

MASTER THESIS

TITLE: Analysis and evaluation of high performance web servers

MASTER DEGREE: Master in Science in Telecommunication Engineering
& Management

AUTHOR: Albert Hidalgo Barea

DIRECTOR: Rubén González Blanco

SUPERVISOR: Roc Meseguer Pallarès

DATE: July 13 th 2011

Title: Analysis and evaluation of high performance web servers

Author: Albert Hidalgo Barea

Director: Rubén González Blanco

Supervisor: Roc Meseguer Pallarès

Date: July 13 th 2011

Overview

Web servers are a very important tool when providing users with requested
content on the Internet. Usage of the Internet is growing day-by-day, making
those software applications essential.

In the first part of the thesis, the web server world will be introduced to the
reader, by giving a brief explanation of some of the available technologies as
well as different dynamic protocols. Also, as there are different web servers
available in the market, during this report it will be chosen the best performing
ones. So, it will be presented a comparative chart between all of them in order
to show the most important features of each one.

Defining the scenario and the test cases is mandatory. For this reason, it is
described the used hardware and software used to perform those benchmarks.
The hardware is maintained equal during the whole test process, in order to let
web server’s performance gaps to their internal architecture. Operating system
and benchmarking tools are also described and given some examples.
Furthermore, test cases are chosen to show some strengths and weakness of
each web server, enabling us to compare the relative performance between
them.

Finally, the last part of the report consists on presenting the obtained results
during the benchmark process, as well as presenting some lessons learned
during the curse of the whole thesis, summing-up with some conclusions.

INDEX

CHAPTER 1. INTRODUCTION .. 1

1.1. Project scope ... 1

1.2. Background and motivation ... 2

1.3. Report organization ... 2

CHAPTER 2. WEB SERVERS ... 4

2.1. Web languages .. 4

2.1.1. Programming languages classification ... 4

2.1.2. Web content classification .. 6

2.2. Dynamic web content technologies .. 7

2.2.1. CGI ... 7

2.2.2. FastCGI .. 8

2.2.3. Servlet ... 8

2.2.4. JSP ... 9

2.2.5. uWSGI .. 9

2.3. HyperText Transfer Protocol (HTTP) ... 10

2.4. Web server selection ... 11

2.4.1. Available web servers ... 11

2.4.2. Web servers feature comparison ... 13

2.4.3. Architecture overview ... 15

2.5. Software stack ... 18

CHAPTER 3. TESTBED FOR WEB SERVER BENCHMARKING 19

3.1. Used machines and software ... 19

3.2. Network benchmark .. 20

3.3. Software configuration ... 20

3.3.1. Operating system ... 21

3.3.2. Web server configuration .. 21

3.4. Test cases .. 21

3.4.1. Definition ... 21

3.4.2. Benchmarking tools .. 22

3.4.3. Static tests .. 23

3.4.4. Dynamic tests ... 23

3.4.5. Keep-alive tests .. 25

3.4.6. HTTPS tests ... 26

3.4.7. Load test ... 26

CHAPTER 4. TEST RESULTS .. 28

4.1. Static tests .. 28

4.1.1. ST-1 HTML test .. 28

4.1.2. ST-2 Image small test ... 32

4.1.3. ST-3 Image large test ... 35

4.1.4. Static tests conclusions .. 36

4.2. Dynamic tests .. 37

4.2.1. DT-1 PHP test .. 37

4.2.2. DT-2 PYTHON test ... 41

4.2.3. Dynamic tests conclusions ... 44

4.3. HTTPS tests .. 46

4.3.1. HTTPST-1 HTML test ... 47

4.3.2. HTTPST-2 PHP test ... 49

4.3.3. HTTPST-3 PYTHON test .. 50

4.3.4. HTTPS tests conclusions ... 51

4.4. Load test ... 53

CHAPTER 5. LESSONS LEARNED .. 55

CONCLUSIONS ... 57

REFERENCES ... 58

APPENDIX ... 60

A.1 Scenario configuration ... 60

A.2 Test cases extended ... 74

A.3 Test results extended .. 82

Introduction 1

CHAPTER 1. INTRODUCTION

Since the introduction of the Internet network, people can communicate with
each other around the world using different online tools. Also, it has been a
driving force to allow people to use electronic commerce to buy different goods,
as well as share media content. Nowadays, there are almost 7,000 million [1]
people in the world, with an estimation of up to 2,000 million Internet users. In
order to see the importance of this share, in the year 2000 it was only 360,000
Internet users, so there has been an increase of 445%.

A web server powers all the operations done in the Internet, which is in charge
of serving the requested content. Moreover, the second important tool in order
to view this content is a web browser, which will translate lines of codes in a
more understanding texts and images. As in consumer software, web servers
are very powerful applications installed into computers that process the different
web page languages. Not all the web servers found in the market are equal,
they differ in some architectural points as well as in their distribution model.

In May 2011, it was counted a total of almost 325 million Internet sites [2]
around the world. Being the web servers an important tool to provide content in
the Internet, it is important to highlight some sharing between them. There are
different well-known web servers, such as Apache Httpd, Microsoft IIS, Nginx,
Google Blog and Lighttpd. The first one, Apache is the most used for this task,
with a share of 62%, far ahead from Microsoft’s solution, with only 18%.

1.1. Project scope

The aim of this project is to evaluate and benchmark different high performance
web servers found in the market. For this reason, it will be chosen different web
servers, which fulfill some important features, all of them open source. Used
hardware will remain equal for all the scenarios. It will be useful to compare
their programming architectures which, at the end, will set the differences in
performance.

It is important to comment the performance differences regarding used
technologies, and point out which could be the best suited for the different test
cases. Chosen test cases will show their performance in different areas, which
are being exploited by day-to-day usage. The absolute performance is not as
important as the relative performance between each web server, which will
emphasize the differences in architecture as well as features. Furthermore, it
will be benchmarked different dynamic web technologies in order to see
performance limits of them, and how they behave during the course of the test.

2 Analysis and evaluation of high performance web servers

1.2. Background and motivation

This report is in line of what the Technology and Architecture Coordination
(TAC) department is doing inside Telefónica I+D (TID) [3]. TAC department is in
charge of evaluating and prototyping, as well as give technological support for
other initiatives inside TID. Supporting different areas inside Telefónica I+D,
gives TAC department a horizontal vision of all the current deployed software
inside the company (see Fig. 1.1). In order to give support, it is needed to
understand what the initiative is doing, which is the software that they are
currently using or planning to use and, finally, give some initial prototype.

Fig. 1.1: Technology and Architecture Coordination department

So, evaluating web servers, which are currently used in different Internet
service projects, is an interesting report. This report could be useful as a master
thesis, but also as an introductory point or reference document for deciding the
use of some web server regarding their features.

1.3. Report organization

This master thesis is divided in five chapters, in which of them will be introduced
different aspects of this project. The first chapter is meant to introduce the
reader into the report, trying to highlight the interest of doing an analysis and
evaluation of high performance web servers. As stated in the introduction, the
evolution of the Internet networks makes necessary to have high performance

Introduction 3

systems in order to serve all the possible requests. For this reason, it is needed
high performance hardware, but also high performance applications, which at
the end, will be in charge of serving those answers.

The second chapter consists in presenting different web servers as well as
some needed technology and architecture concepts. For this reason, it is given
a brief introduction to HTTP as well as other web content technologies that
makes possible to serve content to Internet users. Afterwards, it will be
presented the chosen web servers for this report, and some architecture
concepts to take into account during the results chapter.

The next chapter will define the testbed followed to benchmark each web
server. It is important to define as good as possible the test cases as well as the
whole scenario, in order to take into account all the variables. It will be
presented some hardware and operating system key information, in order to
expect some performance results. Those given characteristics will not change
during the entire benchmark process, giving the opportunity to extract some
relative results. There will be different oriented test cases, in order to see
strengths and weaknesses of each web server. Finally, a more realistic test will
be defined, which will allow to present more real performance results.

Chapter four brings the obtained results. This is one of the most important
chapters of the report, as it will show all the performance results obtained during
the different test cases defined previously. Also, it will be possible to extract
some conclusions derived from each test, and at the end, give a
recommendation of software to use regarding the needs of each scenario.
Finally, it will be presented some lessons learned during the execution of this
master thesis as well as some conclusions about the project.

4 Analysis and evaluation of high performance web servers

CHAPTER 2. WEB SERVERS

The use of Internet in our day-to-day duties is becoming very common.
Nowadays, the usage of Internet is increasing as more people have the
opportunity to access it. And, this is thanks to the deployment of many different
services, such as online shopping, information consultant or media related.

Internet was developed by DARPA (department of Defense of the United States
of America) in the 60’s [36]. But, its purpose was to be a military network where
exchange confidential information. It did not exploited to be a communication
tool since the end of 1990, when Tim Berners-Lee [4] (while he was working for
the CERN [5]) begun the development of the first browser, called
“WorldWideWeb”, which has been the seed for further browsers and web
development. Internet has evolved to become a very important communication
way, displacing in some cases more traditional ways of communication such as
readable, radio or television.

Programming for the web is like programming for the computer environment, as
latest features introduced in the web are very similar to those found in the
desktop. There are different programming languages used in the web (e.g.,
PHP, Java, Python, etc.), and all of them belong to high level programming
languages. HTML language, which is used in all the web pages, is a markup
language [35] and therefore, is not considered as a programming language.
Moreover, accessing content in the Internet can be done by different means,
such as HTTP (HyperText Transfer Protocol), FTP (File Transfer Protocol),
SSH, etc. Although, the most used in order to surf the web is HTTP.

2.1. Web languages

A programming language is an artificial language created to give the possibility
to interact between humans and machines. In the history of the computers there
has been a lot of them, some of them focused in different areas. The increase
of web usage gives the opportunity to create new features and also use even
more dynamic languages, as some features are not anymore reserved for
desktop applications. There are different categories to classify the languages
used in the web. The goal of this report is not to describe all the categories and
types of programming languages, but it is useful to have an idea of what is
being used in the computer programming world.

2.1.1. Programming languages classification

2.1.1.1. Low level programming languages

This type of language provides little or any abstraction from computer
instructions, being as close as possible to the hardware. The code can be run

Web servers 5

directly to the processor without using any compiler. Low level programming
languages can be made to run very fast and with a low memory footprint; but it
also has some important drawbacks. It must be run on specific machines, as
not all the processors have the same instructions sets. Also, it is more difficult to
understand when programming and debugging.

Web development could not be done using this approach, as developers would
need to create specific programs for each hardware available in the market.
Also, it would not be possible to deploy web applications, because the time
spent to create and maintain those applications would be high.

2.1.1.2. High level programming languages

A high level programming language is the programming language that offers
high abstraction to the instruction set that understands the processor. Normally,
these programming languages are programmed using more natural language,
which gets closer with the human communication. Also, they do not show
processor properties, as it needs a compiler in order to convert the script into
assembly code. Eventually, any programming language must be converted to
machine instructions to be executed. In comparison with low level programming
language, high-level ones have higher portability, as maybe they are set to work
in different platforms with different hardware. This property is part of the
compiler, which sets the different parameters to run into the hardware.

There are different executing types of high level programming languages. The
first one is compiled languages. Those languages are written in a program and
before being executed, they must be compiled. Compilation process converts
from script to machine instruction set, which later would be executed. The result
file is platform specific, as it contains the instruction set of only one platform.
This is given by the compiler, which will work only in a given platform. As, for
instance, running a C compiled program in Windows and in Linux machine is
not possible. Eventually, the web developer would create its web application
and deploy it always in the same platform (for instance, Linux web servers
supporting different Linux operating systems’ distributions).

The second one is compiled languages on virtual machines. This case is similar
to the previous one, but with the exception of adding a virtual machine between
the script and the operating system. Virtual machine is in charge of converting
the script into the instruction set that the hardware will understand. It gives
portability to the script, as it could be executed in any similar virtual machine. In
order to ensure that the script can run, there must be a virtual machine for each
environment. One virtual machine that is widely used is Java. It has a virtual
machine for almost any operating system, allowing portability of all Java
programs and Java web applications. But, the main drawback of this execution
type is the performance. Introducing a new layer between the script and the
operating system decreases the performance of the system, although it
introduces portability.

6 Analysis and evaluation of high performance web servers

In third place are interpreted programming languages. Those languages run
indirectly into the operating system. Interpreting language gives some flexibility
against compiled languages. These are platform independent, as they only
need the main library installed in the operating system to run. Some interpreted
web languages are PHP, Javascript, Python, etc. Those languages are being
used to provide dynamic content to web pages. But, those high level
programming languages in order to run as a web application must be used
together with a dynamic web content technology, which will act as a gateway for
them.

2.1.2. Web content classification

2.1.2.1. Static content

Static web content consists in showing a web page as equally as it is stored into
the web server. It does not offer any user interaction delivering the requested
file without any change. Later on, when the web browser receives the file it
displays it in a user-friendly way. Some examples of this static content
classification can be HTML only web pages, as well as images. This type of
content is equal for all the users viewing the web page, no offering personalized
web navigation. But, on the other hand it is not computational expensive for the
web server, as it does not need to process anything.

2.1.2.2. Dynamic content

Dynamic web content are those web pages which offer user interaction or are
generated by the web server. In this case, the web server must offer some kind
of language interpreter or compiler to process the requested web page file.
Moreover, it can be configured to display different content to different users,
allowing a more personalized web experience.

There are two different dynamic content web pages classification, regarding the
dynamic content which is being used. The first one, are those web pages using
client-side scripting and content creation. In this case, dynamic behavior occurs
within the presentation layer in the client’s web browser, in response for some
actions, such as mouse over a section, keyboard actions or timings. Some
examples of client-side dynamic languages are JavaScript or ActionScript.
Usually, this dynamic language is embedded into the HTML web page, and it is
being processed by the web browser once it is showed.

Meanwhile, server-scripting and content creation are those programs being
executed in the web server side and used to personalize the user’s navigation
experience. The response web page offered by the web server is triggered by
some HTML form post parameters, URL parameters, or simply by the type of
web browser. Those dynamic content web pages are used with server-side
languages such as PHP, Python, Java, etc. Those languages, as explained in
the previous section, must be used with some compiler or interpreter, which will
increase the web server generated load.

Web servers 7

2.2. Dynamic web content technologies

Dynamic web pages are very important today. Internet growth and the
introduction of new services like electronic commerce or media related, make
use of dynamic web pages, which is an essential feature in today’s web servers.
The consequence of using such dynamic content is that web servers are getting
more stressed, loading even more their hardware. At the end, this is translated
in a performance penalty for the web server.

2.2.1. CGI

CGI stands for Common Gateway Interface [10] and it is a simple interface for
running external programs, software or gateways from HTTP servers. It is
standardized in the RFC 3875. So, CGI allows HTTP servers to share the
request response. The web server is responsible for managing connection, data
transfer, transport and network issues, whereas CGI script handles the
application issues, such a data access and document processing.

Common Gateway Interface has been the de facto standard of processing
dynamic contents in the HTTP web servers, but newer solutions increase its
performance as well as security. It is possible to write CGI programs for most
available programming languages, such as PHP, Python, C, Perl, etc. The
working principle of CGI is as follows. When there is a request to a certain URL,
the web server receives it and processes it. If the requested information
matches some rules, which make them dynamic, passes it to the CGI software.
The CGI software performs the instructions given in the requested script. Once
the information is processed, the CGI program process the output in such a way
that the web server will understand (for example, creating an HTML page).
Finally, the web server will return the information to the user, once all this
process has ended.

But CGI has also some drawbacks related to performance and security. Calling
a CGI script means the creation of a new process. So each time that a CGI path
is requested a new process must be created to address this request. Creating a
new process has its own performance penalty. The operating system must
allocate some memory for it, and also the load generated when changing
processes affects the performance. To minimize this effect, it may be used
complied languages which consume fewer resources compared to interpreted
ones, but still is a slow method. There are some security issues when using CGI
software. To run CGI scripts, the file must be executable, so you are letting
someone to run a program in your server. Some hosting companies do not let
users to run CGI scripts, for this reason CGI can be redirect to other machines.
As scripts are executable, if they have malicious code it could be a big security
issue.

8 Analysis and evaluation of high performance web servers

2.2.2. FastCGI

FastCGI [11] is an evolution of the previous explained CGI protocol. This
increasingly use of dynamic web pages has highlighted the performance limits
of CGI. FastCGI tries to solve some of the problems explained in CGI, and after
all get better performance.

Very large and interpreted applications may have a slow start. Also, initialization
such as logging on to database or connections to remote machines may impact
the performance. In contrast of CGI, FastCGI processes are persistent. After
finishing a request, this process waits idle for a new request instead of finishing
the process. This lowers the performance penalty of creating new processes in
the operating system. When configuring FastCGI, there is the possibility to
specify how many FastCGI processes to spawn. This option lets the user to
distribute the load between processes, and finally, increase the performance of
the web site by running multiple requests simultaneously.

FastCGI is language and server independent. It has different server APIs to
bind it with different web servers, as well as development libraries for mayor
programming languages such as C, C++, Perl, Python, PHP, etc. This
interoperability between web servers and platforms allows an easier
deployment. It is an open standard, so anyone can implement it or improve it.
Finally, using FastCGI does not imply mayor changes to script programmer,
because it is like programming for CGI. Security can also be increased as
FastCGI can communicate over TCP/IP connections, which gives the possibility
to run applications remotely from the web server. Apart from security, it can also
provide some scalability, load balancing features and high availability. It
implements new functionalities to support different application roles, such as
responder (the basic FastCGI role, which is the same as CGI), filter (FastCGI
filters the requested web server file before sending it), and authorizer (FastCGI
program performs an access control for the request).

2.2.3. Servlet

A Servlet [12] is a Java class, which is used to extend the capabilities of servers
that host applications accessed via a request-response programming model.
Servlets are the response of Java programming language to CGI. Java Servlets
are more efficient, portable and with higher performance than CGI technology.
As said before in the CGI section, when a request is made to a CGI page, a
new process is created to answer this request. The creation of a new process
each time has a computational cost, and could it be that the process creation
takes more time than the CGI execution. Servlets solve this, by not creating a
new process each time a new request arrives. Servlet requests are handled by
a separate thread, avoiding some of the problems of creating processes.

When simultaneous request to the same CGI script arrives to the web server, it
loads and copies into system’s memory the same script as many times as
concurrency level indicates. However, Servlets create one new thread per new
request, but there will be only one copy of the Servlet script in the system

Web servers 9

memory, which will be shared between all active threads. So, running only one
instance of the Servlet reduces the memory usage and increases the
performance of the web server. But sharing the address space makes them less
robust, and forces the programmer to ensure the use thread safe features.

As a security concern, Servlets are executed within a restrictive environment.
This environment is called sandbox. This model gives different levels of trust
based on the source of the Servlet, giving open access to the server or limited
access by a security manager. Java Servlets have good portability as they are
written in Java. Java API is well standardized so any compiling platform with
that API will accept the Servlet.

2.2.4. JSP

JavaServer Pages (JSP) [13] is a Java technology that enables the creation of
dynamic web pages based on HTML or XML tags. Being part of Java
programming language, JSP applications are feature rich and also platform
independent. JSP technology uses XML-like tags to encapsulate the logic that
generates the content for the page. Meanwhile, the application logic can reside
inside the web server.

This separation of the logic and the content allows the programmer to do quick
changes and also reuse the design. Being an extension of a Java Servlet
technology makes JSP platform independent, as it can be executed in any
Servlet compiling web server. One advantage of JSP against Servlets is that it
is easier to write and edit HTML code than to do the same with Servlet
instructions (as for instance println). Also, the separation of the logic and the
content could lead to split of tasks. As said before, JSP uses HTML or XML like
tags, apart from the HTML code of the web page. To add JSP functionalities to
the web page, the function have to be introduced between <%= %> or <% %>.
Inside these brackets it is possible to add directives or instructions that make
reference to Java code, which will be interpreted and processed by the web
server.

2.2.5. uWSGI

WSGI [14] is the Web Server Gateway Interface for Python programming
language. It is a specification for web servers and application servers to
communicate with web applications. It is a Python standard, described in detail
in PEP 333 [15]. The goal of WSGI is to provide a relatively simple yet
comprehensive interface capable of supporting most of interactions between a
Web server and a Web framework.

The WSGI interface has two sides: the "server" or "gateway" side, and the
"application" or "framework" side. The server side invokes a callable object that
is provided by the application side. In addition to "pure" servers/gateways and
applications/frameworks, it is also possible to create "middleware" components
that implement both sides of this specification. WSGI is lower level than CGI,

10 Analysis and evaluation of high performance web servers

but in difference to CGI, WSGI does scale and can work in both multithreaded
and multi process environments. WSGI is not CGI because it is between the
web application and the webserver layer, which can be CGI, mod_python (or
another module), FastCGI or a webserver that implements WSGI in its core.

uWSGI [16] is a fast, self-healing and developer/sysadmin-friendly application
container server coded in C. It can be run in preforming mode, threaded,
asynchronous/evented. It has some features such as low memory footprint,
master process manager, UNIX and TCP socket support, etc.

2.3. HyperText Transfer Protocol (HTTP)

The Hypertext Transfer Protocol (HTTP) [6] is a stateless application-level
protocol for distributed, collaborative, hypermedia information systems used in
the World Wide Web. A feature of HTTP is the typing and negotiation of data
representation, allowing systems to be built independently of the data being
transferred. HTTP has been in use by the World Wide Web global information
initiative since 1990.

Since 1990, there have been different HTTP specifications by the IETF. The
first version was the HTTP/0.9 [7], and was a simple protocol for raw data
transfer across the Internet. HTTP/1.0 [8] improved the standard in 1996 by
allowing messages to be in the format MIME-like messages. These messages
contain information about the data that is being transferred. However, as usage
of the Internet increases, the need to interact with proxies, content catching, use
persistent connections or virtual hosts was not satisfied.

The latest version, HTTP/1.1 [9], released in 1999 introduced some changes to
the protocol. In HTTP/1.0, most implementations used a new connection for
each request/response. Meanwhile, in HTTP/1.1 a connection may be used for
one or more request/response exchanges, although connections may be closed
for a variety of reasons. HTTP communication usually takes place over TCP/IP
connections. The default port for the communication is TCP 80, but other ports
can be used. Using a TCP port does not force to use always TCP architecture,
only that presumes a reliable transport protocol. Any protocol that provides such
guarantees of reliability could be used too.

HTTP protocol is a request/response protocol. The working principle is as
follows. A client sends a request to the server in the form of a request method,
in which includes the URI of the object, HTTP protocol version, MIME headers
and client information. Next, the server answers it with a message, which
includes the protocol version and a success or error code, followed by a MIME-
like message containing server information, and possible entity-body content.
As stated before, HTTP is a negotiation protocol. It is a mechanism to select the
appropriate representation when answering a request from a client. Some of the
negotiations include: used charset, content coding, transfer coding, media type,
and language tags.

Web servers 11

HTTP messages are composed by two parts, the headers and the body. The
first one is where is placed all the information needed to display the transferred
data, in which are delivered all the possible negotiations described before.
Those parameters are read by the browser to prepare the data; not always will
be available all the headers, so the order is not important. Finally, the body is
the part of the message where the data of the message is. This data will be
displayed with the given format as well as with all the parameters present in the
header.

2.4. Web server selection

When visiting a web page in the Internet there must be a HTTP web server in
order to serve that request. Web servers need to be able of processing this
request and send the response to the different clients. As said previously in this
chapter, there are differences between static content and dynamic, being more
expensive (in terms of CPU processing) to execute the latest one.

In next sections of this chapter, the attention will be focused on selecting the
web servers for this comparison, and explain their architecture and main
features.

2.4.1. Available web servers

There are different providers of web servers in the market, some of them are
free, meanwhile other are commercial. In this report, it will only be tested open
source web servers. As said before, it will be chosen web servers that are
highly customizable by the user and with enough interesting features.

2.4.1.1. Apache httpd

Apache httpd [17] is a collaborative project that involves people around the
world to create a robust, commercial-grade, featureful and open source HTTP
web server. The project is part of the Apache software foundation, which also
creates and supports a bunch of different open source projects. Httpd is a very
powerful web server and highly customizable by the final user. Is so extended
and customizable that is included in a lot of Linux distributions, being a perfect
starting point for anyone who wants to create a web site. Also, there is the
possibility to download some bundles in which there is packed the Apache httpd
web server, the PHP and MySQL libraries. Those packages enable the
possibility to create a very powerful and dynamic web site without any
complicate configurations. Other important aspect is that it is available for
almost any platform in the market.

12 Analysis and evaluation of high performance web servers

2.4.1.2. Lighttpd

Lighttpd [18] is a secure, speedier, compliant and flexible web server, designed
and optimized for high performance environments. It has a low memory footprint
compared to other web servers, so it is suitable for systems with limited
resources of CPU and RAM memory. Lighty is a single-threaded, single-
process, event-based, non-blocking-IO web server.

2.4.1.3. Cherokee

Cherokee [19] is a very fast, flexible and easy to configure Web Server. It
supports the most used technologies in the web server front, like CGI, Fast CGI,
SCGI, uWSGI, TLS/SSL encryption, load balancing, reverse HTTP proxy and
much more. Cherokee is configured as a single process but with multithread
support. One differentiate thing that includes Cherokee, is a user-friendly web
interface in which is possible to configure the whole web server. It is very easy
to set up the web server and tune it to get the better performance, as well as
configure all supported technologies such as Fast CGI, uWSGI, etc.

2.4.1.4. Nginx

Nginx [20] is a free, open-source, high-performance HTTP server and reverse
proxy, as well as an IMAP/POP3 proxy server. Nginx is one of a handful of
servers written to address the C10K problem (Ref. [21]). Unlike traditional
servers, Nginx doesn't rely on threads to handle requests. Instead, it uses a
much more scalable event-driven (asynchronous) architecture. This architecture
uses small, but more important, predictable amounts of memory under load. It is
also possible to fork the web server in more than one process, in order to take
profit of all the CPU power.

2.4.1.5. Mongrel2

Mongrel2 [22] is an application, language and network architecture agnostic
web server that focuses on web applications using modern browser
technologies. The term “language agnostic” means that Mongrel2 does not try
to promote any language over any others. It only knows about HTTP requests,
HTTP responses, and asynchronous messages. So, finally, it is independent of
what the final user chooses to work with, and tries to run all of them. In order to
properly do asynchronous, Mongrel2 uses ZeroMQ, which is a decentralized
message-oriented-middleware. Using ZeroMQ lets Mongrel2 communicate with
different languages, operate without following determinate network architecture,
and do it with a very simple communication model and API.

Web servers 13

2.4.1.6. Hiawatha

Hiawatha [23] is an open source web server with a focus on security. This
results in a highly secure web server, in both code and features. Hiawatha can
run on Linux, BSD, Mac OS X and Windows. It supports all kind of technological
features like CGI, Fast CGI, keep-alive support, SSL and more features.
Although it supports dynamic languages, it has been optimized and tested to
run with PHP language. The adoption of Hiawatha is small, so the developer of
the web server announced in March 2011, that there will be support for the
users but the releases and the features introduced to Hiawatha will be reduced.
Although this announcement, it is worth the try and see what has to offer.

2.4.1.7. Tomcat

Apache Tomcat [24] is an open source software implementation of the Java
Servlet and JavaServer Pages technologies. Tomcat provides a pure Java
HTTP web server environment for the java code to run. Servlet and JSP pages
are dynamically loaded into the web server, so their performance will be lower
than for static contents. Tomcat offers a high degree of customization as well as
lot of functionalities. It is an application web server, meaning that is intended to
serve web applications, not only web pages. Also, Tomcat gives the possibility
of running static scripts as well as dynamic by means of CGI protocol. One big
missing feature is the Fast CGI protocol, but Tomcat is focused in executing
Servlets and JSP.

2.4.1.8. Yaws

Yaws [25] is a HTTP high performance 1.1 web server particularly well suited
for dynamic-content web applications. Yaws is entirely written in Erlang and,
furthermore, it is a multithreaded web server where one Erlang lightweight
process is used to handle each client. The performance advantage of Yaws
comes from the use of the different Erlang libraries, which can handle
concurrent processes in an efficient way, using Erlang’s OTP.

2.4.2. Web servers feature comparison

After selecting which web server will be used in this report, it is needed to
compile their features and expose them in a comparison table. Table 2.1 shows
the different features available for each one of the web servers in this report. All
of them are based in the usage knowledge as well as information in their official
web pages.

14 Analysis and evaluation of high performance web servers

Table 2.1: Web server feature comparison.

Apache

httpd
Lighttpd Cherokee Nginx Mongrel2 Hiawatha TomCat Yaws

Provider
Apache

foundation
Lighttpd Cherokee Nginx Mongrel Hiawatha

Apache

foundation
Yaws

Version 2.2.17 1.4.28 1.2.0 0.8.54 1.5 7.4 7.0.10 1.89

Build
October

2010

August

2010

February

2011

December

2010

January

2011

November

2010
March 2011 Sep. 2010

Request

scheduling

(see section

2.4.3)

Multi

process,

Multithread,

Event

driven (in

beta mode)

Single

process

single

thread

event

oriented

Possibility

of fork

processes

Single

process

multi

thread

Single

process

single

thread

event

oriented

Possibility

of fork

processes

Single

process

single

thread

event

oriented

Single

process

multi thread

Single

process

multi thread

Single
process

multi
thread

Kernel

language
C C C C C C Java Erlang

Supported

OS

Windows,

Linux, Mac

OS X, BSD,

Solaris

Windows,

Linux,

Mac OS

X, BSD,

Solaris

Windows,

Linux,

Mac OS

X, BSD,

Solaris

Windows,

Linux, Mac

OS X, BSD,

Solaris

Linux

Windows,

Linux, Mac

OS X, BSD,

Solaris

Windows,

Linux, Mac

OS X, BSD,

Solaris

Windows,
Linux,

Mac OS
X, BSD,
Solaris

HTTPS Yes Yes Yes Yes No Yes Yes Yes

IPv6 support Yes Yes Yes Yes Yes Yes Yes Yes

Modules Yes No No No No No No No

CGI Yes Yes Yes

Not

officially

supported

No Yes Yes Yes

FastCGI Yes Yes Yes Yes No Yes No Yes

uWSGI Yes

Not

officially

supported

Yes Yes No No No No

Java Servlet No No No No No No Yes No

JavaServer

Pages
No No No No No No Yes No

Ease of

deployment
Yes Yes Yes Yes Yes Yes Yes Yes

Developer

friendly
Yes Yes Yes Yes Yes Yes Yes No

Community Very big Big Big Big Small Small Very big Small

Open source Yes Yes Yes Yes Yes Yes Yes Yes

Web servers 15

2.4.3. Architecture overview

As seen in Table 2.1, not all web servers run in the same way. There are three
different options available. The first difference that can be seen, is that some of
the web servers use a multi process model, where is possible to fork the main
process; meanwhile, some others use a multi thread approach or event-driven
architecture. All of them work in almost all scenarios, but there are differences
that must be taken into account when deciding to work with one of the
technologies.

2.4.3.1. Process oriented

A process is an executing instance of an application. Each process that is
launched into the kernel of the operating system contains the program code to
execute, as well as information about its state. Every process uses its own
address space, and only interacts with other processes by means of the inter-
process communication mechanisms, which is managed by the operating
system. Switching between processes is very expensive for the processor, as it
needs to move from one memory space to another. Therefore, this option has a
performance penalty.

Usually, applications have a master process where is load the main functionality
of the program. Later on, this main process may start new processes when it is
needed to separate some functionality from the main program. As processes
run separately from each other, in case of failure of one of them, only the
affected process will fall, meanwhile the others will continue working. In web
servers, if an Apache process crashes (for instance, a program error or buffer
overrun) the remaining processes will continue working; and, eventually, create
a new process to substitute the crashed one. On the other hand, if Cherokee
process (take into account that it only runs a single process) crashes, the whole
web server will stop. This is because there is not the possibility to spawn a new
process without user’s intervention.

Apache httpd web server runs by default in a multi process environment. There
is a master process that spawns as many as selected instances of Apache.
Those new processes are created and running waiting for requests to process,
it is a pool of processes. The user must configure in the httpd configuration file,
the number of processes to create as well as the condition to start new ones.

Summing up, with this process approach, it can be said that this environment is
more stable as each process run separately from the others, and usually there
is a father process, which controls each child process. But there is a
performance penalty associated to changing between processes in the
operating system.

16 Analysis and evaluation of high performance web servers

2.4.3.2. Multithread oriented

A thread is the basic unit to which the operating system allocates processor
time. It is usually the result of the division of a program, allowing it to execute
more than two tasks at the same time. As threads [32] [33] of a program are
part of the program itself, they share some of the information such as address
space, I/O operations or sockets. Threads require fewer overheads than
creating new processes, because the system does not need to allocate new
memory for them. Also, threads are more efficient because when changing from
one thread to another there is no need of changing the whole information, as
they share part of it.

Multithread works in single CPU as well as multiprocessor systems. In case of a
single threaded process working in a single processor, if the main thread
blocks, the whole process will freeze until it finishes. Moving to a multithread
environment allows the application to perform more than one task at a time. On
the other hand, in multiprocessor systems, having a multithreaded program
allows the operating system to distribute the execution of each thread between
the different available cores. This technique will increase the whole
performance of the system.

But, there are some drawbacks when using threaded applications. The
programmer must ensure that multiple threads are not working with the same
set of data. This is called race condition. The programmer writes the way to
execute threads in the code, but the operating system schedules when they will
be launched. Another problem that appears when running threaded programs is
the term thread safe. Some of the variables that are executed by the threads
can be shared by more than one thread, which could provoke a conflict of data.
If one thread crashes, it will crash the whole process, no matter how many
threads this process has.

Multithread environments could perform better than multi process in some
cases, but they demand a more accurate programming. In the case of Apache
httpd web server, when installing is needed to specify which type of multi-
processing module wants to be used, whether multi process based (called
Prefork mode) or multithread based (called Worker mode). When selecting
Worker mode, the user must specify the maximum threads allowed to each
process, as well as the conditions to create a new processes.

Memory is also a finite resource in the system, and it is also a critical aspect to
control when deploying a web server. Not only CPU load is important to
measure the actual load of the server, but also the memory usage. Each
process consumes a percentage of memory of the machine. Multithread
applications share the same memory resources between threads, and this
results in a lower memory footprint, compared with pure multi process
applications. Eventually, this will affect the whole system’s performance, as it
will mark the number of processes that could be open.

Web servers 17

2.4.3.3. Event-driven (asynchronous) oriented

Event-driven architecture (EDA) is a style of software architecture based on real
time flows that detect, process, consumes, produces, and reacts to events. An
event can be defined as a significant change of some kind of data or state. EDA
has different components in order to process the generated events, such as a
producer, consumer or listener, and a processor. This architecture is
asynchronous and loosely coupled, as it is the event generator or producer who
tells the listener that there has been a change. EDA could also be described as
a push based architecture, as it needs to be notified when something changes,
rather than polling the origin system that has generated the event. This kind of
architecture is very useful also for message-oriented-middleware (MoM)
systems, which need to process data from different components.

In web servers, implementing event-driven architecture means that one process
handles all the events [31] [32]. This approach consists in a single process
single threaded, which is able to process multiple connections using non-
blocking I/O mechanisms. In order to know which connections are ready to write
or read, are used some system directives such as select, poll, or epoll. Epoll
[34] directive has a better performance than the previous ones, and it is
recommended to use in high performance applications.

For network I/O operations it is possible to use non-blocking mechanisms
present in the UNIX kernel. Using blocking directives, the running thread blocks
until all data is transmitted by the operating system’s kernel. Meanwhile, using
non-blocking strategies is possible to send part of the requested data and the
remaining data later on. Next, for each new event, is executed the
corresponding event-handler, which will process the generated event. Those
events could mean the acceptance of a new connection, the read or write of a
HTTP connection or some logging feature. Using non-blocking directives is not
always possible. Disk I/O is usually a blocking directive. Using this event-driven
approach involves a single process single thread. When access to the disk is
needed, the whole server stops until this I/O instruction is completed,
decreasing the performance of the web server. It gets critical when there is a
large amount of concurrent connections and they need access to the disk, as it
will take longer than expected to finish.

In order to avoid disk-blocking issue, there is the possibility to run more than
one process at once. This will help dealing with I/O blocking directives as well
as working with multiprocessor schemas. However, this technique needs that
each process must listen to a different socket, needing additional processing to
balance requests between the different sockets. Lighttpd and Nginx work using
this approach. By default, they are loaded using a single process single thread
event-driven architecture, but to get better performance is advisable to spawn
other processes. Apache has its own implementation of event-driven
architecture; in which it is needed to specify the use of this multi-processing
module when configuring. According to the official documentation of Apache
httpd web server, the event multi-processing module is no longer experimental
in version 2.4, but yet is a beta release.

18 Analysis and evaluation of high performance web servers

2.5. Software stack

Summing-up this section, it is important to highlight the different layers that
were explained before (see Fig. 2.1).

Fig. 2.1: Project’s software stack

First of all is the hardware (meaning CPU, RAM, hard disk, etc.) where all the
software will be run (see section 3.1). Next, is the operating system layer,
where the main kernel modules as well as libraries are loaded (see section 3.1
and 3.3). In third place is the web server application (see section 2.4), which
will be in charge of attend any HTTP request that is being made to the system
(e.g., Apache, Lighttpd, Nginx, etc.). Following, is the language layer. Static
layer can be run without any other software, as any web server understands
about HTML or images. Regarding the type of language that is being used it is
needed to include some dynamic web content technology (like CGI, FastCGI,
uWSGI, etc.) to run it (see section 2.2). Finally, those dynamic content
languages are run above the different dynamic web content technologies.

Testbed for web server benchmarking 19

CHAPTER 3. TESTBED FOR WEB SERVER
BENCHMARKING

After selecting the web servers that would be analyzed during this report, it is
needed to establish a testbed in order to benchmark them. Is important that
those benchmarks cover as many areas as possible, so we have a wide vision
of which one of them perform best in some of the tests.

In order to see their performance, it is needed to maximize the possibilities of
each one of the web servers, trying to execute each test case within the
different configuration possibilities. This chapter will present the whole
configuration of the system, including the used machines during the tests, the
network between the servers, the different versions of the used software and
finally, the different test cases to execute.

3.1. Used machines and software

The evolution of computer hardware in the past few years has been very high.
The goal of this report is not showing the best performing web server on a piece
of hardware, rather than showing a performance comparison. During the tests,
different machines are going to be used, in order to simulate a network of
clients and web server. Some of the machines will act as web servers,
meanwhile others as clients. In next sections of this chapter is explained the
difference between the distinct agents.

From the software point of view, it is needed to have the latest version of the
web servers that are going to be tested. So, it is ensured to have the latest
changes to the releases as well as solved previous bugs. As stable releases are
not delivered monthly, it will be install the latest releases as February 2011.

Table 3.1: Main hardware and software characteristics

 PC1 TAS01 TAS02 TAS03 TAS04

Processor
type

Intel Pentium D
820 (Rev. B0)
@ 2.80 GHz

Intel Pentium D
950 (Rev. C1)
@ 3.40 GHz

Intel Xeon 5110
(Rev. B1)

@ 1.60 GHz

Core 2 Duo
6320

@ 1.86 GHz

Intel Pentium
4 521 HT

@ 2.80 GHZ

Processor
Cores

2 2 2 2
1 (but, two

virtual cores)
RAM

memory
3 GB 4 GB 4 GB 3.5 GB 3 GB

Operating
system

Microsoft
Windows 7 (x86)

Red Hat
Enterprise
Edition 5.3
(x86_64)

Red Hat
Enterprise
Edition 5.5
(x86_64)

Red Hat
Enterprise
Edition 5.5
(x86_64)

Red Hat
Enterprise
Edition 5.3
(x86_64)

20 Analysis and evaluation of high performance web servers

During the course of this project are used up to five different computers, some
of them focused in specific tasks (see Table 3.1). PC1 is a desktop Windows
machine used to program all the executed scripts as well as process all the
results. TAS01 is the main server, and is the place where is installed all the web
servers and dynamic content technologies. TAS02, TAS03, and TAS04 are
machines used to simulate a network of clients to perform the selected tests.
Also, TAS02 and TAS03 could perform as a web server too, due to the fact that
their hardware is not as outdated as TAS04. All the servers run 64 bit version of
Red Hat Enterprise Linux, which will affect positively on the overall performance
(it is necessary to take profit of more than 3 GB of RAM memory). See
Appendix 1.1 for more complete information about used hardware and
software.

3.2. Network benchmark

An important factor of the scenario is to have proper network connectivity
between all the clients and server machines, in order to get a good performance
in all benchmarks. For this reason, all the servers will be equipped with a gigabit
network interface card, to provide the best bandwidth.

Gigabit networks are not new in the market. They have been installed in
computers for many years, but the cost of the equipment that are ready to
process such high throughputs are higher. For workstations connected to the
corporative network is enough with fast Ethernet connectivity, but when talking
about servers is better to have higher speeds, like gigabit network. Another
problem is that although the machines are connected through a gigabit network,
it could be possible that the actual available bandwidth is lower. For this reason
and before starting any benchmark, it is tested the network between both ends,
using the program Iperf [26].

After conducting some network tests (see Appendix A.1), it is possible to say
that the network works in a gigabit mode, allowing us to maximize the network
testing and performance. Having a gigabit network (very common in most of the
cases) will become the bottleneck in cases of high-sized file transfers, where is
needed a high bandwidth. In other cases, the CPU or the RAM of the machines
will be the bottleneck of the system.

3.3. Software configuration

Once defined the main hardware and software specifications that are going to
be used, and also the web servers that will be tested during this report, it is
needed to show some operating system parameters. This gives the opportunity
to test all the web servers in the same OS conditions, limiting web server’s
performance variations in the way each web server is built.

Testbed for web server benchmarking 21

3.3.1. Operating system

During this project, it is used Linux operating systems to perform the required
benchmarks. As seen in previous sections of this chapter, the configuration of
the different involving machines is practically the same, using also very similar
Red Hat’s operating system versions. In Appendix A.1, there are few of the
main parameters of the TCP and IP configuration of each server. It is important
to realize that those values are almost the same of each machine, so there is
not any special tuning of it. Those parameters and values are found in
/proc/sys/net/core/ and /proc/sys/net/ipv4/.

3.3.2. Web server configuration

Each web server has its own configuration file, and using different architectures.
For this reason it, is needed to have as much as possible in common between
them, so it can be explained why the differences in performance come from. So,
each one of the tested web servers has disabled any caching, as well as
compression when delivering web pages. Although running different, some
components like CGI, Fast CGI or uWSGI are configured to work in the same
way, configuring the spawn of processes and requests that they can handle.
Each configuration file is attached in the Appendix A.1 of this report.

3.4. Test cases

Once specified the hardware, software and the network that is going to be used,
it is time to define which will be the tests to perform. It has been chosen
different test cases in order to show the strengths and weaknesses of each
server, and this will result in a comparison between all of them. Finally, it will be
possible to know which one of the evaluated web servers best suits each type
of test.

3.4.1. Definition

It is needed to establish some parameters in common to all of the tests and
servers. It is going to be tested different servers, that have been programmed
following different ways and using different technologies. For this reason, all
tests were conducted under the following conditions:

• All tests were run multiple times to assure repeatability.

• Performance was measured in the Web Server side (to know the CPU
load, and RAM usage) and in the client side (to know the requests per
second and the system’s load).

• During the test, no other applications were running and using resources
on the system under test.

22 Analysis and evaluation of high performance web servers

• If something is changed or added to web server’s configuration file, it will
be explained during the test case.

Each test will be performed in different conditions, beginning with a low load
and increasing it progressively to stress out the web server. Table 3.2 shows
the different combinations that are going to be performed.

Table 3.2: Test load conditions.

 Concurrency (clients)

Requests

1.000

1 10 100 250 500 1000
10.000

100.000
500.000

3.4.2. Benchmarking tools

There are different benchmark tools in the market to execute performance tests
for web servers. Regarding their usage and the programing language that they
are written in, the execution will differ.

3.4.2.1. Apache Benchmark (ab)

Apache Benchmark [27] tool is provided by the Apache foundation. It is a very
powerful tool, letting the user configure the number of requests to perform and
number of concurrent clients. Also, it allows saving the results of the tests in a
gnuplot-file, as well as setting some POST information in the requests. Its
working principle is very easy, there is no need to install the software as it
comes with the Apache httpd installation (currently is installed with almost all
Linux distributions).

3.4.2.2. Tsung

Tsung [28] is a benchmark tool written in Erlang and can be distributed to use
more than one machine to perform the test. Erlang is a programming language
designed for building highly parallel, distributed, fault-tolerant systems. It has
been used commercially for many years to build massive fault-tolerant systems,
which run for years with minimal failures. Erlang combines ideas from the world
of functional programming with techniques for building fault-tolerant systems, to
make a powerful language for building the massively parallel-networked
applications of the future.

Testbed for web server benchmarking 23

3.4.3. Static tests

The static test consists in generate request to static content, like an HTML only
web page or an image. This test will show the performance of the web server in
hits per second. To perform the test it will be started the web server in the
TAS01 machine. After realize that the server is up and running, it will be run the
different static tests that are prepared. Previously to the tests, it is loaded the
web server with all the needed files, as for example the HTML file and some
images of different size. Files are relatively small compared to the bandwidth of
the network; but the fact that it is going to put the server into stress, will mean
that the number of requests per second generated will be high enough to fill up
the whole gigabit network.

3.4.3.1. ST-1 HTML

This benchmark consists in request an HTML file of 168 bytes. This file only
includes few lines of code, where is only shown a test sentence, This a
webserver test page. Here it will be expected the network not to be the main
problem, rather than the capacity of the web server of getting profit of the
processor or getting the processor extremely loaded.

3.4.3.2. ST-2 Image small

This benchmark consists in request a small image file of 7,500 bytes with a
dimension of 203x61 pixels. This image is a small one, but is about 40 times
larger than the previous test. Here it will be expected the network to be a
possible bottleneck, although running in gigabit mode.

3.4.3.3. ST-3 Image large

This benchmark consists in request a larger file with a size of 83,572 bytes with
a dimension of 1600x1200 pixels. This image is 10 times larger than the
previous one. Here it is expected the network to be the main problem, although
running in gigabit mode.

3.4.4. Dynamic tests

The dynamic test consists in requesting pages that need to be load dynamically
form the server. These pages are written in dynamic languages such as PHP,
Python, Perl, etc. There are different ways to execute those languages
regarding the web server technology that it is chosen. So, this test will show the
differences between running the dynamic language file in a module inside the
web server in front of CGI or FastCGI, Servlet or JSP. During tests three
common dynamic languages are used in web pages like PHP, Python and
Java. They are chosen because their use in the web environment is extended,
so it is important to know their performance.

