DSpace DSpace UPC
 English   Castellano   Català  

Treballs academics UPC >
Màsters Oficials >
Master in Artificial Intelligence - MAI (Pla 2006) >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2099.1/12663

Arxiu Descripció MidaFormat
Ivon cardenas.pdf10,82 MBAdobe PDFVeure/Obrir

Títol: Kernel-based manifold visualization of GPCR sequences
Autor: Cárdenas Domíınguez, Martha Ivón
Tutor/director/avaluador: Vellido Alcacena, Alfredo Veure Producció científica UPC; Giraldo, Jesús
Universitat: Universitat Politècnica de Catalunya
Càtedra /Departament: Universitat Politècnica de Catalunya. Departament de Física Aplicada
Matèries: Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Sistemes experts
Genomics
G-Protein Coupled Receptors (GPCRs)
Statistical machine learning
Genòmica
Data: 22-jun-2011
Tipus de document: Master thesis
Resum: G-Protein Coupled Receptors (GPCRs) are key players in cell- cell communication. They transduce a wide range of extracellular signals such as light, odors, hormones or neurotransmitters into ap- propriated cellular responses. These receptors regulate many cell functions and are encoded by the largest gene family in mammalian genomes, representing more than 3% of the human genes. GPCRs are the estimated target of approximately half of the medicines cur- rently in clinical use. Probabilistic modelling and specifically, machine learning prob- abilistic models have only recently begun to be applied to the anal- ysis of GPCR functioning, although their application is expected to generate new insights in this field. Statistical machine learning techniques are specially suited to deal with some of the common challenges of molecular modelling in proteins, and should be of spe- cial interest when the three dimensional structures of the proteins and receptors remain unknown at large. In this thesis, we describe a statistical machine learning model of the manifold learning family, adapted through kernelization to the analysis of protein sequence data. Experimental results show that it provides a differentiated visualization and grouping of GPCR subfamilies and that these groupings faithfully reflect the structure of GPCR phylogenetic trees. 3
URI: http://hdl.handle.net/2099.1/12663
Condicions d'accés: Open Access
Apareix a les col·leccions:Master in Artificial Intelligence - MAI (Pla 2006)
Comparteix:



SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius