. Escola d’Enginyeria de Telecomunicacio i
eete Aeroespacial de Castelldefels

UNIVERSITAT POLITECNICA DE CATALUNYA

MASTER THESIS

TITLE: A multi-agent payload management approach for femtosatellite applications

MASTER DEGREE: Master of Science in Telecommunications Engineering and
Management

AUTHOR: Lara Navarro Morales
DIRECTOR: Joshua Tristancho Martinez

DATE: September 15, 2011

Titulo : A multi-agent payload management approach for femtosatellite applications
Autor: Lara Navarro Morales

Director: Joshua Tristancho Martinez

Fecha: September 15, 2011

Resumen

La reduccion en tamano de los componentes electrdnicos hace posible la construccion de
satélites realmente pequenos como los femtosatélites (satélites con una masa inferior a
100 gramos).

La principal ventaja de este tiepo de satélites es que proporcionan un punto de vista
multiple cuando trabajan en enjambre o dentro una constelacion. La complejidad de este
tipo de red de sensores, afiadido al bajo consumo de potencia y al tamaro reducido de los
nodos, require una buena estrategia de gestion de recursos que se pretende presentar en
este trabajo.

El paradigma de gestion de agente consiste en un punto de vista simple, con alta calidad,
y diversos puntos de vista multples con una calidad menor. La conmutacion de un punto
de vista a otro se realiza de forma externa a la red o se lleva a cabo siguiendo una
ley basica. Este enfoque permite una buena optimizacion del ancho de banda. Del
mismo modo, permite una distribucion de tareas en la red en la que hay un Unico agente
recibiendo, otro transmitiendo y el resto trabajan como nodos.

Palabras clave: Multi agente, Femtosatélite, PicoRover, Micro camara, System-On-Chip

Title : A multi-agent payload management approach for femtosatellite applications
Author: Lara Navarro Morales

Director: Joshua Tristancho Martinez

Date: September 15, 2011

Overview

The reduction in size of electronic components makes feasible really small satellites like
Femtosatellites with are less than 100 grams of mass.

The main advantage of this kind of satellite is the multipoint of view when they work as
swarm or a inside a constellation. The complexity of these kind of network sensors in
addition to the low power and low size requires a good strategy of management that we
want to present in this work.

The paradigm of agent management consists of a single point high quality point of view
and multipoint low quality point of view where the switching for the selected point of view
is done externally to the network or done by a basic law. This approach allow a good
optimization of the bandwidth instead of streaming every points of view in high quality.
At the same time, this approach allows a task distribution in the network where there is
only one acquiring agent, one transmitting agent and the rest of agents working as a node
agent.

Keywords: Multi-agent, Femtosatellite, PicoRover, Micro-camera, System-On-Chip

Acknowledgements

I’'m grateful to my parents, my sister and my friends for encouraging and supporting me
during this work.

I'm very grateful to my tutor Joshua Tristancho for the opportunity to do this research as
well as his help and inspiration in this work.

| want to thank members of the WikiSat research group who helped me with this work
developing the femtosatellite, providing the supplies and prototyping the boards, specially
Joshua Tristancho, Sonia Pérez and Jordi Gutiérrez.

I'm very grateful to people who helped and supported me, specially Esteve Bardolet,
Raquel Gonzalez, Joan Naudo, Enric Fernandez, Roberto Rodriguez, Juan Martinez, Vic-
tor Kravchenko and Javier Pérez.

| want to thank the EETAC school for the laboratories and equipment they have provided
to support this research.

Special thanks to Luis Izquierdo from the Universidad Nebrija and Angel Esteban from the
D47 company for their interest in this research and the opportunity to participate in the
TURIZMAP project funded by AVANZA grant, project code F-00300.

OP>=imm

Glossary

ADC
BIAS
BOM
CAD
CAM
CLK
CLKINH
CNC
COTS
DAQ
DoF
EEPROM
EMC
EXTCLK
FIFO
GFKS
HAL
HD
HGA
12C

IC

IMU
LASER
LEO
LNA
LOS
LSB
MCU
MEMS
MSB
OIP3
P1dB
PA
PCB
PLF
PWM
RF
SAA
SCL
SDA
SEE
SH/LD
SMD
SoC
SPI

Analog-to-Digital Converter
Biased error

Bill-of-Material
Computer-Aided Design
Computer-Aided Manufacturing
Clock signal

Clock inhibit signal

Computer Numerical Control
Commercial-of-the-Shelf
Digital Acquisition

Degrees of Freedom
Electrically Erasable Programmable Read-Only Memory
Electromagnetic Compatibility
External clock signal

First In First Out

Gaussian Frequency-Shift Keying modulation
Hardware Abstraction Layer
High Definition

High Gain Antenna
Inter-Integrated Circuit
Integrated Circuit

Inertial Measurement Unit
Light Amplification by Stimulated Emission of Radiation
Low Earth Orbit

Low Noise Amplifier
Line-of-Sight

Less Significant Bit

Main Control Unit
Micro-Electromechanical System
Most Significant Bit

Output Intercept Point at 3 dB
Input power at 1 dB

Power Amplifier

Printed Circuit Board
Polarization Loss Factor

Pulse With Modulation
Radio-Frequency

South Atlantic Anomaly

Serial Clock

Serial Data Signal

Single Event Effect
Serializer/Load signal

Surface Mounting Device
System-on-Chip

Serial Peripheral Interface bus

SRAM Shadow RAM memory
TTC Telemetry, Tracking and Commanding
UART Universal Asynchronous Receiver-Transmitter

CONTENTS

Acknowledgements Vi
Glossary IX
INTRODUCTION 1
1. RELATEDWORK 5
1.1. Satellite classification 5
1.2. Femtosatellites oo 5
1.3. Technologies 6

1.3.1. Micro-Electro-Mechanical Systems 6

1.3.2. Printed CircuitBoards 7

1.3.3. Surface Mount Devices Technology 7

1.3.4. CameraCube 7

1.3.5. Inter-Integrated CircuitBus 7
2. REQUIREMENTS 9
2.1. Architecture 9
2.2. Systemrequirements 10
2.3. High levelrequirements 10
2.4. Low levelrequirements 11
2.5. Additional requirementso 12
3. DESIGN CONSIDERATIONS 15
3.1. Documentation program 15
3.2. Mechanical considerations L. 16
3.3. Thermal considerations 16

3.3.1. Thermal designdiscussion 18

3.3.2. Thermalcasessummary 18

3.4. Preferred componentlist oo L. 19

3.5. Electrical considerations 19

3.5.1. Powerbudget 20
3.5.2. POWErSOUICES & i i i e e e e e e e e e e e e e e e e 20
3.5.3. Distributed vs centralized voltage regulation 21
3.5.4. Cosmic radiation study and mitigation 22
3.6. Attitude determination and control subsystem 22
3.6.1. Earth magneticfieldsensor 23
3.6.2. Sun-trackersensoro o 23
3.7. Payload areas 23
3.71. PCBconstraints 24
3.7.2. Mainpayloadareause, 25
3.7.3. Secondary payloadareause 25
3.7.4. Third payloadareause 25
4, FEMTOSATELLITE LINK BUDGET 27
4.1. Startingpoint 27
4.2. Design 28
4.3. Implementation L 28
5. SYSTEM IMPLEMENTATION 31
5.1. Componentselection 0. 31
5.2. Hardwaredesign 31
5.2.1. Payloadsubsystem L. 32
5.2.2. Microcontrollerinterfacingo L. 32
5.2.3. Communication subsystem L. 33
5.2.4. Sensorsubsystemo 34
5.2.5. Power management subsystem 34
53. Board 35
5.4. Integration 35
5.4.1. PCB prototyping procedure 35
5.4.2. PCBassemblingprocedure 36
5.5. Testand validation 37
5.5.1. Microcontroller interfacing subsystem validation 37
5.5.2. Sensor subsystemvalidation 38

5.5.3. Communication subsystem validation 38

5.5.4. Power management subsystem validation 39

6. PAYLOAD IMPLEMENTATION 41
6.1. Evaluationboards oo 41
6.2. Testand validation 41

6.2.1. Cameratestandvalidation 41

6.2.2. Serializertestandvalidation. 42

6.2.3. Payload test and validation 42
7. CONCLUSIONS 45
7.1. Generalconclusions 0. 45
7.2. Environmental impact Lo 45
73. Futurework 46
BIBLIOGRAPHY 47
A. WikiSat V4.1 Schematics 51
B. WikiSatvV4.1Board 57
C. WikiSat V4.1 Assembly Form 59
D. Power management subsystem source code 61
D.1. TCA6408,SourceCode 61
E. Payload subsystem sourcecode 63
E.1. TCM8230MD, SourceCode 63
E.2. Serializer,SourceCode 64
E.3. Payload, SourceCode, 66
E.4. Synchronization signal, SourceCode 69

F. Preliminary femtosatellite source for WikiSat V4.1 . . 71

LIST OF FIGURES

1. Direct case, Relay case and Multi-pathcase
2. a)WikiSat V1, b)WikiSat V2, c)WikiSatVv3

1.1. Scale of satellites as afunctionofmass
2.1. Femtosatellite block diagram for an imagingpayload

3.1. Wikisat ground station network and femto-satellite trajectory. (Green available) .
3.2. Femtosatellite total and average mission consumption
3.3. Femtosatellite Earth’s magnetic field model and the NOAA real declination map
3.4. WikiSat V4.1 payloadareas

4 1. Femtosatellite communication diagram block and link budget
4.2. a) Array antenna distribution and b) 3D radiation pattern

5.1. Payload subsystem schematic
5.2. Microcontroller interfacing schematic
5.3. Communication subsystem schematic
5.4. Sensor subsystem subsystem schematic
5.5. Power management subsystem schematic
5.6. WikiSat V4.1 boardchallenges
5.7. a) LPKF Protomat H100 and b) LPKF ProtolaserS
5.8. WikiSatv4.1 assembled L.
59.Reflowoven.
5.10l0Expander evaluationboard
5.11\Voltage regulator evaluationboard

6.1. a) Serializer evaluation board and b) Camera evaluationboard
6.2. TCM8230MD constant definitions
6.3. TCM8230MD output e
6.4. Serializertest
6.5. a) Clock references, b) Clock comparisons and c) Serializer output

LIST OF TABLES

3.1. Thermal budgetoverview
3.2. Femtosatellite subsystems mass, power and temperature budget

5.1. Femtosatellite componentlist oo oL

XVI A multi-agent payload management approach for femtosatellite applications

INTRODUCTION

For a given agent network, the paradigm of management-on-the-agent sets that the re-
sponsibility of streaming management goes through to the agent and not through the net-
work control. In example, if these agents are a set of wireless cameras, the paradigm
of management-on-the-agent consist on a single high quality point of view and many low
quality multi-point of view. The switching for the selected point of view is done externally
to the network or by a basic law in such a way that the bandwidth is optimized. Instead of
streaming every point of view in high quality mode only one is used. An important strength
of this approach is that allows a task distribution on the network where there is only one
acquiring agent, one transmitting agent and the rest of agents work as a node agent. The
term “point of view” here is used not only in terms of a camera but also in terms of knowing
information about how, when and where the point of view has been taken.

Traditional approach for Recording Studios was to stream every single point in high quality
to a master control panel where in that moment or later, the switching action is done. Final
result is a sequence of these high quality points of view. With this traditional approach,
there is a huge waste of resources only affordable if transmission lines are wired. If the
transmission line is a wireless link, this traditional approach does not makes sense. The
management-on-the-agent paradigm proposes to break with this approach and to make
more efficient the use of the resources or available bandwidth.

In [5] a multi-agent adaptive protocol for femtosatellite applications is proposed. Hence,
the proposal of this protocol is to define which agent is the Producer and which is the
Consumer thus the rest of agents will work as a Relay. Figure 1 shows the three study
cases proposed: Direct link case, a Relayed link case and a Multi-path case.

.1 02 Direct case @ Producer agent
O Consumer agent

2
®
.1/ \03 Relay case ® Relay agent

2
1/‘\ 5 i

5] y L Multi path case
\}.3____04/

Figure 1: Direct case, Relay case and Multi-path case

The first one,the direct case, is when the Consumer agent is closer enough to the Producer
agent. Even if looks like the network is not required, it is not true because the aim of the
Multi Agent System is to provide real-time information for each agent’s point of view to
the Consumer agent. In this case it can be that the transmission is faster and no delay is
introduced. Telemetry, Tracking and Command (TTC) should be sent from every node to
the Consumer agent. A relay case is done when the Consumer agent can not reach the
Producer directly but through other agent. In this case the streaming is done step by step
and thus a delay is introduced. Finally, when multi-path case is considered, delay may very
depending on the number of jumps. Infinity loops must be avoided.

Observing these three study cases, some basic ideas can be taken into account:

2 A multi-agent payload management approach for femtosatellite applications

TTC information of all nodes should be sent whatever the configuration is.

The smaller jump number is, the better.

In multi-path case, lower jump number is preferred.

Need to avoid infinite loops.

Need to ignore repeated information.

The WikiSat space program consists on implementing a low cost satellite for the N-Prize.

The satellite WikiSat is a less than 20 grams femtosatellite that will be the brain of the
mission, it is responsible of ignite the rocket, its control, ignite the Stage 2, etc. These
capabilities save job and weight because there is no need of a single control system for
the rocket, the WikiSat is capable of doing these functions by itself.

Then the WikiSat is an essential part of the group and everything that makes the group has
direct or indirect relation with it. The group have worked to allow that all femtosatellites can
establish network and return information once they are in orbit, working like a constellation.
There are four versions some of them are showed in Figure 2.

Figure 2: a)WikiSat V1, b)WikiSat V2, c)WikiSat V3

The Chapter 1 presents the state of the art in terms of femtosatellites as well as the tech-
nologies used on its design. On Chapter 2 a set of requirements to the femtosatellite
technology capable of achieving the N-Prize goals are synthesized while on Chapter 3 the
design considerations followed during the development of WikiSat V4.1 are exposed. The
femtosatellite link budget is presented in Chapter 4.

The technical implementation of the WikiSat V4.1 will be described in the Chapter 5. The
component selection and the hardware design is widely explained as well as the integration
of the different subsystem and its validation. The Chapter 6 will be focused on the payload
implementation.

As the concept of the paradigm of management-on-the-agent was developed enough in
[5] this work will be focused on the development of an agent that follows this paradigm.

A multi-agent payload management approach for femtosatellite applications

RELATED WORK 5

CHAPTER 1. RELATED WORK

1.1. Satellite classification

In general, a satellite is any object that orbits something else, as, for example, the Moon
orbits the Earth. An artificial satellite is a device which has been placed into orbit by human
endeavor.

First artificial satellite (Sputnik 1) was launched by the Soviet Union in the latest 1950s.
Since then, thousands of satellites' have been launched into orbit around the Earth; also
some satellites, notably space stations, have been launched in parts and assembled in
orbit.

Different purposes can be developed by satellites. Common types include military and civil-
ian Earth observation, communications, navigation, weather and research. Space stations
and human spacecraft in orbit are also satellites. Satellite orbits vary greatly, depending
on its purpose and are classified in a number of ways. Well-known (overlapping) classes
include low Earth orbit, polar orbit, and geostationary orbit.

Satellites are usually semi-independent computer-controlled systems. Satellite subsys-
tems attend many tasks, such as power generation, thermal control, telemetry, attitude
control and orbit control. The satellites are usually classified by their mass as shown in

Figure 1.1.

i

4

= MicroSat-10
e
+ MicroSat-100 g
¥

=
nnk5|

~wikisat {f§
*Picoﬂ.ﬂ}‘

«SNAP fﬁ?

+ MiniSat-400 !":‘

- GMP

|Femto Picosal | Nanosat
[=1]

2 g
L= 8 -
g

—

10kg =

Figure 1.1: Scale of satellites as a function of mass

1.2. Femtosatellites

The idea of a complete satellite that weights less than 100 grams is not new; this category
is called femtosatellite. Some authors like Helvajian and others have proposed a complete

'http:/nssdc.gsfc.nasa.gov/nme/spacecraftSearch.do

6 A multi-agent payload management approach for femtosatellite applications

femtosatellite design in [8] and Barnhart in [3]. Also some femtosatellite designs were
propose by the authors in [11] but to date, no femtosatellite was launched to the orbit.

This very promising category of satellite and its low weight, can severally reduce the launch
cost. Also it is feasible to increment the number of satellites launched in a same event,
i.e. swarms of these satellites can record same phenomena from different points of view;
in addition it is possible to distribute the work load if they are interconnected as a sen-
sor network. Of course this is only feasible if all the basic subsystems are implemented
in such a small size. The key point is to use Commercial-of-the-shelf (COTS) that are
commercially available like electronic components, i.e. Micro-Electro-Mechanical Systems
(MEMS) but they need to be validated for the space environment. Many sensors had been
assembled in a format of MEMS while others can not be implemented with this technology,
i.e. huge telescopes or low frequency antennas. Basic knowledge on physics [9] says that
antenna size depends on the working frequency while amount of power needed to transmit
increases with a power of four of the frequency. The 2.4 GHz frequency was selected for
ground short distance applications but also for a Low Earth Orbit (LEO) by some authors
like Doerksen in [13] up to 115kbps with a patch antenna or like Hamrouni proposed in
[7] and by Hall in [6] as a download communication system. The wave length is about few
centimeters but for a communication link from a LEO orbit with ground is the order of few
watts. These basic parameters establish size and power limits for a femtosatellite design
that is magnified for the technological limitations.

1.3. Technologies

The improvement of satellites is base on the use of new technologies. Although it is very
hard to implement them because the space sector is a very conservative industry. Some
technologies that are used in the process of designing a femtosatellite like this are stated
bellow.

1.3.1. Micro-Electro-Mechanical Systems

The main improvement for femtosatellites is to based them on Micro-Electromechanical
Systems (MEMS) that are available in the domestic market. These components should
be validated for space use. Many of them can be used in hard conditions like our fem-
tosatellite is going to resist. One of the main components for the femtosatellite is a 3 axes
accelerometer single chip like the LIS331HH from STMicroelectronics that is used to guide
the launcher during the trajectory. Other critical component is a high accurate, high range,
three axes gyro like the ITG-3200 from Invensense that is used for short maneuvers for
the camera or antenna pointing.

RELATED WORK 7

1.3.2. Printed Circuit Boards

The use of Printed Circuit Board (PCB) makes the design and implementation very easy
and cheap. This technology is nowadays, very well expanded. It is feasible to design
with open tools the whole satellite and for less that 100€a manufacturer will build and
assemble your design in only few days. Additionally, the use of micro-strips allows to
design and implement in the same platform many kinds of High Gain Antennas (HGA)
using a technology of micro ceramic antennas array.

1.3.3. Surface Mount Devices Technology

Based on PCB, the use of Surface Mount Device (SMD) is another improvement in terms
of weight saving, size reduction, high shock resistant and robustness. For the femtosatel-
lite development we are interested in the use of these devices because they are easy
to assemble during the re-flow. Many electronic components are available in this format,
including a complete high definition camera.

1.3.4. CameraCube

CameraCube is a technology that integrates a whole camera (sensor, circuit and lens)
inside a cube able to re-flow in a PCB. There is a new growing market in this sens for phone
mobiles and i-Pod applications. A good example of this is a high definition camera VW6754
from STMicroelectronics that has 5x5x4 mm and 1,600x1,200 pixels. These cameras use
a technology called wafer, a pin matrix is below the camera with bubbles. When high
temperature is applied, these bubbles made of soldering past melt and welds the camera
in the PCB. The level of integration is really high.

1.3.5. Inter-Integrated Circuit Bus

The I?C bus or IIC stands for Inter-Integrated Circuit that is used to attach low-speed
peripherals to a Main Control Unit (MCU). Many sensors are based on an Analog to Dig-
ital Converter (ADC) that is inside the sensor itself and data is provided in digital format
through the I>C bus. Two wires are only required to connect all the sensor in the fem-
tosatellite. This fact results in a reduction in complexity and space saving in the PCB.
Additionally, no calibrations or maintenance are required. The speed of this bus reaches
up to 100 kbits per second so this bus is not suitable for the payload data streaming but
for the payload control. In our case, the femtosatellite will have a dedicated streaming bus
direct from the serializer to the transceiver.

A multi-agent payload management approach for femtosatellite applications

REQUIREMENTS 9

CHAPTER 2. REQUIREMENTS

2.1. Architecture

SoC
[e |
| |
| |
| |
| |
| |
| |
| |
| |
| { |
| |
| Payload
I __________ e |

Figure 2.1: Femtosatellite block diagram for an imaging payload

The WikiSat V4.1 is a Satellite-on-a-board; its design was based on some synergies to
achieve such a low cost and low mass challenge. The structure of the satellite is a PCB
(Figure 2.1) that works to hold the ceramic antenna array that was proposed by Fernandez-
Murcia in [4] and at the same time works as a passive thermal control subsystem. This
control is done in the design phase in terms of equilibrium between the incoming heat flow
and the exit heat flow but adjusted by the area of two different materials, copper and glass
fiber, that have opposite emissivity.

The femtosatellite performances turn around an Inertial Measurement Unit (IMU) designed,
implemented and validated in near space by Bardolet Santacreu in [1], this IMU consist of
two MEMS: a 3 axis accelerometers in the range of 24g with 16 bits of data resolution and
a bandwidth of 500 Hz and the other is a 3 axial gyros in the range of 2,000 degrees per
second and a built-in temperature sensor. Both components are connected to a I2C bus
that is connected to the Main Control Unit (MCU) and other satellite devices. The idea of
using the same IMU for the satellite and the launcher trajectory control was proposed by
Tristancho in [17] as the Space Payload Paradigm is the integration of both, the launcher
and the satellite in the design cycle of a space mission was proposed.

10 A multi-agent payload management approach for femtosatellite applications

The satellite attitude control and the launcher vector control was studied by Navarro-
Morcillo in [14] having the same inputs but different output. In order to reduce 10 times
the launcher size, a balloon launching ramp was proposed by Bonet-Osorio in [2]. When
a launch is done at an altitude of 35 kilometers; all the hard atmosphere and hazards are
avoided and a large quantity of propellant is saved, hence safer and more often launches
can be done weekly.

2.2. System requirements

In this section the mission requirements, as well as the femtosatellite ones, are presented.
The WikiSat organization is the one in charge of the development and implementation of
the femtosatellite. This organization has implemented on its designs the following direc-
tives and policies respect to it:

Simplicity directive. The KISS rule stands for Keep It Simple and Safe.

Absolute minimum directive, closer tolerances and a design only for its mission.

No redundancy policy. Single fault tolerant system.

Preferred configuration. Complete capabilities in the default configuration.