24 Analysis and evaluation of high performance web servers

3.4.4.1. DT-1 PHP

This benchmark consists in requesting a dynamic page written in PHP. The
page will be a PHP file of 14 bytes, only returning a Hello, World! sentence. As
there are different types of web servers, three different types of tests are
defined according to the possibilities of each of them. Here there is no need to
calculate the maximum number of requests that the network can handle, due to
the fact that processing a dynamic language will load the CPU of the machine,
limiting the requests per second. Although being a very small file, it will depend
on how it is executed in the web server side (module/CGI/Fast CGI) to get more
performance.

• DT-1-1 MOD_PHP

This test can only be done in Apache due to the fact that is the only one that will
have the PHP interpreter loaded as a module in the same web server. So, it can
be expected that this will give an advantage to Apache in this test, getting better
performance numbers in the whole test.

• DT-1-2 CGI

This test can be done in almost all of the tested web servers. CGI protocol is
enabled in every one of the installed servers, with the exception of only Nginx,
which does not recommend executing and relays on third party extensions. As
said before, executing in CGI mode will result in the creation of a new process
each time that a file accomplishes the rules specified in CGI configuration.
There is no process spawn, so each time that those files are requested, a new
process is started increasing the load of the web server.

• DT-1-3 FCGI

Fast CGI is enabled in almost all of the installed web servers, but the difference
relays in how the web server call the Fast CGI protocol to spawn new
processes. Comparing with CGI, it is expected to increase dramatically the
performance of the web server, due to the fact that it will be configured how
many PHP Fast CGI processes to spawn and how many requests each process
will handle. As the processes will not be killed when finishing their job, this will
reduce the cost of creation and destruction of processes in the operating
system.

3.4.4.2. DT-2 PYTHON

This benchmark consists in requesting a dynamic page written in Python. The
page will be a Python file of bytes 750 bytes. As there are different types of web
servers, we define three different types of tests according to the possibilities of
each one of them. If it is calculated the maximum number of requests per
second, it will be a high number, but it will not be reached. As there is the need
to interpret the language, the performance of the web server will decrease.

Testbed for web server benchmarking 25

• DT-2-1 CGI

This test will consist in running the python script in CGI mode. As said in the
PHP case, it is expected that the performance of the system running in CGI
mode will be lower than for other modes. Not all of the installed web servers
support CGI protocol, as Nginx comes without support for it. For the others, it
will be tested to compare the obtained results within them.

• DT-2-2 FCGI

This test can be done in all of the tested web servers. As said with the previous
dynamic tests, if it is compared with CGI it is expected an increase of the web
servers’ performance. For Fast CGI test, it is needed to change the script in
order to include the needed modules to run it. It is going to be used the flup
library for python, which will let to execute the script in Fast CGI mode. The
structure of the script changes a little bit, just to include the needed libraries and
also to define the application to execute.

• DT-2-3 uWSGI

Not all web servers spawn Fast CGI processes in the same way, driving to
some execution problems of the scripts. For those in which Fast CGI is not
running in the best possible way, there is another option called uWSGI. It is
expected the performance of the web server match the obtained for Fast CGI,
or even higher.

3.4.4.3. DT-3 SERVLET

This test consists in requesting a Servlet page to the web server. Not all the
tested web servers support delivering Servlet pages, so it can only be tested in
Tomcat web server. A Servlet extends the Java language capabilities into the
request-response programming model. Tomcat offers the possibility of running
Servlets in the core of the web server. Here it will be benchmarked the Tomcat
Servlet feature.

3.4.4.4. DT-4 JSP

This test consists in requesting a JSP page to the web server. JSP test, as well
as Servlet test, will be performed only in Apache Tomcat. Tomcat offers JSP
execution possibility. It is expected that the performance of this test will be
higher to the Servlet one.

3.4.5. Keep-alive tests

Each of the previous tests, being static or dynamic, will be performed in twice:
with and without keep-alive. Since the introduction of keep-alive function in the

26 Analysis and evaluation of high performance web servers

HTTP 1.1 standard, the performance of the web server is increased, as one
connection could make more than one request. For this reason, this test is an
important one, as will show how the performance changes by switching this
functionality. It is expected that using keep-alive during the tests will put more
load in the web server, but increase the performance of it.

3.4.6. HTTPS tests

Until now all tests are perform with HTTP, the default protocol to request a web
page in the Internet. But nowadays, is important to secure connections, as more
confidential information is shared between insecure networks. Securing
connections between the user and the web server will have an impact in the
performance of the web server. It will be useful to describe this decrease of the
performance and if it is considerable.

It will be tested some static and dynamic content in HTTPS mode to see how it
performs against not secure protocol. The requested files will be the same as in
previous cases:

• HTTPST-1 HTML

• HTTPST-2 PHP

• HTTPST-3 Python

To be able to perform those tests it will be configured the web servers to
support secure connections. For this reason it will be generated some
certificates, in order to enable the SSL feature in the web server. For generating
all the certificates the OpenSSL (Ref. [28]) application is going to be used. In
the Appendix are the followed steps in order to create the needed certificates.

3.4.7. Load test

Until now it has been tested the performance in requests per second of the web
server. The load test goes beyond in the performance tests by setting the
creation of new clients; those will request some of the web pages during some
defined time. Finally, this will give an idea of the capacity of the web server, as it
will tell if it can handle the workload that it is being tested. Here it will be defined
how many clients will be created each second, as well as how many requests
will each client do while is running, and the duration of them. Also, the workload
could be distributed between different machines, giving the opportunity to
increase even more the load of the web server. It is possible to simulate such
test by using one of the previous web pages, HTML, PHP and Python; instead it
is chosen to install a blog web page.

Blogs are being used by a lot of people around the world to show or comment
their experiences. Those experiences do not share any in common, as some of
them talk about trips, sports, food, or even technological reviews. In order to

Testbed for web server benchmarking 27

perform such tests, it will be installed a Wordpress blog site. Wordpress (Ref.
[29]) is being used by thousands of people to share its experiences, so it could
be a very good point to show the real performance of the web server in a real
workload.

In order to make the test case more realistic, some dynamic language
accelerators as well as some caching mechanism will be installed. Those
plugins will be common for all the installations, so all the web servers could
benefit from this boosts of performance. As many frameworks found on Internet,
they use PHP as a main dynamic language as well as HTML, MySQL database
and images. To improve PHP performance, PHP accelerators will cache some
of the used instructions. Disk and RAM cache will accelerate the serving time of
the rest of the web page. Database access could also be a bottleneck, as
latency for seeking and adding content is slow.

To perform the test it will be set the creation of new clients on three different
phases, with a total duration of one-hour time frame. Each client will make two
requests to the web server, one to the main page and the other to a defined
post. Tsung tool will provide statistics and also some graphics about the
performance of the web server. The configuration file of Tsung is based on XML
(in Appendix A.2.4 is an example used in this test). Ganglia (Ref. [30]), which
is a distributed monitoring system, will report statistics about CPU and RAM
usage.

28 Analysis and evaluation of high performance web servers

CHAPTER 4. TEST RESULTS

Once all the web servers are selected, and also all the different tests cases are
setup in the different machines, it is proceed with the obtained results. This
chapter focuses in presenting the different performance charts, regarding the
tests and the web servers.

Not all the test cases are equal, and some of them require more results in order
to see how the different web servers scale when changing some configuration
parameters. It is important to show the performance gaps and try to explain
whether they appear or not. Moreover, all the tests are made with and without
enabling keep-alive; in order to show the differences in performance when
sharing established connections. Although tests are performed with different
concurrency levels and number of requests, it will only be shown the results of
the 100,000 request with all the concurrencies. Performance with fewer
requests have high variability, meanwhile higher counts do not offer any
performance improvement.

It will be followed the same pattern that was used to describe all the tests
cases. In first place, it will appear the results of static contents, then the results
of dynamic contents, next the results regarding SSL test cases, and finally, the
load test.

4.1. Static tests

4.1.1. ST-1 HTML test

The first static test consists in return a 168 bytes HTML only web page, where it
is shown the phrase: “This is a webserver test page”.

Before starting with the charts, it is important to highlight three well different
results that were obtained, being the first one about do not enabling keep-alive.
Using HTTP 1.0 protocol affects the overall performance, as it lowers the server
CPU load but, is limited by how speedier the server opens new connections.
Afterwards, it was enabled keep-alive functionality, using HTTP 1.1 protocol,
which increased the CPU load in order to maintain connections opened, but
also increased the performance. The importance of this test is to appreciate the
performance variation between both cases, and the relative performance
difference within web servers.

The third result that is important to mention in this test case, is the increase of
the performance when tuning event-driven web servers (e.g., Lighttpd or Nginx).
The default configuration for those servers is only one process with a single
thread; but, it can be increased to take advantage of the multi process
architecture of the server. It will be shown different charts varying the number of
processes, in order to find which the best-suited configuration is. Finally, it will

Test results 29

be compared the best performer web servers of this section in order to get the
best web server for this test.

Fig. 4.1: HTML chart no keep-alive test results

Fig. 4.1 shows the HTML chart between the different tested web servers. In this
case, average performance is between 8,000 and 11,000 requests per second,
only Hiawatha and Yaws being far behind the others. Apache Worker (multi
process multithread) and Event (event-based) configurations perform in the
same way. Only Apache’s Prefork (multi process single thread) configuration
performs better, about 3,000 requests per second more, in the best case. When
reaching 500 simultaneous clients the performance of the three Apache
configurations is similar, about 8,000 requests per second.

Lighttpd and Nginx web servers have a very similar performance, both reaching
10,000 requests per second with 100 clients at the same time. Performance
difference starts to appear at 500 simultaneous clients, Nginx performance
decreases quicker than Lighttpd. In this case, both Lighttpd and Nginx were
tested with only one process running. On the other hand, multithread web
servers such as Cherokee and Tomcat have a similar performance behavior,
having Cherokee slightly superior performance in front of Tomcat. Both have
the same performance decrease when reaching above 250 simultaneous
clients, and with 1,000 clients the performance is almost the same, around
8,000 requests per second.

Mongrel2 gets better performance than Hiawatha, which is a very good notice
as it is a newer web server using a very different architecture approach. Yaws
gets the worst performance rate, less than 4,000 requests per second. This can
be caused by the fact that without keep-alive, Yaws only uses one processor,
which limits its performance.

30 Analysis and evaluation of high performance web servers

Fig. 4.2: HTML chart keep-alive test results

Enabling keep-alive feature, HTTP 1.1 protocol, increases the performance of
the system, as it shares connections between requests. Fig. 4.2 shows the
result increase that, in some cases, reaches up to 30,000 requests per second.
Apache has a very similar performance for the three different configurations.
Only at the beginning of the test, between 1 and 100 simultaneous clients,
performance difference is around 5,000 requests per second. When reaching
100 simultaneous clients, the results of the three configurations are around
15,000 requests per second. The performance increase by using keep-alive for
Apache against not using it is more than 5,000 requests per second, which
represents an increase of more than 50%.

Event–driven web servers got almost the same result, reaching 17,000 requests
per second for Nginx and 16,500 for Lighttpd, in the best case. Nginx seemed to
perform more stable when increasing simultaneous clients; while Lighttpd
decreases its performance near 15,000 requests per second. Speaking about
multithread web servers, Cherokee and Tomcat, both obtained performance
around 30,000 and 27,000 requests per second, respectively. Cherokee result
increased almost 270% by enabling keep-alive feature, which is a large
increase. It is possible to see that Tomcat reaches its maximum performance
range slowly than Cherokee, but maintains it as simultaneous clients increase.

Hiawatha only reaches 10,000 requests per second, although it doubles its
previous result, but it is still 50% slower than Apache, Lighttpd and Nginx.
Mongrel 2 and Yaws had a very low performance, which is not a good outlook
for them. On one hand, Yaws uses the two available processors, but falls far
ahead from best performing web servers. On the other hand, Mongrel2 does not
take profit of the whole CPU capabilities, which leaves it as the worst
performing web server of this test.

Event-driven based web servers can also be configured to take advantage of
multi process systems by enabling the ability to fork its main process. As the
aim of the test is to show the best performing web server for this scenario, it is

Test results 31

configured Lighttpd and Nginx with different number of active processes. Taking
into account previous results, performance without keep-alive feature enabled is
almost the same (see Appendix A.2.1) for any configuration. The only
difference is that with more than one Lighttpd worker, the top performance is
reached earlier (11,000 requests per second in the best case), but performance
is not as stable as before when increasing simultaneous clients.

Fig. 4.3: Lighttpd HTML keep-alive chart

But, when enabling keep-alive we get very different results. Fig. 4.3 shows the
performance obtained during this test. It is possible to see a big increase when
configuring Lighttpd to fork in more than one process. Performance increase is
about 100%, increasing from 15,000 requests per second with one process up
to 30,000 requests per second with more than one process. Lighttpd does not
recommend forking as it could break some of the kernel modules of the web
server, but for increasing the performance it is advisable. Also, they recommend
using twice the processes as the number of processors that the machine has, in
this case it would be 4 processes because the machine is a multicore system.

The other event-driven web server is Nginx. The results were expected to be
similar to the previous one, Lighttpd. No keep-alive HTML test, results in a top
performance of 10,000 requests per second for any configuration (see
Appendix A.2.1). As in the case of Lighttpd, there is no much difference
between configurations as they behave very similar.

Fig. 4.4 shows the scalability of Nginx in different worker situations enabling
keep-alive feature. It is possible to see that configuring the web server by
default, with only one process, has a measurable impact on the performance.
Meanwhile, using more than one process increases performance up to 28,000
requests per second, in the best case. Forking the main process to more than 2
workers results in a very similar performance, so there is no special
performance gain when using even more processes. Nginx official
documentation recommends forking the main process to be equal than the
number of available processors of the system. In this case, as it is shown in Fig.
4.4, the best result occurs when having 2 Nginx workers at the same time.

32 Analysis and evaluation of high performance web servers

Fig. 4.4: Nginx HTML keep-alive chart

4.1.2. ST-2 Image small test

This test case consists in requesting an image, which is 7,500 Bytes long. It is
not a large file and, as calculated in the previous chapter, the top performance
is expected to be up to 15,666 requests per second. The procedure is going to
be the same as with HTML test case, so the followed schema of the section will
be the same as in the previous one. First, it will be commented the evolution of
the usage or not of keep-alive functionality and, finally, the event-driven
scalability.

Fig. 4.5: Small image no keep-alive chart

Fig. 4.5 shows the results of the small image test case. Performance of almost
all web servers is equal, being up to 8,000 requests per second and slowly
decreasing when raising the number of simultaneous clients in the system.
There is not much difference between choosing a multi-process, multithread or

Test results 33

event-driven web server, as they all get the same performance. But, it can be
seen that there are three web servers with lower results. Mongrel2 overtakes
Hiawatha and Yaws, which is surprising given the previous test results.
Hiawatha shows another time its performance limits, only reaching up to 5,000
requests per second. Yaws has the same problem as in the previous test, only
using a single processor, which limits its performance in no keep-alive tests.

Fig. 4.6: Small image keep-alive chart

When using keep-alive of HTTP 1.1 protocol, performance of the web servers
increase. Fig. 4.6 shows the results of this test. Performance is between 12,500
and 15,000 requests per second. Apache Prefork and Worker results are very
similar, only slightly lower for the Event configuration. Lighttpd’s performance is
slower than the other high performance web servers, being near 13,000
requests per second. The other event-driven web server, Nginx, tops in 14,000
requests per second, which is a very good result, near the multithread
Cherokee and Tomcat.

Hiawatha and Yaws get very close performance results, up to 9,000 requests
per second, which is a gain of 80% and 200%, respectively, but is still a 55%
slower than Cherokee or Apache. Mongrel2 performance is limited by its
architecture, only getting 6,000 requests per second, being the same as in the
previous case.

Now, it is turn to see the performance increase when using event-driven web
server. It is not possible to expect such a high increase of performance as
happened with HTML test case, because the theoretical maximum rate is
15,666 requests per second. Nevertheless, it is expected some increase of the
performance. Without keep-alive, Lighttpd performance does not increase a lot
when configuring the web server with more than one process (see Appendix
A.2.2). The best performing configuration is when there are 8 simultaneous
workers instead of the Lighttpd’s recommendation, which is 4. But, the
performance gap between both configurations is small, less than 1,000 requests
per second (15% approximately).

34 Analysis and evaluation of high performance web servers

Fig. 4.7: Lighttpd small image keep-alive chart

With keep-alive enabled it is possible to see that performance increases
significantly. Fig. 4.7 shows this behavior between single process and multi-
process configuration. Difference between the configurations is about 2,500
requests per second. The top performance rate is around 15,000 requests per
second, near the theoretical maximum rate.

Nginx behavior in this test is expected to be in line with results obtained for
Lighttpd, as both share the same architecture. Not using keep-alive gets almost
the same result, between 7,000 and 8,000 requests per second for each
configuration (see Appendix A.2.2). Nginx recommendation is to use 2 active
worker processes, and in this case does not matter how many they are, as the
performance is almost the same in all cases.

Fig. 4.8: Nginx small image keep-alive chart

Nginx performance is very similar to Lighttpd, as top performance is limited by
the network bandwidth. Fig. 4.8 shows the configuration differences between
the four formations in keep-alive mode. Performance using only one worker is
slightly lower than multi-process configuration, of 1,000 requests per second. In
any case, the performance of the web server is being limited by the network
bandwidth.

Test results 35

4.1.3. ST-3 Image large test

The third static test consists in requesting a large image, which sizes up to 83
KB. Performance of this test is limited by the fact that a big file will fill in the
whole network bandwidth, getting lower rates. As calculated in the previous
chapter, the maximum expected performance would be around 1,400 requests
per second.

Fig. 4.9: Large image no keep-alive chart

The first chart to be displayed is the performance results without keep-alive
enabled. Fig. 4.9 shows that performance for each one of the tested web
servers in this report. It is possible to see that all of them show the same
results, with a top rate around 1,400 requests per second, which is the
maximum we can expect with a gigabit network card.

Fig. 4.10: Large image keep-alive chart

Fig. 4.10 shows the large image result chart with keep-alive enabled. In this
case, results are very similar to the previous one, with the same performance,
1,400 requests per second. Again, his performance is limited by the bandwidth
of the network, so the web server is not fully stressed. So, there is not an

36 Analysis and evaluation of high performance web servers

increase for event-driven web servers, because the server software is not the
limit in this case.

4.1.4. Static tests conclusions

Taking into account all the obtained results in this first section of the chapter, it
is possible to take some conclusions based on those numbers. In case of a
HTML file, the clear winner of the test case was Lighttpd, which outperformed
the rest of the web servers. Cherokee web server is behind it by a narrow gap,
making it also suitable for this task. Nginx is also a good option, as its
performance is close to Lighttpd, although it decreases quicker than the others.
Although Apache web server is the king of the web servers, it offers lower
performance results in the HTML test, far away from other solutions. The three
different multi-process configurations of Apache have a very similar
performance, being better the prefork, which is the default installation.

Speaking about a small image, the winners are Lighttpd and Cherokee another
time, but here the differences with the other web servers are small or negligible.
Network bandwidth limits the performance of the web server, but having in mind
the results of the HTML test, both web servers can be used in both scenarios,
ensuring the best performance. The rest of the tested web servers (Apache,
Tomcat, Nginx or Hiawatha) also perform as expected, generating the same
performance of Lighttpd or Cherokee. But, they do not perform as well as
Lighttpd or Cherokee (taking into account also HTML test case). The last static
test consisted in requesting a large image, and like in the small image test, the
network bandwidth is an issue. Here there is no successful candidate, as all the
web servers perform exactly the same.

Summing up this section, Lighttpd and Cherokee are clear winners of the static
test cases, as they perform better than other solutions. They have different
architecture, as Lighttpd is an event-driven software and Cherokee is a single
process multithread application. Cherokee is easier to configure than Lighttpd or
any other web server, as it has a graphic user interface that can be access
through a web browser. Although Lighttpd configuration is not as easy as
Cherokee, it is still a comprehensive configuration file. Also, mention that official
Lighty web page has a lot of interesting information. Nginx’s performance is
high enough to be considered also a very good option for those tasks. Apache
web server does not show its strengths during the first bunch of tests, because
it is not optimized to deal with static content.

The worst performing web servers are Hiawatha, Yaws and Mongrel2. Hiawatha
performance is surprisingly limited, although it shares the same architecture as
Cherokee and Tomcat. Yaws is the only web server that uses Erlang in its core,
which is designed to allow thousands of simultaneous users, as it was designed
to work with telephonic gateways. Maybe, it would have shown its performance
strength if in the tests it has been reached even more simultaneous
connections. Mongrel2 which design is completely new, is limited by the usage
of only one processor.

Test results 37

4.2. Dynamic tests

Dynamic languages are more computational expensive than static, but provides
web pages with some dynamism that allows the creation of desktop-class
applications for them. This set of test cases will try to show the performance
issues that web servers face when dealing with such languages. Tests will
involve the use of PHP, Python and Java, which are highly used languages in
web creation.

4.2.1. DT-1 PHP test

The first dynamic language that is going to be tested is PHP. This language is
very used in web programming, so it is an important part of the test cases.
There are different ways of running PHP in the tested web servers. For
instance, Apache web server can run it as a kernel module, with mod_php
module, as FastCGI, or CGI. It has already been explained the difference
between CGI and FastCGI in previous chapters, but here it will be shown the
difference in performance.

But, not all the configurations of Apache can run PHP as a module, since PHP
is not thread safe by default. For this reason, only when running Apache as
Prefork mode it is going to be tested mod_php, meanwhile for Worker or Event
modules it is going to be run as FastCGI. Lighttpd, Cherokee and Hiawatha can
run PHP as FastCGI and CGI, but Nginx only as FastCGI, because CGI is not
officially supported. Tomcat only has a CGI connector to run PHP language,
although it is supposed to run Java applications.

Fig. 4.11: PHP no keep-alive chart

Fig. 4.11 shows the results of all the web servers serving PHP web pages
without keep-alive enabled. There are three different groups; the first one is
Apache prefork with mod_php loaded, being its performance configuration

38 Analysis and evaluation of high performance web servers

between 6,000 and 7,000 requests per second, higher than any other. It is
important to remember that mod_php is a loaded kernel extension into Apache,
and this is the reason why the performance in this case is so high.

The other group is those web servers running FastCGI protocol, and they can
also be divided in three subgroups. The first subgroup is Cherokee web server,
which reaches up to 4,500 requests per second, but as the number of
simultaneous clients in the system increases, the web server gets the entire
CPU load, which is 200% (remember that is a dual core machine). This issue
provokes that there are no FastCGI processes attending requests, so the
overall performance decreases to less than 100 requests per second. The
servers of the second subgroup are those based on event-driven architecture,
Lighttpd and Nginx; both have very similar results, around 3,500 requests per
second. It is important to remember that they are tested with only one worker
configuration, and possibly there is space for scalability in the system. The last
subgroup consists of Apache Prefork, Worker and Event configurations running
FastCGI protocol. Performance of those three web servers is lower, getting
between 2,500 and 3,000 requests per second.

The last group of web servers is those using CGI protocol. As CGI needs to
create a new process each time there is a new request for a dynamic web page,
in this case PHP file, its performance is very slow, near 100 requests per
second. CGI protocol is being replaced by FastCGI, as it offers better security
features as well as improved performance.

