corte de dichos planos genera otros sólidos en el dominio exterior definido anteriormente. De todas formas se tratarán y malla todos esos sólidos como uno sólo. En la Figura 27 se pueden ver los planos que forman el subdominio interior y la división geométrica que se realiza automáticamente del dominio exterior.
En la Tabla 9 se muestran las dimensiones del subdominio interior. Estas dimensiones han sido elegidas mediante la observación de los resultados y los conocimientos aerodinámicos de perfiles. Las medidas se han escogido a vista, asegurando que en este subdominio interior quede albergada la capa límite que envuelve la superficie de la cometa, así como los torbellinos de punta de ala.

<table>
<thead>
<tr>
<th>Dimensión del subdominio</th>
<th>Tamaño (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1' = X2' = X'</td>
<td>3</td>
</tr>
<tr>
<td>Y1'</td>
<td>0,5</td>
</tr>
<tr>
<td>Y2'</td>
<td>3</td>
</tr>
<tr>
<td>Z1'</td>
<td>1</td>
</tr>
<tr>
<td>Z2'</td>
<td>3</td>
</tr>
</tbody>
</table>

Tabla 9. Dimensiones del subdominio interior

Las medidas de la Tabla 9 siguen el sistema de coordenadas de la Figura 28 y la Figura 29.
10.5.4 Mallado del dominio fluido

Una vez se ha definido geométricamente el dominio fluido se debe proceder a malarlo. No existe una ciencia exacta que dicte cómo malar un dominio, sino que mediante la experiencia y el razonamiento se puede conseguir una calidad mejor. El mallado también depende del tipo de geometría que se tenga y de los resultados que se quieran obtener.

Siempre es recomendable empezar por una malla más general y basta que permita ver qué sucede a gran escala. Partiendo de ésta, se puede ir refinando la malla para obtener...
mejor calidad. Se debe tener en cuenta que a más calidad de mallado mayor será el coste computacional, es decir más laboriosos serán los cálculos y por lo tanto más tiempo requerirán. Esto puede representar un problema si no se tiene una máquina lo suficientemente potente para realizar según que simulaciones.

En el caso del proyecto, se ha empezado teniendo en cuenta la geometría. Se trata de un volumen marcado por la complejidad de las superficies de contorno que delimitan el espacio vacío que ocuparía la cometa. En cuanto a resultados, se debe tener en cuenta que se requiere obtener la distribución de presiones externa que envuelve el kite.

10.5.4.1 Requerimientos de la malla

El primer elemento a tener en cuenta cuando se diseña la malla es de carácter geométrico. Dadas las dimensiones del dominio fluido se ha visto la necesidad de realizar dos tipos de mallado ya que los elementos que deben haber alrededor de las paredes que envuelven el vacío de la cometa tienen que ser muy pequeños. Si se realizara todo el dominio fluido con ese tamaño de elemento el coste computacional sería elevadísimo y se necesitaría mucho tiempo para lograr los resultados, siendo por lo tanto muy ineficiente.

Es por eso que se decide realizar dos subdominios diferenciados geométricamente para realizar el proceso de mallado. Estos son:

- **Subdominio interior:** Lo forma el flujo más cercano que hay alrededor de la cometa. En esta zona suceden los mayores gradientes de presión y de velocidad, por lo que requiere mayor precisión. Así, se realizará una malla fina, es decir con mayor densidad de elementos. En este subdominio se debe tener en cuenta la capa límite alrededor de las superficies que formaban la cometa, la cual tendrá una densidad todavía superior.

- **Subdominio exterior:** Se realiza para optimizar los costes de simulación. Lo forman las regiones más alejadas a la cometa, en la que los resultados no son tan importantes, y donde las propiedades son menos variantes, llegando a la homogeneidad en las paredes (permitiendo el error definido). Este subdominio queda dimensionado por las condiciones en las paredes exteriores definidas anteriormente. Como se ha comentado, para conseguir la división entre el subdominio exterior e interior se realizan una serie de planos que dividen el exterior en diferentes zonas. Estas divisiones (que se pueden ver en la Figura 30) son únicamente a nivel geométrico, pues todo el subdominio exterior se mallará de la misma forma.
En la Figura 30 se diferencia el subdominio interior (coloreado de verde) y el subdominio exterior, formado por los otros prismas.

10.5.4.2 Métodos de mallado para cada subdominio fluido

10.5.4.2.1 Subdominio interior

Por razones de complejidad de la superficie de la cometa se define una malla desestructurada formada por tetraedros mediante el método que utiliza el algoritmo *patch conforming*.

Para mallados volumétricos, una malla formada por tetraedros permite una solución más automática con la capacidad de añadir métodos de control de mallado que mejoran la precisión en zonas críticas. Por el contrario, una malla formada por hexaedros generalmente proporciona una solución general más precisa pero es más difícil de generar. En este caso se opta por los tetraedros para poder aplicar distintos métodos de control de mallado.

El método de los tetraedros tiene dos algoritmos diferentes, en el caso del proyecto se ha elegido el algoritmo de *patch conforming*. Este método genera primero la malla de la superficie del cuerpo y posteriormente la malla volumétrica, asegurando así un buen mallado en la superficie que envuelve el vaciado de la cometa. Además, permite aplicar distintas técnicas para realizar la *inflation*, que no es más que una parte del mallado que capta con mayor precisión la capa límite de la superficie deseada. En definitiva, es el algoritmo que mejor se adecua a los requerimientos del mallado, a diferencia del otro algoritmo llamado *patch independent*.

Este método se define geométricamente para que esté aplicado al subdominio interior del fluido. El tamaño mínimo de elemento se define como 1 mm, pues se ha estimado
que será suficiente para captar con precisión lo que sucede cerca de la cometa (el espesor de la tela se había definido anteriormente como 1 mm).

El tamaño máximo de elemento es de 0,25 m, el mismo que para los elementos del subdominio exterior. De forma que los dos subdominios comparten los nodos de la frontera, creando una malla homogénea entre ellos.

Para conseguir una mayor calidad de mallado se aplican dos métodos de control (dentro del *patch conforming*) que modifican la malla en el interior del subdominio.

- *Use advanced size function on curvature*: Este control adecua el tamaño de la malla automáticamente a la curvatura de las superficies. Como en los lugares donde hay más curvatura suele haber gradientes mayores de las propiedades aerodinámicas, en ellas el tamaño de los elementos se reduce proporcionalmente.
- *Inflation* para definir la capa límite: Se introduce para captar el gradiente de velocidades a lo largo del espesor de la capa límite. Este método realiza un mallado más preciso alrededor de la superficie definida con el nombre de kite (que son las paredes interiores del dominio fluido que se generan del vaciado de la cometa). El método malla a una distancia (que vendrá dada por los parámetros de control) alrededor de la vela con hexaedros alineados con la superficie. Se define con los siguientes parámetros:
 - Número de capas: 8
 - Tasa de crecimiento 1,2
 - Ratio de transición: 0,77 se deja por default, y es el encargado de controlar el espesor de la capa límite.

![Figura 31. Detalle del mallado alrededor de la cometa.](image)

En la Figura 31 se aprecia en detalle de una sección central de la cometa como el método de *inflation* define un mallado más preciso alrededor de la superficie del kite
para captar con mayor exactitud lo que sucede en la capa límite. Además también se puede apreciar como en lugares curvados el elemento de malla es menor.

En el corte en sección de la Figura 32 se ve el mallado completo del subdominio interior, que encaja perfectamente con el mallado estructurado del subdominio exterior.

10.5.4.2.2 Subdominio exterior

El dominio exterior lo forma una malla estructurada formada por hexaedros. La malla forma una retícula de elementos con forma de cubo de lado 0,25 m, igual que el máximo elemento del dominio interior. Como se ha comentado anteriormente, en este dominio no es necesario tener mucha precisión en los resultados, y por lo tanto el tamaño de elemento es mucho mayor comparado con los elementos del dominio interior. En la Figura 33 se puede ver el mallado completo de todo el dominio fluido. Como se puede apreciar, la malla alrededor de la superficie del kite es mucho más densa que lejos de ésta.
10.5.4.3 Estadísticas del mallado

Ansys dispone de herramientas para verificar la calidad del mallado que se genera, aun así siempre se debe observar detalladamente si la malla que se ha creado es la deseada. Para empezar, muestra información sobre el número de nodos y de elementos que se crean en el proceso. La suma de los dos subdominios es la siguiente:

- Número de nodos: 1040071
- Número de elementos: 2404407

Existen distintas formas de evaluar la calidad de los elementos. A continuación se presentan los resultados correspondientes al índice de calidad de los elementos. Este parámetro relaciona el volumen y la longitud de un costado para un elemento dado. El valor de 1 indica un cubo perfecto, mientras que el valor de 0 indica que el elemento tiene un volumen nulo o negativo. Los resultados obtenidos son los siguientes:

- Mínimo: 1,839·10^-6
- Máximo: 0,999
- Media: 0,701
- Desviación estándar: 0,270

En el gráfico de la Figura 34 se muestra el número de elementos que quedan dentro de cada rango del índice de calidad para los 4 tipos de elementos: tetraedros (rojo), hexaedros (azul marino), prisma triangular (verde) y pirámide cuadrangular (azul cielo).
Como se puede observar en el gráfico anterior, los dos tipos de elementos más importantes y abundantes (tetraedros y hexaedros) tienen un índice de calidad bastante bueno, especialmente los hexaedros, que como se ha explicado forman una retícula perfecta en el subdominio exterior.

10.5.5 Configuración del dominio

10.5.5.1 Definición de las propiedades del fluido

El fluido en el cual el kite está inmerso es aire, con sus correspondientes propiedades a nivel del mar (siguiendo el modelo de atmósfera ISA). Los valores de las propiedades para el nivel del mar son las siguientes:

- \(\rho = 1,225 \, \text{kg/m}^3 \)
- \(P = 101325 \, \text{Pa} \)
- \(T = 15,15 \, ^\circ\text{C} \)
- \(\mu = 1,43 \cdot 10^{-4} \, \text{kg/m} \cdot \text{s} \)
- \(C_p = 1005 \, \text{kJ/kg} \cdot \text{K} \)

Estos valores se definen en el dominio principal dentro del setup del sistema de análisis CFX en el workbench.

10.5.5.2 Definición del modelo fluido

La herramienta de análisis CFX permite escoger distintos modelos de transmisión de calor, de turbulencia, de combustión, de radiación térmica y de electromagnetismo. En
este proyecto solo se define el modelo de transferencia de calor como isotérmico y el de turbulencia como el modelo k-ε.

10.5.6 Condiciones de contorno del dominio fluido

En el modelo diseñado se imponen cuatro condiciones de contorno distintas:

10.5.6.1 Entrada de flujo

En la cara delantera de la caja que forma el dominio fluido (Figura 35) se impone una velocidad de 10 m/s en sentido negativo al eje z. Esta velocidad está dentro del rango de una cometa convencional de 10 m².

Además, se define un valor medio de intensidad del 5%, que es el valor que viene como estándar de turbulencia de flujo para un flujo de entrada.

![Figura 35. Entrada de flujo en el dominio](image)

10.5.6.2 Salida de flujo

Se impone en la cara trasera de la caja del dominio fluido (Figura 36) que es perpendicular al eje z. La condición impuesta es la de una presión relativa nula, es decir que se considera que el flujo ya ha recuperado la presión que tenía sin ser perturbado.

![Figura 36. Salida del fluido del dominio](image)
10.5.6.3 Flujo tangencial

En las otras paredes exteriores del dominio (Figura 37) se impone una condición de pared sin fricción. Es decir, el vector velocidad será paralelo al plano que forma la pared en todos los puntos, pero nunca asumirá un valor nulo. Esta hipótesis es equivalente a considerar que no existen efectos viscosos en las paredes, reduciendo considerablemente la influencia de las paredes sobre el flujo de aire.

Figura 37. Condición de flujo tangencial en las paredes exteriores del dominio

10.5.6.4 Condición de no deslizamiento

En las superficies que delimitan el dominio fluido con el kite se define una condición frontera de pared. Pero en este caso, a diferencia del anterior, es importante considerar los efectos viscosos para poder captar el efecto de la capa límite alrededor de la vela. Modelar el problema como flujo viscoso permite obtener unos resultados más precisos que con un modelo de flujo potencial. Por lo tanto, en estas paredes la velocidad del fluido será cero y no habrá deslizamiento.

Figura 38. Condición de no deslizamiento en la superficie del kite
10.5.7 *Solver* de la simulación

10.5.7.1 Parámetros de control de la divergencia

Antes de permitir al ordenador realizar los cálculos de la simulación se deben definir los parámetros del *solver* conforme lo deseado.

Uno de los parámetros a controlar es la longitud de escala, ésta tiene el control de la velocidad de convergencia de la solución. Se puede elegir entre dar un valor determinado o la opción de escoger una escala conservativa o agresiva. Si se elige la agresiva, puede acelerar el proceso de la convergencia, pero si es demasiado alto la solución oscilará y será más difícil lograr que se estabilice.