The system requirements are the following:
S0: The femtosatellite, as a system, shall stay in Low Earth Orbit for at least one week in
order to allow the payload purpose before the end of this Master Thesis.

S1: The vector of the launcher used to launch the femtosatellite will be controlled by itself.
The mini-launcher should have two stages and the bill of materials must be lower
than 1.000 £, the femtosatellite is not included in this price.

S2: The femtosatellite should be operated by a development platform and the Earth con-
trol must be open source in order to guarantee the platform transparency.

2.3. High level requirements

HLOO: The Power Supply subsystem shall provide electrical power for the computing of
the orbit and the tracking.

HLO1: The Communication subsystem shall transmit and receive the tracking and payload
information.

HLO02: The Structure subsystem shall be used protect the femtosatellite components and
be used as a thermal path for thermal loads.

REQUIREMENTS 11

HLO3: The Attitude determination subsystem shall determine the attitude by inertial means
and be helped by optic sensors.

HLO4: The Position determination subsystem shall determine the position in the orbit by
inertial mean and be helped by optic sensors.

HLO5: The Attitude control subsystem shall point the high gain antenna to the Earth in a
passive way using the Earth’s magnetic field.

HLO06: The Tracking subsystem shall transmit its computed position to a ground station
only when passing over the ground station’s sky.

HLO7: The Video recording subsystem shall record pictures and video if required.

2.4. Low level requirements

LLO00: The battery shall provide enough power for the whole mission at any time and in
peak power conditions for a limited period of time.

LLOO1: The electrical power subsystem shall be used in short periods of time having an
idle model.

LLO10: The ground communication link shall be disconnected when the ground electrical
power source is not available.

LLO11: The ground monitoring function shall be disconnected when the ground electrical
power source is not available.

LLO12: The downlink subsystem shall transmit the monitoring information from the fem-
tosatellite to the ground station before the launch and using the low gain antenna.

LLO13: The uplink subsystem shall receive the configuration information form the ground
station to the femtosatellite before the launch and using the low gain antenna.

LL020: The structure shall have a high thermal inertia in order to be used as the thermal
control.

LLO21: The structure subsystem shall support physical loads up to 500 G.
LLO022: The structure subsystem shall work in a temperature range from -150 to 250°C.

LL023: The structure subsystem shall have a surface with cooling properties in order to
e a good heat flow in such a way that the resulting temperature remains inside the
range between -40 to 60°C.

LLO30: The attitude determination subsystem shall be calculated from two different sources
(optical devices and gyros).

LL040: The position determination subsystem shall be calculated from two different sources
(optical devices and accelerometers).

12 A multi-agent payload management approach for femtosatellite applications

LLO41: The position determination subsystem shall guarantee an error less than one de-
gree in latitude and one degree in longitude and the sum of both has to be an area
less than 10,000 square kilometers.

LL050: The attitude control subsystem shall point the high gain antenna towards the
ground with an angular accuracy of 5 degrees.

LLO51: The attitude control subsystem shall absorb any rotation energy produced by the
radiation pressure wind in less than few minutes.

LLO60: The tracking subsystem shall transmit the femtosatellite computed position at least
once to every ground station in the list of available ground stations.

LLO70: The Video recording subsystem shall take pictures with a resolution of at least
1,280 horizontal by 1,024 vertical.

LLO71: The Video recording subsystem shall take videos with a frame rate of 15 frames
per second at least.

LLO72: The Video recording subsystem shall have the possibility of compressing pictures
and videos using a JPEG compression.

2.5. Additional requirements

Operational Requirements

ADO000: The femtosatellite shall be able to receive the launch position in order to align the
inertial Measurement Unit before launch.

Safety Requirements
ADO001: The femtosatellite battery shall be only used when the femtosatellite is deployed.
Performance Requirements

ADO002: The tracking subsystem shall be able to illuminate an area of 200 kilometers in
diameter.

Physical and Installation Requirements
ADO003: The femtosatellite size shall be lower than 0.2 meters in any direction.

Maintainability Requirements

REQUIREMENTS 13

AD004: The femtosatellite shall be able to keep ready to launch at least for two years
without any maintenance action.

Interference Requirements

ADO005: The femtosatellite shall be electromagnetically compatible with the mini-launcher.

14

A multi-agent payload management approach for femtosatellite applications

DESIGN CONSIDERATIONS 15

CHAPTER 3. DESIGN CONSIDERATIONS

The scope of this chapter is to justify how to reduce launch costs based on the list pub-
lished in [10] by James R. Wertz. This list contains the major trends in the space industry
in the US that are:

= Decreasing cost of basic electronics.

m Increased capability of software due to more capable, faster processes.

= Increasing performance capability of electronic packages of a specific size.

= Increasing capability of mission-related software.

= Increasing reliability of basic components.

m Increased use of advanced composite technology to reduce structural masses.

» Increased use of computer technology for decreasing staffing requirements for launch
day operations.

= Motivation to use commercial launch providers whenever possible for government
projects as well as for commercial projects.

= Increasing political pressure to separate NASA from launch services.
m Establishment of private spaceports to compete with federal ranges.

= Severe budgetary pressure on federal discretionary spending.

The trends outlined above result in decreased size and mass of payloads. Because of this
resultant trend, launch cost per unit mass of payload becomes less important than total
launch cost for dedicated missions as the last stage becomes the most massive part of
the orbited mass. Decreased mass of specific payload packages and the availability of
excess payload mass in existing specific launch vehicle configurations drive a tendency to
manifest multiple payloads on a given launcher. This makes necessary the existence of
some regulations. Current technological, economic and regulatory realities forbid payload
delivery to LEO for true costs of less than about $2,000 /kg.

One of the successful strategies employed by Arianespace and explained by Mowry in [16]
is to make multiple rockets, with different payload interfacing, at one time. This strategy, not
only allows to obtain greater probability of launch success, it also maximizes the potential
for some cost reductions.

3.1. Documentation program

For the development of this project, a documentation program based on five documents
has been created: ConOps document, System requirements document, System design

16 A multi-agent payload management approach for femtosatellite applications

document, Program management plan and Engineering management plan that are sum-
marized following:

WikiSat ConOps Document contains the information related to the utility of the system.
This document contains the user manual and is used by clients.

WikiSat System Requirements Document contains the list of requirements that the sys-
tem shall meet. This document is used by engineers to develop the detailed subsys-
tem document.

WikiSat System Design Document contains the definition of components required for
each subsystem. This document is used by engineers to build the system.

WikiSat Program Management Plan contains the planning to build and operate the sys-
tem. This document is used by engineers to design the mission and by the operator.

WikiSat Engineering Management Plan contains information about the role of each en-
gineer in the organization. This document is used by the organization manager.

3.2. Mechanical considerations

The aerospace science is, by definition, a very demanding sector. One of the challenges
of this project is to fit all the aforementioned subsystems in a mass budget of less than
20 grams. Additionally, the femtosatellite should support accelerations up to 500 g (About
4,900m/s2), there is no extra mass for reinforcement. The structure itself must be a
monolithic block. The key point is the use of two advanced technologies: PCB and SMD.
Printed Circuit Board is a very well known technology that make easy the integration of all
the components in a single layer of fiberglass. The Surface Mounted Devices are re-flowed
over the copper layers of the PCB and they can resist high loads thanks to the lightness
of the components. Extra hardware, like struts or bolts, is not required to increase the
toughness. This fact makes the femtosatellite design very light and easy to assemble. The
PCB has good dielectric properties and also can be used for thermal control.

3.3. Thermal considerations

There is a heat flow of income heat and outcome heat. The heat flow received by the
femtosatellite is determined by the Equation 3.1 and the heat emitted by the femtosatellite
is determined by the Equation 3.2; where « is intensity, I is the absorbency, F is the
geometric factor, A is the effective area, G is the Boltzmann constant of 5.67- 103 W /(m?-
K4), T is the effective temperature and € is the emissivity.

Qin=o0o-1-F-A (3.1)

DESIGN CONSIDERATIONS 17

Qo =0-T*-Y (- A) (3.2)

Computing the maximum heat flow able to irradiate the femtosatellite (Maximum cooling
heat flow) at the maximum operative temperature of 60 °C is determined by Equation 3.3
and its value is shown in Equation 3.4.

Quax=0-T*-Y (e-A) (3.3)

Qumax = 5.67-107%- (273 +60)* -} (0.92-0.0042+0.15-0.0042) = 3.133W (3.4)

Computing of the total heat flow when the femtosatellite is radiated by the sun the following
results are obtained:

@total - qun + Qalbeda + QIR + Qdisipated =0.895 + 0.878 + 0.707 + 0.500 =2.980W

(3.5)
@s,m =o-1-F-A=0.15-1,420-1.0-0.0042 = 0.895W (3.6)
Qutpedo = 0-1-F A =0.92-454.4.0.5-0.0042 = 0.878 W (3.7)
Qg =0-1-F-A=0.92-244.0-0.75-0.0042 = 0.707 W (3.8)
Quissipatea = 0.5W (3.9)

Hence, when the femtosatellite is exposed to the sun, the albedo and the infra red, the
resultant temperature for the worst case is computed as show in Equation 3.10 which is
below the maximum operating temperature.

s/ Orotal 4 2.980 .
_ - =329K =56°C
G-Y(e-A) \/5.67 -1078-(0.92-0.0042 +0.15-0.0042)
(3.10)

In these conditions, when the satellite is in idle, the resultant temperature is 324 K = 51°C.

When the femtosatellite is in the eclipse, it is only exposed to the infra red, the resultant
temperature for the worst case is determined by Equation 3.11 being this value inside the

18 A multi-agent payload management approach for femtosatellite applications

operating temperature range. In these same conditions, when the satellite is in idle, the
resultant temperature is 253 K = —20°C.

: 1.044
o 4 Goa _ 253K = —20°C
oY (e-A) \/5.67-105-(0.92-0.0042+0.15-0.0042)
(3.11)

3.3.1. Thermal design discussion

This is a passive thermal control subsystem because the femtosatellite has a good bal-
ance between the income heat flow and the outcome heat flow. Any modification in the
initial design may vary the working temperature range. In this case the copper area in the
PCB back layer should be changed until the femtosatellite temperature range is correct.
The copper has a good emissivity property while the fiberglass has a very bad emissivity
property. If the PCB back layer has to much copper, the femtosatellite can irradiate the
heat and the femtosatellite tends to cool down. Opposite, if the predominant area in the
PCB back plate layer is fiberglass, the femtosatellite tends to keep the heat and it warms

up.

3.3.2. Thermal cases summary

Following, the Table 3.1 presents the basic mission cases in terms of electrical power and
thermal levels. These levels are Idle case and transmitting case correspondig to a standby
state and an active state. Both levels have two cases more that are Sun case and Eclipse
case. There are four combinations in total under study.

Table 3.1: Thermal budget overview

Maximum cooling heat flow

Qsun Quatbedo QIR Quisipatea Qrorar Temp. K(°C)
Cooling - - - - 3.133 333 (60 °C)

Sun case
Osun Qaivedo QIR Quisipated Qrorar Temp. K (°C)
Idle case 0.895 0.878 0.707 0.330 2.810 324 (51 °C)
TXcase 0.895 0.878 0.707 0.500 2.980 329 (56 °C)

Eclipse case
Osun Quatbedo QIR Quisipatea Qrorar Temp. K (°C)
Idlecase 0.000 0.000 0.707 0.330 1.073 253 (-20 °C)

TXcase 0.000 0.000 0.707 0.500 1.207 262 (-11°C)

DESIGN CONSIDERATIONS 19

3.4. Preferred component list

There is a preferred configuration for a default list of components in this femtosatellite.
Table 3.2 presents the mass, the power and the temperature budget for every subsystem
composed by these components. Some components are the implementation of one or
more subsystems. A detailled Bill of Materials (BOM) is also provided in the Appendix C.

Table 3.2: Femtosatellite subsystems mass, power and temperature budget

Subsystem Mass Max. Power Idle Temp. Range Size
grams mW mW °C mm
Power supply subsystem 6.6 3V, 610mAh —30to 60 D24.5x5
Communication subsystem 0.1 100 0.1 —401to 85 171 x 34
Structure subsystem 2.0 — - —116to0 204 30x25x7
Attitude determination subsystem 1.4 5 0.1 —30t0 70 D5 x2
Position determination subsystem 1.2 65 0.1 —30to0 60 30x16x3
Attitude control subsystem 0.4 40 30 —150t0 550 1x0.25x0.25
Tracking subsystem 7.0 500 250 —40to 85 140 x 25 x 1
Video recording subsystem 1.0 150 150 —201t0 60 11x11x6
TOTAL 19.7 860 330 —20to 60 140 x 30 x 7

3.5. Electrical considerations

The whole femtosatellite design is based on a single LiPoly battery. For this reason, it is
mandatory to do a mission consumption budget that will be used in the power budget in
order to dimension the battery capacity needed. This study is based on a typical Earth
observation LEO mission but real power budget will depend on each mission type. Some
simulations have been run using the Moon2.0 simulator and the LEO preset. Also, the
Wikisat ground station network consisting of Denmark ground station, Barcelona ground
station, El Arenosillo ground station and Maspalomas ground station have been selected
as shown in Figure 3.1. The whole commercial available network is not been used in order
to be realistic.Can be shown that there is an average window of 2,000 s per day where the
femtosatellite has a ground station in Line of Sight (LOS). If the mission has a maximum
duration of nine days and transmission time is about 256, as computed by Gonzalez in
[5] there is a total of about 2,300 of pure transmitting mode.

In the future, if a mission is demanding higher power, it makes sense to put small solar
panels in the back of the satellite where the Sun allows the battery to be charged. The
main problem with this is that the area of the femtosatellite is small. Other important issue
is that components should have very low consumption, hibernate modes and same voltage
to make the power distribution subsystem more efficient.

20 A multi-agent payload management approach for femtosatellite applications

Figure 3.1: Wikisat ground station network and femto-satellite trajectory. (Green available)
3.5.1. Power budget

There are two working modes: Standby and Active. When Standby mode, also called
Idle case, no main work is done by the satellite except for the integration of the attitude
an time counter. When Active mode, also called transmitting case, all the subsystems
are actives. Magnetorquers could generate a magnetic field in order to have an attitude
control to point the high gain antenna towards the ground station or to follow an interesting
point for the payload. The transceiver and the power amplifier could transmitt or receive
information. Since this femtosatellite uses a batery, all the available power should be used
only when necessary. The total mission time when the satellite could stay in active mode
during these nine days are about 382 minutes of a total of about 13,000 minutes. Only 3
percent of the mission time, the femtosatellite will have an important battery leak. The total
mission consumption is about 520mA#h and the total available is 610mAh. We have to say
here that this is only a simulation based on a typical mission. Accurate budget should be
done in a future real mission. Finally, the average consumption per hour is 2.4mAh

Table 3.2 is a summary about the femtosatellite main component consumptions. Some
asumptions were done related to the Active mode. Transmittion will take only 70 percent
and Reception is the other 30 percent. Pictures are taken only during 10 percent of the
Active time meanwhile the attitude control will take only 1 percent of this time. The highest
current consumption is due to the magnetorquer and the power amplifier but the power
amplifier is used lager time so this component represents the major consumption. For this
reason saving modes are recommended like the Burst technology or Data Compression.

3.5.2. Power sources

The power source for this kind of missions, due to the short mission time is strongly re-
comended to use batteries. 34 percent of the mass budget is for the battery that represents
6.6 grams compared to the tracking subsystem that is the 36 percent of the mass budget
in 7.0 grams. In the early designs, i.e. WikiSat v3 a coin batery was selected having a
better consumption to mass ration that the current LiPoly batteries. The main problem that
a coin battery has is not the fact that it is no rechargeable but it has a very low maximum
power, about 50mAh, while the total consumption is 610mA#h. LiPoly batteries have higher

DESIGN CONSIDERATIONS

21

Current Total mission
Current . .
ption consumption consumption
consum
(mA) (mAh)
. Active 200 [uA] 0,20000 1,27500
Microcontroller
i i Atmegal6s Power-down 0.1 [uA] 0,00010 0,02160
interfacing
Power-save 0.75 [uA] 0,00075
Power-down 900 [nA] 0,00090 0,19440
Standby - | 26 [uA] 0,02600
I Standby - Il 320 [uA] 0,32000
Communication RX 13.5 [mA] 13,50000 25,81875
X 11.3 [mA] 11,30000 50,42625
Crystal Startup 400 [uA] 0,40000
PA2423L 80 [mA] 80,00000 357,00000
Normal 250 [uA] 0,25000 0,01667
LIS331HH Low-power 10 [uA] 0,01000
Sensor Power-down 1 [uA] 0,00100 0,21600
ITG-2200 Normal 6.5 [mA] 6,50000 41,43750
Sleep 5 [uA] 0,00500 1,08000
TCAG408 Operating 6.5 [uA] 0,00650 1,40400|
Stand by 1[uAl] 0,00100
Power management .
TPS192615 Active 0.5 [mA] 0,50000 3,18750
TPS193333 Active 0.5 [mA] 0,50000 3,18750
TCM8230MD VGA (15fps) 40 [mA] 40,00000 25,50000
Payload SN74HC165 Active 80 [uA] 0,08000 0,51000
Magnetorquer Active 100 [mA] 200,00000 12,75000
Total mission consumption 524,02517
Average consumption (mAh) 2,42604

Figure 3.2: Femtosatellite total and average mission consumption

maximum power in the order of 12,000mA# for a short time.

If lager time is required for a very active mission or for a high active mission, small solar
cells could be mounted in the back of the antenna in such a way that it could recharge the
battery. These solar cells only represents few grams in the mass budget but it increases
the complexity of the system.

Other power source that could be considering in femtosatellite formations is to reuse the
magnetorquers to pass the energy by induction if femtosatellites are less than one meter
closer and if the formation have a harvester satellite.

3.5.3. Distributed vs centralized voltage regulation

There are some considerations to take into account related to the voltage regulation. Each
box was designed with a different power need and different voltages. In old satellite de-
signs there were two approaches in order to feed the subsystems: distributed power supply
and centralized power supply. A third approach only possible in a complete design like the
one proposed by the WikiSat team.

Distributed power supply means that there is a single power source with a given voltage.
Inside every box, there are few regulators that convert the voltage to every need that this
box may has. This approach is really complicated and not so efficient. The main advantage
is that it is easy to design a subsystem inside a box. It is easy to have a modular design
allowing a complex design. Another advantage is that the heat produced by the regulator

22 A multi-agent payload management approach for femtosatellite applications

is also distributed and is more efficient in terms of thermal distribution.

Centralized power supply has a single regulator for all the devices and for every voltage.
The energy transformation is very efficient respect to the distributed approach. The design
is really simple but no so modular. A good dimension in terms of power consumption
should be done because it is not easy to isolate a box if this box has a problem.

Single power supply is a version of the centralized approach but, in this case, all the
devices have the same voltage and there is no need to convert to other voltages. This is
the most efficient design in terms of power transformation efficiency. The problem is that
there is no way to do a modular design. All the system should be designed completely
from the scratch. This is the approach used in the WikiSat v4.1 except for the Payload that
a centralized schema has been used. The rest of components will use 3.3V everywhere.
This voltage has been chosen instead of 5.0V because the LiPoly battery has 3.7V and
all the components are tolerant to it. There is no need to regulate the power except for
some cases like the transmitter that requires a very stable power source and, of course,
the payload that has a different approach.

3.5.4. Cosmic radiation study and mitigation

The most important phase when designing a satellite is to study the cosmic radiation study
and its effects on the electronic parts. Radiation particles coming from solar wind, like
protons and electrons, can be a serious problem for the semiconductor materials on board.
In [15], a wide study of this effects on the WikiSat in presented. The key points extracted
by Molas-Pous during her research are exposed bellow.

= Short periods of radiation are allowed for a small satellites like this if they are in very
Low Earth Orbit (LEO)

= The main radiation source apart of the Van Allen electrons and protons, is the so
called South Atlantic Anomaly (SAA) that is passing through it every day

= The battery has a good shielding effect over the weak electronic components against
the Single Events Effects (SEE) that can polarize a transistor or even destroy it.

3.6. Attitude determination and control subsystem

The attitude determination could be done by gyros but they have a lot of BIAS of drift error
and an absolute correction method is required. Gyros can provide a very accurate attitude
determination value. In order to correct this BIAS, a magnetometer and a Sun-tracker will
be used. Accuracy is low in the order of 10 degrees while gyros can give an accuracy in
the order of 0.1 degrees.

The attitude control will be done by magnetorquers that are not really accurate but it is very
simple and easy to be assembled in the femtosatellite structure. These magnetorquers are
controlled by the 10 Expander with a current limit of 100mA per coil.

DESIGN CONSIDERATIONS 23

3.6.1. Earth magnetic field sensor

The attitude control is done by four magnetorquers. The control can be done in 2 degrees
of freedom. These magnetorquers can generate a magnetic pole that reacts against the
Earth magnetic field. The main problem with this technique is that we should know what is
the magnetic field surrounding the femtosatellite and the variations of the Earth’s magnetic
field. WikiSat has a Earth’s magnetic field model in the EEPROM memory that is showed
in figure 3.3 with information about the declination of the true magnetic North. There is an
example of implementation in the Appendix F. The magnetic model is based on the NOAA
World Magnetic Model (National Oceanic and Atmospheric Administration). Comparing
the sensor reading with the value stored in the model, for a given coordinates, it is possible
to know one angle of the femtosatellite attitude. This method is useless in the poles due to
the gimbal lock effect.

— fHLAN
30y L A
N 7
I — 0
o o .
%
-30°

60" B

180° 210° 240" 270° 300° 330" O 30" 60" 80" 120" 150" 180

Figure 3.3: Femtosatellite Earth’s magnetic field model and the NOAA real declination map

3.6.2. Sun-tracker sensor

We need to solve the other angle in order to know where the femtosatellite should point
with the High Gain Antenna or the Payload Sensor. For this reason, a Sun-tracker should
be installed in the followinw WikiSat version. This other method is useless in the eclipse
that hapens every orbit. Additionally, it is possible to use the Moon if we know the position
not only the Sun but the Moon. Typically, femtsatellite missions are more focused on
day recording but download could be in any moment. Also, the main needs dor Disaster
Management are closer to the Equator.

3.7. Payload areas

Some rules about how to use the available payload areas are defined. In that way, there
is no need to worry about basic functionalities such as: COTS components conditioning,
Logistics usage of COTS components, Tracking functionalities and Information download
to Earth. Additionally, using these rules it make easier to test if the payload is going to
affect to the femtosatellite integrity.