Fig. 4.12: PHP keep-alive chart

Now is the turn to see the performance of web servers serving PHP with keep-
alive feature enabled. Fig. 4.12 shows the results of each one of the web
servers. Is used the same classification as before. The best performing web
server in this test is Apache prefork with mod_php module loaded into the
kernel, getting around 10,000 requests per second, which is a very high rate.

In the second group, being those that are running FastCGI protocol, it is
possible to see the same behavior than before, with Cherokee getting a high

Test results 39

performance until there are more than 100 simultaneous clients that start to
decrease. Lighttpd, Nginx and Hiawatha get similar performance, around 4,000
requests per second. So, again, Apache configurations running FastCGI
protocol got lower performance than other web servers, resulting between 2,000
and 3,000 requests per second. Finally, all those running CGI protocol got the
lowest performance of the test, with barely 100 requests per second.

In static tests it has been proven that Apache web servers were not the best
option in order to server static content. But, in dynamic content it is possible to
see a major performance increase when running it as a kernel module against
other web servers. Fig. 4.13 shows the performance gap between running
mod_php and FastCGI protocol in Apache configurations.

Fig. 4.13: Apache PHP keep-alive chart

Running mod_php gets a top performance around 10,000 requests per second,
which is an increase of 333% regarding the use of FastCGI protocol. Also, in
Fig. 4.12 it is clear that mod_php outperformed all the other tested web servers
in this report. Meanwhile, performance is the highest one of the PHP test case,
resource consumption is also higher (see Appendix A.2). RAM process
consumption increases as many Apache processes are being created.
Furthermore, it is important to know the increase of performance when running
event-driven web server architectures with more than one process at the same
time. For this reason, different configurations are set up to be tested, similar to
what was done in the HTML test case.

Enabling keep-alive feature in Lighttpd increases the performance of the
system, as it is shown in Fig. 4.14. Configurations with more than one worker
increases their performance, reaching a top result of 6,000 requests per
second; although, it gets less stable as increasing the number of simultaneous
clients. With only one worker configuration, performance is stable during the
test, but is slower, getting 4,500 requests per second. CGI performance is the
same as before, only getting 100 requests per second.

40 Analysis and evaluation of high performance web servers

Fig. 4.14: Lighttpd PHP keep-alive chart

Performance results obtained enabling Nginx’s keep-alive are almost the same,
as it is shown in Fig. 4.15. Execution with one and two worker configuration is
stable along the test, getting 3,800 and 4,200 requests per second respectively.
Performance increases when using four and eight worker configuration, up to
5,100 requests per second, but it starts to decrease quickly when reaching 250
and 500 simultaneous users respectively.

Fig. 4.15: Nginx PHP keep-alive chart

Comparing Lighttpd and Nginx, it is possible to see that Lighttpd has a better
overall performance than Nginx. Even in one worker configuration, Lighttpd
performs similar to two Nginx worker processes. Moreover, Lighttpd
performance when increasing the number of active workers is higher, reaching
up to 6,000 requests per second; while Nginx tops at 5,100 requests per
second. As simultaneous clients increase, both web servers, in multi worker
configuration, decrease their performance. This performance decrease is more
noticeable in Nginx’s case.

Test results 41

4.2.2. DT-2 PYTHON test

The second part of these dynamic test cases consists in testing some python
scripts. As explained in Chapter 3, it consists in showing in the screen a string
of 750 bytes, which will be executed with means of a Python interpreter. As
happened with PHP tests, there are several different Python interpreters such
as CGI, FastCGI, uWSGI, etc., although not all of them are supported by all of
the tested web servers.

Fig. 4.16: Python no keep-alive chart

There are three different groups according to the obtained results shown in Fig.
4.16. The first one is composed by those using uWSGI interpreters, which are
Apache, Cherokee, and Nginx. Performance of Apache web server is very
stable, getting around 5,000 requests per second. Even Event configuration is
more stable than Prefork. Nginx gets the best performance, reaching up to
8,000 requests per second, but as increasing the simultaneous clients in the
system, the overall performance decreases, although it is maintained more or
less stable.

Cherokee results shine another time. When increasing more than 100
simultaneous clients, the web server starts to decrease its performance. This
drop in performance is not as high as in PHP test case, but makes us wonder
why it happens and if it has some sort of solution.

The second group is formed by those web servers using FastCGI protocol to
communicate between web server and Python interpreter. FastCGI is not as
quick as uWSGI when serving the web page; nevertheless it gets 1,500
requests per second in average. Lighttpd does not have fully uWSGI module
(being experimental for now), so it is only tested with FastCGI. Meanwhile,
Hiawatha does only offer the possibility to use FastCGI. Al last, third group are
those web servers that use CGI protocol. As happened with PHP test case, CGI
performance is around 100 requests per second, which in comparison with
other solutions such as FastCGI or uWSGI is very slow.

42 Analysis and evaluation of high performance web servers

Fig. 4.17: Python keep-alive chart

Enabling keep-alive feature in python tests does not report any significant
performance increase (see Fig. 4.17). There are also the three same groups
than before, uWSGI, FastCGI and CGI. Cherokee performance does not have
such a high decrease as before, but it still has a strange behavior.

Apache web server is often used to deliver dynamic web content. Furthermore it
is being out for about 15 years, creating the possibility to use almost every
dynamic language in different ways. During the Python test case, several
interpreters are being used. Fig. 4.18 shows the obtained results for Apache’s
Python test case. Enabling keep-alive feature does not represent a performance
increase; instead, it shows some decrease in Worker uWSGI case. It is
important to highlight that Apache Event configuration gets the best
performance, although being in experimental mode yet.

Figure 4.18: Apache Python keep-alive chart

Nginx web server also uses uWSGI module to run Python language. Although
in previous charts it was shown that performance of Nginx’s uWSGI was around
7,000 requests per second, it is interesting to see its scalability when dealing
with multi process configuration. As in PHP test case, it is expected to see
some variability in performance results. In Nginx tests it was only tested uWSGI

Test results 43

interpreter, and the obtained results are very similar among the four
configurations, see Fig. 4.19. Previous Nginx charts showed that two workers
configurations was the best set up, although this does not apply here. Instead,
the other configurations get better performance, even one worker configuration,
which in previous tests was the slowest.

Fig. 4.19: Nginx Python keep-alive chart

Enabling keep-alive does not represent any performance improvement. Two
worker configuration is the slowest of the four configurations but, as before, it is
by a very small margin. Performance is around 6,000 requests per second
when reaching 250 simultaneous clients in the system.

Lighttpd web server does not have uWSGI module for now, as it is being
experimented without any special timeline to its official release. For this reason,
it is tested in FastCGI and CGI protocol. As it is expected, FastCGI gets better
performance results, see Fig. 4.20. As happened in previous tests, enabling
keep-alive feature does not introduce any special performance increase. Multi
process configurations get slightly better rates than single process
configuration, although it does not decrease as much as before. Performance is
around 1,800 requests per second in average.

Fig. 4.20: Lighttpd Python keep-alive chart

44 Analysis and evaluation of high performance web servers

4.2.3. Dynamic tests conclusions

At the beginning of the test case it was said that dynamic languages are more
computational expensive to servers rather than static. So, performance could
not be expected to be the same than for statics tests. PHP and Python
languages were chosen to perform the dynamic languages test case because
their importance in web development. Different web frameworks make use of
those languages, such as Zend or Symfony use of PHP, meanwhile Django or
Pylons use Python.

4.2.3.1. PHP tests conclusions

The first results obtained were PHP ones, setting some entrance point to
compare the results among tested web servers. As happened with static tests,
each web server behaves in its own way, meaning that although some of them
share some kernel architecture, its performance rates are different. Also, not all
of them offer the same configuration parameters, so it is important to
understand those features and enable or edit them as convenience.

Apache httpd is a very popular web server, which could be primary used to
deliver dynamic content in the web. There are different configuration
parameters of it, as it was seen in static tests. Regarding the selected multi
process configuration, some features could not be used. Using Apache Prefork
configuration it was possible to enable mod_php, which is a kernel module add-
on to Apache web server. Using this PHP kernel module performance increases
a lot, reaching up to 10,000 requests per second with keep-alive enabled.
Although this module is very useful when dealing with PHP language, it is not
possible to use it when using Worker or Event configurations. Those
configurations are multithread environment, and mod_php is not thread safe. To
avoid further problems, Apache refuses to start when detecting mod_php
enabled in the configuration file. The main drawback of mod_php is the memory
footprint, because each Apache process has its own PHP interpreter embedded
inside.

Not using mod_php means using FastCGI or CGI protocol. In previous chapters
of this report, the differences of both protocols were stated. It was expected to
see the main difference between both of them, which was performance.
FastCGI, as its name says, is expected to be faster than CGI. In Apache httpd
case, the three different configurations perform similar in FastCGI, reaching up
to 3,000 requests per second. This rate is slower compared to mod_php
performance. CGI is, in any case, slower, getting around 100 requests per
second, which is a very slow rate.

Event-driven architecture web servers offer a very good performance, and also
high scalability. It was proven to be very scalable in static tests, where the use
of multi process environment helped the overall performance. Although, it could
not be expected the same increase of performance due to the fact that it uses
an external program, like FastCGI or CGI. Lighttpd FastCGI configuration is
easy, as the same web server spawns the FastCGI processes. Lighttpd

Test results 45

FastCGI performance is higher than Apache’s FastCGI, even when using single
process configuration, which is near 4,000 requests per second. Configuring
Lighttpd with more than one process shown some performance improvement,
because it went from 1,000 to 1,500 requests per second more. Nevertheless,
its performance is very similar for any configuration. Web server performance is
hit by introducing more simultaneous clients in the system, with at least of 1,000
requests per second.

Nginx’s configuration is very similar to Lighttpd’s, although it needs to manually
spawn the FastCGI processes. Being an event-driven architecture will give the
ability to scale it by configuring it properly, the process is the same as for
Lighttpd. Performance with one Nginx process is about 4,000 requests per
second, which is similar to Lighttpd’s. Using a multi process approach enables
higher performance, getting up to 1,200 requests per second more. A good
point of using the single worker configuration is its stability when reaching a
high number of simultaneous clients. Other configurations may offer higher
performance but they get a big hit when having 500 or 1,000 simultaneous
clients.

Cherokee web server has a mix of sensations here. On one hand, it got a very
decent result, with a rate around 4,500 requests per second, which is near
Lighttpd and Nginx results. But on the other hand, it got an unexpected
performance hit when introducing more than 100 simultaneous clients in the
system. Performance in this case goes down to less than 100 requests per
second. Tracking the load generated by Cherokee, it was possible to see that it
was getting the 200% of CPU load, not spawning new FastCGI processes. And,
after dealing with different configuration parameters, it was possible to see that
configuring number of threads or the socket used, solves the issue (see
Appendix A.2).

4.2.3.2. PYTHON tests conclusions

Within Python tests it was possible to see three main groups well differentiated
by the technology that they are using. The most performing web servers are
those using uWSGI interpreter, followed by FastCGI protocol, and finally CGI.
Using uWSGI it was possible to top at 8,000 requests per second, although
getting stable performance around 5,000 requests per second. FastCGI
protocol was slower compared to uWSGI only having 2,000 requests per
second. CGI protocol turned out to be the slowest performing protocol,
something expected.

Apache httpd web server had plenty configuration options, as well as different
modules to interpret python web pages. For Python tests it was tested with CGI
and mod_uWSGI. Both cases could be used in the three different configurations
of Apache. Apache mod_uWSGI got a performance around 5,000 requests per
second, which was a very good value for the test. Also, it is important to
highlight the performance generated by Worker or Event multi process
configurations, which outperformed Prefork by a small margin. From the results

46 Analysis and evaluation of high performance web servers

point of view, Prefork module, which is the default configuration for Apache, it is
not the best configuration for this type of tests.

For event-driven architecture web servers it is needed to split them, as Nginx
supports uWSGI, while Lighttpd does not. Lighttpd FastCGI configuration was
easy, and the obtained results were higher than Apache’s, with 2,000 requests
per second. By using a multi process environment configuration, it was not
gained so much performance, but it maintained stable when increasing the
number of clients above 250 simultaneous users. Lighttpd recommendation is to
use a four worker configuration, and in this case it is good enough. Nginx’s
performance was very impressive, reaching top performance between 7,000
and 8,000 requests per second, which is one of the highest of the test. Varying
the number of workers improves the stability when increasing the number of
simultaneous clients, although it does not give any important performance
increase. The recommended number of workers by Nginx’s official
documentation was two, but in this case, with even one worker it was found to
be good enough.

Cherokee is again a mix of results. Given the default configuration letting
Cherokee to choose the number of threads, by default is set to 10, gives very
good performance until it reaches 100 simultaneous clients. Using TCP sockets
does not solve this issue, as it has an overall slower performance. Given that
this issue is very similar to what was found in PHP test cases, it was tested with
different thread numbers (see Appendix A.2). There is a tradeoff between the
number of threads and simultaneous users in the system. As threads increase
better performance with less than 100 simultaneous clients, but as users
increase better stay with least possible threads.

To conclude this section, it is possible to say that for Python web pages the best
option is to choose an uWSGI interpreter, and pair it with Nginx, Cherokee or
Apache. With these configurations it is ensured good performance.

4.3. HTTPS tests

Secure the web browsing is nowadays a must have feature. As more personal
and confidential information is around the web, it is necessary to secure
communications through it. Services like social networks, electronic payments
or electronic mail make use of HTTPS for this reason. HTTPS uses SSL or TLS
protocols to secure the communications by means of chains of certificates
(PKI).

All web servers are configured to use ciphers with high security degree, but for
comparison reason they were all set up to use TLSv1/SSLv3 AES256-SHA.
When setting high ciphers, some web servers such as Apache and Nginx run
the SSL protocol with TLSv1/SSLv3 DHE-RSA-AES256-SHA. Although,
Lighttpd and Hiawatha can also run this security feature too, they refuse to do
the SSL handshake when setting the latest cipher.

Test results 47

4.3.1. HTTPST-1 HTML test

This first test case consists in testing the performance of each web server in a
secure environment by requesting an HTML page. The HTML web page is the
same as for the first test, but this time accessed through HTTPS. The
expectance of this test is to get far lower results than without SSL enabled.
Also, the load generated into the CPU will be higher due to the fact that the web
server needs to decrypt all the new incoming connections.

Fig. 4.21: SSL HTML no keep-alive chart

With keep-alive feature disabled during the test, it is possible to see that the
performance of any of the tested web servers is equal to each other’s (see Fig.
4.21). Performance tops around 1,400 requests per second. Although it is not
shown in the figure above, increasing the number of workers in event-driven
web servers, like Lighttpd or Nginx, does not increase the performance of the
test (see Appendix 2.3). The obtained results are quite slow compared to the
performance obtained when disabling SSL support. When enabling keep-alive
feature of HTTP protocol, it is expected an increase of the performance of each
one of the web servers; although, it will not be possible to reach, in any case,
the performance obtained without SSL.

Fig. 4.22 shows the results of enabling keep-alive in all of the web servers. It is
possible to see the increase of performance, going from 1,400 requests per
second without keep-alive, up to 11,000 requests per second enabling keep-
alive. In this case, the best performing web server is Apache using the Prefork
configuration, which gets up to 11,000 requests per second, followed nearby by
Worker’s configuration. Apache’s Event configuration performs lower than its
two siblings, around 9,500 requests per second.

48 Analysis and evaluation of high performance web servers

Fig. 4.22: SSL HTML keep-alive chart

Nginx web server has a very good performance, around 10,000 requests per
second, very stable across the entire test. Meanwhile, the other event-driven
web server, Lighttpd, suffers a decrease of performance when increasing the
number of simultaneous clients in the system, with an average value of 9,000
requests per second. Hiawatha gets the lower performance, with around 8,000
requests per second.

On one hand, while not using keep-alive, the performance of event-driven web
servers does not rise when increasing the number of active workers. But, on the
other hand, using keep-alive results in a performance boosts for some
configurations (see Fig. 4.23).

Fig. 4.23: Best performing SSL HTML keep-alive chart

In Fig. 4.23 is compared the performance of using Apache web server (with
different configurations) and event-driven configurations. In the previous chart,
Apache Prefork configuration was the top performing web server, with 11,000
requests per second. Enabling different configurations for Nginx, changes a little
bit the results. As it is possible to see, using two, four or eight simultaneous

Test results 49

workers in Nginx, results in a performance increase, up to 14,000 requests per
second, although it drops to 11,000 requests per second when reaching 1,000
simultaneous clients. Lighttpd configuration with multiple workers does not
increase its performance; instead, it gets the same performance, no matter how
many active workers are configured. So, Nginx’s way of dealing with SSL
sessions is better than Lighttpd’s.

4.3.2. HTTPST-2 PHP test

As in the previous case, HTTPS HTML, it is expected some performance
penalty when enabling HTTPS on PHP.

Fig. 4.24: SSL PHP no keep-alive chart

Regarding the use of SSL on PHP web pages, it is possible to see that the
maximum performance is about 1,400 requests per second with keep-alive
disabled (see Fig. 4.24). This is a very similar result that the one obtained from
SSL HTML no keep-alive test, making us wonder if that is a performance limit of
not using keep-alive when enabling SSL. The web servers that had a lower
performance were Nginx and Lighttpd default configuration, as well as Apache’s
Worker and Event configuration. Meanwhile, configuring Lighttpd and Nginx to
use more than one active worker boosts performance of the web server, getting
around 1,300 and 1,400 requests per second, an increase of 30%.

When enabling keep-alive, the chart (Fig. 4.25) got divided in three different
groups. The first group is formed by Lighttpd’s multi process configuration,
getting up to 4,500 requests per second, which is a raise of 221%. In second
group is Lighttpd’s default configuration, which is around 3,000 requests per
second. And, in third group are the rest of web servers. In this case, Nginx multi
process configuration does not help to increase the web server’s performance;
instead, it does not change, with 1,400 requests per second. Apache also got
the same performance as Nginx’s, with around 1,200 requests per second.

50 Analysis and evaluation of high performance web servers

Fig. 4.25: SSL PHP keep-alive chart

4.3.3. HTTPST-3 PYTHON test

Performance of HTTPS Python is similar to the previous test, around 1,400
requests per second in the best case. In the first scenario, without keep-alive, it
is possible to see four different groups (see Fig. 4.26). The first group is formed
by Apache web server in its different configurations, which had a good
performance, around 1,400 requests per second. Prefork configuration starts to
decrease its performance when reaching 500 simultaneous clients, although the
other two configurations remain stable.

Fig. 4.26: SSL Python no keep-alive chart

Nginx’s configurations with more than one active workers also matches
Apache’s performance, around 1,400 requests per second. The second group is
composed of Nginx default configuration (one active worker) and Lighttpd
multiple worker configuration. In the case of one Nginx worker, its performance
remains stable up to 1,200 requests per second, although it increases a little
when raising the number of simultaneous clients. The third group is form by

Test results 51

Hiawatha, which runs SSL Python with 900 requests per second. Finally, the
latest group is formed by Lighttpd, running its default configuration with only one
worker.

Enabling keep-alive does not produce any considerable increase, only moving
from 1,400 up to 1,900 requests per second, both in the best case (see Fig.
4.27). Here there are two different groups; the first one is formed by Lighttpd
multi worker configuration, which outperforms its default configuration. In the
second group are the rest of the web servers that are Apache, Lighttpd default
configuration, Nginx, and Hiawatha. All of them have a similar performance than
in the previous test, without keep-alive enabled, which were around 1,400
requests per second.

Fig. 4.27: SSL Python keep-alive chart

4.3.4. HTTPS tests conclusions

After conducting HTTPS tests, it is possible to say that the performance penalty
of enabling such feature is high. For this test it was chosen AES256-SHA1,
which is marked as high by OpenSSL, but there are even more secure
communications. Eventually, this will affect the overall performance of the web
server, having it even more load and with less simultaneous clients.

4.3.4.1. HTTPS HTML test conclusions

During the HTTPS HTML tests it was obvious that exists a clear performance
difference between enabling SSL or keep-alive. When using SSL without keep-
alive performance of any web server was limited to 1,400 requests per second,
which was a very low rate compared with those gotten from the normal HTML
test. No matter the web server architecture which is being deployed or even if
they had more than one active process at the same time, performance was
limited. Once enabling keep-alive, those rates increased up to 14,000 in the
best case, but still far from no SSL enabled results.

52 Analysis and evaluation of high performance web servers

Performance penalty was dependent of each web server. Comparing Apache’s
performance in the different test cases, it is found a difference between 480%
and 680% regarding its configuration. Lighttpd performance without SSL was
slightly higher than Apache’s, so the performance difference by enabling SSL
increases too, between 530% and 680%, regarding the different worker
configurations. Nginx’s performance was similar to Lighttpd, having a
performance penalty between 460% and 650%, regarding its configuration.

Once enabled keep-alive, there is an increase of the performance. Each web
server increases its performance, but nevertheless reaching the rates obtained
without SSL. In Apache’s case, it rises from 1,400 requests per second up to
8,000 – 11,000 requests per second, but has a performance penalty around
67% by using SSL. Lighttpd increases its performance up to 10,000 requests
per second, but taking into account its static; no SSL performance is a penalty
between 30% and 60% regarding its configuration. Nginx’s keep-alive test
shows an increase of performance, going from 1,400 requests per second up to
10,000 – 14,000 requests per second, but the overall performance penalty of
enabling SSL is between 42% to 50% regarding its different configurations. See
Appendix 3.3.1 to view more performance results.

Using SSL reduces the performance of the web server between 30% and 60%,
which has a high impact on the web server itself. This is translated to a higher
CPU load, as well as smaller amount of simultaneous users in the system and
lower performance. If SSL performance is an important objective, it may be
needed to use a multiple server configuration with a load balancer.

4.3.4.2. HTTPS PHP tests conclusions

As for the previous test, enabling HTTPS to PHP web pages provokes a
reduction of the web server’s performance. Regarding the technology
associated to each execution environment as well as the architecture of the web
server, could be possible to increase the number of requests per second when
enabling keep-alive feature.

HTTPS PHP test case showed to have a low performance rate without keep-
alive having around 1,400 requests per second, using a “Hello, World!” script.
Keep-alive feature introduces some performance increase for Lighttpd, reaching
up to 4,000 requests per second. Although, other web server such as Apache
do not benefit of kernel loaded extensions, making it to perform like Nginx or
Hiawatha. So, this leaves space to think about what would happen when
requesting even larger web pages, with more dynamic content. For this test, the
clear winner is Lighttpd, which gets higher performance than the others. See
Appendix 3.3.2 to view more performance results.

4.3.4.3. HTTPS PYTHON tests conclusions

The latest HTTPS test case consisted in requesting a HTTPS Python web page.
Performance associated to this test was similar to the previous ones, the HTML

Test results 53

and PHP HTTPS tests. Without keep-alive enabled, the performance of almost
all web servers was between 1,200 and 1,400 requests per second. Lighttpd
and Hiawatha have lower than expected performance, but it is not a major
special problem as it is solved in the next scenario.

When enabling keep-alive, it appear two groups. Any of them had a high
performance increase, having in the best case up to 1,900 requests per second.
Any of the tested web servers had a high performance advantage over the
others; only Lighttpd’s seems to achieve higher rates. So, in this case, Lighttpd
is the winner of this test case, by a small margin. As in HTTPS PHP test case,
the performance associated to this scenario is relatively small, needing more
powerful machines or even clusters in order to serve thousands of requests.
See Appendix 3.3.3 to view more performance results.

