DSpace DSpace UPC
 English   Castellano   Català  

Treballs academics UPC >
Màsters Oficials >
Master in Artificial Intelligence - MAI (Pla 2006) >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2099.1/13110

Arxiu Descripció MidaFormat
Peng Si.zip682.45 kBZIP FileVeure/Obrir

Títol: Approximate nearest neighbour search with the fukunaga & narendra algorithm
Autor: Si, Peng
Tutor/director/avaluador: Aluja Banet, Tomàs Veure Producció científica UPC
Universitat: Universitat Politècnica de Catalunya
Matèries: Àrees temàtiques de la UPC::Enginyeria electrònica i telecomunicacions::Processament del senyal::Reconeixement de formes
Pattern recognition systems
Reconeixement de formes (Informàtica)
Data: 5-set-2011
Tipus de document: Master thesis
Resum: English: Nearest neighbour search is the one of the most simple and used technique in Pattern Recognition due to its simplicity and its good behaviour.. Many fast NN search algorithm have been developed during last years. However, in some classifacation tasks an exact NN search is too slow, and a way to quicken the search is required. To face these tasks it is possible to use approximate NN search, which usually increases error rates but highly reduces search time. One of the most known faster nearest neighbour algorithms was proposed by Fugunada and Naendra. There are two way to perfoem the algorithm: building a tree or performing clustering(classic way) in process time that is traversed on search time using some elimination rules to avoid its full exploration. This paper tests one type of the improvement in a real data environment. A new priority list is invited in order to reduce significant both: the number of distance computations and the search time expended to find the nearest neighbour. This work has been developed on the program R-project version 2.13.1. over a computer with Windows Vista 32 bits, CPU: AMD Athlon X2 Dual-Duo CPU 2.00GHz and RAM: 2038 MB.
URI: http://hdl.handle.net/2099.1/13110
Condicions d'accés: Open Access
Apareix a les col·leccions:Master in Artificial Intelligence - MAI (Pla 2006)
Comparteix:



SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius