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Resum

Gaia és una missi6 astrometrica de I'Agéncia Espacial Europea (ESA) amb
I'ambicids objectiu de fer el mapa en tres dimensions de la nostra Galaxia més
gran i precis fet fins ara. Per aconseguir-ho Gaia escanejara I'espai
continuament i proporcionara informacié molt precisa sobre la posicid, velocitat
i espectre d’aproximadament mil milions d’estrelles de la Via Lactia. Aixo
proporcionara una informacié molt valuosa sobre la composicid, formacié i
evolucié de la nostra Galaxia. Gaia també detectara milers de petits objectes
del sistema solar, planetes extra-solars, galaxies llunyanes, etc.

Per tal de fer les observacions el més precises possibles Gaia descriura una
orbita de tipus Lissajous al voltant del punt Lagrangia L2 del sistema Sol-Terra.
Aquesta és una orbita molt adequada ja es molt estable. Aixi mateix, aquesta
orbita té una gran estabilitat térmica. A més té unes caracteristiques
d’observacié molt bones ja que el Sol, la Terra, la Lluna i els planetes interiors
estan sempre per darrere del camp d’observacio.

En aquest treball final de carrera, en un primer lloc, estudiarem les orbites de
Lissajous, simularem [l'orbita de Lissajous prevista per la missi6 Gaia i
analitzarem les seves caracteristiques. En segon lloc integrarem l'orbita de
Lissajous simulada a la llei d’escanejat de Gaia, la qual estara afectada pels
moviments de rotacid, precessié de I'eix de rotacio, i translacié al voltant del
Sol, i estudiarem els seus efectes. Finalment, en un tercer lloc, per fer un
analisis més realista, afegirem soroll i calibracions periodiques, i estudiarem
els seus efectes sobre la llei d’escanejat tenint en compte l'orbita Lissajous.
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Overview

Gaia is an astrometric mission of the European Space Agency (ESA) with the
ambitious goal of obtaining the largest and most accurate spatial map in three
dimensions up to now. To achieve this, Gaia will scan the space continuously
and will provide very precise information about the position, speed and spectra
of about a billion stars in the Milky Way. This will provide valuable information
on the composition, formation and evolution of our galaxy. Gaia will also detect
thousands of small solar system objects, extra-solar planets, distant galaxies,
and so on.

To make the observations as accurate as possible Gaia will use a Lissajous
type orbit around the L2 Lagrangian point of the Sun-Earth system. This is a
very appropriate orbit because it can provide during a long time a very large
positional stability to the spacecraft and a very large thermal stability. This orbit
also has very good observational features because the Sun, Earth, Moon and
inner planets are always behind the field of observation.

In this work, we will firstly study Lissajous orbits, simulate the expected
Lissajous orbit for Gaia mission and analyze its characteristics. Secondly, we
will integrate the simulated Lissajous orbit according to the Gaia scanning law,
which can be obtained from rotation motion, the precession of the axis of
rotation and the translation around the Sun, and study its effects. Finally, to do
a more realistic analysis, we will add noise and periodical recalibrations, and
study their effects on the scanning law of the Lissajous orbit.




Analysis of the Gaia orbit around L2




Analysis of the Gaia orbit around L2 5

INDEX
CHAPTER 1: INTRODUCTION........cooutuiinnmnnriiisssnnsinsssmnssensssssssesssssns s essssmnna e 7
L € T 1 T4 41T o o 7
1.2 Gaia general features........ccuiiiicmiinininns s s e s e e 7
IR F- 1= =T oz 1o 1 T T =1 9
1.4 PUIPOSE Of OUF WOFK....iiiieriiieniriimnsiisess s s s sams s s s e s s ssms s sams e sam s e amn e anamnnnnas 10

CHAPTER 2: SIMULATION OF THE LISSAJOUS

ORBIT AROUND L2.........ccccceieimmmeeeniiiiiiiissnnzieesssseessssssnnzsnsss s eeesssssssnnznnnsseeeeenens 11
2.1 LisS@jous OFDits.......cccuirmriiimmiie s s e e e e 11
PR €= § 1= - TIT=T o (1= Yo T 11
2.3 Reduced equations........ccueceeriiemmmnismemniss s sssas s s sss s s s s s sas e e e nnnnn 13
2.4 Orbit simulation MOdel..........cciiiiir e —————— 14
2.4.1 Mission duration time Constraint...........ooo oo 14
2.4.2 Sun-Gaia-Earth angle constraint............ccooiii i 14
2.4.3 SIMUIALION ALA....cci e 16
CHAPTER 3: THE LISSAJOUS ORBIT OF GAIA..........ccoccuniiieneinnnnnninnneeeenn 18
3.1 The role of the initial conditions........c.cccciiiieiinriiinn s ———— 20
CHAPTER 4: THE 3-DIMENSIONAL MOTION OF GAIA...........cccccceerrrerrrrnnnns 25
T B T 311 oY o 11T o o O 25
2 o 1= U1 25
2 B I =V g 1= =¥ (o o TSP 25
4.2.2 Translation + PreCeSSION. ......cociiii it 27
4.2.3 Translation + Precession + SPiN.......cooiiiiiiiee e e e 29
CHAPTER 5: THE EFFECTS OF NOISE..........ccoooccetttiiiiiinisssnnsssssssssssnenennenenns 32
L0 T 0 10T 11703 4T o T 32
5.2 RESUIS. ...t s s 32
5.2.1 Translation + Precession With NOISE...........coi oo 32
5.2.2 Translation + Precession with noise + Spin with NOISe.........c.cccoiiiiiiiie 35
5.2.3 Translation + Precession with noise + Spin with noise + Pointing errors................. 38

CHAPTER 6: CONCLUSIONS........ccontmmimmiiissmssissssnssssssnssss s nsssss snssss s nsssss snsnn e 41




6 Analysis of the Gaia orbit around L2

BIBLIOGRAPHY.....cc0iiiiesmnniiiisnnnsinisssnnsssssnnssinssssnsssssssnsssssssseeessessssnnsnsnnnssnns 43
APPENDIX A: LAGRANGIAN POINTS .......cccciiesmmmmnnnniiiniiisnnneneeseensssssnnnases a4
APPENDIX B: LISSAJOUS CURVES.........ccccccmmmmrrrriiisiisnnnceeeseeeeeeeneennnnnnnnnes 46
APPENDIX C: THE SCANNING LAW OF GAIA........cccceviiiinmnniniinnnnniiinnnnnees 47
C.1 The translation MOtION.........ccocciiiicci e 47
C.2 The precession MOtION......ccuireeriiise st s s s s e s e aaan e e am e en s an e e nnnes 48
LOTec T I T= =] o1 4T 14 o1 49

APPENDIX D: NUMERICAL CODE..........ccccoomiuemiinniinsiissiisssiissssssssssss s e 51



Analysis of the Gaia orbit around L2 7

CHAPTER 1: INTRODUCTION

1.1 Gaia mission

Gaia is an ambitious astrometric mission of the European Space Agency (ESA).
Gaia will produce the largest and most precise three-dimensional space map of
our Galaxy. In particular, Gaia will obtain extremely accurate positional and
radial velocity measurements for about one billion stars in our Galaxy and
throughout the Local Group of galaxies. The Gaia spacecraft, which is shown in
Fig. 1.1, will also detect a large number of minor objects in our Solar System,
extra-solar planets, galaxies in the nearby Universe and distant quasars, and
will provide new tests for theory of General Relativity. The technical solutions
envisaged to perform these tasks are very challenging, and involve all the
relevant aspects of the spacecraft, from its instrumentation and on-board data
handling to the on-ground data processing and analysis.

Figure 1.1: An artist impression of Gaia.

1.2 Gaia general features

Gaia is the successor of the ESA’s Hipparcos mission, which was launched on
1989 and produced a catalogue of over 2 million stars. Gaia aims to improve
significantly the Hipparcos catalogue because its photometric sensitivity will be
30 times larger and, moreover, it will measure the positions and motions of stars
and other objects with a much better accuracy (by a factor =200).
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The Gaia spacecraft will be launched on 2012 from the European Spaceport in
Kourou, French Guiana, using a Soyuz-ST rocket with an additional Fregat
stage. The launch vector will insert Gaia on a transfer orbit and then, after 4
months, the spacecraft will manoeuvre to enter into a Lissajous orbit around the
Lagrange point L2 of the Earth-Sun system. The expected mission lifetime is 5
years, but it could be extended up to 6 years, depending on the performance of
the on-board instruments.

The Gaia communications system will transmit the science data to the ground
station at about 4 Mbps during about 8 hours per day and the complete raw
database will have a size of approximately 100 Tb. The estimated Gaia overall
budget is about 550 million Euros and the main contractor is EADS Astrium with
a contract of more than 300 million Euros to build the spacecraft. The
spacecraft is composed by three different modules: a payload module, a
mechanical service module and an electrical service module. A schematic
representation of Gaia payload is shown in Fig. 1.2

Primary mirrors for the Astro telescopes

Beam combination optics

Astro focal plane
Spectro focal plane

Primary mirrer for Spectro Basic angle monitoring system

Focal plane assembly radiator

Figure 1.2: Schematic figure of the Gaia payload.

The payload module consists basically of two telescopes, with a single focal
plane. This scientific payload has three instruments: the astrometric instrument,
the broad band photometer and the radial velocity spectrometer. The
astrometric instrument will be in charge of measuring five astrometric
parameters: the projected position of the star in the sky (2 angles), the proper
motion (2 time derivatives of position, one for each angle) and the trigonometric
parallax (which provides the distance to each source). The broad band
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photometer provides continuous star multiband photometry in the 320-1000 nm
band, and it is also used to calibrate the chromaticity of the astrometric
instrument. Finally, the radial velocity spectrometer is intended to provide radial
velocity measurements and high resolution spectral data in the narrow band
847-874 nm. All these tasks are performed in a dedicated area of the focal
plane, which consists of 106 CCDs, working in Time Delayed Integration (TDI)
mode. In this mode the charge of each of the pixels of the CCDs is transferred
to the next one at the same rate the satellite scans the sky. Each of the
telescopes of Gaia, one for each field of view, consists in one primary mirror of
size 1.45 m x 0.5 m, a secondary mirror and a tertiary mirror — see Fig. 1.2.

The mechanical service module comprises the spacecraft main structure, which
will be hexagonal conical shaped and will be optimised to guarantee the stability
of the basic angle (the angle between the two telescopes). This module also
comprises a flat deployable sunshield which prevents illumination from the Sun
of the payload module, a thermal tent which provides additional protection and
the thrusters of the chemical propulsion system and the complete micro-
propulsion system.

Finally, the electrical service module basically houses the communication
subsystem, the central computer and data handling subsystem, and the power
subsystem.

1.3 Gaia scanning law

The Gaia scanning law, which we display in Fig. 1.3, relies on the systematic
and repeating observation of the positions of the star along the two fields of
view. The spacecraft will be slowly rotating at a constant angular rate around an
axis perpendicular to those two fields of view (the spin axis). With a constant
basic angle and a known spin rate it is easy to know how much time it takes for
a star to transit the focal plane. The spacecraft spin axis will make an angle of
45° with the direction of the Sun. This is the optimal trade-off between the
astrometric requirements (basically, payload shading) and solar array efficiency.
This scan axis further describes a slow precession motion around the spin axis.
As already mentioned, Gaia will also describe a circular orbit around the Sun.
Finally, the spacecraft itself will describe a Lissajous orbit around the Earth-Sun
point L2.



10 Analysis of the Gaia orbit around L2
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Line of sight 2

Figure 1.3: Gaia scanning law.

1.4 Purpose of our work

In this work we focus on the future Gaia orbit around the Earth-Sun L2 point.
First of all, we will study and simulate in a realistic way the Lissajous-type orbit.
Then we will take into account the other motions which affect the Gaia scanning
law: the translation around the Sun, and the precession and the spin motions.
Secondly, we will study and simulate these motions and then we will analyze
the effect when the Lissajous orbit motion is added. After that, we will introduce
Gaussian perturbations and different noise distributions to our model in order to
study the effects of noise in the Gaia scanning law. We will also implement in
the model periodic recalibrations which correct the noise disturbances as it will
be done in the real mission. Finally, we will analyze the effects of the
implementation of the Lissajous orbit in the performance of Gaia.
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CHAPTER 2: SIMULATION OF THE
LISSAJOUS
ORBIT AROUND L2

2.1 Lissajous orbits

Lagrangian points, also known as libration points, are named after the French-
ltalian mathematician Joseph-Louis Lagrange (1736-1813) who discovered
them in the eighteenth century as equilibrium solutions of the three-body
problem. The Lagrangian points (L1-L5) are five points in an orbital
configuration (see Appendix A for additional information about Lagrangian
points) where a small object (in our case, a satellite) can be stationary relative
to two larger objects (in our case, the Sun and the Earth). The orbit of a
satellite around a Lagrangian point is a quasi-periodic orbit, which does not
require propulsion. Generally speaking, the orbit has components in the plane
of the two main bodies (in our case, the ecliptic) and in the perpendicular plane,
and is mathematically well described by means of a Lissajous curve in the three
dimensional space (see Appendix B for additional information about Lissajous
curves). Several space missions have been placed in Lissajous orbits around
the Lagrangian points of the Sun-Earth system. Examples of such missions are
the ACE, SOHO and WIND missions, which orbit around the Lagrangian L1
point, or the WMAP, Herschel and Planck missions which do so around the
Lagrangian L2 point. Gaia will orbit around the L2 Sun-Earth Lagrangian point.
In this way Gaia will take advantage of excellent observation conditions since
the Sun, the Earth and the Moon do not interfere with the observations.

These orbits have special interest because they have a highly stable position
around Lagrangian points. This results in very accurate observations and very
low fuel consumption due to orbital corrections. Other important advantages are
the very high thermal stability and the absence of planets or other large space
bodies eclipsing the line of sight. However, it must be said that although in
theory Lissajous orbits are highly stable in practice any orbit around a
Lagrangian point is dynamically unstable. This means that small departures
from equilibrium grow exponentially as time passes by and, as a result, a
spacecraft located in an orbit around any libration point must use its own
propulsion systems to perform periodical orbital corrections.

2.2 General equations

To simulate the Gaia Lissajous orbit we must first define a reference frame. Our
coordinate frame is shown in Fig. 2.1 and uses 3D Cartesian coordinates, so
the position of an object is represented by three coordinates x, y and z. We take
the coordinate origin at the Sun-Earth L2 Lagrangian point and we define the
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ecliptic plane as the xy-plane, where the x-axis is the line between the Sun and
the Earth and it is positive in the direction going from Sun to the Earth. The y-
axis is positive in the direction of Earth translation. The z-axis is perpendicular
to the ecliptic plane and its positive direction is fixed by the y and x-axis in
accordance with the right hand rule — see Fig 2.1. Note that when the Earth is
moving around the Sun the coordinate frame also does it.

L2

Figure 2.1: Coordinate frame used in this work.

Once the reference frame has been defined, we can write the differential
equations of the motion using the linear approximation for the circular restricted
three-body problem:

i-29-(1+2K)z = 0
j+2&—(1-K)y = 0 (2.1)
24Kz = 0

In these equations Kis a constant which depends on the mass of Sun (m;) and
the mass of Earth + Moon (m,):

(2.2)

P+ @B-pwat+@ -2z’ —par?-2pzL—p=0 (2.3)
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In these expressions, x, depends on the masses of the intervening bodies and
is one of the three real roots (for each Lagrange point) of the 2.3 equation.
Solving these equations it turns out that for our case K is equal to
3.9405221845259. Substituting this value in the equations of motion and solving
for x, y, z, we find the following general equations of motion:

r = A; e+ Ay e vt 4 Agcos Wyt + Agsinwgyt
Rt <N

(2.4)

= ClAl e ——ClAQ (&

z = A, cos(wyt+ ;)

+ co A4 COswyyt — cp Az sinwgyt

In these expressions the coefficients are linear functions of the initial conditions
in accordance with the following expression:

CaWay Way . wialer s Tl
A 2d; 2d2 2ds  2d1 To

cowzy o o e
Az 2d: 8 . % 9a Yo (2.5)

= C1Azy 1 : '
A3 B i 0 0 - a1 Zo
A4 0= 2‘3_11 c1 0 yo
da do

1
= (—K + 2+ v/OK? — 8K)}

Wy = —=
’ \{ﬁ : (2.6)
Azy = %(K——Q—}—\/QK?—SK)?
Aey? —1—2K
cp =
2ay 2.7)
eyt + 142K
PRyeers 2Wey
di = Cl>\my + Cowzy 28

2.3 Reduced equations

The previous equations can be further simplified adopting adequate initial
values. In particular, we adopt A;=A.=0. With these initial values the general
equations are reduced to the following equations:

z = Agcos(wgyl + Poy)
= —Aysin(wgyt + dzy)
z = Azcos(w,t + o)
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(2.9)

These are the Lissajous orbit reduced equations and, as can be seen, the x, y
frequencies and phases are coupled, while the motion around the z-axis is
completely independent, so the equations represent an harmonic xy motion and
a z oscillation. Also the x and y amplitudes are closely related:

Ay =i (2.10)
where ¢, = 3.1872293 is a constant.

2.4 Orbit simulation model

2.4.1 Mission duration time constraint

One of the main constraints that we must take into account in order to select the
orbital parameters is the mission duration which depends, among other things,
on the level of Sun radiation at each moment. As can be seen in Fig. 2.2,
around the L2 point there is a circular zone where the Sun is always semi-
eclipsed by the Earth. This is the Earth-penumbra zone and if Gaia enters into
this zone it would have two problems: first of all, their solar panels would be
unable to generate enough electrical power since they would not receive
sufficient Sun light. On the other hand, entering into this zone for a few minutes
would generate a detrimental thermal shock in the spacecraft.

PENUMBRA
SHADOW

Figure 2.2: Earth shadow and penumbra

The provided mission duration is over 5 years, with the possibility of extending it
to 6 years. Consequently, the orbit must be chosen in such a way that a
minimum time of 6 years without any solar eclipse must be provided. The time
without eclipse depends on the initial conditions of the orbit and the Earth
penumbra radius near the L2 point is approximately 13000 km.

2.4.2 Sun-Gaia-Earth angle constraint

Another constraint to the specific selection of the orbital parameters that must
be taken into account is the angle between the Sun, Gaia, and the Earth at
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each time. This angle depends on the spacecraft position at each moment and
it must be less than 15 degrees all the time, so the maximum orbit amplitudes
must be chosen according to this. The situation is described in Fig. 2.3.
Although it may seem that the angle varies only in a plane, we remind that the
Lissajous orbit is a three-dimensional trajectory and, thus, the angle varies
accordingly.

SUN EARTH L2
MO
SGE ANGLE =
GAIA

Figure 2.3: Sun-Gaia-Earth angle

To calculate the angle we use the scalar product given by the following
expression:

ﬂ 2.11)
IGE[|GS],

Sﬁ = arccos

The variables are the Gaia-Earth and Gaia-Sun vectors, and their modules, are
defined at each time step. They are calculated using the following expressions:

GE = (GE,, GE,, GE.)
(2.12)

—_—

§ =(GS,,GS,,GS,)

IGE| = V(GE, )\ +(GE, ) +(GE,)’
(2.13)

IGS| = V(GS, [ +(GS, ) +(GS. )’

To obtain the Gaia-Earth and Gaia-Sun vectors the values for the Sun-Earth
distance and the Earth-L2 distance are needed. We adopt for them the values
1.49598x108 km (1 Astronomical Unit) and 1507683 km, respectively.
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2.4.3 Simulation data

The simulation of the Lissajous orbit of Gaia has been done using a numerical
code which performs all the necessary calculations. The necessary input data
for these simulations is the initial position of the spacecraft. The implemented
code can be found in Appendix B. Hence, here we will only briefly summarize
the main simulation data. In particular, the values adopted for the amplitudes,
frequencies and phases of the Lissajous orbit for each one of the axis are
shown in Table 2.1.
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X axis y axis Z axis
Amplitude (km) A=AsCo A,= 100000 A,= 100000
Frequency (days™) Wy = 2:TUT,y Wy = 2:TUT,y w,= 2T,
Phase (rad) d,, = asin(yo/-A,) | P =asin(ys/-Ay)) | P,=acos(z/A,)

Table 2.1: Parameters of the Lissajous orbit.

As clearly shown in Table 2.1, the phase depends on the initial coordinates, s,
Z, but not on x, because it is coupled with y,. The specific values of the other
constants that are used in the simulation are summarized in Table 2.2.

Constant Value
Earth shadow radium (km) r=13000
Xy period (days) Ty =177.566
z period (days) T,=184.0

Table 2.2: Constants of the orbit of Gaia.
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CHAPTER 3: THE LISSAJOUS ORBIT OF GAIA

We ran our Gaia’s orbit simulator to assess first the mission duration. The
results of these runs are illustrated in the figures Fig. 3.1 to Fig. 3.5. In Fig. 3.1
we show the trajectory of Gaia (blue line) in the YZ plane along with the Earth
shadow (green circle). The simulated Lissajous orbit spans a total time without
eclipse of about 2300 days, which corresponds to about 6.3 years. Hence, the
selected orbit fulfils the requirements of the mission. In Fig. 3.2, 3.3 and 3.4, we
display different views of the Gaia trajectory on XY plane, XZ plane and in a
three-dimensional view, respectively.

x10° Plot of the YZ Gaia orbit

Figure 3.1: The simulated orbit on the yz-plane.

% 10° Plot of the YX Gaia orbit
1 T ! T T
1 .
T S S B ) PR .

Figure 3.2: The simulated orbit on the yx-plane.
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Figure 3.3: The simulated orbit on the xz-plane.

Plot of the 3D Gaia orbit

x10°

Figure 3.4: A three-dimensional view of the simulated orbit.

Finally, in Fig. 3.5 we present the time evolution of the Sun-Gaia-Earth angle.
As we can observed, this angle evolves with time following an oscillatory
convergent motion until an inflexion point over half the mission time, and after
this evolves following an oscillatory divergent motion until the mission ends. The
angle value is always between 0.4 and 5.3 degrees so our solution also fulfils
the SGE angle constraint and, thus, it is a valid Lissajous orbit.
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Plot of the Sun-Gaia-Earth angle

_____

0

I I 1 I
0 500 1000 1500 2000 2500
time (days)

Figure 3.5: The evolution of the SGE angle for the simulated orbit.

3.1 The role of the initial conditions

To understand more deeply the behavior of the Lissajous orbits we did some
additional simulations varying the initial position. In fact, the initial position of
Gaia will be related to the transfer orbit from the geostationary orbit to the L2
point. Although it is beyond the scope of the present work to analyze the exact
injection point, we will do some preliminary analysis to determine the influence
of the initial condition on the mission time. The basic idea is that in order to
avoid the solar eclipse during the maximum time the best initial distance to the
L2 point is precisely that which has the boundary of the eclipse zone (that is
13000 km). In Table 3.1 we show some examples of initial distances to L2 and
their corresponding orbit time without eclipse. As can be seen, the farther the
initial position with respect to the L2 point, the shorter the time without an
eclipse. Graphical representations of the Gaia orbit for different values of the
initial distance to L2 are shown in Figs. 3.6 to 3.9.

Initial distance to L2 | Orbit time without eclipse

(km) (years)

13000 6.3107
20000 6.0643
30000 5.8152

40000 5.5661

50000 5.0732
100000 3.3374
140000 0.3696
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orbit around L2

of the Gaia

alysi

An

Table 3.1: Mission lifetime as a function of the initial distance to L2.

Plat of the YZ Gaia orbit

x10°

T 08 06 -04 -02 0 0.2 04 0.6 0.8 1

x10°

(red circle) is at 13000 km from

the L2 Lagrangian point.

