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Abstract

Recent work in the field of Compressed Sensing [1, 2, 3] has suggested
a great variety of new possibilities in the world of image reconstruction.
We have been focused on a novel approach using this kind of algorithms
based on CS to solve problems related to limited-angle data (e.g, com-
puted tomography or electron microscope) or when we only dispose from
few radon projections, low frequencies of an image, model or figure.

This approach has been based on a variation of the Robbins-Monro stochas-
tic approximation procedure [4] with regularization enabled by a spatially
adaptive filter.

The idea consists in exciting an algorithm by injection of random noise
in the unobserved portion of the image spectrum and a spatially adaptive
image denoising filter, working in the image domain, is exploited to atten-
uate the noise and reveal new features and details out of the incomplete
and degraded observations of the model.

We developed the algorithm and we tested with some variations of the
Shepp-Logan phantom1 and Hansandrey crystallography2, to prove its vi-
ability in an empirical way before applying it to real cases3. Our idea after
the tests was to apply this procedure in a reconstruction of a 3D-protein
crystallography taken in a TEM (Transmission Electronic Microscopy)
with limited-angle views that can lead to have missing wedges or cones in
the final results.

12-dimensional case
2artificially created 3-dimensional model
3A crystallography with limited-angle views and a viral structure where we have forced the

missing cone
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1 Introduction

1.1 Inverse Problems in Electron Microscope
Inverse problems is the aim of a large group of investigators, it is the necessity
to solve inverse problems. An inverse problem as we know is the task that often
occurs in many branches of science and mathematics where the values of some
result, value, model...must be obtained from the observed data.

A common problem in CT4, other X-ray techniques, TEM5...is the limited-angle
view. Our case is similar to the third case. We have a 3D crystallography, taken
in one of the TEMs which we can be found in KI facilities. Specifically in this
model, we can observe a missing/corrupted cone of data in the frequency do-
main.

But, what does a limited-angle problem mean?

Limited-angle problems mean that from a certain angle the data is missing or
corrupted, we cannot trust in those results. We have to estimate the missing
data. In this case, we have a missing/corrupted 90º cone in the spectrum data.
This problem is due to various technical and fundamental limitations on the
minimum and maximum attainable tilt angles of our instrument to take the
data. However, the data is confined to a limited angular range. We have to
mention that if nobody can find a solution for this specific case, the crystallog-
raphy was done for almost nothing. Actually, it was done with the side-effect to
damage the specimen, because in each exposition of a specimen to a TEM, the
collision of the electrons damage the specimen. This is one of the main reasons
why it is necessary to, at least, try to solve this limited-angle problem, to avoid
that the specimen receives more damage and we were able to observe/study the
model correctly without any deformation or awkward effect.

The first objective of this work is to explore how the state of the art in this
strong Image Processing branch is and second to decide which algorithm is the
most suitable to carry this task out. We will take some important character-
istics in consideration as the accuracy of the algorithm, speed, complexity and
some other characteristics.

The main goal of this project, once we have found and we have decided which
algorithm we are going to use, is to reproduce, study and analyze the algorithm.
Then, we will apply the algorithm to some test patrons, like Shepp-Logan phan-
tom and Hans Andrey crystallography.

Finally the idea is to apply the algorithm to real data and we expect to succeed
in the reconstruction. If we succeed, next time we face this type of troubles, we

4Computed Tomography
5Transmission Electron Microscope
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will be able to solve them by applying the technique explained and developed
in this report.

Several efforts have been made to solve this problem with algorithms like POCS,
FBP, Bayesian methods, Fourier techniques, algebraic reconstruction techniques
(ART), etc. We are going to try to succeed with a novel approach. We have
to remind that it is an experimental study. Indeed, no previous studies in this
kind of data have been published, so we do not know a priory the results we
can get or even if we will get some results.

1.2 Limitations
One of the biggest limitations of this work is that we do not know if the results
are going to be the desirable ones. It is not possible to predict what will hap-
pen. It is possible that we find an algorithm that fits with our problem, we can
reproduce and test the algorithm but that finally when we apply it to real data,
we do not obtain good results. On the other hand, it is possible that we obtain
an exact reconstruction and that we can solve the problem.

There are a lot of different data that have this kind of problem. It is not easy
to find a unique solution for all type of data. We have to understand that it is
not always possible to satisfy everybody and we must focus our efforts on the
data that we possess.

When some theories, models or applications are recent and new, there is always
a big discussion and everybody has its own opinion and idea about it. What we
want to express is that we have to be opened to read a large quantity of different
opinions and that maybe we will find some contradictions between them. It is
going to be a hard job to difference between what is useful and what is not; who
is right and who is not. We have to be careful and meticulous when we choose
our sources.

Another limitation is quite typical of image processing, it is the processing
time of reconstructions/simulations, because the work is going to be done in a
common-home laptop. We do not dispose of a supercomputer, so we will spend
long time waiting for the reconstructions/simulations instead of being working.

1.3 Why this approach is needed?
In many applications it is not possible to collect projection data over a com-
plete angular range of 180º. Examples include electron microscopy, astron-
omy, geophysical exploration, nondestructive evaluation, and many others. As
a brief explanation6 of why this approach is needed, we can say that problems

6Large explanation could be read in section 2.4
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of limited-angle view are very common in all kinds of scenarios, as we listed
above.

In our specific case, we can say that in electron microscope the image recovery
problem refers to the reconstruction of a three dimensional (3D) image distri-
bution of a specimen from its two-dimensional projections measured at a set of
angular views. Data at different view angles are collected by tilting the spec-
imen using a goniometer. It is common to obtain limited-angle view in the
final reconstruction, due to physic limitations. It is a daily problem that a large
group of scientists face every day around the world. It would be a great advance
if it is possible to solve or at least contribute to the advancement in finding a
solution to this unfortunate effect and we will be helping to make life easier for
many researchers.

1.4 Objectives
At the beginning of the project we decided to reach the following potential
objectives:

1. Check the literature to establish existing methods which may help to carry
out our task.

2. Develop the code of the chosen method.

3. Apply the method in two dimensional cases.

4. Run tests to optimize the method in two dimensional cases.

5. Expand to three dimensional cases.

6. Run tests in three dimensional cases.

The above list was the one on which we based our steps when developing the
project. The idea was to complete all objectives and at the end to be able to
discuss the results of the applied tests on two and three dimensional cases.

1.5 Overview of the thesis
The first pages of this master thesis are an introduction to relevant theories con-
cerning Compressed Sensing and image reconstruction techniques, focusing on
one specific. After that, the theory behind the chosen algorithm is explained in
more details, as well as its implementation with MatLab code. Evaluation and
analysis of the algorithm results are then presented. Following that a discussion
about the results is held. This report ends with the conclusions of the algorithm
results. We also propose possible future works related to this project.

3



2 Background
This part contains only a brief explanation of the fundamental parts of the
actual techniques and theories in image reconstruction in order to be able to
understand the rest of the work. For further details concerning the theoretical
and mathematical background of the following sections of this chapter, feel free
to check the next references [1, 2, 3, 8].

We also want to add few definitions that they will help you to understand even
better this report:

Definition 1: The meaning for “sparse” when we are referring to an image,
consists in an image with few non-zero values (usually with great values) and
the rest is filled by values equal to zero or near to zero.

Definition 2: we will understand the verb “sparsify” as the action to get an
sparse image, matrix, signal, etc. from a non-sparse image, matrix, signal, etc.

2.1 Compressed Sensing7

Since 2004 signal processing has exploded an existing branch called “Compressed
Sensing”, “CS” or “Compressive Sampling”, etc. This technique breaks with the
sampling rule of Nyquist-Shannon Theorem8. The main idea behind CS is to
exploit that there is some structures and redundancies in the majority of inter-
esting signals (they are not pure noise). In particular, most signals are sparse as
they contain many coefficients close or equal to zero, when they are represented
in some domain. So we want to exploit this characteristic.

As we can read in [1], “our modern technology-driven civilization acquires and
exploits ever-increasing amounts of data, ‘everyone’ now knows that most of the
data we acquire ‘can be thrown away’ with almost no perceptual loss – witness
the broad success of loss compression formats for sounds, images and special-
ized technical data. The phenomenon of ubiquitous compressibility raises very
natural questions: why go to so much effort to acquire all the data when most
of what we get will be thrown away? Can’t we just directly measure the part
that won’t end up being thrown away?” That is the strongest point of the CS
theory, a large majority of the data is redundant so if we have an image where
a huge amount of data is missing. Maybe this small quantity of data is enough
to achieve an accurate or exact reconstruction of the original image.

According to the standard image reconstruction theory in medical/biological
imaging, in order to avoid view aliasing artifacts, the sampling rate of the

7Also known as CS, compressive sensing, compressive sampling and sparse sampling
8The sample frequency has to be at least twice the highest frequency of the signal to obtain

a perfect reconstruction
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view angles must satisfy the Nyquist-Shannon sampling theorem. The uni-
versal applicability of the Nyquist-Shannon sampling theorem lies in the fact
that no specific prior information about the image is assumed. However, in
practice, some prior information about the image is typically available. When
the available prior information is appropriately incorporated into the image re-
construction procedure, an image may be accurately reconstructed even if the
Nyquist-Shannon sampling requirement is significantly violated. If a target im-
age is known to be a set of sparsely distributed points, one can imagine that
the image may be reconstructed without satisfying the Nyquist-Shannon sam-
pling theorem. Of course, it is not an easy task to formulate a rigorous image
reconstruction theory to exploit the sparsity hidden in the signals that we want
to reconstruct. Fortunately, a new image reconstruction theory as we men-
tioned before, CS, was rigorously formulated to systematically and accurately
reconstruct a sparse image from an undersampled data set. It has been mathe-
matically proved that an N×N image can be accurately reconstructed using on
the order of S·ln(N) samples provided that there are only S significant pixels
in the image.

Although the mathematical framework of CS is elegant, the relevance in medi-
cal/biological imaging critically relies on the answers to the question:

Are medical/biological images sparse?

If we find that a medical/biological image is not sparse, is it possible to use
some transform to make the image sparse? A real medical/biological image is
frequently not sparse in the original domain, normally it is the pixel represen-
tation. Thus what we want to say is that it is not really common to have a
sparse image in pixel domain without any modification previously done. As we
know medical/biological imaging physicists and clinicians have proved for a long
time that a subtraction operation can make the resultant image much sparser.
In the recently proposed CS image/signal reconstruction theory, mathematical
transforms have been applied to a single image to make it sparser. We will refer
to these transforms as sparsifying transforms, because their task is exclusively
sparsify the image. A clear example could be that we can sparsify an image by
applying a simple discrete gradient operation, FFT, wavelet transforms, etc. It
is demonstrated that a medical/biological image can be made sparser even if
the original image is not really sparse.

Thus instead of directly reconstructing our own image, we will work with the
sparsified version of the image trying to reconstruct it9. Significantly fewer im-
age pixels have significant image values in the sparsified image, so we will have

9In this case, we will see in section 3 and 4 that we have the sparsified image in Fourier
Domain and we also have another sparsified version after we apply the Block Matching block
to the image, because the filter uses the shared information between the image fragments to
obtain a sparsified version of the block.
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an image with a considerable number of zero values. After that it is possible to
reconstruct the sparsified image from an undersampled data set without streak-
ing artifacts or weird artifacts. After the sparsified image is reconstructed, an
“inverse” sparsifying transform is used to transform the sparsified image back to
the original domain of the first image. In practice, there is no need to have an
explicit form for the inverse sparsifying transform. Indeed, only the sparsifying
transform is needed in image reconstruction.

Finally, we want to add that techniques typically used in image reconstruction
based on the theory of CS rely on convex optimization with a penalty expressed
by the l0 or l1 norm which is exploited to enable the assumed sparsity. It
results in parametric modeling of the solution and in problems that are then
solved by mathematical programming algorithms. However there is another
way of approaching the reconstruction problems. We can replace the parametric
modeling with a nonparametric one implemented by the use of spatially adaptive
denoising filtering, like in [4].

2.2 Image Reconstruction Techniques
As we commented in the introduction, when the range of tilt angles, for which
projected images of 2-dimensionally specimens can be obtained in TEM, is lim-
ited by both technical aspects or by, more fundamental limitation, the thickness
of the structure. The lack of a full set of projections could cause a missing cone
or wedge in the data of the object, which will give an anisotropic resolution in
a three-dimensional reconstruction and may cause some spurious artifacts that
will deteriorate the quality of the data. This is a common problem when scien-
tists acquire data from a CT, electron microscope, some other X-ray techniques,
etc.