En el proyecto se utiliza una longitud de escala conservativa, la cual hace que la convergencia sea más progresiva y lenta, pero da robustez al proceso y evita inestabilidades.

Con esta opción, la herramienta CFX calcula las siguientes longitudes de escala y se queda con la mínima:

\[L_{vol} = \frac{3}{\sqrt[3]{V}} \]

\[L_{ext} = \max(L_x, L_y, L_z) \]

\[L_{escala} = \min(L_{vol}, L_{ext}) \]

Donde:

- \(V \) es el volumen el dominio fluido
- \(L_x, L_y, L_z \) son las dimensiones \(x, y, z \) del dominio

Otro parámetro que se ha seleccionado es el control de la escala de tiempo. En este caso se elige un *Auto timescale* con un factor de tiempo 1. Esto permite que el código sea quien decida para cada iteración cual es el intervalo de tiempo más adecuado. Las escalas de velocidad utilizadas para calcular un intervalo de tiempo son:

\[U_{bc} = \max(|U_{bc}|) \]

\[U_{node} = |U_{node}| \]

\[U_{\Delta P} = \sqrt{\frac{p_{bc,max} - p_{bc,min}}{p_{node}}} \]
Donde:

- U_{bc} es la media aritmética de la velocidad en un contorno
- U_{node} es la media aritmética de las velocidades nodales
- $P_{bc,max}$ y $P_{bc,min}$ son los valores máximos y mínimos de presión en un contorno abierto
- $\bar{\rho}_{node}$ es la media aeritmética nodal de la densidad.

La escala de tiempo se calcula entonces como:

$$\Delta t = \min(\Delta t_u, \Delta t_{\Delta p}, \Delta t_g)$$

Donde:

- $\Delta t_u = 0,3 \frac{t_{escala}}{\max(U_{bc}U_{node})}$
- $\Delta t_{\Delta p} = 0,3 \frac{t_{escala}}{U_{\Delta p}}$
- $\Delta t_g = \sqrt{\frac{t_{escala}}{g}}$

Finalmente, se escoge el número máximo de iteraciones antes de salir del bucle, que es de 200. A la práctica, no se ha necesitado realizar tantas, ya que con 32 iteraciones ha sido suficiente para alcanzar la convergencia.

10.5.7.2 Criterio de convergencia

Los resultados del cálculo iterativo llegan a un nivel de convergencia aceptable cuando el valor RMS (valor medio cuadrático) de los residuos de las variables de campo (u,v,w,ρ) a resolver quedan por debajo del valor máximo admisible, que es $1 \cdot 10^{-4}$.

Los valores RMS de cada variable se calculan con la regla de los mínimos cuadrados entre los residuos de la variable en cada uno de los nodos de la malla.

Además, se impone un segundo criterio de convergencia llamado *conservation target* con un valor de 0,01. Este parámetro representa el desequilibrio fraccional global para las ecuaciones. Es decir, el equilibrio de las ecuaciones debe ser mayor del 99% para que se considere que la solución ha convergido. Aunque el criterio de los RMS se cumpla, pero la solución no llegue a este valor, el cálculo iterativo prosigue.

En la Figura 39 se muestra el gráfico de la convergencia de los valores RMS de los residuos. En la Figura 40 se muestra lo mismo, pero de las variables de la turbulencia.
Figura 39. Proceso de convergencia de los valores RMS de la solución

Figura 40. Proceso de convergencia de los residuos de la convergencia
10.5.8 Post-procesado del análisis CFD

Una vez se estabilizan los valores de las magnitudes físicas finaliza la simulación, es decir, se alcanzan los criterios de convergencia. Como es de imaginar la información que proporciona el solver es enorme, pues se tiene la solución numérica de las ecuaciones de Navier-Stokes en todos los nodos de la malla.

Con el análisis CFD de la cometa se pueden extraer muchos resultados interesantes con los que realizar estudios aerodinámicos de ésta. Se puede evaluar el comportamiento aerodinámico de distintos perfiles o del modelo tridimensional completo.

Esta herramienta permite visualizar la información deseada de forma muy gráfica, así como calcular mediante el uso de expresiones distintos resultados como por ejemplo los coeficientes aerodinámicos y la posición del centro de presiones.

También es interesante analizar la variación de presión a lo largo de la cuerda de un perfil como el central y uno cerca del central que no tenga costilla viendo así las diferencias entre ambos, o analizar perfiles cercanos a las puntas de ala. Las líneas de corriente alrededor de toda la superficie de la cometa son otro parámetro a analizar de especial interés aerodinámico.

El resultado principal que interesa extraer en este estudio es el campo de presiones alrededor de las superficies que conforman el modelo de la cometa.

Para evaluar la interacción entre el fluido y la estructura se exportará la distribución de presiones al análisis estructural. Dado que en el análisis CFD el dominio mallado es el negativo de la cometa, los resultados de las presiones no se obtienen directamente sobre la superficie de estudio del caso estructural, sino que se obtienen sobre las dos superficies (extrados e intrados) separadas por el espesor de la tela (1 mm). Posteriormente, en el análisis estructural, las presiones del extrados e intrados son importadas sobre la única superficie que conforma la tela de la cometa, calculando la resultante de ambas. La superficie utilizada en el análisis estructural es la de la cara superior, como se ha explicado en el apartado 10.4.3.

Todos los resultados e imágenes de los parámetros comentados en este apartado serán presentados y analizados en el apartado 11.
10.6 Análisis estructural de la cometa

10.6.1 Objetivo del análisis estructural

El principal objetivo del análisis estructural es obtener la distribución de las tensiones en la tela, las costillas y el borde de ataque y los desplazamientos producidos debido a las cargas y las condiciones de contorno aplicadas sobre la cometa.

La distribución de presiones obtenida del análisis fluido se introduce como carga estructural sobre todo el kite. Lógicamente, el estudio se realiza bajo las mismas condiciones de vuelo que el estudio CFD.

10.6.2 Simplificaciones e Hipótesis del estudio estructural

Un estudio estructural de una estructura textil no es nada trivial. Además, la geometría que define el kite es muy compleja. Estas dificultades más la limitación computacional de las máquinas que se dispone, hace necesario realizar una serie de hipótesis y desarrollar simplificaciones para poder resolver el problema.

En este apartado se exponen las hipótesis y simplificaciones de las que se parte para realizar el análisis estructural:

- No se estudia el comportamiento estructural de las líneas, del arnés ni de la tabla. Las líneas se modelizarán en las condiciones de contorno
- Se considera toda la vela una superficie lisa, como si ya estuviera hinchada por la presión que ejerce el viento. Es decir que no posee abombamiento entre las costillas.
- Se extrae la superficie del extradós para trabajar con el modelo estructural por razones geométricas.
- Se simplifican los materiales a exclusivamente dos, sin tener en cuenta posibles refuerzos.
- Las propiedades de los materiales se modelan como isotrópicas en lugar de ortotrópicas. El problema se considera lineal elástico.
- No se tienen en cuenta las capas de recubrimiento de barniz que protegen la tela contra los rayos UV, el medio salino...
- Todas las superficies se modelan con elementos Shell188, que son elementos placa. Esto significa que se tienen en cuenta esfuerzos a flexión y torsión.
- Se considera la vela en equilibrio para poder fijar los puntos donde se anclan las líneas, de manera que las reacciones generadas en estos puntos contrarrestan directamente las fuerzas aerodinámicas que aparecen.
- Se fijan las superficies circulares de las costillas de las puntas de la vela en lugar de los puntos de los extremos de la cometa. Se realiza de esta forma para evitar grandes gradientes de tensión alrededor de dichos puntos.
- Para los estudios que se realizarán con el modelo diseñado es necesario fijar una parte de la cometa para que las fuerzas aplicadas sobre está (que simulan la tensión de las líneas) no provoquen deformaciones enormes. En la práctica esto no sucede ya que estas líneas están fijadas al usuario.
- No se tienen en cuenta las fuerzas gravitatorias

10.6.3 Pre-procesado del análisis estructural

10.6.3.1 Importación y preparación del modelo 3D

Cuando se añade el módulo de análisis estructural en el workbench de Ansys, se hace conectándolo con el módulo de CFX. Esto genera automáticamente una conexión entre la geometría de ambos análisis, haciendo que si se quiere modificar la geometría de la parte estructural, se deba hacer desde el análisis fluido.

Por lo tanto, cuando se prepara el modelo fluido, también se realiza el estructural, que es mucho más simple que el otro. En este caso solo se extraen las superficies de las costillas, el borde de ataque y el extradós de la cometa como se ha explicado en el apartado 10.4.3. El estudio estructural realizado posteriormente da ciertos errores que no se pueden permitir, pues las costillas y el borde de ataque no quedan del todo bien cerrados. Es por eso que se debe modificar la geometría del modelo estructural.

Se cierran todas las costillas y el borde de ataque utilizando distintos comandos como son: surface extension, surface patch y surface from edges. Una vez se ha realizado este proceso queda todo como se muestra en la Figura 41.
Figura 41. Costillas y borde de ataque de la cometa.

El modelo de superficies completo, que no es más que el esqueleto formado por las costillas y el borde de ataque junto a la tela, se muestra en la Figura 42.

Figura 42. Modelo de superficies del kite
10.6.3.2 Tipología de los elementos estructurales

El modelo estructural de la cometa está definido por las superficies que forman el conjunto entero. Estas superficies tienen asociado una tipología de elemento que define el comportamiento estructural a nivel elemental.

Ansys puede trabajar con distintos tipos de elementos al igual que todos los paquetes que trabajan con FEM. El software asigna automáticamente a la geometría modelada un tipo de elemento en un principio adecuado, pero es tarea del ingeniero decidir y saber que tipología será la más adecuada para resolver el problema.

En este proyecto se trabaja con la tipología Shell181 para simular todas las superficies de la cometa. Este tipo de elemento es el que asigna Ansys para superficies tridimensionales de pequeño espesor, por lo tanto es una buena elección.

Este elemento está compuesto por 4 nodos y 6 grados de libertad en cada nodo, que son las traslaciones en los tres ejes y las rotaciones respecto los tres ejes. Se elige la versión cuadrangular para todos los elementos. Además, esta tipología permite la configuración a modo de membrana, que es el caso más realista para simular la tela de la cometa. Si se modela como membrana se restringen las rotaciones en los 4 nodos y se suprime la resistencia a flexión del elemento. No se ha podido implementar esta tipología de membrana debido a la complicada geometría de la cometa.

10.6.3.3 Materiales utilizados en el análisis estructural

Una de las misiones más importantes para un ingeniero es escoger los materiales óptimos para un diseño, teniendo en cuenta todos los factores, como son: las propiedades, el coste, la dificultad de ensamblaje y montaje...

Los materiales utilizados y sus propiedades se definen en el Engineering data del bloque estructural de Ansys. En este módulo existe una biblioteca donde se encuentran los materiales más comunes de uso ingenieril. El tejido de la cometa está hecho de nylon Ripstop, del cual se han explicado las características en el apartado 4.4.1.1. El borde de ataque y las costillas están fabricados con un tejido de poliéster llamado Dacron. Ambos materiales no se encuentran en la librería predefinida de Ansys. Por lo tanto, se ha tenido que realizar un proceso de búsqueda de las propiedades de dichos materiales para poder trabajar de la forma más realista posible.

Como los materiales con los que se modela el kite son tejidos, sus propiedades mecánicas deberían definirse como ortotrópicas. Simular este comportamiento de los tejidos utilizados implica, por un lado, el conocimiento o el ensayo en laboratorio de muestras de cada uno de los tejidos, y por otro lado, definir espacialmente la
orientación de cada una de las piezas de la tela tal cual se disponen en su fabricación. Por estas razones se decide que las propiedades mecánicas de los materiales usados en el análisis estructural sean una aproximación a las reales, definiendo las propiedades como isotrópicas.

Las propiedades mecánicas introducidas en el módulo de definición y elección de los materiales para el nylon Ristop son las siguientes:

- Módulo de Young: $E=1,9$ GPa
- Coeficiente de Poisson: $\nu=0,35$
- Densidad: $\rho=1140$Kg/m3

Las propiedades mecánicas para el tejido de poliéster Dacron son las siguientes:

- Módulo de Young: $E=3,45$ GPa
- Coeficiente de Poisson: $\nu=0,4$
- Densidad: $\rho=1392$Kg/m3

Las propiedades de los dos materiales anteriores han sido sacadas del proyecto final de carrera titulado “Estudio computacional de la interacción fluido-estructura en un parapente”.

10.6.4 Mallado del modelo estructural

10.6.4.1 Requerimientos del mallado del análisis estructural

Los requerimientos del mallado estructural son menores que del dominio fluido porque la principal función que debe tener es captar bien la presión importada alrededor de toda la vela.