4.4. Load test

The final test case consists in generating a continuous load from different
clients to request some web page. As explained in previous chapters of this
report, it will be done by using a distributed benchmarking tool, which will
distribute the load between different clients. Also, it will be useful in order to
avoid some operating system limitations, which afterwards could affect the test
results. Until now, all tests were requests per second performance centric, now
it is time to get deeper and show how many simultaneous clients the web server
can handle. It is going to use MySQL and PHP, so both will have a high
performance impact in the web server, no matter that it is requesting the default
main page.

Load test will consist in creating three different phases during 1 hour time
frame. The first phase consists in generating 100 clients per second, during 30
minutes. The second phase will create 450 clients per second during 10
minutes, and the last phase 200 clients per second during 20 minutes. Each
client will do two requests, one to the main page and the second to the example
post. There will be a 5 second of sleep time between requests. The second
phase is the most demanding, as it loads the processor up to the limit, and also
increasing the RAM usage. If the web server is not efficient, some timeout
errors or server crashing may occur.

For this test it was selected only five of the tested web servers, as they offered
the best performance during previous tests. Those web servers are Apache
Prefork and Event configurations, Lighttpd, Cherokee and Nginx. Others like
Mongrel2, Yaws, Hiawatha or Tomcat were discarded because of their lower
performance. Lighttpd was configured to use four active workers, meanwhile
Nginx to use two workers.

54 Analysis and evaluation of high performance web servers

Fig. 4.28: Capacity test performance chart

Fig 4.28 shows the obtained results during the load test. Apache Prefork
configuration does not perform as expected, and has some performance issues
during the second phase. In this case, it had both full processor load and RAM
memory usage, lowering the performance and generating some timeout errors.
Meanwhile, Apache Event configuration got better performance than Prefork,
although slightly lower than for Lighttpd, Nginx and Cherokee. Event
configuration did not run out of RAM memory, although it reached the full CPU
load.

Lighttpd, Nginx and Cherokee did get the same performance, not having any
issue with any of the three launched phases. CPU load during the second
phase was high, up to 90%, although lower than for Apache’s configuration.
RAM memory consumption depended of each web server, Lighttpd RAM
footprint was the lower, only consuming 2GB, which is the 50% of the available
RAM; whereas Nginx memory consumption was higher, up to 2.8GB. Cherokee
consumed even more RAM memory, 3.3GB. Although, neither of those web
servers run out of memory or CPU, having still some space for scalability (with
higher load phases).

In order to go deeper into some information such as CPU load or RAM memory
footprint see Appendix 3.7.

Lessons learned 55

CHAPTER 5. LESSONS LEARNED

Configuring a web server is not an easy task. As diving deeper into settings and
performance, is possible to see that there are different parameters to take into
account in order to improve the overall performance, as well as reduce some
possible issues. During this project, some parameters of either the web server
or the operating system had been tuned in order to offer better performance. On
the operating system side, it was tuned the ulimit directive, which establishes
the number of file descriptors that any program can open during its operation.
By default, the maximum value is 1024, which in some cases with high volume
of transactions, it may be not enough making the web server to crash or limit
the performance. So, to have more file descriptors, thru limit directive was tuned
up to 65535, enough for the tests that were made.

Another complicated task is to give correct file and folder permissions. It is not
as easy as coping the files and start using the web server. Consequently, it is
important to realize which are the correct file permissions and apply them. The
clearest example that occurred during the project was when using Wordpress
blog. In that case, it was needed to set the correct chmod directive in order to
allow the web servers user to change, add or remove files. The very basis
values for this directive were 644, 755, 775 and 777 (although it may not be
recommended).

Also, each web server has its own parameters to configure. Talking about
Apache, it was interesting to see the difference in the performance when
enabling the three possible configurations. The default one, Prefork, does give
the best performance, giving the option to load PHP language into the kernel by
means of a module. But, it has its own drawbacks, as it creates a new process
for each new incoming request, limiting the overall performance of the web
server. Moreover, using the PHP modules increases its performance, but loads
a PHP interpreter into each process, increasing the memory footprint. The other
configurations help to have a wider vision of the different architectures. For
instance, Event configuration, introduces in to the event-driven architecture, in
which a lot of new applications are deploying its efforts.

Event-driven architectures are driving the next evolution of software
development, due to the fact of the different performance enhancement that
produces such architecture. For this reason, Lighttpd and Nginx web servers
are best suited than others for some specific tasks. Event-driven architectures
make use of non-blocking I/O directives, which makes possible to perform well
with only one process and one thread. But, in order to increase its performance,
it is advisable to fork the main process into more. Both cases benefit from such
configuration, leading to a noticeable performance boosts.

Multithreading web servers such as Cherokee or Tomcat also have high
performance, due to the full usage of the processor. In this case, the capability
of creating as many threads as necessary loads completely the CPU. But, also
both have their own drawbacks, being the main one that not all the applications

56 Analysis and evaluation of high performance web servers

are thread safe, leading to a possible issue when there is some memory share.
Speaking about Cherokee, it has a very good performance as well as a very
intuitive web configuration, which makes easier to configure. On the other hand,
Tomcat offers very good performance, but it is mainly used as an application
server, not integrating FastCGI. This might seem a drawback, but its strength is
the compliance with Servlets and JSPs.

As explained in previous sections, FastCGI, that replaces CGI, has a very good
performance and compatibility for almost all dynamic languages. PHP
languages benefit from FastCGI execution by not creating a new process for
each new incoming request. Also, it is important to set the proper FastCGI
configuration parameters, such as number of processes and requests per
process. Those parameters will affect the overall performance as well as the
memory footprint. Setting a small value for both could impact negatively the
performance of the web server, as not all the requests could be attended
quickly. Meanwhile, setting it to a high value might load too much the web
server, leaving no memory for other processes. The other dynamic language
tested during this report was Python. As PHP, Python scripts needs an external
interpreter to be executed. There are different interpreters, but it was chosen
uWSGI. There were different configuration parameters of uWSGI software, and
it was needed to change them according to their performance. Avoiding some
logging, as well as creating sub processes, allows increasing the performance
offered by such interpreter.

The last part of the report was focused on having real performance numbers.
Those tests where done by using a free framework applied to make blogs in the
Internet. Such tool gives the possibility to know the performance associated to a
machine when using a real workload framework. Also, it was installed some
caches in order to boosts the web server’s performance, like in the real world.
For this reason, it was installed some PHP accelerators, in order to accelerate
the PHP code that was present in the Wordpress blog by converting it to op-
code.

In addition, for any of the performed tests, the requests per second values
obtained are important. Tested web pages are too small to be considered real
web pages, as Internet frameworks make use of different types of languages as
well as interaction with other software, such as databases. The main reason
behind the use of such small web pages is to know the best performance
associated to each one of the web servers. Having both the hardware and the
web pages equal among the web servers, gives the opportunity to explain
performance differences from their architectural differences.

Watching closely the error logging file as well as the CPU and the RAM memory
performance is mandatory. Knowing those three aspects of the server gives an
idea of how it performs, and if there are any issues during its execution.
Avoiding any issue and configuring each web server according its possibilities is
difficult, but it is needed in order to get the best experience of it. Getting a web
server to work is an easy task, but making it perform well and take the best in
any case is a hard job.

Conclusions 57

CONCLUSIONS

Web servers are a very important Internet tool, as they are in charge of deliver
content for any web page that is visited. Usage of Internet is being increased
day-by-day in order to introduce even more services, which once upon a time
were provided by physical persons. At the beginning of this thesis, some
important features were introduced, in order to give a general idea of what was
needed to be considered and what was the motivation of the work.

When benchmarking any product, it is important to define as well as possible
the whole scenario and the test cases to benchmark (so it can be shown the
strengths and weaknesses of any web server). Scenarios consisted in
requesting different web pages technologies such as static and dynamic pages,
and also secure connections. The first part of the results were static tests,
where it was tested an HTML web page and two different sized images. Those
three tests got the highest performance rates, as they used fewer server
resources not needing any special processing.

Dynamic content tests consisted in serving dynamic languages such as PHP,
Python and Java. Those languages are widely deployed on the Internet, and
used by lot of web frameworks. Their performance is lower, due to the fact that
require external interpreters in order to process the different languages.
Moreover, using external interpreters, gave the option to test different dynamic
web technologies such as CGI, FastCGI, Servlet, JPS, and uWSGI. Those
protocols were benchmarked and compared against each other, to see their
relative performance. Secure tests consisted in enabling the use of SSL in the
web servers, and the use HTTPS protocol instead of HTTP. Enabling such
feature had a high performance penalty when compared with not using SSL.
The last test consisted in creating a load scenario where simultaneous clients in
the system were benchmarked.

Any benchmark depends on what it is going to be tested. In order to benchmark
web servers it is important to have the whole web site or the used framework;
although, it is not always possible. In the meantime, using small web pages
gives a clear idea of the maximum performance that any web server can
deliver, letting the user to decide what is the best for any situation. After
conducting such tests, it is possible to say that for static content Lighttpd and
Cherokee were the best web servers. For dynamic web pages, servers like
Apache httpd, Nginx and Cherokee had the best performance, regarding the
used technology. Speaking about secure communications, Lighttpd, Apache
and Nginx offer very good performance against the others.

There is not the perfect and best suitable web server for all cases; although,
some of them can be the best in some specific scenarios. So, high load cases
will require the use of more than one web server, to distribute functionalities
according to their strengths.

58 Analysis and evaluation of high performance web servers

REFERENCES

[1] Internet World Stats. http://www.internetworldstats.com/stats.htm

[2] Netcraft Internet statistics. http://news.netcraft.com/

[3] Telefónica I+D. http://www.tid.es

[4] Tim Berners Lee. http://www.w3.org/People/Berners-Lee/

[5] Where the web was born, CERN (European Organization for Nuclear
Research). http://info.cern.ch/Proposal.html

[6] HTTP protocol. http://www.w3.org/Protocols/

[7] HTTP 0.9 protocol. http://www.ietf.org/rfc/rfc1945.txt

[8] HTTP 1.0 protocol. http://www.ietf.org/rfc/rfc1945.txt

[9] HTTP 1.1 protocol. http://www.ietf.org/rfc/rfc2616.txt

[10] Common Gateway Interface (CGI). http://www.ietf.org/rfc/rfc3875

[11] FastCGI, Open Market. http://www.fastcgi.com

[12] Java Servlet technology, Oracle.

http://www.oracle.com/technetwork/java/javaee/servlet/index.html

[13] Java Server Pages, Oracle.

http://www.oracle.com/technetwork/java/javaee/jsp/index.html

[14] WSGI. http://wsgi.org/wsgi/WsgiStart

[15] Python Web Server Gateway Interface v1.0, PEP 333.

http://www.python.org/dev/peps/pep-0333/

[16] uWSGI. http://projects.unbit.it/uwsgi/

[17] Apache httpd web server, Apache Foundation. http://httpd.apache.org/

[18] Lighttpd web server. http://www.lighttpd.net/

[19] Cherokee web server, Octality. http://www.cherokee-project.com/

[20] Nginx web server. http://nginx.org/

[21] Web servers to handle ten thousand clients simultaneously, The 10K
problem. http://www.kegel.com/c10k.html

References 59

[22] Mongrel2 web server. http://mongrel2.org/home

[23] Hiawatha web server. http://www.hiawatha-webserver.org/

[24] Tomcat web server, Apache Foundation. http://tomcat.apache.org/

[25] Yaws web server. http://yaws.hyber.org/

[26] Iperf network benchmark tool. http://sourceforge.net/projects/iperf/

[27] Apache benchmark tool, Apache Foundation.

http://httpd.apache.org/docs/2.0/programs/ab.html

[28] Tsung benchmarking tool. http://tsung.erlang-projects.org/

[29] Wordpress blog site. http://wordpress.com/

[30] Ganglia monitoring system. http://ganglia.sourceforge.net/

[31] Welsh, Matt; The Staged Event-Driven Architecture for Highly-Concurrent
Server Applications; Computer Science Division University of California,
Berkeley.

[32] Li, Peng; Zdancewic, Steve; Combining Events And Threads For
Scalable Network Services; University of Pennsylvania.

[33] Rajagopalan, Mohan; T. Lewis, Brian; A. Anderson, Todd; Thread
Scheduling for Multi-Core Platforms; Programming Systems Lab, Intel
Corporation.

[34] Gammo, Louay; Brecht, Tim; Shukla, Amol; Pariag, David; Comparing
and Evaluating epoll, select, and poll Event Mechanisms; University of
Waterloo.

[35] Nørmark, Kurt; Using Lisp as a Markup Language, The LAML Approach;
Department of Computer Science of Aalborg University.

[36] History of the Internet. http://www.isoc.org/internet/history/cerf.shtml

60 Analysis and evaluation of high performance web servers

APPENDIX

A.1 Scenario configuration

In Chapter 3 was explained the main hardware and software specifications that
have the available machines. In the first appendix of the thesis, the A.1, it will
be shown with more detail some of the hardware and software configurations,
as well as the web server’s configuration files.

A.1.1 Used hardware and software

A.1.1.1 PC1

This machine is the main computer, where all the scripts and processes are
programmed, along with all the generated data during the tests. It is also used
to connect remotely to all the servers/clients of the network though SSH.

Table A.1: PC1 Hardware

PC1 Hardware
Processor type Intel Pentium D 820 (Rev. B0)

Processor cores 2
Processor frequency 2.80 GHz

RAM memory 3 GB DDR2-5300 (@ 667 MHz)
HDD 80 GB @ 7200 rpm SATA

Network Interface Card
Broadcom NetXtreme 57xx Gigabit

Controller @ 1000 Mbps
Operating system Microsoft Windows 7 (x86)

Java 1.6.0_23
PHP 5.3.6

Python 2.6.4
Apache 2.2.17
MySQL 5.1.41

Table A.1 shows the hardware and installed software of the PC1. This is a
Microsoft Windows machine. It will give us the opportunity to use almost all of
the programs that are going to be tested, but also some performance issues
compared with Linux machines thinking as a server machine.

A.1.1.2 TAS01

This machine will be used as a main server machine, where it will be running
the different Web Servers that are going to be tested. It has almost the same
hardware than the previous computer, but the software is slightly different.

Appendix 61

Table A.2: TAS01 Hardware

TAS01 Hardware
Processor type Intel Pentium D 950 (Rev. C1)

Processor cores 2
Processor frequency 3.40 GHz

RAM memory 4 GB DDR2-5300 (@ 667 MHz)
HDD 250 GB @ 7200 rpm SATA

Network Interface Card
Broadcom Tigon3 BCM5751 Gigabit
Controller rev 4001 @ 1000 Mbps

Operating system Red Hat Enterprise Edition 5.3 (x86_64)
Java 1.6.0_14
PHP 5.3.6

Python 2.4.3 and 2.6.5
MySQL Ver 14.12 Distrib 5.0.45

Table A.2 shows the hardware and software specs of the TAS01 server. As
seen, it is better than the PC1 because has a more powerful CPU, but probably
this is not a key aspect due to the fact that both machines share the same
architecture of Intel Pentium D. The main difference between TAS01 and PC1 is
that this computer runs a Linux distribution running a 64bits kernel, which could
lead to a better performance in a server point of view if compared with the PC1.

A.1.1.3 TAS02

This machine will be used as a backup machine for different uses. It will work as
a server machine; it has the same web servers than those found in TAS01. It
could be configured to create a cluster of machines to increase the performance
of the whole web server structure. Also, it will be used as a client, providing a
machine to perform the benchmark tests and also to perform a distributed
benchmark with other machines.

Table A.3: TAS02 Hardware

TAS02 Hardware
Processor type Intel Xeon 5110 (Rev. B1)

Processor cores 2
Processor frequency 1.60 GHz

RAM memory 4 GB DDR2-5300 (@ 667 MHz)
HDD 250 GB @ 7200 rpm SATA

Network Interface Card
Broadcom Tigon3 BCM5751 Gigabit
Controller rev 4201 @ 1000 Mbps

Operating system Red Hat Enterprise Edition 5.5 (x86_64)
Java 1.6.0_14
PHP 5.3.6

Python 2.4.3 and 2.6.5
MySQL Ver 14.12 Distrib 5.0.45

62 Analysis and evaluation of high performance web servers

Table A.3 shows the specs in hardware and software of the machine TAS02.
The architecture of the CPU, an Intel Xeon 5110, is similar to the one found on
PC1 and TAS01, a Pentium D. The main software specs are the same than for
TAS01, only changing the operating system from the 5.3 version to the 5.5.

A.1.1.4 TAS03

This machine will be used as a backup machine for different uses. Will work as
a server machine, where it will be running the same web servers than those
found in TAS01. It could be configured to create a cluster of machines to
increase the performance of the whole web server structure. Also, it will be used
as a client, providing a machine to perform the benchmark tests and also to
perform a distributed benchmark with other machine.

Table A.4: TAS02 Hardware

TAS02 Hardware
Processor type Core 2 Duo 6320

Processor cores 2
Processor frequency 1.86 GHz

RAM memory 3.5 GB DDR2-6400 (@ 800 MHz)
HDD 750 GB @ 7200 rpm SATA

Network Interface Card Realtek RTL8168b/8111b @ 1000Mbps
Operating system Red Hat Enterprise Edition 5.5 (x86_64)

Java 1.6.0_14
PHP 5.3.6

Python 2.4.3 and 2.6.5
MySQL Ver 14.12 Distrib 5.0.45

TAS03 hardware is better than the previous ones, although it was no available
at the beginning of the test cases. It is be very useful when dealing with
distributed tests, in which is needed some extra computational power.

A.1.1.5 TAS04

This machine will be used as a client machine, where the different
benchmarking tools will be running. Also, it offers the possibility to create a
distributed benchmark using the process capacity that offers the TAS02 and
TAS03 machines.

Table A.5: TAS04 Hardware

TAS04 Hardware
Processor type Intel Pentium 4 521 HT

Processor cores 1 (with Hyper Threading)
Processor frequency 2.80 GHz

RAM memory 3 GB DDR2-5300 (@ 667 MHz)
HDD 80 GB @ 7200 rpm SATA

Network Interface Card Broadcom Tigon3 BCM5751 Gigabit

Appendix 63

Controller rev 4001 @ 1000 Mbps
Operating system Red Hat Enterprise Edition 5.3 (x86_64)

Java 1.6.0_14
PHP 5.3.6

Python 2.4.3 and 2.6.5
MySQL Ver 14.12 Distrib 5.0.45

Hardware specs for the TAS04 (see Table A.5) machine are lower than for the
other. While the hardware of the machine changes, the software is the same as
those found in the TAS01, sharing all the same application versions.
Benchmarking tools do not load so much the CPU; so, using a lower specs
machine is not critical from the client’s point of view.

A.1.2 Network and operating system configuration

The network and the operating system plays an important role during any
benchmark as it is the main layers where the service will be running. Having
good connectivity is important to avoid some bottlenecks generated which will
limit the performance. If the system is limited by network bandwidth there is little
to be done, if not changing the network infrastructure. On the other hand, the
operating system will limit the available resources in the machine, as it has all
the directives to share with other running processes.

A.1.2.1 Network bandwidth

In order to test the network bandwidth it is used Iperf. Iperf tool is an open
source network benchmarking tool, where it is possible to set a client and a
server and start sending data between them. To test the available network
bandwidth between the different servers, it will be installed in the four server
machines and complete very simple tests between them.

• To start an Iperf server side, it is only needed to look for the program and
run it, like this: iperf –s. This will open the default TCP port and wait for
receive data.

• To start the Iperf client side, it is needed to look for the program and run
it, like this: iperf –c tas01 –P4. This will start four clients and start
sending data to the default TCP port on TAS01 server.

Table A.6: Results of network benchmarking:

Server
Client

TAS01
(Mbps)

TAS02
(Mbps)

TAS03
(Mbps)

TAS04
(Mbps)

TAS01 (Mbps) - 945 945 948
TAS02 (Mbps) 947 - 947 945

TAS03 (Mbps) 890 891 - 891
TAS04 (Mbps) 949 948 946 -

64 Analysis and evaluation of high performance web servers

After conducting these network tests (see Table A.6), it is possible to say that
the network works in a gigabit mode, allowing us to maximize the network
testing and performance. Having a gigabit network (very common in most of the
cases) will become the bottleneck in cases of high-sized file transfers where is
need a high bandwidth. In other cases, the CPU or the RAM of the machines
will be the bottleneck of the system.

A.1.2.2 Operating system

Here are some of the parameters that are configured in the different machines.
As said in previous chapters of this report, these machines are Linux. They
have Red Hat Enterprise Linux version 5.3 or 5.5. These parameters make
reference to the operating system buffers as well as TCP/IP protocol. Those are
found in /proc/sys/net/core/ and /proc/sys/net/ipv4/.

Table A.7: TCP/IP parameters for Red Hat web servers

Parameters TAS01 TAS02 TAS03 TAS04

rmem_default
Default OS receive buffer

size
126976 129024 129024 126976

rmem_max Max OS receive buffer size 131071 131071 131071 131071

wmem_default
Default OS send buffer

size
126976 129024 129024 126976

wmem_max Max OS send buffer size 131071 131071 131071 131071

ipv4.tcp_rmem
TCP Autotuning setting

Receive buffer

4096
87380

4194304

4096
87380

4194304

4096
87380

4194304

4096
87380

4194304

ipv4.tcp_wmen
TCP Autotuning setting

Send buffer

4096
16384

4194304

4096
16384

4194304

4096
16384

4194304

4096
16384

4194304

ipv4.tcp_mem TCP Autotuning setting
196608
262144
393216

196608
262144
393216

196608
262144
393216

196608
262144
393216

tcp_timestamps
Timestamp add 12 bytes

to the TCP headers
1 1 1 1

tcp_dsack 1 1 1 1

tcp_sack
TCP selective

acknowledgments
1 1 1 1

tcp_window_scaling
Support for large TCP

Windows
1 1 1 1

ip_forward 0 0 0 0

tcp_fin_timeout TCP connection timeout 60 60 60 60

tcp_keepalive_time
TCP connection keep alive

time
7200 7200 7200 7200

As seen in Table A.7, almost all parameters are the same for the four
machines. Also they have very similar software configurations, so the machines
will be used in this scenario are very similar, not having any special tweaking to
perform better than others. But, it is important to know what they mean, for this

Appendix 65

reason is made a brief summary of those directives (source:
http://www.linuxinsight.com/proc_sys_hierarchy.html).

• Rmem_default. The default setting of the socket receive buffer in bytes.

• Rmem_max. The maximum receive socket buffer size in bytes. The
default value is 131072 bytes.

• Wmem_default. The default setting of the socket send buffer in bytes.

• Wmem_max. The maximum send socket buffer size in bytes. The
default value is 131072 bytes.

• Ipv4.tcp_rmem. Vector of 3 integers: min, default, max.
o Min - minimal size of receive buffer used by TCP sockets. It is

guaranteed to each TCP socket, even under moderate memory
pressure. The default value is 4096 bytes.

o Default - default size of receive buffer used by TCP sockets. This
value overrides rmem_default used by other protocols. The default
value is 87380 bytes. This value results in window of 65535 with
default setting of tcp_adv_win_scale and tcp_app_win is 0, and a
bit less for default tcp_app_win.

o Max - maximal size of receive buffer allowed for automatically
selected receiver buffers for TCP socket. This value does not
override rmem_max, "static" selection via SO_RCVBUF does not
use this. The default value is 4194304 bytes.

• Ipv4.tcp_wmem. Vector of 3 integers: min, default, max.
o Min - amount of memory reserved for send buffers for TCP socket.