Figure 3.6: Gaia orbit when the initial position

Plot of the ¥Z Gaia orbit

x10°

A 08 -06 -04 D2 0 02 04 06 08 1

%107

Figure 3.7: Same as Fig. 3.6 for a distance of 50000 km.
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% 10° Plot of the YZ Gaia orbit

Figure 3.8: Same as Fig. 3.6 for a distance of 10000 km.

x10° Plot of the YZ Gaia orbit

Figure 3.9: Same as Fig. 3.6 for a distance of 14000 km.
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Similar results are obtained for the time variation of the SGE angle. We show
these results in Figs. 3.10 to 3.13.

Plot of the Sun-Gaia-Earth angle

angle (degrees)
[¥%)
i

I I 1
0 500 1000 1500 2000 2500
time (days)

Figure 3.10: Evolution of the SGE angle for an initial position of 13000 km from
the Lagrangian L2 point.

Plot of the Sun-Gaia-Earth angle

____________________

angle (degrees)
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I I I 1
0 500 1000 1500 2000 2500
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Figure 3.11: Same as Fig. 3.10 for an initial position of 50000 km from the
Lagrangian L2 point.
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Plot of the Sun-Gaia-Earth angle
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0 500 1000 1500 2000 2500
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Figure 3.12: Same as Fig. 3.10 for an initial position of 100000 km from the
Lagrangian L2 point.

Plot of the Sun-Gaia-Earth angle
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Figure 3.13: Same as Fig. 3.10 for an initial position of 140000 km from the
Lagrangian L2 point.
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CHAPTER 4: THE 3-DIMENSIONAL MOTION OF
GAIA

4.1 Introduction

The 3-dimensional motion of Gaia is relatively complex since it results from the
combination of four motions. The first and most obvious one is translation
around the Sun. This orbit has obviously a period of one year, the same as that
of the Earth. The second important motion is the orbit that Gaia describes
around the Lagrangian L2 point, and it has been described and characterized in
previous chapters. To these motions the rotation of Gaia around its own spin
axis must be added. Finally, there is also a precession motion: it is the change
in the direction of the Gaia spin axis following a circle. Up to now we only have
simulated the Lissajous orbit. In order to simulate the complete scanning law we
need to add the other three motions. In previous efforts [1] a simulator of the
Gaia scanning law was implemented. In this simulator Gaia was considered to
be fixed at the L2 Lagrangian point, and the Lissajous orbit was disregarded. In
this chapter we describe the results of coupling our own simulator of the
Lissajous orbit to the previously built simulator. The resulting code, which fully
describes the 3-dimensional motion of Gaia, can be found in Appendix D.

4.2 Results

421 Translation

Although Gaia will orbit around the Sun, for the sake of clarity we will consider
that Gaia is fixed in a reference frame and, thus, the Sun orbits around it.
Hence, the path of the Sun mirrors the translation motion of Gaia. In Fig. 4.1 we
display the path of the Sun for the 6.3 years of maximum mission duration time,
as seen from Gaia, when the Lissajous orbit is disregarded (blue line), and
when we take it into account (green line).
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Figure 4.1: The translation curve with (green line) and without (blue line) taking
into account the Lissajous orbit.

As can be seen, the two plots look identical. The differences between the two
plots are very small because the maximum amplitude of the Lissajous orbit is
only 10° km, while the Gaia-Sun distance is about 1.5 x 10® km. On the other
hand, we can also compute the differences in the variation of the angle between
the two curves as seen from Gaia. This is shown in Fig. 4.2. As can be seen,
the angle is not zero at any moment, which would be the case if the two curves
were the same. Instead, the evolution of the angle clearly follows a pattern
similar to that of the SGE angle, which was studied in Chapter 2. This is an
expected behavior since we just added the Lissajous orbit to the translation
motion, so its effects should be clearly visible.
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Figure 4.2 Time evolution of the angle between the real position of Gaia and
the translation curve when the Lissajous orbit is taken into account.

4 2.2 Translation + Precession

The addition of the translation and the precession motions yields the
instantaneous direction of the spin axis of Gaia. In Fig 4.3 we show the
computed orbit when the Lissajous orbit is neglected (blue line) and when it is
taken into account (green line). In both cases we plot the motion during 6.3
years, the total foreseen mission duration. As in the previous case, the two plots
look identical but actually they are not. The differences between those two
curves can be best appreciated when looking at the time variation of the angle
between the two curves, as we did before. The time evolution of the angle is
shown in Fig. 4.4. In this case, as in the previous one, the differences follow the
same pattern obtained for the SGE angle in Chapter 2. However, now it is not
as evident as it was in the previous case. This is a consequence of the
considering a new motion, precession of the axis of Gaia.
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Figure 4.3: Time evolution of the spin axis of Gaia when the Lissajous orbit is
not taken into account (blue line) and the same when the Lissajous orbit is
added (green line).
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Figure 4.4: Time evolution of the angle between the instantaneous spin axis of
Gaia with and without including the Lissajous orbit.

4.2.3 Translation + Precession + Spin

Finally, in Fig 4.5 we show the curve when the translation, precession and spin
motions are included (blue line) and the same when we additionally take into
account the Lissajous orbit (green line). In this case, unlike in the previous two
cases, we only plotted one month and not the 6.3 years of mission duration
because the curves are more complex than the previous ones. The curve
encompassing 6.3 years would cover the complete sphere, as required by the
mission strategy, which demands a complete sky coverage.
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Figure 4.5: Direction of the telescope field of view when the Lissajous orbit is
disregarded (blue line) and the same when the Lissajous orbit is considered
(green line). We show only one month.

To better appreciate the differences between the two curves we plot in Fig. 4.6
the time evolution of the angle between the two curves. The first thing to be
noted is that now the frequency of the resulting curve is much larger. The
reason for this is the inclusion of the spin motion which, unlike the other two

motions, has a much higher frequency — see Ref. [1]. A close-up of these high
frequency variations can be seen in Fig. 4.7.
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Figure 4.6: Time variation of the angle between the telescope field of view
when the Lissajous orbit is disregarded and when the Lissajous orbit is
considered.
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Figure 4.7: Close-up of Fig.4.6.

The second thing to be noticed in Fig.4.7 is that it seems that the pattern of
variation of the angle does not follow the SGE angle pattern, as it was the case
for the two previously studied motions. Actually, it is following the SGE angle
pattern but the time scale is too short (1 month) to notice it. Consequently, in
Fig.4.8 we increased the time span of the plot to 1 year and, as can be seen,
now the pattern is consistent with our expectations. Finally, we remark that the
largest value that this angle reaches is 0.045°. This is the largest difference that
the field of view of the telescope of Gaia reaches with respect to the nominal
motion of Gaia.

Angle (degrees)

-.0 \ 1.0 Y Y.0 Y Y.0

Time (seconds) X"

Figure 4.8: Same as Fig.4.6 but for a time span of one year.
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CHAPTER 5: THE EFFECTS OF NOISE

5.1 Introduction

Once we have simulated the complete scanning law of Gaia and compared the
differences when the Lissajous orbit of Gaia is taken into account, we also
wanted to study the effects of adding noise to the motion. This means
introducing some perturbations in the scanning law, and also the need to
incorporate occasional recalibrations to periodically correct the errors caused by
the noise. The noise introduced aims to represent the perturbations that Gaia
will have due to the solar wind, to gravitational distortions, to spacecraft
shortcomings and so on. This is indeed a complex task, which can be simplified
when the characteristics of Gaia are fully taken into account. First of all, we can
consider that noise does not affect Gaia translation orbit around the Sun neither
the Lissajous orbit around L2. This stems from the fact that those two motions
are very stable and their time scales are very large compared with that of the
spacecraft. Thus, these errors can be considered negligible. According to this,
in our work noise will only affect the precession and spin motions, resulting in a
jitter of the field of view of Gaia. To implement this noise in our code we added
the model of jitter developed in Ref. [1] to our model for the motion around the
Lissajous orbit. The noise is realistically modeled using Gaussian and uniform
distributions, and a Butterworth filter to attenuate high frequencies. The reader
can found additional details in Ref. [1].

5.2 Results

5.2.1 Translation + Precession with noise

First of all, we have simulated the translation and precession motions when
noise has been introduced to the precession motion. After that we have
included the Lissajous motion and then we have compared the two simulations.
In Fig.5.1 we show the curve corresponding to the orbit taking into account the
Lissajous orbit. For the sake of clarity we do not show the curve corresponding
to the orbit without Lissajous, given that, as already demonstrated in the
previous chapter, the differences are not visible except at very small scales. As
can be seen, again the two curves look identical although they are not. This is
because the noise level is too small to be seen.
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Figure 5.1: Motion of the instantaneous rotation axis of Gaia when noise is
included. The time elapsed is the 6.3 years of mission duration time and the
recalibration period is two months.

However, we can observe the differences between the curve in which Gaia
rests at L2 and that in which the Lissajous orbit has been included, looking at
Fig. 5.2, which shows the behavior of the angle between them, during the 6.3
years of mission duration. As can be seen, now it is impossible to see the
pattern of the SGE angle produced by the Lissajous orbit because the noise
masks it. In fact, comparing this figure with Fig. 4.4 we notice that in the case in
which noise has been considered the angle is larger than in the case in which
noise was not taken into account. This is so despite the fact that in the former
case we have applied periodic recalibrations, which reset the error periodically.
We have used a recalibration period of two months, which can be clearly seen
in Fig. 5.2.
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Figure 5.2: Time variation of the angle between the axis of Gaia when the
Lissajous orbit is taken into account and disregarded for the case in which noise
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is considered, during the 6.3 years mission duration time, and with a
recalibration period of 2 months.

In order to view more clearly the importance of the effects of the Lissajous orbit,
the noise and the recalibration periods we have tabulated in Table 5.1 as a
function of the recalibration time the mean value of the angle between the two
previously described curves, namely, those in which the Lissajous orbit is
disregarded and considered. The table also shows the standard deviation. The
data of Table 5.1 (and also Table 5.2, and 5.3) was calculated as the mean of
five independent simulations. In each of these simulations we computed the
value of the mean angle and its standard deviation for nine different
recalibration times. The mean angle and the standard deviation are defined by
the following equations respectively.

Bl Mean angle Standard deviation

(days) (degrees) (degrees)
1 0,023659 0,012334

10 0,087091 0,044342
20 0,087039 0,047059
30 0,127310 0,072145
40 0,112970 0,073854
50 0,172780 0,138600
60 0,103260 0,075171
70 0,158810 0,086623
80 0,228060 0,179070

Table 5.1: Mean value and standard deviation for the angle between the curves
in which the Lissajous orbit is considered or disregarded.

In Fig 5.3 we display graphically the behavior of the mean angle as a function of
the recalibration time for the data of Table 5.1. As can be seen, the value of the
mean angle is clearly affected by the presence of noise, which causes some
oscillations. Besides, it is easy to see that in general the value of the mean
angle grows with increasing recalibration times. The same occurs for the
standard. This is the expected behavior: the larger the time of recalibration, the
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bigger the difference between the ideal case and the one in which noise is
added. Additionally, if we compare with Fig.4.4 we can see that the largest
value of the angle in the ideal case is about 0.036. Thus, we can say that when
the recalibration time is bigger than about 1-2 days, the effects of noise on the
scanning law are more important than the effects of considering the Lissajous
orbit.

Mean angle (degrees)

vl- zl- 1I- I\I- \I--
Recalibration time (days)
Figure 5.3: The mean value and standard deviation of the angle between the
curves obtained taking into account the Lissajous orbit or disregarding it.

5.2.2 Translation + Precession with noise + Spin with noise

In this section we study the effects of adding noise to the spin motion in addition
of considering the effects of the Lissajous orbit. The spin noise, like the
precession noise, is modeled by a normal distribution filtered with a Butterworth
filter [1]. In Fig.5.4 we show the simulated curve when the Lissajous orbit is
considered. In this case, unlike in the previous case, we only plotted one month
and not 6.3 years because these curves are much more complex than the
previous one. The differences between this case and the one corresponding to
the nominal motion of Gaia, like in the previous section, are very small because
the noise level is too low to be detected at this scale and also the Lissajous
motion is too small compared with the Gaia-Sun distance.
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Figure 5.4: The curve described by the field of view of Gaia when both the
effects of noise and of the Lissajous orbit are taken into account. The duration
of the plot is one month and the recalibration period is 10 days.