In such limited-angle examples, applying a standard full-data reconstruction al-
gorithm, such as filtered back-projection (FBP), results in poor reconstructions
with severe artifacts. Because of the importance of the limited-angle problem,
many specialized algorithms have been introduced over the past twenty five
years. Approaches have included maximum entropy techniques, Bayesian meth-
ods, projection onto convex sets (POCS), Fourier techniques, TV regularization,
PICCS, algebraic reconstruction techniques (ART) and many others.
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There are a large group of different existing techniques, as seen in the paragraph
above, to solve limited-angle problems. In front of the impossibility to comment
all methods, we will focus on the following ones:

1. POCS10:

As you can read in [12, 13], POCS, also called the method of convex pro-
jections, is an iterative algorithm that uses the available data and certain
types of prior knowledge to recover a signal. It finds a feasible solution
consistent with a number of a priory constraints which are defined on the
basis of the measured data, a priory information about the degradation
operator, the noise statistics and the actual image distribution itself. For
each constraint, a closed convex constraint set is defined such that the
members of the set satisfy, the given constraint and the ideal solution
which is a member of the set. POCS has been applied to extrapolation
and interpolation, to computer tomography, to reconstruction from limited
views, to electron microscope reconstructions and to computer tomogra-
phy reconstructions with arbitrary geometries. One of the problems is
that this method is the performance in the presence of noise, because it
decreases rapidly. Other applications of POCS could be into image coding
and to neural nets. We can say that POCS is one of the most used tech-
niques for this kind of problems, limited-angle data (missing cone, wedge,
etc).

POCS results in a phantom case where projection data is limited to view
range of (45º, - 45º), like in Figure 2.111 are really poor, around 40% of
percentage error. The algorithm is not able to fill the whole empty space.
The method performance increases when the view range is enlarged.

Figure 2.1: Limited-angle data

10Projection Onto Convex Sets
11Black zone - missing data. White zone - known data
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2. TV12 minimization:

It is a method based on the idea to minimize the following expression

min(E(x, y) + λ·V (y))

where E(x, y) is the MSE, V (y) is the Total Variation of signal y and λ is
the regularization parameter.

E(x− y) =
1

2

∑
n

|xn − yn| 2

V (y) =
∑
n

|yn+1 − yn|

The signal x(n) is the original signal, then this technique consists of finding
an approximation, y(n), that satisfies the first expression. This method
works properly for image denoising, interpolation problems and for recov-
ering medical-type images from partial Fourier ensembles. More references
of this method and a demo can be found in [7, 16].

3. PICCS13:

It is an image reconstruction algorithm and it is implemented by solv-
ing

minx
[
α ‖Ψ1(X −XP )‖l1 + (1− α) ‖Ψ2X‖l1

]
, s.t. AX = Y

Ψ1, Ψ2 are sparsifying transforms14.
α is the control parameter.
X is the image and XP is the prior image.
Y is the line integral values.
A is the system matrix to describe the x-ray projection measurements.

This technique is able to reconstruct accurately signals/images from highly
undersampled projection data sets.

12Total Variation
13Prior Image Constrained Compressed Sensing [6]
14i.e. discrete gradient
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4. Image Reconstruction Via Recursive Spatially Adaptive Filter-
ing:

It is a variation of the Robbins-Monro stochastic approximation proce-
dure [4] with regularization enabled by a spatially adaptive filter. It is
useful to recover data from radon sparse projections, low frequencies or
with a missing wedge. The idea is to solve the following iterative algo-
rithm:

ŷ2 =

{
ŷ
(0)
2 = 0, k = 0

ŷ
(k)
2 = ŷ

(k−1)
2 − γ

[
ŷ
(k−1)
2 − (1− S). ∗Υ(Φ(Υ−1(y1 + ŷ

(k−1)
2 ))) + (1− S). ∗ ηk

]
, k ≥ 1

Definition 3: .∗ is a MatLab operator used as a point-wise multi-
plication between matrices.

This algorithm is fully explained in subsection 4.1.

From the list above we decided to choose the last option, Image Reconstruc-
tion Via Recursive Spatially Adaptive Filtering. The main reason of
this decision is that one of the cases which is solved by this algorithm is quite
similar to a missing wedge. After that if we extrapolate to a 3-dimensional case
we could have a pyramid or a cone and it fits exactly with our problem. The
performance of this algorithm for radon sparse projections is not as good as the
other alternatives, but we do not think that we have to worry about that.

The first option which was POCS was rejected due to the poor results obtained
in cases where the view range is (45º, - 45º), because with the ranges of view it
is similar to a cone in 3D or a wedge, then we can say that POCS is not running
properly for our case. Moreover POCS performance in noisy scenarios is not
good, and it is possible to have noisy models from a TEM.

The second and third options, were rejected due to the fact that we had no proof
that they could run in cone or wedge case. They are used to solve limited-angle
problems but these cases are more similar to radon sparse projections than a
missing cone case. Moreover the mathematical solution of their equations is very
complex and there is a great amount of literature based on finding methods to
solve these equations.
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2.3 The Data
What kind of data do we have?

We are going to use two different types of data, one for 2D case and one other
for 3D:

• Shepp-Logan Phantom (2D):

The Shepp-Logan phantom is an image test patron which was created
as a standard for computerized tomography (CT) image reconstruction
simulations. It is very frequently used in image reconstruction literature
to evaluate algorithms performance. In MatLab Shepp-Logan phantom
with size 256× 256 can be easily created as follows:

%How to generate a Shepp-Logan Phantom and visualize it
Ph = phantom(’Modified Shepp-Logan’,256);
figure(1), imagesc(Ph);
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The visualization of Shepp-Logan phantom in pixel domain is presented
in the following figure:

Figure 2.2: Shepp-Logan phantom

On the other hand, its spectrum looks like as follows:

Figure 2.3: FFT Shepp-Logan phantom

• Artificial Protein Crystallography Data (3D):

The data in this case reproduces a traditional crystallography but the
results were not obtained from an Electron Microscope, they were repro-
duced artificially in a computer. This model is known as Hansandrey15

15In Appendix D is present a group of slices
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crystallography and it consists of a 100x100x100 cube of data that con-
tains a protein model. Snapshot of the model is available in subsection
2.3.2.

• Real Protein Crystallography Data16 (3D):

The data was collected by method X-ray protein crystallography which
we can be defined as a technique of determining the arrangement of pro-
tein atoms within a crystal, in which a beam of X-rays strikes the crystal
and diffracts into many specific directions. From the angles and intensi-
ties of these diffracted beams, in our case, a TEM can produce a three-
dimensional picture of the density of electrons within the crystal. From
this electron density, the mean positions of the atoms in the crystal can
be determined. Snapshot of the model is available in subsection 2.3.2.

We are also going to give a brief explanation about what is a TEM:

It is defined as a microscopy technique whereby a beam of electrons is
transmitted through an ultra thin specimen, in this case a protein crystal-
lography, interacting with it. An image is formed from the interaction of
the electrons transmitted through the specimen. After that the image is
magnified and focused onto an imaging device, some examples of imaging
devices could be a fluorescent screen, a layer of photographic film, or there
is another way to be detected by a sensor such as a CCD camera.

16In Appendix D, you can find some slices of the protein model
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A typical scheme of a microscopy is presented below (2.4):

Figure 2.4: Transmission Electron Microscopy

2.3.1 Shepp-Logan Phantom

As we explained in the section above, the Shepp-Logan phantom is used as a
test patron in image reconstruction and we are going to use it as well. For
the first stage of the algorithm analysis we will use three different variations of
Shepp-Logan phantom:

1. 22 Radon sparse projections17 (a)

2. 11 Radon sparse projections (b)

3. 90º degrees missing data (c)

It is presented in (2.5) the three modifications, in pixel domain, of
Shepp-Logan phantom that we are going to use:

17The Fourier Transform of the Radon transform with respect to the projection coordinate
equals a radial FFT line (of the unknown function f), according to the Fourier Slice theorem.
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Figure 2.5: Reconstructions of a.22lines b.11lines c.90º missing data

It is presented in (2.6) the three modifications, in frequency domain, of the
Shepp-Logan phantom that we are going to use:

Figure 2.6: a.fft_22projections b.fft_11projections c.fft_90º_missing

The reconstruction of these three modifications of Shepp-Logan phantom
helped us to evaluate the robustness and effectiveness of the algorithm.

2.3.2 Protein Crystallography Data

The electron crystallography is the study of 2D crystals by electron microscopy,
in this case a Transmission Electron Microscopy. Such crystals typically consist
in only one thick molecule thick but many molecules across. Hence, they are
fragile, deformable and need to be supported by a flat electron-translucent but
it should be a sufficient stable surface, which is typically a carbon support film
or similar in conjunction with an electron microscopy grid. Our first model is
a crystallography data obtain in one of Karonlinska Institutet TEMs and the
second one, test model, is an artificial crystallography.
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. The first one18 contains the model which we want to reconstruct. There is
a missing/corrupted cone of data, in frequency domain. The model has a cube
structure and size of 80×80×80. In the next figure is shown the protein model.
Read and visualized by Chimera:

Figure 2.7: First protein model, protein.mrc

18Name file: “protein.mrc”
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. The second file19 consists in a patron model test to analyze the reconstruction
results, this model has the same cube shape as the other model but its size is
100× 100× 100.

Figure 2.8: Hansandrey model, hansandrey.raw

19Name file: “hansandrey.raw”
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. In Tables 2.1 and 2.2 are shown the statistics of both 3D models “pro-
tein.mrc”20 and “hansadrey.raw”21:

Statistics of 3D-data “protein.mrc”
Object dimension w=80 d=80 h=80

Maximum 0.0175607
Minimum -0.0184695
Mean -6.16801e-13

Variance 2.72724e-06
Std Dev 0.00165144
RMS 0.00165143

Skewness 0.0862649
Kurtosis 30.7101

First minima at location w=19 h=26 d=40
First maxima at location w=29 h=34 d=35

Total Integral -3.15802e-07
Positive Integral 110.089
Negative Integral -110.089

Total Contributing Points 512000
Contributing Positive Points 34950
Contributing Negative Points 35610
Contributing Zero-Valued Pts 441440

Table 2.1: Statistic of 3D-data “protein.mrc”

20It is the real data which we want to reconstruct
21It is the reference data to compare with the results that we obtain
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Statistics of 3D-data “hansandrey.raw”
Object dimension w=100 d=100 h100

Maximum 51662.6
Minimum -123.313
Mean 5203.15

Variance 4.48678e+06
Std Dev 2118.2
RMS 5617.79

Skewness 8.16291
Kurtosis 75.1485

First minima at location w=24 h=52 d=72
First maxima at location w=32 h=55 d=51

Total Integral 5.20315e+09
Positive Integral 5.20315e+09
Negative Integral -123.313

Table 2.2: Statistics of 3D-data “hansandrey.raw”

2.4 Statement of the Question or Problem
In the world of crystallography it is very common to obtain limited-angle ef-
fects in the final model because of physic limitations. To explain this obstacle
in crystallography, we have to remember that a Transmission Electron Micro-
scope produces projections of 3D objects. To arrive at a 3D structure, different
projections must be combined, with 2D crystals. The different projections are
generated by tilting the crystals relative to the incident electron beam. How-
ever, in practice, virtually no data can be obtained with the specimen tilted
beyond 70º because the bars of the support grid begin to occlude the specimen
beyond this angle, and in most cases tilt angles up to only 55º–60º are recorded.
There are therefore information deficits along one direction in space (the z-axis,
normal to the crystal x,y plane), which can lead to distortions, loss of resolution
and the artifactual introduction or omission of densities. This is called as we
mentioned as “missing cone” or, less commonly, as “dead zone” and it can be
understood if one thinks about the unsampled wedge of information (i.e. a 30º
wedge when tilting is restricted to ±60º) that is rotated by 180º to simulate the
unrestricted rotation of a specimen in the plane – thereby creating a cone.

How serious the problem of missing cone is also depends on the individual struc-
tural features of a protein. The impact of the missing cone is particularly severe
when it excludes data that relates to the most prominent feature of a structure.
The other important disturbance is the introduction of artifactual densities.
However, although this needs to be of particular concern, it seems to be only
relevant for structures in which the densities are diffuse and insufficiently sepa-
rated owing to resolution. To this end, high-resolution structural data (to <4 A
with a missing cone not larger than 30º) with well-separated densities seem to
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be more robust than are lower-resolution data. However, to arrive at a robust
high-resolution data-set in which all features are resolved, the missing cone im-
pact has to be minimized. Thus we can conclude that the impact of a missing
cone depends in big measure on the kind of data that we have.

We can assure that it is a big problem with the above arguments and that
this missing cone, wedge or other limited-angle effect remains without a proper
answer of how to recover this missing/corrupted data. It would be a great con-
tribution to world science, not only for crystallography. It is one of the active
research topics in image reconstruction field and some techniques are commonly
used like POCS22, Bayesian methods, Fourier techniques, TV regularization,
PICCS, ART, etc.

Finally, we think it is worth to spend our time and resources on trying to find
a solution to this common problem that physicists around the world have to
face every day when they are trying to obtain the 3D model of a protein. Thus
we sincerely see that this trouble has to be solved or at least we would like to
contribute to its future solution.

22Project Onto Convex Sets
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3 Method

3.1 Compressed Sensing Image Reconstruction Via Re-
cursive Spatially Adaptive Filtering

The first goal of this project was to check the literature, find and reproduce
a reconstruction algorithm in Matlab code. In order to accomplish this task,
an exhaustive study of the actual literature23 related to the topic was clearly
needed. Our choice was a variation of the Robbins-Monro stochastic approxi-
mation procedure with regularization enabled by a spatially adaptive filter [4].

In the publications [1, 2, 3], it is shown that under CS assumptions, stable
reconstruction of unknown signal is possible and that in some cases the recon-
struction can be exact. These techniques typically rely on convex optimization
with a penalty expressed by the l0 or l1 norm which is exploited to enable the
assumed sparsity [8]. It results in parametric modeling of the solution and in
problems that are then solved by mathematical programming algorithms. In
this report it is proposed to replace the traditional parametric modeling used in
CS by a nonparametric24 one.