The area of the femtosatellite WikiSat was optimized during the design. It was fitted to the

24 A multi-agent payload management approach for femtosatellite applications

antenna array in order to reduce the size as much as possible. There are four different
zones clearly separated by the microstrips of the antenna. The most suitable part to allo-
cate the circuitry, as show in Figure 3.4 is the central part because in the bottom part is the
battery protecting against radiation. It was decided to divide this area in two parts, one for
the femtosatellite and the other for the payload. The lateral areas is where the magnetor-
quers are allocated leaving free space to use as payload if necessary. These lateral areas
have two-fold problem: they are exposed to radiation and they need to be conditioned
passing lines through the microstrips. When lines are passed through the microstips it has
to be done in the bottom part of the satellite in order to no interfere the antenna. It is very
important to check that there is no near field interference in those passing points.

Figure 3.4: WikiSat V4.1 payload areas

3.7.1. PCB constraints

There are some constraints that should be taken into account when designing a PCB:

= Lines can not be thinner tan 0.2mm and VIAS shall be at least of 0.6 mm.

= SMD components can not have a footprint lower than 0402 size (0.04x0.02 in,
1.0x0.51 mm).

= |n case of needing more layers or SMD components with footprints lower than 0402
size the implication on the manufacturing process will be studied.

= Generally the "8mil” (8 um) rules established on the micron-20.dru files of design
rules for EAGLE PCB will be followed.

m Itis not allowed to pass through the microstrips in the bottom part cutting the copper
ground plane. If it is necessary to pass solder wires will be used.

= [t is not allowed to pass through the microstrips anyway only using a board with the
same characteristics and copper on the other side plus an EMC (Electromagnetic
compatibility) study. In that case the same rules about passing lines in the bottom
part are applied. Also, it will be necessary a study about electromagnetic interfer-
ence with the synthetic aperture antenna and the magnetorquers and how can the
metallic parts reflexions be and the harmonic generation of the transmitter payload
components. It is not allowed to pass closer than 0.4 mm from the microstrip.

= |t is desirable to have a ground plane closer to the microstrip, on the bottom and top
sides.

DESIGN CONSIDERATIONS 25

= |tis allowed to mount PCB board above the other taking into account that this board
can not exceed the payload area minus a 0.4 mm border. It will be necessary to fix
them with resin and use pins to connect the buses, never connectors. The pile of
PCB boards never can exceed its area unless the previous rule is followed with its
implications and limitations.

3.7.2. Main payload area use

The main payload area is conditioned to easily mount and supply SMD components.
Through an I°C port the state of the tested component can be monitored by the satel-
lite. This bus follows a set of rules that, in case of overload, can endanger the satellite
integrity and even the launching. Moreover the power consumption of the payload must
fit the power budget as the available power and the consumption capacity are very limited
in case of use a battery even using solar cells. An excess in power consumption has an
impact on the satellite thermal stability during its entire life cycle. The payload must be
turn on only in key moments. Some basic functions are supplied by the satellite as event
detection, navigation data and system operation through subsystem supply. Examples of
this are: test of new sensors, test of high definition cameras (as the data sending is highly
limited), test of the transmitters, etc. Criticality on this area is low, it may can endanger
the attitude control capacity of the satellite in orbit if transmitter systems interfere with
magnetorquers.

3.7.3. Secondary payload area use

The second payload area has access to several power and data lines. Its use is justified
when the receptor is far away from the main payload area. Any specific need of current
regulation can be supplied through the available channel, always taking into account the
crossing microstrips rules. Examples of use are: Transmitter-Receiver lines (optical or
electromagnetic waves). Criticality on this area is moderate, it may endanger the attitude
control capacity of the satellite in orbit if transmitter systems interfere with magnetorquers.

3.7.4. Third payload area use

This area is the best place to test power systems as solar cells as it has an SPI bus and
direct connection to the battery. Any specific current regulation shall be implemented by
the payload user because there is no way to supply the available voltages in the main
payload area unless using multi-layer techniques. In that case, implications and cost must
be determined. Criticality on this area is very high, it may endanger the attitude control
capacity of the satellite in orbit if transmitter systems interfere with magnetorquers.

26

A multi-agent payload management approach for femtosatellite applications

FEMTOSATELLITE LINK BUDGET 27

CHAPTER 4. FEMTOSATELLITE LINK BUDGET

The antenna design has been lead by Fernandez-Murcia and it is widely explained in [4].
In this chapter only the main aspects are exposed.

4.1. Starting point

First of all, an accurate power link budget for the communication is necessary in order to
determine which elements will be required to increase the transceivers radio link (initially
designed for less than 100 meters). The maximum link distance is fixed at 500 km, with a
minimum of 250 km and it will be unidirectional from the satellite to the base station. It will
be assembled on a Satellite-on-a-Board. It is selected the transceiver nRF24L01P [26] at
2.4 GHz System-on-Chip (SoC). It will work at 250 kbps with a 0dBm power signal (GFSK
modulation).

The system must be upgradeable, ready to be updated with new elements constantly (step-
design). It starts as a medium range communication system able to evolve to a long range
system. For this reason, some extra components like amplifiers (in both sides of the radio
link) are necessary to increase the range. It is mandatory to begin with the computation of
how many extra gain (dB) will be necessary for the worst case condition (500 km). For this
calculation, the following expression has been used:

P = P+ Gy — €1y — LFS — PLF + Gy — €yx (4.1)

A polarization loss factor (PLF) of 3dB has been considered due to the different polariza-
tion of the antennas, one linear and the other circular. This is critical because polarization
may change due to satellite movement or any other undesired effect. A circular polariza-
tion (20dB of gain) Yagi antenna is selected for reception and a 6dB antenna (the gain
expected for the array) for transmission is considered. Finally, 0.5dB losses due efficien-
cies have been considered at each side of the link. The operating frequency (fp) selected
is 2.49 GHz, but it may change a bit if necessary (selecting a different operating channel).

Equation 4.1 can be easily transformed to estimate the extra gain necessary as shown in
Equation 4.2.

Gextru == Ptx + G[x — €rx — LFS— PLF + er — Epx — Prx,min =50.3dB (42)

As noticed, at least 50.3 dB gain is necessary, without considering noise effects, for a 500
km link. Typical amplifiers offer between 10 and 20dB of gain, for this reason at least two
or three amplifiers will be required. In WikiSat V4.1 design there are one power amplifier
and two low noise amplifiers.

28 A multi-agent payload management approach for femtosatellite applications

4.2. Design

For transmission, a power amplifier (PA) with an adequate gain-consumption trade-off,
easy to implement (not too much components) and the better OIP3 ' and P1dB 2 as
possible are the main specifications considered. After a research it has been found a
product from SiGe ° | it is the PA2423L.

For reception, other parameters are more critical (principally its noise figure and gain),
therefore is necessary to find out some low noise amplifiers (LNA in advance). Two options
have been found and both will we cascade connected with a filter between them to reduce
noise. The LNA selected (by its low noise figure and as close to the antenna as possible)
is from Analog Devices 4 and its the ADL5521 (it is important to place just before the
reception antenna, an amplifier with the lowest noise figure as possible).

Figure 4.1 shows the femtosatellite communication diagram as well as the link budget
calculations.

Satellite n | Ground Station
C D ,
| i GH Prx=-114.35dBm| | | i
™ f] Txea { | fe=249GHz pno 3ggBm || [Rrena | a0 o
T — Gx=6dB - t |- Rx BPF [—] 1
nRF24L01P | | PA2423L | SNR=16.EdB | aDL5521 MAX2644 | || nRE24L01P
i | ERP=24gBm . .o e | |
Ptx= 0dBm (GFSK) Gain=18 { Distance=500km Gain=12dB BW =320kHz Gain=16dB Epml‘min)= 94 dBm
BW =300 kHz Ptx=18dBm | Lfs=154.354B F=1dB Att=1dB F=25d8 | Prc=-57.350Bm
i Extralosses=1dB Po=-102.35dBm i
PLF=3 dB
A B E -

Figure 4.1: Femtosatellite communication diagram block and link budget

4.3. Implementation

Each component, LNA and PA, was tested separately. To do so, a PCB has been manu-
factured for each one following proposed circuits from manufacturers data sheet with some
simplifications.

An initial design of the array configuration for the transmitting antenna is represented in
Figure 4.2

The selected antennas are ceramic antennas AT9520 with a 1.5 —2dB max. gain and
a radiation diagram similar to a dipole diagram in 2.4 to 2.5GHz band. As 5 to 10dB of
gain are required a four elements array has been considered. Different theoretical and
experimental test have been made, results are detailed in [4].

"Output interception point order 3
2Input power 1 dB compression point
Shttp://www.sige.com
*http://www.analog.com

FEMTOSATELLITE LINK BUDGET

29

30 Radiation Pattam

Z

Figure 4.2: a) Array antenna distribution and b) 3D radiation pattern

30

A multi-agent payload management approach for femtosatellite applications

SYSTEM IMPLEMENTATION 31

CHAPTER 5. SYSTEM IMPLEMENTATION

The technical implementation of the WikiSat v4.1 was split into the following parts: compo-
nent selection, hardware design, prototyping, integration of the different subsystems and
test and validation of the whole system. The aforementioned implementation steps were
performed and documented below. As mentioned before, one of the key aims of the tech-
nical implementation part was to perform it with minimum expenses and using low-cost
in-house manufacturing tools that could be afforded by a particular hobbyist, open source
and open hardware programming and debugging tools.

5.1. Component selection

Following the design specification stated above the component selection was performed.
The component instances were selected according to the requirements exposed in Chap-
ter 2 taking as well into account their cost characteristics. The summary of the component
selection work is summarized in the Table 5.1.

Table 5.1: Femtosatellite component list

Comp9nent Mtg Model Size Package Price
candidate mm Type €
MCU Atmel ATMEGA168 5X5 MLF32 3.07
Accelerometer ST LIS331HH 3X3 QFN14 3.64
Rate gyroscope Invensense ITG-3200 4X4 QFN24 25.39
Transceiver NORDIC nRF24L01P 4X4 QFN20 3.78
HD camera TOSHIBA TCM8230MD 6X6 - 9.95
Serializer Texas Instruments SN74HC165PW 5X4.5 TSSOP 0.27
IO expander Texas Instruments TCAGB408A 1.80x2.60 RSV 1.86
Voltage regulators Texas Instruments TPS719XXXX 2x2 DRV 1.36
Power amplifier SiGe Semiconductor PA2423L 3.25x1.85 QFN6 2.63

Total components cost 53.61

5.2. Hardware design

One of the most important tools in the hardware design process is the CAD software used
for schematics and board design, electrical and manufacturing-related rules compliance
revision and CAM output synthesis for prototyping or outsourced manufacturing. The study
of available open source and freeware tools was performed and the CadSoft Eagle CAD 2
was selected due to its advantages such as freeware license; wide community support and
amount of component libraries; user-scripting language support making the CAD highly
customizable and others.

20fficial website: http://www.cadsoft.de/

http://www.cadsoft.de/

32 A multi-agent payload management approach for femtosatellite applications

This software package is able to produce CAM output in GERBER RS-2742 providing
though a high compatibility with industrial PCB manufacturing and assembling services
as well as in-house prototyping using even a toner-transfer method. It is also important
to note that the package is equipped with an auto-routing tool which allows achieving the
lowest development time.

The hardware design of the system, as well as the conditioning of all the components,
was performed according to the manufacturers recommendations of the implementation
methods in the data sheets [19, 22, 18, 26, 20, 24, 28]

5.2.1. Payload subsystem

The payload subsystem is used to accomplish the needs for the specific mission. In this
case, as the Wikisat V4.1 will act as a Sun-tracker, it has an imaging payload. This payload
subsystem is composed of a HD camera [20] and a shift register [28] used to convert
the parallel output of the camera into a serial list of bits in order to send them to the
Ground Station. Payload conditioning circuit is shown in Figure 5.1. The complete system
conditioning is shown in Appendix A.

As can be seen, three different voltages are required to feed the camera (3.3V, 2.6V for
the sensor and 1.5V for the A/D). Also I>C signals (SCL, SDA) are needed to start up the
camera. Finally, some clock references are used to capture (CLKO) and trasmit (CLK1)
the images. The camera output (DO from D7) is transmitted directly to the shift register.
The shift register in supplied by 3.3V and needs two clock references (CLK1 and CLK) in
order to synchronize with the camera and to serialize the received data.

U2

J

TCM8230MD

Figure 5.1: Payload subsystem schematic

5.2.2. Microcontroller interfacing

The Main Control Unit is a 8051 compatible processor, 16 MHz with 32 kb of RAM and 2 kb
of SRAM. Multiple peripherals are available like: Pulse With Modulators (PWM), General
Purpose Input Outputs and Analogic to Digital Converters (ADC). Figure 5.2 show the
microcontroller interfacing implemented on the design. As the rest of the system it is
supplied by 3.3V.

SYSTEM IMPLEMENTATION 33

T

=

Figure 5.2: Microcontroller interfacing schematic
5.2.3. Communication subsystem

This subsystem is essential for the femtosatellite mission as it is the responsible for the
communication with the Ground Station. The main parts of this subsystem are the transceiver
[26] and the PA [25]. The conditioning of this part has been design by Fernandez-Murcia
in [4] and can be show in Appendix A. Figure 5.3 shows the pin out of both components.

1]

M{ﬁ T

Figure 5.3: Communication subsystem schematic

i

34 A multi-agent payload management approach for femtosatellite applications

5.2.4. Sensor subsystem

The key subsystem is the Inertial Measurement Unit (IMU). It has a platform of high accu-
racy 3 Axes accelerometers 16 bit of data resolution, three gyros and 2000 ° /s range and
temperature sensor for real-time calibration. All the femtosatellites are connected to the
I2C bus for data and configuration. As can be seen in Figure 5.4. Specific details of this
subsystem conditioning are explained in [1].

IR REE

Figure 5.4: Sensor subsystem subsystem schematic

5.2.5. Power management subsystem

The power management subsystem is composed by two voltage regulators [27] and a
IOExpander [24]. The IOExpander is in charge of femtosatellite power management to
guarantee the power saving. It turns-on or turns-off the different subsystems depending
on the needs off a specific moment. It is controlled through the I’C port by the MCU. The
voltage regulators are in charge of the voltage level adaptation to supply the different sub-
systems; as the main power source is a 3.3V LiPoly battery and there are some devices,
like the HD camera, that require different voltages to operate. The Figure 5.5 shows the
conditioning for these three devices.

eV 1 B) + | & 22y £ 26 b5 | + I R— L

F 5]]

—

41

Figure 5.5: Power management subsystem schematic

SYSTEM IMPLEMENTATION 35

5.3. Board

One important challenge of the femtosatellite development was to do the board design.
This challenge was due, first, to the reduced size of the SMD components (0402) and,
secondly, to the constrain of design a satellite as small as possible.

This second constrain was specially limiting when connecting buses like I2C or SPI that
cross the board from right to left side. The same problem was found when connecting the
magnetometers. To deal with this problem, kind of "connector” were design. The idea is
to pass over the antenna microstrip. Also, it was very complicated to connect the power
supply from the regulator to the payload area. In order to do the power supply connection,
it was necessary to design a “bridge” in such a way that the lines will be connected over
the antenna microstrip. These challenges are illustrated in Figure 5.6.

WikiSat V4.1 - D47 IDeTIC EETAC UPC

Figure 5.6: WikiSat V4.1 board challenges

5.4. Integration

5.4.1. PCB prototyping procedure

In order to fulfill the N-Prize requirements of being low-cost and easy to manufacture, it
was decided to make a prototype using the technologies available in the EETAC®. In the
school there are two CNC (Computed-aided Numerical Control) machines available both
from LPKF*,.

The first one is shown in Figure 5.7 a) an it is property of EETAC. The ProtoMat H100 is
LPKFs top-of-the-line circuit board plotter, ideal for all in-house prototyping applications,
including multilayer and RF applications. Due to the small size of the femtosatellite, this
machine was not accurate enough for the WikiSat V4.1 prototyping so it was necessary to
use an accurate and precise one, the LPKF Protolaser S.

Figure 5.7 b) shows the LPKF Protolaser S, property of TSC® that kindly let us use for
the WikiSat V4.1 prototyping. The LASER system opens up a new dimension in in-house
prototyping: it transfers the layout onto the PCB with unprecedented speed and precision
easily and with no chemicals.

3Escola d’Enginyeria de Telecomunicacié | Aeroespacial de Castelldefels, http://eetac.upc.edu/en/
4LPKF, http://www.lpkf.com/
5Departament de Teoria del Senyal i Comunicacions, http://www.tsc.upc.edu/en.html

http://eetac.upc.edu/en/
http://www.lpkf.com/
http://www.tsc.upc.edu/en.html

36 A multi-agent payload management approach for femtosatellite applications

Figure 5.7: a) LPKF Protomat H100 and b) LPKF Protolaser S
5.4.2. PCB assembling procedure

The PCB assembling process was done in-house using a set of very basic tools. The
process was split into 3 main parts: soldering paste application; components positioning;
reflow soldering. An important part of the process was preparing the components for the
assembly in the previously defined assembling order. Figure 5.8 shows the WikiSat V4.1
assembled.

Figure 5.8: WikiSat v4.1 assembled

A low-cost reflow oven shown in Figure 5.9 and based on the consumer toaster device
was made in order to ensure a quality reflow soldering. The oven was equipped with
a thermoresistive temperature sensor attached to the 8-bit ADC of the oven controller.
The reflow oven controller was based on the same ATMEGA168 hardware and Arduino
firmware. The embedded software allows programming the heat treatment procedure ac-
cording to the typical requirements of the reflow soldering process (preheating temperature
and time, soldering temperature and time and final cooling time). The feedback of the re-
flow process was provided to the PC terminal in the real time during the soldering process
via USB to UART bridge interface. More information on the low-cost assembling tools used
in this work can be found in [1].

Figure 5.9: Reflow oven

SYSTEM IMPLEMENTATION 37

5.5.

Test and validation

This chapter will demonstrate the test and evaluation procedures developed in order to
assess operability of the device and the results analysis will be stated. Each subsystem
has been tested separately from the others.

5.5.1.

Microcontroller interfacing subsystem validation

These tests were lead by Kravchenko and they are widely explained in [12]. On this work,
Kravchenko presents the flowing experiments:

IMU data acquisition performance: The purpose of this experiment was to perform a

study of the DAQ system of sensors and MCU determining the maximum data ac-
quisition and streaming rates through the UART interface varying the methods of
reading the FIFO registers of the sensors and I>C bus parameters. It was also nec-
essary to determine an MCU time cost of a single DAQ operation at the maximum
rate. The payload for this experiment was defined as the 3 values of acceleration
and 3 values of angular velocity measurements resulting in a message size of 12
bytes.

IMU data processing demo: The purpose of this experiment was to demonstrate the way

of interfacing the IMU data with the common scientific tools stating an example of
the IMU noise distribution model study in the non-disturbed condition. A binary data
stream of 6-DoF® (12 bytes) with a 2 bytes synchronization header was recorded
for a period of 1s while keeping the board in a neutral position with minimum of
disturbing factors. The ¢ was not added to the data stream as it was observed to be
equal for all measurements in the binary streaming mode if the DAQ and streaming
operations are performed at the maximum rate (described in the previous section).

RF output power and offset test: An experiment was carried out in order to ensure that

the output power of the transceiver is correct and constant in all the bands as de-
clared in the datasheet. It was also necessary to determine the carrier frequency
offset levels in all the bands of the transceiver to ensure its proper operability.

Wireless link test: The wireless link validation procedure was designed in order to en-

sure the correct functioning of the transceiver as well as the related HAL and control
library made for it in various communication modes. The parameters varied were
the data-rate, payload size, control check-sum presence and its size, acknowledged
and non-acknowledged modes. The variation of the distance was not scope of this
test as the antenna and RF front-end may vary depending on the desired satellite
architecture though it was observed that with a typical dipole antenna for 2.4 GHz
band the 20 km distance may be achieved at least.

8DoF in this context stands for “degrees of freedom”.

38 A multi-agent payload management approach for femtosatellite applications

5.5.2. Sensor subsystem validation

These tests were proposed by Bardolet Santacreu [1]. They were divided in five main
aspects:

Radiation: Radiation effects can cause degradation but also failure of the electronic and
the electrical systems.

Vibrations: During the launch, the satellite will be working under high vibrations con-
ditions. It is also normal that vibrations on the satellites are tested on ground to
validate them. Space related facilities use big electrodynamic shakers and hydraulic
shakers to test in a wide range in vibration testing

Temperature: In orbit, the temperature changes are fast and beyond the ranges inside
the atmosphere. First, it is necessary to study the thermal budget to know the tem-
perature range that has to withstand the satellite. Afterwards, some tests under
the minimum and maximum values can be done to assure that it will not fail under
the calculated thermal conditions. The calibrated oven for high temperatures and a
freezer for low temperatures can be used. Fast temperature changes must be also
tested; but it will be more difficult to reproduce.

Electromagnetic compatibility: Before launching the satellite, it is necessary to be sure
that there are no interferences between inner components of the satellite and also
from other electromagnetic sources. The electrostatic discharge has to be tested as
well. Electromagnetic compatibility tests can be done using an anechoic chamber
or a sniffer.

Vacuum: In vacuum conditions, out-gassing occurs in every material. Every day expose
materials become weaker. As it happens with under radiation conditions, can be
said that for the short lifetime of our satellite (8-9 days) there is no need to worry for
the vacuum exposition.

In order to avoid double work, these tests were proposed to be done within the complete
satellite.

5.5.3. Communication subsystem validation

These tests were lead by Fernandez-Murcia and they are widely explained in [4]. Experi-
mental tests are divided in two main groups:

Laboratory tests: Each circuit and the antenna were test in a RF laboratory with a VNA
and a RF generator.

Open area tests: Two simple open area tests (each one longer than previous one) and
the final balloon tests (which validates the entire system) were defined:

SYSTEM IMPLEMENTATION 39

= 400m test. This is only a quick test to assure all works as expected. All was
as expected.

= 6,5 kilometers test. This is critical because determines if all the work done be-
fore goes in a good direction or not. After some problems in transceivers feed-
ing, spot and antennas pointing, the tests finished satisfactorily (from 41.26784,
1.923287 to 41.265227, 1.996071). A 7dBm power transmission achieved us-
ing PA2423L [25]. No LNA on reception.

5.5.4. Power management subsystem validation

This subsystem includes the IOExpander [24] and the voltage regulators [27].

For the IOExpander, an evaluation board shown in Figure 5.10 was designer. This board
will facilitate connect the device to the Arduino’ in order to undergo some tests. The
developed code is shown in Appedix D.1. Due to the lack of time, this board was designed
but not build, so this test remain pending for further work.