In Fig. 5.5 we can see the behavior of the angle between the simulated and the
nominal curves. Like in the previous case, the SGE pattern is not visible.
Instead of that, now is clearly visible the effects of the precession and spin
noises and also the effect of the recalibration time. If we compare this result
with the plot obtained without noise (Fig. 4.6) we notice that now the value of
the angle is much larger. Of course it depends on the recalibration frequency,
which in this simulation is 10 days.

-j\' .E .‘\ -..A \
Time (months)
Figure 5.5: Time evolution of the angle between the curve in which Gaia is at
rest at L2 and the curve in which Gaia performs a Lissajous orbit, during one
month and with recalibration period of 10 days.

Table 5.2 shows, for different recalibration times, the mean value of the angle
(and its standard deviation) between the curve in which Gaia is at rest at L2 and
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the curve in which Gaia performs a Lissajous orbit. Like in the previous section,
we have plotted the data of Table 5.2, and the result is shown in Fig. 5.6.
Looking at Fig. 5.6 we can see that the mean angle value follows an increasing
pattern, but now this trend is more evident than in the previous case. This is
because now we added a new motion to the model: the spin motion with noise.
Regarding to the standard deviation, it increases with larger recalibration times,
as expected. In Fig. 5.6 we also can see that both the mean angle and the
standard deviation present small oscillations which are caused by noise.
Nevertheless, these oscillations are inside the simulation errors. Additionally,
we can see that the higher angle value during the first year of mission in the
case in which noise is not considered is about 0.044. This result indicates that
effects of noise on the scanning law are more important than the effects of the
Lissajous orbit.

AL Mean angle Standard deviation
(days) (degrees) (degrees)
1 0,75633 0,36438
10 2,91490 1,12390
20 3,53570 1,53910
30 3,43230 1,54870
40 4,41140 2,58020
50 5,44490 2,72810
60 6,96010 3,48970
70 6,58660 2,70040
80 8,92200 4,32810

Table 5.2: Mean angle between the curve in which Gaia is at rest at L2 and the
curve in which Gaia performs a Lissajous orbit. Noise has been considered in
both the precession and spin motions.
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Figure 5.6: Mean angle between the curve in which Gaia is at rest at L2 and
the curve in which Gaia performs a Lissajous orbit. Noise has been considered
in both the precession and spin motions.

5.2.3 Translation + Precession with noise + Spin with noise + Pointing
errors

Finally, we considered another source of error: the pointing error. Unlike the two
previous errors, this error is not provided by any motion. It is provided by some
inaccuracies in the pointing of the field of view of Gaia caused by shortcomings
of the instruments, by structural weaknesses, and others.

In Fig. 5.7 we show the resulting instantaneous field of view of Gaia when the
Lissajous orbit is considered.

z axis

y axis X axis

Figure 5.7: Evolution of the instantaneous field of view of Gaia when all
sources of error are considered. The duration of the plot is one month and the
recalibration period is 10 days.
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Figure 5.8: The time evolution of the angle between the real and the nominal
position of the field of view of Gaia when all error sources are taken into
account.

In Fig.5.8 we graphically display the time evolution of the angle between the two
previously discussed curves. Like in the previous case, the effects of
precession, spin and pointing errors are clearly visible. Also, the periodic
recalibrations (every 10 days) are quite apparent. However, the effects of the
Lissajous orbit are no evident. This occurs because the time plotted is too small
(1 month) and the recalibration period (10 days) too big for the effects of the
Lissajous orbit to be appreciable. When comparing this figure with that in which
no noise was considered (Fig. 4.6) we notice that now the angles are much
larger. Clearly, this is due to the noise effects, and obviously depends on the
recalibration frequency. Additionally, if we compare this figure with that in which
no pointing errors were considered (Fig. 5.5), we notice that the two figures look
very similar. Nevertheless, they are different. There are some small differences
caused by the pointing errors. Table 5.3 shows for different recalibration periods
the mean value of the angle and standard deviation when the Lissajous orbit is
considered or disregarded.

AU Mean angle Standard deviation
(days) (degrees) (degrees)
1 0,75737 0,36395
10 2,91520 1,12370
20 3,53590 1,53890
30 3,43240 1,54860
40 4,41160 2,58020
50 5,44500 2,72800
60 6,96030 3,48970
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70 6,58670 2,70040
80 8,92210 4,32810

Table 5.3: Mean value and standard deviation of the angle between the real
and the nominal position of the field of view of Gaia when all error sources are
taken into account.
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Figure 5.9: Mean value and standard deviation of the angle between the real
and the nominal position of the field of view of Gaia when all error sources are
taken into account.

The data of Table 5.3 is shown graphically in Fig. 5.9. This figure, again, looks
very similar to Fig. 5.6, although subtle differences can be found. These small
differences can be better found when tables 5.2 and 5.3 are compared.
In fact the differences are small because the pointing errors are indeed very
small.
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CHAPTER 6: CONCLUSIONS

In this work we have studied and simulated the Lissajous orbit that Gaia will
perform around the Lagrangian point L2 of the Sun-Earth system. Lissajous
orbits around L2 are very useful for space observation because they can
provide a large time without solar eclipse and, moreover, they are very stable in
dynamical terms and in thermal conditions. Specifically, we have shown that
with selected and realistic orbital parameters for the orbit of Gaia a mission
duration time of about 6.3 years can be obtained, as required by the mission
strategy. Moreover, varying the initial conditions of the spacecraft we can obtain
different mission lifetimes. In particular, we have obtained that the highest
mission durations were obtained when the initial position of the spacecraft was
close enough to the shadow of the Earth.

We have also incorporated the Lissajous orbits into the Gaia orbit simulator fully
explained in Ref. [1]. We have studied the effects of adding the Lissajous
motion to the Gaia scanning law, which is obtained by adding the translation,
precession and spin motions. We have also demonstrated that the effects of
including the Lissajous orbit in the Gaia scanning law are very small. In fact,
they are so small that in a first order approximation they could be neglected.
Nevertheless an accurate description of the tracking is needed to measure
micro-arc seconds, and, consequently, this new module must be incorporated in
Gaia Telemetry Simulator. The reason of the small effects obtained when the
Lissajous orbit is incorporated is that the maximum amplitude is too small
compared with the Sun-Gaia distance. This, in turn, implies that generally
speaking, the use of Lissajous orbits in space missions yields many more
advantages than drawbacks. In particular, these orbits practically do not perturb
the scientific observations and, moreover, they provide very stable positional
and thermal conditions.

Finally, we also studied a more realistic case, in which noise was considered in
the precession and spin motions, and also in the pointing of the field of view.
We did not consider noise in the translation and Lissajous motions because we
considered these motions to be very stable. We have seen that, in this case, the
effects of the Lissajous orbit on the Gaia scanning law are superseded by the
effects of noise. This occurs whatever case is considered. The effects of noise
in the precession and spin motions, and especially the field of view pointing
errors, are much larger than the effects of the Lissajous orbit. All in all, we
conclude that periodical recalibration maneuvers are essential, and if they are
not realized the accumulation of errors will not allow accurate measurements.

In summary, we have studied the effects of the Lissajous orbit on the Gaia
scanning law. To do this we have built a piece of software that we have
incorporated in the simulator of the scanning law of Gaia. The new simulator
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produces realistic scanning laws of a spacecraft, including the effects of jitter.
This piece of software also produces all the plots necessary to model and
understand the scanning law of Gaia. Finally, this software can be incorporated
to more complex simulators, like the Gaia Telemetry Simulator. In this way the
effects of the Lissajous orbit and of noise on the performance of the foreseen
solutions for the Gaia Optimal Compression Algorithm can be assessed in a
realistic way.
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APPENDIX A: LAGRANGIAN POINTS

Lagrangian points, also known as libration points, are five points in an orbital
configuration where a small object can be stationary relative to two larger
objects. This is possible because at these points, the combined gravitational
pull of the two large masses provides exactly the centripetal force required to
rotate with them. A more technical definition is that the Lagrangian points are
the stationary solutions of the circular restricted three-body problem.

In Fig.A.1 the five Lagrangian points of the Sun-Earth system are shown. As
can be seen, the points Ly, L, and L; are on the line formed by Sun and Earth,
while L, and Ls are on a line which has a 60 degrees angle with Sun-Earth line.
In the figure it seems that L;, Ly and Ls are on the Earth translation trajectory but
actually they are out of it.
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Figure A.2: Dynamic stability of the Lagrangian points.

In Fig.A.2 the dynamic stability of the Lagrangian points is displayed. As can be
seen, Ly, L, and L; are dynamically unstable towards the radial direction but
stable on the tangential direction. On the other hand, L, and Ls are dynamically
unstable in any direction.
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APPENDIX B: LISSAJOUS CURVES

A Lissajous curve is the graph of the system of parametric equations which
describes complex harmonic motion.

r = Asin(at + d)
y = Bsin{bt)

They are sometimes known as Bowditch curves after Nathaniel Bowditch, who
studied them in 1815. They were studied in more detail (independently) by
Jules-Antoine Lissajous in 1857. Lissajous curves have applications in physics,
astronomy, and other sciences. The appearance of the Lissajous curves is
highly sensitive to the ratio a/b as can be seen in the examples shown in Fig
B.1.

1/2 | 3/2 | 3/4

54 58 o8

Figure B.1: Different Lissajous curves in function of their a/b ratio.

Lissajous curves are closed only if a/b ratio is rational. Special cases of
Lissajous curves are ellipses (when the ratio is 1), circles (when A= B, & = /2
radians), lines (when A = B, & = 0), and parabolas (when a/b = 2, 6 = /2).
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APPENDIX C: THE SCANNING LAW OF GAIA

Gaia will perform its observations from a controlled Lissajous-type orbit around
the L2 Lagrange point of the Sun and Earth-Moon system. During its
operational lifetime, the satellite will continuously spin around its axis. As a
result, the two astrometric fields of view will scan across all objects located
along the great circle perpendicular to the spin axis. The combination of these
motions is known as the scanning law of Gaia and it is basically described by
three motions: the translation motion, the precession motion and the spin
motion. These motions are characterized by their respective rates. The orbital
rate is the velocity of translation around the Sun, the precession rate is the
velocity of precession of the spin axis around the axis, and the scan rate is the
spin velocity around the spin axis. They are shown in Table C.1.

Angular velocity rad h” arc sec s™

2 1
Orbital rate (w) EW_&%E 0,041

' e \Vx Yo \ E
Precession rate (w ) 5 ¥re o F 0,17
Ve x V7 \
Scan rate (w ) B 120

o ™ goO7eC

Table C.1: Nominal values adopted for the three angular velocities of Gaia.

C.1 The translation motion

To show the Gaia translation motion around the Sun, we represented in Fig. C.1
the normalized Sun path around Gaia (the reference system is that in which
Gaia does not move in the coordinate origin and the Sun orbits around it). To
plot this figure it is used the vector r, which represents the direction pointing
towards the position of the Sun and is the result of applying the following simple
rotation matrix around the z-axis:

1 dcoswt
i | = | dsinwt (C.1)
1 0
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Figure C.1: The path of the Sun in a 1 year period, as seen from Gaia.

C.2 The precession motion
In Fig C.2 we show the result of adding the motion of the spin axis of Gaia. To

plot this figure we have used the vector r, which represents the precession of
the Gaia spin axis and is found using the following combination of rotations.

To T coswt —sinwt 0 T

p2
yo | = | w1 | + | sinwt coswt 0O Yp2 (C.2)
zZ 21 0 0 1 “p2

The vector r,, is the result of making a rotation in the yz-plane according to the
precession rate iteratively:

Tpo ’ 0 c3

Yp2 | — y;_l COS Wp8 — z;_l sin wp,5s (C.3)
i-1 g -1

2p2 T, SINWyps — 2, COSWpS

The vector |x,', y.', z,'| is the vector 7,, obtained in the previous time step

and s is the corresponding time step.
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Figure C.2: Motion of the spin axis of Gaia during a period of time of one year.