The nonparametric modeling is implemented by the use of spatially adaptive
filters. The regularization imposed by the l0 or l1 norms is essentially only a tool
for design of some nonlinear filtering. This implicit regularization is replaced by
explicit filtering, exploiting spatially adaptive filters sensitive to image features
and details. If these filters are properly designed we have reasonable hopes to
achieve better results than it can be achieved by the formal approach based
of formulation of imaging, as the variational problem with imposed global con-
straints. In imaging, the regularization with global sparsity penalties (such as
lp norms in some domain) often results in inefficient filtering. It is known that a
higher quality can be achieved when regularization criterias are local and adap-
tive.

How does the algorithm work?

This method of signal reconstruction is realized by a recursive algorithm based
on spatially adaptive image denoising. Each iteration provides the block match-
ing spatially adaptive filtering algorithm with data by the injection of random
noise in the unobserved portion of the spectrum. The denoising filter working
in the image domain, attenuates the noise and reveals new features and details
out of the incomplete and degraded observations. Roughly speaking, we seek for
the solution (reconstructed signal) by stochastic approximations whose search
direction is driven by the denoising filter. This method is applicable for four
important inverse problems which are not all from electron microscope data:

23All literature references can be found in Bibliography
24The model structure is not specified a priory but is instead determined from data. The

number and nature of the parameters are flexible and not fixed in advance.
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1. Missing cone effect.

2. Missing wedge effect.

3. Recovery from sparse projections.

4. Recovery from low frequencies.

It is fully explained in the Analysis section the reconstruction characteristics of
the cases above.

3.2 Filtering
Filtering is one of the central blocks. It is a very important part of the algo-
rithm, because it is responsible for changing the estimated image, to fill the
unobserved/missing data. To carry this task out we have used the same filter
as in [5] with some modifications.

The idea relies on the fact that if the filter is well-designed, we have great chances
to achieve better results by filtering than through the common approach based
on a variational problem with imposed global constraints. This filtering consists
in a block-matching and 3-dimensional denoising filtering, in order to obtain a
highly sparse representation of the data, recall that is one of main conditions of
Compressed Sensing theory.

In reference [5], they explained in the abstract that “We propose a novel im-
age denoising strategy based on an enhanced sparse representation in transform
domain. The enhancement of the sparsity is achieved by grouping similar 2D
image fragments (e.g. blocks) into 3D data arrays which we call "groups". Col-
laborative filtering is a special procedure developed to deal with these 3D groups.
We realize it using the three successive steps: 3D transformation of a group,
shrinkage of the transform spectrum, and inverse 3D transformation. The re-
sult is a 3D estimate that consists of the jointly filtered grouped image blocks.
By attenuating the noise, the collaborative filtering reveals even the finest details
shared by grouped blocks and at the same time it preserves the essential unique
features of each individual block. The filtered blocks are then returned to their
original positions. Because these blocks are overlapping, for each pixel we obtain
many different estimates which need to be combined. Aggregation is a particu-
lar averaging procedure which is exploited to take advantage of this redundancy”.

They are taking advantage of shared information between blocks and atten-
uating noise, they reveal new details and features of the original image. To
understand better this procedure we can look at the scheme:
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Figure 3.1: Filtering scheme

We have used the “Filtered Frames” as our reconstructions, we eliminated a sec-
ond block that the original BM3D [5] filter contains. This block consists in a
Wiener filter (that it is not present in the scheme), the reason why we removed
this block is due to the large amount of processing time that it needs to deliver
a new estimator and the improvement on the estimator is not very important
(around 0.5dB).

As you can see, we introduce a “Noisy image”, in our case the image that we
want to reconstruct, and the first block (Block Matching) starts to join similar
fragments of the image into “groups” to exploit their shared information. To
select if a fragment is valid or not for a block is used the l2norm to calculate
the distance between the reference and the possible candidates. This task to
join image fragments into a block is done in “Grouping by block-matching”.

After that when we have the “groups”, it is applied the “Collaborative filtering”
which consists to obtain the 3D transform25 of the group, immediately after a
hard-thresholding is applied to the group, in the transformed domain, to attenu-
ate or enhance the noise which is the responsible to create the missing coefficients
in the unobserved part of the image transform. Finally we anti-transform the
group and we apply the block “Aggregation” that computes the basic estimate of
the true-image by weighted averaging all of the obtained block-wise estimates
that are overlapping.

The implementation of the filter (BM3D_variant.m) is available in Appendix
A, the main differences with the original code are commented below:

%%%% Select transforms (’dct’, ’dst’, ’hadamard’, or anything that is listed by ’help wfilters’):
transform_2D_HT_name = ’haar’ or ’bior1.5’; %% WE WERE USING BOTH TRANSFORMS

DEPENDING ON THE CASE %%

25Applying a 2D transform first and after that a 1D transform for the third dimension
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transform_2D_Wiener_name = ’haar’; %%WE DO NOT USE THIS PARAMETER, BECAUSE WE
ELIMINATED THE WIENER FILTERING BLOCK %%

transform_3rd_dim_name = ’haar’; %%WE HAVE USED Haar WAVELET AS THE 3-rd DIMENSION TRANSFROM,
BECAUSE IS THE FASTEST %%

%%%% Hard-thresholding (HT) parameters:
N1 = 8; %% N1 x N1 is the block size used for the hard-thresholding (HT) filtering,

WE USED 4 INSTEAD OF 8 FOR THE 3D MODELS, BECAUSE ITS SIZE WERE SMALLER
THAN THE PHANTOMS %%

Nstep = 3; %% sliding step to process every next reference block
%% WE KEPT THE SAME VALUE FOR ALL CASES

N2 = 16; %% maximum number of similar blocks (maximum size of the 3rd dimension of a 3D array)
%% IN 3D MODELS WE REDUCED THIS VALUE TO 12, TO INCREASE THE SPEED OF THE ALGORITHM

Ns = 39; %% length of the side of the search neighborhood for full-search block-matching (BM), must be odd
%% IN 3D MODELS WE REDUCED THIS VALUE TO 31, TO INCREASE THE SPEED OF THE ALGORITHM

tau_match = 3000;%% threshold for the block-distance (d-distance)
%% IN 3D MODELS WE REDUCED THIS VALUE TO 1800, TO HAVE MORE SIMILAR NEIGHBOURS IN THE BLOCK

%% WE NOT USE THE SECOND STEP OF THE ALGORITHM: WIENER FILTERING %%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Step 2. Produce the final estimate by Wiener filtering (using the
%%%% hard-thresholding initial estimate)
%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%WE DO NOT USE THE WIENER FILTERING PART%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%
%%%%%
%tic;
%y_est = bm3d_wiener(z, y_hat, hadper_trans_single_den, Nstep_wiener, N1_wiener, N2_wiener, ...
% ’unused arg’, tau_match_wiener*N1_wiener*N1_wiener/(255*255), (Ns_wiener-1)/2, (sigma/255),...
% ’unused arg’, single(TforW), single(TinvW)’, inverse_hadper_trans_single_den, Wwin2D_wiener,...
% smallLNW, stepFSW, single(ones(N1_wiener)) );
%wiener_elapsed_time = toc;

y_est = y_hat; %% WE USE y_hat FROM THE FIRST STEP, hard-thresholding (HT), as our estimator y_est

end
return;

The final estimator y_est is obtained from the first step, hard-thresholding
(HT). In that step the function bm3d_thr() is the responsible to apply the
threshold, but we were not able to access to the source code. The reason of
that is because the function bm3d_thr() is contained in a black box 26, actually
is contained in the library “bm3d_thr.dll” which is not possible to read. It is a
little bit disappointing not to have the possibility to read the most exciting part
of the code and not to have the chance to change some parts of this function to
try new scenarios for our reconstructions.

26The source code is not available
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3.3 How to apply in 3D models
One of the main goals of this thesis is to apply the chosen algorithm to 3D
models of data. In this case, the data comes from an artificially made crystal-
lography and from a protein crystallography27 taken from a TEM.

The first model of data, as we explained before, consists of a raw data cube28
with a dimension of 100× 100× 100 pixels. The second one, consists on a MRC
file with 80× 80× 80 pixels.

Before applying the algorithm was necessary to develop a tool which was able
to read raw data, because we had to read structures with extension “.mrc” and
“.raw”. This kind of files are unreadable by Matlab, so we developed the Mat-
Lab function “readraw()”, which is in charge of this task and gives us a useful
output structure. From this point, we were able to use this data and modify,
reconstruct, test, etc. in Matlab.

Then, we decided that the best way to work with the cube was to obtain 2D slices
from the 3D model, and apply the algorithm separately to each one, exploiting
the properties of Fourier transform which says that the Fourier transform of a
cube is the same than the Fourier transform of the slices separately, they are
independent between them. The function “slices()” was in charge of this task.

After the slices were obtained we were already able to apply the algorithm, im-
plemented in function “recons()”. Thus one of the latest steps was to apply
the optimized algorithm to every slice of the protein model, save the results and
visualize the 3D model.

The last point which was visualization, was one of the most complicated, be-
cause 3D representation of protein structures in Matlab is not a very easy task
and its results are not the best ones. What we did was to check which pro-
gram was the most used in protein representation. Our research ended with
the program Chimera, but our work continued, because a tool was needed to
convert a MatLab structure into a Chimera file. To carry this task out we used
the function “WriteMRC()” which converts a MatLab structure into a .mrc file,
readable by Chimera.

27Slices of the data are available in Appendix D
28Characteristics of the data are explained in Appendix D: 3D-data
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4 Implementation

4.1 Algorithm
As we previously said, the algorithm used in this project consists in a variation
of the Robbins-Monro stochastic approximation procedure [4] with regulariza-
tion enabled by a spatially adaptive filter (Φ).

We are going to proceed to explain how this iterative system it works:

ŷ2 =

{
ŷ
(0)
2 = 0, k = 0,

ŷ
(k)
2 = ŷ

(k−1)
2 − γ

[
ŷ
(k−1)
2 − (1− S). ∗Υ(Φ(Υ−1(y1 + ŷ

(k−1)
2 ))) + (1− S). ∗ ηk

]
, k ≥ 1,

(4.1)

Definition 4: .∗ is a MatLab operator used as a point-wise multiplication
between matrices.

Parameters:

ŷ2 ≡ estimation of unknown data in Fourier domain
y1 ≡ known data in Fourier domain
γ ≡ speed step of the algorithm
(1− S) ≡ mask to select the region of the unknown data
Υ ≡ Fast Fourier Transform, Rn, Cn, n = 2
Φ ≡ filtering block
Υ−1 ≡ Inverse Fast Fourier Transform, Rn, Cn, n = 2
ηk ≡ Gaussian noise

We have to explain that we divide the images as:

y = S. ∗ y + (1− S). ∗ y = y1 + y2

Where S is a mask filled up with 0s and 1s to select the desired region of the
image. In the following figure (4.1) you can see what we understand as known
data, y1, and unknown data, y2, for the 90º missing data case:
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Figure 4.1: Known data (white) and unknown data (black)

Parts of the algorithm:

ŷ
(k−1)
2 ⇒ estimated unknown data in the iteration k − 1 (4.2)

(1− S). ∗Υ(Φ(Υ−1(y1 + ŷ
(k−1)
2 )))⇒ new estimation for iteration k (4.3)

(1− S). ∗ ηk ⇒ noise in the unknown data region and iteration k (4.4)

ŷ
(k−1)
2 − (1− S). ∗Υ(Φ(Υ−1(y1 + ŷ

(k−1)
2 ))) + (1− S). ∗ ηk (4.5)

We can observe in (4.2) that we have the estimated unknown info of the spec-
trum in the iteration k-1, then with the help of (4.3) and (4.4) we obtain the
difference between the unknown data in the previous iteration and the new es-
timation (4.3) plus Gaussian noise around the unknown data region, to achieve
(4.5). If we consider the whole block of (4.5) we can see it, as an update block,
it is responsible for the new changes of ŷ(k)2 . Then we make the comparison with
the previous iteration ŷ(k−1)2 again, to finally obtain (4.1), ŷ(k)2 .

During the tests to find the best performance of the algorithm I found pretty
tough problems of choosing the variable parameters, exciting noise, algorithm-
step, filtering block and the masks.

A reconstruction example is shown in the following figure, which consists in the
reconstruction of the 90º degrees missing data (c) of size 128× 128.
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Figure 4.2: Reconstruction 90º degrees missing data

The above example consists in a reconstruction of case c). In this case the
reconstruction has a great quality, but it is not perfectly exact. We obtained a
PSNR of 46.08dB after 20000 iterations.

Note: in the Appendix C there is another reconstruction example of case c with
size 256× 256.
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To achieve the results of last reconstruction, we had to run several tests to de-
terminate the optimum value of the algorithm parameters29. We followed the
next steps to decide the correct value of the parameters:

.The first parameter we run on test, was the type of wavelets to use in the
filtering block (BM3D). We are referring to this part of the BM3D.m code:

transform_2D_HT_name = ’haar’; %% transform used for the HT filt. of size N1 x N1
transform_2D_Wiener_name = ’dct’; %% transform used for the Wiener filt. of size N1_wiener x N1_wiener
transform_3rd_dim_name = ’haar’; %% transform used in the 3-rd dim, the same for HT and Wiener filt.;

Our duty was to choose the best combination of “transform_2D_HT_name”
and “transform_2rd_dim_name”, the second transform “transform_2D_Wiener_name”
is not used in the code, because the part of the wiener filter requires a big amount
of computation time and we decide to eliminate it.