Como se puede observar en los resultados del análisis CFD, la distribución de presiones varía sobre todo a lo largo de los perfiles de la cometa, es decir, en la dirección del flujo de aire. Por lo tanto, lo ideal sería tener una malla estructurada formada por cuadriláteros alienados a lo largo de los perfiles, del borde de ataque al borde de fuga. Esta opción no ha sido posible de implementar debido a la complejidad geométrica del modelo estructural. Tan solo se ha conseguido mallar una parte de forma estructurada, que es la zona más cercana al borde de ataque. A medida que se avanza a lo largo del perfil hacia el borde de salida, se pierde la homogeneidad en la malla, que pasa a ser desestructurada, formada por cuadriláteros no alineados y otros tipos de elementos necesarios (en menor porcentaje) para completar el mallado. Este fenómeno se puede...
observar en la Figura 43. En la Figura 44 se puede ver todo el mallado del modelo de superficies.

10.6.4.2 Métodos de mallado del análisis estructural

La malla del modelo estructural se ha definido mediante tres parámetros:
- *Use advanced size function on curvature*: adecua el tamaño de la malla automáticamente a la curvatura de las superficies. En las zonas donde la curvatura es mayor, los gradientes de presión también lo son, provocando mayores deformaciones, de tal manera que el tamaño de los elementos se reduce proporcionalmente en estas zonas para poder captar estos fenómenos.

- Tamaño mínimo de elemento: El tamaño elegido es de 1 mm, igual que para el mallado del subdominio interior del fluido. Este tamaño permite captar los gradientes de presión importados del análisis CFD. Además, hace que con el parámetro anterior el tamaño de elemento no se reduzca de forma exagerada, incrementando mucho los tiempos de cálculos.

- Tamaño máximo de elemento: Se da un valor de 0,01 m. Este es menor que el tamaño máximo de elemento de la malla del dominio fluido. Se ha decidido tomar un valor bastante inferior ya que en el dominio fluido el tamaño máximo corresponde a los elementos que están alejados de la cometa, es decir que no intervienen de una manera tan directa en la distribución de presiones sobre la vela. Además es importante tener en cuenta que como la localización de los nodos sobre la superficie de análisis estructural no coincide con la del análisis CFD, Ansys realiza un proceso de mapeo sobre toda la superficie, interpolando los valores de presión obtenidos del fluido para aplicarlos a la estructura.

10.6.4.3 Estadísticas de mallado del análisis estructural

Igual que en CFX, Ansys Structural dispone de herramientas para verificar la calidad del mallado generado. La información sobre el número de nodos y de elementos que se crean en el proceso es:

- Número de nodos: 193090
- Número de elementos: 192622

Igual que para el mallado fluido se muestran los resultados del índice de calidad de la malla del estudio estructural:

- Mínimo: 5,850·10⁻²
- Máximo: 0,999
- Media: 0,884
- Desviación estándar: 0,111

En el gráfico de la Figura 45 se muestra el número de elementos que quedan dentro de cada rango de índice de calidad para el tipo de elemento utilizado en el mallado estructural.
10.6.5 Definición de los contactos entre los elementos

Los elementos de superficie definidos en el módulo de geometría no se encuentran unidos ya que se ha dejado de esta forma para poder definir los distintos materiales de cada parte.

Ansys detecta y genera algunos contactos de manera automática, pero es bueno asegurarse de que todo está como se desea. En el modelo realizado se definen los contactos como bonded (unión), uniendo todos los elementos entre ellos como sucede en un modelo real. Así pues, se deberán unir todas las costillas con el borde de ataque, la tela con el borde de ataque y finalmente las costillas con la tela. Por ejemplo, en la Figura 46 se puede ver como se une la superficie en contacto de una costilla con el borde de ataque.
10.6.6 Definición de las condiciones de contorno

Las condiciones de contorno son las que acaban de determinar el problema a resolver. Es muy importante encontrar unas condiciones que simulen al máximo la realidad para conseguir unos resultados más realistas y precisos.

En este proyecto se definen cuatro tipos de problema diferente según las condiciones de contorno que se aplican.

10.6.6.1 Primera condición, vuelo despotenciado del kite en la posición del zenit

La primera condición de vuelo que se modela simula la cometa en la posición del zenit con el chicken loop enganchado al arnés del piloto y la barra arriba del todo, es decir que la cometa se encuentra despotenciada. Esto significa que no se aplica ninguna fuerza externa sobre la cometa a parte de la presión importada del estudio CFD. Dicho de otra forma, las líneas no ejercen tracción sobre el piloto, únicamente se sustenta la cometa en el cielo.

En este caso, las líneas traseras están ancladas al arnés y las delanteras a la barra de control. Como las líneas son elementos que únicamente trabajan a tracción uniaxial, se aplican las restricciones de movimiento directamente sobre la cometa. De esta manera se evita tener que diseñar el modelo de las líneas, las cuales harían incrementar el tamaño del dominio fluido notablemente.

Las condiciones de contorno para esta condición de vuelo consisten en dos soportes fijos y dos soportes simples.

Los soportes fijos restringen el movimiento en los tres ejes, tanto de translación como de rotación. Estos se aplican en ambos extremos del borde de ataque, sobre toda la superficie circular que lo cierra.

Los soportes simples restringen los desplazamientos en los tres ejes, pero permiten las rotaciones respecto a ellos. Estos soportes se aplican simétricamente en la punta del borde de salida de la costilla que se encuentra en los laterales de la cometa. Los soportes simples se aplican en la línea que forma la sección circular de la punta del borde de ataque.

10.6.6.2 Segunda condición, vuelo del kite desengancho en la posición del zenit

El vuelo del kite unhooked (desengancho) es una situación común en este deporte, ya que es como se realizan la mayoría de saltos y maniobras en competición. Cuando se
vuela el kite desenganchado significa que el deportista desconecta el chicken loop de su arnés, repartiendo la fuerza ejercida por la cometa por igual a las cuatro líneas.

En este caso, la barra recibe toda la fuerza de tracción ejercida por las cuatro líneas, que en el mínimo de los casos debe compensar el peso del deportista.

Es muy importante estudiar cómo se comporta el kite cuando está desenganchado del arnés, ya que este comportamiento determina mucho la calidad de las actuaciones y performance de la cometa.

Las condiciones de contorno para esta condición de vuelo consisten en fuerzas aplicadas en el mismo lugar que se han aplicado los soportes simples en el caso anterior. Como la cometa se encuentra en la posición del zenit, las líneas soportan el peso del deportista repartido entre las cuatro por igual. Se elige un peso de 800 N, por lo tanto cada fuerza aplicada en los extremos de las costillas y del borde de ataque será de 200 N. Además se debe fijar la línea central de la cometa (soporte fijo) que va del borde de ataque al borde de fuga porque la cometa tendería a desplazarse hasta el infinito al no estar fijada en ningún punto.

10.6.6.3 Tercera condición, vuelo cuando se aplica una fuerza en un lado de la barra de control con la cometa en el zenit

En este caso se aplica una fuerza en un lateral de la barra de control para ver cómo se deforma la cometa frente a estímulos realizados por el deportista. Este es un caso similar al primero, la cometa se encuentra enganchada al arnés por el “chicken loop”, pero ahora en una de las líneas de dirección (traseras) se aplica una fuerza puntual. Se debe tener en cuenta que al ser un estudio estacionario, únicamente se estudia cómo se deforma el kite en ese instante de tiempo que se aplica la fuerza.

Las líneas se modelan como soportes simples aplicados en los mismos puntos que la primera condición de vuelo, excepto en la punta del borde de ataque del lado derecho (mirado desde delante), donde se aplica una fuerza de 100 N.

10.6.6.4 Cuarta condición, vuelo potenciado del kite en la posición del zenit

La última condición de vuelo que se modela simula la cometa en la posición del zenit con el chicken loop enganchado al arnés del piloto y la barra abajo del todo, es decir que la cometa se encuentra potenciada. En este caso las líneas de dirección ejercen tracción sobre la barra de control. Como se ha explicado en el apartado 5.7.1 el control de la potencia desarrollada por la cometa se realiza mediante el recorrido de la barra de control.
Para simular esta situación se imponen dos soportes simples en los laterales del borde de ataque y dos fuerzas de -100 N en dirección del eje “Y” en el borde de fuga de las costillas laterales.

10.6.7 Aplicación de las cargas

En el estudio estructural se aplican dos tipos de cargas, la presión importada del estudio CFD y la presión interior de las costillas y borde de ataque.

Se importa el campo de presiones calculado en el estudio fluido-dinámico sobre todas las caras del modelo estructural, proveniente de la superficie de la cometa del modelo CFD.

Es importante destacar que el campo de presiones obtenido del modelo fluido es sobre dos superficies distintas, el extradós y el intradós de la cometa, que se encuentran separadas una distancia de 1 mm, el espesor de la tela. En el modelo estructural, sin embargo, únicamente existe una superficie, tal y como se ha definido anteriormente. Esto hace que Ansys deba interpolar los resultados obtenidos en el estudio CFD sobre una única superficie en el estudio estructural. La presión importada aparece sobre la única cara de la superficie (extradós) debido a la tipología del elemento estructural. Aun así, el campo de presiones mostrado en la Figura 47 es el valor resultante entre ambas superficies. La magnitud de la presión se muestra gráficamente, mediante la escala de colores se muestra el módulo de la presión y mediante las flechas se muestra la dirección en la que actúa.
En la Figura 48 se ve un detalle de la dirección de dicha presión alrededor del borde de ataque.

El proceso de importación demora mucho tiempo a nivel de simulación debido a la interpolación que se debe hacer entre los dos tipos de modelos.

La presión interior de las costillas y el borde de ataque se define normal a las superficies que generan dichos elementos, entrando su valor como negativo para que ésta ejerza la fuerza de dentro hacia fuera sobre las superficies del borde de ataque y de las costillas. El valor dado para esta presión es de -35000 Pa, tal como se muestra en la Figura 49.
Figura 49. Presión interior del borde de ataque y costillas

10.6.8 Solver de la simulación estructural

Ansys elige el solver más adecuado para cada tipo de problema de forma automática entre los dos tipos de los que dispone. Existe un grupo de solvers directos, y un grupo de solvers iterativos. En este caso se utiliza el Sparse Matrix Direct Solver, un solver de resolución directa que se basa en la eliminación de ecuaciones, a diferencia de un método de resolución iterativo el cual refina la solución ensayada inicialmente hasta alcanzar una solución que esté dentro de un margen de error aceptable.

10.6.9 Post-procesado del análisis estructural

Una vez el solver resuelve el problema presentado, se puede calcular la solución de diferentes parámetros como son las tensiones generadas y los desplazamiento en cada uno de los nodos de la malla. Esta información se puede procesar y mostrar de distintas maneras mediante el software utilizado.

Para este análisis se extraen el mapeado de las tensiones equivalentes de Von-Mises, y los desplazamientos locales producidos en la superficie de la cometa.

En el apartado 11 se presentarán los resultados obtenidos de este análisis.
11 Análisis de resultados

En este apartado se presentarán los resultados obtenidos en las dos simulaciones realizadas, así como los estudios realizados mediante éstos.

11.1 Análisis de los resultados del estudio CFD

La dinámica de fluidos computacional permite obtener unos buenos resultados con un menor coste que mediante estudios experimentales realizados por ejemplo en un túnel de viento. Los estudios a realizar con la cantidad de información que este método de trabajo propicia pueden ser muy variados.

Para empezar, se estudiarán las velocidades y presiones sobre distintos perfiles representativos en 2D de la cometa. En estos se verán algunos de los conceptos explicados en los fundamentos teóricos.

Luego se estudiarán las fuerzas aerodinámicas que aparecen alrededor de la cometa y se calcularán los coeficientes de sustentación, de resistencia y de momento, así como el ratio L/D y la posición longitudinal del CP. Estos coeficientes permiten comparar la cometa con otros modelos y determinar cómo será su comportamiento.

Por último se estudiará el dominio fluido alrededor de la cometa, donde se presentará el campo de presiones sobre la superficie del kite, que se exportará al análisis estructural. Este resultado es el más importante de todos ya que es el que da sentido al estudio FSI.

11.1.1 Estudio de las velocidades y presiones sobre distintos perfiles 2D

En este apartado se presentarán las distribuciones de presión y de velocidad de distintos perfiles de la cometa y se compararán entre ellos.

11.1.1.1 Perfil central

Uno de los perfiles más característicos del ala es el perfil central. Para captar lo que sucede en este perfil se dibuja el plano “YZ” con “X”=0. La distribución de presiones sobre este perfil se muestra en la Figura 50 y la distribución de velocidades en la Figura 51. Este perfil además tiene la singularidad de contener una costilla, lo cual variará los campos de presión y velocidad de otros perfiles que no la contengan.
Como se observa, en el campo de velocidades existen los dos puntos de remanso necesarios para aplicar la condición de Kutta. Tras el punto de remanso del borde de ataque, la corriente se acelera bruscamente, tanto en el extradós como en el intradós, debido a su forma cilíndrica. En el intradós la velocidad aumenta más que en el extradós (alcanzando su máximo) porque la curvatura del perfil se suaviza debido a la tela que envuelve al borde de ataque por la parte de encima.
La velocidad en el extradós aumenta hasta aproximadamente un cuarto de la cuerda del perfil, después empieza a disminuir empezando por la capa límite hacia a fuera de esta (zona azul y verde del extradós).