C.3 The spin motion

Finally, the result of adding the motion of the field of view of Gaia is shown in
Fig. C.3. In order to obtain this figure we used the vector r; which is, unlike the
previous two motions, the result of a rotation around a dynamic axis (r,) and
not around a static axis, so the calculations are a somewhat more difficult.

3 Tp31 T Tp32 + Tp33
Y3 = Yp31 T Yp32 T Yp33 (C.4)
23 Zp31 T Zp32 1+ 2p33
Tp31 (coswss + (1 — cosw,s)n2)ay
w32 | = | (1 —cosw,s)ngn, —n, sinw,s)ys ' (C.5)
Tp33 ((1 — cosw,s)ngn, +nysinw,s)zy
Yp31 ((1 — coswys)ngn, + n,sinw,s)ry
Ypz2z | = (coswss + (1 — cos wss)nfj)yg_l (C.6)
Yp33 ((1 — cosw,s)nyn, — n,sinw,s)zi!
Zp31 ((1 — cosw,s)ngn, — n, sinw,s)zs !
Zpzz | = [ (1 — cosw,s)nyn, + ngsinw,s)ys

2 1

Zp33 (cosw,s + (1 — cosw,s)n?)zh”
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(C.7)

The vector (xi, yi', z'| the vector r+ obtained at the previous time step
and s the corresponding time step.

Sun path
— Spin axis of Gaia
Astro field path

The GAIA scanning law

Z-axis

Y-axis -1

doaxis

Figure C.3: Motion of the field of view of Gaia during three months.
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NUMERICAL CODE

APPENDIX D

3.1872293

(s):

(s):
(s):

5*24*3600;
177.655*%24*3600;

184.0%24*3600;

(only necessary for calculating Lissajous phases):

Y0=-13000*sin(45*(pi/180));
Lissajous orbit amplitudes (km):

100000;

100000;
Ax=Ay/3.1872293; %Ax is related with Ay by the constant C2

13000*cos (45*(pi/180));

%Maximum Lissajous orbit total time (with or without solar eclipses)(years)

% clear all the previous data, plots and commands:
% Inital coordinates y,z in the Lissajous orbit (km)

clear all
close all

clc
Z0
Txy
Tz
Az
Ay

8 years

8; %for example:

years

(distance Earh-Sun) (km):

rx-sin(tes);
rxcos(tes);

[0:1:10000];

ry(Ees+1)
rz(tes+1)
2*pi/Txy;

1507683;
2*%pi/Tz;

r=13000;
% Creating Earth shadow in the yz-plane:

for tes
% Calculating Lissajous orbit rates:
% Calculating Lissajous orbit phases:

% Earth-L2 distance (km):
% Earth shadow radium (km):

% Astronomic unit
AU=1.49598*10"8;

XL
end
Wxy
Wz
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Pxy=asin(Y0/-Ay);
Pz=acos(Z0/Az);

% DEFINING SCANNING LAW PARAMETERS:

% Defining motion rates:

w = ((2*pi)/8766)*(1./3600); % translation

wp = ((0.17*2*pi)/360)*(1./3600); % precession
ws = ((120*2*pi)/360)*(1./3600); % spinning

% Initial value for precession vector:

pln = sqrt(0.5); p2n = -sqrt(0.5); p3n = 0;

% Initial value for spinning vector:
pl(l) = 0.0; p2(1) = 1.0; p3(1l) = 0.0;

%initializing errors:

sigma wp = ((0.1*2*pi)/(3*360))*(1./3600); % precession
sigma ws = ((1.2*2*pi)/(3*360))*(1./3600); % spinning
sigma point = ((5*2*pi)/(3*60*360)); % pointing

% INITIALIZING VECTORS

% (This reserves enough memory space and optimizes the simulation process)
vl=(lenght/s)+1;

x=zeros(1l,vl); y=zeros(1l,vl); z=zeros(1l,vl);
xl=zeros(1l,vl); yl=zeros(l,vl); zl=zeros(1l,vl);
xllL=zeros(1l,vl); yllL=zeros(1l,vl); zllL=zeros(1l,vl);
x2=zeros(1l,vl); y2=zeros(1l,vl); z2=zeros(1l,vl);
x2i=zeros(1l,vl); y2i=zeros(1l,vl); z2i=zeros(1l,vl);
x3=zeros(1l,vl); y3=zeros(l,vl); z3=zeros(1l,vl);
x31l=zeros(1l,vl); y3l=zeros(l,vl); z31l=zeros(1l,vl);
x3i=zeros(1l,vl); y3i=zeros(1l,vl); z3i=zeros(1l,vl);
xp2=zeros(1l,vl); yp2=zeros(l,vl); zp2=zeros(1l,vl);
xp2i=zeros(1l,vl); yp2i=zeros(1l,vl); zp2i=zeros(1l,vl);
nlx=zeros(1l,vl); nly=zeros(l,vl); nlz=zeros(1l,vl);

nx=zeros(1l,vl); ny=zeros(1l,vl); nz=zeros(l,vl);

nxl nol=zeros(1l,vl); nyl nol=zeros(l,vl); nzl nol=zeros(1l,vl);
nxl=zeros(1l,vl); nyl=zeros(l,vl); nzl=zeros(1l,vl);
nx3=zeros(1l,vl); ny3=zeros(1l,vl); nz3=zeros(1l,vl);
nx31l=zeros(1l,vl); ny3l=zeros(l,vl); nz3l=zeros(1l,vl);
nx31lL=zeros(1l,vl); ny3llL=zeros(1l,vl); nz3lL=zeros(1l,vl);
nx3L=zeros(1,vl); ny3L=zeros(l,vl); nz3L=zeros(1l,vl);
nx3i=zeros(1l,vl); ny3i=zeros(l,vl); nz3i=zeros(1l,vl);
nxL=zeros(1l,vl); nylL=zeros(1l,vl); nzL=zeros(1l,vl);
nxi=zeros(1l,vl); nyi=zeros(1l,vl); nzi=zeros(1l,vl);
1x=zeros(1l,vl); ly=zeros(1l,vl); lz=zeros(1l,vl);

nxi nol=zeros(1l,vl); nyi nol=zeros(1l,vl); nzi nol=zeros(1l,vl);
nx31i nol=zeros(1l,vl); ny3i nol=zeros(1l,vl); nz3i nol=zeros(1l,vl);
anglenrl=zeros(1l,vl); anlgenr2=zeros(1l,vl); anglenr3=zeros(1l,vl);
anglenr2noise=zeros(1l,vl); anlgenr3lnoise=zeros(1l,vl); anglenr3noise=zeros(1l,vl);
new theta=zeros(1l,vl); new fi=zeros(1l,vl);

wpe=zeros(1l,vl); wse=zeros(1l,vl);

x=zeros(1l,vl);

k=zeros(1,vl);

6%°6%6%°6°6°6°6°6°6°66°6°66

% LISSAJOUS ORBI

©,0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0

— o°
wn o°
—
=
c
— o°
b
3
—
o
=

cont=1;
ld=r+1;
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for t = 0:s:1lenght;

if (ld >= r) %(if the orbit didn't cross the Earth-shadow:)
% Calculating position with the Lissajous orbit equations:
Ix(cont)=Ax*cos (Wxy*t+Pxy) ;
ly(cont)=-Ay*sin(Wxy*t+Pxy);
1z(cont)=Az*cos (Wz*t+Pz);

% Normalizing vector:

nlx(cont) = Ix(cont)/sqrt(lx(cont)”2+ly(cont)”2+1z(cont)"2);
nly(cont) = ly(cont)/sqrt(lx(cont)”2+ly(cont)”2+1z(cont)"2);
nlz(cont) = 1z(cont)/sqrt(lx(cont)”2+ly(cont)”2+1z(cont)"2);

% calculating distance to Earth shadow
% (only necessary for stop the Lissajous orbit when enters to Earth
shadow)

ld=sqgrt(((ly(cont))”2)+((lz(cont))"2))+1;

dlo=lenght; % duration of the Lissajous orbit
cont=cont+1;

else %(if the orbit crossed the Earh-shadow:)
dlo=t; % duration of the Lissajous orbit
break %stops the Lissajous orbit simulation

end
end
05959595 %% %6955 % %% %65 % %% %6955 %6 %65 %% 6955 %% %6955 % %6 %665 % %6 %6552 %6955 %6 %65 % %% %6566 %6% %% %6 %% %%
Q
% SCANNING LAW WITHOUT NOISE (WITH AND WITHOUT LISSAJOUS)
S S

cont = 1;
for t = 0:s:lenght

% TRANSLATION (WITHOUT LISSAJOUS):

.9-9-0.0.9.9.0.0.9.9.09.0.9.9.0.0.9.9.0.0.9.9.0.0.9.9.0.0.9 999

x1(cont) = (AU+XL)*cos(w*t);
yl(cont) = (AU+XL)*sin(w*t);
z1l(cont) = 0O*t;

% Normalizing vector:

nx1l nol(cont) x1l(cont)/sqrt(x1l(cont)”2+yl(cont)”2+z1l(cont)"2);
nyl nol(cont) yl(cont)/sqrt(x1(cont)”~2+yl(cont)”~2+z1(cont)"2);
nzl nol(cont) 0;

N< X o° o°
== o°

% Normalizing vector:

nxl(cont) = x1lL(cont)/sqrt(x1L(cont)”2+ylL(cont)”2+z1L(cont)"2);
nyl(cont) = ylL(cont)/sqrt(x1L(cont)”2+ylL(cont)”2+z1L(cont)"2);
nzl(cont) = zlL(cont)/sqrt(x1L(cont)”2+ylL(cont)"2+z1L(cont)"2);
% PRECESSION (WITHOUT LISSAJOUS):
if cont==1

xp2i(cont) = 0;

yp2i(cont) = 1;

zp2i(cont) = 0;

else
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xp2i(cont)

yp2i(cont)

zp2i(cont)
end

0;
yp2i(cont-1).*cos(wp*s)-zp2i(cont-1).*sin(wp*s);
yp2i(cont-1).*sin(wp*s)+zp2i(cont-1).*cos(wp*s);

x2i(cont)
y2i(cont)
z2i(cont)

nx1l nol(cont)+xp2i(cont).*cos(w*t)-yp2i(cont).*sin(w*t);
nyl nol(cont)+xp2i(cont).*sin(w*t)+yp2i(cont).*cos(w*t);
nzl nol(cont)+zp2i(cont);

% Normalizing vector:

nxi nol(cont) = x2i(cont)./sqrt(x2i(cont).”2+y2i(cont).”2+z2i(cont)."2);
nyi nol(cont) = y2i(cont)./sqrt(x2i(cont).”2+y2i(cont).”2+z2i(cont)."2);
nzi nol(cont) = z2i(cont)./sqrt(x2i(cont).”2+y2i(cont).”2+z2i(cont)."2);

else
xp2i(cont) =
yp2i(cont) = yp2i(cont-1).*cos(wp*s)-zp2i(cont-1).*sin(wp*s);

zp2i(cont) yp2i(cont-1).*sin(wp*s)+zp2i(cont-1).*cos(wp*s);
end
x2i(cont) = nx1l(cont)+xp2i(cont).*cos(w*t)-yp2i(cont).*sin(w*t);
y2i(cont) = nyl(cont)+xp2i(cont).*sin(w*t)+yp2i(cont).*cos(w*t);
z2i(cont) = nzl(cont)+zp2i(cont);

% Normalizing vector:

nxi(cont) = x2i(cont)./sqrt(x2i(cont).”2+y2i(cont).”2+z2i(cont)."2);
nyi(cont) = y2i(cont)./sqrt(x2i(cont).”2+y2i(cont).”2+z2i(cont)."2);
nzi(cont) = z2i(cont)./sqrt(x2i(cont).”2+y2i(cont).”2+z2i(cont)."2);
% SPINNIG (WITHOUT LISSAJOUS):

costheta = cos(ws*s);

sintheta = sin(ws*s);

if cont==

xp31li = (costheta+(1.0-costheta).*nxi nol(cont).*nxi nol(cont)).*pl(1);

xp32i = ((1.0-costheta).*nxi nol(cont).*nyi nol(cont)-
nzi nol(cont).*sintheta).*p2(1);

xp331i = ((1.0-costheta).*nxi nol(cont).*nzi nol(cont)
+nyi nol(cont).*sintheta).*p3(1);

yp31i ((1.0-costheta).*nxi nol(cont).*nyi nol(cont)
+nzi nol(cont).*sintheta).*pl(1);

yp32i (costheta+(1 0- costheta) *nyi nol(cont).*nyi nol(cont)).*p2(1);

yp33i ((1.0-costheta).*nyi nol(cont).*nzi nol(cont)-
nxi nol(cont).*sintheta).*p3(1);