We made the choice based on the following results:

Combination Reconstruction Accuracy30 Computational Time
Haar-Haar 88.31% Low
dct-Haar 91.83% Low-Medium
Haar-dct 88.10% Medium-High

bior1.1-Haar 87.70% Medium
bior1.3-Haar 90.16% Medium
bior1.5-Haar 90.16% Low
bior2.2-Haar 79.62% Medium
bior2.8-Haar 87.50% Medium
bior3.1-Haar 100% Medium
bior3.3-Haar 88.31% Medium
bior3.5-Haar 87.30% Medium
bior3.7-Haar 89.33% Medium
bior5.5-Haar 88.72% Medium
bior6.8-Haar 85.11% Medium
db2-Haar 87.10% Medium
db12-Haar 90.78% Medium-High
Haar-bior1.5 88.72% High

bior1.5-Haar*31 90.78% Medium-High

Table 4.1: Wavelets combination

29Amplitude of exciting noise, algorithm step size, decaying rule, type of mask and type of
wavelets
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As we can see in Table 4.1, the best wavelets combination is bior3.1-Haar but
it takes a medium computational time. The second best in reconstruction ac-
curacy is dct-Haar but it takes a low-medium computational time. Then if we
checked the third best option in reconstruction accuracy is bior1.5-Haar. In
this case, the computational time is low. Thus if we take into consideration
all factors, we decided that the most accurate one was this last option. The
computational time that we save is possible to use to run the algorithm longer
time. To have an idea about the computational time we attach a table with
reference times:

Computational Time Minutes
Low ∼ 19

Low-Medium ∼ 23
Medium ∼ 28

Medium-High ∼ 36
High ∼ 70

Table 4.2: Computational Time

.The second parameter we decided to optimize, was the exponentially
decreasing variance of the exciting noise var{ηk}. This parameter controls the
level of smoothing in the recursive procedure and hence the rate evolution of the
algorithm. To carry out this selection, we prepared some exponential decreasing
variance and we evaluated their performances.

The mathematical expression of the standard deviation for this case is:

std = var{ηk}
1
2 = α

1
2 (−i−β)

32

Where i is the actual iteration of the algorithm. Our modifications were focused
on α and β values. After applying a series of tests, we obtained the best results
with the following values:

32std - standard deviation
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Case α β

22 Projections 1.008 750
11 Projections 1.008 750

90º missing data 1.0008 9000
Low frequency 1.008 1250
3D data33 1.0008 8500

Table 4.3: α, β values

In Appendix C are attached the graphics of every Standard Deviation case. If
we observe the evolution of each std, we can observe that if there is no missing
data all around the spectrum (90º missing data or 3D data), it is better if the
decay of std is more relaxed. In contrast to other cases it is better if the decay
is more abrupt and quickly reaches a value close to zero.

.The third parameter was the amplitude of the exciting noise.

After we decided the std in all our different cases we wanted to study the effect
that produced the change in the amplitude of the noise in the reconstructions.
Thus to carry this test out we varied the value of the amplitude of the noise to
know which was the most appropriate value and we obtained these final results:

Case Amplitude
22 Projections 150
11 Projections 150

90º missing data 15
Low frequency 125
3D data34 6

Table 4.4: Noise Amplitude

From now we have defined the noise, ηk, to be used in all cases.

.The fourth parameter was the step size of the algorithm, which controls
the speed of the algorithm.

In the decision to choose the best magnitude for the step size of the algorithm,
we had to take into account the restriction that the value of this parameter
was between 1 and 2. After this clearance, our next steps were to test values
between 1 and 2. The best performance was achieved with γ = 1.5.

.The fifth parameter was the mask to use in each case.
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This parameter depends exclusively on the spectrum that we have, so it is going
to be different in each case. For each case we decided these masks:

• Cases 22 projections, 11 projections and 90º missing data:

Figure 4.3: Masks for: a.22projections b.11projections c.90º missing data

• Low frequency:

Figure 4.4: Masks: a.128pix b.64pix

• 3D data: in this case we need a group of 2D masks to create a mask for
the cone case and the wedge case. Our final 3D masks are shown in the
figures below.
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Figure 4.5: 3D cone mask

Figure 4.6: 3D wedge mask
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In the wedge case all xy-slices are the same, thus we are going to use the same
2D mask in every slice. In contrast, in the other case we have different mask
slices for each case. We used xy-slices and xz-slices to create different type of
masks for the missing cone, an example of one xy-slice and xz-slice masks is
shown below:

Figure 4.7: Masks: a.xy-slice b.xz-slice

From this point, everything is ready to apply the algorithm to each case.

4.2 Matlab Functions
All the code35 has been written with MatLab R2010b running on Linux 2.6.32-
28-generic Ubuntu x64.

In this section the most important functions are listed and we give a brief ex-
planation of these functions that are contributing in this application somehow
to be able to apply the algorithm into the data. Scripts or minor functions are
not listed.

.List of functions:

• MasterThesis.m ≡ this function performs the main task which is the al-
gorithm36 itself.

• Filtering.m ≡ it is the filtering block of the algorithm.

• test.m ≡ function that helps to prove that the filter block “Filtering" works
properly.

35Code is available in Appendix A
36Explained in the above subsection
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• readraw.m ≡ it is responsible for reading the raw data (i.e: “protein.mrc”
and “hansandrey.raw”) and gives a readable MatLab format.

• oneDto3Ddata.m ≡ once we have the data in MatLab format, we have
to reshape the data from 1D (vector form) to 3D data (cube form), this
function does this task.

• slices.m ≡ it is able to extract slices in z, y or x axis of the data cube (3D
data).

• fft_slice.m ≡ it does the same as slices.m but instead of giving a slice in
the pixel domain, it gives the Fourier transform of the slice.

• fft_slice_fromdisk.m ≡ it does the same as fft_slice.m but instead of us-
ing a 3D data as input data, it uses pictures saved in the hard disk.

• cube.m≡ it is able to create a 3D structure from slices in z, y or x direction.

• fix_mean_noise ≡ with a 2D input data it eliminates background noise
from the image.

• mask_creator.m ≡ it is responsible for creating the masks for the un-
known region and the known region.

• represent_contours.m ≡ it creates a 3D representation in MatLab of a 3D
model input.

• WriteMRC ≡ it writes a Matlab structure, in our case a 3D matrix, in
MRC format which one is readable by Chimera.

34



Method Scheme:

Figure 4.8: Method diagram
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5 Analysis
The result of this project is the implementation of a reconstruction algorithm
for limited-angle problems like it could be a missing wedge or a missing cone,
based in the recent new ideas of Compressed Sensing theory. To evaluate the
developed algorithm a number of tests have been conducted. The subjects of
these tests differ in what image, object or data we are reconstructing, but the
idea is quite similar. To evaluate the reconstruction quality we calculated the
PSNR value:

PSNR = 10·log10
(
MAX2

I

MSE

)
MAXI is the maximum possible pixel value of the image andMSE is the Mean
Square Error defined as:

MSE =
1

m·n

m−1∑
i=0

n−1∑
j=0

[X(i, j)−XN (i, j)]
2

X is the original image and XN is a reconstruction of the original.

The first round of tests consisted in the performance evaluation of the Shepp-
Logan phantom reconstruction, with three different modifications37 of it. As
presented in the above sections, these reconstructions helped to reveal strengths
but also imperfections in the method, because in some of the examples different
values of one parameter38 help to obtain a better reconstruction, that is why we
did not obtain fixed parameter values for all cases. In this chapter, we describe
how these tests were processed and how they revealed important information
about the algorithm that we developed.

The next step was to conduct the reconstruction tests using low frequencies.
What we wanted to measure was the performance of the algorithm reconstruct-
ing high-frequencies. We used some typical pictures of the image processing
world, like “cameraman” or “peppers”.

Finally, we applied the algorithm to 3D models of data, one crystallography
pattern test39 and the data we wanted to reconstruct since the beginning.

371. 22 sparse projections. 2. 11 sparse projections. 3. 90º degrees missing data
38Like exciting noise amplitude, decaying noise rule, algorithm step, mask...
39several modifications of Hans Andrey protein
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5.1 Shepp-Logan Phantom
The first round of tests consist in the reconstruction of the following Shepp-
Logan phantom modifications:

Figure 5.1: Reconstructions of a.22projections b.11projections c.missing cone

To carry out these tests we used the values of the parameters explained in sec-
tion 4.1, with an image size of 256× 256 pixels.

. The simplest case is the first one, a. 22lines. We can observe that the spec-
trum, (5.2), consists in 22 lines equally spaced. Each line represents one of the
22 projections of the specimen.

Figure 5.2: FFT 22 projections

Most part of the spectrum is missing, but we have a large amount of energy
around zero frequency and 22 contributions throughout the course of frequency.
The result in this case was the following one:
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Figure 5.3: Reconstruction FFT 22 projections

The PSNR evolution during the algorithm is shown in the next graph:

Figure 5.4: Evolution of the algorithm case a.

We can observe that the final value is over 125dB. With this rate, we can say
that the reconstruction is exact. Indeed, it is impossible to detect any difference
between the original image and the reconstruction.

. The second case, b. 11lines. We can observe that the spectrum, (5.5), con-
sists in 11 lines distributed all around the spectrum which one represents one
of the 11 projections of the specimen.
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Figure 5.5: FFT 11 projections

Most part of the spectrum is missing, but we have a large amount of energy
around zero frequency and 11 contributions throughout the course of frequency.
This case is harder than the last one, because it is evident that we have less
contributions of known data. The result in this case was the following one:

Figure 5.6: Reconstruction FFT 11 projections

The PSNR evolution during the algorithm is shown in the next graph:

Figure 5.7: Evolution of the algorithm case b.
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As a last case, we can observe that the final value is near 125dB. With this
rate, we can say that the reconstruction is exact, because it is impossible to
detect any difference between the original image and the reconstruction. But
one difference that can be seen immediately that the algorithm takes more time
to achieve its best performance. In the last case, the PSNR was rising very
fast just after 14000 iterations, in this one that situation happens near 16000
iterations, thus the algorithm is slower.

. The last case, c. missing cone, consists in a 90º degree missing data. We can
observe in the spectrum, (5.8), that the absence of this part of the spectrum
produces on the image, in pixel domain, an elongation by the diagonal which
joins the first vertex of the square with its opposite vertex, in mathematical
words the line that meets with x = −y.

Figure 5.8: 90º missing data

As seen in the other last two cases, a huge part of the spectrum is missing.
Moreover the known data is not equally spaced and we do not have any infor-
mation for F (−wx, wy) and F (wx,−wy). This case is the hardest to reconstruct.
Indeed, we do not have all the energy around frequency zero and usually the
greater contribution of energy comes from there. The result is shown below:

Figure 5.9: Reconstruction 90º missing data
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The PSNR evolution during the algorithm is shown in the next graph:

Figure 5.10: Evolution of the algorithm case c.

The results of this last case are almost the same as the other cases. The recon-
struction is exact (∼ 125dB) and the algorithm in this case is even faster than
in the previous cases. As this case is the closest to our problem, we attached
in Appendix D the sequence, of the reconstruction. If we observe the recon-
struction sequence we can see that between image 9000 and image 10000 the
last imperfection of the image is gone. After that, the image quality increases
rapidly. As we can see in the graphic, there is a strong ramp between iteration
9000 and 10000 due to the fact we have just explained. Another observation is
that near iteration 20000, the algorithm relaxes and the gain is very small.

We can conclude that our method has a very good performance for these last
three cases, since as we explained, we obtained accurate reconstructions for all
of them. We can check the final reconstructions and see that they are identical.
Thanks to these tests we decided to run the algorithm during 20000 iterations
for future cases, because from that point the algorithm is near its gain limit.

Finally, we can say that we have reached our first four objectives, we have found
a method, we have typed the code to apply the algorithm in 2-dimensional cases
and we have run tests to optimize the method and extract conclusions.

5.2 Peppers and Cameraman
The following tests are not included in our first objectives, but we considered
that this kind of application is also interesting for some other fields. These group
of tests consist in the reconstruction of high frequencies. In order to accomplish
this task we used the following pictures applying multiple masks on their spectra:
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Figure 5.11: Peppers and Cameraman

Our idea was to assess the algorithm performance, reconstructing from a low
frequency spectrum the original image. To carry out this test, we applied the
masks below, like we presented in section 4.1, on each original spectrum to only
obtain the low frequencies of them:

Figure 5.12: Applied masks: a.128pix b.64pix

The white zone represents the frequencies that we select and the black zone
represents the frequencies that we neglect.

. In the first case, we apply the mask of 128×128 white square on each picture,
so we are neglecting around 75% of the spectrum. The images that we obtain
are shown below together with their respectives spectra:
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Figure 5.13: Modified peppers and cameraman by mask 128× 128

We can observe in above images that around contours and edges appears a
strange effect, like a replica of the edge or contour. The reason for this, is
the elimination of high frequencies, in high frequencies the information about
variations of the contours or edges is stored. Thus it is reasonable that if we
eliminate high frequencies, this kind of characteristics may have been altered.