Figure 5.10: IOExpander evaluation board

In order to study the behavior of the regulator a practical case has been used. First of all,
as with the rest of IC, an evaluation board was built. This board is shown in Figure 5.11.
For this experiment the TPS7192615 regulator was selected to supply the HD Camera [20]
during its tests. The voltage was directly connected to the Arduino output voltage (3.3V)
in order to simulate an scenario as closer as possible to the mission one. Some measure-
ments of the output voltages of the regulator were done and they were the expected ones.
As the HD Camera worked properly during the tests, can be assured that this device will
perform correctly during the mission.

7Seeduino v2.21 with ATmega328P has been used, http://www.seeedstudio.com/depot/
seeeduino-v221l-atmega-328p-p-669.html

http://www.seeedstudio.com/depot/seeeduino-v221-atmega-328p-p-669.html
http://www.seeedstudio.com/depot/seeeduino-v221-atmega-328p-p-669.html

40

A multi-agent payload management approach for femtosatellite applications

Figure 5.11: Voltage regulator evaluation board

PAYLOAD IMPLEMENTATION 41

CHAPTER 6. PAYLOAD IMPLEMENTATION

This chapter is going to present how the HD Camera [20] and the Serializer [28] can work
together in order to obtain and transmit images.

6.1. Evaluation boards

The first step was to evaluate the behavior of each device independently. To do that,
two evaluation boards were designed and built following the same procedure explained in
Chapter 5. These boards are show in Figure 6.1. As can be seen, the design of both
boards is very simple, only required pins have been connected. Also a connector for
protoboard has been added.

Figure 6.1: a) Serializer evaluation board and b) Camera evaluation board

These boards let connect the devices to the Arduino in order to undergo some tests.

6.2. Test and validation

In order to test the camera and serializer it is necessary to check if they are going to be
able to work together and if they could be managed by the MCU of the satellite. For this
reason, all the tests have been done using the a processor of the same family. First,
they were tested separately. Once each device was validated, the entire subsystem was
validated following the same procedure.

6.2.1. Camera test and validation

It is necessary to send an star-up sequence through the I*C port to the camera in order to
activate it. The first step was to define a library containing the main registers of the camera
and then to write a some code to send the required start-up sequence. Figure 6.2 shows
the aforementioned library. The specific code is in Appendix E.1.

42 A multi-agent payload management approach for femtosatellite applications

_,-""‘”

Toshiba TCM8230
Device—related constant definitions
i
$define TCMx3 addr 0x3C

fdefine TCMx3 picsetup 0x03

Figure 6.2: TCM8230MD constant definitions

To check the camera output, a Logic Analyzer' has been used. Figure 6.3 shows a frame
example. Lines from 0 to 7 correspond to DO (LSB) to D7 (MSB), lines 8 and 9 are VD
(Vertical Detection) and HD (Horizontal Detection) respectively.

Figure 6.3: TCM8230MD output

6.2.2. Serializer test and validation

As the camera, the serializer needs a start sequence in order to be activate. In this case,
the procedure has been the same. Some code has been written in order to evaluate the
performance of the SN74HC165 [28]. The code is shown in Appendix E.2. In order to
check the correct behavior of the serializer, inputs values have been forced connecting
these inputs directly to ground or to 3.3V (0 to OV, 1 to 3.3V). Figure 6.4 shows the test
results.

6.2.3. Payload test and validation

In order to get both devices (camera and serializer), it was necessary to have a clock
reference to get them synchronized. To do that, some code able to generate pulse signals

'Open Logic Sniffer, http://www.sparkfun.com/products/9857

http://www.sparkfun.com/products/9857

PAYLOAD IMPLEMENTATION 43

|£] com19

)
El
w
i
H

t W
=)
i

-

-

:No\ine ending v: :9600 baud

Autoscroll

Figure 6.4: Serializer test

was written. This code is show in Appendix E.4. Once the subsystem was integrated,
some test were done in lab, using an oscilloscope to display the output of the serializer.
Figure 6.5 shows the results obtained when doing these tests.

In a signals CLKINH (yellow) and CLK (blue, clock reference generated) can be shown.
CLKINH is eight times slower, that means that, when CLKINH is in low level and the
SH /LD signal is in high level, starts the serialization in the first eight clock cycles. When
CLKINH is high and SH/LD is low, starts the data load. During these sixteen clock
cycles, one byte of each pair is lost due to that, when doing the load, only the last cycle is
valid. In order not to loose any byte, a counter will be necessary in order to act as a trigger
each eight cycles but this circuit will add complexity to the femtosatellite. Figure 6.5 b just
compares the CLK signal with the EXTCLK of the camera. Finally, in ¢ a capture of the
output is shown. In this moment, is taken place the serialization of the byte F3 (11110011).

=13 it =1 it =1 it

Save Save Save
b : : » : : N

....................................... Image R R R e A ks dos] Image Image
_______________________ _.InkSavel AR R A AR RS AN ST AN _.InkSaver Y _.InkSavel
.. On e 0] ON On e
Destinati Destinati

use USB usB

Save Save Save

....................................... File XYV Y RN Y VA YY Y Fie AEI VLYYV eEY Y NN NYNYYN Fie
N : : Utilities | : : Utilities : Utilities

MAIN L] L] EDGE HAIH L] [EDGE HAIH L] [EDGE

Figure 6.5: a) Clock references, b) Clock comparisons and c) Serializer output

44

A multi-agent payload management approach for femtosatellite applications

CONCLUSIONS 45

CHAPTER 7. CONCLUSIONS

7.1. General conclusions

During the development of this project the entire WikiSat team has explored in a prac-
tical case of a new paradigm for the development of very small space missions. This
new approach of development can result, if successful, in the birth of a new market for
femtosatellites. These kind of missions should be very focused on a single goal, but the
system can perform most of the typical applications undertaken by larger mass systems.
However, it must be stated that very small satellites will not enter into competition with
standard satellites. They could open new markets and opportunities, could be used for
education, disaster management and even communications on an extremely low cost and
complexity.

It has been demonstrated that it is possible to design, test and build a femtosatellite (with
less than 20 grams) that is able to perform a short duration mission. Specifically a Sun-
tracker mission has been developed. Likewise, an example of with an imaging payload
with an HD Camera have been designed and implementer. Finally, it has been proved that
the new space payload paradigm can contribute to a simpler, faster and much cheaper
way of producing very small missions.

7.2. Environmental impact

The achievement of this project will deliver a satellite to the space. The launch phase
is the most contaminant stage of the mission, but debris will reenter soon into the Earth
atmosphere. Low cost and lead-free materials were used in this project in order to minimize
environmental impact. To reduce the amount of waste produced during the work some
recycled components were used. All the boards with production defects were recycled
and reused in other prototypes as well.

This project does not mean an important impact upon the environment because of the
reduced sizes and the low orbit used. The estimated time of the re-entry is between 8 and
9 days so it can be assured that there will be no generation of space debris. The small
size of the femtosatellite assures that it will be disintegrated during the re-entry. For the
mini-launcher, it is necessary to study all cases but the idea is not to generated debris
either. Moreover, the pollution generated will be much lower that the generated by a big
launcher. So, the use of small mini-launcher not only implies a reduction of cost, but also
a reduction in pollution and a lower impact on the environment. This kind of small size
technologies also is translated into power savings.

Regarding the economic and social field, the use of low cost technologies for space ap-
plications can open a market that has been inaccessible for many years. Governments,
companies and organizations unable to afford the costs of space missions may will take
benefit from this project.

46 A multi-agent payload management approach for femtosatellite applications

7.3. Future work

It is also important to mention that further experimentation and research work is required in
such fields like image processing and storage. It is necessary to improve these aspects in
order to be able to obtain a good quality image fulfilling the system requirements explained
in Chapter 2.

Another development challenge will be introduction of new improved devices such:

= A three axes accelerometer and compass single chip like the LSM303DLHC [21]
from STMicroelectronics. Itis going to used to guide the launcher during the trajectory-

m The L3G4200D [23] from STMicroelectronics, a three axes gyro that is going to be
used for short maneuvers for the camera or antenna pointing.

The WikiSat team is already working in the WikiSat V.5. This version will include the
improvements explained above.

BIBLIOGRAPHY 47

BIBLIOGRAPHY

[1] E. Bardolet. Study of a low cost inertial platfom for a femto-satellite deployed by a
mini-launcher, 2010.

[2] Lluis Bonet. High altitude balloon mission design and implementation for a mini-
launcher. Master’s thesis, Universitat Politecnica de Catalunya, 2011.

[3] et al. D. J. Barnhart. A low-cost femtosatellite to enable distributed space missions.
Acta Astronautica 64, 2009.

[4] Enric Fernandez Murcia et al. A synthetic aperture antenna for femto-satellites
based on commercial-of-the-shelf. 29th Digital Avionics Systems Conference. Seattle
(2011), 2011.

[5] R. Gonzalez and J. Naud6. A multi-agent adaptive protocol for femto-satellite appli-
cations. Master’s thesis, Universitat Politécnica de Catalunya, 2011.

[6] C. D. Hall. Virginia tech ionospheric scintillation measurement mission. 13th Annual
AIAA/USU Conference on Small Satellites, 1999.

[7] C. Hamroun. Design and prototype of a flight microstrip antennas for pico satellite
erpsat-1. 4ht International Conference, Istanbul, 2009.

[8] H. Helvajian. The fabrication of a 100 g co-orbiting satellite assistant (cosa) using
glass ceramic materials and 3-d. Proceedings of the Ninth International Microma-
chine/Nanotech Symposium, Tokyo, Japan, 2003.

[9] H. Herman. HANDBOOK OF ASTRONAUTICAL ENGINEERING. Ed. McGraw-Hill,
Inc., 1961.

[10] James R. Wertz et. al. Space Mission Engineering: The new SMAD, Chapter 1.4.7.
Space Technology Library, 2011.

[11] etal. J. Tristancho. A probe of concept of femto-satellite based on commercial-of-the-
shelf. 30th Digital Avionics Systems Conference, USA, 2011.

[12] Kravchenko, Victor Design and implementation of a femto-satellite technology
demonstrator. Master’s thesis, Universitat Politecnica de Catalunya, 2011.

[13] etal. K. Doerksen. Design, modeling and evaluation of a 2.4ghz tfhss communications
system for narcissat. 17th AIAA/USU Conference on Small Satellites, Stanford, CA,
USA, 2003.

[14] Laia Navarro Morcillo. Use of hardware-on-the-loop to test missions for a low cost
mini-launcher. Master’s thesis, Universitat Politecnica de Catalunya, 2011.

[15] Laia Molas Pous. Efectes de la radiacio sobre els components electronics d’un satelit
en orbita al voltant de la terra. Master’s thesis, Universitat Politécnica de Catalunya,
2011.

[16] Clayton Mowry. Interview on "The Space Show”, 2010.

[17] Joshua Tristancho. Implementation of a femto-satellite and a mini-launcher. Master’s
thesis, Universitat Politecnica de Catalunya, 2010.

[18] ST Electronics. LIS331HH Data Sheet. http://www.sparkfun.com/datasheets/
Sensors/Accelerometer/LIS331HH.pdf, Last visit on 09/13/2011.

[19] Atmel. ATMega 168 Data Sheet. http://www.atmel.com/dyn/resources/prod_
documents/doc2545.pdf, Last visit on 09/13/2011.

[20] TOSHIBA. TCM8230MD Data Sheet. http://www.sparkfun.com/datasheets/
Sensors/Imaging/TCM8230MD.pdf, Last visit on 09/13/2011.

[21] ST Electronics. LSM303DLHC Data Sheet. http://www.st.com/internet/com/
TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/DM00027543.pdf,
Last visit on 09/13/2011.

[22] InvenSense. ITG-3200 Data Sheet. http://invensense.com/mems/gyro/
documents/EB-ITG-3200-00-01.1.pdf, Last visit on 09/13/2011.

[23] ST Electronics. L3G4200D Data Sheet. http://www.st.com/internet/com/
TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00265057.pdf,
Last visit on 09/13/2011.

[24] Texas Instruments. TCA6408 Data Sheet. http://www.ti.com/1lit/ds/symlink/
tca6408.pdf, Last visit on 09/13/2011.

[25] SiGe Semiconductor. PA2423L Data Sheet. http://www.skyworksinc.
com/uploads/documents/SiGe/13-DST-01_PA2423L_Brief_Rev_4pl_AP_
May-26-2009.pdf, Last visit on 09/13/2011.

[26] Nordic Semiconductor. nRF24L01+ Data Sheet. http://www.nordicsemi.com/
eng/Products/2.4GHz-RF/nRF24L01P, Last visit on 09/13/2011.

[27] Texas Instruments. TPS719XXXX Data Sheet. http://www.ti.com/lit/ds/
symlink/tps71918-12.pdf, Last visit on 09/13/2011.

[28] Texas Instruments. SN74HC165 Data Sheet. http://www.sparkfun.com/
datasheets/Components/General/sn74hcl65.pdf, Last visit on 09/13/2011.

http://www.sparkfun.com/datasheets/Sensors/Accelerometer/LIS331HH.pdf
http://www.sparkfun.com/datasheets/Sensors/Accelerometer/LIS331HH.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2545.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2545.pdf
http://www.sparkfun.com/datasheets/Sensors/Imaging/TCM8230MD.pdf
http://www.sparkfun.com/datasheets/Sensors/Imaging/TCM8230MD.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/DM00027543.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/DM00027543.pdf
http://invensense.com/mems/gyro/documents/EB-ITG-3200-00-01.1.pdf
http://invensense.com/mems/gyro/documents/EB-ITG-3200-00-01.1.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00265057.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00265057.pdf
http://www.ti.com/lit/ds/symlink/tca6408.pdf
http://www.ti.com/lit/ds/symlink/tca6408.pdf
http://www.skyworksinc.com/uploads/documents/SiGe/13-DST-01_PA2423L_Brief_Rev_4p1_AP_May-26-2009.pdf
http://www.skyworksinc.com/uploads/documents/SiGe/13-DST-01_PA2423L_Brief_Rev_4p1_AP_May-26-2009.pdf
http://www.skyworksinc.com/uploads/documents/SiGe/13-DST-01_PA2423L_Brief_Rev_4p1_AP_May-26-2009.pdf
http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01P
http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01P
http://www.ti.com/lit/ds/symlink/tps71918-12.pdf
http://www.ti.com/lit/ds/symlink/tps71918-12.pdf
http://www.sparkfun.com/datasheets/Components/General/sn74hc165.pdf
http://www.sparkfun.com/datasheets/Components/General/sn74hc165.pdf

APPENDIX

51

WikiSat V4.1 Schematics

APPENDIX A. WIKISAT V4.1 SCHEMATICS

9/7 8ayg iPeABS jou 3ye(
20 ele Jasuibug peojhed
€0 IOJOIA | [01JU0D [ewlay] pue Jamod
20 essue|) Joeulbug siosusg
20 ouug | Jeaulbug suoledIUNWIWOD
Z0 eleq J98uIbuT Wa)sAS
Z0 aAd9)s] Jabeuey salddng
Z0 enysor Jabeueyy j08foid

A8y sweN L

Z B49We] T TN WRSTAIM f3TLIL

burdejiolul 49110AUOD0UDTY

paulysp aq PINOYS Sassng pue sade4ds1ul wayshsqgns

Buidnoosag

JUBAD ¥1Q dY) uo
umop-jind ajes e axew pue
dn 1esai ay) desy o) pasn

1353y
anpo
S0 232
d1d <

Juswabeuep 19s8y NON

sjuauodwo) poddns-aj7 NOWN

n
ano
aNo

(8100/sS)z8d anov
(vi00)i18d
(donoad

(0LNDzad
(axu)iad
(axy)oad

(00av)ood

(zosowzvix)zad

(LosoWL/LIVIX)98d

4TN8ILVOINLY

aYy 943H

9/Z 1199US

jPeAesS 10U :ore(

20 ele Jaaulbug peojhedq
€0 I0JDIA | |0A3U0D [ewuBy] pue Jamod
z0 essue|) Josulbul siosuag
z0 ouug | J9sulbul suonedIuNWWo)
Z0 ele J98uIbug wa)sAg ane ano ozl%
Z0 and)sg Jabeuely salddng |
=7 4dGL | 4N L0
Z0 enysor J1abeuep 199[01d LVE09 5 = =
S| v oseery P 020 [42¢]
Aoy aweN SplL 50 2
7| OONE N T Ve OOA
Z7BASUWR]T Ty 1BSDITM 3TLIL I B
AN ON dd % 5 LOOA dNVHA [AEYIA N3
H 1€2vevd
warshsgng UOTIEDTUNWWO?) v gLomne NI
' '] ON 08621V dd FEE
5] oN 05621 d4 eE ano 4dy T
oﬁ”ﬁ HulL
1d OP an 1o =
wmgl 1o Iﬁuaf 21
° Ve 30,
ano aNo aNo
4ul | Juol
WOl oo
ano ano
%ZH %N.NH S8R8S
189] 983] <<
non
ol Og—q
OSIN Fs—sa
aNo aNo ISOW 5—og
¢ L
HNS Hmmo O g Mol
ddgz0| 4d) LOTPZuN Olavy ILT 9%n
k4 Sued _

L

(9}
[4
3

81

= -
> ©
T

4dg
Hue'e

9/€ 1199US

jPSABS 10U isie(]

20 eje J98u1bug peojhed
€0 IOJOIA | |043U0D [BWIBY] pue Jamod
20 essue|) J98uIbu] sIosuag
20 ouug | Josulbug suonedIUNWWOD
Z0 ele Joaulbug walshAs
20 aA9)sg Jabeuey salddng
20 enysor Jabeue| 109fold
ABY sweN SL

ZTBASWe]T Ty YBSTAIM :3TILIL

warshsgng Josuag

aNo aN®

ELIA0)
4%}

NS aND AND aN©

4nio

vas ANl =t

u
108 9-834 mw 91 4uol
YAS3Y 093d or

yA%e)

ens3d oav 5
1N0dd 907 g
CAS3Y LASTH [——
aNo AS3d

LON E£ON

90N ZON

GON LON

¥ON ON

aan NIMTO

ANO ANO aNo

aANO AaNO

4nolL

U001
610 Eolﬁ e

Sld|

. vid

€ld

Zid

x|

- oLd|
¢ NEE 6d|

€AND
¢s3d
aan
2aNS
LANS
LANI
[SEL]
CINI

el
oas
vas
aNo
108
LON
ON
olaan

aNo©

S/4 19345 iPaABS 10U i31e(
20 eie J98u1bug peojhed
€0 IOJOIA | |043U0D [BWIBY] pue Jamod
20 essue|) J98uIbu] sIosuag
20 ouug | Josulbug suonedIUNWWOD
Z0 ele Joaulbug walshAs
20 aA9)sg Jabeuey salddng
20 enysor Jabeue| 109fold
ABY sweN SL
Z B49We] T T N 1BSTATM 37LIL ano
oo & anNe
warshsgng 1uswsbeue|| Jsmod] % NaY g
o5 ANI
v] vd 1383y
SN 5| ¢ g s
9T NT | W £ Vs
IAeE NI ¢ @00
dNVIA NT =z | ™ 1997
ane ane ano ano ano ano
3 I
0 0
ElY u_:r
o) B o]
5 aNo ZN3 7
TAEE g | N0 NI eTReETNG
AYQAS19261.SdL
A N *va oo VAEE 1| Mo Nz Ve J0A

9/G 11934g iPaABS 10U i31e(

Z0 ele Jasulbug peojAed
€0 IOJOIA | |043U0D [BWIBY] pue Jamod
20 essue|) J98uIbu] sIosuag
20 ouug | Josulbug suonedIUNWWOD
Z0 ele Joaulbug walshAs
20 aA9)sg Jabeuey salddng
20 enysor Jabeue| 109fold
ASY sweN SL

ZTBASWe]T Ty YBSTAIM :3TILIL

S9DB4491U] [EDIURYDS|| :DST||

usaI

e
Mol

TAEE

1ve OON Vv
AE'E

g €5d
aNg 25d
v 18d

€8d
28d
18d

13say—
aNo oSN
T~
[« E— £€$d
aNg——zsa | 4
<) 1$d
ane
T OND 554
—OND S84
1ve DDA y8d
OXI €3d
axd z3d
gIT 134

9%d
S8d
$d
€8d
2%d
18d

9/9 1199US

jPeAesS 10U :ore(

20 ele Jaaulbug peojhedq
€0 I0JOIA | |03U0D [ewIBy] pue Jamod
z0 essue|) Joaulbug siosuag
20 ouug | Josulbul suonesIuNWWo))
Z0 ele J98uIbug wa)sAg
Z0 ans)sg Jabeue|y saiddng
Z0 enysor Jabeuely josloid
A8y sweN SPL

Z7B49We] T TN ¥BSINIM 31IL

wayshsgns peotihed

HO
HO

QVHS
y3s

<moOoowuLOT
| j

HNITYTIO aNO T

A N T AEE

0fFC
dW0EZBNDL
100
aH
oa an
mw SM__ ‘a vas
Ot 2@ 108
o 13s3y
o va NEINE]
sa
md‘mumvw wu_ 9a ssnol
0o ‘0 ssAa

aana
aand
aanol

WikiSat V4.1 Board

57

APPENDIX B. WIKISAT V4.1 BOARD

O
o
-
2
=
Ll
L
o
=
1]
o
I~
-
0

WikiSat V4.1

WikiSat V4.1 Assembly Form

59

APPENDIX C. WIKISAT V4.1 ASSEMBLY FORM

Part Value Device Package
C1 1uF CAP 0402
c2 1uF CAP 0402
c3 1 pF CAP 0402
ca 0.1uF CAP 0402
C5 0.1uF CAP 0402
(¢ 4.7pf CAP 0402
c7 1pF CAP 0402
Cc8 10pF CAP 0402
Cc9 1.5pF CAP 0402
Cc10 1pF CAP 0402
C11 2.2pF CAP 0402
C12 0.1uF CAP 0402
C13 0.1uF CAP 0402
C14 0.1uF CAP 0402
C15 2.2nF CAP 0402
C16 0.1uF CAP 0402
C17 10nF CAP 0402
C18 10uF CAP 0603
C19 100nF CAP 0402
Cc20 15pF CAP 0402
C21 0.1uF CAP 0402
C35 33nF CAP 0402
C36 2.2nF CAP 0402
C37 4.7pF CAP 0402
C38 1.5pF CAP 0402
C39 1pF CAP 0402
Cc40 10nF CAP 0402
C41 1nF CAP 0402
C42 0.75pF CAP 0402
D3 Green LED 0603
L1 1nH INDUCTOR 0402
L2 1nH INDUCTOR 0402
L6 8.2nH | INDUCTOR 0402
L7 2.7nH | INDUCTOR 0'402
L8 3.9nH | INDUCTOR 0402
L9 1nH INDUCTOR 0402
R1 10K RESISTOR 0201
R2 10K RESISTOR 0402
R3 10k RESISTOR 0402
R4 10K RESISTOR 0402
R5 22K RESISTOR 0402
R6 10K RESISTOR 0402