* 1

zp31li ((1.0-costheta).*nxi nol(cont).*nzi nol(cont)-
nyi nol(cont).*sintheta).*pl(1);

zp32i = ((1.0-costheta).*nyi nol(cont).*nzi nol(cont)
+nxi nol(cont).*sintheta).*p2(1);

zp33i = (costheta+(1.0-costheta).*nzi nol(cont).*nzi nol(cont)).*p3(1);

else

xp3li=(costheta+(1.0-
costheta).*nxi nol(cont).*nxi nol(cont)).*nx3i nol(cont-1);

xp32i=((1.0-costheta).*nxi nol(cont).*nyi nol(cont)-
nzi nol(cont).*sintheta). *ny317nol(cont 1);
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xp33i=((1.0-costheta).*nxi nol(cont).*nzi nol(cont)
+nyi nol(cont).*sintheta).*nz3i nol(cont-1);

yp31li=((1.0-costheta).*nxi nol(cont).*nyi nol(cont)
+nzi nol(cont).*sintheta).*nx3i nol(cont-1);
yp32i=(costheta+(1.0-
costheta).*nyi nol(cont).*nyi nol(cont)).*ny3i nol(cont-1);
yp33i=((1.0-costheta).*nyi nol(cont).*nzi nol(cont)-
nxi nol(cont).*sintheta).*nz3i nol(cont-1);

zp3li=((1l.0-costheta).*nxi nol(cont).*nzi nol(cont)-
nyi nol(cont).*sintheta).*nx31i nol(cont-1);
zp32i=((1.0-costheta).*nyi nol(cont).*nzi nol(cont)
+nxi nol(cont).*sintheta).*ny3i nol(cont-1);
zp33i=(costheta+(1.0-
costheta).*nzi nol(cont).*nzi nol(cont)).*nz3i nol(cont-1);

end

x3i(cont) = xp31li+xp32i+xp331i;
y3i(cont) = yp3li+yp32i+yp33i;
z3i(cont) = zp3li+zp32i+zp33i;

% Normalizing vector:
nx3i nol(cont)
ny3i nol(cont)
nz3i nol(cont)

x3i(cont)./sqrt(x3i(cont).”2+y3i(cont).”2+z3i(cont)
y3i(cont)./sqrt(x3i(cont).”2+y3i(cont).”2+z31i(cont).”"2)
z3i(cont)./sqgrt(x3i(cont).”2+y3i(cont).”2+z3i(cont)

% SPINNIG (WITH LISSAJOUS):
costheta = cos(ws*s);
sintheta = sin(ws*s);
if cont==
xp31li = (costheta+(1l.0-costheta).*nxi(cont).*nxi(cont)).*pl(1l);
xp32i = ((1.0-costheta).*nxi(cont).*nyi(cont)-
xp33i = ((1.0-costheta).*nxi(cont).*nzi(cont)
yp31li = ((1.0-costheta).*nxi(cont).*nyi(cont)
yp32i = (costheta+(1.0-costheta).*nyi(cont).*nyi(cont)).*p2(1);
yp33i = ((1.0-costheta).*nyi(cont).*nzi(cont)-
zp31i = ((1.0-costheta).*nxi(cont).*nzi(cont)-
zp32i = ((1.0-costheta).*nyi(cont).*nzi(cont)
zp33i = (costheta+(1.0-costheta).*nzi(cont).*nzi(cont)).*p3(1);
else

."2)
."2)

xp3li=(costheta+(1l.0-costheta).*nxi(cont).*nxi(cont)).*nx3i(cont-1);

xp32i=((1.0-costheta).*nxi(cont).*nyi(cont)-
nzi(cont).*sintheta).*ny3i(cont-1);

xp33i=((1.0-costheta).*nxi(cont).*nzi(cont)
+nyi(cont).*sintheta).*nz3i(cont-1);

yp31li=((1.0-costheta).*nxi(cont).*nyi(cont)
+nzi(cont).*sintheta).*nx3i(cont-1);

yp32i=(costheta+(1l.0-costheta).*nyi(cont).*nyi(cont)).*ny3i(cont-1);

yp33i=((1.0-costheta).*nyi(cont).*nzi(cont)-
nxi(cont).*sintheta).*nz3i(cont-1);

zp31i=((1.0-costheta).*nxi(cont).*nzi(cont)-
nyi(cont).*sintheta).*nx3i(cont-1);

zp32i=((1l.0-costheta).*nyi(cont).*nzi(cont)
+nxi(cont).*sintheta).*ny3i(cont-1);

zp33i=(costheta+(1.0-costheta).*nzi(cont).*nzi(cont)).*nz3i(cont-1);

end

’
.
’
.

’
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x3i(cont) = xp31li+xp32i+xp33i;
y3i(cont) = yp3li+yp32i+yp33i;
z3i(cont) = zp3li+zp32i+zp33i;

% Normalizing vector:

nx3i(cont) = x3i(cont)./sqrt(x3i(cont).”2+y3i(cont).”24+z3i(cont).”"2);
ny3i(cont) = y3i(cont)./sqrt(x3i(cont).”2+y3i(cont).”2+z3i(cont)."2);
nz3i(cont) = z3i(cont)./sqrt(x3i(cont).”2+y3i(cont).”2+z3i(cont)."2);

cont = cont+1;

% CREATING PRECESSION AND SPINNING NOISES
% creating normal distribution (mean=0, std=1)
cont = 1;
for t = 0:s:lenght
x(cont) = randn;
while ((x(cont) < - 2) || (x(cont) > 2))
x(cont) = randn;
end
cont=cont+1;
end

% creating butterworth filter:

[b,a] = butter(100,0.5);

% getting filtered signal:

= filter(b,a,x);

getting the new precession and spinning rates:

(there's a factor to achieve the same standard deviation
we had at the beginning (1.488))

wpe = wp + (sigma wp*1.6066).*y;

wse ws + (sigma ws*1.6083).*y;

o o < of

it = 0; % used to find multiples of rec
cont = 1;

for t = 0:s:lenght

if t==it*rec

% RECALIBRATION:
xp2(cont) = xp2i(cont);
yp2(cont) = yp2i(cont);
zp2(cont) = zp2i(cont);
nx(cont) = nxi(cont);
ny(cont) = nyi(cont);
nz(cont) = nzi(cont);
nxL(cont) = nx(cont);
nyL(cont) = ny(cont);
nzL(cont) = nz(cont);
nx3(cont) = nx3i(cont);
ny3(cont) = ny3i(cont);
nz3(cont) = nz3i(cont);

nx3L(cont) = nx3(cont);
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ny3L(cont)
nz3L(cont)

nx31L(cont)
ny31lL(cont)
nz31L(cont)

it=it+1;
else

ny3(cont);
nz3(cont);

nx3i(cont);
ny3i(cont);
nz3i(cont);

% PRECESSION WITH NOISE (WITH LISSAJOUS):

2.9.9.0-0.9.0.0.9.9.0.0.9.9.0.9.9.9.0.0.9.0.0.0.9.9.0.9.9.9.0.9.9.0.0.0.9..0.99°09

xp2(cont)
yp2(cont)
zp2(cont)

x2(cont)
y2(cont)
z2(cont)

n
n
n

0;
yp2(cont-1).*cos(wpe(cont)*s)-zp2(cont-1).*sin(wpe(cont)*s);
yp2(cont-1).*sin(wpe(cont)*s)+zp2(cont-1).*cos(wpe(cont)*s);

x1(cont)+xp2(cont).*cos(w*t)-yp2(cont).*sin(w*t);
yl(cont)+xp2(cont).*sin(w*t)+yp2(cont).*cos(w*t);
z1(cont)+zp2(cont);

% Normalizing vector:

nx(cont) = x2(cont)./sqrt(x2(cont).”2+y2(cont).”2+z2(cont)."2);
ny(cont) = y2(cont)./sqrt(x2(cont).”2+y2(cont).”2+z2(cont)."2);
nz(cont) = z2(cont)./sqrt(x2(cont).”2+y2(cont).”2+z2(cont)."2);
nxL(cont) = nx(cont);

nyL(cont) = ny(cont);

nzL(cont) = nz(cont);

% SPINNING WITH NOISE (WITH LISSAJOUS):

costheta = cos(wse(cont)*s);

sintheta = sin(wse(cont)*s);

xp31 = (costheta+(1l.0-costheta).*nx(cont).”2).*nx3(cont-1);

xp32 = ((1.0-costheta).*nx(cont).*ny(cont)-
nz(cont).*sintheta).*ny3(cont-1);

xp33 = ((1.0-costheta).*nx(cont).*nz(cont)
+ny(cont).*sintheta).*nz3(cont-1);

yp31l = ((1.0-costheta).*nx(cont).*ny(cont)
+nz(cont).*sintheta).*nx3(cont-1);

yp32 = (costheta+(1l.0-costheta).*ny(cont).*ny(cont)).*ny3(cont-1);

yp33 = ((1.0-costheta).*ny(cont).*nz(cont)-
nx(cont).*sintheta).*nz3(cont-1);

zp31 = ((1.0-costheta).*nx(cont).*nz(cont)-
ny(cont).*sintheta).*nx3(cont-1);

zp32 = ((1.0-costheta).*ny(cont).*nz(cont)
+nx(cont).*sintheta).*ny3(cont-1);

zp33 = (costheta+(1.0-costheta).*nz(cont).*nz(cont)).*nz3(cont-1);

x31(cont)
y31l(cont)
z31(cont)

xXp31+xp32+xp33;
yp31l+yp32+yp33;
zp31+zp32+zp33;

% Normalizing vector:

nx31(cont)
ny31l(cont)
nz31l(cont)

nx31L(cont)
ny31L(cont)

x31(cont)./sqrt(x31(cont).”2+y31(cont).”2+z31(cont)."2);
y31l(cont)./sqrt(x31(cont).”2+y31(cont).”2+z31(cont)."2);
z31(cont)./sqrt(x31(cont).”2+y31(cont).”2+z31(cont)."2);

nx31(cont);
ny31l(cont);
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nz31lL(cont) = nz31(cont);

% SPINNING WITH NOISE AND POINTING ERRORS (WITH LISSAJOUS):
%scalculating angle fi from spherical coordinates taking
%into account each quadrant:
if (nx31(cont)>0) && (ny31l(cont)>0)
fi = atan(ny31l(cont)./nx31(cont));
elseif (nx31l(cont)<0) && (ny31l(cont)<0)
fi = atan(ny31l(cont)./nx31(cont));
fi = pi + fi;
elseif (nx31l(cont)>0) && (ny31l(cont)<0)
fi = atan((-ny31(cont))./nx31(cont));
fi = 2*pi - fi;
elseif (nx31(cont)<0) && (ny31l(cont)>0)

fi atan(ny31(cont)./(-nx31(cont)));
fi = pi - fi;

elseif (nx31l(cont)==0) && (ny31l(cont)>0)
fi = pi/2;

elseif (nx31l(cont)==0) && (ny31l(cont)<0)
fi = 3*pi/2;

elseif (ny31(cont)==0) && (nx31(cont)=>0)
fi = 0;

elseif (ny31(cont)==0) && (nx31(cont)>0)
fi = pi;

end

%scalculating angle theta from spherical coordinates:
if nz31l(cont) >= 0
theta = acos(nz31l(cont));
else
theta = pi - acos(-nz31l(cont));
end