En el intradós, la velocidad es prácticamente cero detrás del borde de ataque porque la corriente se desprende tras la superficie cilíndrica, y no vuelve a unirse a la tela hasta prácticamente el último tercio de la cuerda del perfil.

En la Figura 50 se puede ver el campo de presiones alrededor del perfil central. El criterio de signos es el convencional, las zonas de succión tienen una presión negativa, y las zonas de sobrepresión una presión positiva.

La zona de máxima presión coincide con el punto de remanso anterior de la Figura 51, en este punto la presión es máxima porque es donde toda la corriente de aire choca directamente contra el borde de ataque.

La mínima presión se da en el intradós del borde de ataque debido a su forma. Esto podría originar un problema ya que se trata de una presión negativa (-108,4 Pa) que genera succión hacia abajo. Sin embargo, la zona de succión del extradós es mucho mayor que la del intradós, por lo que se supone que existirá en general una succión mucho mayor hacia arriba.

Inmediatamente después del borde de ataque, la presión pasa a ser positiva, por lo tanto existe una sobrepresión en toda la zona del intradós de la tela.

Por el contrario, la superficie del extradós presenta una depresión desde el inicio del borde de ataque hasta el pico de succión que existe (alrededor de los -70 Pa). A partir de este punto de succión, la corriente en el extradós se encuentra con un gradiente adverso de presiones, es decir que la presión aumenta aguas abajo. Como el ángulo de ataque es pequeño, la corriente no se desprende porque no hay cambios bruscos de presión, sino que ésta va disminuyendo lentamente con la cuerda.

Finalmente, si nos aproximamos al perfil como en la Figura 52, se puede ver la condición de no deslizamiento impuesta, ya que la velocidad alrededor del perfil es 0.
11.1.1.2 Perfil próximo al central sin costilla

El perfil que se estudiará en este apartado se encuentra a 0,2m del perfil central, por lo que el comportamiento del flujo debería ser muy parecido, aunque en este caso, el perfil no contiene una costilla.
En cuanto al campo de velocidades mostrado en la Figura 91, sigue habiendo el punto de remanso en el mismo lugar del borde de ataque. La velocidad máxima también se encuentra en el mismo sitio, pero en este caso disminuye un poco. En este caso no se observa un punto de remanso en el borde de salida.

Por lo que hace al campo de presiones, acontece todo de forma parecida, pero esta vez, el pico de succión del extradós se retrasa un poco. Se considera que la corriente no se desprende en el extradós porque no existen cambios bruscos de presión. En la zona del intradós sigue habiendo una sobrepresión como en el perfil mostrado anteriormente.

11.1.1.3 Perfil lateral

Finalmente se estudia otro perfil característico de la cometa. En este caso es uno de los perfiles del lateral, concretamente el que forma el plano “XZ” con “Y”=0. En este caso la principal diferencia con los otros perfiles es que este se encuentra en un plano perpendicular a los anteriores. Por lo tanto las fuerzas aerodinámicas que aparecerán sobre el tendrán una dirección distinta, concretamente la fuerza de sustentación, que esta vez será normal al plano “XZ”. Además la cuerda de este perfil es menor a la de los perfiles centrales debido a la propia forma de la cometa.

En este perfil, el pico de succión del extradós está más adelantado que en los perfiles centrales. La presión mínima (de mayor succión) se encuentra en el intradós, igual que ocurría en los otros perfiles. Sin embargo, esta vez adquiere un valor inferior debido a que el borde de ataque es de menor tamaño, por lo tanto la velocidad no se acelera...
tanto como antes y la presión no llega a un valor negativo tan alto. En la Figura 55 y la Figura 56 se ve de forma gráfica lo explicado en este apartado.
11.1.2 Estudio de la variación de las fuerzas aerodinámicas y el momento aerodinámico en función de la velocidad del viento

En este apartado se calculan las fuerzas aerodinámicas que aparecen sobre el cuerpo cuando se varía la velocidad del viento entre 7 m/s y 13 m/s. Para ello se ha realizado el mismo proceso que en el caso explicado durante el desarrollo del proyecto. Únicamente se ha cambiado la velocidad del fluido.

Las fuerzas aerodinámicas se calculan mediante funciones programadas en CFX. Para hacerlo únicamente se necesita ir a la pestaña de Calculators y con el Function Calculator definir lo que se quiere calcular. Por ejemplo en la Figura 57 se muestra cómo conseguir el valor de la fuerza sobre la cometa en el eje “Y”, es decir el valor de la sustentación.

![Function Calculator](image)

Figura 57. Cálculo de la fuerza de sustentación mediante el Function Calculator

Se debe tener en cuenta los signos de las fuerzas dependiendo del sistema de coordenadas tomado. Para calcular la fuerza de resistencia basta con realizar el mismo proceso pero esta vez respecto al eje “Z”.

Para calcular el momento aerodinámico se debe crear un origen de coordenadas local, pues este debe ser calculado en el centro aerodinámico, que se encuentra al 25% de la cuerda del perfil central.
La cuerda del kite es de 1,769 m, por lo tanto el centro aerodinámico se encuentra en el punto 0,44225 m respecto al borde de ataque. El nuevo sistema de coordenadas se localiza en el centro aerodinámico como se puede ver en la Figura 58.

Figura 58. Sistema de coordenadas localizado en el centro aerodinámico.

Una vez se tiene el nuevo sistema de coordenadas ya se puede calcular el momento de cabeceo respecto al eje “X” como se muestra en la Figura 59.

Figura 59. Cálculo del momento aerodinámico.
En la Tabla 10 se muestran los valores de la fuerza de sustentación, de resistencia y del momento aerodinámico calculados para cada una de las velocidades del fluido.

<table>
<thead>
<tr>
<th>Velocidad del viento (m/s)</th>
<th>Fuerza de sustentación(N)</th>
<th>Fuerza de resistencia (N)</th>
<th>Momento aerodinámico (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>85,76680</td>
<td>14,0150</td>
<td>41,2027</td>
</tr>
<tr>
<td>8</td>
<td>112,2020</td>
<td>18,1963</td>
<td>53,7743</td>
</tr>
<tr>
<td>9</td>
<td>142,3490</td>
<td>22,9156</td>
<td>68,0801</td>
</tr>
<tr>
<td>10</td>
<td>176,0780</td>
<td>28,1687</td>
<td>84,0636</td>
</tr>
<tr>
<td>11</td>
<td>213,3680</td>
<td>33,9467</td>
<td>101,688</td>
</tr>
<tr>
<td>12</td>
<td>254,3180</td>
<td>40,2605</td>
<td>121,036</td>
</tr>
<tr>
<td>13</td>
<td>298,8870</td>
<td>47,1083</td>
<td>142,067</td>
</tr>
</tbody>
</table>

Tabla 10 Valores de las fuerzas aerodinámicas y el momento aerodinámico

Los valores de la fuerza de resistencia han sido cambiados de signo porque el programa proporciona un valor negativo debido a como están situados los ejes de coordenadas.

En el gráfico de la Figura 60 se observa la variación de estas fuerzas y del momento en función de la velocidad del viento expresada en m/s.

![Variación de las fuerzas aerodinámicas y del momento aerodinámico](image)

Figura 60. Gráfico de las fuerzas y momentos en función de la velocidad del viento

El momento aerodinámico es positivo (según los ejes definidos), por lo tanto, se trata de un momento de picado. Como se había visto en los fundamentos teóricos, los perfiles clásicos tienen un momento de picado y por lo tanto para introducirlo en la ecuación de la posición del CP se deberá cambiar el signo al valor del coeficiente de momento. Esto sucede porque la ecuación está basada en los ejes cuerpo que se toman normalmente como referencia en el campo de la aeronáutica.

Seguidamente se calculan los coeficientes de sustentación de resistencia y de momento.
Para realizar este cálculo se debe tener en cuenta que la superficie representativa es de 10 m² y la cuerda del perfil 1,769 m.

\[
CL = \frac{L}{\frac{1}{2} \rho v^2 S} = \frac{176,078}{\frac{1}{2} \cdot 1,225 \cdot 10^2 \cdot 10} = 0,2875
\]

\[
CD = \frac{D}{\frac{1}{2} \rho v^2 S} = \frac{28,1687}{\frac{1}{2} \cdot 1,225 \cdot 10^2 \cdot 10} = 0,0460
\]

\[
CM = \frac{M}{\frac{1}{2} \rho v^2 Sc} = \frac{86,0636}{\frac{1}{2} \cdot 1,225 \cdot 10^2 \cdot 10 \cdot 1,769} = 0,07943
\]

El valor del C_L encontrado es un poco bajo comparado con los valores que se muestran en la Tabla 2 debido a que el ángulo de ataque impuesto es 0. De todas formas, al tratarse de una cometa tipo “C”, el C_L de éstas no suele superar el valor de 0,5.

La eficiencia aerodinámica del kite estudiado es:

\[
\frac{L}{D} = \frac{C_L}{C_D} = 6,25
\]

Para comparar este valor con el de la Tabla 2 se debe multiplicar por un factor de 7 u 8, ya que en la tabla no se tiene en cuenta la resistencia inducida para los valores dados. En tal caso, se puede ver que el valor de la eficiencia aerodinámica tiene un rango entre bajo y moderado.

En conclusión, los valores encontrados para los coeficientes aerodinámicos y la eficiencia aerodinámica corresponden con un modelo de kite tipo “C”, es decir que corresponden con el modelo estudiado.

Del apartado 5.2.2.2 se utiliza la ecuación siguiente para encontrar la posición longitudinal del centro de presiones, considerando el origen en el borde de ataque.

\[
CP = AC - \frac{CM}{C_L} = 0,44225 - \frac{(-0,07943)}{0,2875} = 0,7189\text{m}
\]

Esto significa que se encuentra alrededor del 40% de la cuerda del perfil central. Como se ha estudiado en los fundamentos teóricos, la posición del centro de presiones es muy importante para el anclaje de las líneas. Además como se ha comentado, para ángulos de ataque pequeños (en este caso no tiene más que el ángulo de ataque incorporado) el CP se encuentra alejado del centro aerodinámico.
11.1.3 Estudio de las velocidades y presiones del dominio fluido alrededor de la cometa

En este apartado se estudian las velocidades globales y el campo de presiones alrededor de la cometa.

11.1.3.1 Estudio de las velocidades

El análisis de los perfiles realizado anteriormente muestra las velocidades alrededor de cada perfil de la cometa, sin embargo, hay algunos factores que no se pueden ver si no se muestran las líneas de corriente globales que envuelven al kite.

En la Figura 61 se muestran las líneas de corriente del aire. En ésta se pueden observar los torbellinos de punta de ala que dan lugar a la resistencia inducida.

En la Figura 62 se ve como las líneas de corriente se desordenan aguas abajo de la cometa debido a la perturbación en el flujo generada por ésta. En estas imágenes no se puede observar una variación del módulo de la velocidad porque tan solo se muestran unas cuantas líneas de corriente de todo el dominio fluido.

La velocidad máxima del flujo es de 16,57 m/s y la mínima es de 0 m/s, ocurriendo en los puntos de remanso mostrados anteriormente.
11.1.3.2 Estudio de las presiones

Anteriormente se ha estudiado las presiones alrededor de varios perfiles que conforman la cometa. Ahora es momento de ver como varía la presión a lo largo de toda la vela.

En la vista frontal del kite que se muestra en la Figura 63 se ve como la máxima presión se encuentra a lo largo de todo el borde de ataque, ya que es donde el flujo choca produciendo este máximo.
Como se observa en la Figura 64, la mayor parte del intradós de la tela de la cometa tiene una sobrepresión entre 8 y 30 Pa (color amarillo). En la imagen anterior se aprecian zonas de succión en el intradós. Estas zonas son debidas a que algunos elementos de la malla sobrepasan el espacio vaciado de la cometa, y por lo tanto, hay algún elemento que se encuentra tanto en el intradós como en el extradós. A efectos prácticos no implica grandes cambios, pues como se ha visto en el estudio de los perfiles, el siguiente elemento de la malla del intradós (que queda dentro de la capa límite) tiene claramente un estado de sobrepresión.

En cuanto al intradós del borde de ataque, como ya se había visto en los perfiles, existe una presión de succión. Las máximas presiones de succión (es decir los valores mínimos negativos) se encuentran cerca del centro de la cometa y adquieren el valor de -130,6 Pa. En los laterales de la cometa, los valores de la presión en el intradós del borde de ataque son mayores, entre -70 y -90 Pa.

Las presiones en el extradós son todas de valor negativo, aunque existen zonas de color amarillo provocadas otra vez por la superposición de elementos entre intradós y extradós. Los picos de succión del extradós se encuentran en la tela más cercana al borde de ataque (azul claro). Después el gradiente de presiones es adverso y aumenta la presión. Como se ve en la Figura 65, las presiones son bastante homogéneas a largo de la envergadura de la cometa.
11.2 Análisis de los resultados del estudio FSI

En este apartado se presentarán los resultados obtenidos del análisis estructural realizado a partir de los resultados provenientes del estudio CFD.

En este caso se estudiarán las tensiones equivalentes de Von Misses y los desplazamientos producidos para los cuatro casos distintos de condiciones de contorno explicados en el apartado 10.6.6.