Each TCP socket has rights to use it due to fact of its birth. The
default value is 4096 bytes.

o Default - amount of memory allowed for send buffers for TCP
socket by default. This value overrides wmem_default used by
other protocols, it is usually lower than wmem_default. The default
value is 16384 bytes.

o Max - maximal amount of memory allowed for automatically
selected send buffers for TCP socket. This value does not
override wmem_max, "static" selection via SO_SNDBUF does not
use this. The default value is 4194304 bytes.

• Ipv4.tcp_mem. Vector of 3 integers: min, pressure, max.
o Low - below this number of pages TCP is not bothered about its

memory appetite.
o Pressure - when amount of memory allocated by TCP exceeds

this number of pages, TCP moderates its memory consumption
and enters memory pressure mode, which is exited when memory
consumption falls under "low".

o High - number of pages allowed for queuing by all TCP sockets.
� Defaults are calculated at boot time from amount of

available memory.

• Tcp_timestamps. Enable timestamps as defined in RFC1323. Enabled
(1) by default.

• Tcp_dsack. Allows TCP to send "duplicate" SACKs. Enabled (1) by
default.

66 Analysis and evaluation of high performance web servers

• Tcp_sack. Enable Selective ACKnowledgement (SACK) Option for TCP.
SACKs (RFC 2018) allow a receiver to acknowledge non-consecutive
data. Enabled (1) by default.

• Tcp_window_scalling. Enable window scaling as defined in RFC1323.
Enabled (1) by default. Is an option to increase the TCP receiving
window size above its maximum value of 65,535 bytes.

• Ip_forward. Forward packets between interfaces if enabled (1). Disabled
(0) by default. This variable is special; its change resets all configuration
parameters to their default state (RFC1122 for hosts, RFC1812 for
routers).

• Tcp_fin_timeout. Time to hold socket in state FIN-WAIT-2, if it was
closed by our side. Peer can be broken and never close its side or even
die unexpectedly. The default value is 60 seconds. Usual value used in
2.2 was 180 seconds you may restore it, but remember that if your
machine is even underloaded web server, you risk to overflow memory
with lots of dead sockets. FIN-WAIT-2 sockets are less dangerous than
FIN-WAIT-1, because they eat maximum 1.5 kilobytes of memory, but
they tend to live longer.

• Tcp_keepalive_time. How often TCP sends out keep-alive messages
when keep-alive is enabled. The default value is 7200 seconds (2 hours).

A.1.3 Testing tools

There are different testing tools for benchmarking of web servers in the market.
Here are two of the used during this report. It was chosen these two tools
because they offered very good performance, and also good portability between
different machines. Also, they were chosen because they worked in command
line mode, without needing a graphical interface, which was not possible to use.

A.1.3.1 Apache Benchmark

Apache Benchmark tool is provided by the Apache foundation. It is a very
powerful tool, letting the user configure the number of requests to perform and
number of concurrent clients. Also, it allows saving the results of the tests in a
gnuplot-file, as well as setting some POST information in the requests. Its
working principle is very easy. There is no need to install the software as it
comes with the Apache httpd installation (currently is installed with almost all
Linux distributions). To launch the program is only need to be in the Apache
folder and run ab –n X –c Y [http://]hostname[:port]/path.

Once the test is done, it is displayed in the screen some information about it. In
first place it shows server information as for instance, the software version,
hostname, and the server port. In second place it is the document information
with the path and length of it. In third place there are some statistics of the
connection, like the number of successful requests, total transferred bytes,
requests per second and also response times. This information is very useful in
order to view the performance of the web server in the test. Finally, it is

Appendix 67

displayed a table with some connection times and also the percentage of the
requests served within a certain time.

A.1.3.2 Tsung

Tsung is a benchmark tool written in Erlang and can be distributed to use more
than one machine to perform the test. Erlang is a programming language
designed for building highly parallel, distributed, fault-tolerant systems. It has
been used commercially for many years to build massive fault-tolerant systems,
which run for years with minimal failures. Erlang combines ideas from the world
of functional programming with techniques for building fault-tolerant systems to
make a powerful language for building the massively parallel networked
applications of the future.

To start the program, go to the folder where it is being installed and run it with
tsung -f myconfigfile.xml start (by default is installed in /usr/lib/tsung). This
will start the test that is provided in the myconfigfile.xml. After the test is
finished, the results will be stored in the folder
~/.tsung/tsung_recorderYYYMMDD-HH:MM.xml. There it will be found all the
information of the performed test. To get the graphical results, it is needed to
execute /usr/lib/tsung/bin/tsung_stats.pl file in the same folder where are
stored all the results.

A.1.4 Apache httpd configuration

ServerRoot "/usr/local/apache2"
Listen 80
LoadModule ssl_module modules/mod_ssl.so
LoadModule uwsgi_module modules/mod_uwsgi.so
ScriptAlias /uwsgi/ "/usr/local/apache2/uwsgi/"
<Location /uwsgi>
 SetHandler uwsgi-handler
 uWSGISocket /tmp/uwsgi.sock
</Location>
<IfModule !mpm_netware_module>
<IfModule !mpm_winnt_module>
User apache
Group apache
</IfModule>
</IfModule>
ServerAdmin you@example.com
DocumentRoot "/usr/local/apache2/htdocs"
<Directory />
 Options FollowSymLinks
 AllowOverride None
 Order deny,allow
 Deny from all
</Directory>
<Directory "/usr/local/apache2/htdocs">
 Options Indexes FollowSymLinks
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>
<IfModule dir_module>
 DirectoryIndex index.html
</IfModule>
<FilesMatch "^\.ht">
 Order allow,deny
 Deny from all

68 Analysis and evaluation of high performance web servers

 Satisfy All
</FilesMatch>
ErrorLog "logs/error_log"
LogLevel warn
<IfModule log_config_module>
 LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
 LogFormat "%h %l %u %t \"%r\" %>s %b" common
 <IfModule logio_module>
 LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\" %I %O" combinedio
 </IfModule>
 CustomLog "logs/access_log" common
</IfModule>
<IfModule alias_module>
 ScriptAlias /cgi-bin/ "/usr/local/apache2/cgi-bin/"
</IfModule>
<IfModule cgid_module>
</IfModule>
<Directory "/usr/local/apache2/cgi-bin">
 AllowOverride None
 Options None
 Order allow,deny
 Allow from all
</Directory>
DefaultType text/plain
<IfModule mime_module>
 TypesConfig conf/mime.types
 AddType application/x-compress .Z
 AddType application/x-gzip .gz .tgz
</IfModule>
Various default settings:
Include conf/extra/httpd-default.conf
Server-pool management (MPM specific):
Include conf/extra/httpd-mpm.conf
PHP module configuration file:
Include conf/extra/php.conf
Fast CGI module (mod_fcgid) configuration file:
Include conf/extra/fcgid.conf
Secure (SSL/TLS) connections:
Include conf/extra/httpd-ssl.conf
<IfModule ssl_module>
SSLRandomSeed startup builtin
SSLRandomSeed connect builtin
</IfModule>

A.1.5 Lighttpd configuration

server.modules = (
 "mod_access",
 "mod_fastcgi",
 "mod_cgi",
 "mod_accesslog")
server.document-root = "/usr/local/lighttpd/htdocs"
server.errorlog = "/usr/local/lighttpd/logs/error.log"
index-file.names = ("index.php", "index.html",
 "index.htm", "default.htm")
server.tag = "lighttpd/1.4.28 (UNIX)"
url.access-deny = ("~", ".inc")
$HTTP["url"] =~ "\.pdf$" {
 server.range-requests = "disable"
}
static-file.exclude-extensions = (".php", ".pl", ".fcgi")
server.pid-file = "/var/run/lighttpd.pid"
server.max-worker = 4
server.max-fds = 65535
server.max-keep-alive-requests = 2000
server.max-keep-alive-idle = 90
server.max-read-idle = 60
server.max-write-idle = 360
server.event-handler = "linux-sysepoll"
server.network-backend = "linux-sendfile"
server.stat-cache-engine = "simple"
server.username = "lighttpd"

Appendix 69

server.groupname = "lighttpd"
fastcgi.server = (".php" =>
 ("tas01" =>
 (
 "socket" => "/tmp/php.sock",
 "bin-path" => "/usr/bin/php-cgi",
 "max-procs" => 16,
 "bin-environment" => (
 "PHP_FCGI_CHILDREN" => "12",
 "PHP_FCGI_MAX_REQUESTS" => "10000"),
 "bin-copy-environment" => ("PATH", "SHELL", "USER")
)),
 ".py" =>
 ("tas01" =>
 (
 "socket" => "/tmp/py-fcgi.socket",
 "bin-path" => "/usr/local/lighttpd/htdocs/pytestfcgi.py"
))
)
#cgi.assign = (".pl" => "/usr/bin/perl",
".cgi" => "/usr/bin/perl",
".php" => "/usr/bin/php-cgi",
".py" => "/usr/bin/python")

#ssl.engine = "enable"
#ssl.pemfile = "/usr/local/lighttpd/sbin/host.pem"
#ssl.use-sslv2 = "disable"
#ssl.cipher-list = "HIGH:MEDIUM:!ADH"

A.1.6 Nginx configuration

user devel;
worker_processes 2;
worker_rlimit_nofile 65535;
error_log logs/error.log;
events {
 worker_connections 16384;
 use epoll;
}
http {
 include mime.types;
 default_type application/octet-stream;
 sendfile on;
 keepalive_timeout 90;
 server {
 listen 80;
 server_name tas01;
 location / {
 root html;
 index index.html index.htm index.php;
 }
 error_page 500 502 503 504 /50x.html;
 location = /50x.html {
 root html;
 }
 location ~ \.php$ {
 fastcgi_pass 127.0.0.1:3000;
 include fastcgi_params;
 }
 location ~ \.py$ {
 include uwsgi_params;
 uwsgi_pass unix:/tmp/uwsgi.sock;
 }
 }
 #ssl_session_cache shared:SSL:10m;
 #ssl_session_timeout 10m;
 #server {
 # listen 443;
 # server_name tas01;
 # ssl on;
 # ssl_certificate /usr/local/nginx/conf/host.pem;
 # ssl_certificate_key /usr/local/nginx/conf/tas01.key;

70 Analysis and evaluation of high performance web servers

 # ssl_session_timeout 70;
 # ssl_protocols SSLv3 TLSv1;
 #ssl_ciphers ALL:!ADH:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP;
ssl_prefer_server_ciphers on;
location / {
root html;
index index.html index.htm;
}
location ~ \.php$ {
root html;
fastcgi_pass 127.0.0.1:3000;
fastcgi_index index.php;
include fastcgi_params;
}
location ~ \.py$ {
root html;
include uwsgi_params;
uwsgi_pass unix:/tmp/uwsgi.sock;
}
}
}

A.1.7 Cherokee configuration

config!version = 001002000
server!bind!1!port = 80
server!bind!1!tls = 0
server!chunked_encoding = 1
server!fdlimit = 65535
server!iocache = 0
server!ipv6 = 1
server!keepalive = 1
server!keepalive_max_requests = 2000
server!max_connection_reuse = 1000
server!panic_action = /usr/local/cherokee/bin/cherokee-panic
server!pid_file = /usr/local/cherokee/stat/run/cherokee.pid
server!poll_method = epoll
server!server_tokens = full
server!thread_policy = other
server!timeout = 90
vserver!1!directory_index = index.html, index.php
vserver!1!document_root = /usr/local/cherokee/htdocs
vserver!1!error_writer!filename = /usr/local/cherokee/stat/log/cherokee.error
vserver!1!error_writer!type = file
vserver!1!nick = default
vserver!1!rule!1200!disabled = 0
vserver!1!rule!1200!document_root = /usr/local/cherokee/wordpress
vserver!1!rule!1200!encoder!deflate = forbid
vserver!1!rule!1200!encoder!gzip = forbid
vserver!1!rule!1200!match = directory
vserver!1!rule!1200!match!directory = /wordpress
vserver!1!rule!1200!match!final = 0
vserver!1!rule!1100!disabled = 0
vserver!1!rule!1100!handler = fcgi
vserver!1!rule!1100!handler!balancer = round_robin
vserver!1!rule!1100!handler!balancer!source!10 = 1
vserver!1!rule!1100!match = extensions
vserver!1!rule!1100!match!check_local_file = 0
vserver!1!rule!1100!match!extensions = php
vserver!1!rule!1100!match!final = 0
vserver!1!rule!900!disabled = 1
vserver!1!rule!900!document_root = /usr/local/cherokee/php_fpm
vserver!1!rule!900!encoder!deflate = forbid
vserver!1!rule!900!encoder!gzip = forbid
vserver!1!rule!900!handler = fcgi
vserver!1!rule!900!handler!balancer = round_robin
vserver!1!rule!900!handler!balancer!source!10 = 5
vserver!1!rule!900!match = directory
vserver!1!rule!900!match!directory = /php_fpm
vserver!1!rule!900!match!final = 1
vserver!1!rule!800!disabled = 1
vserver!1!rule!800!document_root = /usr/local/cherokee/scgi-bin

Appendix 71

vserver!1!rule!800!handler = scgi
vserver!1!rule!800!handler!balancer = round_robin
vserver!1!rule!800!handler!balancer!source!10 = 3
vserver!1!rule!800!handler!check_file = 0
vserver!1!rule!800!handler!error_handler = 1
vserver!1!rule!800!handler!pass_req_headers = 1
vserver!1!rule!800!handler!xsendfile = 0
vserver!1!rule!800!match = directory
vserver!1!rule!800!match!directory = /scgi-bin
vserver!1!rule!700!disabled = 1
vserver!1!rule!700!document_root = /usr/local/cherokee/scgi-py
vserver!1!rule!700!encoder!deflate = forbid
vserver!1!rule!700!encoder!gzip = forbid
vserver!1!rule!700!handler = uwsgi
vserver!1!rule!700!handler!balancer = round_robin
vserver!1!rule!700!handler!balancer!source!10 = 4
vserver!1!rule!700!match = directory
vserver!1!rule!700!match!directory = /scgi-py
vserver!1!rule!600!disabled = 1
vserver!1!rule!600!document_root = /usr/local/cherokee/fcgi-bin
vserver!1!rule!600!encoder!deflate = forbid
vserver!1!rule!600!encoder!gzip = forbid
vserver!1!rule!600!handler = fcgi
vserver!1!rule!600!handler!balancer = round_robin
vserver!1!rule!600!handler!balancer!source!10 = 1
vserver!1!rule!600!match = directory
vserver!1!rule!600!match!directory = /fcgi-bin
vserver!1!rule!500!encoder!gzip = allow
vserver!1!rule!500!handler = server_info
vserver!1!rule!500!handler!type = just_about
vserver!1!rule!500!match = directory
vserver!1!rule!500!match!directory = /about
vserver!1!rule!400!document_root = /usr/local/cherokee/cgi-bin
vserver!1!rule!400!handler = cgi
vserver!1!rule!400!match = directory
vserver!1!rule!400!match!directory = /cgi-bin
vserver!1!rule!300!document_root = /usr/local/cherokee/share/cherokee/themes
vserver!1!rule!300!handler = file
vserver!1!rule!300!match = directory
vserver!1!rule!300!match!directory = /cherokee_themes
vserver!1!rule!200!document_root = /usr/local/cherokee/share/cherokee/icons
vserver!1!rule!200!handler = file
vserver!1!rule!200!match = directory
vserver!1!rule!200!match!directory = /icons
vserver!1!rule!100!encoder!deflate = forbid
vserver!1!rule!100!encoder!gzip = forbid
vserver!1!rule!100!handler = common
vserver!1!rule!100!handler!iocache = 0
vserver!1!rule!100!match = default
source!1!env!PHP_FCGI_CHILDREN = 12
source!1!env!PHP_FCGI_MAX_REQUESTS = 5000
source!1!env_inherited = 0
source!1!host = /tmp/php.socket
source!1!interpreter = /usr/bin/php-cgi -b /tmp/php.socket
source!1!nick = php
source!1!type = interpreter
source!2!env_inherited = 0
source!2!host = /tmp/scgi-perl.socket
source!2!interpreter = /usr/bin/perl /usr/local/cherokee/scgi-bin/perltest.pl
source!2!nick = perl
source!2!type = interpreter
source!3!env_inherited = 1
source!3!host = 127.0.0.1:3040
source!3!interpreter = /usr/local/cherokee/scgi-bin/start_fcgi.sh
source!3!nick = python
source!3!type = interpreter
source!4!env_inherited = 1
source!4!host = /tmp/uwsgi.sock
source!4!interpreter = /usr/local/bin/uwsgi/uwsgi -s /tmp/uwsgi.sock -M -w /usr/local/cherokee/scgi-py/t -p 4
source!4!nick = uwsgi
source!4!type = interpreter
source!5!env_inherited = 1
source!5!host = 127.0.0.1:3000
source!5!interpreter = /etc/init.d/php-fpm start
source!5!nick = php-fpm
source!5!type = host

72 Analysis and evaluation of high performance web servers

A.1.8 Yaws configuration

logdir = /usr/local/yaws/var/log/yaws
ebin_dir = /usr/local/yaws/lib/yaws/examples/ebin
ebin_dir = /usr/local/yaws/var/yaws/ebin
include_dir = /usr/local/yaws/lib/yaws/examples/include
max_connections = nolimit
collecting too much garbage in the erlang VM.
keepalive_maxuses = nolimit
process_options = "[]"
trace = false
use_old_ssl = false
copy_error_log = true
log_wrap_size = 1000000
log_resolve_hostname = false
fail_on_bind_err = true
auth_log = false
pick_first_virthost_on_nomatch = true
keepalive_timeout = 10
use_fdsrv = false
<server tas01>
 port = 8080
 listen = 0.0.0.0
 docroot = /usr/local/yaws/htdocs
 phpfcgi = 127.0.0.1:3000
 access_log = false
</server>
<server tas01>
 port = 8081
 listen = 0.0.0.0
 docroot = /usr/local/yaws/htdocs
 fcgi_app_server = 127.0.0.1:5000
 access_log = false
</server>
#<server tas01>
port = 80
listen = 0.0.0.0
docroot = /usr/local/yaws/htdocs
appmods = <cgi-bin, yaws_appmod_cgi>
access_log = false
#</server>
#<server tas01>
port = 443
docroot = /usr/local/yaws/htdocs
listen = 0.0.0.0
dir_listings = true
access_log = false
<ssl>
keyfile = /usr/local/yaws/etc/yaws/yaws-key.pem
certfile = /usr/local/yaws/etc/yaws/yaws-cert.pem
keyfile = /usr/local/yaws/etc/yaws/tas01.key
certfile = /usr/local/yaws/etc/yaws/tas01.crt
depth = 0
ciphers = AES256-SHA
</ssl>
#</server>

A.1.9 Mongrel2 configuration

main = Server(
 uuid="f400bf85-4538-4f7a-8908-67e313d515c2",
 access_log="/logs/access.log",
 error_log="/logs/error.log",
 chroot="./",
 default_host="tas01",
 name="tas01",
 pid_file="/run/mongrel2.pid",
 port=8080,
 hosts = [
 Host(name="tas01", routes={
 '/': Dir(base='htdocs/', index_file='index.html',

Appendix 73

 default_ctype='text/plain')
 })
]
)

servers = [main]

Add to the end of the configuration file. Does not work properly, but it could be the next feature of the web server, SSL
support:

settings = {
 "f400bf85-4538-4f7a-8908-67e313d515c2.use_ssl": 1,
 "certdir": "./certs/"
}

A.1.10 Apache mod_PHP configuration

LoadModule php5_module modules/libphp5.so
<Location />
AddType text/html .php .phps
AddHandler application/x-httpd-php .php
AddHandler application/x-httpd-php-source .phps
</Location>

A.1.11 Apache FastCGI configuration

LoadModule fcgid_module modules/mod_fcgid.so
<IfModule mod_fcgid.c>
 AddHandler fcgid-script .fcgi .fcg .fplq
 IdleTimeout 300
 ProcessLifeTime 3600
 MaxProcessCount 1000
 DefaultMinClassProcessCount 3
 DefaultMaxClassProcessCount 100
 IPCConnectTimeout 60
 IPCCommTimeout 60
 BusyTimeout 120
 SocketPath /tmp/fcgi-ipc
 FCGIWrapper /usr/local/apache2/fcgi-bin/php5-fcgi .php
 AddType application/x-httpd-php5 .php .php5
</IfModule>
ScriptAlias /fcgi-bin/ "/usr/local/apache2/fcgi-bin/"
<Location /fcgi-bin/>
 Options +ExecCGI
 SetHandler fcgid-script
 Order allow,deny
 Allow from all
</Location>

74 Analysis and evaluation of high performance web servers

A.2 Test cases extended

Here is an extended list of all the test cases that have been configured and
reproduced. As said back in the Chapter 3 of this project, there are few
considerations about them.

• All tests were run multiple times to assure repeatability.

• Performance was measured in the Web Server side (to know the CPU
load, and RAM usage) and in the client side (to know the requests per
second and the system’s load).

• During the test, no other applications were running and using resources
on the system under test.

• If something is changed or added to web server’s configuration file, it will
be explained during the test case.

There are five types of tests. The first one is static content, in which will be
requested a static web page, a small image and a large image. This test will
show how optimized is each web server in front of static content. The second
test consists in requesting different dynamic languages, as for example PHP
and Python. Those languages depend of an external interpreter, but the way the
web server handles the requests will influence the final result.

The third test case is using secure communications between the client and the
server, by means of HTTPS. It will be possible to see if there is any
performance penalty by enabling such feature. During the entire tests explained
before, it will be performed the same test twice, first without using keep-alive
and next enabling it. Nowadays, almost all web browsers and applications make
use of keep-alive functionality of the HTTP protocol, it is important to see the
performance variation by using it.

The last test will be the load test, where it will be loaded a blog web site. This
test will provide us with more real performance numbers, as it will be installed a
commercial free blog tool, Wordpress. During this test case it will also be used
some cache mechanisms, in order to get more performance, like in the real
deployment environment.

A.2.1 Static tests

A.2.1.1 HTML

This benchmark consists in request an HTML file of 168 bytes. This file only
includes few lines of code, where is shown only a test sentence, This a
webserver test page. In the TAS04 machine it will be started the tool AB and
perform the ST-1 HTML test with the different load conditions.
Ab –n X –c Y http://tas01/webtest.html.
Where, X and Y are the requests and concurrency loads respectively.

<!CTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>

Appendix 75

<head>
<title>Webserver test</title>
</head>
<body>
This is a webserver test page.
</body>
</html>

Here it will be expected the network not to be the main problem, rather than the
capacity of the web server of getting profit of the processor or getting the
processor extremely loaded.

A.2.1.2 Small image

This benchmark consists in request a small image file of 7,500 bytes with a
dimension of 203x61 pixels. This image is a small one, but is about 40 times
larger than the previous test. In TAS04 machine it will be started the tool AB
and perform the ST-2 Image small test with the different load conditions.
Ab –n X –c Y http://tas01/image_small.gif.
Where, X and Y are the requests and concurrency loads respectively.

Here it is expected the network to be a possible bottleneck. As seen before, the
maximum bandwidth of the network is about 940Mbps, so doing some
calculations it is going to get the maximum rate in requests/s of the test.

Fig. A.1: ST-2-Image small test

So it is not possible to expect getting more requests per second that those that
have been calculated. Also as the files are larger than the MTU (set to 1500
bytes), will be overhead the result will be slightly smaller than the maximum that
have been calculated previously.