%sintroducing normal distribution to theta:
%(theta delimited at the interval [0;pi]. NOT higher than
%(theta+2*sigma point). NOT smaller than (theta-2*sigma point))
new theta(cont) = normrnd(theta,sigma point);
while ((new_theta(cont) < (theta - 2*sigma point)) || (new_theta(cont) >
(theta + 2*sigma point)))
new theta(cont) = normrnd(theta,sigma point);
while ((new_theta(cont) < 0) || (new theta(cont) > pi))
new theta(cont) = normrnd(theta,sigma point);
end
end
while ((new theta(cont) < 0) || (new theta(cont) > pi))
new theta(cont) = normrnd(theta,sigma point);
while ((new theta(cont) < (theta - 2*sigma point)) ||
(new_theta(cont) > (theta + 2*sigma point)))
new theta(cont) = normrnd(theta,sigma point);
end
end

%sintroducing uniform distribution to fi:
%(fi delimited at the interval [0;2*pi]. NOT higher than
%(fi+2*sigma point). NOT smaller than (fi-2*sigma point))
new fi(cont) = fi + sigma point*randn(size(fi));
while ((new fi(cont) < (fi - 2*sigma point)) || (new fi(cont) > (fi +
2*sigma point)))
new fi(cont) = fi + sigma point*randn(size(fi));
while ((new fi(cont) < 0) || (new fi(cont) > 2*pi))
new fi(cont) = fi + sigma point*randn(size(fi))
end

’
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end
while ((new fi(cont) < 0) || (new fi(cont) > 2*pi))
new fi(cont) = fi + sigma point*randn(size(fi));
while ((new fi(cont) < (fi - 2*sigma point)) ||
2*sigma point)))
new fi(cont) = fi + sigma point*randn(size(fi));

(new fi(cont) > (fi +

end
end

%new cartesian coordinates after new angles taking into account
%seach quadrant:
if (new theta(cont) >=0) && (new theta(cont) <= pi/2)
if (new fi(cont) >= 0) && (new fi(cont) <= pi/2)
z3(cont) = cos(new theta(cont));
p = sin(new theta(cont));
y3(cont) sin(new fi(cont)).*p;

x3(cont) = sqrt(p.”2- y3(cont) 2);
elseif (new fi(cont) > pi/2) && (new_ fi(cont) <= pi)
z3(cont) = cos(new theta(cont));
p = sin(new theta(cont));
x3(cont) = -sin(new fi(cont) - pi/2)*p;
y3(cont) = sqrt(p.”2-x3(cont).”2);

elseif (new fi(cont) > pi) && (new fi(cont) <= 3*pi/2)
z3(cont) cos(new_theta(cont));
p = sin(new theta(cont));
x3(cont) -sin(3*pi/2 - new fi(cont))*p;
y3(cont) -sqrt(p.”2-x3(cont).”2);
elseif (new fi(cont) > 3*pi/2) && (new fi(cont) <= 2*pi)
z3(cont) cos(new_theta(cont));
p = sin(new theta(cont));
x3(cont) sin(new fi(cont) - 3*pi/2)*p;
y3(cont) -sqrt(p.”2-x3(cont) ."2);
end
elseif (new theta(cont) > pi/2) && (new theta(cont) <= pi)
if (new fi(cont) >= 0) && (new fi(cont) <= pi/2)
z3(cont) = - cos(pi - new theta(cont));
p = sin(pi - new theta(cont));
y3(cont) sin(new fi(cont)).*p;
x3(cont) = sqrt(p.”2-y3(cont)."2);
elseif (new fi(cont) > pi/2) && (new fi(cont) <= pi)

z3(cont) = - cos(pi - new theta(cont));
p = 51n(p1 - new theta(cont))
x3(cont) = - sin(new fi(cont) - pi/2)*p;
y3(cont) = sqrt(p.”2-x3(cont).”2);
elseif (new fi(cont) > pi) && (new fi(cont) <= 3*pi/2)
z3(cont) = - cos(pi - new theta(cont));
p = sin(pi - new theta(cont));
x3(cont) = - sin(3*pi/2 - new fi(cont))*p;
y3(cont) = - sqrt(p.”2-x3(cont)."2);
elseif (new_fl(cont) > 3*pi/2) & (new fi(cont) <= 2*pi)
z3(cont) = - cos(pi - new theta(cont));
p = sin(pi - new theta(cont))
x3(cont) = sin(new fi(cont) - 3*pi/2)*p;
y3(cont) = - sqrt(p.”2-x3(cont)."2);

end
end

% Normalizing vector:

nx3(cont) = x3(cont)./sqrt(x3(cont).”2+y3(cont).”2+z3(cont)."2);
ny3(cont) = y3(cont)./sqrt(x3(cont).”2+y3(cont).”2+z3(cont)."2);
nz3(cont) = z3(cont)./sqgrt(x3(cont).”2+y3(cont).”2+z3(cont)."2);

nx3L(cont) = nx3(cont);
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(x(cont) > 2))

(cont);
(cont);
| |

randn;

randn;

cont+1;

ny3L(cont)
nz3L(cont)
0:s:1lenght
x(cont)

cont+1;
butter(100,0.5);

wp + (sigma wp*1.6066).*y;

ws + (sigma ws*1.6083).*y;

end

cont

x(cont)

while ((x(cont) < - 2)
end

cont

(there's a factor to achieve the same standard deviation

getting the new precession and spinning rates:
% we had at the beginning (1.488))

[b,a]
% getting filtered signal:

y = filter(b,a,x);

% creating butterworth filter:

% creating normal dist

end

cont = 1;
for t
end

3

o

o

]

wpe

wse

; % used to find multiples of rec

=0
t =1,

it
con
for t

’

nyi nol(cont);

nzi nol(cont);

nxi nol(cont);

0:s:lenght
if t==it*rec
nx(cont)
ny(cont)
nz(cont)

~==
+
ccCc
o O o
(G UNE]
— =~
o O O
n_n_n
e
mmMmm
X >N
ccc
I unn
+
ccc
o O O
(SIS
N N
mmMmm
X >N
ccc

nx31lL(cont);

ny31lL(cont);
nz31lL(cont);

it+1;

nz31l(cont)

nx31(cont)
ny31l(cont)
it

else

’
.
’

(cont-1).*cos(wpe(cont)*s)-zp2(cont-1).*sin(wpe(cont)*s)
(cont-1).*sin(wpe(cont)*s)+zp2(cont-1).*cos(wpe(cont)*s)
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x2(cont) = nx1 nol(cont)+xp2(cont).*cos(w*t)-yp2(cont).*sin(w*t);
y2(cont) = nyl nol(cont)+xp2(cont).*sin(w*t)+yp2(cont).*cos(w*t);
z2(cont) = nzl1l nol(cont)+zp2(cont);

% Normalizing vector:

nx(cont) = x2(cont)./sqrt(x2(cont).”2+y2(cont).”2+z2(cont)."2);
ny(cont) = y2(cont)./sqrt(x2(cont).”2+y2(cont).”2+z2(cont)."2);
nz(cont) = z2(cont)./sqrt(x2(cont).”2+y2(cont).”2+z2(cont)."2);

% SPINNING WITH NOISE (WITHOUT LISSAJOUS):

.9.9.0.0.9-0.0.9.9.0.0.9.9.0.9.9.9.0.0.9.0.0.0.9.9.0.9.9.9.0.9.9.0.0.0.9..0.99°%

costheta cos(wse(cont)*s);
sintheta sin(wse(cont)*s);

xp31 = (costheta+(1l.0-costheta).*nx(cont).”2).*nx3(cont-1);

xp32 = ((1.0-costheta).*nx(cont).*ny(cont)-
nz(cont).*sintheta).*ny3(cont-1);

xp33 = ((1.0-costheta).*nx(cont).*nz(cont)
+ny(cont).*sintheta).*nz3(cont-1);

yp31 = ((1.0-costheta).*nx(cont).*ny(cont)
+nz(cont).*sintheta).*nx3(cont-1);

yp32 = (costheta+(1l.0-costheta).*ny(cont).*ny(cont)).*ny3(cont-1);

yp33 = ((1.0-costheta).*ny(cont).*nz(cont)-
nx(cont).*sintheta).*nz3(cont-1);

zp3l = ((1.0-costheta).*nx(cont).*nz(cont) -
ny(cont).*sintheta).*nx3(cont-1);

zp32 = ((1.0-costheta).*ny(cont).*nz(cont)
+nx(cont).*sintheta).*ny3(cont-1);

zp33 = (costheta+(1.0-costheta).*nz(cont).*nz(cont)).*nz3(cont-1);

x31(cont) = xp31l+xp32+xp33;
y31l(cont) = yp31l+yp32+yp33;
z31(cont) = zp31l+zp32+zp33;

% Normalizing vector:

nx31(cont) = x31(cont)./sqrt(x31(cont).”2+y31(cont).”2+z31(cont)."2);
ny31(cont) = y31(cont)./sqrt(x31(cont).”2+y31(cont).”2+z31(cont)."2);
nz31(cont) = z31(cont)./sqrt(x31(cont).”2+y31(cont).”2+z31(cont)."2);

% SPINNING WITH NOISE AND POINTING ERRORS (WITHOUT LISSAJOUS):
%scalculating angle fi from spherical coordinates taking
%into account each quadrant:
if (nx31(cont)>0) && (ny31l(cont)>0)
fi = atan(ny31l(cont)./nx31(cont));
elseif (nx31l(cont)<0) && (ny31l(cont)<0)
fi = atan(ny31l(cont)./nx31(cont));
fi = pi + fi;
elseif (nx31l(cont)>0) && (ny31l(cont)<0)
fi = atan((-ny31(cont))./nx31(cont));
fi = 2*pi - fi;
elseif (nx31(cont)<0) && (ny31l(cont)>0)
fi = atan(ny31(cont)./(-nx31(cont)));

fi = pi - fi;

elseif (nx31l(cont)==0) && (ny31l(cont)>0)
fi = pi/2;

elseif (nx31l(cont)==0) && (ny31l(cont)<0)
fi = 3*pi/2;

elseif (ny31(cont)==0) && (nx31(cont)=>0)
fi = 0;
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elseif (ny31l(cont)==0) && (nx31(cont)>0)
fi = pi;
end

%scalculating angle theta from spherical coordinates:
if nz31l(cont) >= 0
theta = acos(nz31(cont));
else
theta = pi - acos(-nz31(cont));
end

%sintroducing normal distribution to theta:

%(theta delimited at the interval [0;pi]. NOT higher than
%(theta+2*sigma point). NOT smaller than (theta-2*sigma point))
new theta(cont) = normrnd(theta,sigma point);

while ((new theta(cont) < (theta - 2*sigma point)) || (new theta(cont) >

(theta + 2*sigma point)))

new theta(cont) = normrnd(theta,sigma point);
while ((new theta(cont) < 0) || (new theta(cont) > pi))
new theta(cont) = normrnd(theta,sigma point);
end
end
while ((new_theta(cont) < 0) || (new theta(cont) > pi))
new theta(cont) = normrnd(theta,sigma point);
while ((new_theta(cont) < (theta - 2*sigma point)) ||

(new_theta(cont) > (theta + 2*sigma point)))

2*sigma_

2*sigma

new theta(cont) = normrnd(theta,sigma point);
end
end

%introducing uniform distribution to fi:

%(fi delimited at the interval [0;2*pi]. NOT higher than
%(fi+2*sigma point). NOT smaller than (fi-2*sigma point))
new fi(cont) = fi + sigma point*randn(size(fi));

while ((new fi(cont) < (fi - 2*sigma point)) || (new fi(cont) > (fi +
point)))
new fi(cont) = fi + sigma point*randn(size(fi));
while ((new fi(cont) < 0) || (new fi(cont) > 2*pi))
new fi(cont) = fi + sigma point*randn(size(fi));
end
end
while ((new fi(cont) < 0) || (new fi(cont) > 2*pi))
new fi(cont) = fi + sigma point*randn(size(fi));
while ((new fi(cont) < (fi - 2*sigma point)) || (new fi(cont) > (fi +
point)))
new fi(cont) = fi + sigma point*randn(size(fi));
end
end