Es importante remarcar que en este estudio el modelo de la vela se ha creado a partir de una superficie lisa que envuelve las costillas y el borde de ataque. Pese a eso, en el modelo estructural, cuando la velocidad de vuelo es nula, la vela posee un abombamiento entre costillas provocado por la presión interior de estas. Se debe tener en cuenta que este abombamiento está producido por la elasticidad del material.

En un prototipo real, las técnicas de costura usadas en el ensamblaje crean intencionadamente un cierto abombamiento (producido por un margen de tela extra), el cual hace que la vela queda completamente estirada cuando las costillas y el borde de ataque tienen la presión adecuada y el viento ejerce la presión sobre la cometa.

Finalmente se realizará un estudio de los desplazamientos producidos en la vela en función de la velocidad del viento, igual que para el estudio de la posición del CP.
11.2.1 Estudio de los desplazamientos y las tensiones en la cometa

En este apartado se analizan los resultados de la simulación para las cuatro condiciones de contorno presentadas anteriormente. Se estudian los desplazamientos de la vela a lo largo de su envergadura, es decir que se evalúan los desplazamientos locales en función de la geometría del kite y las tensiones equivalentes de Von-Mises.

11.2.1.1 Estudio de los desplazamientos y las tensiones para la primera condición de contorno

La primera condición de contorno impuesta son dos soportes fijos en los extremos del borde de ataque y dos soportes simples en el borde de salida de las costillas laterales. Como ya se ha explicado, esta condición simula el vuelo de la cometa en el zenit cuando la cometa está atada al arnés y la barra de control totalmente despotenciada (arriba del todo).

En las imágenes siguientes se muestran los desplazamientos que sufre la vela localmente.

Figura 66. Vista frontal de los desplazamientos en el kite (1ª condición)
Figura 67. Vista del extradós de los desplazamientos del kite (1ª condición)

Figura 68. Vista del intradós de los desplazamientos del kite (1ª condición)
La primera observación lógica de las imágenes anteriores es que en los puntos fijados como soportes fijos y soportes simples no hay desplazamientos. Esto traducido al caso real significa que la fuerza que ejercen las líneas delanteras es contrarrestada por el peso de la persona y que la barra de control sigue arriba de todo el recorrido que posee.

En las figuras, se observa una pequeña asimetría en los desplazamientos, que tiene origen en el modelo, no en el estudio en sí. Seguramente, esta pequeña asimetría viene provocada por la corrección realizada al cerrar las costillas, o simplemente por algún pequeño error en el diseño inicial de la cometa.

Como se ve en las imágenes presentadas, los desplazamientos son del orden de centímetros, alcanzando un máximo de 2,6169 cm en el borde de salida, cerca de los extremos del kite. Este máximo desplazamiento se produce en la tela de la cometa.

De los resultados obtenidos en este estudio se puede extraer una serie de conclusiones:

- El borde de ataque y las costillas ayudan a mantener la forma de la cometa, pues los desplazamientos mayores se producen en el borde de salida y entre costillas, es decir donde no se encuentra el esqueleto de la cometa.
- La conclusión anterior induce a un aspecto que ya se realiza en la realidad, que es reforzar el borde de fuga con algún material más resistente debido al pandeo que suele sufrir esta parte.
- Los desplazamientos producidos son fiel a la realidad ya que en una situación estacionaria con un viento dentro del rango de la cometa, ésta no se deforma en exceso.

Figura 69. Vista trasera de los desplazamientos del kite (1ª condición)
- Que los máximos desplazamientos se encuentren situados en los extremos del kite puede tener su lógica, ya que es donde las costillas son de menor diámetro y rigidizan menos el modelo.

En el estudio realizado, se ha optado por obtener las tensiones equivalentes de Von-Mises, pues se creen lo suficientemente representativas y acorde con la realidad para mostrar lo que sucede.

En las siguientes figuras se muestran las tensiones equivalentes sobre la cometa para la primera condición de vuelo impuesta con las condiciones de contorno.

Figura 70. Vista frontal de las tensiones en el kite (1ª condición)
Lo primero que se debe comentar de las anteriores imágenes es que la escala ha sido retocada para poder mostrar los valores significativos. Existe un pico máximo de 17,66 MPa que se debe descartar, pues aparece porque existe un canto afilado formado por tres aristas en alguna de las costillas. Este canto es debido al proceso que se debió seguir para conseguir cerrar las costillas mediante el módulo del Design Modeler de Ansys tras percatarse del error que aparecía al no estar bien cerradas. Además, deben descartarse
otros máximos que aparecen por la misma razón en el cierre de algunas de las costillas diseñadas.

Si se descarta estos errores, el máximo de tensión que aparece se sitúa alrededor de los 5 MPa, producido en las zonas centrales de la costilla del medio y las dos más próximas a ésta.

Además, como se puede observar, el esqueleto de la cometa (borde de ataque y costillas) adquiere los valores más elevados de tensión, manteniendo así la forma de vela sin perder las propiedades aerodinámicas.

11.2.1.2 Estudio de los desplazamientos y las tensiones para la segunda condición de contorno

Este caso simula cuando la cometa está desenganchada del arnés, y por lo tanto, la tensión de las líneas se reparte por igual entre las cuatro. Tanto las líneas de potencia como las de dirección ejercen toda la fuerza sobre la barra de control.

Las empresas que desarrollan cometas de kitesurf comprueban el comportamiento de la cometa en esta situación porque es clave para la performance de ésta.

Las condiciones de contorno impuestas en este apartado son cuatro fuerzas puntuales de -200 N en dirección del eje “y” aplicadas sobre el mismo lugar que la primera condición de vuelo. Además, se impone un soporte fijo en la línea central de la cometa que se muestra en la Figura 73.
Este soporte es necesario para evitar que la cometa se desplace al infinito, puesto que si no se impone ningún soporte la cometa se desplazaría al infinito. En realidad no ocurre esto ya que se considera que el punto fijo es la persona, pero se ha tenido que aplicar esta simplificación forzada para poder realizar el estudio. Pese a ser una suposición, el comportamiento no será muy distinto de lo que ocurre realmente, pues cuando se vuela la cometa desenganchada del arnés, ésta tiende a cerrarse por las puntas, y como se verá a continuación, sucede este fenómeno.

En las siguientes figuras se muestran los desplazamientos que sufre el kite bajo estas solicitudes.

![Figura 74. Vista frontal de los desplazamientos en el kite (2ª condición)](image)
Bajo estas condiciones de contorno, los desplazamientos del kite son mucho mayores en comparación a la primera condición de vuelo. Esto es debido a la gran fuerza que se aplica sobre cada extremo de la cometa. Los máximos desplazamientos son casi de 0,5m, y se encuentran en las puntas de la cometa, tanto del borde de ataque como de salida.

Para ver cómo se deforma el kite de una manera más clara se muestra la dirección de los desplazamientos mediante las flechas que se ven en la Figura 76. Como se observa perfectamente, la cometa tiende a cerrarse de las puntas, disminuyendo los desplazamientos a medida que se acerca al plano de simetría del kite.
En cuanto a las tensiones, sucede el mismo fenómeno que para la primera condición de contorno estudiada. Aparece un pico de tensión debido algún canto afilado, por lo que debe ser descartado.

Las máximas tensiones entonces se alcanzan donde se han impuesto las fuerzas del borde de ataque. Este valor es aproximadamente 50 MPa.

En las siguientes imágenes (Figura 77 y Figura 78) se muestra el campo de tensiones sobre la cometa. Las mayores tensiones (aparte del pico de 50 MPa) aparecen alrededor del centro del borde de ataque, pues el hecho de aplicar las fuerzas a los dos lados de la cometa hace que este se flexione, apareciendo los máximos valores próximos al centro. También se observa que las tensiones se reparten de forma similar a lo largo de la envergadura del kite en cuanto a la tela se refiere.

Las mínimas tensiones aparecen en la tela, concretamente en las zonas centrales entre costillas. Por lo tanto se concluye que, como en el apartado anterior, sobretodo el borde de ataque en este caso, ayuda a mantener la forma del kite.

Como conclusión final del apartado se podría decir que unos desplazamientos máximos de 0,5 m hacen pensar que las fuerzas aplicadas quizás sean demasiado elevadas, ya que en la realidad, en la situación estacionaria del zenit, la cometa no levanta todo el peso de la persona a no ser que el viento incidente sobre la cometa sobrepase el rango de viento del kite.
Figura 77. Vista del extradós de las tensiones en el kite (2ª condición)

Figura 78. Vista del intradós de las tensiones en el kite (2ª condición)
11.2.1.3 Estudio de los desplazamientos y las tensiones para la tercera condición de contorno

En la tercera condición se simula una fuerza aplicada en un lado de la barra de control cuando la cometa esta enganchada al arnés y volando en la posición del zenit.

Por lo tanto las restricciones son las mismas que en la primera condición, excepto que está vez, en la punta del borde de fuga de la costilla lateral derecha se aplica una fuerza de 100 N. Los desplazamientos obtenidos se muestran en la Figura 79.

![Figura 79. Desplazamientos en el kite (3ª condición)](image)

Esta vez, los desplazamientos no se muestran simétricos tal y como se esperaba. El hecho de imponer la fuerza en el lateral derecho hace que aparezcan desplazamientos mayores en la tela de este lado. Pese a esto, los máximos desplazamientos se producen en el lateral izquierdo de la cometa, concretamente entre la costilla de la punta y la siguiente. Esto puede ser debido a lo mismo que sucedía en la primera condición, que como la costilla no se encuentra unida al borde de ataque y es de menor diámetro, permite a la tela desplazarse más que en los otros espacios entre costillas. Este fenómeno ocurre también en el lateral derecho de la cometa pero con menor intensidad.

Para ver más claramente cómo se desplaza localmente el kite se muestra la dirección de los desplazamientos en la Figura 80.
El valor máximo de los desplazamientos es de 3,35 cm, valor aceptable si se compara con la realidad.

En cuanto a las tensiones, ocurre lo mismo que en los casos anteriores, se debe descartar el valor pico de 33,3 MPa debido al canto afilado. El valor máximo de tensión para estas condiciones de contorno es de unos 13 MPa, y se da en la costilla donde se aplica la fuerza. En las siguientes figuras se observa el campo de tensiones equivalentes.
Figura 82. Vista del intradós de las tensiones en el kite (3ª condición)

Las costillas cercanas a la central, incluida esta última, presentan más tensión que las otras y que el borde de ataque. El borde de ataque presenta una tensión bastante uniforme, excepto en el centro que alcanza valores mayores.

La principal conclusión que se puede extraer de este estudio es que la tela de la cometa absorbe bien los desplazamientos generados por la fuerza puntual en un lateral, haciendo que la cometa varíe su forma para adaptarse a la solicitud expuesta.

11.2.1.4 Estudio de los desplazamientos y las tensiones para la cuarta condición de contorno

En esta última condición de vuelo, la cometa se encuentra atada al arnés, pero a diferencia de la primera, esta vez está totalmente potenciada. Esto significa que la barra de control está abajo del todo de su recorrido.

Para simular esta situación se imponen dos soportes simples en los laterales del borde de ataque y dos fuerzas de -100 N en dirección del eje “Y” en el borde de fuga de las costillas laterales. Como no se sabe exactamente que tensión se ejerce sobre las líneas en esta condición de vuelo, se ha considerado que 100 N por cada lado son una magnitud razonable visto los resultados del apartado anterior.

Como se ha explicado en el apartado 5.7.1 el control de la potencia desarrollada por la cometa se realiza mediante el recorrido de la barra de control. Cuando la barra está arriba del todo (separada del arnés), el kite se encuentra despotenciado. En cambio, cuando la barra está abajo del todo (parecido a cuando se caza una vela) las líneas de dirección ejercen tracción, proporcionando más potencia. Este incremento se debe a un aumento del ángulo de ataque, que hace que haya más sustentación.
En las figuras anteriores se muestran los desplazamientos producidos por las condiciones frontera y las cargas aplicadas. Los máximos desplazamientos se dan en el borde de fuga de la tela, concretamente entre costillas, y alcanzan un valor de 2,62 cm. El principal propósito del estudio de esta condición de vuelo es comprobar si sucede lo que en la realidad pasa. Se quiere comprobar que cuando se caza la vela (se baja la barra de control), aumenta el ángulo de ataque de la cometa, incrementando así la potencia.
Para ver el comportamiento mejor se muestra la dirección de los desplazamientos locales en la Figura 85. Dirección de los desplazamientos locales (4ª condición) Figura 85.

Como se puede ver, el comportamiento que realizaría la cometa sería de un giro en sentido horario alrededor de los laterales del borde de ataque. Esto significa que el ángulo de ataque tiende a aumentar y por lo tanto sustentación también.