A.2.1.3 Large image

This benchmark consists in request a larger file with a size of 83,572 bytes with
a dimension of 1600x1200 pixels. This image is 10 times larger than the

76 Analysis and evaluation of high performance web servers

previous one. Here it is expected the network to be the main problem. As seen
before, the maximum bandwidth of the network is about 940Mbps, so doing
some calculations it will generate the maximum rate in requests/s of the test. In
TAS04 machine it will be started the tool AB and perform the ST-3 Image large
test with the different load conditions.
Ab –n X –c Y http://tas01/image_large.jpeg.
Where, X and Y are the requests and concurrency loads respectively.

Fig. A.2: ST-3-Image large test

So it is not possible to expect getting more requests per second that those that
have been calculated. Also as the files are larger than the MTU (set to 1500
bytes), will be overhead the result will be slightly smaller than the maximum that
have been calculated previously.

A.2.2 Dynamic tests

A.2.2.1 PHP

This benchmark consists in requesting a dynamic page written in PHP. The
page will be a PHP file of 14 bytes, only returning a Hello, World! sentence. As
there are different types of web servers it is defined three different types of tests
according to the possibilities of each one of them. There is no need to calculate
the maximum number of requests that the network can handle, due to the fact
that processing a dynamic language will load the CPU of the machine, limiting
the requests per second. Although being a very small file, performance will
depend on how it is executed in the web server side (module/CGI/Fast CGI).

<?php
 echo "Hello, World!";
?>

Appendix 77

If it is calculated the maximum number of requests per second, it will be a
higher number than before, but it will be never reached. As there is the need to
interpret the language, performance of the web server will decrease. The
expected performance is much lower, due to the cost of process the dynamic
language.

A.2.2.2 Python

This benchmark consists in requesting a dynamic page written in Python. The
page will be a Python file of bytes 750 bytes. As there are different types of web
servers it is defined three different types of tests according to the possibilities of
each one of them. If it is calculated the maximum number of requests per
second, it will get a lower number than before, but, nevertheless it will be never
reached. As there is the need to interpret the language, performance of the web
server will decrease. The expected performance is much lower, due to the cost
of process the dynamic language.

• CGI execution:

#!/usr/bin/python
print "Content-type: text/html"
print
text = "This is a test;"
text2 = text*50
print text2

• FastCGI execution:

#!/usr/bin/env python
-*- coding: UTF-8 -*-
from flup.server.fcgi import WSGIServer

def app(environ, start_response):
 start_response('200 OK', [('Content-Type', 'text/html')])
 text = "This is a test;"
 text2 = text*50
 yield text2
WSGIServer(app).run()

• uWSGI execution:

def application(environ, start_response):
 start_response('200 OK', [('Content-Type', 'text/plain')])
 text = "This is a test;"
 text2 = text*50
 yield text2

78 Analysis and evaluation of high performance web servers

For uWSGI test it is needed to change the structure of the script a little bit, as it
only needs to define an application to be executed. The structure of the
application is the same than for Fast CGI, but without includes and the
execution line. To run uWSGI processes in the machine, it must be installed the
uWSGI from the author’s web page and spawn the processes. If it is installed
uWSGI in the /usr/local/bin/uwsgi it will be started the process this way:
/usr/local/bin/uwsgi/uwsgi/ -s /tmp/uwsgi.sock –M –w
/usr/local/webserver/uwsgi-bin/pythontest –L –p4.

This will call the uWSGI program, bind it to the UNIX socket /tmp/uwsgi.sock,
creating a master process and finally indicating which file to execute (without
the extension of the file, .py). Also it is possible to define, as in PHP, how many
uWSGI processes to spawn, in this case 4.

A.2.2.3 SERVLET

Tomcat offers the possibility of running Servlets in the core of the web server.
Here it will be benchmarked the Tomcat Servlet feature. Performance of this
test is expected to be higher than for PHP test case. The script consists in
showing in the screen the headers of request. It is about 670 bytes.

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class RequestHeaderExample extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 Enumeration e = request.getHeaderNames();
 while (e.hasMoreElements()) {
 String name = (String)e.nextElement();
 String value = request.getHeader(name);
 out.println(name + " = " + value);
 }
 }
}

In TAS04 machine it will be started the tool AB and perform the Servlet test with
the different load conditions.
Ab –n X –c Y http://tas01/examples/servlets/servlet/
RequestHeaderExample.
Where, X and Y are the requests and concurrency loads respectively.

A.2.2.4 JSP

Tomcat offers JSP compatibility. It is expected that the performance of this test
will be higher to the Servlet one. The script consists in showing calendar
information. It is size of 373 bytes.

<html><%@ page session="false"%><body bgcolor="white">
<jsp:useBean id='clock' scope='page' class='dates.JspCalendar' type="dates.JspCalendar" />

Appendix 79

Day of month: is <jsp:getProperty name="clock" property="dayOfMonth"/>
Year: is <jsp:getProperty name="clock" property="year"/>
Month: is <jsp:getProperty name="clock" property="month"/>
Time: is <jsp:getProperty name="clock" property="time"/>
Date: is <jsp:getProperty name="clock" property="date"/>
Day: is <jsp:getProperty name="clock" property="day"/>
Day Of Year: is <jsp:getProperty name="clock" property="dayOfYear"/>
Week Of Year: is <jsp:getProperty name="clock" property="weekOfYear"/>
era: is <jsp:getProperty name="clock" property="era"/>
DST Offset: is <jsp:getProperty name="clock" property="DSTOffset"/>
Zone Offset: is <jsp:getProperty name="clock" property="zoneOffset"/>
</body></html>

In TAS04 machine it will be started the tool AB and perform the Servlet test with
the different load conditions.
Ab –n X –c Y http://tas01/examples/jsp/dates/date.jsp.
Where, X and Y are the requests and concurrency loads respectively.

A.2.3 HTTPS

It will be tested some static and dynamic content in HTTPS mode to see how it
performs against not secure protocol. To be able to perform those tests, it will
be configured the web servers to support secure connections. For this reason it
will be generated some certificates, in order to enable the SSL feature in the
web server.

For generating all the certificates it was used OpenSSL application. Next are
the followed steps in order to create the needed certificates. All the steps are
commented to explain what is being done. In first place, it is needed to generate
a private key. There are different possibilities, for instance using Triple-DES, the
most secure one, or the RSA key. In this case it will be used the RSA, as it is
not needed the extra security which provides the Triple-DES, since this is only
an example, not a production web server.

openssl genrsa > tas01.key

The second step is to generate the CSR (Certificate Signing Request). Now, it
is necessary to generate the request to send to a CA (Certificate Authority) and
request to sign the key and return one certificate.

Openssl req –new –key tas01.key > tas01.csr

It is needed to answer some questions about, like country, city, company, name
and email. Afterwards, this certificate could be send to a CA like Verisign, and
after paying the cost of certificating it will get our signed certificate. But, this is
not the main purpose of this report, so, it will be created our CA. It is needed to
locate the file CA.pl and create a new CA.

/etc/pki/tls/misc/CA.pl –newca

Next, it is needed to create a new file where it will be loaded the CA info. It must
be entered a password, the country name, state, locality, organization name,
organization unit, server host name and email address. Now, it has been

80 Analysis and evaluation of high performance web servers

created a new CA. Executing the next command will create the certificates
signed by the CA.

sudo openssl ca -policy policy_anything -out tas01.crt -infiles tas01.csr

To create a self-signed certificate it is needed to do the following:

openssl x509 -req -days 3650 -in tas01.csr -signkey tas01.key -out newcert.pem

Finally, it is needed to move the certificate files to any web server folder. For the
Apache httpd it will be placed the files inside the configuration folder to provide
the web server of the tas01.crt and tas01.key.

Cp tas01.key /usr/local/apache2/conf
Cp tas01.crt /usr/local/apache2/conf

Now, it is needed to edit the Apache’s configuration file in order to accept all the
SSL communications and with the certificates that have been created. For this
reason it will be included the http-ssl.conf file which is inside the /conf/extra
folder (inside the Apache httpd installation folder). In the httpd.conf file it is
needed to add the following lines (or maybe only uncomment it):

LoadModule ssl_module modules/mod_ssl.so
Include conf/extra/httpd-ssl.conf

And in http-ssl.conf it is only needed to change the following lines:

SSLCertificateFile "/usr/local/apache2/conf/tas01.crt"
SSLCertificateKeyFile "/usr/local/apache2/conf/tas01.key"

It can be started the web server and point the browser to the
https://tas01/webtest.html and accept the certificate that has been created
minutes ago. To test the web server with ab benchmark tool, it must be
compiled with SSL support.

A.2.4 Load tests

This test will be performed by using a distributed load testing tool, called Tsung.
Tsung is based on Erlang language, which makes it a perfect distributive
benchmarking tool, taking advantage of Erlang’s OTP libraries. It is needed to
set up a XML-like script, where it will be set the different involving machines, as
well as the benchmarking parameters.

<?xml version="1.0"?>
<!DOCTYPE tsung SYSTEM "/usr/share/tsung/tsung-1.0.dtd" []>
<tsung loglevel="warning">
 <clients>
 <client host="tas04" use_controller_vm="false" maxusers="2000"/>
 <client host="tas02" use_controller_vm="false" maxusers="2000"/>
 <client host="tas03" use_controller_vm="false" maxusers="2000"/>
 </clients>
 <servers>
 <server host="tas01" port="80" type="tcp"/>
 </servers>
 <load>
 <arrivalphase phase="1" duration="30" unit="minute">

Appendix 81

 <users arrivalrate="100" unit="second"/>
 </arrivalphase>
 <arrivalphase phase="2" duration="10" unit="minute">
 <users arrivalrate="450" unit="second"/>
 </arrivalphase>
 <arrivalphase phase="3" duration="20" unit="minute">
 <users arrivalrate="200" unit="second"/>
 </arrivalphase>
 </load>
 <sessions>
 <session name='Nginx' probability='100' type='ts_http'>
 <request>
 <http url='http://tas01/wordpress/' version='1.1' method='GET'/>
 </request>
 <thinktime random='false' value='5'/>
 <request>
 <http url='http://tas01/wordpress/?p=1' version='1.1' method='GET'/>
 </request>
 </session>
 </sessions>
</tsung>

82 Analysis and evaluation of high performance web servers

A.3 Test results extended

Not all the obtained results could be presented during the main part of this
report. So, in this appendix it will be given the rest of the results, which could
give a widely vision of the different tested web servers.

A.3.1 Static tests

As said during the report, the static tests consist in three different scenarios,
where it will be requested an HTML file, a small image and a large image.
Those tests are not computational expensive for the web server as there are not
any dynamic language to process, but if generating so much concurrent clients
the server will be loaded. Eventually, it will be the CPU and the RAM memory
which will limit the overall performance.

Resources are a limited aspect in any computer, and the operating system
assigns those available resources to any process that needs it. CPU load is a
limitation as will mark how quickly processes do their schedule job. Meanwhile,
RAM memory is a quick access memory, where process access to exchange
data in a quicker way. This RAM memory is also a finite resource, and although
it is released each time a process ends its schedule job, it may be not as quick
as the operating system needs. If the operating system runs out of RAM
memory it will start to save data into the hard disk, which will slow down the
whole system.

Table A.8: Web server memory footprint

 Worker Master

 VmRSS (kB) VmSize (kB) VmRSS (kB) VmSize (kB)

Apache Prefork 2156 69416 2156 69416

Apache Worker 2176 380872 35036 102180

Apache Event 2160 364356 18496 85664

Lighttpd 716 48308 716 48308

Nginx 7196 47240 896 41084

Cherokee 4852 142792 752 25868

Mongrel 2 8264 151912 1668 22760

Yaws 41504 171976 - -

Tomcat 79912 1338188 - -

Table A.8 shows the memory footprint of all used web servers during this
project. It has four different columns, which are the next:

• Worker. It is the active process which answers the incoming
requests.

• Master. It is the main process of the web server, which will work
as a middleware in order to distribute the load between the
different worker processes.

Appendix 83

• VmRSS. Size of memory resident set currently in physical memory
including Code, Data, and Stack. It explains how many of the
allocated blocks owned by the task currently reside in RAM.

• VmSize. Virtual memory usage of entire process

Summing up this memory footprint introduction, it is important to highlight that
the less consumption of memory the better. This will let more processes being
created and the less probability of running out of memory. There is only one
master process for each web server, which controls the workers processes and
spawns more as it is specified in the configuration. Consumption of RAM
memory depends in each web server the configuration.

Apache httpd web server it is presented with its different configurations. Prefork
mode works as a multi process single thread configuration, which has the same
memory allocated for the worker and for the master process up to 2MB of RAM
and up to 69MB of assigned virtual memory. For Apache’s Worker, the
consumption of RAM memory is almost the same than the previous, 2MB, but
the assigned virtual memory is larger, with up to 380MB. Apache’s master
process of worker configuration has a larger memory footprint, up to 35MB, but
lower virtual memory assigned, 102MB.

For Apache’s Event configuration, the assigned memory is more or less the
same than for Worker’s configuration, although its master process assigned
memory is smaller. If it is compared Apache’s memory footprint with other web
servers, it is possible to see that it has higher memory consumption than others,
something that could be a negative impact in the system’s performance.

Lighttpd memory footprint is very low, only having allocated 716KB of RAM and
a total assigned memory of 48MB, which is the same for the worker and for the
master process. Increasing the number of worker processes raises the memory
consumption, but few KB. The other event-driven web server, Nginx, does
present higher RAM consumption for its worker process, 7MB, although it has a
low total virtual memory assigned, 47MB. Nginx’s master process consumes as
low as Lighttpd.

Cherokee web server memory footprint is also low, with only 4.8MB and a total
virtual memory of 142MB for its worker process. Meanwhile, for the master
process, the memory consumption is lower, with only 752KB and 26MB
respectively. Cherokee only has one active worker process, so it will not
consume so much memory for static tasks. Tomcat is the other multithread web
server. Tomcat memory footprint is the highest one found in this report, with a
total of 80MB for its worker process and a total of 1,338MB of assigned virtual
memory. It does not have a master process and it is a single process web
server, but nevertheless its RAM consumption is high.

Mongrel2 memory footprint is like Nginx’s, 4.8MB, although its maximum
allocated virtual memory is higher, 142MB. Yaws has a large memory footprint
with up to 41MB per process.

84 Analysis and evaluation of high performance web servers

A.3.1.1 HTML

During the report it has been said that event-driven web servers do offer high
scalability when using different worker configurations. Such scalability factor it is
reached when using different active worker configurations, as well as using
keep-alive feature of HTTP protocol. Here, are shown the differences by using
or not keep-alive.

The first event-driven web server to test is Lighttpd. As seen in Table A.3, its
memory footprint is very low, which does not affect the overall performance of
the system. Also, it is tested with different worker configurations to see its
performance. Fig A.3 shows the evolution of the performance of Lighttpd when
not using keep-alive. It is possible to see that the default configuration, with one
active worker, does offer almost the same performance as the other
configurations, multi worker approach.

Fig. A.3: Lighttpd HTML no keep-alive chart

Also, it is possible to see that there is not much gain by increasing the number
of active workers as they perform very similar. Although, Lighttpd official
documentation advices to use 4 worker configuration in case of wanting an
increase of performance. Here, in this case, it may be not the best configuration
compared with the other, but it performs better than with only one active worker.
Using keep-alive, performance results changes a lot (see section 4.1.1),
performance increases, reaching up to 30,000 requests per second, which is
more than 150%.

The other event-driven web server is Nginx. It shares the same architecture
than Lighttpd, although it may handle requests in a different way. Fig. A.4
shows the performance of Nginx’s multi process configurations with no keep-
alive mode. It is possible to see, like in Lighttpd’s case, that performance is
limited, no matter how many active workers are set up. Contrary to Lighttpd,
Nginx’s performance decreases as increasing the number of simultaneous
clients. Nginx’s official documentation advices to use the same number of active
workers as the number of processors that has the system, in this case two. It is
possible to see that there is not so much difference regarding the configuration.

Appendix 85

Fig. A.4: Nginx HTML no keep-alive chart

To end this test case results round, it is provided with a chart of the best
performing web servers. In this chart, Fig. A.5, it is shown the best
configurations of each web server.

Fig. A.5: Best performing web server in HTML keep-alive test

Although Apache web server offers a very good and stable performance, it is
possible to see that it tops at 15,000 requests per second, far away from other
solutions. The three configurations of Apache have a very similar performance,
being better the prefork, which is the default installation (see Fig. A.5).

Event-driven web servers have a very good performance. Lighttpd reaches a
top performance of 31,000 requests per second, which is the best result of the
test, keeping this rate during the entire test. On the other hand, Nginx has a
good performance, reaching up to 27,000 requests per second, but decreases
when increasing the number of simultaneous clients (see Fig. A.5).

Multithread web servers have also very good performance. Cherokee performs
very similar to Lighttpd, using both very different architecture approaches. It
tops at 30,000 requests per second, decreasing when increasing the number of
simultaneous clients. Furthermore, Tomcat, which is an application server, has
a very good performance when serving static content. It increases its
performance as raising the number of simultaneous clients, exceeding Nginx’s

86 Analysis and evaluation of high performance web servers

performance. The top performance of Tomcat is around 26,000 requests per
second.

To conclude this section it is possible to say that the best web server for this
test is Lighttpd, which outperforms the rest of tested web servers, reaching up
to 31,000 requests per second. The second best web server is the single
process multithread Cherokee, which reaches up to 30,000 requests per
second. Apache, which is the king of the web servers, it is not the best one in
this test case, because it is not optimized for static content rather than for
dynamic content.

A.3.1.2 Small image

The small image test was limited by the network bandwidth, as it was calculated
in previous sections of the appendix. As in HTML test case, event-driven web
servers are expected to gain some performance by enabling its multi process
configuration. Lighttpd performance (see Fig. A.6) is limited, getting up to 8,000
– 9,000 requests per second. Multi process configurations are better than
default, although it does not represent any special gain.

Fig. A.6: Lighttpd small image no keep-alive chart

Enabling keep-alive does represent a high performance increase (see section
4.1.2). The increase by using keep-alive in front of not using it is about 75%.

Nginx’s case is very similar than the previous one. Performance achieved
without using keep-alive feature is very limited, up to 8,000 requests per second
(see Fig. A.7). Multi process configuration does not help the web server to
increase its performance. As happened in the previous test case, the HTML,
performance of Nginx decreases as the number of simultaneous clients
increase.

Appendix 87

Fig. A.7: Nginx small image no keep-alive chart

Using keep-alive increases the performance of the web server (see section
4.2.1), like in Lighttpd’s case. Although, the use of multi process configuration
does not increase so much the obtained performance. Nevertheless, the
performance of this test is limited by the network bandwidth not by the CPU or
RAM memory.

The latest chart (see Fig. A.8) to show is meant to put together the best
performing web servers of this test case. It is possible to see that the four web
servers have the same performance, reaching the top rate at 15,000 requests
per second. As simultaneous clients increase there is a stable response of all
the web servers, although Nginx decreases it a little bit.

Fig. A.8: Best performing web server in small image test

A.3.2 Dynamic tests

Dynamic tests consist in requesting some web page which has some dynamic
language embedded into. During this project are tested different dynamic
languages, such as PHP, Python, and Java. As said before, processing
dynamic web pages is more computational expensive than static pages, this is

88 Analysis and evaluation of high performance web servers

due to the fact that it is needed an external interpreter to process it, and
afterwards serve the answer.

A.3.2.1 PHP

The first language to test is PHP. PHP is a widely used dynamic language in the
Internet. It powers a lot of web pages and a large number of the most used
frameworks, such as blogs, newspapers, media content, etc. There are lots of
different connectors in order to link with different programs, like databases,
other frameworks, etc. As happened with the static tests, it is important to know
the memory footprint of any of these interpreters. Table A.9 shows the memory
which is being used by some of the programs that can execute PHP.

Table A.9: Web server PHP memory footprint

VmRSS (kB) VmSize (kB)

Apache mod_php 5012 241720

FastCGI 3748 170908

PHP-FPM 4140 221372

As said previously, PHP can be executed by means of different interpreters,
such as kernel loaded module, CGI, FastCGI, and PHP-FPM. Kernel module it
is only available in one of the tested configurations, which is Apache Prefork. In
this case, it is loaded a PHP interpreter for any new process that is being
created. Memory footprint of Apche’s mod_php module is high. It has a total of
5MB of allocated memory in RAM and up to 241MB of virtual memory assigned.
This process yet includes the Apache’s process, as it has an interpreter loaded
into each Apache’s processes. Nevertheless, it is a high memory footprint,
limiting the number of maximum processes to spawn.

FastCGI processes are spawned apart, meaning that those processes need to
be started manually in order to generate the PHP interpreter. It is an evolution
of CGI, where it is not being killed each time a request is answered. Memory
footprint is lower than mod_php, with a total allocate RAM memory of 3.7MB
and 171MB of virtual memory. It is possible to control how many FastCGI
processes to spawn when launching the process, so the user can control the
memory which is being consumed.

PHP-FPM is an evolution of FastCGI, which stands for PHP FastCGI Process
Manager. It is a process manager that controls each of the PHP FastCGI being
created. It has different user accessible directives to customize the execution
environment, but also has a larger memory footprint. The total allocated RAM
memory is 4.1MB and the assigned virtual memory is 221MB, larger than for
FastCGI. Neither FastCGI nor PHP-FPM counts the memory footprint of the
web servers, so it is needed to add the memory consumption of each web
server.

Back in section 4.2.1 of this report, it was presented some results about PHP
usage. It was possible to see that using a dynamic language introduced a
performance penalty, which regarding the web server it was more or less

Appendix 89

considerable. Apache’s mod_php was the best performing web server, with and
without keep-alive feature. Also, knowing their memory footprint it is possible to
say that Apache is the web server that consumes more memory.

Fig. A.9: Apache PHP no keep-alive chart

Fig. A.9 shows the performance of Apache web server running PHP without
keep-alive. It is possible to see that there are three groups. The first one is
mod_php, which gets up to 7,000 requests per second. The second group is
FastCGI interpreter, reaching up to 2,600 requests per second. Finally, there is
CGI mode, which gets less than 100 requests per second. Enabling keep-alive
(section 4.2.1) does not give any special increase, except for mod_php. In this
case, performance increases up to 10,000 requests per second, being very
stable across the entire test. FastCGI and CGI performance got the same result
than before, meaning that in this case keep-alive does not affect FastCGI or
CGI performance. The best way of running PHP in Apache is by using
mod_php, but it is important to check the memory footprint of the web server.
Eventually, it will be a trade-off between performance and memory footprint.

Event-driven web server became interesting in previous tests, where using
different active worker configurations generated more performance. Using PHP
by means of an external program, affects the overall performance, so it is not
expected to see any high increase of performance between configurations.

Fig. A.10: Lighttpd PHP no keep-alive chart

90 Analysis and evaluation of high performance web servers

Fig. A.10 shows the results of Lighttpd PHP no keep-alive chart. It is possible to
see three different groups. At the top of the chart are the configurations with
more than one Lighttpd process, taking advantage of the multi-process
capabilities of the system. The top performance gets up to 5,000 requests per
second, but is not as stable as the number of simultaneous clients increase.
Although it is possible to see that 8 worker configuration has fewer requests per
second, but is it more stable. Afterwards, it is Lighttpd configuration with only
one worker. Here, top performance is less than 4,000 requests per second,
although it is very stable across the entire test. It is possible to see a big
advantage of using more than one worker at the same time. Finally, using CGI
protocol it only reaches 100 requests per second, which is the slower mark of
the test.