% new cartesian coordinates after new angles taking into
% account each quadrant:
if (new theta(cont) >=0) && (new theta(cont) <= pi/2)
if (new fi(cont) >= 0) && (new fi(cont) <= pi/2)
z3(cont) = cos(new theta(cont));
p = sin(new theta(cont));
y3(cont) = sin(new fi(cont)).*p;
x3(cont) = sqrt(p.”2- y3(cont) ~2);
elseif (new fi(cont) > pi/2) && (new_ fi(cont) <= pi)
z3(cont) = cos(new theta(cont));
p = sin(new theta(cont));
x3(cont) = -sin(new fi(cont) - pi/2)*p;
y3(cont) = sqrt(p.”2-x3(cont)."2);
elseif (new fi(cont) > pi) && (new fi(cont) <= 3*pi/2)

’
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z3(cont) = cos(new theta(cont));

p = sin(new theta(cont));

x3(cont) = -sin(3*pi/2 - new fi(cont))*p;
y3(cont) = -sqrt(p.”2-x3(cont).”2);

elseif (new fi(cont) > 3*pi/2) && (new fi(cont) <= 2*pi)
z3(cont) = cos(new theta(cont));
p = sin(new theta(cont));
x3(cont) sin(new fi(cont) - 3*pi/2)*p;
y3(cont) -sqrt(p.”2-x3(cont).”2);
end
elseif (new theta(cont) > pi/2) && (new theta(cont) <= pi)
if (new fi(cont) >= 0) && (new fi(cont) <= pi/2)
z3(cont) = - cos(pi - new theta(cont));
p = sin(pi - new theta(cont));
y3(cont) = sin(new fi(cont)).*p;
x3(cont) = sqrt(p.”2-y3(cont)."2);

) = - cos(pi - new theta(cont));
p = sin(pi - new theta(cont));
) - sin(new fi(cont) - pi/2)*p;

y3(cont) = sqrt(p.”2-x3(cont).”2);

elseif (new fi(cont) > pi) && (new fi(cont) <= 3*pi/2)
z3(cont) = - cos(pi - new theta(cont));
p = sin(pi - new theta(cont));
x3(cont) = - sin(3*pi/2 - new fi(cont))*p;
y3(cont) = - sqrt(p.”2-x3(cont)."2);

elseif (new fi(cont) > 3*pi/2) && (new fi(cont) <= 2*pi)
z3(cont) = - cos(pi - new theta(cont));

) =
p = sin(pi - new theta(cont));
x3(cont) sin(new fi(cont) - 3*pi/2)*p;
y3(cont) - sqrt(p.”2-x3(cont).”2);
end

end

% Normalizing vector:

nx3(cont) = x3(cont)./sqrt(x3(cont).”2+y3(cont).”2+z3(cont)."2);
ny3(cont) = y3(cont)./sqgrt(x3(cont).”2+y3(cont).”2+z3(cont)."2);
nz3(cont) = z3(cont)./sqrt(x3(cont).”2+y3(cont).”2+z3(cont)."2);

end
cont = cont+1;
end

©.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.000.0.0.0.0.0000

for t=0:s:1lenght
% data used in the angle plots to represent the time in months:
k(cont)=t/(30*24*3600);

% SGE ANGLE:
% Vectors Gaia-Earth and Gaia-Sun:
GE=[ (XL-1x(cont)) (O0-ly(cont)) (0-1z(cont))

1;
GS=[ (AU+XL-1x(cont)) (O0-ly(cont)) (O0-1z(cont))];
% Calculation of Sun-Gaia-Earth angle

GEmod=sqrt(((GE(1))"2)+((GE(2))"2)+((GE(3))"2));
GSmod=sqrt(((GS5(1))"2)+((GS(2))"2)+((GS(3))"2));
SGEang(cont)=(180/pi)*acos((GE(1)*GS(1)+GE(2)*GS(2)+GE(3)*GS(3))/

(GEmod*GSmod) ) ;
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% ANGLES WITHOUT NOISE:

©,0.9,0.0.0.0.0.0.0.0.0

0000
6700006000006 06060600°00

% Angle between the "transition" vector and the

% "transition + Lissajous" vector:

nrl=[nx1 nol(cont) nyl nol(cont) nzl nol(cont)];

nrll=[nx1(cont) nyl(cont) nzl(cont)];
anglenrl(cont)=(180/pi)*acos(nrl(1l)*nrlL(1)+nrl(2)*nrlL(2)+nrl(3)*nrlL(3));

% Angle between the "transition + precession" vector and the

% "transition + precession + Lissajous" vector:

nr2=[nxi nol(cont) nyi nol(cont) nzi nol(cont)];

nr2Ll=[nxi(cont) nyi(cont) nzi(cont)];
anglenr2(cont)=(180/pi)*acos(nr2(1l)*nr2L(1)+nr2(2)*nr2L(2)+nr2(3)*nr2L(3));

% Angle between the "transition + precession + spinning" vector and the

% "transition + precession + spinning + Lissajous" vector:

nr3=[nx3i nol(cont) ny3i nol(cont) nz3i nol(cont)];

nr3L=[nx3i(cont) ny3i(cont) nz3i(cont)];
anglenr3(cont)=(180/pi)*acos(nr3(1)*nr3L(1)+nr3(2)*nr3L(2)+nr3(3)*nr3L(3));

% ANGLES WITH NOISE

9,0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0,

0"070"0"0"0"0"0"0"0"0"0"0"0"0"0"00 00

% Angle between the "transition + precession with noise" vector and the
% "transition + precession with noise + Lissajous" vector:

nr2NL=[nxL(cont) nyL(cont) nzL(cont)];

nr2N=[nx(cont) ny(cont) nz(cont)];

anglenr2noise(cont)=(180/pi)*acos(nr2NL(1)*nr2N(1)+nr2NL(2)*nr2N(2)+nr2NL(3)*
nr2N(3));

% Angle between the "transition + precession with noise + spinning with

% noise" vector and the "transition + precession with noise + spinning

% with noise + Lissajous" vector:

nr31NL=[nx31L(cont) ny31L(cont) nz31lL(cont)];

nr31N=[nx31(cont) ny31l(cont) nz31l(cont)];

anglenr31lnoise(cont)=(180/pi)*acos(nr31INL(1)*nr31N(1)+nr31NL(2)*nr31IN(2)+nr31
NL(3)*nr31IN(3));

Angle between the "transition + precession with noise + spinning with
noise and pointing errors" vector and the "transition + precession
with noise + spinning with noise and pointing errors + Lissajous"
vector:
nr3NL=[nx3L(cont) ny3L(cont) nz3L(cont)];
nr3N=[nx3(cont) ny3(cont) nz3(cont)];
anglenr3noise(cont)=(180/pi)*acos(nr3NL(1)*nr3N(1)+nr3NL(2)*nr3N(2)+nr3NL(3)*
nr3N(3));

o® o° o° o°

cont=cont+1;

©.0.0.00.000000000000000000000000000000000000000000000000000000000000000000000
7676760760600 0606000006006 06006006000600600060060°0060060000060°000060°0600060°000060060600600606°0060060°006
) .
% PLOTS:
06%56°6%°6°6°6°6°66°66-66-6°6-6-66 6666666066 66066 66066 6666666666 6666666666 6°6-6-6-6-66-6-6-6-6-6-6°6

figure('Name', 'Lissajous YZ')
plOt(lyulzury'rZ,"')

axis([-100000 100000 -100000 100000])
xlabel('Y (km)")

ylabel('Z (km)")

title('Plot of the YZ Gaia orbit')
grid on
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figure('Name', 'Lissajous YX')
plot(ly,1x,'-")

axis([-100000 100000 -100000 100000])
xlabel ('Y (km)"')

ylabel('X (km)")

title('Plot of the YX Gaia orbit')
grid on

figure('Name', 'Lissajous XZ')
plot(lx,1z,"'-")

axis([-100000 100000 -100000 100000])
xlabel('X (km)")

ylabel('Z (km)")

title('Plot of the XZ Gaia orbit')
grid on

figure('Name', 'Lissajous 3D"')

plot3(lx,ly,1lz,"'-")

axis([-100000 100000 -100000 100000 -100000 100000])
xlabel('X (km)")
ylabel('Y (km)"')
zlabel('Z (km)"')

title('Plot of the 3D Gaia orbit')
grid on

figure('Name', 'SGE angle')
plot(k,SGEang, '-")

xlabel('time (months)")

ylabel('angle (degrees)')

title('Plot of the Sun-Gaia-Earth angle')
grid on

% SCANNING LAW WITHOUT NOISE:

figure('Name', 'Translation')

plot3(nx1 nol,nyl nol,nzl nol,nx1l,nyl,nzl,'-")
axis ([-11 -11 -1 11)

axis square

xlabel('x axis')

ylabel('y axis')

zlabel('z axis')
title('Translation')
grid on

figure('Name', 'Translation + Precession')
plot3(nyi nol,nzi nol,nxi,nyi,nzi,nxi nol, '-")
axis ([-11 -1 1 -1 1])

axis square

xlabel('x axis')

ylabel('y axis')

zlabel('z axis')

title('Translation + Precession')

grid on

figure('Name', 'Translation + Precession + Spin')
plot3(nx3i nol,ny3i nol,nz3i nol,nx3i,ny3i,nz3i,"'-")
axis ([-11 -11 -1 11)

axis square

xlabel('x axis')

ylabel('y axis')

zlabel('z axis')

title('Translation + Precession + Spin')
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grid on

%%%%%%%%%%%%%%%

figure('Name', 'Angle
plot(k, anglenrl)
axis square
xlabel('Time (months)")
ylabel('Angle (degrees)')
title('Angle "Translation"')
grid on

% ANGLES WITHOUT NOISE:

©.0.0.0.0.00
“676°6°6"°6"0°0
T

Translation"')

figure('Name'
plot(k,anglenr2)

axis square

xlabel('Time (months)"')

ylabel('Angle (degrees)')

title('Angle "Translation + Precession"')
grid on

figure('Name'
plot(k,anglenr3)

axis square

xlabel('Time (months)")
ylabel('Angle (degrees)')

grid on

% SCANNING LAW WITH NOISE:

figure('Name', 'Translation + Precession with
plot3(nx,ny,nz,nxL,nyL,nzL,"'-")

axis ([-11 -1 1 -1 11)

axis square

xlabel('x axis')

ylabel('y axis')

zlabel('z axis')

title('Translation + Precession with noise')
grid on

figure('Name', 'Translation + Precession with
plot3(nx31,ny31,nz31,nx31L,ny31L,nz31L,"'-")
axis ([-11 -11 -1 11)

axis square

xlabel('x axis')

ylabel('y axis')

zlabel('z axis')

title('Translation + Precession with noise +
grid on

figure('Name'
errors')
plot3(nx3,ny3,nz3,nx3L,ny3L,nz3L, '-")

axis ([-11 -11 -1 1])

axis square

xlabel('x axis')

ylabel('y axis')

zlabel('z axis')

title('Translation + Precession with noise +
grid on

, 'Translation + Precession with

, 'Angle "Translation + Precession"')

,'Angle "Translation + Precession + Spin"')

noise')

noise + Spin with

Spin with noise')

noise + Spin with

noise')

noise + Pointing

Spin with noise + Pointing errors')
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figure('Name', 'Angle "Translation + Precession with noise"')
plot(k,anglenr2noise)

axis square

xlabel('Time (months)"')

ylabel('Angle (degrees)')

title('Angle "Translation + Precession with noise"')

grid on

figure('Name', 'Angle "Translation + Precession with noise + Spin with noise"')
plot(k,anglenr3lnoise)

axis square

xlabel('Time (months)"')

ylabel('Angle (degrees)')

title('Angle "Translation + Precession with noise + Spin with noise"')

grid on

figure('Name', 'Angle "Translation + Precession with noise + Spin with noise +
Pointing errors""')

plot(k,anglenr3noise)

axis square

xlabel('Time (months)")

ylabel('Angle (degrees)')

title('Angle "Translation + Precession with noise + Spin with noise + Pointing
errors""')

grid on

% LISSAJOUS ORBIT TIME:

% indicating the duration of the Lissajous orbit (years):
disp('* Duration of the Lissajous orbit (years):')
disp(dlo/(365.25*24*3600)
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