Las tensiones equivalentes de Von-Mises se muestran en la Figura 86 y la Figura 87. El pico de 35,8 MPa, se descarta por la misma razón que los casos anteriores. El máximo de tensiones alcanzado pues se encuentra alrededor de los 20 MPa, en los extremos del borde de ataque. Las costillas son las que sufren más tensión en este caso, seguidas del borde de ataque.
Figura 86. Vista del extradós de las tensiones en el kite (4ª condición)

Figura 87. Vista del intradós de las tensiones en el kite (4ª condición)

Para concluir el estudio de los desplazamientos y tensiones de los cuatro casos presentados, se debe decir que en ninguno de ellos las tensiones superan el límite elástico de los materiales que conforman la cometa, y por lo tanto este no sufre deformaciones permanentes ni roturas.
11.2.2 Estudio de los desplazamientos y las tensiones de la cometa en función de la velocidad del viento

En último de los estudios realizados se evalúa como varía una variable mecánica (desplazamientos) en función de una variable proveniente del estudio CFD (la velocidad del viento).

La velocidad del viento es una variable muy importante en el diseño de kites, pues estos tienen un rango de viento en el cual son capaces de funcionar correctamente. Además, por temas de seguridad es muy importante no navegar si se supera el rango de velocidades por arriba, ya que la cometa puede generar fuerzas demasiado elevadas para ser controlado, así como deformaciones que hagan perder su control.

En este estudio se ha decidido ver los desplazamientos máximos que aparecen localmente en la cometa cuando se varía la velocidad incidente del viento. Para obtener una muestra de resultados suficiente para ver la tendencia se ha realizado el análisis completo (CFD y estructural) para 7 velocidades distintas, de 7 m/s a 13 m/s.

El punto de desplazamiento máximo se muestra en la Figura 88, y es el mismo para todos los casos.

Figura 88. Localización del punto de desplazamiento máximo

En la XX se muestran los desplazamientos máximos locales para cada velocidad de viento simulada.
<table>
<thead>
<tr>
<th>Velocidad del viento (m/s)</th>
<th>Desplazamientos (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2,1942</td>
</tr>
<tr>
<td>8</td>
<td>2,3220</td>
</tr>
<tr>
<td>9</td>
<td>2,4624</td>
</tr>
<tr>
<td>10</td>
<td>2,6169</td>
</tr>
<tr>
<td>11</td>
<td>2,7857</td>
</tr>
<tr>
<td>12</td>
<td>2,9664</td>
</tr>
<tr>
<td>13</td>
<td>3,1605</td>
</tr>
</tbody>
</table>

Tabla 11. Desplazamientos máximos en función de la velocidad del viento

En la Figura 89 se muestran los valores anteriores representados en un gráfico.

Como se puede ver, los desplazamientos máximos que sufre la cometa aumentan parabólicamente con la velocidad del viento. Como se observa, la línea de tendencia se aproxima perfectamente por una parábola. Por lo tanto, las deformaciones serán cada vez más críticas con el aumento de la velocidad del viento.

Esto significa que volar la cometa por encima del rango de viento puede resultar peligroso porque pueden aparecer grandes deformaciones que cambien el comportamiento aerodinámico de esta. Incluso se puede llegar a romper por solicitaciones de tensiones demasiado altas.
Impacto medioambiental del proyecto

Las cometas de kitesurf y el material utilizado para su práctica como tal no producen contaminación en lo que al deporte se refiere. Por lo tanto el kitesurf es un deporte ecológicamente sostenible, ya que no usa ningún tipo de propulsor ni combustible más que el viento de la atmósfera. Las afecciones en el medio natural del kitesurf (y otros deportes acuáticos que usan el viento o las olas) son mínimas. Sin embargo hay que considerar un fuerte impacto cultural en aquellos lugares donde se desarrolla de manera masiva (como sucede en Tarifa, España) y el derivado de la modificación de los accesos a playas vírgenes.

Además, se están realizando estudios para beneficiarse energéticamente de las cometas. En una dirección, se está investigando sobre la generación de energía mediante una cometa aprovechando la energía eólica. Por la otra dirección, se están desarrollando prototipos de cometas de grandes dimensiones para el transporte marítimo transoceánico. Sin lugar a dudas, el consumo energético y las emisiones relacionadas con la fabricación de éstas se ven justificadas con el ahorro energético que producirían los dos usos anteriores.

Sin embargo, pese a ser un deporte que respeta el medioambiente hay que tener en cuenta la fabricación de sus elementos. Todas las partes de una cometa, desde su bolsa, hasta el hinchador, a, todo lo demás, la barra de carbono, las líneas, la tela, los paneles de Ripstop, la fibra de vidrio de las tablas; todo es absoluta y llanamente consecuencia del petróleo y sus derivados.

Por otro lado, en la realización de este proyecto tan solo ha sido utilizado un ordenador portátil normal, siguiendo las políticas de respeto al medio ambiente y reciclaje actuales. Esta es una de las grandes ventajas de la simulación computacional frente al método prueba y error u otros métodos experimentales. Si el estudio realizado hubiese sido experimental se necesitarían muchos más elementos, como son el propio prototipo (y todo lo que conlleva su fabricación), un túnel de viento, un laboratorio de resistencia de materiales con las máquinas para realizar las medidas oportunas...

Sin embargo, con la simulación por ordenador tan solo se necesita una computadora y los softwares necesarios o códigos para resolver el problema. Además de reducir los costes del proyecto, también rebaja enormemente el impacto medioambiental del proyecto.

En conclusión, se puede decir que se trata de un proyecto sostenible realizado de la forma más respetuosa con el medioambiente.
13 Planificación del proyecto

Una buena planificación del proyecto es esencial para el desarrollo del estudio a realizar. Como el proyecto ha sido realizado exclusivamente por una sola persona, la mayoría de tareas han sido ejecutadas en serie. Solamente algunas se han podido realizar en paralelo mediante un segundo ordenador. Por ejemplo, durante los cálculos de simulación, se ha podido escribir parte de la memoria. Además, también se han combinado algunas tareas para ir desarrollando el proyecto mientras se realizaban tutoriales del programa Ansys v14.5.

Algunas actividades también han sido desarrolladas simultáneamente, como por ejemplo parte del diseño del modelo con software CAD y parte del bloque de Design Modeler de Ansys. Esto es debido a que se ha tenido que modificar algunas partes de la geometría o retocar el formato para poder trabajar con el modelo en el software de simulación.

En la Tabla 12 se muestran las tareas en las que se ha dividido el proyecto, así como el tiempo en semanas que se planificó al inicio del estudio.

<table>
<thead>
<tr>
<th>Tarea</th>
<th>Tiempo invertido (semanas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Estado del arte</td>
<td>1</td>
</tr>
<tr>
<td>2- Tutoriales Ansys</td>
<td>3</td>
</tr>
<tr>
<td>3- Teoría para el desarrollo del proyecto</td>
<td>2</td>
</tr>
<tr>
<td>4- Parámetros de diseño de un kite</td>
<td>2</td>
</tr>
<tr>
<td>(aprendizaje software Surfplan)</td>
<td></td>
</tr>
<tr>
<td>5- Diseño del modelo</td>
<td>5</td>
</tr>
<tr>
<td>6- Módulo Design Modeler Ansys</td>
<td>4</td>
</tr>
<tr>
<td>7- Análisis CFD</td>
<td>4</td>
</tr>
<tr>
<td>8- Análisis estructural</td>
<td>5</td>
</tr>
<tr>
<td>9- Estudios y análisis de resultados</td>
<td>3</td>
</tr>
<tr>
<td>10- Redacción de la memoria y anexos</td>
<td>4</td>
</tr>
<tr>
<td>11- Revisión del proyecto</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 12. Tareas planificadas para el proyecto

En la Figura 90 se muestra el diagrama de Gantt del proyecto, donde se puede ver la planificación inicial y el tiempo real invertido en la ejecución del proyecto.
<table>
<thead>
<tr>
<th>TAREA</th>
<th>PLAN INICIO</th>
<th>DURACIÓN</th>
<th>PLAN REAL INICIO</th>
<th>DURACIÓN</th>
<th>REAL COMPLETADO</th>
<th>PORCENTAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarea01</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Tarea02</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Tarea03</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Tarea04</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Tarea05</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>8</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Tarea06</td>
<td>14</td>
<td>4</td>
<td>19</td>
<td>8</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Tarea07</td>
<td>10</td>
<td>4</td>
<td>28</td>
<td>6</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Tarea08</td>
<td>22</td>
<td>6</td>
<td>34</td>
<td>6</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Tarea09</td>
<td>28</td>
<td>3</td>
<td>40</td>
<td>5</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Tarea10</td>
<td>29</td>
<td>4</td>
<td>42</td>
<td>6</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Tarea11</td>
<td>33</td>
<td>1</td>
<td>48</td>
<td>1</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Figura 90. Diagrama de Gantt del proyecto
La parte del diagrama rallada corresponde a la planificación realizada del proyecto, teniendo en cuenta las tareas ejecutadas en paralelo. La zona lila corresponde a las tareas del proyecto desarrolladas según la planificación. Finalmente, la parte naranja, corresponde al tiempo real invertido por tarea.

Las semanas “11”, “12”, “27” y “43” corresponden al periodo vacacional. Las dos primeras a Navidad, la semana “27” a Semana Santa y la semana “43” a una semana de vacaciones en agosto. Durante estas semanas no se ha realizado ninguna tarea del proyecto.

La semana 1 corresponde a la semana del 14/09/2013 hasta el 20/09/2013. En primera instancia, el proyecto fue planificado para entregarlo en junio de 2014, concretamente la semana del 2/06/2014 (semana “34” del proyecto), pero por distintas razones se ha debido aplazar la entrega del proyecto a la semana del 22/09/2014 (semana “49”).

La programación del proyecto se ha tenido que modificar debido al carácter novedoso del estudio y al desconocimiento inicial del software de simulación.

La planificación realizada ha sido programada en semanas por un tema de simplicidad. El proyecto ha sido elaborado trabajando ocho horas al día, cinco días por semana. Evidentemente esta carga de trabajo es una media de lo que se ha hecho ya que algunos días se ha podido dedicar más tiempo y otros menos.

En la Tabla 13 se muestra el tiempo total en semanas y horas de la planificación inicial y de ejecución final del proyecto, sin contar las semanas de vacaciones.

<table>
<thead>
<tr>
<th></th>
<th>Semanas</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planificación inicial</td>
<td>30</td>
<td>1200</td>
</tr>
<tr>
<td>Tiempo de ejecución real</td>
<td>44</td>
<td>1760</td>
</tr>
</tbody>
</table>

Tabla 13. Planificación y tiempo de ejecución del proyecto
14 Presupuesto del desarrollo del proyecto

Los costes del proyecto realizado básicamente provienen de dos sectores diferentes, los recursos informáticos utilizados, y los recursos humanos, que son las horas invertidas en el estudio.

Al tratarse de un estudio computacional los costes de material se centran básicamente en los productos necesarios para el desarrollo del proyecto. En este caso se ha necesitado un ordenador. Además, se deben tener en cuenta los softwares utilizados, que como se trata de un proyecto académico, las licencias de éstos no han tenido ningún coste para el trabajador. De todas formas se debe destacar que si el proyecto lo realizara una empresa, las licencias de los programas aumentarían el coste total del proyecto. El software utilizado está formado por los siguientes programas:

- Surfplan Hobby versión 5.2
- SolidWorks 2013
- Ansys v14.5
- Paquete Microsoft Office 2010

Los recursos humanos se refieren a la gente que se ha necesitado para realizar el proyecto. En este caso, el proyecto ha sido desarrollado por un alumno de último curso de ingeniería aeronáutica. Por lo tanto se facturará como si de un becario se tratara, con un sueldo de 8€/hora. Además se debería tener en cuenta el coste de la cotutorización del proyecto, que no será incluido en el presupuesto. Por último, también se contactó con el creador del software Surfplan para poder exportar el modelo diseñado mediante este software al formato deseado.

El presupuesto inicial del proyecto queda desglosado de la siguiente forma:

Recursos humanos para el desarrollo:

Salario becario de ingeniería: 1200h*8€/h= 9600€
Impuestos de la universidad (%14): 0,14*14880= 1344€

Recursos informáticos:

Ordenador Sony Vayo i3= 800€

TOTAL= 11714€
El coste final del proyecto es superior al presupuesto inicial y queda desglosado de la siguiente forma:

Recursos humanos para el desarrollo:

Salario becario de ingeniería: $1760h \times 8\€/h = 14080\€$

Impuestos de la universidad (%14): $0,14 \times 14880 = 1971,2\€$

Recursos informáticos:

Ordenador Sony Vayo i3= 800\€

\[\text{TOTAL} = 16851,2\€ \]
15 Manual de uso del kite

Este apartado consiste en una guía teórica sobre el uso de una cometa de kitesurf. Es muy importante hacer un uso correcto para progresar correctamente en el deporte y navegar con seguridad. También se detallan las normas de seguridad y las reglas de uso y navegación.

15.1 Montar y desmontar la cometa

Antes de aprender las maniobras básicas, se debe saber cómo montar y desmontar el kite.