Power management subsystem source code

61

APPENDIX D. POWER MANAGEMENT
SUBSYSTEM SOURCE CODE

D.1. TCA6408, Source Code

#include <Wire.h>
extern "C”

#include “utility /twi.h” // from Wire library , so we can do bus scanning

}

/* Sensors */

#define AcclD B00011001 // Accelerometer LIS331HH (0x19)

#define AccX 0x29, 0x28

#define AccY 0x2B, O0x2A

#define AccZ 0x2D, 0x2C

#define GyrolD B01101001 // Gyro ITG3200 (0x69)

#define GyroT 0x1B, 0x1C

#define GyroX 0x1D, Ox1E

#define GyroY Ox1F, 0x20

#define GyroZ 0x21, 0x22

#define 10elD B01000000 // 10 expander write on TCA6408A (0x40)

#define 10eW 0x01 // Write 10e ports

#define 10rID B01000001 // 10 expander read on TCAB408A (0x41)

#define IOrW 0x00 // Read |0e configuration

#define IOeEN_.VRAMP B00000001 // PO

#define 10eEN_3_3V_1 B00000010 // P1

#define 10eEN_2_6V B00000100 // P2

#define I0eEN_1_5V B00001000 // P3

#define I0eEN_A B00010000 // P4 Magnetorquer A — LEFT UP and Turn +v (Yaw)
#define I0OeEN_B B00100000 // P5 Magnetorquer B — RIGHT UP and Turn —v (Yaw)
#define I0eEN.C B01000000 // P6 Magnetorquer C — LEFT DOWMN and Turn +u (Pitch)
#define 10eEN_.D B10000000 // P7 Magnetorquer D — RIGHT DOAMN and Turn —u (Pitch)

S —
/] 12C Bus

/1

void I2C_SetRegister(int device, int address, int value)

{

Wire.beginTransmission(device);
Wire.send(address);
Wire.send(value);
Wire.endTransmission() ;

}

byte I2C_GetRegister(int device, int address)
{
Wire.beginTransmission(device);
Wire.send(address);

Wire.endTransmission() ;
Wire.requestFrom(device, 1);

if (Wire.available()) return Wire.receive();
return B00000000;

int I2C_GetValue(int device, int addressH, int addresslL)

return ((unsigned int)(I2C_GetRegister(device, addressH)) << 8) + I2C_GetRegister(device, ¢
addressL);

}

void I2C_TurnOn(byte mask)

I2C_SetRegister(I0OeID, IOeW, I2C_GetRegister(IOrID, IOrW) | mask);

}

void I2C_TurnOff(byte mask)

{

I2C_SetRegister(IOeID, IOeW, I2C_GetRegister(IOrID, IOrW) & mask);

// BORRAR

// 12C_SetRegister (10elD, 10eW, [2C_GetRegister(l1OrID, IOrW) | IOeEN_A); // Active magnetorquer
P4 A — LEFT UP and Turn +v (Yaw)

// 12C_SetRegister (10elD, 10eW, [2C_GetRegister(10rID, IOrW) | IOeENB); // Active magnetorquer
P5 B — RIGHT UP and Turn —v (Yaw)

/ 12C_SetRegister (10elD, 10eW, 12C_GetRegister(10rID, I0rW) | I0OeEN.C); // Active magnetorquer
P6 C — LEFT DOAMN and Turn +u (Pitch)

/ 12C_SetRegister (10elD, 10eW, 12C_GetRegister(10rID, I0rW) | IOeEN.D); // Active magnetorquer
P7 D — RIGHT DOWMN and Turn —u (Pitch)

~

=

void setup()
{
Serial.begin(4800); // Remove this function if memory required
Wire.begin(); // 12C bus for femto—satellite sensors communications
Serial.println(”WIKISAT READY TO LAUNCH”); // Remove this message if memory required

}

void loop()

I2C_TurnOn(IOeEN_A);
I2C_TurnOff (IOeEN_A);
delay(1000);
I2C_TurnOn(IOeEN_B);
I2C_TurnOff(IOeEN_B)
delay(1000);
I2C_TurnOn(IOeEN_C);
I2C_TurnOff(IOeEN_C)
delay(1000);
I2C_TurnOn(IOeEN_D);
I2C_TurnOff(IOeEN_D)
delay(1000);

Payload subsystem source code

63

APPENDIX E. PAYLOAD SUBSYSTEM SOURCE

CODE

E.1. TCM8230MD, Source Code

#include <Wire.h>

void i2cSetRegister(int device, int adress, int value){
Wire.beginTransmission(device); Wire.send(adress);
Wire.send(value); Wire.endTransmission();

}

byte i2cGetRegister(int device, int adress){
Wire.beginTransmission(device); Wire.send(adress);
Wire.endTransmission(); Wire.requestFrom(device, 1);
if (Wire.available()) return Wire.receive(); return B00000000;

}

void setup()

pinMode (10, INPUT);
pinMode (10, OUTPUT);

Wire.begin();

pinMode(7, OUTPUT);
digitalWrite(7, LOW);

delay(500);

digitalWrite(7, HIGH);

delay(200);

i2cSetRegister(0x3C, 0x03, B00100000);

void loop()

{
int buttonState = LOW;
buttonState = digitalRead(10);

if (buttonState == HIGH) {
// turn LED on:
digitalWrite(13, HIGH);

}

E.2. Serializer, Source Code

/%

* SN74HC165N_shift_reg

+ Program to shift in the bit values from a SN74HC165N 8—bit
+ parallel—in/serial—out shift register.

*/

/+ How many shift register chips are daisy—chained.
*/
#define NUMBER-OF_SHIFT_-CHIPS 1

/+ Width of data (how many ext lines).
*/
#define DATAWIDTH NUMBER.OF_SHIFT_CHIPS * 8

/+ Width of pulse to trigger the shift register to read and latch.
*/
#define PULSEWIDTH.USEC 5

/+ Optional delay between shift register reads.
*/
#define POLLDELAY.MSEC 1

/+ You will need to change the “int” to ”"long” If the
* NUMBER_OF_SHIFT_CHIPS is higher than 2.

*/

#define BYTES_VAL.T unsigned int

int ploadPin =
int clockEnablePin =
int dataPin =
int clockPin =

;// Connects to Parallel load pin the 165
/I Connects to Clock Enable pin the 165
// Connects to the Q7 pin the 165

; /1 Connects to the Clock pin the 165

an wo

BYTES_VAL_T pinValues;
BYTES_VAL_T oldPinValues;

/* This function is essentially a "shift—in” routine reading the
+ serial Data from the shift register chips and representing
+ the state of those pins in an unsigned integer (or long).
*/
BYTES_VAL_T read_shift_regs()
{
byte bitVval;
BYTES_VAL_T bytesVal = 0;

/+ Trigger a parallel Load to latch the state of the data lines,
*/

digitalWrite(clockEnablePin, HIGH);

digitalWrite(ploadPin, LOW);

delayMicroseconds (PULSE_WIDTH_USEC) ;

digitalWrite(ploadPin, HIGH);

digitalWrite(clockEnablePin, LOW);

/+ Loop to read each bit value from the serial out line
+» of the SN74HC165N.

*/

for(int i = 0; 1 < DATA_WIDTH; i++)

{

bitvVal = digitalRead(dataPin);

/= Set the corresponding bit in bytesVal.
*/
bytesvVal |= (bitVal << ((DATA_WIDTH—1) — i));

/+ Pulse the Clock (rising edge shifts the next bit).
*/
digitalWrite(clockPin, HIGH);

delayMicroseconds (PULSE_WIDTH_USEC);
digitalWrite(clockPin, LOW);

}

return (bytesval);

}

/+ Dump the list of zones along with their current status.
*/
void display_pin_values ()

{

Serial.print(”Pin States:\r\n");

for(int 1 = 0; 1 < DATA_WIDTH; i++)
{
Serial.print(” Pin—=");
Serial.print(1i);
Serial.print(”: 7);

if ((pinvalues > 1) & 1)
Serial.print ("HIGH");
else
Serial.print ("LOW”);

Serial.print("\r\n");

}

Serial.print("\r\n”);

}

void setup()

{

Serial.begin(9600);

/* Initialize our digital pins...
*/

pinMode
pinMode
pinMode
pinMode

ploadPin, OUTPUT);
clockEnablePin, OUTPUT);
clockPin, OUTPUT);
dataPin, INPUT);

digitalWrite(clockPin, LOW);
digitalWrite(ploadPin, HIGH);

/+ Read in and display the pin states at startup.
*/

pinValues = read_shift_regs();
display_pin_values();

oldPinValues = pinValues;

}

void loop()

{

/+ Read the state of all zones.
*/
pinvalues = read_shift_regs();

/+ |f there was a chage in state, display which ones changed.

*/

if (pinvalues != oldPinValues)

{
Serial.print(”«Pin value change detected=«\r\n");
display_pin_values();
oldPinValues = pinValues;

}

delay (POLL_DELAY MSEC);

E.3. Payload, Source Code

//HD Camera + Serializer + Sincronizaation signal
#include <Wire.h>

extern "C”

{

#include <FrequencyTimer2.h>

¥

/* How many shift register chips are daisy—chained.
*/

#define NUMBER_OF_SHIFT_.CHIPS 1

/+ Width of data (how many ext lines).
*/
#define DATAWIDTH NUMBER_OF_SHIFT_CHIPS = 8

/+ Width of pulse to trigger the shift register to read and latch.
*/
#define PULSE.WIDTH.USEC 5

/+ Optional delay between shift register reads.
*/
#define POLLDELAY-MSEC 1

//#define BYTES_VAL.T unsigned int

void i2cSetRegister(int device, int adress, int value){
Wire.beginTransmission(device); Wire.send(adress);
Wire.send(value); Wire.endTransmission();

}

byte i2cGetRegister(int device, int adress){
Wire.beginTransmission(device); Wire.send(adress);
Wire.endTransmission(); Wire.requestFrom(device, 1);
if (Wire.available()) return Wire.receive(); return B00000000;

}

;// Connects to Parallel load pin the 165

// Connects to Clock Enable pin the 165. Always LOW
// Connects to the Q7 pin the 165

; // Connects to the Clock pin the 165

int ploadPin =
int clockEnablePin =
int dataPin =
int clockPin =

an wo

unsigned int pinvValues;
unsigned int oldPinValues;

/+ This function is essentially a "shift—in” routine reading the

+ serial Data from the shift register chips and representing

+ the state of those pins in an unsigned integer (or long).

*/

unsigned int read_shift_regs|()

{
byte bitVval;
unsigned int bytesval = 0;

/+ Trigger a parallel Load to latch the state of the data lines,
*/

digitalWrite(clockEnablePin, HIGH);

digitalWrite(ploadPin, LOW);

delayMicroseconds (PULSE_WIDTH_USEC) ;

digitalWrite(ploadPin, HIGH);

digitalWrite(clockEnablePin, LOW);

/+ Loop to read each bit value from the serial out line
+» of the SN74HC165N.

*/

for(int i = 0; 1 < DATA_WIDTH; i++)

{

bitvVal = digitalRead(dataPin);

/= Set the corresponding bit in bytesVal.
*/
bytesvVal |= (bitVal << ((DATA_WIDTH—1) — i));

/+ Pulse the Clock (rising edge shifts the next bit).
*/

digitalWrite(clockPin, HIGH);

delayMicroseconds (PULSE_WIDTH_USEC);
digitalWrite(clockPin, LOW);

}

return (bytesval);

}

/+ Dump the list of zones along with their current status.
*/
void display_pin_values ()

{
Serial.print(”Pin States:\r\n");
for(int 1 = 0; 1 < DATA_WIDTH; i++)
{
Serial.print(” Pin—");
Serial.print(1i);
Serial.print(”: 7);
if ((pinvalues > 1) & 1)
Serial.print ("HIGH”);
else
Serial.print ("LOW”);
Serial.print("\r\n");
}
Serial.print(”\r\n”);
}

void setup ()

pinMode (10, INPUT);

pinMode (10, OUTPUT);

pinMode (11, OUTPUT);

pinMode (ploadPin, OUTPUT);
pinMode(clockEnablePin, OUTPUT);
pinMode (clockPin, OUTPUT);
pinMode(dataPin, INPUT);
pinMode(7, OUTPUT);

Serial.begin(9600);
Wire.begin() ;

// Camera

digitalWrite(7, LOW);

delay(500);

digitalWrite(7, HIGH);

delay(200);

i2cSetRegister(0x3C, 0x03, B00100000);
delay(1); //2100 ciclos de EXTCLK

// Syncronizaion signal

FrequencyTimer2::disable(); // Turn off toggling of pin 11
FrequencyTimer2::enable(); // Turn on toggling of pin 11

// Serializador
digitalWrite(clockEnablePin, LOW);
digitalWrite(clockPin, LOW);
digitalWrite(ploadPin, HIGH);

/+ Read in and display the pin states at startup.
*/

E.4. Synchronization signal, Source Code

extern "C”

{

#include <FrequencyTimer2.h>
}

void setup() {

pinMode (11, OUTPUT);

FrequencyTimer2::disable(); // Turn off toggling of pin 11
FrequencyTimer2::setPeriod(2000); // Set refresh rate (interrupt timeout period)
FrequencyTimer2 ::enable(); // Turn on toggling of pin 11

}

void loop()

{
}

Preliminary femtosatellite source for WikiSat V4.1

71

APPENDIX F. PRELIMINARY FEMTOSATELLITE

SOURCE FOR WIKISAT V4.1

#include <SPI.h>
#include <math.h>

#define RESET_EEPROM false // WARNING: TRUE WILL ERASE ALL THE EEPROM PERMANENTLY. NEW WAYPOINT <—
LIST WILL BE UPDATED

/+ Memory Map =/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

CONFIG
EN_AA
EN_RXADDR
SETUP_AW
SETUP_RETR
RF_CH
RF_SETUP
STATUS
OBSERVE_TX
CD
RX_ADDR_PO
RX_ADDR_P1
RX_ADDR_P2
RX_ADDR-P3
RX_ADDR-P4
RX_ADDR_P5
TX_ADDR
RX_PW_P0
RX_PW_P1
RX_PW_P2
RX_PW_P3
RX_-PW_P4
RX_PW_P5
FIFO_STATUS

/+* Bit Mnemonics =/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

MASK_RX_DR
MASK_TX_DS
MASK_MAX_RT
EN_CRC
CRCO
PWR_.UP
PRIM_RX
ENAA_P5
ENAA_P4
ENAA_P3
ENAA_P2
ENAA_P1
ENAA_PO
ERX_P5
ERX_P4
ERX_P3
ERX_P2
ERX_P1
ERX_PO

AW

ARD

ARC
PLL_LOCK
RF_DR
RF_PWR
LNA_HCURR
RX_DR
TX_.DS
MAX_RT
RX_P_NO
TX_-FULL
PLOS_CNT
ARC_CNT

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0xOF
0x10
0x11
0x12
0x13
0x14
0x15
0x16
0x17

OPO -2 PHUOO -~ WAROPOO-NWAMNUITO—-LNWHP,OAOO—=-NWHNMUULO

#define TX_REUSE
#define FIFO_FULL
#define TXEMPTY
#define RX_FULL
#define RXEMPTY 0

/+* Instruction Mnemonics =/
#define R-REGISTER 0x00
#define W_REGISTER 0x20
#define REGISTER-MASK Ox1F
#define R.RX_PAYLOAD 0x61
#define W_TX_PAYLOAD 0xAO0

- OO

#define FLUSH_TX OxE1
#define FLUSH_RX 0xE2
#define REUSE.TX.PL OxE3
#define NOP OxFF

/+ Defines. Radio pinout =/

#define pCE 10

#define pCSN 9

#define SOFT_MOSI 6

#define SOFT_-MISO 5

#define SOFT_SCK 7

#define ceHi() {digitalWrite (pCE, HIGH);}

#define ceLow() {digitalWrite (pCE, LOW);}

#define csnLow () {digitalWrite (pCSN, LOW);}

#define csnHi() {digitalWrite (pCSN, HIGH);}

// DELETE #define AWIP_.CONFIG ((1<<EN.CRC) | (0<<CRCO))
/+ Femto—satellite constants «/

#define PLANET_RADIUS 6378137 // WGS84 equatorial Earth radius

#define A90 1.570796 // 90 degrees in radians

#define RAD 1.745329E—02 // Degrees to radians conversion factor

#define INFINITE 1E30 /" Infinite value for calculations

#define INVALID 1E30 // Invalid coordinate value

#define ALT1 32000 // Launch initial altitude in meters when stage 1 ignition (<«
based on 'LEO N-Prize Balloon East' preset)

#define ALT2 32000 // Launch middle altitude in meters (based on 'LEO N-Prize <«
Balloon East' preset)

#define ALT3 250000 // Launch end altitude in meters at orbit (based on 'LEO N-Prize<+
Balloon East' preset)

#define ANGLE1 90.00 // Launch initial pitch angle in degrees when stage 1 ignition (¢«
based on 'LEO N-Prize Balloon East' preset)

#define ANGLE2 32.55 /! Launch middle pitch angle in degrees (based on 'LEO N-Prize <«
Balloon East' preset)

#define ANGLE3 0.00 // Launch end pitch angle in degrees at orbit (based on 'LEO N—<—
Prize Balloon East' preset)

//#define TARGET.ANGLE 33 // Target pitch angle when stage 1 ignition in degrees

#define COVERAGE.DISTANCE 1200000 // Distance from target to start the attitude maneuver

#define IGNITION_ALTITUDE 32000 // Above this altitude in meters the igniter is activated [USED <
ONLY WITH SOUNDING ROCKET]

#define PARACHUTEALTITUDE 2000 // Below this altitude in meters the parachute is deployed [USED«—
ONLY WITH SOUNDING ROCKET]

#define SAFETY_ALTITUDE 3000 // Safety altitude above which the parachute can be deployed [«
USED ONLY WITH SOUNDING ROCKET]

#define INTEGRATOR.CYCLES 4 /l (1<<4)=16 Two base integrator cycles

/+ EEPROM =/

//#define APOGEEADDR 0 // 128: NMEA apogee EEPROM Address [USED ONLY WITH SOUNDING <
ROCKET]

//#define IGNITION_ADDR 128 // 128: NMEA ignition altitude EEPROM Address [USED ONLY WITH<
SOUNDING ROCKET]

//#define PARACHUTE.ADDR 256 // 128: NMEA parachute altitude EEPROM Address [USED ONLY <«
WITH SOUNDING ROCKET]

#define DECLINATION_ADDR 0 // 375: Magnetosphere declination EEPROM Address

#define UNUSED.ADDR 375 /1 9: Unused EEPROM Address

#define IMU.ADDR 384 /1 12: IMU bias parameters EEPROM Address

#define LOCKED.ADDR 396 /] 12: Current target vector EEPROM Address

#define MISSION_ADDR 408 /1 1: Mission status EPROM Address

#define FLAGSADDR 409 /1 1: Mission flags EPROM Address

#define MAXG.FLAG B00000001 // 1bit: Accelerometer saturation

#define ATTITUDE_FLAG B00000010 // 1bit: Attitude control active

#define GPS_FLAG B00000100 // 1bit: GPS control active

#define PAYLOAD_FLAG B00001000 // 1bit: Payload On

#define LAT_ADDR 410 /1 4: Current latitude of the satellite EPROM Address

#define LON.ADDR 414 /] 4: Current longitude of the satellite EPROM Address

#define ALT_ADDR 418 /] 4: Current altitude of the orbit EPROM Address in km above<«

Sea Level

#define CONTROL.-P.ADDR 422 /] 4: Proportional parameter of the PID controller
#define CONTROL_ILADDR 426 /] 4: Integral parameter of the PID controller

#define CONTROL.D_ADDR 430 /] 4: Derivative parameter of the PID controller

//#define TARGET_U.ADDR 434 /] 4: Target X axis rotation value of the PID controller
//#define TARGET_V.ADDR 438 /] 4: Target Y axis rotation value of the PID controller
//#define TARGET.W_ADDR 442 /] 4: Target Z axis rotation value of the PID controller
#define 10eW_ADDR 446 // 10 expander status

#define TARGET-ADDR 447 /11 Index of the current target in the station list

#define WAYPOINTLIST_ADDR 448 // 64: List of 8 ground stations coordinates (in degrees) <«
EEPROM Address

#define SUNA_PIN 0 // Analog input pin for the Sun tracker A direction
#define SUNB-PIN 1 // Analog input pin for the Sun tracker B direction
#define SUNC_PIN 2 // Analog input pin for the Sun tracker C direction
#define SUND_PIN 3 // Analog input pin for the Sun tracker D direction
#define SUNE_PIN 4 // Analog input pin for the Sun tracker E direction
#define SUNF_PIN 5 // Analog input pin for the Sun tracker F direction
#define IGNITION_PIN 12 // Output pin number to activate the igniter 5V
#define PARACHUTE_PIN 10 // Output pin number to activate the parachute 5V
#define GPSRX_PIN 11 // Input pin for GPS Rx serial port

#define GPSTX-PIN 13 // Output pin for GPS Tx serial port

#if SAFETY_ALTITUDE <= PARACHUTEALTITUDE
#error SAFETY_ALTITUDE must be above PARACHUTE_ALTITUDE

#endif

/+ Mission sequence x/

#define MISSION_INOP 0 // Any main system fail or GPS not aligned. The satellite is not <
ready to be launched

#define MISSION_.RAMP 1 // IMU integrators are active and waiting for balloon release. Next«

mission state when first stage burn—in is detected. The balloon from an external GPS or a
person actives the first stage ignition. The satellite can not active the first stage by it «
self

#define MISSION_STAGE1 2 // IMU integrators are active and vector control is active. Next <
mission state when first stage burnout is detected

#define MISSION.BURNOUT1 3 // IMU integrators are active and vector control is in idle in <
order to keep the attitude. Next mission stage one minute before apogee and detected by low <«
vertical speed

#define MISSION_-TURN 4 // INOP. IMU integrators are active and a vector control maneuver <
is done to match the apogee plane. Next mission stage when maneuver is completed
#define MISSION_TILT 5 // INOP. IMU integrators are active and a vector control maneuver <

is done to match the heading plane parallel to the ground. Next mission stage when maneuver <
is completed

#define MISSION_SPIN 6 // IMU integrators are active and a spin is given to the launcher. ¢
At this point an orbital speed prediction is calculated based on the current altitude. If <
GPS is available at orbit, it will be replaced for the real one. Next mission stage when
spin is achieved and apogee is reached or passed then second stage ignition is activated <
before

#define MISSION_STAGE2 7 // IMU integrators are active while the orbital speed is achieved.
Next mission state when second stage burnout is detected. If ignition fails, next mission
stage will be STANDBY