After applying the algorithm during 400 iterations, we obtained an accurate
reconstruction of the images:
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Figure 5.14: Reconstruction of modified peppers and cameraman by mask 128× 128

The above reconstructions have a PSNR around 40dB, we did not run the algo-
rithm more iterations because it is hardly difficult to distinguish minor changes
in the new reconstructed images. Then, it is proved that we can use this algo-
rithm for the reconstruction from low frequencies like it was seen in the above
examples, if we have in our possession a low frequencies square which represents
25% of the data.

. Using the small mask40, the algorithm does not succeed in reconstructing
the images. It is able to eliminate contours and edges effects. These effects are
observable on 5.2, but the reconstructed image definition is not very accurate.

40Size of 64x64 pixels
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Figure 5.15: Modified peppers and cameraman by mask 64× 64

Reconstructed images:

Figure 5.16: Reconstruction of modified peppers and cameraman by mask 64× 64

We can say that with the small mask, it is not enough to reconstruct the orig-
inal images. We are able to distinguish between the images, but they present
symptoms of blurring and indefinite. The results are not good but at least we
deleted the artifacts around the edges and contours.

5.3 Real Data
The last round of tests consisted basically in the reconstruction of a reference
model. We based our test in the artificially created Hansandrey crystallography.
We modified the original model to have some similar cases as missing cone or
missing wedge. To evaluate the results, apart from using the PSNR calculation,
we used MatLab. When we could see the models properly, to display the 3D
models. When representation was not good enough, we decided to use program
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“Chimera” to have better visualization conditions.

After these tests, we showed a possible reconstruction of the first 3D model that
we wanted to reconstruct since beginning. As mentioned in previously sections,
we can not assure that it is the correct reconstruction. Finally we will show a
reconstruction of a viral DNA gatekeeper, where we force the extraction of a
90º cone and then we reconstruct this modification:

5.3.1 Hansandrey model

. Hansandrey missing wedge case:

In this case we introduced a missing wedge in the frequency domain and we ap-
plied the algorithm to each 2D slice in the z-axis to reconstruct the 3D model.
The first cube of spectrum that we had, is shown in the next figure:

Figure 5.17: Hansandrey missing wedge

The model for this spectrum has a very curious form because of these great
transitions caused by the missing wedge:
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Figure 5.18: Hansandrey appearance missing wedge

Applying the algorithm for this case, we obtained the same problem for every
2-dimensional slice. Indeed if you have a missing wedge around z-axis and you
are taking slices around z-axis to apply the algorithm right away, you are always
having the Shepp-Logan modification c. 90º missing data.

After running the algorithm, we obtained a reconstruction with a PSNR =
47.58dB. We attach the final reconstruction model with the original one:
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Figure 5.19: a.Hansandrey original model b.Hansandrey reconstruction

We can not really appreciate any difference between the original structure and
the reconstructed one. We have achieved a good reconstruction for this case.
Finally we are going to present the reconstructed spectrum:
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Figure 5.20: Hansandrey spectrum reconstruction

. Hansandrey missing cone case:

In this case we introduced a missing cone in the frequency domain and we ap-
plied the algorithm to each 2-dimensional slice in the z-axis to reconstruct the
3D model. The first cube of data that we had, is shown in the next figure:
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Figure 5.21: Hansandrey missing cone

The main problem in this case is that when you are going further (in the z-axis
direction) from the origin, the hole of missing data is getting larger. Thus a
great part of information is missing and it is almost impossible for the algo-
rithm to reconstruct anything. The reason lies in the fact that the available
known data is not enough to achieve a good reconstruction. The results of this
case are shown in the following table41 with PSNR values of each slice:

41The slice number 1 starts in the middle of the structure, where the two missing cones
intersect. The model consists of 100 slices from [-50...-1] and from [1...50]
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Slice PSNR(dB)

-50-40 Exact42

-39 Exact
-38 Exact
-37 Exact
-36 Exact
-35 60.13
-34 47.34
-33 42.39
-32 37.96
-31 38.36
-30 38.10
-29 38.11
-28 38.01
-27 35.61
-26 34.70
-25 35.64
-24 35.53
-23 34.39
-22 33.57
-21 34.35

Slice PSNR(dB)

-20 34.95
-19 33.64
-18 35.02
-17 39.99
-16 49.32
-15 42.40
-14 43.79
-13 40.17
-12 39.04
-11 40.23
-10 40.39
-9 46.80
-8 45.09
-7 42.78
-6 42.11
-5 44.27
-4 95.12
-3 92.32
-2 99.10
-1 86.99

Slice PSNR(dB)

1 124.38
2 100.85
3 86.91
4 40.17
5 47.84
6 46.55
7 45.54
8 45.88
9 43.38
10 39.68
11 39.85
12 51.47
13 42.13
14 34.93
15 34.89
16 33.70
17 31.00
18 30.52
19 30.44
20 30.33

Slice PSNR(dB)

21 29.91
22 30.07
23 29.57
24 29.04
25 28.83
26 30.05
27 32.18
28 34.38
29 36.83
30 38.56
31 40.30
32 41.28
33 41.84
34 42.02
35 46.20
36 52.89
37 60.33
38 Exact
39 Exact

40-50 Exact

Table 5.1: Missing cone PSNR values of xy slices

After checking the results something caught our attention, the results are im-
proving from slices 27 until the end, although the magnitude of the missing data
is increasing (the radius of the missing hole is increasing). The reason of this
phenomenon is due to the fact that the spectrum varies widely in each case.
While we are approaching to the ends of the structure, the quantity of energy in
the image is decreasing, the images are almost completely black43, i.e they do
not contain much energy and it is more feasible to approach, in terms of energy,
to the solution. The turning point to change the trend of PSNR is produced in
the aforementioned slice number 27. Even if we got good results in the center of
the structure and at the end of the structure, the final PSNR of the whole recon-
struction was 36.46dB. This result is not good enough, we can not accept values
under 35−40dB. At the moment, we can not propose this method as a solution.

You can observe a great difference between the original model and the recon-
struction:

43In appendix E you can find these images
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Figure 5.22: a.Hansandrey original model b.Hansandrey reconstruction xy-slices

As you could observe, there are great differences between both models. The
half section of the model is the most well approximated zone, as the extremes,
because they are practically empty/black images. The zones between the center
and the ends of the figure are not well reconstructed44 as you can see. These ef-
fects are consistent with the poor performance of PSNR obtained in those zones.

After that we realized that it was better to obtain xz slices instead of xy slices,
like we did in last case. Indeed if we have a missing cone in the z-axis direction
and we observe it in the y-axis direction and it is immediate to see that the
worst case is to have half of data missing. That happens when we achieve just
the middle of the cube. We can see a triangle of missing data45, in the previous

44In Appendix D are attached some slices of the original model and reconstruction, to have
a better comparison between them.

45Black zone of the figures
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case the worst situation had around 80% of missing data:

Figure 5.23: Hansandrey worst case: a.xz slices b.xy slices

The reconstruction that we achieved with xz slices had a great PSNR value
which is 46.21 dB. In Figure 5.20 we can observe the real Hansandrey model
and the reconstruction of it. It is quite hard to detect any differences between
them. We can say that the results for this recovery are quite promising because
the models are practically identical.
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Figure 5.24: a.Hansandrey original model b.Hansandrey reconstruction xz-slices

5.3.2 First model

We apply the algorithm with the same configuration as we used in Hansandrey
case. We have to remind that we do not have any idea on how the final model
should be. We based our reconstruction proposal on the results of the tests
related with Hansandrey crystallography. We think that if the method worked
in that model it should also work in this case. The result is shown below:

54



Figure 5.25: First model proposal

If we compare the original model and our proposal we can not see major changes.
The model has changed but it is not a drastic change. We can observe in the
3D model, not in this snapshot of the model, that periodicity in x and y axis
remains intact but it is possible to see some changes in the connections between
the big structures of the model and in the form of these blocks.

In the next figure, we compare both structures (the first model and our pro-
posal), between them we have calculated that there is an 8% of differences, that
is a PSNR around 21.89dB. We can say that we can appreciate some differences
between them but it is not a very big change of the structure:
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Figure 5.26: Comparison between first model and our proposal

We can observe that the big units of the structure have increased their size and
some small units have disappeared in the reconstructed model, other small units
have increased their size and some others have decreased their size. Another
observation is that the big blocks in the reconstruction are narrower and longer
than in the first model.

5.3.3 Viral DNA gatekeeper

The model of this viral DNA gatekeeper was obtained by a cryo-electron mi-
croscopy, this technique allows the observation of the specimens that have not
been stained or fixed in any way, showing them in their native environment,
so it is completely opposite as X-ray crystallography, which generally requires
placing the samples in non-physiological environments.

This structure is used as a gate for the bacillus subtilis bacteriophage SPP1,
which “zips” the capsid after the genome is packaged and unzips it when the
virus is ready to infect the host, so the main activity as we mentioned is to
control the access to the host. We can observe the shape of the gatekeeper in
the following snapshot:
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Figure 5.27: Viral DNA gatekeeper (real model)

In the last structure we extract a cone, like the cone in Figure 4.5, and in the
model appears a big elongation around the center of the structure due to the
great transitions in the Fourier Transform that generates these artifacts in the
model in image domain:

Figure 5.28: Viral DNA gatekeeper (missing cone model)

Then using the model of Figure 5.28, we apply the algorithm to fill the missing
cone in the Fourier domain. After applying the algorithm we obtained a PSNR
of 45.86dB the results of the reconstructions are presented in the next figure:
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Figure 5.29: Viral DNA gatekeeper (reconstruction)

If we observe the model, we can not detect any big differences between this case
and the real case, Figure 5.27. We can say that we have obtained a good recon-
struction, because in terms of PSNR we have a great value and the visualization
of the model proves that the reconstructed model and the real model are quite
close.
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6 Conclusions and future work

6.1 Conclusions
The first round of tests for this algorithm implementation works properly in
test patterns like the three modifications of the Shepp-Logan Phantom46that
we have used. In those cases we achieved exact reconstructions. This method,
like we proved during the report, is also applicable to low-frequencies spectrum
as figures (peppers, cameraman) to reconstruct high frequencies. Such a thing
could be applied to improve the quality of the image or to apply super-resolution
methods. We can say that we have been able to reproduce a method from a
paper, published in [4].

As regards practical results of this work, as we advised they can not be measured
because we do not have a previous model to compare with the final reconstruc-
tion. The only way to measure the quality or performance of our application
has to be focused on the results of tests applied in 3D pattern models.

Focusing in our 3D artificial crystallography model47, we can say that we are
able to fill the missing cone but we have poor results48 in the half of the first
and second cone, in the case that we are taking xy slices from the model. On
the other hand, if we are using xz slices instead of xy, we are dealing the miss-
ing/corrupted zones in more slices, but then we do not find slices where is
almost impossible to recover anything. Ultimately, we do not have large zones
of unknown data and we got to rebuild the model from the data with a missing
cone in the frequency domain, obtaining a PSNR around 46dB (less than 1% of
error). The quality of the reconstruction is not perfect but it is a good approxi-
mation. It is very hard to notice any difference between the real model and the
reconstruction.

When we are reconstructing a structure with a missing wedge around z-axis in
the frequency domain, like Figure 5.11, we have also succeeded in these kind
of problems, obtaining similar results as the case above with a PSNR around
47dB. Then, if we compare with one of the alternative, as might be POCS,
the results are quite better. POCS results, applied in a Shepp-Logan phantom
reconstruction with a missing wedge, are around 40% error rate. We have to
add that we can not compare a 3-dimensional case because we have not tested
POCS in that kind of scenario.

We have to add a comment about 3-dimensional reconstructions related to the
processing time. We realized that is one of the major drawbacks of working
with this type of structures (the processing time). To reconstruct the whole
Hansandrey model, we needed around 32 hours straight and makes your job

4622 radon projections, 11 radon projections and 90º missing data
47Hans Andrey protein
48Results from Table 6.
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harder. If you simply want to change a parameter or if you want to try another
mask, etc. Every change brings a great time out. You can check in Appendix
E a summary of processing times we have needed in each case.

Finally, we can say that this implementation meets all its goals we considered at
first. Thanks to this method we are able to reconstruct spectra with half of the
data missing, in form of a wedge, cone, etc. We can also reconstruct spectrum
from multiple radon sparse projections49 or simply reconstruct high-frequencies.
We have to comment that the algorithm performance depends in great measure
on the spectrum that we want to reconstruct. It is possible to apply the same
missing wedge or cone in the same data and doing it in a different position and
obtain totally different results. Changing the position of the wedge or cone, it
is possible that we are removing an important portion of the spectrum and the
algorithm has not enough prior information to reconstruct the structure.

49The Fourier Transform of the Radon transform with respect to the projection coordinate
equals a radial FFT line (of the unknown function f), according to the Fourier Slice theorem.
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6.2 Future Work
1. Like in all other algorithm implementations, one of the most common im-

provements is to optimize the code. (Try to minimize the execution time
and computational resources, because in our case one full reconstruction
takes around 32 hours).

2. Develop a version for colored models.

3. Find a way to apply the algorithm directly to 3D data, because in this
project we decided to divide the problem in multiple problems in 2D. Our
limitation was the filtering block because it is a two dimensional filter.