Una vez elegido un lugar seguro en la playa, se estira la cometa (con el extrados en contacto con la arena) en dirección al viento, poniendo arena sobre la punta que se encuentra a barlovento para que no salga volando. Acto seguido, se debe hinchar la vela mediante una mancha hasta la presión aconsejada del fabricante. Una vez cerradas todas las válvulas de las costillas y del borde de ataque se coloca la vela con el borde de ataque en la arena y encarado al viento (es aconsejable depositar arena en los paños centrales de tela para asegurarla y que no salga volando en caso de vientos fuertes).

Seguidamente se deben estirar las líneas, pudiéndose hacer desde la cometa hacia barlovento, o a la inversa, desde la cometa hacia sotavento de ésta. Una vez estiradas y desenredadas se conectan a la cometa, ya sea mediante las bridas o directamente a ella, comprobando que todo esté correcto.

Para desmontar el kite se realiza el proceso inverso. Una vez aterrizado en la arena se desconectan las líneas, se abren las válvulas para deshincharlo y se pliega.

15.2 Pilotaje, despegue y aterrizaje de la cometa

Para ser un buen kitesurfista es muy importante saber pilotar correctamente la cometa. En los cursos de aprendizaje se empieza por controlar una cometa tipo foil pequeña de dos líneas. Se enseña como girar la cometa a ambos lados tirando del lado deseado de la barra para empezar a tener noción del control que posteriormente se deberá tener sobre el kite.

15.2.1 Despegue de la cometa

Existen diversas formas de despegar la cometa. La más aconsejable y segura se realiza de forma asistida por algún compañero. Para el despegue asistido se deben seguir los siguientes pasos:
- Colocar el kite (hinchado previamente) en la arena con el borde de ataque hacia el viento.
- Revisar que todas las líneas estén correctamente conectadas. Conectar el leash de seguridad al arnés, y el chicken loop al gancho del arnés.
- Esperar con las líneas estiradas (siempre a sotavento de la cometa) a que el compañero levante el kite formando una “C” (con una punta en la arena y la otra en el aire) y encarado al viento.
- Caminar hacia barlovento del kite hasta notar tensión en las líneas. Las líneas deben quedar perpendiculares al viento, con la cometa a una banda y el piloto a otra. Comprobar por última vez que no hay ninguna línea entrelazada.
- Pedir al compañero que deje de sujetar la cometa para subirla lentamente hasta la posición del zenit.

![Image](image.png)

Figura 91. Despegue asistido por un compañero

Aunque no es aconsejable practicar kitesurf sólo, puede darse la situación en que no haya nadie que pueda asistir al despegue de la cometa. En estos casos también es posible realizarlo sólo. Para el autodespegue de la cometa en la arena se debe seguir los siguientes pasos:

- Colocar el kite (hinchado previamente) en la arena con el borde de ataque hacia el viento. Esta vez encarando un poco la cometa hacia donde queremos hacer el despegue para facilitar así su levantamiento del suelo.
- Revisar que todas las líneas estén correctamente conectadas. Éstas deben estar montadas según la dirección del viento, es decir la barra debe estar a sotavento del kite.
- Revisar que el espacio para el despegue es seguro y conectar el leash de seguridad y el chicken loop al arnés.
- Tirar del kite andando en círculo y manteniendo la tensión en las líneas. Mantener dicha tensión constante para que el kite gire y se sitúe en posición de
“C” (con una punta en la arena y la otra en el aire). Ayudarse de la línea superior de dirección para girar el kite.

- Parar de andar hacia barlovento cuando el kite se encuentre en la posición de despegue. Subir el kite lentamente hasta la posición del zenit.

Cuando se navega es posible que la cometa caiga al agua por diversos motivos, ya sea por una bajada del viento, por un fallo en el control... En estos casos es posible relanzar el kite desde el agua. Los pasos que se debe seguir son los siguientes:

- El primer paso consiste en voltear el kite. Normalmente, cuando la cometa cae al agua queda con el borde de ataque abajo, es decir tocando el agua. Es necesario voltearlo y ponerlo en la posición de “C” como en los otros dos métodos. Para realizar esto lo primero que se debe hacer es nadar hacia el kite unos metros tirando del cabo de freno, al cual van atadas las líneas de potencia. Dejar de tirar del cabo de golpe y la cometa volteara quedando con el borde de ataque hacia arriba.
- Seleccionar una de las dos puntas de la cometa y tirar de la línea de dirección para ayudar a levantarla al aire.
- Una vez se tiene una punta en el aire, tirar un poco del otro lado de la barra para arrastrar la cometa hasta el borde de la ventana de viento.
- Levantar el kite como en los otros métodos.

15.2.2 Aterrizaje de la cometa

Para aterrizar el kite, de igual forma que para despegarlo, es aconsejable la ayuda de un compañero que asista dicha maniobra. Se deben seguir los siguientes pasos:

- Despotenciar al máximo el kite para un aterrizaje más seguro.
- Mover el kite hacia uno de los dos lados del borde de la ventana de viento, bajandolo lentamente hasta que el compañero lo sujete y lo coloque en la posición segura, es decir con el borde de ataque en la arena y encarado al viento.
- En el caso de no disponer de alguien que asista al aterrizaje, realizar la misma maniobra con más cautela, tirando de la línea de dirección cuando una de las puntas del kite está en contacto con la arena. Esto permite situarlo en la posición de seguridad comentada anteriormente.
15.2.3 Pilotaje de la cometa

Lo primero que se debe aprender una vez tenemos la cometa en el aire es cómo manejarla y controlarla. Para ello es conveniente utilizar una cometa de aprendizaje pequeña, ya sea tipo foil o hinchable con líneas cortas. El viento ideal para aprender a volar la cometa es entre 7-10 nudos, ya que ésta se sustenta en el aire pero apenas ejerce tracción.

Se debe aprender a mover la cometa de un lado a otro mediante la barra de control, y conseguir la noción de la potencia que ejerce.

Algunos ejercicios básicos para tener un buen dominio de la cometa son los siguientes:

- Dibujar el número 8 a izquierdas y a derechas para notar las distintas zonas de presión. Hacer lo mismo dibujando ondas sinodales.
- Mantener el kite a 45 grados a un lado del borde de la ventana y correr hacia la derecha. Repetir lo mismo con el lado izquierdo.
- Estirarse o sentarse en la arena con el kite en la posición del zenit. Bajar el kite hacia un lado rápidamente para aprovechar la tracción ejercida y levantarse. Este ejercicio es muy útil para luego aprender a levantarse en el agua con la tabla.

15.3 Control de la potencia ejercida por la cometa

Antes de intentar entrar con la cometa en el agua se deben entender las técnicas y fundamentos sobre el control de la potencia del kite. La sustentación es proporcional al área de la vela proyectada y al cuadrado de la velocidad del viento aparente (la velocidad relativa que ve la cometa). Por eso, para tener un control de la potencia se debe tener un control del área proyectada y de la velocidad de vuelo del kite.

15.3.1 Control del área proyectada

El control de la superficie proyectada es el método más utilizado en vela ligera (también windsurf) para reducir la potencia de la vela. En el kitesurf, este método es equivalente a despotenciar la cometa acortando las líneas de potencia, o lo que es lo mismo, ajustando el cabo de freno. Esta acción cambia el ángulo de ataque, y por lo tanto la superficie proyectada de la vela. La forma más común de despotenciar una cometa de kitesurf es alejar la barra del propio arnés. Para conseguir más potencia, justo al contrario, se debe tirar de la barra hacia el cuerpo.

La gran ventaja de este método es que permite aumentar el rango de viento de la cometa, proporcionando al usuario más comodidad y tranquilidad en situaciones en las que se navega en la parte alta de dicho rango.

15.3.2 Control de la velocidad

Este método permite incrementar o disminuir a potencia del de la vela controlando la velocidad de vuelo de ésta. Este método es exclusivo para la navegación con kite como se verá a continuación.

Como la sustentación es proporcional a la velocidad relativa al cuadrado, ésta es la mejor forma de controlar la potencia que ejerce. Este método simplemente se basa en conseguir mayor velocidad relativa para proporcionar más potencia. Es por eso que cuando el kite vuela a través de la ventana de viento genera mucha más fuerza que cuando se encuentra en situación estacionaria, por ejemplo en el zenit.
Por lo tanto para conseguir más viento aparente (velocidad relativa mayor) y en consecuencia más potencia, se debe volar la cometa describiendo una onda sinusoidal en el cielo. De esta manera, la velocidad relativa será la suma de la velocidad del viento más la velocidad con la que la cometa se mueve arriba y abajo.

15.4 **Body Dragging (Deslizamiento por el agua sin tabla)**

El *body dragging* es la técnica de deslizarse por el agua siendo arrastrado por la cometa sin el uso de la tabla. Antes de aprender con la tabla se debe aprender esta metodología por dos razones. La primera, porque es más sencillo que navegar con la tabla y se adquiere una noción de las fuerzas desarrolladas por la cometa cuando se está en el agua. La segunda, porque es primordial realizar esta maniobra en caso de caída para poder recuperar la tabla si se ha quedado a barlovento (que suele ser lo más común) del usuario.

![Figura 94. Técnica del body dragging](image)

Para realizar esta técnica se debe aprender a ir al largo dibujando ochos y ondas sinodales en el cielo con la cometa. Una vez se tiene el control, se puede probar de ceñir utilizando el cuerpo como quilla, para generar una fuerza hacia barlovento (esto es lo que se debe hacer para recuperar la tabla en caso de caída). En la Figura 95 se muestra un esquema del proceso a seguir si el usuario se cae y la tabla queda a barlovento suyo.

![Figura 95. Esquema de cómo recuperar la tabla](image)
15.5 Water start

El water start es la maniobra de inicio para empezar a navegar. Ésta consta de todo el proceso desde que se entra al agua con la cometa controlada por una mano y la tabla sujetada por la otra, hasta que se realizan los primeros metros a bordo de la tabla.

Se debe colocar la tabla cuando el nivel del agua se encuentra por las rodillas, con la ayuda de una mano, mientras la otra controla la cometa. Una vez se tienen los pies colocados en la tabla se debe bajar la cometa del zenit al borde de la ventana con fuerza, para que la tracción ejercida por la cometa permita levantarse y empezar a navegar. Los primeros metros deben ser hacia el largo (en dirección al viento) para coger velocidad y posteriormente elegir rumbo de través o de ceñida.

Es importante practicar el ejercicio de levantarse en la arena para tener la sensibilidad en cuanto a la potencia que proporciona la cometa según la fuerza que se ejerce sobre la barra de control.

15.6 Primeros bordos

Después de saber hacer el water start y tener controlada la potencia ejercida por la cometa para poder levantarse sin caer hacia el frente, es el momento de realizar los primeros bordos, es decir de navegar.

Para seguir en la tabla sin caer se deben tener en cuenta las siguientes indicaciones:

- Si el viento es lo suficiente fuerte se puede seguir navegando manteniendo el kite a 35-45 grados verticalmente sin moverlo.
- Si viento no es lo suficiente fuerte la tabla pierde velocidad, y el kite ejerce menos tracción. Para evitar esto, se debe mover la cometa arriba y abajo describiendo una onda sinodal para generar el llamado viento aparente.
- La posición de las rodillas debe ser un poco flexionada cuando se aprende para tener más equilibrio.
- Las primeras veces es normal permanecer tan sólo unos segundos encima de la tabla. Se debe practicar para combinar el equilibrio en la tabla y el control de la cometa al mismo tiempo.

15.7 Navegar en ceñida

Si se quiere navegar en ceñida se seguirán los siguientes pasos:

- Si el viento es lo suficiente fuerte se debe mantener el kite a 30-40 grados presionando ligeramente más el pie trasero de la tabla que el delantero,
dirigiéndola hacia barlovento. Si la tabla se encara demasiado hacia el viento pierde velocidad, por lo que es necesario dirigirla hacia sotavento para ganar velocidad y volverla a encarar hacia el rumbo de ceñida. Si la cometa está en una posición baja será más sencillo poder clavar el canto de la tabla para poder dirigirla a barlovento.

- Si el viento no es lo suficiente fuerte es más difícil conseguir un rumbo de ceñida. Para hacerlo es necesario mover la cometa de forma que describa una onda sinodal. Cuando la cometa se está elevando se debe dirigir la tabla ligeramente hacia sotavento para ganar velocidad, mientras que cuando la cometa se baja se puede dirigir la tabla hacia barlovento. Es decir que la tabla dibujara una figura en forma de S, donde el tramo de ceñida será más pronunciado, de tal manera que el resultado final será en dirección en contra del viento.

- La parte superior del cuerpo debe estar ligeramente inclinada hacia donde se quiere ir. Esta posición ayuda a que las piernas giren la tabla contra el viento, permitiendo ver y fijar un rumbo con la vista.

- Cuando el viento es muy fuerte puede ser complicado tener un rumbo de ceñida pues la fuerza de la cometa es tan grande que nos empuja hacia sotavento. Para evitar esto se debe dejar de ejercer presión sobre la barra de control y llevarla a la posición más alejada del cuerpo. También se puede frenar el kite utilizando el cabo de freno.

15.8 Virajes

Para cambiar el rumbo y volver al lugar de partida se debe realizar un viraje. Con las tablas bidireccionales es muy sencillo, pues tan solo se debe parar y dirigir la cometa hacia el lado de donde se venía navegando. Con experiencia se puede realizar este viraje sin tener que frenar e incluso realizando un salto.