#define MISSION_DEPLOY 8 // IMU integrators are active while satellites are deployed. Next <
mission state when attitude control is achieved. If attitude control fails, next mission <
stage will be STANDBY

#define MISSION_-DAMPING 9 // IMU integrators are active while a damping maneuver is done by <«
Magnetorquers. Next mission state when satellite attitude is stabilized

#define MISSION_.STANDBY 10 // IMU integrators are active but all the functions are hibernated.«
Every 10 seconds it looks for any near ground station below 1200 km. Next mission state <
when any ground station is near

#define MISSION_.FOLLOWING 11 // IMU integrators are active while the attitude maneuver is done <>
to point towards the ground station. Other near stations are checked in between. Next <
mission state when the target is locked. If ground station is out of range, next mission <
stage will be STANDBY

#define MISSION_PAIRING 12 // Same as FOLLOWING but radio—link is tested. Next mission state <«
when link is established and new commands are uploaded. If radio—links fails keeps the <«
current mode. If a new nearest ground station is available, next mission stage will be <
FOLLOWING. If ground station is out of range, next mission stage will be STANDBY

#define MISSION.DOWNLOAD 13 // Same as FOLLOWING but download is done. I|f radio—links fails of <
a new nearest ground station is available, next mission stage will be FOLLOWING. I[f ground <
station is out of range, next mission stage will be STANDBY

/+ Sensors =/

#define CompwlD B00110010 // Compass LSM303DLHC (0x32)

#define CompwW 0x01 // Write Compass ports

#define ComplD B00110001 // Compass LSM303DLHC reading (0x33)

#define CompX 0x04, 0x03

#define CompY 0x06, 0x05
#define CompZ 0x08, 0x07
/%

#define AcclD B00110001 // Accelerometer LSM303DLHC reading (0x33)

#define AccX 0x29, 0x28
#define AccY 0x2B, O0x2A
#define AccZ 0x2D, 0x2C
*/

#define AccID B00011001 // Accelerometer LIS331HH (0x19) TO BE REPLACED BY LSM303DLHC

#define AccX 0x29, 0x28
#define AccY 0x2B, O0x2A
#define AccZ 0x2D, 0x2C
#define GyrolD B01101001 // Gyro ITG3200 (0x69)
#define GyroT 0x1B, 0x1C
#define GyroX 0x1D, Ox1E
#define GyroY Ox1F, 0x20
#define GyroZ 0x21, 0x22

#define CamID B01111001 // HD camera write on TCM8230MD (0x79)
#define CamrID B0O1111000 // HD camera read on TCM8230MD (0x78)

#define CamReg02 0x02 // FPS ACF 0 0 0 0 DCLKP ACFDET

#define 10elD B01000000 // 10 expander write on TCA6408A (0x40)

#define I0eW 0x01 // Write 10e ports

#define 10rID B01000001 // IO expander read on TCAB408A (0x41)

#define I0OrW 0x00 // Read 10e configuration
#define |0eEN-VRAMP B00000001 // PO
#define 10eEN_3.3V_1 B00000010 // P1
#define 10eEN_2_6V B00000100 // P2

#define 10eEN_1_5V B00001000 // P3

#define 10eEN_A B00010000 // P4 Magnetorquer A — LEFT UP and Turn +v (Yaw)

#define 10eEN_B B00100000 // P5 Magnetorquer B — RIGHT UP and Turn —v (Yaw)
#define 10eEN_.C B01000000 // P6 Magnetorquer C — LEFT DOWN and Turn +u (Pitch)
#define |I0eEN_-D B10000000 // P7 Magnetorquer D — RIGHT DOMN and Turn —u (Pitch)
#define I0OeEN_GPS B00000010 // P1 GPS Power supply. CAUTION: This signal should be

/1 12C_SetRegister (10elD, 10eW, 12C_GetRegister (10rID,
P4 A — LEFT UP and Turn +v (Yaw)

// 12C_SetRegister (10elD, 10eW, 12C_GetRegister(10rID,
P5 B — RIGHT UP and Turn —v (Yaw)

// 12C_SetRegister (10elD, 10eW, 12C_GetRegister(10rID,
P6 C — LEFT DOWN and Turn +u (Pitch)

/] 12C_SetRegister (10elD, 10eW, 12C_GetRegister(10rID,
P7 D — RIGHT DOM and Turn —u (Pitch)

#define 12C_.BUFFER.LENGTH 32

IOeEN_A); // Active
IOeEN.B); // Active
IOeEN_C); // Active

IOeEN.D) ; // Active

#define TWI.BUFFERLENGTH 32 // CONSIDER TO USE I2C_BUFFER_LENGTH

#define TWI_READY 0

#define TWILMRX 1

//#define TWI.SRX 3

#define TWILMTX 2

#define TWILSTX 4

#define TWWRITE 0

#define TWREAD 1

#define TW_MT_SLANACK 0x20

#define TW_MT_DATANACK 0x30

#define 12C_cbi(sfr, bit) (-SFR-BYTE(sfr) &= "_BV(bit))
#define 12C_sbi(sfr, bit) (-SFR.BYTE(sfr) |= _BV(bit))
#define 12C_.CPU-FREQ 16000000L

#define 12C_TWI_FREQ 100000L

#define 12C_TWI_READY 0

#define URXADDR (byte =)”AWIPO”

#define UTX_ADDR (byte *)”AWsrv”

#define RF.CHANNEL 75

#define PL_SIZE 24

// GLOBALS
typedef struct tagIMUdata

{

float i, j, k; // Inertial acceleration [g]/32768+6

float u, v, w; // Rate of turn. Angular speed [A?/s]/32768%2000

float t; // IMU temperature [A2C]/100
int d; // Delta time in microseconds [ms]
float x, y, z; // Position [m]

implemented
magnetorquer

magnetorquer
magnetorquer

magnetorquer

float a, b, c; // Compass angular position. Attitude [A?] WARNING: Compass is not present

float 1, m, n; // Linear speed [m/s]
float o, p, q; // Target attitude unit vector

}1MUdata;
IMUdata data;

typedef struct tagIMUbias
{
int i, j, k; // Inertial
int u, v, w;
}IMUbias;

IMUbias bias;
typedef struct tagSUNtracker
{

float %, y, z;

}sUNtracker;
SUNtracker sun;

float dt;
float altitude;
float speedv;

second
float controlP, controll, controlD;
float targetU, targetV, targetW;
float outputU, outputV, outputW;
float accU, accV, accW;
float lastU, lastV, lastW;

unsigned long time;
unsigned long timeStamp;
unsigned long timeMagnetorquers;
unsigned long timeGPS;
boolean MagnetorquersCycle;
int r;
long i, j, k, u, v, w;
boolean maxg;
read
boolean attitude;
boolean gpsActive;
boolean payloadActive;
float g;
float gz;
float h;
uint8_t nRFstatus;
byte mission;
byte IOeWstatus;
// PASAR A ARRIBA
static uint8_t i2c_rxBufferIndex;
static uint8_t i2c_rxBufferlength;
static uint8_t i2c_txBufferIndex;
static uint8_t i2c_txBufferLength;
static uint8_t i2c_txAddress;

// sun direction from

/1
/1
/1

/1
/1
/1
/1
/1
/1

/1
/1
/1
/1
/1
/1

/1
/1
/1
/1
/1
/1
/1
/1
/1

bias acceleration [g]/32768+6
// Bias rate of turn. Bias angular speed [A?/s]/32768%2000

—1.0 to

Current in microseconds
Current

Current

loop time interval
altitude in meters
vertical speed for apogee detection in meters per«
PID
PID
PID

controller
controller
controller

parameters

target values

output values

PID controller accumulated values

PID controller last values

Last time stamp in microseconds

Last time stamp in microseconds

Last magnetorquers time stamp in microseconds
Last GPS reading cycle time stamp in microseconds
True = This is a magnetorquers cycle

Integral pointer

Align temporary variables

True = two consecutive values of maximum acceleration <

True attitude control is active
True = GPS reading is allowed
True = Payload is Turned On
Gravity at +/— 6g

Gravity at +/— 6g in Z axis
Angular at +/— 2000A?/s
AWIP_nRF24L01 status

Mission status

IO expander status

uint8_t i2c_rxBuffer[I2C_BUFFER_LENGTH];
uint8_t i2c_txBuffer[I2C_BUFFER_LENGTH];

uint8_t 1i2c_transmitting = O;
static volatile uint8_t i2c_state;
static volatile uint8_t i2c_error;
static uint8_t i2c_twi_slarw;
static
static
static
static
static
long gps_baudRate;
int gps_bitPeriod;
byte gps_chk;
boolean gps_ischk;
byte gps_p[16]
byte gps_k[80];
byte gps_n;

float gps_lat;
float gps_lon;
float gps_alt;
boolean gps_valid;
float mag_dec;

// float mag-inc;

volatile uint8_t i2c_twi_txBufferLength;
uint8_t i2c_twi_txBuffer[TWI_BUFFER_LENGTH];
volatile uint8_t i2c_twi_masterBufferIndex;
uint8_t i2c_twi_masterBufferLength;
uint8_t i2c_twi_masterBuffer[TWI_BUFFER_LENGTH];

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

// CONSIDER TO USE i2c-txBufferLength
// CONSIDER TO USE i2c.txBuffer

// CONSIDER TO USE i2c_rxBufferIndex
// CONSIDER TO USE i2c.rxBufferLength

// CONSIDER TO USE i2c.rxBuffer
GPS baud rate

GPS bit period in microseconds

NMEA sentence checksum

Checksum is active

Read buffer for one parameter from GPS input
Read buffer for one NMEA sentence from GPS input
Read buffer pointer

New gps latitude (WGS84)

New gps longitude (WGS84)

New gps altitude (WGS84)

True = GPS fix available and message validated
New magnetic vector declination (WMM2010)

// New magnetic vector inclination (WMM2010)

/1

/1 12C Bus

/1

void I2C_beginTransmission(uint8_t address)
{

// indicate that we are transmitting
i2c_transmitting = 1;

// set address of targeted slave
i2c_txAddress = address;

// reset tx buffer iterator vars
i2c_txBufferIndex = O0;
i2c_txBufferLength = 0;

¥

uint8_t I2C_endTransmission(void)

{
// transmit buffer (blocking)
int8_t ret = I2C_twi_writeTo(i2c_txAddress, i2c_txBuffer, i2c_txBufferLength, 1);
// reset tx buffer iterator vars
i2c_txBufferIndex = O0;
i2c_txBufferLength = 0;
// indicate that we are done transmitting
i2c_transmitting = 0;
return ret;

}

// must be called in:
// slave tx event callback
// or after beginTransmission (address)
void I2C_send(uint8_t data)
{
if (12c_transmitting)
{
// in master transmitter mode
// don't bother if buffer is full
if (i2c_txBufferLength >= I2C_BUFFER_LENGTH) return;
// put byte in tx buffer
i2c_txBuffer[i2c_txBufferIndex] = data;
++i2c_txBufferIndex;
/! update amount in buffer
i2c_txBufferLength = i2c_txBufferIndex;

}

else
{
/] in slave send mode
/! reply to master
I2C_twi_transmit(&data, 1);
}
}
uint8_t I2C_requestFrom(uint8_t address, uint8_t quantity) // CONSIDER TO REPLACE BY uint8_t <
twi_-readFrom(uint8_t address, uint8_t+ data, uint8_.t length)

{
// clamp to buffer length
if (quantity > I2C_BUFFER_LENGTH) quantity = I2C_BUFFER_LENGTH;
// perform blocking read into buffer
uint8_t i2c_read = I2C_twi_readFrom(address, i2c_rxBuffer, quantity);
// set rx buffer iterator vars
i2c_rxBufferIndex = 0;
i2c_rxBufferLength = i2c_read;
return i2c_read;
}

// must be called in:

// slave rx event callback

// or after requestFrom(address, numBytes)
uint8_t I2C_available(void)

{
}

// must be called in:
/! slave rx event callback

return i2c_rxBufferLength — i2c_rxBufferIndex;

// or after requestFrom (address, numBytes)
uint8_t I2C_receive(void)
{
// default to returning null char
// for people using with char strings
uint8_t value = '\0';
// get each successive byte on each call
if (i2c_rxBufferIndex < i2c_rxBufferLength)
{
value = i2c_rxBuffer[i2c_rxBufferIndex];
++i2c_rxBufferIndex;

}

return value;

* Function twi_transmit
+ Desc fills slave tx buffer with data
* must be called in slave tx event callback
* Input data: pointer to byte array
* length: number of bytes in array
* Output 1 length too long for buffer
* 2 not slave transmitter
* 0 ok
*/
uint8_t I2C_twi_transmit(uint8_t=* data, uint8_t length)
{
uint8_t 1i;
// ensure data will fit into buffer
if (TWI_BUFFER_LENGTH < length) return 1;
// ensure we are currently a slave transmitter
if (TWI_STX != i2c_state) return 2;
// set length and copy data into tx buffer
i2c_twi_txBufferLength = length;
for(i = 0; 1 < length; ++i) i2c_twi_txBuffer[i] = data[i];
return 0;

* Function twi_readFrom
+ Desc attempts to become twi bus master and read a
* series of bytes from a device on the bus
* Input address: 7bit i2c device address
* data: pointer to byte array
* length: number of bytes to read into array
* Output number of bytes read
*/
uint8_t I2C_twi_readFrom(uint8_t address, uint8_t=* data, uint8_t length)
{
uint8_t 1i;
// ensure data will fit into buffer
if (TWI_BUFFER_LENGTH < length) return O;
// wait until twi is ready, become master receiver
while (TWI_READY != i2c_state);
i2c_state = TWI_MRX;
/] reset error state (OxFF.. no error occured)
i2c_error = OxFF;
// initialize buffer iteration vars
i2c_twi_masterBufferIndex = 0;
i2c_twi_masterBufferLength = length — 1; // This is not intuitive , read on...
// On receive, the previously configured ACK/NACK setting is transmitted in
/1 response to the received byte before the interrupt is signalled.
/I Therefor we must actually set NACK when the _next. to last byte is
// received, causing that NACK to be sent in response to receiving the last
// expected byte of data.

// build sla+w, slave device address + w bit

i2c_twi_slarw = TW_READ;

i2c_twi_slarw |= address << 1;

// send start condition

TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTR);
// wait for read operation to complete

while (TWI_MRX == i2c_state);

if (i2c_twi_masterBufferIndex < length) length = i2c_twi_masterBufferIndex;
// copy twi buffer to data

for(i = 0; i < length; ++i) data[i] = i2c_twi_masterBuffer[i];

return length;

}

/%

+ Function twi_writeTo

+ Desc attempts to become twi bus master and write a

* series of bytes to a device on the bus

* Input address: 7bit i2c device address

* data: pointer to byte array

* length: number of bytes in array

* wait: boolean indicating to wait for write or not
* Output 0 .. success

* 1 length to long for buffer

* 2 address send, NACK received

* 8 data send, NACK received

* 4 other twi error (lost bus arbitration, bus error, ..)
*/

uint8_t I2C_twi_writeTo(uint8_t address, uint8_t=* data, uint8_t length, uint8_t wait)
{

uint8_t 1i;

// ensure data will fit into buffer

if (TWI_BUFFER_LENGTH < length) return 1;

// wait until twi is ready, become master transmitter

while (TWI_READY != i2c_state);

i2c_state = TWI_MTX;

// reset error state (OxFF.. no error occured)

i2c_error = OXFF;

// initialize buffer iteration vars

i2c_twi_masterBufferIndex = 0;

i2c_twi_masterBufferLength = length;

// copy data to twi buffer

for(i = 0; 1 < length; ++i) i2c_twi_masterBuffer[i] = data[i];

// build sla+w, slave device address + w bit

i2c_twi_slarw = TW_WRITE;

i2c_twi_slarw |= address << 1;

// send start condition

TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);

// wait for write operation to complete

while (wait && (TWI_MTX == i2c_state));

if (i2c_error == OxFF) return 0; // success
else if (i2c_error == TW_MT_SLA_NACK) return 2; // error: address send, nack received
else if (i2c_error == TW_MT_DATA_NACK) return 3; // error: data send, nack received
else
return 4; // other twi error
}
void I2C_SetRegister(int device, int address, int value)
{

I12C_beginTransmission(device);
I2C_send(address);
I2C_send(value);
I2C_endTransmission();

}

byte I2C_GetRegister(int device, int address)

{
I2C_beginTransmission(device);
I2C_send(address);
I2C_endTransmission() ;
I2C_requestFrom(device, 1);
if (1I2C_available()) return O;
return I2C_receive();

}

int I2C_GetValue(int device, int addressH, int addressL)

{

return ((unsigned int)(I2C_GetRegister(device, addressH)) << 8) + I2C_GetRegister(device, <
addressL);

void I2C_TurnOn(byte mask)
IOeWstatus = I2C_GetRegister(IOrID, IOrW) | mask;
EEPROMWrite (IOeW_ADDR, 1, &IOeWstatus);
I2C_SetRegister(I0OeID, IOeW, IOeWstatus);

}

void I2C_TurnOff(byte mask)
{
IOeWstatus = I2C_GetRegister(IOrID, IOrW) & mask;
EEPROMWrite (IOeW_ADDR, 1, &IOeWstatus);
I2C_SetRegister(I0eID, IOeW, IOeWstatus);
}
// BORRAR
// 12C_SetRegister (10elD, 10eW, [2C_GetRegister(1OrID, IOrW) | IOeEN_A); // Active magnetorquer <
P4 A — LEFT UP and Turn +v (Yaw)
/] 12C_SetRegister (10elD, 10eW, [2C_GetRegister(1OrID, IOrW) | IOeEN.B); // Active magnetorquer <
P5 B — RIGHT UP and Turn —v (Yaw)
/] 12C_SetRegister (10elD, 10eW, [2C_GetRegister(1OrID, IOrW) | IOeEN.C); // Active magnetorquer <
P6 C — LEFT DOWMN and Turn +u (Pitch)
/] 12C_SetRegister (10elD, 10eW, [2C_GetRegister(1OrID, IOrW) | IOeEN.D); // Active magnetorquer <
P7 D — RIGHT DOMN and Turn —u (Pitch)
void I2C_UpdateAxis(float output_axis, byte positive_mask, byte negative_mask)
{

if (output_axis > 0.1)

{
I12C_TurnOff(negative_mask);
I2C_TurnOn(positive_mask);
}
else if (output_axis < 0.1)
{
I2C_TurnOff(positive_mask);
I2C_TurnOn(negative_mask);
}
else
{
I2C_TurnOff(positive_mask);
I2C_TurnOff (negative_mask);
}
}
1/
/1l SPI bus
1/
unsigned int SPI_readRegister(byte thisRegister)
{
unsigned int result = 0; // result to return

// digitalWrite (chipSelectPin, LOW);
SPI.transfer(thisRegister & B11111100);
result = SPI.transfer(0x00);

// digitalWrite (chipSelectPin, HIGH);
return (result);

}

// Writes a value in SPl bus register

void SPI_writeRegister(byte thisRegister, byte thisValue)

{
// digitalWrite (chipSelectPin, LOW);
SPI.transfer(thisRegister | B00000010); //Send register location
SPI.transfer(thisValue); //Send value to record into register
// digitalWrite (chipSelectPin, HIGH) ;

}

// Turn On a Control vector nozzle
void SPI_TurnOn(byte mask)

// WARNING: Control vector configuration should be defined. 12C used instead SPI. Need to be «
modified
I2C_SetRegister(I0eID, IOeW, I2C_GetRegister(IOrID, IOrW) | mask);

}

// Turn Off a Control vector nozzle

void SPI_TurnOff(byte mask)

// WARNING: Control vector configuration should be defined. 12C used instead
modified

I2C_SetRegister(IOeID, IOeW, I2C_GetRegister(IOrID, IOrW) & mask);

}

// Set a control vector configuration

void SPI_Config(byte maskOnl, byte maskOn2, byte maskOff3, byte maskOff4)

{
SPI_TurnOff(maskOff3);
SPI_TurnOff(maskOffd);
SPI_TurnOn(maskOnl);
SPI_TurnOn(maskOn2) ;

/1

=

N

Vi

/1 EEPROI

/1

if EEPROM is ready for a new read/write operation, 0 if not.
bit.is_clear (EECR, EEPE)

// Returns 1
#define eeprom_is_ready ()

//Read one byte from EEPROM address __p.
#define EEPROM._read(address)
__ATTR_PURE__ static __inline_ uint8_t eeprom_read_byte (const uint8_t *_ p)

{

while (leeprom_is_ready());
#if E2END <= OxFF

EEARL = (uint8_t)__p;
#else

EEAR = (uintl6_t)_ p;
#endif

/+ Use inline assembly below as some AVRs have problems with accessing
EECR with STS instructions. For example, see errata for ATmega64.