4. One of the most excitement works that could emerge from this Master
Thesis, is the idea to develop a new technique to acquire the data from
the EM achieving a large reduction in radiation dose applied to the spec-
imen. Indeed, like we commented in the last subsection, it is enough with
half or even less of the spectrum to obtain a model or a picture with a
great quality. Therefore, what could be a great advance is finding a way
to fill only the necessary frequencies of the spectrum, to let us apply the
algorithm and obtain a final image/model that meets our needs. If it is
possible to carry this task out, a significant dose reduction can be achieved.

5. Propose new reconstructions for Philip’s model50, changing parameters of
the filter (size of fragments, d-distance threshold, size of the block, etc.) or
changing common parameters like deviation rule for the excitation noise,
noise amplitude, combining reconstruction information of xy-slices and
xz-slices, etc.

6. Apply method in other kind of images/models like CT images, MRI, as-
tronomy, geophysical exploration or other type of electron microscope
models.

7. Pass MatLab code to low-level languages like C/C++, Java, etc.

50“philip.mrc”
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A Appendix A: Matlab code
In this appendix is attached the MatLab code of the main functions of this project. Also there
is a brief explanation about each function.

.MasterThesis.m: this code reproduces the idea published in [4]. It is the main function

of our method, because it carries out the iterative algorithm. It needs some output parameters and

other external functions that helps to calculate the masks to use or to filter the data, etc.

function [ima_fft, ima_fin, PSNR, clock_ini, clock_end] = MT(amplitude, step_size, iterations, image_name, mask_profile, path_fft, size, y, original_ima, after_fft,sigma_excite)
%
%
%%%%%%Reconstruction function for multiple missing data cases%%%%%
%
%This function is based in the method published in paper:
%
%"COMPRESSED SENSING IMAGE RECONSTRUCTION VIA RECURSIVE SPATIALLY ADAPTIVE FILTERING"
%Authors: Karen Egiazarian, Alessandro Foi, and Vladimir Katkovnik
%
%This algorithm is one of the options to solve limited-angle problems, like
%limited-angle CT or X-ray, etc.
%
%It was reproduced by Marc Vilà Oliva
%
%
% INPUT Parameters
%
% amplitude -> indicates the amplitude of the exciting noise
% step_size -> controls the speed of the algorithm
% iterations -> number of iterations
% image_name -> is the name of the path where the images are going to be
% saved
% mask_profile -> ’normal’ 90º degrees mask, ’adaptive’ mask which
% suits with the FFT of the image or ’alternative’ is a mixed of the previous ones
% path_fft -> path where is located the FFT of the image which we want
% to reconstruct
% size -> size of the input image
% y -> input image (generaly we introduce the elongated phantom 128x128
% pixels)
% original_ima -> original image, to compute the diference the predicted
% and the original one
% after_fft -> is a flag that if it is active ’1’ indicates that the
% first 20 and the last 20 rows are empty
% sigma_excite -> sigma of the exciting noise - it’s saved in the toolbox
% path
%
% OUTPUT Parameters
%
% ima_fft -> FFT of the predicted image
% ima_fin -> predicted image
% PSNR -> value of the PSNR, every 200 iterations, between the original and predicted image
% clock_ini -> saves the moment when the algorithm starts
% clock_end -> saves the moment when the algorithm ends

if (exist(’amplitude’) ˜= 1)
amplitude = 25; %% default sigma of the excited noise

end

if (exist(’y’) ˜= 1)
y = imread(’/home/arvs/Documents/Master_thesis/toolbox_sparsity/phantom128.png’); %% default original image

end

if (exist(’step_size’) ˜= 1)
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step_size = 1; %% default sigma of the excited noise
end

if (exist(’iterations’) ˜= 1)
iterations = 5000; %% default iterations of the algorithm

end

if (exist(’image_name’) ˜= 1)
image_name = ’/noise_random/noise_random_it’; %% default iterations of the algorithm

end

if (exist(’mask_profile’) ˜= 1)
mask_profile = ’normal’; %% default iterations of the algorithm

end

if (exist(’path_fft’) ˜= 1)
path_fft = ’ ’; %% FT of the image which we one to fix (it’s used for the mask creation)

end

if (exist(’size’) ˜= 1)
size = 128; %% default size in pixels of the image

end

if (exist(’original_ima’) ˜= 1)
original_ima = imread(’/home/arvs/Documents/Master_thesis/phantom128.png’); %% default original image

end

if (exist(’sigma_excite’) ˜= 1)
load /home/arvs/Documents/Master_thesis/toolbox_sparsity/sigma_excite.mat %% default sigma of the exciting noise

end

if (exist(’after_fft’) ˜= 1)
after_fft = 0;

end
clock_ini = clock;

N=iterations; % Number of iterations

%%%Creation of the masks.
%%%We generate masks to obtain different parts of
%%%the image, y1 (known data) or y2 (unknown data).

[mask, mask_transpose] = mask_creator(mask_profile, size, path_fft);

filename1 = sprintf(’%s%d.png’,’mask’ , 001 );
imwrite(fftshift(mask),filename1,’png’);
filename2 = sprintf(’%s%d.png’,’mask_transpose’ , 002 );
imwrite(fftshift(mask_transpose),filename2,’png’);

y1 = y; %rgb2gray(original_ima) if it is necessary original RGB elongated image to Gray scale
y11 = im2double(y1); %We shrink the values of the image between 0 and 1
y1_t = fft2(y11);

original = original_ima; %rgb2gray(original_ima) if it is necessary original image which we want to reconstruct to gray
original = im2double(original); %We shrink the values of the image between 0 and 1

y1_trans = y1_t.*mask; %We take the known data

imwrite(fftshift(y1_trans),’/home/arvs/Escriptori/primera_.png’,’png’);

y2_ant = uint8(zeros(size)); %First sample of the missing data - all zeros
y2 = fft2(y2_ant).*mask_transpose; %We obtain the transform of the first sample, all zeros.

for i=1:N %iterations -> loop

m = clock;
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if i == 1
sigma_Filtering = 2*amplitude*sigma_excite(1); %At first iteration we introduce more noise

else
sigma_Filtering = amplitude*sigma_excite(i-1); %Sigma that it’s going to be used by the filter block Filtering

end

sigma_n = sigma_excite(i); %The standard desviation of the excitation noise has to be reduced while iterations increase.

if i==N
sigma_Filtering = 0;

end

sec = ceil(m(6)); %We generate a different seed each time we enter in the loop

randn(’seed’, sec*i); %We generate the seed of the gaussian noise

ima = y2 + y1_trans; %y1 + y2_k

if i==1
figure(444444);imshow(abs(ifft2(1.1*ima))) %We visualize our first image
figure(1);imshow(fftshift(abs(ima))) %We check if our first image in fourier domain is the expected

end

z = ifft2(ima); %T-1{y1 + y2_k}

[NA, filtered] = Filtering(1, z, sigma_Filtering); %O[T-1{y1 + y2_k}]

trans = fft2(filtered); %T{O[T-1{y1 + y2_k}]}
y2_pred = mask_transpose.*trans; %(1-S).*trans;

noise = sigma_n*randn(size); % noise with mean ’0’ and standard deviation sigma_n

if i==N
noise = zeros(size);

end

error = step_size*(y2 - y2_pred + mask_transpose.*fftshift(noise)); %step_size*(y2 - y2_pred + (1-S).*noise);

y_k = y2 - error;

if mod(i,500) == 0 %We represent the evolution of the algorithm each 500 iterations

ima_fft = y1_trans + y2;
ima_fin = abs(ifft2(ima_fft));

if after_fft == 1; %If after_fft is true then we add 0 to the first and last 20 rows
ima_fin(1:20,:)=0;
ima_fin(81:100,:)=0;

end

if mod(i,5000) == 0
figure(i+10); imagesc(fftshift(abs(log(ima_fft))));
filename = sprintf(’%s%d.png’,’/home/arvs/Escriptori/fft_recons_fin_’ , i );
imwrite(fftshift(abs(ima_fft)),filename,’png’);

end

PSNR(double(i)/500) = 10*log10(1/mean((original(:)-ima_fin(:)).ˆ2)) %We calculate the PSNR between the original image and the reconstructed one.

pic_name = image_name;
filename = sprintf(’%s%d.png’,pic_name , i );

[NA2, filtered2] = BM3D_variant(1, ima_fin, 0);

filtered2 = min(1,max(0,filtered2)); % mantain values between 0 and 1 after last estimation

imwrite(filtered2,filename,’png’);

if PSNR(double(i)/500) >= 60 %if PSNR is better than 60dB we end the algorithm
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break;
end

end

if i == 1
ima_fft = y1_trans + y2;
figure(i);imshow(fftshift(abs(ima)))

ima_fin = abs(ifft2(ima_fft));
figure(i+10); imagesc(abs(log(fftshift(ima_fft))));

PSNR(double(i)) = 10*log10(1/mean((original(:)-ima_fin(:)).ˆ2)) % We calculate the PSNR

pic_name = image_name;
filename = sprintf(’%s%d.png’,pic_name , i );
imwrite(ima_fin,filename,’png’);

if PSNR(i) >= 60 %if PSNR is better than 60dB we end the algorithm
break;
end

end

y2 = y_k; %We save the last iteration to use in the next iteration

end

clock_end = clock; %We register the ending time to calculate the total process time

[NA2, filtered2] = BM3D_variant(1, ima_fin, 0); %Last estimation of the image

filtered2 = min(1,max(0,filtered2)); %Mantain values between 0 and 1 after last estimation

imwrite(filtered2,filename,’png’);

ima_fft = y1_trans + y2; %S.*y1_trans + (1-S).*y2;
figure(10000);imagesc(abs(fftshift(log(ima_fft)))); %We visualize last spectrum of the estimation
ima_fin = abs(ifft2(ima_fft));
figure(481516);imagesc(ima_fin); %We visualize last estimation

return;

.mask_creator.m: creates the masks for each case, wedge, cone, 11 or 22 projections and

low frequency.

function [mask, mask_op] = mask_creator(profile, size, ima)

%Function that creates the masks necessaries to proceed with the
%reconstruction algorithm:
%OUTPUT Parameters
%
% mask -> takes the known data
% mask_op -> takes the unknown data
%
%INPUT Parameters
%
% mask_profile -> ’normal’ 90º degrees mask or ’adaptive’ to the fft image
% ima -> path of the fft transform from the image which we want to reconstruct

if strcmp(profile, ’normal’) == 1

on = ones (0.5*size);
zer = zeros(0.5*size);
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media= [zer,on];
media1= [on, zer];
mask= [media; media1]; %mask 000000...111111
mask_op = [media1;media]; %mask 111111...000000

end

if strcmp(profile, ’adaptive’) == 1

rad = imread(ima);
rad = rad;%rgb2gray(rad);
rad = im2double(uint8(rad));

low = min(rad(:))
fil_col = numel(rad)
mask = zeros(sqrt(fil_col));

for i=1:(fil_col)

if abs(rad(i))> low % normally it is 1/255,
cause in some pictures the lowest value is 1.

mask(i) = 1;
%figure(100);imagesc(mask)

end
end

allones = ones(sqrt(fil_col));
mask_op = fftshift(allones - mask);
mask = fftshift(mask);

end

if strcmp(profile, ’alternative’) == 1
on = ones (0.5*size);

zer = zeros(0.5*size);
media= [zer,on];
media1= [on, zer];
mask_sub= [media; media1]; %mask 000000...111111
mask_op_sub = [media1;media]; %mask 111111...000000

rad = imread(ima);
rad = rgb2gray(rad);
rad = im2double(uint8(rad));
low = min(rad(:))
fil_col = numel(rad)
mask_pre = zeros(sqrt(fil_col));
allones = ones(sqrt(fil_col));

for i=1:(fil_col)

if abs(rad(i))> 0.25;%2.5*low % normally it is 1/255, cause in some pictures the lowest value is 1.

mask_pre(i) = 1;
%figure(99);imagesc(mask)

end

end

mask = fftshift(mask_pre);%.*mask_sub;
figure(100);imagesc(fftshift(mask))
mask_op = (allones-mask);%.*mask_op_sub;
figure(101);imagesc(fftshift(mask_op))

end

return
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.BM3D_variant.m: this functions is originally taken from [4]. It has been modified by

us to optimize processing time and performance of the algorithm. For example we eliminated the

Wiener filtering that it was present in the original code and in the 3rd dimension transform we

selected Haar wavelet transform instead of Biortogonal1.5 wavelet transform.