Para las tablas direccionales se debe realizar una maniobra llamada trasluchada, que en este proyecto no será explicada pues se considera fuera del alcance de éste.

15.9 Saltos

Cuando se lleva suficiente tiempo como para tener un buen control de la cometa y de los rumbos de navegación se puede empezar a realizar los primeros saltos, motivo por el cual el kitesurf tiene tantos adeptos.

Para saltar con la cometa enganchada al arnés se deben seguir los siguientes pasos:

- Navegar con la cometa en una posición cercana al agua, es decir baja.
• Cuando se divisa un lugar seguro para saltar, sin obstáculos cercanos, subir rápidamente el kite sobrepasando la posición del zenit hacia atrás.
• Doblar las rodillas y clavar el canto de barlovento de la tabla al agua.
• Cuando se sienta la fuerte tracción ejercida por la cometa, dejar de clavar el canto y estirar las rodillas para saltar.
• Para aterrizar, encasar la tabla hacia barlovento y el kite en la dirección de navegación para seguir navegando.

Es muy importante tener un buen control de la cometa cuando se aprende a saltar, pues el kitesurf es un deporte de riesgo y puede haber accidentes si no se tiene consciencia y respeto al mar y al viento.

15.10 Reglas de navegación

Es importante conocer las reglas de navegación a vela para evitar accidentes y colisiones, ya sea con otros kites o con otras embarcaciones.

15.10.1 Reglas de sentido común en el agua

Seguidamente se muestran las reglas de sentido común que se deben seguir en el agua, y por lo tanto las más generales.

• Evitar una colisión ante todo, aunque se tenga preferencia en el rumbo.
• Mantenerse alejado de embarcaciones con menos maniobrabilidad.
• Procurar navegar en una zona sin bañistas y con pocos kites en el agua.

15.10.2 Reglas de navegación a vela tradicionales

Existen tres normas aplicables al mundo del kitesurf de la navegación tradicional a vela:

• Cuando dos embarcaciones tienen rumbo opuesto, tiene preferencia la que esta amurada a estribor (para el kitesurf el que tiene la pierna derecha delante).
• Cuando dos embarcaciones tienen el mismo rumbo, tiene preferencia el que está a sotavento.
• Cuando una embarcación modifica su rumbo (vira o traslucha) se mantiene separada de la otra que no maniobra, es decir no tiene preferencia.

15.10.3 Reglas de navegación aplicadas al kitesurf

Todas las reglas explicadas anteriormente son válidas para este deporte. Tan sólo se deben definir y concretar para entenderlas a la perfección y hacer un uso correcto de ellas.
Un punto importante que se debe definir es la distancia de seguridad que se debe mantener cuando no se tiene preferencia frente a otro deportista o embarcación.

Como se ha explicado anteriormente, la cometa puede volar donde sea por delante del que la controla dentro de la ventana de viento. El espacio que ocupa forma un cuarto de esfera con el deportista en el centro y de radio la longitud de las líneas.

Si se debe dejar una distancia libre de dos veces la longitud que ocupa la embarcación, está distancia será el doble de la longitud de las líneas. Por ejemplo, con unas líneas de 25 metros, la distancia de seguridad sería de 50 metros.

Afortunadamente, el ángulo al cual se suele navegar es entre 30 y 60 grados respecto la vertical. A estos ángulos, la cometa se encuentra lo suficientemente alta como para que la distancia de seguridad dependa más de la altura de la otra embarcación que de la longitud de las líneas del kite.

Para el caso en el que se navega con más kites en el agua, se debe tener en cuenta que el que navega a barlovento tiene preferencia siempre y cuando los rumbos sean contrarios y estos no se intersequen. En este caso, el que navega a sotavento debe bajar la cometa para que el que va a barlovento pueda seguir su rumbo sin problemas.

15.10.4 Normas aplicadas exclusivamente al kitesurf

Existen otras normas aplicadas exclusivamente al kitesurf debido al propio deporte:

- En el caso de que un kiter esté entrando al agua para empezar a navegar, éste tiene preferencia frente a uno que se aproxime a la arena.
- Cuando se salta, uno puede desplazarse 25 metros o más (dependiendo de las condiciones) hacia sotavento. Por lo tanto, no se puede saltar si hay algún obstáculo por delante a no ser que se encuentre muy alejado.

15.11 Revisiones y mantenimiento del material

En el kitesurf no existen revisiones periódicas del material como puede ser en el mundo de la aeronáutica, ya que el riesgo de algún fallo del equipo no es tan peligroso como en otros sectores. De todas formas, es importante mantener una revisión y mantenimiento constante del material, pues se trata de un deporte de riesgo y puede haber accidentes graves.

A continuación, se detallan una serie de pautas para un buen mantenimiento del material:
- Lavar con agua dulce todos los componentes (barra de control, líneas, arnés y tabla) después de cada sesión. Si la cometa ha caído al agua y no se usará durante un tiempo también se debería lavar. La sal es un elemento muy corrosivo y puede dañar notablemente los materiales.
- Intentar plegar y desplegar la cometa sobre arena fina, vigilando que no haya piedras afiladas u otros elementos que puedan dañar la tela del kite.
- No guardar la cometa plegada con mucha arena ya que al ponerla a presión dentro de la bolsa pueden producirse poros en la tela.
- No dejar hinchado el kite en la arena durante mucho tiempo pues el flameo que se produce en el borde de fuga puede provocar daños.

En general, se deben seguir está pautas y el sentido común para intentar mantener al máximo buen estado el material de kitesurf. A pesar de eso, en ocasiones pueden romperse algunos componentes, ya sea por fatiga u otras causas. Es por eso que se tienen que cambiar los siguientes componentes cuando sucede algún tipo de daño:

- Uno de los elementos que se rompe por fatiga y uso es el cabo de freno. Es muy recomendable revisar su estado antes y después de cada uso, y cambiarlo cuando se vea un desgaste en la cuerda. No se debe esperar a que se rompa, pues puede provocar un accidente en alta mar, perdiendo el control de la cometa sin poder volver a la orilla.
- Antes de cada sesión se tienen que revisar todas las líneas, se debe mirar que no haya nudos, pues son concentradores de tensiones, y que no tengan un desgaste notable. Esta revisión es muy sencilla de hacer ya que cuando se monta la cometa se deben estirar las líneas para anclarlas a ésta.
- Si se rompe alguna de las líneas se debe cambiar junto a su pareja, ya que es importante que tengan exactamente la misma longitud. Las líneas pueden estar más estiradas debido a las tracciones a las cuales se encuentran sometidas, por lo tanto si únicamente se cambiara una, seguramente su vuelo sería asimétrico.
- Revisar los elementos del arnés, que se encuentren en buen estado y que esté bien atado, sobretodo la barra donde se ancla el chicken loop. Revisar también el estado del chicken loop y del finger, pues es por donde se encuentra atada la cometa al cuerpo del deportista.
- Atar correctamente el leash (cuerda) de seguridad, tanto al arnés como a la cometa, ya sea a una quinta línea o a una de las líneas de potencia. Este leash debe estar bien conectado, pues si se tira del sistema de seguridad es por donde la cometa queda atada, haciendo que no se pierda con el viento.
• Antes de empezar a navegar comprobar que el sistema de seguridad _quick release_ funcione correctamente, pues si se tiene algún problema se requiere su uso.

• Si se localiza algún poro o agujero en la tela no despegar la cometa. Debe repararse mediante un parche, si puede ser realizado por un profesional.

• Realizar una revisión de todas las costillas y el borde de ataque periódicamente, mirando que estos no pierdan aire. Si hay pérdidas de aire puede haber algún tipo de pinchazo o fallos en la válvula. En ese caso, se tiene que extraer el _bladder_ (cámara de aire) y repararlo o cambiarlo.

• Si explota alguna cámara de aire provocando la rotura de la tela de una costilla o el borde de ataque se debe reparar ambas cosas, llevándolo a algún taller profesional donde pongan un parche que refuerce toda la zona.
16 Conclusiones

En este apartado se detallan las conclusiones extraídas del estudio realizado, así como del proyecto en general.

- El estudio realizado debe entenderse como una primera etapa en el diseño de una cometa de kitesurf para el análisis mediante simulación de la interacción entre el fluido y su estructura.
- El modelo diseñado para el estudio FSI ha intentado ser lo más realista posible, realizando las hipótesis convenientes para facilitar el estudio, intentando que éstas perjudiquen lo menos posible la exactitud de los resultados. En el campo de las simulaciones computacionales es muy importante definir correctamente las hipótesis y simplificaciones realizadas para ser fíeles al problema real.
- Los resultados del análisis CFD son resultados conocidos en el mundo de la aeronáutica. De todas formas, se muestra el gran potencial de esta herramienta para encontrar resultados de un modelo particular, del cual se puede estudiar el comportamiento del flujo a su alrededor y, de ahí, modificar los distintos parámetros que interesen para hacer más eficiente el prototipo. Además se demuestra cómo obtener resultados tan importantes como son los coeficientes aerodinámicos mediante los cuales se pueden realizar estudios relacionados con el comportamiento de la vela.
- El análisis de interacción entre el fluido y la estructura del kite demuestra que se puede analizar el comportamiento estructural de un modelo de cometa sin la necesidad de fabricar un prototipo. Se pueden simular todo tipo de condiciones en las que puede volar una cometa, ya sea estática o dinámicamente. No se ha considerado un estudio dinámico para el proyecto debido a su gran dificultad y tiempo de dedicación necesario.
- En el mundo de la simulación es muy importante la creación de un buen modelo simplificado en CAD para su posterior análisis. Para ello es importante tener en cuenta varios aspectos:
 o Estudiar bien y pensar anteriormente las simplificaciones que se realizarán en el estudio. Hay que tener claro que nivel de detalle se requiere en el modelo geométrico para obtener el nivel de exactitud deseado en los resultados.
 o El nivel de detalle de los resultados puede variar según subdominios del modelo. En este caso por ejemplo, interesaba tener una buena exactitud en las proximidades del kite. A veces es necesario sacrificar el nivel de
detalle en determinadas zonas para lograr un mejor balance entre la exactitud y el coste computacional.

- La capacidad computacional disponible es un factor a tener en cuenta.
- Un modelo geométrico simple y robusto implica un mallado más sencillo y de mayor calidad.
- El tiempo de dedicación en la creación de un buen modelo geométrico puede llevar incluso más tiempo que el propio análisis a realizar.

- En este proyecto se han realizado dos tipos de simplificaciones e hipótesis, unas relacionadas con el modelo geométrico y otras relacionadas con el modelo físico y de cálculo (condiciones frontera, hipótesis del flujo y la turbulencia, elementos estructurales...). Es importante que haya un buen balance entre el nivel de simplificaciones llevadas a cabo y el nivel de detalle de la solución que se quiere obtener.

- Las solicitudes de carga a las que se expone una cometa de kitesurf pueden ser muy variadas, generando algunas grandes fuerzas aerodinámicas, tensiones y desplazamientos. En un estudio estacionario, con el kite en el zenit y velocidades de viento dentro del rango de vuelo, la cometa tiene un buen comportamiento, sin llegar en ningún caso estudiado a sufrir deformaciones plásticas o roturas. Se debe tener en cuenta pero, que para el diseño de un kite, deberían realizarse pruebas con solicitudes mayores, pues desplazamientos muy grandes podrían generar la pérdida de algunas propiedades aerodinámicas debido a grandes cambios en su estructura.

- El uso de software comercial para el estudio y simulación de un problema ingenieril puede ser útil en gran multitud de campos. Sin embargo hay veces que es más recomendable el uso de un código propio diseñado exclusivamente para el tipo de problema a resolver.

- El impacto medioambiental del kitesurf es pequeño comparado con los beneficios que puede aportar a la sociedad.

- Una buena planificación detallada del proyecto es esencial para conseguir unos buenos resultados y cumplir con el plazo de entrega programado. Además es necesario establecer una serie de prioridades en la resolución del problema para no desviarse de los objetivos y el alcance definidos al inicio.

- Las simulaciones mediante métodos computacionales permiten un ahorro de tiempo, energía y dinero frente a otros tipos de ensayos experimentales. Concretamente, en el kitesurf se podría ahorrar la fabricación de prototipos para testear experimentalmente mediante el uso de estas técnicas de simulación.
• El kitesurf es un deporte de riesgo, por lo que es importante tener unas buenas nociones de la mecánica de vuelo de la cometa y de su manual de uso. Es muy importante realizar una serie de revisiones del material, así como tratarlo debidamente para evitar posibles accidentes.
17 Bibliografía

ANSYS. 2014. Introduction to Ansys CFX. Ansys tutorials v14.5.

ANSYS. 2014. Introduction to Ansys Design Modeler. Ansys tutorials v14.5.

ANSYS. 2014. Introduction to Ansys Mechanical. Ansys tutorials v14.5.

WILCOX, David C. . 1998. Turbulence modeling for CFD. 2nd ed. California, DCW Industries