The code below also assumes that EECR and EEDR are in the 1/O space.
*/
uint8_t _ result;
__asm__ __volatile_
(
"/« START EEPROM READ CRITICAL SECTION «/ \n\t”
"sbi %1, %2 \n\t”
"in %0, %3 \n\t”
"/« END EEPROM READ CRITICAL SECTION «/ \n\t”
"=r” (__result)
"i” (_SFR_IO_ADDR(EECR)),
”i” (EERE),
”i” (_SFR_IO_ADDR(EEDR))
)

return __result;

}

// Write a byte __value to EEPROM address __p.
#define EEPROM._write (address, value) (eeprom_write_byte ((uint8_t =)address,
static __inline__ void eeprom_write_byte (uint8_t *__p, uint8_t __value)

{

while (leeprom_is_ready ());

EECR = 0; /* Set programming mode: erase and write. */

#if E2END <= OxFF

EEARL = (unsigned)__p;
#else

EEAR = (unsigned)__p;
#endif
EEDR = _ value;
__asm__ _ volatile__

(
"/« START EEPROM WRITE CRITICAL SECTION */\n\t”"

SPIl. Need to be «

((uint8_-t) eeprom_read_byte ((const uint8_t *) address))

(uint8_t)value))

"in r0, %[-_sreg] \n\t”

v cli \n\t”

" sbi %[--eecr], %[--eempe] \n\t”
" sbi %[-_eecr], %[--eepe] \n\t”
”out %[-_sreg], r0 \n\t”

”/+ END EEPROM WRITE CRITICAL SECTION =/~

[__eecr] "i" (_SFR_IO_ADDR(EECR)),
[__sreg] "i" (_SFR_IO_ADDR(SREG)),
[_eempe] ”i” (EEMPE),

[__eepe] 7i” (EEPE)

Y

)
}
/! Write a memory block in the EEPROM

#define EEPROMWriteVar(addr, var) EEPROMWrite(addr, sizeof(var), (byte=x)&(var))
void EEPROMWrite(int addr, uint8_t length, byte *block)

{
while (length——)
{
EEPROM_write((const uint8_t+)addr, =*(block++));
addr++;
}
}

// Read a memory block from the EEPROM
#define EEPROMReadVar(addr, var) EEPROMRead(addr, sizeof(var), (bytex)&(var))
void EEPROMRead(int addr, uint8_t length, byte *block)

while (length—)

{
*(block++) = EEPROM_read(addr);
addr++;
¥
}
void EEPROMSetFlag(int addr, byte mask)
{
uint8_t c = EEPROM_read(addr) | mask;
EEPROM_write(addr, c);
¥
void EEPROMResetFlag(int addr, byte mask)
{
uint8_t ¢ = EEPROM_read(addr) & mask;
EEPROM_write(addr, c);
}
boolean EEPROMGetFlag(int addr, byte mask)
{
return EEPROM_read(addr) & mask;
}

/= // NOT IN USE. KEEPED FOR COMPATIBILITY
// Reads a float variable from the specified EEPROM address
float EEPROMReadFloat(int addr)

{
float num;
((byte*)&um) [0] = EEPROM.read(addr++);
((byte*)&wum)[1] = EEPROM.read(addr++);
((byte*)&um)[2] = EEPROM.read(addr++);
((byte *)&wum) [3] = EEPROM.read(addr++);
return num;

}

// Writes a float variable to the specified EEPROM address
void EEPROMWriteFloat(int addr, float num)

{
EEPROM_write (addr++, ((byte*)&um)[0]) ;
EEPROM_write (addr++, ((byte*)&um)[1]);
EEPROM_write (addr++, ((byte)&um)[2]);
EEPROM_write (addr++, ((byte*)&um)[3]) ;

}
*/
1

/1 nRF24L01p radio
/1

uint8_t nRF_softSpiSend(uint8_t data)

{
uint8_t buff = 0
for (int 1 = 7;

{
digitalWrite (SOFT_MOSI, (data>>i&1));
digitalWrite(SOFT_SCK,HIGH);
buff = buff | ((digitalRead(SOFT_MISO)&1)<i);
digitalWrite(SOFT_SCK,LOW);

i>=0; i—)

return buff;

}

void nRF_transmitSync(uint8_t =dataout, uint8_t len)

{
uint8_t 1i;
for(i = 0;i < len;i++)
{

nRF_softSpiSend(dataout[i]) ;

}
}

void nRF_transferSync(uint8_t =dataout, uint8_t =datain, uint8_t len)

{

uint8_t i;
for(i = 0;i < len;i++)
{
datain[i] = nRF_softSpiSend(dataout[i]) ;
}
uint8_t nRF_setCmd(uint8_t reg)
csnLow () ;
nRFstatus = nRF_softSpiSend(req);
csnHi();
return nRFstatus;
uint8_t nRF_setData(uint8_t data, uint8_t len)
{
csnLow () ;
nRFstatus = nRF_softSpiSend(W_TX_PAYLOAD) ;
nRF_transmitSync(data, len);
csnHi();
}
uint8_t nRF_getData(uint8_t =data, uint8_t len)
csnLow () ;
nRFstatus = nRF_softSpiSend(R_RX_PAYLOAD) ;
nRF_transferSync(data, data, len);
csnHi () ;
nRF_setReq (STATUS, (1<<RX_DR));
}
uint8_t nRF_setReg(uint8_t reg, uint8_t value)
csnLow () ;
nRFstatus = nRF_softSpiSend(W_REGISTER | (REGISTER_MASK & reg));
nRF_softSpiSend(value);
csnHi() ;
return nRFstatus;
¥

uint8_t nRF_setReg(uint8_t reg, uint8_t *value, uint8_t len)

{

uint8_t stat = 0;

csnLow () ;

nREstatus = nRF_softSpiSend(W_REGISTER | (REGISTER_MASK & reg));
nRF_transmitSync(value, len);

csnHi();

return nRFstatus;

}

uint8_t nRF_getReg(uint8_t reg)
{
uint8_t stat = 0;
csnLow () ;
nREFstatus = nRF_softSpiSend(R_REGISTER | (REGISTER MASK & reg));
stat = nRF_softSpiSend(reg);
csnHi () ;
return stat;

}

uint8_t nRF_getReg(uint8_t reg, uint8_t *value, uint8_t len)
{
uint8_t stat = 0;
csnLow () ;
nRFstatus = nRF_softSpiSend(R_REGISTER | (REGISTER_MASK & reg));
nRF_transferSync(value,value,len);
csnHi() ;
return nRFstatus;

}

void nRF_configure(uint8_t * myaddr, uint8_t * addr, uint8_t channel, uint8_t pl_size)

{
ceLow () ;
nRF_setReg
nRF_setReg
nRF_setReg
nRF_setReg
nRF_setReg
nRF_setReg
nRF_setReg
nRF_setReg
nRF_setReg
nRF_setReg

RX_ADDR_P0, addr, 5);

RX_ADDR_P1, myaddr, 5);

TX_ADDR, addr, 5);

EN_AA, 0x03); //auto-ack enabled for both rx pipes 0 and 1
EN_RXADDR, 0x03); //both pipes PO and P1 are enabled to recieve
RX_PW_PO, pl_size);

RX_PW_P1, pl_size)
SETUP_RETR, Ox1A);
RF_CH, channel);
RF_SETUP, 0x07);

3

}

void nRF_stateStandbyI ()
{
ceLow () ;
nRF_setReg (CONFIG, Ox0E);
delayMicroseconds(130);

}

bool nRF_dataReady ()
{
byte tmp = nRF_getReg(STATUS);
if (nRFstatus & (1 << RX_DR)) return 1;
byte fifoStatus = nRF_getReg(FIFO_STATUS);
return !(fifoStatus & (1 << RX_EMPTY));

}

boolean nRF_sendd(byte* data, byte psize)
{
//byte stat = nrf.getReg(STATUS);
/]if ((stat & ((1 << TX.DS) | (1 << MAXRT)))) return false;

ceLow () ;

nRF_setReg (CONFIG, 0x0e);
nRF_setCmd (FLUSH_TX) ;
nRF_setData(data, psize);
ceHi();
delayMicroseconds(10);
ceLow () ;

/1
/1 GPS
/1
// Reads a GPS character
int GPS_read()
{

unsigned long timeout = 10000000; // WARNING: This value should be validated

int val = 0;

int bitDelay = gps_bitPeriod — clockCyclesToMicroseconds(50);

// one byte of serial data (LSB first)

==\ I—=\—=\/—=\/—=\[—=\[——\[——\/——\/——...

/! \——A\—-A\—-AA\—-A—-A\—-A\—-/N\—-/\——/

/1 start O 1 2 3 4 5 6 7 stop

while (timeout——)

if (digitalRead(GPSRX_PIN))

// confirm that this is a real start bit, not line noise
if (digitalRead(GPSRX_PIN) == LOW)
{
// frame start indicated by a falling edge and low start bit
// jump to the middle of the low start bit
delayMicroseconds (bitDelay / 2 — clockCyclesToMicroseconds(50));
/I offset of the bit in the byte: from 0 (LSB) to 7 (MSB)
for (int offset = 0; offset < 8; offset++)

{
// jump to middle of next bit
delayMicroseconds(bitDelay);
// read bit
val |= digitalRead(GPSRX_PIN) << offset;
}

delayMicroseconds(gps_bitPeriod);
return val;

}

return —1; // Synchronization lost

}
}
return —2; // Timeout

}

// Reads a character from GPS
byte GPS_Next ()
{
/! GPS reading
byte val = (byte)GPS_read();

if (val == '$"') // Check for a command prefix
{
gps_ischk = true; // Activate checksum flag
gps_chk = 0; // Reset checksum
gps_n = 0; // Reset command buffer pointer
¥
else if (gps_ischk)
{
if(val == '+') gps_ischk = false; else gps_chk "= val; // Calculate checksum
}

if (gps_n < sizeof(gps_k)) gps_k[gps_n++] = val; // Store the byte in the command buffer
return val;

}
// Reads a parameter from the serial port
int GPS_ReadParam(byte chr = ",")
{
int 1 = 0;
while (true)
{
if (1 >= sizeof(gps_p))
{
return —1; // Buffer overrun
}
else if ((gps_p[i] = GPS_Next()) == chr)
{

return i; // Number of bytes read

}

else
{ a .
y 5
}
}

// Returns the value of two byte ASCIl hexadecimal number
byte GPS_Check(char xk)
{
int i;
byte c;
// OxDF = "0x20 .. 55 = 'A' — 10
c = k[0]; if(c > 'A') ¢ = (c & 0xDF) — 55; else ¢ —= '0';
i=c<k 4,
c =k[1]; if(c>= 'A") ¢
i += c;
return i;

(c & 0xDF) — 55; else ¢ —= '0';

}

// Deactivate GPS updating
void GPS_activate(boolean active)

{
if (active) EEPROMSetFlag(FLAGS_ADDR, GPS_FLAG); else EEPROMResetFlag(FLAGS_ADDR, GPS_FLAG);
gpsActive = active;

¥

/1

/1 Misc functions

/1

/I Converts Cartesian XYZ (in meters) to LLA coordinates (in radians and meters) using a <«
spherical model
void XYZ2LLA(float x, float y, float z, float =lat, float *lon, float xalt)

float r = sqrt(x * x + y * y);
if (r != 0)

{

*alt = sqrt(r * r + z * z) — PLANET_RADIUS;

*lat = atan(z / r);
}
else
{
*lon = 0;
if (z<0)
{
*alt = —z — PLANET_RADIUS;
*lat = —A90;
}
else
{
xlat = A90;
*alt = z — PLANET_RADIUS;
}
}

}

// Converts LLA coordinates (in radians and meters) to cartesian XYZ (in meters) using a <

spherical model

void LLA2XYZ(float lat, float lon, float alt, float *x, float *y, float =z)

{
float r = PLANET_RADIUS + alt;
*z = r * sin(lat);

r =r * cos(lat);

—r * sin(lon);

r * cos(lon);

*X
*y

}

// Calculate the distance (in meters) between two LLA coordinates (in radians and meters) using <«
a spherical model
float LLADistance(float latl, float lonl, float altl, float lat2, float lon2, float alt2)

float x1, yl, zl, x2, y2, z2;
LLA2XYZ(latl, lonl, altl, &x1, &yl, &zl);
LLA2XYZ(lat2, lon2, alt2, &x2, &y2, &z2);

x1 —= x2;
vyl —= y2;
z1l —= z2;

return sqrt(xl * x1 + yl * yl + z1 * z1);

}

// Converts a string in degrees—minutes format to degrees only

float ToDM(char =str, byte degrees_size)

{
float n = atof(str + degrees_size) / 60;
*(str + degrees_size) = 0;

n += atof(str);
return n;

}

// Checks if any station is in range
byte StationInRange ()
{
float latl, lonl, altl;
float lat2, lon2;
float dist = INFINITE;
byte n = 0;
int a;
EEPROMReadVar (LAT_ADDR, latl);
EEPROMReadVar (LON_ADDR, lonl);
EEPROMReadVar (ALT_ADDR, altl);
for(byte ¢ = 0; ¢ < 8; c++)

{
a = WAYPOINTLIST_ADDR + (c << 4);
EEPROMReadVar (a, lat2);
EEPROMReadVar(a + 4, lon2);
r = LLADistance(latl, lonl, altl, lat2, lon2, 0);
if (r < dist)
{
dist = r;
n=c;
}
}

if (dist > COVERAGE_DISTANCE) n = 0; else n++;
EEPROMWriteVar (LOCKED_ADDR, n);
return n;

}

// Closes the control loop activating the magnetorquers
void MagnetorquersUpdate ()

{

// WARNING: Magnetorquers configuration should be defined
if (MagnetorquersCycle)

{

I2C_UpdateAxis(outputU, IOeEN_A, IOeEN_B);

I2C_UpdateAxis(outputV, IOeEN_C, IOeEN_D);

//12C_UpdateAxis (outputW, I0eEN_E, IOeEN_F); // This magnetorquer is not available
// BORRAR

/] 12C_SetRegister (10elD, 10eW, 12C_GetRegister(IOrID, I0rW) | I0eEN_A); // Active <
magnetorquer P4 A — LEFT UP and Turn +v (Yaw)

/] 12C_SetRegister (10elD, 10eW, 12C_GetRegister(IOrID, IOrW) | I0eEN_B); // Active <
magnetorquer P5 B — RIGHT UP and Turn —v (Yaw)

/] 12C_SetRegister (10elD, 10eW, [2C_GetRegister(IOrID, IOrW) | IOeEN.C); // Active <
magnetorquer P6 C — LEFT DOAMN and Turn +u (Pitch)

/] 12C_SetRegister (10elD, 10eW, [2C_GetRegister(1OrID, IOrW) | IOeEN.D); // Active <
magnetorquer P7 D — RIGHT DOMN and Turn —u (Pitch)

}

// Launch trajectory calculation
void ControlVectorTrajectory ()

// Fixed pitch angle mode
// attitude = false;

// targetU = TARGETANGLE;

// Pitch target angle calculation as a function of the current altitude and three defined
points
if (altitude >= ALT3)
targetU = ANGLE3;
else if(altitude >= ALT2)
targetU = ANGLE2 + (ANGLE3 — ANGLE2) = (altitude — ALT2) / (ALT3 — ALT2);
else if(altitude >= ALT1)
targetU = ANGLEl + (ANGLE2 — ANGLEl) = (altitude — ALT1) / (ALT2 — ALTl1);
else
targetU

ANGLEL;
// Closes the control vector loop activating the control vector nozzles
void ControlVectorUpdate ()

// WARNING: Control Vector configuration should be defined
boolean a, b, c, d;
if (MagnetorquersCycle)
{
// PENDING: It should be a SPI command, not a I2C command
if (outputw > 0.1)

{
SPI_Config(IOeEN_B, IOeEN_C, IOeEN_A, IOeEN_D);
}
else if (outputW < 0.1)
{
SPI_Config(IOeEN_A, IOeEN_D, IOeEN_B, IOeEN_C);
}
else
{
a = false;
b = false;
c = false;
d = false;
if (outputU > 0.1)
{
b = true;
d = true;

else if (outputU < 0.1)

{
= true;
= true;
}
if (outputv > 0.1)
{
a = true;
b = true;

else if (outputv < 0.1)
{

c = true;

d = true;
}
i)SPI_TurnOn(IOeEN_A); else SPI_TurnOff(IOeEN_A);
)SPI_TurnOn(IOeEN_B); else SPI_TurnOff(IOeEN_B);
)))
)))

SPI_TurnOn(IOeEN_C); else SPI_TurnOff(IOeEN_C
SPI_TurnOn(IOeEN_D); else SPI_TurnOff(IOeEN_D

if(a
if (b
if(c
if(d H
}
}
}

// Calculates the PID algorithm for the given values
float CalculatePID(float value, float target, float xacc, float =last)

{

float h = target — value; // Proportional
*acc += h * dt; // Integral
float g = (h — *last) / dt; // Derivative

g = h *» controlP + *acc * controll + g * controlD;
*last = h;

return g;

// Activate attitude control and configure PID controller parameters
void AttitudeOn(float p, float i, float d)

{
controlP = p;
controll = ij;
controlD = d;
EEPROMWriteVar (CONTROL_P_ADDR, p);
EEPROMWriteVar (CONTROL_I_ADDR, 1i);
EEPROMWriteVar (CONTROL_D_ADDR, d);
EEPROMSetFlag(FLAGS_ADDR, ATTITUDE_FLAG);
attitude = true;

}

// Deactivate attitude control
void AttitudeOff ()

{

EEPROMResetFlag(FLAGS_ADDR, ATTITUDE_FLAG);
attitude = false;

}

// Set the mission status and turn of payload if it is standby
void SetMission(byte n)

mission = n;
EEPROMWrite (MISSION_ADDR, 1, &mission);
if (mission == MISSION_STANDBY) Payload_activate(false);

// Activates if selected the payload power supply
void Payload_activate(boolean active)
{
if (active)
{
// Turn on payload power supply
I2C_TurnOn(IOeEN_2_6V);
I2C_TurnOn(IOeEN_1_5V);
I2C_TurnOn(IOeEN_3_3V_1);
// Turn on the radio
ceLow () ;
csnHi();
nRF_configure (URX_ADDR, UTX_ADDR, RF_CHANNEL, PL_SIZE);
nRF_stateStandbyI();
// Start to record because at this point, target is locked
I2C_SetRegister(CamID, CamReg02, B10000000); // 15fps, 50Hz, normal DCLKP and ACFDET Auto <
mode
}

else

{
I2C_TurnOff(IOeEN_3_3V_1);
I2C_TurnOff (I0eEN_2_6V) ;
I2C_TurnOff(IOeEN_1_5V);

}

payloadActive = active;

/1
/] Reset procedure
/1

#if |RESET_EEPROM
/1
/1l Main functions
/1
void setup ()

// Starting 12C bus

i2c_rxBufferIndex = O0;
i2c_rxBufferLength = 0;
i2c_txBufferIndex = O0;
i2c_txBufferLength = 0;

// initialize two wire interface state
i2c_state = TWI_READY;

// activate internal pull—ups for twi

// as per note from atmega8 manual pg167
I2C_sbi(PORTIC, 4);

I2C_sbi (PORTC, 5);

// initialize twi prescaler and bit rate
12C_cbi (TWSR, TWPSO);

I2C_cbi (TWSR, TWPS1);

TWBR = ((I2C_CPU_FREQ / I2C_TWI_FREQ) — 16) / 2;

/+ twi bit rate formula from atmegal28 manual pg 204
SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))
note: TWBR should be 10 or higher for master mode

It is 72 for a 16mhz Wiring board with 100kHz TWI =/

// enable twi module, acks, and twi interrupt
TWCR = _BV(TIWEN) | _BV(TWIE) | _BV(IWEA);

/" Initializing 12C sensors

I2C_SetRegister(AccID, 0x20, B00111111); // Initialize at 1000 Hz sampling rate, low pass cut——
off at 780 Hz. Register 32 (0x20) — CTRL-REG1: PM2 PM1 PMO DR1 DR2 Zen Yen Xen

I2C_SetRegister(AccID, 0x23, B00000000); // From —6g to +6g. g=5461.3f; Register (0x23) —
CTRL.REG4: BDU BLE FS1 FSO STsign 0 ST SIM

I12C_SetRegister(GyroID, 0x3E, B00000001); // Internal oscillator. Register 62 (0x3E) a Power<
Management: H.RESET SLEEP STBY_XG STBY.YG STBY_ZG CLK_SEL_Bit2 CLK_SEL_Bit2 CLK_SEL_Bit1 <«
CLK_SEL_Bit0

I2C_SetRegister(GyroID, 0xl6, B00011011); // Initialize at 1000 Hz sampling rate, DLPF at 188 <
Hz. Register 22 (0x16) & Digital Low Pass Filter , Full Scale: FS_SEL_Bit4 FS_SEL_Bit3 <«
DLPF_.CFG_Bit2 DLPF_CFG_Bit1 DLPF_CFG_Bit0

I2C_SetRegister(IOeID, IOeW, IOeWstatus);

// Starting SPI bus
SPI.begin(); // SPI bus for launcher communications

// Starting GPS

gps_baudRate = 4800;

gps_bitPeriod = 1000000 / gps_baudRate;

digitalWrite (GPSTX_PIN, HIGH);

delayMicroseconds(gps_bitPeriod); // if we were low this establishes the end

// Configuring the radio
pinMode (SOFT_MOSI, OUTPUT);
pinMode (SOFT_MISO, INPUT);
pinMode (SOFT_SCK, OUTPUT);
digitalWrite (SOFT_MOSI,LOW) ;
digitalWrite (SOFT_SCK,LOW) ;
pinMode (pCE, OUTPUT) ;

pinMode (pCSN, OUTPUT) ;

// Configuring EEPROM and mission state recovery

EEPROMReadVar (MISSION_ADDR, mission);

time = micros(); // Time stamp

g = 1.796265E—-03; // g = 6.0 = 9.81 / 32768;

gz = 1.704193E-03; // g = 6.0 » 9.81 = (9.81 / 10.34) / 32768;

h = .06103515625; // h = 2000 / 32768;

maxg = EEPROMGetFlag(FLAGS_ADDR, MAXG_FLAG);

attitude = EEPROMGetFlag(FLAGS_ADDR, ATTITUDE_FLAG);

GPS_activate (EEPROMGetFlag(FLAGS_ADDR, GPS_FLAG));

Payload_activate (EEPROMGetFlag(FLAGS_ADDR, PAYLOAD_FLAG));

EEPROMReadVar (CONTROL_P_ADDR, controlP);

EEPROMReadVar (CONTROL_I_ADDR, controlI);

EEPROMReadVar (CONTROL_D_ADDR, controlD);

// EEPROMReadVar (TARGET_U_.ADDR, targetU);
)
)

// EEPROMReadVar (TARGET_V_.ADDR, targetV
// EEPROMReadVar (TARGET_W_ADDR, targetW
targetU = 0;

targetV = 0;

targetW = 0;

accU 0;

accV 0;

accW = 0;

lastU = 0;

lastV 0;
lastW 0;
timeMagnetorquers = 0;

}

void loop()
{
byte c;
float newlat;
float newlon;
float newalt;
byte newsta;

if (mission < MISSION_DEPLOY)

{
/! Acceleration filtering
i=0;
i=0;
k = 0;
r = (1 << INTEGRATOR_CYCLES);
while (r—)
{
i += I2C_GetValue(AccID, AccX);
j += I2C_GetValue(AccID, AccY);
k += I2C_GetValue(AccID, AccZ);
//delay (1) ;
/! Accelerometer saturation detection
if (k> (32000 << INTEGRATOR_CYCLES))
{
if (maxg)
{
EEPROMSetFlag(FLAGS_ADDR, MAXG_FLAG);
}
maxg = true;
}
else
{
maxg = false;
}

data.i = (float)(i >> INTEGRATOR_CYCLES) * g;
data.j = (float)(j >> INTEGRATOR CYCLES) +* g;
data.k = (float)(k >> INTEGRATOR_CYCLES) * gz;
// Integrators. v=axdt; e=vxdt
data.l += data.i = dt; // Speed

data.m += data.j * dt;
data.n += data.k * dt;
data.x += data.l = dt; // Position
data.y += data.m * dt;
data.z += data.n * dt;
}
else
{

// Sun tracker calculation

sun.x = (analogRead(SUNA_PIN) — analogRead(SUND_PIN)) / 1024; // CAUTION: Sun tracker should<
be defined

sun.y = (analogRead(SUNA_PIN) — analogRead(SUND_PIN)) / 1024;

sun.z = (analogRead(SUNE_PIN) — analogRead(SUNF_PIN)) / 1024;