function [PSNR, y_est] = Filtering(y, z, sigma, profile, print_to_screen)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This function BM3D_variant is a modification of the BM3D that is an algorithm for attenuation of
% additive white Gaussian noise from grayscale images. This algorithm reproduces
% the results from the article:
%
% [1] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image Denoising
% by Sparse 3D Transform-Domain Collaborative Filtering,"
% IEEE Transactions on Image Processing, vol. 16, no. 8, August, 2007.
% preprint at http://www.cs.tut.fi/˜foi/GCF-BM3D.
%
%
%
%
% INPUT Parameters
%
% y -> is a matrix (MxN) noise-free image (needed for computing PSNR),
% replace with the scalar 1 if not available.
% z -> is a matrix (MxN) noisy image (intensities in range [0,1] or [0,255])
% sigma -> Std. dev. of the noise (corresponding to intensities
% in range [0,255] even if the range of z is [0,1])
% profile -> ’np’ --> Normal Profile
% ’lc’ --> Fast Profile
% print_to_screen -> 0 --> do not print output information (and do
% not plot figures)
% 1 --> print information and plot figures
%
% OUTPUT Parameters
% PSNR -> output PSNR (dB), only if the original
% image is available, otherwise PSNR = 0
% y_est -> is a matrix (MxN) final estimation (in the range [0,1])
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Copyright (c) 2006-2010 Tampere University of Technology.
% All rights reserved.
% This work should only be used for nonprofit purposes.
%
% AUTHORS:
% Kostadin Dabov, email: dabov _at_ cs.tut.fi
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% In case, a noisy image z is not provided, then use the filename
%%%% below to read an original image (might contain path also). Later,
%%%% artificial AWGN noise is added and this noisy image is processed
%%%% by the filtering block.
%%%%
image_name = [
% ’montage.png’

’Cameraman256.png’
% ’boat.png’
% ’Lena512.png’
% ’house.png’
% ’barbara.png’
% ’peppers256.png’
% ’fingerprint.png’
% ’couple.png’
% ’hill.png’
% ’man.png’

];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Quality/complexity trade-off profile selection
%%%%
%%%% ’np’ --> Normal Profile (balanced quality)
%%%% ’lc’ --> Low Complexity Profile (fast, lower quality)
%%%%
%%%% ’high’ --> High Profile (high quality, not documented in [1])
%%%%
%%%% ’vn’ --> This profile is automatically enabled for high noise
%%%% when sigma > 40
%%%%
%%%% ’vn_old’ --> This is the old ’vn’ profile that was used in [1].
%%%% It gives inferior results than ’vn’ in most cases.
%%%%
if (exist(’profile’) ˜= 1)
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profile = ’np’; %% default profile
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Specify the std. dev. of the corrupting noise
%%%%
if (exist(’sigma’) ˜= 1),

sigma = 25; %% default standard deviation of the AWGN
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Following are the parameters for the Normal Profile.
%%%%

%%%% Select transforms (’dct’, ’dst’, ’hadamard’, or anything that is listed by ’help wfilters’):
transform_2D_HT_name = ’haar’; %% transform used for the HT filt. of size N1 x N1
%%We do not use this parameter%% transform_2D_Wiener_name = ’haar’; %% transform used for the

% Wiener filt. of size N1_wiener x N1_wiener
transform_3rd_dim_name = ’haar’; %% transform used in the 3-rd dim, the same for HT and Wiener filt.

%%%% Hard-thresholding (HT) parameters:
N1 = 8; %% N1 x N1 is the block size used for the hard-thresholding (HT) filtering
Nstep = 3; %% sliding step to process every next reference block
N2 = 16; %% maximum number of similar blocks (maximum size of the 3rd dimension of a 3D array)
Ns = 39; %% length of the side of the search neighborhood for full-search block-matching (BM), must be odd
tau_match = 3000;%% threshold for the block-distance (d-distance)
lambda_thr2D = 0; %% threshold parameter for the coarse initial denoising used in the d-distance measure
lambda_thr3D = 2.7; %% threshold parameter for the hard-thresholding in 3D transform domain
beta = 2.0; %% parameter of the 2D Kaiser window used in the reconstruction

%%%% Wiener filtering parameters:
N1_wiener = 4;
Nstep_wiener = 3;
N2_wiener = 16;%%32;
Ns_wiener = 39;
tau_match_wiener = 400;
beta_wiener = 2.0;

%%%% Block-matching parameters:
stepFS = 1; %% step that forces to switch to full-search BM, "1" implies always full-search
smallLN = ’not used in np’; %% if stepFS > 1, then this specifies the size of the small local search neighb.
stepFSW = 1;
smallLNW = ’not used in np’;
thrToIncStep = 8; % if the number of non-zero coefficients after HT is less than thrToIncStep,

% than the sliding step to the next reference block is incresed to (nm1-1)

if strcmp(profile, ’lc’) == 1,

Nstep = 6;
Ns = 25;
Nstep_wiener = 5;
N2_wiener = 16;
Ns_wiener = 25;

thrToIncStep = 3;
smallLN = 3;
stepFS = 6*Nstep;
smallLNW = 2;
stepFSW = 5*Nstep_wiener;

end

% Profile ’vn’ was proposed in
% Y. Hou, C. Zhao, D. Yang, and Y. Cheng, ’Comment on "Image Denoising by Sparse 3D Transform-Domain
% Collaborative Filtering"’, accepted for publication, IEEE Trans. on Image Processing, July, 2010.
% as a better alternative to that initially proposed in [1] (which is currently in profile ’vn_old’)
if (strcmp(profile, ’vn’) == 1) | (sigma > 40),

N2 = 32;
Nstep = 4;

N1_wiener = 11;
Nstep_wiener = 6;

lambda_thr3D = 2.8;
thrToIncStep = 3;
tau_match_wiener = 3500;
tau_match = 25000;

Ns_wiener = 39;

end

% The ’vn_old’ profile corresponds to the original parameters for strong noise proposed in [1].
if (strcmp(profile, ’vn_old’) == 1) & (sigma > 40),

transform_2D_HT_name = ’dct’;

N1 = 12;
Nstep = 4;
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N1_wiener = 11;
Nstep_wiener = 6;

lambda_thr3D = 2.8;
lambda_thr2D = 2.0;
thrToIncStep = 3;
tau_match_wiener = 3500;
tau_match = 5000;

Ns_wiener = 39;

end

decLevel = 0; % dec. levels of the dyadic wavelet 2D transform for blocks
% (0 means full decomposition, higher values decrease the dec. number)

thr_mask = ones(N1); % N1xN1 mask of threshold scaling coeff. --- by default there is no scaling,
% however the use of different thresholds for different wavelet decompoistion
% subbands can be done with this matrix

if strcmp(profile, ’high’) == 1, %% this profile is not documented in [1]

decLevel = 1;
Nstep = 2;
Nstep_wiener = 2;
lambda_thr3D = 2.5;
vMask = ones(N1,1); vMask((end/4+1):end/2)= 1.01; vMask((end/2+1):end) = 1.07;
% this allows to have different threhsolds for the finest and next-to-the-finest subbands

thr_mask = vMask * vMask’;
beta = 2.5;
beta_wiener = 1.5;

end

%%% Check whether to dump information to the screen or remain silent
dump_output_information = 1;
if (exist(’print_to_screen’) == 1) & (print_to_screen == 0),

dump_output_information = 0;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Create transform matrices, etc.
%%%%
[Tfor, Tinv] = getTransfMatrix(N1, transform_2D_HT_name, decLevel);
% get (normalized) forward and inverse transform matrices

if (strcmp(transform_3rd_dim_name, ’haar’) == 1) | (strcmp(transform_3rd_dim_name(end-2:end), ’1.1’) == 1),
%%% If Haar is used in the 3-rd dimension, then a fast internal transform is used, thus no need to generate transform
%%% matrices.
hadper_trans_single_den = {};
inverse_hadper_trans_single_den = {};

else
%%% Create transform matrices. The transforms are later applied by
%%% matrix-vector multiplication for the 1D case.
for hpow = 0:ceil(log2(max(N2,N2_wiener))),

h = 2ˆhpow;
[Tfor3rd, Tinv3rd] = getTransfMatrix(h, transform_3rd_dim_name, 0);
hadper_trans_single_den{h} = single(Tfor3rd);
inverse_hadper_trans_single_den{h} = single(Tinv3rd’);

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 2D Kaiser windows used in the aggregation of block-wise estimates
%%%%
if beta_wiener==2 & beta==2 & N1_wiener==8 & N1==8 % hardcode the window function so

% that the signal processing toolbox is not needed by default

Wwin2D = [ 0.1924 0.2989 0.3846 0.4325 0.4325 0.3846 0.2989 0.1924;
0.2989 0.4642 0.5974 0.6717 0.6717 0.5974 0.4642 0.2989;
0.3846 0.5974 0.7688 0.8644 0.8644 0.7688 0.5974 0.3846;
0.4325 0.6717 0.8644 0.9718 0.9718 0.8644 0.6717 0.4325;
0.4325 0.6717 0.8644 0.9718 0.9718 0.8644 0.6717 0.4325;
0.3846 0.5974 0.7688 0.8644 0.8644 0.7688 0.5974 0.3846;
0.2989 0.4642 0.5974 0.6717 0.6717 0.5974 0.4642 0.2989;
0.1924 0.2989 0.3846 0.4325 0.4325 0.3846 0.2989 0.1924];

Wwin2D_wiener = Wwin2D;
else

Wwin2D = kaiser(N1, beta) * kaiser(N1, beta)’; % Kaiser window used in the aggregation of the HT part
Wwin2D_wiener = kaiser(N1_wiener, beta_wiener) * kaiser(N1_wiener, beta_wiener)’; % Kaiser window used
% in the aggregation of the Wiener filt. part

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% If needed, read images, generate noise, or scale the images to the
%%%% [0,1] interval
%%%%

if (exist(’y’) ˜= 1) | (exist(’z’) ˜= 1)
y = im2double(imread(image_name)); %% read a noise-free image and put in intensity range [0,1]
randn(’seed’, 0);%% generate seed
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z = y + (sigma/255)*randn(size(y)); %% create a noisy image
else % external images

image_name = ’External image’;

% convert z to double precision if needed
z = double(z);

% convert y to double precision if needed
y = double(y);

% if z’s range is [0, 255], then convert to [0, 1]
if (max(z(:)) > 10), % a naive check for intensity range

z = z / 255;
end

% if y’s range is [0, 255], then convert to [0, 1]
if (max(y(:)) > 10), % a naive check for intensity range

y = y / 255;
end

end

if (size(z,3) ˜= 1) | (size(y,3) ˜= 1),
error(’Filtering accepts only grayscale 2D images.’);

end

% Check if the true image y is a valid one; if not, then we cannot compute PSNR, etc.
y_is_invalid_image = (length(size(z)) ˜= length(size(y))) | (size(z,1) ˜= size(y,1)) | (size(z,2) ˜= size(y,2));
if (y_is_invalid_image),

dump_output_information = 0;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Print image information to the screen
%%%%
if dump_output_information == 1,

fprintf(’Image: %s (%dx%d), sigma: %.1f\n’, image_name, size(z,1), size(z,2), sigma);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Step 1. Produce the basic estimate by HT filtering
%%%%
tic;
y_hat = bm3d_thr(z, hadper_trans_single_den, Nstep, N1, N2, lambda_thr2D,...

lambda_thr3D, tau_match*N1*N1/(255*255), (Ns-1)/2, (sigma/255), thrToIncStep, single(Tfor), single(Tinv)’,...textcolorcomment
inverse_hadper_trans_single_den, single(thr_mask), Wwin2D, smallLN, stepFS );

estimate_elapsed_time = toc;

if dump_output_information == 1,
PSNR_INITIAL_ESTIMATE = 10*log10(1/mean((y(:)-double(y_hat(:))).ˆ2));
fprintf(’BASIC ESTIMATE, PSNR: %.2f dB\n’, PSNR_INITIAL_ESTIMATE);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Step 2. Produce the final estimate by Wiener filtering (using the
%%%% hard-thresholding initial estimate)
%%%%
%%%%%
%%%%%

%%%%%%%%%%WE DO NOT USE THE WIENER FILTERING PART%%%%%%%%%%%

%%%%%
%%%%%

%tic;
%y_est = bm3d_wiener(z, y_hat, hadper_trans_single_den, Nstep_wiener, N1_wiener, N2_wiener, ...
% ’unused arg’, tau_match_wiener*N1_wiener*N1_wiener/(255*255), (Ns_wiener-1)/2, (sigma/255),...
% ’unused arg’, single(TforW), single(TinvW)’, inverse_hadper_trans_single_den, Wwin2D_wiener,...
% smallLNW, stepFSW, single(ones(N1_wiener)) );
%wiener_elapsed_time = toc;

y_est = y_hat;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Calculate the final estimate’s PSNR, print it, and show the
%%%% denoised image next to the noisy one
%%%%
y_est = double(y_est);

PSNR = 0; %% Remains 0 if the true image y is not available
if (˜y_is_invalid_image), % checks if y is a valid image

PSNR = 10*log10(1/mean((y(:)-y_est(:)).ˆ2)); % y is valid
end

if dump_output_information == 1,
fprintf(’FINAL ESTIMATE (total time: %.1f sec), PSNR: %.2f dB\n’, ...
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wiener_elapsed_time + estimate_elapsed_time, PSNR);

figure, imshow(z); title(sprintf(’Noisy %s, PSNR: %.3f dB (sigma: %d)’, ...
image_name(1:end-4), 10*log10(1/mean((y(:)-z(:)).ˆ2)), sigma));

figure, imshow(y_est); title(sprintf(’Denoised %s, PSNR: %.3f dB’, ...
image_name(1:end-4), PSNR));

end

return;

. readraw.m: is responsible for reading the raw data (e.g: “protein.mrc” and

“hansandrey.raw”) and give a readable MatLab format.