In section 4.2.1 was presented the Lighttpd PHP keep-alive chart that was
useful to see the performance differences by using multi process approach.
Performance does increase a little when enabling keep-alive feature, up to
1,000 requests per second in the best case, although performance is less stable
when increasing the number of simultaneous clients.

Nginx is the other event-driven web server architecture. Performance
expectance is like Lighttpd, although, as it is shown in Fig. A.11, it becomes
less stable as increasing the number simultaneous clients. With a two worker
configuration, Nginx performance is not the best at the beginning of the test, but
it remains stable during the rest of the test, even though when reaching 1,000
simultaneous clients. Performance is about 4,500 requests per second. One
worker configuration is not the best performing configuration for Nginx, although
it is stable during the entire test, but it gets less than 4,000 requests per second.
CGI protocol is not supported by Nginx, so it cannot be tested. Regardless not
testing CGI protocol, the expected performance would be the same as in
previous cases.

Fig. A.11: Nginx PHP no keep-alive chart

At the beginning of the PHP test case results (section 4.2.1), it was possible to
see that Cherokee web server had an issue as simultaneous clients increase
above 100. In order to solve this performance issue, it was done some changes
in its configuration. Running PHP can be done by using FastCGI and also with
PHP-FPM (PHP FastCGI Process Manager). It was tested varying the number

Appendix 91

of threads that Cherokee can execute, the interpreter, as well as changing the
socket type. Cherokee is a single process multithread web server, so limiting
the number of threads will limit the web server’s overall performance. By
default, Cherokee creates 10 threads to service the incoming requests. Sockets
also play an important role in FastCGI support, as they connect the web server
with the PHP interpreter. There are different socket types, UNIX and TCP. UNIX
socket can deliver better performance than TCP, because they do not need the
extra overhead of going through the TCP/IP stack.

Fig. A.12: Cherokee PHP no keep-alive chart

This test consisted in five different configurations regarding the use of UNIX or
TCP socket. Fig. A.12 shows the obtained results. It is important to notice the
performance difference when using UNIX or TCP sockets paired with FastCGI.
In UNIX case it is possible to see how it loses all its performance, due to
Cherokee getting the 200% of the web server processor (remember it is a dual
core machine); meanwhile, in TCP mode it is more or less stable between 4,000
and 3,500 requests per second.

The best performing case is PHP-FPM using four threads and UNIX sockets. It
is possible to see that top performing modes are UNIX based sockets, using
PHP-FPM. PHP-FPM is way more configurable than php-cgi running in FastCGI
mode, letting the user a more custom execution environment. Furthermore,
TCP sockets have lower performance compared to UNIX ones, but it will
probably perform better under stressed systems.

92 Analysis and evaluation of high performance web servers

Fig. A.13: Cherokee PHP keep-alive chart

Using keep-alive does not have a great impact in performance results of the
test; indeed, it has almost the same behavior. As it is shown in Fig. A.13,
default configuration of Cherokee using FastCGI and UNIX socket gets the
same performance issue. Limiting the number of threads, as well as using PHP-
FPM manager to load PHP web pages provokes a more stable performance
results.

A.3.2.2 Python

Python, which is another dynamic language, is being used by different
frameworks to provide dynamic web experience. It also has a lot of different
connectors to other programs of frameworks, like in PHP. Executing Python can
be done in different ways, but always using and external interpreter, like
FastCGI, CGI or uWSGI. The three of them are explained in detail in Chapter 2.

As happened in previous sections, it is important to know the memory footprint
of each one of the execution environments. Table A.10 shows the different
memory consumptions for each one of the tested Python interpreters.

Table A.10: Web server Python memory footprint

 Worker Master

 VmRSS (kB) VmSize (kB) VmRSS (kB) VmSize (kB)

Apache Prefork (mod_uWSGI) 5088 377116 10224 377116

Apache Worker (mod_uWSGI) 2196 382936 35052 104244

Apache Event (mod_uWSGI) 2188 366420 18524 87728

Lighttpd FastCGI 808 52472 5412 179264

Nginx uWSGI 7196 47240 896 41084

Cherokee FastCGI 4852 142792 752 25868

Yaws FastCGI 41400 171464 - -

uWSGI 2588 81708 - -

Appendix 93

Apache’s configurations support the three different modes of execution, CGI,
FastCGI and uWSGI. Although, it is only tested with uWSGI. Memory footprint
of Apache Prefork configuration is another time high, with a total of 5MB and
377MB of maximum virtual memory. Worker and Event configurations have very
similar behavior, as they share some of the environment. Master process of the
three configurations consume more RAM memory, and have less virtual
memory assigned, except for Prefork mode which is almost the same as before.

Lighttpd and Nginx web servers do have almost the same memory footprint, as
they do not run any new kernel module to run uWSGI or FastCGI. The same
happens to Cherokee and Yaws. The four web servers only load more
instructions in order to pass information to an external program, by means of a
socket. uWSGI process is spawned manually by the user, with a memory
consumption of 2.5MB and maximum virtual memory of 82MB per process.

Fig. A.14: Apache Python no keep-alive chart

There is a clear performance difference between the three used interpreters in
Apache. As shown in Fig. A.14 the top performing are those using uWSGI,
getting up to 5,000 requests per second. Secondly, there is FastCGI protocol.
Meanwhile, in third place is CGI protocol with less than 100 requests per
second. uWSGI is a very good option to run Python code, as it has far better
performance and also a customizable execution environment. Taking into
account results obtained in section 4.2.2, not using keep-alive does not
produce any noticeable performance penalty.

Nginx’s performance is also limited by the uWSGI interpreter (see Fig A.15). It
is possible to see that, although there is the possibility to use the multi process
configuration, it does not report any special performance increase. Performance
varies as simultaneous clients increase, with a downward trend. Regarding the
results obtained back in section 4.2.2, not enabling keep-alive produces slightly
more variation, although both have the same performance.

94 Analysis and evaluation of high performance web servers

Fig. A.15: Nginx Python no keep-alive chart

Cherokee is the last of the three web servers that uses uWSGI interpreter to run
Python. Moreover, it has an estrange behavior when increasing the number of
simultaneous clients above 100 users. This performance decrease is very
similar to what is found during PHP test case. In this case, configuration
variations are only done with UNIX sockets, as TCP sockets introduce a high
performance penalty.

Fig.A.16: Cherokee Python no keep-alive chart

Fig. A.16 compares the different performance results of limiting Cherokee’s
number of threads. It is possible to see a big improvement by limiting the
number of threads to two or even four. Using more threads increases the
performance when there are less than 100 clients in the system; meanwhile,
using fewer threads keeps stable the performance when there are more than
100 simultaneous clients. It is important to highlight that this effect is produced
when requesting a small file, which eventually the bottleneck will be the web
server itself, not the interpreter. With larger frameworks, with hundreds of lines
of codes and functions, those issues would not repeat, as the interpreter would
be the bottleneck.

Appendix 95

Fig. A.17: Cherokee Python keep-alive chart

Enabling keep-alive feature, gets almost the same performance in the three
cases, see Fig. A.17. Default uWSGI configuration decreases its performance
although, not as quick as before, but being noticeable anyway. As said before,
this issue is produced when the web server is the bottleneck, when it has to
process lots of requests in a short period of time.

Fig. A.18: Lighttpd Python no keep-alive chart

Lighttpd’s performance in different configurations is almost the same among
them. More than one worker configuration gets better performance as
simultaneous clients increase in the system, above 250 users. There is not so
much difference in terms of requests per second, as in average it gets 1,700
requests per second. If compared with keep-alive chart (section 4.2.2) it is
possible to see that there are not noticeable differences.

A.3.2.3 Servlet and JSP

Servlet and JSP dynamic web protocols are part of Java technologies, which
are found in only one of the tested web servers, Tomcat. Java programming
language is very used in the Internet, as well as in desktop software to provide
very rich applications with high portability. Servlet and JSP test cases are

96 Analysis and evaluation of high performance web servers

dynamic web protocols; although, the obtained performance is as high as HTML
tests.

Fig. A.19: Servlet and JSP vs HTML chart no keep-alive

Fig. A.19 shows Servlet and JSP results compared with HTML values. Without
using keep-alive, the obtained performance is higher than for some Apache’s
configurations, and near of Nginx and Tomcat. It delivers up to 10,000 requests
per second for both, Servlet and JSP. Although, performance is not stable when
increasing the number of simultaneous clients in the system. It is possible to
compare with other HTML web servers as they get almost the same
performance.

Fig. A.20: Servlet and JSP chart keep-alive

Enabling keep-alive, increases the performance for all the web servers. As
shown in Fig. A.20, performance increased for both Servlet and JSP, up to
18,400 and 22,400 requests per second, respectively. Both cases overtake the
performance obtained by Apache web server, but fall behind of other servers
such as Cherokee, Nginx or Lighttpd.

Nevertheless, Servlet and JSP power dynamic web pages meanwhile, HTML
only static pages. So, they cannot be compared, as Java technologies offer
desktop class features to web pages. Eventually, this comparison must be done
with PHP and Python using CGI and FastCGI. Fig. A.21 shows the relative

Appendix 97

performance between Servlet, JSP and PHP. It is possible to see the difference
in performance for Servlet and JSP in front of the other cases. The best
performing PHP web server is Apache’s mod_php with as much as 7,000
requests per second, falling behind of Servlet and JSP, which rates up to
10,000 requests per second. In any case, performance is far superior to
FastCGI or CGI.

Fig. A.21: Servlet and JSP vs PHP chart no keep-alive

Moreover, enabling keep-alive, performance increases even more for Servlet
and JSP, getting up to 18,400 and 22,400 requests per second, respectively
(see Fig. A.22). Mod_php is another time the best performing PHP web server,
with up to 10,000 requests per second, although being slower than Servlet and
JSP. The advantage of Servlet and JSP is that for both cases

Fig. A.22: Servlet and JSP vs PHP chart keep-alive

A.3.3 HTTPS

Secure HTTP is a very important feature in nowadays communications. In this
case, it is being tested almost all of the web servers in HTTPS mode, using SSL
and TLS protocols to communicate securely between the two hosts.

98 Analysis and evaluation of high performance web servers

As in previous tests, memory footprint is important as it will show the memory
consumption of each of the tested web servers. Overall, the memory footprint
for each web server of this report is slightly higher when configured with
SSL/TLS support. This higher memory consumption is only of few KB or even
few MB.

Table A.11: Web server SSL memory footprint

Worker Master

VmRSS (kB) VmSize (kB) VmRSS (kB) VmSize (kB)

Apache Prefork 3284 76420 3284 76420

Apache Worker 2572 387880 36192 109188

Apache Event 2572 371364 19664 92672

Lighttpd 796 53892 796 53892

Nginx 7276 57616 964 51460

Cherokee - - - -

Yaws 41504 171976 - -

A.3.3.1 HTTPS HTML

If compared to the first HTML results, enabling SSL results in a considerable
performance penalty (see section 4.3). Regarding the architecture that web
servers are being using, this decrease is more notable. In Apache’s case,
without keep-alive there is an important performance penalty of using SSL, see
Fig. A.23. In this case, it does not matter which configuration is used, as all of
them have a similar performance.

Fig. A.23: Apache HTTPS no keep-alive comparison chart

Apache’s performance enabling keep-alive increases in both cases, with and
without SSL support. It is possible to see in Fig. A.24 that the gap between both
scenarios is reduced, having a lower performance penalty when enabling SSL.

Appendix 99

Fig. A.24: Apache HTTPS keep-alive comparison chart

As it is shown in Fig. A.25, disabling keep-alive in Lighttpd and using SSL, has
a great impact in the overall performance of the web server, going down from
about 10,000 requests per second (in average) to 1,500 requests per second.

Fig. A.25: Lighttpd HTTPS no keep-alive comparison chart

Enabling keep-alive feature in Lighttpd provokes an increase of performance in
both cases, with and without SSL enabled (see Fig. A.26). Performance of SSL
HTML does not have a very high variation along the entire test, but it is possible
to see the performance penalty. This penalty is even higher when Lighttpd is
configured with more than one active worker, where the gap between both test
cases is bigger.

100 Analysis and evaluation of high performance web servers

Fig. A.26: Lighttpd HTTPS keep-alive comparison chart

Finally, Nginx has a very similar performance than Lighttpd’s case, with some
variations of the performance of HTML results regarding the number of active
workers (see Fig. A.27). SSL performance results are very similar of those
gotten from Lighttpd, and performance penalty by enabling SSL connections is
very noticeable.

Fig. A.27: Nginx HTTPS no keep-alive comparison chart

Meanwhile, enabling keep-alive (see Fig. A.28) increases the performance
results of both scenarios (with and without SSL), reaching up to 15,000
requests per second. Although, it is not stable across the entire test, it reduces
the penalty gap between both test cases. Nginx’s performance is even higher
than Apache’s for SSL.

Appendix 101

Fig. A.28: Nginx HTTPS keep-alive comparison chart

A.3.3.2 HTTPS PHP

Next charts give the possibility to show relative performance results between
each web server using SSL and PHP. Apache’s HTTPS comparison chart (see
Fig. A.29) without keep-alive shows that SSL feature limits the performance of
the web server, around 1,400 requests per second, meanwhile with Prefork
using mod_php without SSL the performance is around 6,000 or even 7,000
requests per second. Apache’s Worker and Event configurations do not get
such a high performance, and the decrease by enabling SSL is around 150%.

Fig. A.29: Apache HTTPS PHP no keep-alive comparison chart

Keep-alive does not introduce any performance increase. It is possible to see
that using such feature mod_php without SSL increase its performance;
although, it does not increase when running secure communications.
Performance penalty for mod_php configuration is around 600%, meanwhile for
the other two configurations is 150%.

102 Analysis and evaluation of high performance web servers

Fig. A.30: Apache HTTPS PHP keep-alive comparison chart

Lighttpd’s case is different than for Apache. Without keep-alive, performance
results get the same rate as in the other SSL tests, around 1,400 requests per
second (see Fig A.31); but, when enabling keep-alive feature performance
increases. This boosts of performance gets up to 4,000 requests per second,
which is somewhat surprising (see Fig. A.32).

Fig. A.31: Lighttpd HTTPS PHP no keep-alive comparison chart

Increasing the number of active workers does have a positive impact on the
overall web server performance, which is an important feature.

Fig. A.32: Lighttpd HTTPS PHP keep-alive comparison chart

Appendix 103

The other web server to analyze is Nginx. Performance obtained without using
keep-alive is as expected; around 1,400 requests per second, which is
maintained across the entire test (see Fig. A.33). Instead of gaining some
performance when enabling keep-alive, it maintains the same as before, as it is
possible to see in Fig. A.34, like in Apache’s case.

Fig. A.33: Nginx HTTPS PHP no keep-alive comparison chart

Fig. A.34: Nginx HTTPS PHP keep-alive comparison chart

A.3.3.3 HTTPS PYTHON

Python is another tested dynamic language. In order to compare the obtained
performance when using SSL against not using it, it is useful to present different
charts about each web server. In those charts it will be possible to compare
different server’s configurations in different situations.

Apache is the first tested web server. In this case, and as before, performance
result by enabling HTTPS is limited to 1,400 requests per second (see Fig.
A.35). It is possible to see a high performance penalty, around 72%.

104 Analysis and evaluation of high performance web servers

Fig. A.35: Apache HTTPS Python no keep-alive comparison chart

Enabling keep-alive to Apache’s test does not represent any performance
improvement, as the obtained results are almost the same as before, as it is
shown in Fig. A.36. Performance penalty is as before, about 72%.

Fig. A.36: Apache HTTPS Python keep-alive comparison chart

In Lighttpd’s web server, performance associated to HTTPS test case is the
same as before, with only 1,400 requests per second (see Fig. A.37).
Compared with not using SSL, performance penalty is 35%, less noticeable
than for Apache’s.

Fig. A.37: Lighttpd HTTPS Python no keep-alive comparison chart

Appendix 105

Using keep-alive with Lighttpd increases its performance, up to 1,800 requests
per second, which is an increase of a 38% (see Fig. A.38). Compared with the
no SSL test case, it is possible to see that the performance is very similar,
without any noticeable penalty.

Fig. A.38: Lighttpd HTTPS Python keep-alive comparison chart

Nginx is the last event-driven web server. Performance enabling SSL is the
same as the previous web servers, 1,400 requests per second (see Fig. A.39).
Although, it is possible to see a high performance penalty by enabling secure
navigation, around 78%, which is very noticeable.

Fig. A.39: Nginx HTTPS Python no keep-alive comparison chart

Nginx’s SSL keep-alive test does not represent any performance improvement,
as it maintains the same performance results obtained before, as it is possible
to see in Fig. A.40. Compared with disabling SSL, penalty introduced is the
same as before, around 78%, which is very noticeable.

106 Analysis and evaluation of high performance web servers

Fig. A.40: Nginx HTTPS Python keep-alive comparison chart

A.3.7 Load test

As said in Section 4.4, this test consists in benchmarking the hardware with a
Wordpress blog installation. This blog site bases its functionalities in HTML,
PHP and MySQL database. In order to present it as a more real performance
test, it is installed different programs to increase its overall performance, such
as content cache and PHP accelerators. Content cache will be very useful, as
the server will cache the requested content and serve it quicker than accessing
to the hard disk each time an incoming request arrives.

PHP accelerator will convert any PHP instruction which is requested to op-code,
Instead of recompiling the code for every request; it is possible to keep the op-
code in memory and save the compile step, gaining some performance.

Table A.12: Memory footprint of PHP accelerator programs

Before loading main page After loading main page

VmRSS (kB) VmSize (kB) VmRSS (kB) VmSize (kB)

mod_php 5012 241720 8308 242748

mod_php with APC 5052 375044 8028 375824

mod_php with Xcache 5072 276700 8904 278352

mod_php with eAccelerator 5020 260268 7884 261040

FastCGI 3748 170908 6684 171824

FastCGI with APC 3792 304232 6328 304888

FastCGI with Xcache 3812 205888 7220 207452

FastCGI with eAccelerator 3764 189456 6176 190112

PHP-FPM 4140 221372 6788 222296

PHP-FPM with APC 4180 354692 6484 355360

PHP-FPM with Xcache 4196 256352 7348 257896

PHP-FPM with eAccelerator 4160 239920 6332 240584

Appendix 107

As happened in previous sections of this appendix, it is important to reflect the
memory footprint that generated the usage of any web server. In this case it is
shown in Table A.12 the memory footprint of each one of the tested PHP
accelerators. Mod_php, FastCGI and PHP-FPM are the standalone releases of
PHP interpreters, all of them work with the PHP installation of the server.

Meanwhile, APC, Xcache and eAccelerator, are PHP extensions, which act as a
PHP cache. Those extensions must be installed reflecting the PHP installation
path as well as adding the extension to the PHP configuration file. Alternative
PHP Cache (APC) is supported by PHP group and it will be included in the next
release of PHP.

The first interpreter is mod-php. As it is possible to see in Table X.X, its memory
consumption is higher than for the others up to 5MB and 8.3MB after loading
the main web page. This is because it has the Apache’s web server process
loaded too. APC accelerator has the highest maximum virtual memory
assigned, though it could be a problem in very loaded scenarios. Xcache and
eAccelerator have almost the same behavior. As Apache processes increase in
memory footprint it lets less free RAM memory to other processes, limiting the
overall server’s performance.

FastCGI approach could be used by any web server. Being a separated
process means also less memory footprint. For this reason, processes only
consume 3.7MB and 6 – 7MB once loaded the main blog’s page. As FastCGI
processes are controlled by the user, who specifies the number of maximum
spawned processes, controlling the memory consumption of those is not as
critical as before. APC also keeps having the highest virtual memory assigned.
PHP-FPM is an evolution of FastCGI, which allows the user to control even
more the execution environment of PHP. The memory footprint is higher than
for FastCGI (4.1MB and 6.6MB), although lower than for mod_php. Also, the
maximum allocated virtual memory is higher.

As seen in Section 4.4, performance for this load test is not equal for all of the
web servers. Regarding the technology associated to each web server its
performance will vary. As for this, Apache Prefork with mod_php does not
complete the test, as it runs out of RAM memory as well as CPU. It provokes a
huge decrease of performance and starting to timeout requests. Meanwhile, the
other web servers accomplish successfully the test, leaving space for further
testing.

The first phase of the test, creating of 100 clients per second, does not report
any problem for the tested web servers, as all of them support such load.
Increasing the number of simultaneous clients, up to 450 clients per second,
does reflect some system’s limitations, as some of the web servers do get high
CPU utilization, as well as high RAM memory consumption. The third phase,
which consists in creating 200 simultaneous clients, is performed by all the web
servers without any issue.

108 Analysis and evaluation of high performance web servers

Fig. A.41: Apache Prefork CPU and RAM load

Apache Prefork had some issues during the load test (see Fig. A.41). The first
phase of the test (100 clients/s) as well as the third phase (200 clients/s) runs
without any problem. Nevertheless, during the second phase (generating up to
450 clients per second) the web server reaches the maximum performance of
the hardware. CPU load was 100 % and the RAM footprint reaches almost the
4GB available, starting to caching some data into the hard disk. With those two
parameters taken into account, there is no space for scale the web server, as
there are no hardware resources available. Also, during the second phase of
the test, some timeout errors were found, which leads to a not successful test.

Fig. A.42: Apache Event CPU and RAM load

Apache’s Event configuration does work in a very different way than its Prefork
sibling. As shown in Fig. A.42, CPU load gets up to 100%, although there is still
RAM memory available. Compared with Prefork’s configuration, Event does
have RAM available and does not generate any error during high load phases.

Appendix 109

Fig. A.43: Lighttpd CPU and RAM load

Lighttpd CPU load is similar than for Apache’s, increasing up to the maximum
when the second phase of the tests starts (see Fig. A.43). RAM memory
footprint during the test is small, only 2GB, being 50% of the available memory
in the system. RAM memory is not an issue, so there is some space for
scalability, as it is not consuming as much as RAM as the other web servers.

Fig. A.44: Nginx CPU and RAM load

Nginx’s hardware performance is very similar to the previous one (see Fig.
A.44). CPU load is less than 100%, average 90% in the most loaded phase.
RAM is almost the entire test with a same value, around 2.8GB. Taking into
account the evolution of the CPU load as well as the RAM consumption it is
possible to say that it leaves space for further performance increase, with more
simultaneous clients.

110 Analysis and evaluation of high performance web servers

Fig. A.45: Cherokee CPU and RAM load

Cherokee’s performance during the load test is also very good. Fig. A.45 shows
its hardware performance, with CPU load reaching up to 92% in the most
loaded phase. RAM memory consumption is very high, maintaining stable
during the entire test, with 3.4GB. Having such high RAM consumption as well
as high CPU load does not leave so much space for scalability, as the system
will run out of memory in any time.

As seen during the test, there is a phase in which the load generated does gets
the maximum hardware performance. During the second phase, which
consisted in creating 450 simultaneous clients, CPU load reaches its maximum
point, with up to 100%. Speaking about RAM memory consumption, each web
server works different, as some of them maintain the same consumption and
other start to consume more. In any case, as simultaneous clients increase,
CPU load and RAM consumption increase. Apache Prefork configuration does
not finish the test successfully, limited by the unavailability of hardware
resources. Meanwhile, other web servers such as Lighttpd, Nginx, Cherokee
and Apache’s Event do perform it without any issue.