}

// Gyros bias correction

data.u = (I2C_GetValue(GyroID, GyroX) — bias.u) * h;
data.v = (I2C_GetValue(GyroID, GyroY) — bias.v) * h;
data.w = (I2C_GetValue(GyroID, GyroZ) — bias.w) * h;
data.t = (((float)(I2C_GetValue(GyroID, GyroT) + 13200)) / 280.0f) * 100 + 3500; // Celsius=((<>

T+13200)/280)+35
data.d = micros() — time; if(data.d < 0) data.d = —data.d;
time += data.d;
dt = (float)data.d / 1000000.0; // Seconds

// Integrator c=w=dt
data.a += data.u » dt; // Attitude WARNING: TO BE REPLACED BY LSM303DLHC COMPASS

data.b += data.v =* dt;
data.c += data.w * dt;

/%
data.a = 12C_GetValue (CompID, CompX); // Magnetic attitude
data.b = 12C_GetValue (CompID, CompY) ;

data.c = 12C_GetValue (ComplD, CompZ) ;
*/

altitude = 0; // Altitude calculation
speedv = 0; // Vertical speed calculation

// Magnetorquers Cycle detection
timeMagnetorquers += data.d;
if (timeMagnetorquers > 20000)

MagnetorquersCycle = true;
timeMagnetorquers —= 20000;

}

// GPS cycle every second
timeGPS += data.d;
if (timeGPS > 1000000)
{
timeGPS —= 1000000;
gps_valid = false;
if (gpsActive)

if (GPS_Next () == '$") if(GPS_Next() == 'G') if(GPS_Next() == 'P') if(GPS_Next() == 'G') if«
(GPS_Next () == 'G') if(GPS_Next() == 'A'") if(GPS_Next() == ',') // Check for $GPGGA <
command
{
if (GPS_ReadParam() >= 0) // Time in UTC of position
if (GPS_ReadParam() > 2) // Latitude of position

newlat = ToDM((char=*)&gps_p[0], 2); // Parse the latitude and store it in a temporary <
variable before validation
if (GPS_ReadParam() > 3) // Latitude N or S
{
newlon = ToDM((char=*)&gps_p[0], 3); // Parse the longitude and store it in a <«
temporary variable before validation

if (GPS_ReadParam() >= 0) // Longitude of position
if (GPS_ReadParam() >= 0) // Longitude E or W
if (GPS_ReadParam() >= 0) /I GPS quality (0=fix not «

available , 1=Non—differential GPS fix available, 2=Differential GPS (WAAS) fix <
available , 6=Estimated)

{

newsta = gps_p[0]; // Parse GPS alignment

if (GPS_ReadParam() >= 0) // Number of satellites (00 to 12)

if (GPS_ReadParam() >= 0) // Horizontal dilution of precision (0.5 to <
99.9)

if (GPS_ReadParam() > 0) // Antenna altitude above mean sea level (—9999.9 <
to 99999.9)

{

newalt = atof((char=)&gps_p[0]); // Parse the altitude and store it in a «
temporary variable before validation

if (GPS_ReadParam() >= 0) // Units of antenna altitude , meters M

if (GPS_ReadParam() >= 0) // Height of geoid above ellipsoid (—999.9 to«+
9999.9)

if (GPS_ReadParam() >= 0) // Units of geoid height, meters M

if (GPS_ReadParam() >= 0) // Age of differential GPS data, seconds Null

if (GPS_ReadParam('*') >= 0) // Differential reference station ID Null

if (GPS_ReadParam(10) >= 2) // Checksum *HH (two <«

hex digits representing an 8 bit exclusive OR of all characters between, but«
not including, the '$' and '+')
{
if (gps_chk == GPS_Check ((char=*)&gps_p[0])) // Checksum validation
{
gps_lat = newlat;
gps_lon = newlon;
gps_alt = newalt;
gps_valid = (newsta != '0');
[+
if (gps-valid)

{

LLA2XYZ (gps_lat ,
calibrated

gps-lon,

}

*/

// Computation of the magnetic vector declination

#define wmm(pos) ((char)EEPROM_read(DECLINATION_ADDR + pos))

(int)gps_lat;

(int)gps_lon;

gps_lat — wmm_lat;

1.0 — wmm_ya;

gps_lon — wmm_lon;

float wmm_xa = 1.0 — wmm_xa;

int wnm_pos = (wmm_lat / 10 + 7) * 25 + (wmm_lon / 15 + 12)

mag_dec = ((float)wmm(wmm_pos)) * wmm_xa * wmm_ya +
((float)wmm(wmm_pos + 1)) * wmm_xb * wmm_ya +
((float)wmm(wnmm_pos + 25)) * wmm_xa * wmm_yb +
((float)wmm(wmm_pos + 26)) * wmm_xb * wmm_yb;

int won_lat =
int wnm_lon =
float wmm_yb =
float wmm_ya =
float wmm_xb

// Attitude control
if (attitude)

{
// PID controller
outputU = CalculatePID(data.a, targetU, &accU, &lastU); // PID controller for
outputV = CalculatePID(data.b, targetV, &accV, &lastV); // PID controller for
outputW = CalculatePID(data.c, targetW, &accW, &lastW); // PID controller for
}
switch (mission)
{

case MISSION_INOP: // Any main system fail
to be launched

// Reset the configuration to defaults

if (lgpsActive) GPS_activate(true);

if (gpsActive)

SetMission(MISSION_RAMP) ;

}

break;

case MISSION_RAMP:

mission state when first stage burn—in
a person actives the first stage
by it self

if (maxg)

// IMU integrators are active and waiting for balloon

// Guardar la actitud del los gyros

// Guardar en la EEPROM las coordenadas GPS

EEPROMWriteVar (LAT_ADDR, gps_lat); // First known stage coordinates
EEPROMWriteVar (LON_ADDR, gps_lon);

EEPROMWriteVar (ALT_ADDR, gps_alt);

// Guardar el vector magnetico terrestre

GPS_activate(false);

AttitudeOn(2, 5, 1);

SetMission (MISSION_STAGEL);

}

break ;
case MISSION_STAGEl: // IMU integrators are active and vector control

mission state when first stage burnout is detected
ControlVectorTrajectory();
ControlVectorUpdate () ;
if (Imaxg)

I2C_TurnOn(IOeEN_GPS);
GPS_activate(true);

gps-alt, &data.x, &data.y, &data.z);

or GPS not aligned. The satellite

release.
is detected. The balloon from an external GPS or <«
ignition. The satellite can not active the first

is active.

/1 IMU <

pitch control
yaw control
roll control

is not ready<+

Next <

stage <

Next <

/1
/1
/1
/1
/1
/1

SetMission(MISSION_BURNOUT1);
}
break;
case MISSION_BURNOUT1:// IMU integrators are active and vector control is in idle in order <
to keep the attitude. Next mission stage one minute before apogee and detected by low <«
vertical speed
ControlVectorTrajectory();
ControlVectorUpdate () ;
if (speedv < 80)
{
targetU = 0;
AttitudeOn(2, 5, 1);
SetMission(MISSION_SPIN);
}
break;
case MISSION_-TURN: // INOP. IMU integrators are active and a vector control maneuver is<
done to match the apogee plane. Next mission stage when maneuver is completed
// NOT IMPLEMENTED
ControlVectorUpdate () ;
if (speedv < 100)

{
SetMission (MISSION_TILT) ;
¥
break ;
case MISSION_TILT: // INOP. IMU integrators are active and a vector control maneuver is<
done to match the heading plane parallel to the ground. Next mission stage when maneuver is<>
completed

// NOT IMPLEMENTED
ControlVectorUpdate () ;

if(true)
{
SetMission (MISSION_SPIN) ;
}
break;
case MISSION_SPIN: // IMU integrators are active and a spin is given to the launcher. At <

this point an orbital speed prediction is calculated based on the current altitude. If <
GPS is available at orbit, it will be replaced for the real one. Next mission stage when+
spin is achieved and apogee is reached or passed then second stage ignition is <
activated before

targetW = INFINITE; // Force attitude control to spin

ControlVectorUpdate() ;

if ((data.w > 1000) && (digitalRead(IGNITION_PIN) == LOW))

digitalWrite(IGNITION_PIN, HIGH);
timeStamp = O0;

if (maxg)

targetW = 0; // Stop spin
SetMission(MISSION_STAGE2) ;

}

else
{
timeStamp += data.d;
if (timeStamp > 10000000) // 10 seconds without ignition goes to STANDBY
{
targetW = 0; // Stop spin
SetMission(MISSION_STANDBY); // CAUTION: Injection sequence failed. Mission time <«
reduced

}
}
break ;
case MISSION_STAGE2: // IMU integrators are active while the orbital speed is achieved. Next«
mission state when second stage burnout is detected. If ignition fails, next mission
stage will be STANDBY
if (lmaxg) SetMission(MISSION_DEPLOY); // Orbital speed is not detected, only the burn out <
of the last stage
break;
case MISSION_DEPLOY: // IMU integrators are active while satellites are deployed. Next <«
mission state when attitude control is achieved. I|f attitude control fails, next mission«
stage will be STANDBY
if (MagnetorquersCycle)

{

// EEPROMWriteVar (TARGET_U.ADDR, 0);
// EEPROMWriteVar (TARGET_V.ADDR, 0);
// EEPROMWriteVar (TARGET_ W_ADDR, 0);
targetU 0;
targetV
targetW = 0;
SetMission(MISSION_DAMPING) ;

}

break;

case MISSION_DAMPING: // IMU integrators are active while a damping maneuver is done by <

Magnetorquers. Next mission state when satellite attitude is stabilized

MagnetorquersUpdate () ;

if ((abs(targetU—data.a) < 0.1) &% (abs(targetV—data.b) < 0.1) && (abs(targetii—data.c) < ¢«

0.1))

]
o

SetMission(MISSION_STANDBY) ;
}
break;
case MISSION_STANDBY: // IMU integrators are active but all the functions are hibernated.
Every 10 seconds it looks for any near ground station below 1200 km. Next mission state <«
when any ground station is near
if (MagnetorquersCycle)
{
I2C_TurnOff(IOeEN_A);
I2C_TurnOff (IOeEN_B);
I2C_TurnOff(I0eEN_C);
I12C_TurnOff(IOeEN_D);
}
if (StationInRange()) SetMission(MISSION_FOLLOWING) ;
// HIBERNATE FOR A WHILE;
break;
case MISSION_FOLLOWING: // IMU integrators are active while the attitude maneuver is done to«
point towards the ground station. Other near stations are checked in between. Next «
mission state when the target is locked. If ground station is out of range, next mission<
stage will be STANDBY
MagnetorquersUpdate () ;
if ((abs(data.u) < 0.1) &% (abs(data.v) < 0.1) && (abs(data.w) < 0.1)) // Target locked
{
Payload_activate(true);
SetMission (MISSION_PAIRING);
}
break ;
case MISSION_PAIRING: // Same as FOLLOWING but radio—link is tested. Next mission state when«—
link is established and new commands are uploaded. If radio—links fails keeps the «
current mode. If a new nearest ground station is available, next mission stage will be <
FOLLOWING. If ground station is out of range, next mission stage will be STANDBY
MagnetorquersUpdate () ;
// Sending request to the locked ground station every second when GPS is active
if (gpsActive) nRF_sendd((byte +*)&data.i, PL_SIZE); while (!((nRF_getReg(STATUS) & ((1 << «
TX_DS) | (1 << MAX_RT))))); nRF_setReg(STATUS, (1 << TX_DS) | (1 << MAX_RT));
if (nRF_dataReady())
{
nRF_getData ((byte *) &data.x, PL_SIZE); // New commands available
SetMission (MISSION_DOWNLOAD) ;

}

else if (false) // Locked ground station out of range

{
}

break;
case MISSION_DOWNLOAD: // Same as FOLLOWING but download is done. If radio—links fails of a <

new nearest ground station is available, next mission stage will be FOLLOWING. If ground<«
station is out of range, next mission stage will be STANDBY

MagnetorquersUpdate () ;

//nRF_sendd ((byte =)&data.i, PL_SIZE); while (!((nRF_getReg(STATUS) & ((1 << TX.DS) | (1 <<

MAXRT))))); nRF_setReg(STATUS, (1 << TX.DS) | (1 << MAXRT));
if (false) // Locked ground station out of range

SetMission(MISSION_STANDBY) ;

{
SetMission(MISSION_STANDBY) ;
}
break;
default: /I Mission phase number out of range. Changes to STANDBY

SetMission (MISSION_STANDBY);

}

break;

}

MagnetorquersCycle = false; // end of cycle

#else

void setup()

{

float valj;
Serial.begin(4800);

// Used only in RESET procedure
#define EEPROMWriteWaypoint(pos, lat, lon) \
val = lat; EEPROMWriteVar (WAYPOINTLIST_ADDR + (pos — 1) = 8, val); \
val = lon; EEPROMWriteVar (WAYPOINTLIST_ADDR + (pos — 1) = 8 + 4, val);
// Cycles for alignment procedure
#define ALIGN_CYCLES 1000

// EEPROM dumping
for(int addr = 0; addr < 512; addr++)

if ((addr % 16) == 0)

{
}

Serial.print (EEPROM.read(addr) / 1000.0, 3);
Serial.print(” ”);
EEPROM_write(addr, 0); // WARNING: This line will erase all the EEPROM memory

Serial.println(); Serial.print(addr / 1000.0, 3); Serial.print(”: ”);

» FEMTO-SATELLITE CONTROL PROTOCOL

+ The following code will decide the activity of the femto—satellite
+ The satellite follows the closer waypoint

*» The target waypoint will have preference over the others in the list
* A waypoint can be a point to record, a ground station or both

+ We recommend to put a list of ground station at the end of the list to ensure the downlink

+ For video record purposes, closer than 50 km waypoints are useless
+» Each waypoint covers 50 km of radius of video

+» Choose a not aligned waypoints distribution because femto—satellite trajectory changes <«

every orbit
+ For downlink purposes, we recommend 1,000 km ground stations separation
* A ground station can not see the femto—satellite beyond 1,100 km of distance
+ Less than 500 km between ground stations is not efficient
+ There is a lost for the downlink time due to the change of ground station
*/

// New Target waypoint having priority over others

EEPROM_write (TARGET_ADDR, 0); // 0 = No Target waypoint, {1,...,8} Target waypoint

/1 New waypoint list
// 01: WikiSat,Barcelona,41.275427,1.986917,17.0
EEPROMWriteWaypoint (1, 41.275427, 1.986917);

/1 02:
EEPROMWriteWaypoint (2, INVALID, INVALID);
/1 03:
EEPROMWriteWaypoint (3, INVALID, INVALID);
/] 04:

EEPROMWriteWaypoint (4, INVALID, INVALID);

// 05: WikiSat,Barcelona,41.275427,1.986917,17.0
EEPROMWriteWaypoint (5, 41.275427, 1.986917);

// 06: WikiSat,El Arenosillo,37.096574,—-6.738729,31.0
EEPROMWriteWaypoint (6, 37.096574, —6.738729);

/1 07: WikiSat ,Maspalomas,27.762892,—15.6338072,204.9
EEPROMWriteWaypoint (7, 27.762892, —15.6338072);

// 08: WikiSat,OZ7SAT,55.732055,12.394315,33.0
EEPROMWriteWaypoint (8, 55.732055, 12.394315);

Serial.println();

Serial.println(”ALIGN SEQUENCE STARTED”);

Serial.println(” Satellite should be in the launcher in vertical position”);
Serial.println(”Do not connect the satellite to the USB cable”);

data.x = 0; // Position [m]

data.y = 0;

data.z = 0;

data.a = 0; // Angular position. Attitude [A?]
data.b = 0;

data.c = 0;

data.l = 0; // Inertial speed [m/s]
data.m = 0;

data.n = 0;

i = 0; // Gravity vector

j = 0;

k = 0;

u = 0; // Precession rate of turn

v =0;

w = 0;

r

= ALIGN_CYCLES;
/1S

erial.println ("IMU Align initialized .”)
while (r—)
{
i += I2C_GetValue(AccID, AccX);
j += I2C_GetValue(AccID, AccY);
k += I2C_GetValue(AccID, AccZ);
u += I2C_GetValue(GyroID, GyroX);
v += I2C_GetValue(GyroID, GyroY);
w += I2C_GetValue(GyroID, Gyroz);
}
bias.i = i / ALIGN_CYCLES;
bias.j = j / ALIGN_CYCLES;
bias.k = k / ALIGN_CYCLES;
bias.u = u / ALIGN_CYCLES;
bias.v = v / ALIGN_CYCLES;
bias.w = w / ALIGN_CYCLES;
EEPROMWrite (IMU_ADDR, 6, (uint8_t =)&bias.i);

// Earth magnetic field declination matrix

// Epoch: 2012, Altitude: 250000m, Latitude step:
—70,+70

char wmm[15][25] =

// Remove this message

if

10, Longitude step:

// —180 —165 —150 —135 —120 —105 —90 -75 —60 —45 —30

+45 460 475 490 +105 +120 +135 +150 +165 +180
{ 84, 73, 65, 58, 51, 43, 34, 25, 16,)
—55, —66, —78, —91, —105, —124, —128, 127, 102, 84}, //
{ 46, 45, 43, 41, 38, 34, 28, 19, 10, 1, —6,
—51, —60, —67, -72, —72, —57, 3, 39, 46, 46}, //
{ 30, 30, 30, 30, =29, 27, 23, 14, 3, -6, —13,
—47, —53, —55, —50, —37, —14, 7, 21, 27, 30}, //
{ 22, 22, 22, 22, 22, 21, 18, 9, -8, —13, —19,
—40, —43, —40, -31, —16, -3, 7, 14, 19, 22}, //
{ 16, 17, 17, 17, 17, 16, 13, 4, -8, —18, —23,
—28, —-30, —26, —17, -7, 0, 6, 11, 14, 16}, //
{ 13, 13, 14, 13, 13, 12, 9, 0, —12, —20, —-23,
—15, —17, —15, -9, -2, 2, 5, 8, 11, 13}, //
{ 11, 11, 11, 11, 1o, 9, 6, -3, —14, —21, —21,
-6, 9, 8, —4, 0, 2, 4, 7, 9, 11}, //
{ o, 9, 10, 10, 9, 8, 4, -5, —14, —19, —18,
-1, —4, 4, -2, 0, 1, 2, 5, 8, 9}, //
{ o, 9, 9, 10, 9, 7, 2, -6, —15, —18, —15,
1, =i, =2 =i, @, =i, 0, 3, 7, 9}, //
{ s, 9, 10, 11, 10, 7, 1, -8, —15 —16, —12,
2, 0, =i, =1, =1, =B =2 1, 5, 8}, //
{ 7, 10, 12, 13, 12, 8, 0, —10, —15, —15, —11,
3, 2, 1, 0, -2, -4, -5 -2 2, 7}, 11
{ 5, 10, 14, 15, 14, 8, —1, —12, —17, —15, —11,
5, 5, 3, 1, -8, -7, -8, -5, 0, 5}, //
{ 5, 11, 15, 18, 18, 9, -8, —15 —20, —18, —13,
8, 9, 7, 3, -3, -9, —11, -8, -2 5}, //
{ 4, 12, 17, 21, 19, 10, -7, —21, —25, —23, —17,
13, 14, 13, 6, -3, —11, —13, —10, -3, 4}, /1
{ 5, 13, 20, 24, 22, 8, —18, —33, —34, —30, -22,
18, 22, 21, 13, —1, —11, —14, —10, -3, 5} //

I
EEPROMWrite (DECLINATION_ADDR, sizeof(wmm), (bytex)&mm[0][0]);

memory required

15, Latitude range: «

—15 0 +15 +30
—-11, —-21, —-81, —43,
—70
-13, —-20, —-30, —40, <+
—60
—-17, —-21, —-29, -38, <
—50
—22, —23, —-26, —33, <
—40
—24, -22, —-19, -23, ¢
—30
-22, —17, —-11, —11,
—20
—-17, —11, -5, -3, «
—10
—-12, —6, -2, 0, <

0

-8, -3, 0, 2, <«
+10
—6, -2, 1, 3, <
+20
—6, — 1, 2, 3, <
+30
—6, =1l 2, 4,
+40
=7, -2, 3, 6,
+50
-10, -3, 3, 8, «
+60

13, -5, 4, 12, «

+70

Serial.println();

Serial.println(”ALIGN SEQUENCE COMPLETED”) ;

Serial.println(”CAUTION: satellite should be programmed:”);
Serial.println(”Change RESET.EEPROM define to false before flight”);
while (true); // Satellite programming is mandatory at this point

}

void loop() {while(true);} // Satellite programming is mandatory at this point

#endif

	Acknowledgements
	Glossary
	Introduction
	RELATED WORK
	Satellite classification
	Femtosatellites
	Technologies
	Micro-Electro-Mechanical Systems
	Printed Circuit Boards
	Surface Mount Devices Technology
	CameraCube
	Inter-Integrated Circuit Bus

	REQUIREMENTS
	Architecture
	System requirements
	High level requirements
	Low level requirements
	Additional requirements

	DESIGN CONSIDERATIONS
	Documentation program
	Mechanical considerations
	Thermal considerations
	Thermal design discussion
	Thermal cases summary

	Preferred component list
	Electrical considerations
	Power budget
	Power sources
	Distributed vs centralized voltage regulation
	Cosmic radiation study and mitigation

	Attitude determination and control subsystem
	Earth magnetic field sensor
	Sun-tracker sensor

	Payload areas
	PCB constraints
	Main payload area use
	Secondary payload area use
	Third payload area use

	FEMTOSATELLITE LINK BUDGET
	Starting point
	Design
	Implementation

	SYSTEM IMPLEMENTATION
	Component selection
	Hardware design
	Payload subsystem
	Microcontroller interfacing
	Communication subsystem
	Sensor subsystem
	Power management subsystem

	Board
	Integration
	PCB prototyping procedure
	PCB assembling procedure

	Test and validation
	Microcontroller interfacing subsystem validation
	Sensor subsystem validation
	Communication subsystem validation
	Power management subsystem validation

	PAYLOAD IMPLEMENTATION
	Evaluation boards
	Test and validation
	Camera test and validation
	Serializer test and validation
	Payload test and validation

	CONCLUSIONS
	General conclusions
	Environmental impact
	Future work

	Bibliography
	WikiSat V4.1 Schematics
	WikiSat V4.1 Board
	WikiSat V4.1 Assembly Form
	Power management subsystem source code
	TCA6408, Source Code

	Payload subsystem source code
	TCM8230MD, Source Code
	Serializer, Source Code
	Payload, Source Code
	Synchronization signal, Source Code

	Preliminary femtosatellite source for WikiSat V4.1