function [data] = readraw(filename, type, size, endian)
%Function to read raw data
%
%INPUT Parameters
%
%filename -> path of the RAW data
%type -> type of data, float, uint, int, binary...
%size -> size of the file
%endian -> litte ’l’ or big ’b’ endian
%
%OUTPUT Parameters
%
%data -> vector with the RAW data

if( nargin == 3 )
endian = ’b’;

end

fp=fopen(filename, ’rb’, endian);
data = fread(fp, size, type);
fclose(fp);

return

. oneDto3Ddata.m: reshapes the data from 1D (vector form) to 3D data (cube form).

function [data] = oneDto3Ddata(rawdata, dimaxis, header)
%Function to read raw data and reshape into 3D-data
%
%INPUT Parameters
%
%rawdata -> vector of RAW data
%dimaxis -> dimension of cube axis
%header -> if the data has a header (yes) o not (no)
%
%OUTPUT Parameters
%
%data -> reshaped 3D-data

k=1;
l=1;
m=1;

ds = size(rawdata);

if strcmp(header, ’yes’) == 1
ite = ds(1) - 256;

else
ite = ds(1);

end
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for i=1:ite

if strcmp(header, ’yes’) == 1
data(l,k,m) = rawdata(i+256);

else
data(l,k,m) = rawdata(i);

end

if mod(k,dimaxis)==0;
k=0;
if mod(l,dimaxis)==0

l=0;
m=m+1;

end
l=l+1;

end
k=k+1;

end

return

. slices.m: takes 2D slices of a 3D structures in directions z, y or x.

function [] = slices(data, dimaxis, pathname, figure, dim)
%Function that with an INPUT 3D data takes the 2D-slices around the z, y or x axis and
%saves them in the pathname path
%
%INPUT parameters
%
%data -> 3D data which we want to obtain its slices, it has to be
%normalized between 0 to 1.
%dimaxis -> dimesion of cube axis
%pathname -> path where you want to save the slice, automatically in /home
%drive and .png format. Example: ’/home/arvs/Documents/name_of_the_picture’
%figures -> if figure is set to ’1’ then we save the Matlab figures in .png format instead of
% the common .png images
%dim -> in which dimension we want to take the slices x, y or
%z(default)

%NOTE: if you are getting images from the file ’philip.mrc’ it’s going to
%be necessary to multiply the data per 255, cause the values of the data
%are too low and it’s impossible to appreciate the original values in the image.

if (exist(’figure’) ˜= 1)
figure = 0; %% default figure input

end

if (exist(’dim’) ˜= 1)
dim = ’z’; %% default figure input

end

if dim == ’z’
for i=1:dimaxis

ima_fin = data(:,i,:)/max(data(:)); %We obtain and shrink the data between 0 to 1

fig = imagesc(ima_fin); %in case we want to save the Matlab figure
image_name = pathname;

if figure == 0
filename = sprintf(’%s%d.png’,image_name, i );
imwrite(ima_fin,filename,’png’)

else
filename = sprintf(’%s%d’,image_name, i );
saveas(fig,filename,’png’);
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end

end
end

if dim == ’y’
for i=1:dimaxis

ima_fin = data(:,i,:)/max(data(:)); %We obtain and shrink the data between 0 to 1
ima_fin = rot90(squeeze(ima_fin),3); %we have to rotate 270 degrees due to
%squeeze function, cause it is changing the order of the matrix.

fig = imagesc(ima_fin); %in case we want to save the Matlab figure

image_name = pathname;

if figure == 0
filename = sprintf(’%s%d.png’,image_name, i );
imwrite(ima_fin,filename,’png’)

else
filename = sprintf(’%s%d’,image_name, i );
saveas(fig,filename,’png’);

end

end
end

if dim == ’x’
for i=1:dimaxis

ima_fin = data(i,:,:)/max(data(:)); %We obtain and shrink the data between 0 to 1
ima_fin = rot90(squeeze(ima_fin),3); %we have to rotate 270 degrees due to
%squeeze function, cause it is changing the order of the matrix.

fig = imagesc(ima_fin); %in case we want to save the Matlab figure

image_name = pathname;

if figure == 0
filename = sprintf(’%s%d.png’,image_name, i );
imwrite(ima_fin,filename,’png’)

else
filename = sprintf(’%s%d’,image_name, i );
saveas(fig,filename,’png’);

end

end
end

return

.fft_slice.m: gives the Fourier transform of the 2D slices of a 3D structure.

function [] = fft_slice(data, dimaxis, pathname)
%Function that gives the FFT transform of each slice of 3D data and saves
%the FFTs in the "filename" path.
%
%INPUT parameters
%
%data -> 3D data which we want to obtain its slices, so the data is a
%variable in matlab
%dimaxis -> dimesion of cube axis
%pathname -> path where you want to save the slice, automatically in the /home/arvs/Documents
%path and .png format. Example: ’/(/backslash/)path/(/backslash/)name_of_the_picture’

for i=1:dimaxis
noise = 0; % It is optional to add noise
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m = clock;
sec = ceil(m(6)); % We generate a different seed each time we enter in the loop
randn(’seed’, sec*i); % We generate the seed of the gaussian noise

slice_fft = fft2(data(:,:,i)+noise); % We call the function fft2 to proceed with the fourier transform in 2D
ima_fin=(1/max(abs(slice_fft(:))))*fftshift(abs(slice_fft));% Shift to get the f=0 in the

% center of the picture and shrink data between 0 to 1

image_name = pathname;
filename = sprintf(’%s%d.png’,image_name, i );
imwrite(ima_fin,filename,’png’);

end
return

.fft_slice_fromdisk.m: does the same as the last function but instead of taking 2D

slices of a 3D structures, takes the slices from a given path.

function [image] = fft_slice_fromdisk(data, num_images, image_format)
%Function that with an INPUT 2D data from a path makes the fft.
%
%INPUT parameters
%
%data -> 2D data which we want to obtain the fft
%num_images -> total number of images that we want to obtain the fft
%image_format -> format of the images
%
%OUTPUT parameters
%
%image -> fft of the last image
%
for i=1:num_images

noise = 0; % optional to introduce noise (double(1.0)/255)*randn(80);
m = clock;
sec = ceil(m(6)); % We generate a different seed each time we enter in the loop
randn(’seed’, sec*i); % We generate the seed of the gaussian noise

data_new = sprintf(’%s%d.%s’,data, i, image_format );

image = double(imread(data_new))/max(data_new(:));% We read the image which we want to obtain the fft
% and we shrink the values between 0 to 1

slice_fft = fft2(image+noise); % We call the function fft2 to proceed with the fourier transform in 2D
ima_fin=fftshift(abs(slice_fft))/max(slice_fft(:)); % Shift to get the f=0 in the

% center of the picture and shrink data between 0 to 1
image_name = ’/home/arvs/Escriptori/Philip_Meeting/fft_trash_’;

filename = sprintf(’%s%d.%s’,image_name, i, image_format );
imwrite(ima_fin,filename,image_format); %we save the image in the specified path by filename

end
return

. represent_contours.m: represents 3D structures in MatLab.

function [] = represent_contours(data, num_lines, iso_level, first_slice, last_slice)
%Function to represent 3D structures
%
% INPUT Parameters
%
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% data -> the 3D-data that we are going to represent
% num_lines -> number of lines per contour
% iso_level -> level of the iso value
% first_slice -> which slice is going to be the first
% last_slice -> which slice is going to be the last
% reconstruct
%
figure(1);

contourslice(data,[],[],[first_slice:last_slice],num_lines);
view(3);
daspect([1 1 1]);
axis tight

figure(2);

isosurface(data, iso_level, data);
view(3);
daspect([1 1 1]);
axis tight

return

.writeMRC.m: converts a MatLab 2D or 3D structure into a MRC file.

function writeMRC(data, size, path_name)
%
% Write out a 2D image or a 3D volume as an MRC map file, for example for viewing in
% Chimera. ’data’ is the 3D array, size is the voxel size in angstroms.
%
% INPUT Parameters
%
% data -> is the 3D structure that we want to convert into MRC structure
% size -> is the size, in Ångströms, of the voxels in the new representation
% path_name -> where do you want to save the MRC structure

q = typecast(int32(1),’uint8’);
machineLE=(q(1)==1); % true for little-endian machine

hdr=int32(zeros(256,1));

sizes=size(data);

if numel(sizes)<3
sizes(3)=1;

end;
if nargin >3

sizes(3)=nim;
end;

% Get statistics

data=reshape(data,numel(data),1); % convert it into a 1D vector
theMean=mean(data);
theSD=std(data);
theMax=max(data);
theMin=min(data);

hdr(1:3)=sizes; % number of columns, rows, sections
hdr(4)=2; % mode: real, float values
hdr(8:10)=hdr(1:3); % number of intervals along x,y,z
hdr(11:13)=typecast(single(single(hdr(1:3))*size),’int32’); % Cell dimensions
hdr(14:16)=typecast(single([90 90 90]),’int32’); % Angles
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hdr(17:19)=(1:3)’; % Axis assignments
hdr(20:22)=typecast(single([theMin theMax theMean]’),’int32’);
hdr(23)=0; % Space group 0 (default)

if machineLE
hdr(53)=typecast(uint8(’MAP ’),’int32’);
hdr(54)=typecast(uint8([68 65 0 0]),’int32’); % LE machine stamp.

else
hdr(53)=typecast(uint8(’ PAM’),’int32’); % LE machine stamp, for writing with BE machine.
hdr(54)=typecast(uint8([0 0 65 68]),’int32’);

end

hdr(55)=typecast(single(theSD),’int32’);

handle=fopen(path_name,’w’,’ieee-le’);
count1=fwrite(handle,hdr,’int32’);
fclose(handle);

return;

. test.m: tests if the filtering block is working properly.

%Function that it helps to prove that the filter block "Filtering" works
%properly. To check that, we use one of the common pictures in image
%processing "cameraman.jpg" in which one we introduce gaussian noise
%that it is filtered by the filter block...and the results are saved
%in the variable filtered, original and in the PSNR factor.

function [filtered, origi, PSNR] = test(path, sigma)

if (exist(’sigma’) ˜= 1)
sigma = 25; %% default sigma

end

if (exist(’path’) ˜= 1)
path = ’E:\toolbox_sparsity\cameraman.jpg’; %% default path

end

m = clock;
sec = ceil(m(6)); % we generate a different seed each time we enter in the loop
randn(’seed’, sec); %We generate the seed of the gaussian noise

original = imread(path);
origi = double(original/256);
noisy = origi + (sigma/256)*randn(size(original));

figure(10);imshow(double(original/256)); title (’%%ORIGINAL%%’);
figure(11);imshow(noisy); title (’%%NOISY%%’);

[NA, filtered]= BM3D(1, noisy, 25);
PSNR = 10*log10(1/mean((origi(:)-filtered(:)).ˆ2))
figure(12);imshow(filtered); title (’%%FILTERED%%’);

return
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B Appendix C: Standard Deviation graphics
In this appendix we show the standard deviation graphics of the excitation noise
which we apply in different cases.

. 22 and 11 projections case:

Figure B.1: Standard deviation projections case

. 90º missing data case:

Figure B.2: Standard deviation 90º case

. Low frequency case:
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Figure B.3: Standard deviation low frequency case

. 3D data case:

Figure B.4: Standard deviation 3D case

C Appendix C: Reconstruction of the Shepp-Logan
Phantom

In this appendix is shown the reconstruction sequence of Shepp-Logan phantom
of section 5.1 case c:
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Figure C.1: Shepp-Logan reconstruction. Slices 1, 1000, 2000..., 19000.

D Appendix D: 3D-data
. In the following section is shown a group of xy-slices from original 3D model
“hansandrey.raw”:
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Figure D.1: Hansandrey xy-slices 15, 20...85, 90.

. In the following section is shown a group of xy-slices from reconstructed 3D
model “hansandrey.raw”:

Figure D.2: Hansandrey reconstructed xy-slices 15, 20...85, 90.

. In the following section is shown a group of xz-slices from original 3D model
“hansandrey.raw”:
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Figure D.3: Hansandrey xz-slices 15, 20...85, 90.

. In the following section is shown a group of xz-slices from reconstructed 3D
model “hansandrey.raw”:

Figure D.4: Hansandrey reconstructed xz-slices 15, 20...85, 90.

. In the following section is shown a group of slices from 3Dmodel “philip.mrc”:
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Figure D.5: Protein slice #26 and #29

Figure D.6: protein slice #32 and #35

Figure D.7: Protein slice #38 and #41
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Figure D.8: Protein slice #44 and #47

Figure D.9: Protein slice #50 and #53

85



E Appendix E: Processing Time
We have not talked about the processing time of the algorithm, because we did
not think that it was an important issue of the project. However we want to
give an approximate idea about it with the following graphic where is shown
the needed processing time to reconstruct an image of “x” pixels with 20000
iterations:

Figure E.1: Processing Time by pixels

As you can see to reconstruct an image of 256×256 we need almost 100 minutes.
It is what we spend to reconstruct Shepp-Logan phantom.

For Hansandrey crystallography we spent for each slice around 19 minutes. That
model consisted in 100 slices, then the total amount of time is 100× 19 = 1900
minutes. This is a total of approximately 32 hours non-stop processing.

We resume all cases in this table:

Case Processing Time
Image 64 pixels 8min 30seg
Image 80 pixels 12min
Image 100 pixels 19min
Image 128 pixels 27min
Images 256 pixels 100min

Hansandrey 31h 40min
Philip 16h

Table E.1: Processing time
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